+2005-07-14 Bob Rossi <bob@brasko.net>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
0f20cc35
DJ
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
b15e6682 75 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
b15e6682
AO
79};
80
f0abc2a1 81/* This structure is used to hold .got information when linking. */
b49e97c9
TS
82
83struct mips_got_info
84{
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
0f20cc35
DJ
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
b49e97c9
TS
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
b15e6682
AO
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
f4416af6
AO
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
0f20cc35
DJ
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
f4416af6
AO
112};
113
114/* Map an input bfd to a got in a multi-got link. */
115
116struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119};
120
121/* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124struct mips_elf_got_per_bfd_arg
125{
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
0f20cc35
DJ
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
f4416af6
AO
151};
152
153/* Another structure used to pass arguments for got entries traversal. */
154
155struct mips_elf_set_global_got_offset_arg
156{
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
b49e97c9
TS
161};
162
0f20cc35
DJ
163/* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166struct mips_elf_count_tls_arg
167{
168 struct bfd_link_info *info;
169 unsigned int needed;
170};
171
f0abc2a1
AM
172struct _mips_elf_section_data
173{
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180};
181
182#define mips_elf_section_data(sec) \
68bfbfcc 183 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 184
b49e97c9
TS
185/* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188struct mips_elf_hash_sort_data
189{
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
0f20cc35
DJ
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
b49e97c9 195 long min_got_dynindx;
f4416af6
AO
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 198 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 199 long max_unref_got_dynindx;
b49e97c9
TS
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203};
204
205/* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208struct mips_elf_link_hash_entry
209{
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
b34976b6 221 bfd_boolean readonly_reloc;
b49e97c9 222
b49e97c9
TS
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
b34976b6 227 bfd_boolean no_fn_stub;
b49e97c9
TS
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
b34976b6 235 bfd_boolean need_fn_stub;
b49e97c9
TS
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
7c5fcef7 244
a008ac03
DJ
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
b34976b6 247 bfd_boolean forced_local;
0f20cc35
DJ
248
249#define GOT_NORMAL 0
250#define GOT_TLS_GD 1
251#define GOT_TLS_LDM 2
252#define GOT_TLS_IE 4
253#define GOT_TLS_OFFSET_DONE 0x40
254#define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
b49e97c9
TS
263};
264
265/* MIPS ELF linker hash table. */
266
267struct mips_elf_link_hash_table
268{
269 struct elf_link_hash_table root;
270#if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274#endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 280 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 281 bfd_boolean use_rld_obj_head;
b49e97c9
TS
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
b34976b6 285 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
286};
287
0f20cc35
DJ
288#define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
b49e97c9
TS
303/* Structure used to pass information to mips_elf_output_extsym. */
304
305struct extsym_info
306{
9e4aeb93
RS
307 bfd *abfd;
308 struct bfd_link_info *info;
b49e97c9
TS
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
b34976b6 311 bfd_boolean failed;
b49e97c9
TS
312};
313
8dc1a139 314/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
315
316static const char * const mips_elf_dynsym_rtproc_names[] =
317{
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322};
323
324/* These structures are used to generate the .compact_rel section on
8dc1a139 325 IRIX5. */
b49e97c9
TS
326
327typedef struct
328{
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335} Elf32_compact_rel;
336
337typedef struct
338{
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345} Elf32_External_compact_rel;
346
347typedef struct
348{
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355} Elf32_crinfo;
356
357typedef struct
358{
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364} Elf32_crinfo2;
365
366typedef struct
367{
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371} Elf32_External_crinfo;
372
373typedef struct
374{
375 bfd_byte info[4];
376 bfd_byte konst[4];
377} Elf32_External_crinfo2;
378
379/* These are the constants used to swap the bitfields in a crinfo. */
380
381#define CRINFO_CTYPE (0x1)
382#define CRINFO_CTYPE_SH (31)
383#define CRINFO_RTYPE (0xf)
384#define CRINFO_RTYPE_SH (27)
385#define CRINFO_DIST2TO (0xff)
386#define CRINFO_DIST2TO_SH (19)
387#define CRINFO_RELVADDR (0x7ffff)
388#define CRINFO_RELVADDR_SH (0)
389
390/* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393#define CRF_MIPS_LONG 1
394#define CRF_MIPS_SHORT 0
395
396/* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406#define CRT_MIPS_REL32 0xa
407#define CRT_MIPS_WORD 0xb
408#define CRT_MIPS_GPHI_LO 0xc
409#define CRT_MIPS_JMPAD 0xd
410
411#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415\f
416/* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419typedef struct runtime_pdr {
ae9a127f
NC
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
b49e97c9 429 long reserved;
ae9a127f 430 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
431} RPDR, *pRPDR;
432#define cbRPDR sizeof (RPDR)
433#define rpdNil ((pRPDR) 0)
434\f
b15e6682 435static struct mips_got_entry *mips_elf_create_local_got_entry
0f20cc35
DJ
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
b34976b6 438static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 439 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
440static bfd_vma mips_elf_high
441 (bfd_vma);
b34976b6 442static bfd_boolean mips_elf_stub_section_p
9719ad41 443 (bfd *, asection *);
b34976b6 444static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
9719ad41
RS
448static hashval_t mips_elf_got_entry_hash
449 (const void *);
f4416af6 450static bfd_vma mips_elf_adjust_gp
9719ad41 451 (bfd *, struct mips_got_info *, bfd *);
f4416af6 452static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 453 (struct mips_got_info *, bfd *);
f4416af6 454
b49e97c9
TS
455/* This will be used when we sort the dynamic relocation records. */
456static bfd *reldyn_sorting_bfd;
457
458/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 459
b49e97c9
TS
460#define ABI_N32_P(abfd) \
461 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462
4a14403c 463/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 464#define ABI_64_P(abfd) \
141ff970 465 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 466
4a14403c
TS
467/* Nonzero if ABFD is using NewABI conventions. */
468#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469
470/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
471#define IRIX_COMPAT(abfd) \
472 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473
b49e97c9
TS
474/* Whether we are trying to be compatible with IRIX at all. */
475#define SGI_COMPAT(abfd) \
476 (IRIX_COMPAT (abfd) != ict_none)
477
478/* The name of the options section. */
479#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 480 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 481
cc2e31b9
RS
482/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
483 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
484#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
485 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486
b49e97c9 487/* The name of the stub section. */
ca07892d 488#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
489
490/* The size of an external REL relocation. */
491#define MIPS_ELF_REL_SIZE(abfd) \
492 (get_elf_backend_data (abfd)->s->sizeof_rel)
493
494/* The size of an external dynamic table entry. */
495#define MIPS_ELF_DYN_SIZE(abfd) \
496 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497
498/* The size of a GOT entry. */
499#define MIPS_ELF_GOT_SIZE(abfd) \
500 (get_elf_backend_data (abfd)->s->arch_size / 8)
501
502/* The size of a symbol-table entry. */
503#define MIPS_ELF_SYM_SIZE(abfd) \
504 (get_elf_backend_data (abfd)->s->sizeof_sym)
505
506/* The default alignment for sections, as a power of two. */
507#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 508 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
509
510/* Get word-sized data. */
511#define MIPS_ELF_GET_WORD(abfd, ptr) \
512 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513
514/* Put out word-sized data. */
515#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 (ABI_64_P (abfd) \
517 ? bfd_put_64 (abfd, val, ptr) \
518 : bfd_put_32 (abfd, val, ptr))
519
520/* Add a dynamic symbol table-entry. */
9719ad41 521#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 522 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
523
524#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526
4ffba85c
AO
527/* Determine whether the internal relocation of index REL_IDX is REL
528 (zero) or RELA (non-zero). The assumption is that, if there are
529 two relocation sections for this section, one of them is REL and
530 the other is RELA. If the index of the relocation we're testing is
531 in range for the first relocation section, check that the external
532 relocation size is that for RELA. It is also assumed that, if
533 rel_idx is not in range for the first section, and this first
534 section contains REL relocs, then the relocation is in the second
535 section, that is RELA. */
536#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
537 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
538 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
539 > (bfd_vma)(rel_idx)) \
540 == (elf_section_data (sec)->rel_hdr.sh_entsize \
541 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
542 : sizeof (Elf32_External_Rela))))
543
b49e97c9
TS
544/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
545 from smaller values. Start with zero, widen, *then* decrement. */
546#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 547#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
548
549/* The number of local .got entries we reserve. */
550#define MIPS_RESERVED_GOTNO (2)
551
f4416af6
AO
552/* The offset of $gp from the beginning of the .got section. */
553#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554
555/* The maximum size of the GOT for it to be addressable using 16-bit
556 offsets from $gp. */
557#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558
6a691779 559/* Instructions which appear in a stub. */
b49e97c9 560#define STUB_LW(abfd) \
f4416af6
AO
561 ((ABI_64_P (abfd) \
562 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
563 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 564#define STUB_MOVE(abfd) \
6a691779
TS
565 ((ABI_64_P (abfd) \
566 ? 0x03e0782d /* daddu t7,ra */ \
567 : 0x03e07821)) /* addu t7,ra */
568#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 569#define STUB_LI16(abfd) \
6a691779
TS
570 ((ABI_64_P (abfd) \
571 ? 0x64180000 /* daddiu t8,zero,0 */ \
572 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
573#define MIPS_FUNCTION_STUB_SIZE (16)
574
575/* The name of the dynamic interpreter. This is put in the .interp
576 section. */
577
578#define ELF_DYNAMIC_INTERPRETER(abfd) \
579 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
580 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
581 : "/usr/lib/libc.so.1")
582
583#ifdef BFD64
ee6423ed
AO
584#define MNAME(bfd,pre,pos) \
585 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
586#define ELF_R_SYM(bfd, i) \
587 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
588#define ELF_R_TYPE(bfd, i) \
589 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
590#define ELF_R_INFO(bfd, s, t) \
591 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592#else
ee6423ed 593#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
594#define ELF_R_SYM(bfd, i) \
595 (ELF32_R_SYM (i))
596#define ELF_R_TYPE(bfd, i) \
597 (ELF32_R_TYPE (i))
598#define ELF_R_INFO(bfd, s, t) \
599 (ELF32_R_INFO (s, t))
600#endif
601\f
602 /* The mips16 compiler uses a couple of special sections to handle
603 floating point arguments.
604
605 Section names that look like .mips16.fn.FNNAME contain stubs that
606 copy floating point arguments from the fp regs to the gp regs and
607 then jump to FNNAME. If any 32 bit function calls FNNAME, the
608 call should be redirected to the stub instead. If no 32 bit
609 function calls FNNAME, the stub should be discarded. We need to
610 consider any reference to the function, not just a call, because
611 if the address of the function is taken we will need the stub,
612 since the address might be passed to a 32 bit function.
613
614 Section names that look like .mips16.call.FNNAME contain stubs
615 that copy floating point arguments from the gp regs to the fp
616 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
617 then any 16 bit function that calls FNNAME should be redirected
618 to the stub instead. If FNNAME is not a 32 bit function, the
619 stub should be discarded.
620
621 .mips16.call.fp.FNNAME sections are similar, but contain stubs
622 which call FNNAME and then copy the return value from the fp regs
623 to the gp regs. These stubs store the return value in $18 while
624 calling FNNAME; any function which might call one of these stubs
625 must arrange to save $18 around the call. (This case is not
626 needed for 32 bit functions that call 16 bit functions, because
627 16 bit functions always return floating point values in both
628 $f0/$f1 and $2/$3.)
629
630 Note that in all cases FNNAME might be defined statically.
631 Therefore, FNNAME is not used literally. Instead, the relocation
632 information will indicate which symbol the section is for.
633
634 We record any stubs that we find in the symbol table. */
635
636#define FN_STUB ".mips16.fn."
637#define CALL_STUB ".mips16.call."
638#define CALL_FP_STUB ".mips16.call.fp."
639\f
640/* Look up an entry in a MIPS ELF linker hash table. */
641
642#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
643 ((struct mips_elf_link_hash_entry *) \
644 elf_link_hash_lookup (&(table)->root, (string), (create), \
645 (copy), (follow)))
646
647/* Traverse a MIPS ELF linker hash table. */
648
649#define mips_elf_link_hash_traverse(table, func, info) \
650 (elf_link_hash_traverse \
651 (&(table)->root, \
9719ad41 652 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
653 (info)))
654
655/* Get the MIPS ELF linker hash table from a link_info structure. */
656
657#define mips_elf_hash_table(p) \
658 ((struct mips_elf_link_hash_table *) ((p)->hash))
659
0f20cc35
DJ
660/* Find the base offsets for thread-local storage in this object,
661 for GD/LD and IE/LE respectively. */
662
663#define TP_OFFSET 0x7000
664#define DTP_OFFSET 0x8000
665
666static bfd_vma
667dtprel_base (struct bfd_link_info *info)
668{
669 /* If tls_sec is NULL, we should have signalled an error already. */
670 if (elf_hash_table (info)->tls_sec == NULL)
671 return 0;
672 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
673}
674
675static bfd_vma
676tprel_base (struct bfd_link_info *info)
677{
678 /* If tls_sec is NULL, we should have signalled an error already. */
679 if (elf_hash_table (info)->tls_sec == NULL)
680 return 0;
681 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
682}
683
b49e97c9
TS
684/* Create an entry in a MIPS ELF linker hash table. */
685
686static struct bfd_hash_entry *
9719ad41
RS
687mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
688 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
689{
690 struct mips_elf_link_hash_entry *ret =
691 (struct mips_elf_link_hash_entry *) entry;
692
693 /* Allocate the structure if it has not already been allocated by a
694 subclass. */
9719ad41
RS
695 if (ret == NULL)
696 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
697 if (ret == NULL)
b49e97c9
TS
698 return (struct bfd_hash_entry *) ret;
699
700 /* Call the allocation method of the superclass. */
701 ret = ((struct mips_elf_link_hash_entry *)
702 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
703 table, string));
9719ad41 704 if (ret != NULL)
b49e97c9
TS
705 {
706 /* Set local fields. */
707 memset (&ret->esym, 0, sizeof (EXTR));
708 /* We use -2 as a marker to indicate that the information has
709 not been set. -1 means there is no associated ifd. */
710 ret->esym.ifd = -2;
711 ret->possibly_dynamic_relocs = 0;
b34976b6 712 ret->readonly_reloc = FALSE;
b34976b6 713 ret->no_fn_stub = FALSE;
b49e97c9 714 ret->fn_stub = NULL;
b34976b6 715 ret->need_fn_stub = FALSE;
b49e97c9
TS
716 ret->call_stub = NULL;
717 ret->call_fp_stub = NULL;
b34976b6 718 ret->forced_local = FALSE;
0f20cc35 719 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
720 }
721
722 return (struct bfd_hash_entry *) ret;
723}
f0abc2a1
AM
724
725bfd_boolean
9719ad41 726_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
727{
728 struct _mips_elf_section_data *sdata;
729 bfd_size_type amt = sizeof (*sdata);
730
9719ad41 731 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
732 if (sdata == NULL)
733 return FALSE;
9719ad41 734 sec->used_by_bfd = sdata;
f0abc2a1
AM
735
736 return _bfd_elf_new_section_hook (abfd, sec);
737}
b49e97c9
TS
738\f
739/* Read ECOFF debugging information from a .mdebug section into a
740 ecoff_debug_info structure. */
741
b34976b6 742bfd_boolean
9719ad41
RS
743_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
744 struct ecoff_debug_info *debug)
b49e97c9
TS
745{
746 HDRR *symhdr;
747 const struct ecoff_debug_swap *swap;
9719ad41 748 char *ext_hdr;
b49e97c9
TS
749
750 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
751 memset (debug, 0, sizeof (*debug));
752
9719ad41 753 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
754 if (ext_hdr == NULL && swap->external_hdr_size != 0)
755 goto error_return;
756
9719ad41 757 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 758 swap->external_hdr_size))
b49e97c9
TS
759 goto error_return;
760
761 symhdr = &debug->symbolic_header;
762 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
763
764 /* The symbolic header contains absolute file offsets and sizes to
765 read. */
766#define READ(ptr, offset, count, size, type) \
767 if (symhdr->count == 0) \
768 debug->ptr = NULL; \
769 else \
770 { \
771 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 772 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
773 if (debug->ptr == NULL) \
774 goto error_return; \
9719ad41 775 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
776 || bfd_bread (debug->ptr, amt, abfd) != amt) \
777 goto error_return; \
778 }
779
780 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
781 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
782 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
783 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
784 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
785 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
786 union aux_ext *);
787 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
788 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
789 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
790 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
791 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
792#undef READ
793
794 debug->fdr = NULL;
b49e97c9 795
b34976b6 796 return TRUE;
b49e97c9
TS
797
798 error_return:
799 if (ext_hdr != NULL)
800 free (ext_hdr);
801 if (debug->line != NULL)
802 free (debug->line);
803 if (debug->external_dnr != NULL)
804 free (debug->external_dnr);
805 if (debug->external_pdr != NULL)
806 free (debug->external_pdr);
807 if (debug->external_sym != NULL)
808 free (debug->external_sym);
809 if (debug->external_opt != NULL)
810 free (debug->external_opt);
811 if (debug->external_aux != NULL)
812 free (debug->external_aux);
813 if (debug->ss != NULL)
814 free (debug->ss);
815 if (debug->ssext != NULL)
816 free (debug->ssext);
817 if (debug->external_fdr != NULL)
818 free (debug->external_fdr);
819 if (debug->external_rfd != NULL)
820 free (debug->external_rfd);
821 if (debug->external_ext != NULL)
822 free (debug->external_ext);
b34976b6 823 return FALSE;
b49e97c9
TS
824}
825\f
826/* Swap RPDR (runtime procedure table entry) for output. */
827
828static void
9719ad41 829ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
830{
831 H_PUT_S32 (abfd, in->adr, ex->p_adr);
832 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
833 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
834 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
835 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
836 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
837
838 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
839 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
840
841 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
842}
843
844/* Create a runtime procedure table from the .mdebug section. */
845
b34976b6 846static bfd_boolean
9719ad41
RS
847mips_elf_create_procedure_table (void *handle, bfd *abfd,
848 struct bfd_link_info *info, asection *s,
849 struct ecoff_debug_info *debug)
b49e97c9
TS
850{
851 const struct ecoff_debug_swap *swap;
852 HDRR *hdr = &debug->symbolic_header;
853 RPDR *rpdr, *rp;
854 struct rpdr_ext *erp;
9719ad41 855 void *rtproc;
b49e97c9
TS
856 struct pdr_ext *epdr;
857 struct sym_ext *esym;
858 char *ss, **sv;
859 char *str;
860 bfd_size_type size;
861 bfd_size_type count;
862 unsigned long sindex;
863 unsigned long i;
864 PDR pdr;
865 SYMR sym;
866 const char *no_name_func = _("static procedure (no name)");
867
868 epdr = NULL;
869 rpdr = NULL;
870 esym = NULL;
871 ss = NULL;
872 sv = NULL;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875
876 sindex = strlen (no_name_func) + 1;
877 count = hdr->ipdMax;
878 if (count > 0)
879 {
880 size = swap->external_pdr_size;
881
9719ad41 882 epdr = bfd_malloc (size * count);
b49e97c9
TS
883 if (epdr == NULL)
884 goto error_return;
885
9719ad41 886 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
887 goto error_return;
888
889 size = sizeof (RPDR);
9719ad41 890 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
891 if (rpdr == NULL)
892 goto error_return;
893
894 size = sizeof (char *);
9719ad41 895 sv = bfd_malloc (size * count);
b49e97c9
TS
896 if (sv == NULL)
897 goto error_return;
898
899 count = hdr->isymMax;
900 size = swap->external_sym_size;
9719ad41 901 esym = bfd_malloc (size * count);
b49e97c9
TS
902 if (esym == NULL)
903 goto error_return;
904
9719ad41 905 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
906 goto error_return;
907
908 count = hdr->issMax;
9719ad41 909 ss = bfd_malloc (count);
b49e97c9
TS
910 if (ss == NULL)
911 goto error_return;
f075ee0c 912 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
913 goto error_return;
914
915 count = hdr->ipdMax;
916 for (i = 0; i < (unsigned long) count; i++, rp++)
917 {
9719ad41
RS
918 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
919 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
920 rp->adr = sym.value;
921 rp->regmask = pdr.regmask;
922 rp->regoffset = pdr.regoffset;
923 rp->fregmask = pdr.fregmask;
924 rp->fregoffset = pdr.fregoffset;
925 rp->frameoffset = pdr.frameoffset;
926 rp->framereg = pdr.framereg;
927 rp->pcreg = pdr.pcreg;
928 rp->irpss = sindex;
929 sv[i] = ss + sym.iss;
930 sindex += strlen (sv[i]) + 1;
931 }
932 }
933
934 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
935 size = BFD_ALIGN (size, 16);
9719ad41 936 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
937 if (rtproc == NULL)
938 {
939 mips_elf_hash_table (info)->procedure_count = 0;
940 goto error_return;
941 }
942
943 mips_elf_hash_table (info)->procedure_count = count + 2;
944
9719ad41 945 erp = rtproc;
b49e97c9
TS
946 memset (erp, 0, sizeof (struct rpdr_ext));
947 erp++;
948 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
949 strcpy (str, no_name_func);
950 str += strlen (no_name_func) + 1;
951 for (i = 0; i < count; i++)
952 {
953 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
954 strcpy (str, sv[i]);
955 str += strlen (sv[i]) + 1;
956 }
957 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
958
959 /* Set the size and contents of .rtproc section. */
eea6121a 960 s->size = size;
9719ad41 961 s->contents = rtproc;
b49e97c9
TS
962
963 /* Skip this section later on (I don't think this currently
964 matters, but someday it might). */
8423293d 965 s->map_head.link_order = NULL;
b49e97c9
TS
966
967 if (epdr != NULL)
968 free (epdr);
969 if (rpdr != NULL)
970 free (rpdr);
971 if (esym != NULL)
972 free (esym);
973 if (ss != NULL)
974 free (ss);
975 if (sv != NULL)
976 free (sv);
977
b34976b6 978 return TRUE;
b49e97c9
TS
979
980 error_return:
981 if (epdr != NULL)
982 free (epdr);
983 if (rpdr != NULL)
984 free (rpdr);
985 if (esym != NULL)
986 free (esym);
987 if (ss != NULL)
988 free (ss);
989 if (sv != NULL)
990 free (sv);
b34976b6 991 return FALSE;
b49e97c9
TS
992}
993
994/* Check the mips16 stubs for a particular symbol, and see if we can
995 discard them. */
996
b34976b6 997static bfd_boolean
9719ad41
RS
998mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
999 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1000{
1001 if (h->root.root.type == bfd_link_hash_warning)
1002 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1003
1004 if (h->fn_stub != NULL
1005 && ! h->need_fn_stub)
1006 {
1007 /* We don't need the fn_stub; the only references to this symbol
1008 are 16 bit calls. Clobber the size to 0 to prevent it from
1009 being included in the link. */
eea6121a 1010 h->fn_stub->size = 0;
b49e97c9
TS
1011 h->fn_stub->flags &= ~SEC_RELOC;
1012 h->fn_stub->reloc_count = 0;
1013 h->fn_stub->flags |= SEC_EXCLUDE;
1014 }
1015
1016 if (h->call_stub != NULL
1017 && h->root.other == STO_MIPS16)
1018 {
1019 /* We don't need the call_stub; this is a 16 bit function, so
1020 calls from other 16 bit functions are OK. Clobber the size
1021 to 0 to prevent it from being included in the link. */
eea6121a 1022 h->call_stub->size = 0;
b49e97c9
TS
1023 h->call_stub->flags &= ~SEC_RELOC;
1024 h->call_stub->reloc_count = 0;
1025 h->call_stub->flags |= SEC_EXCLUDE;
1026 }
1027
1028 if (h->call_fp_stub != NULL
1029 && h->root.other == STO_MIPS16)
1030 {
1031 /* We don't need the call_stub; this is a 16 bit function, so
1032 calls from other 16 bit functions are OK. Clobber the size
1033 to 0 to prevent it from being included in the link. */
eea6121a 1034 h->call_fp_stub->size = 0;
b49e97c9
TS
1035 h->call_fp_stub->flags &= ~SEC_RELOC;
1036 h->call_fp_stub->reloc_count = 0;
1037 h->call_fp_stub->flags |= SEC_EXCLUDE;
1038 }
1039
b34976b6 1040 return TRUE;
b49e97c9
TS
1041}
1042\f
d6f16593
MR
1043/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1044 Most mips16 instructions are 16 bits, but these instructions
1045 are 32 bits.
1046
1047 The format of these instructions is:
1048
1049 +--------------+--------------------------------+
1050 | JALX | X| Imm 20:16 | Imm 25:21 |
1051 +--------------+--------------------------------+
1052 | Immediate 15:0 |
1053 +-----------------------------------------------+
1054
1055 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1056 Note that the immediate value in the first word is swapped.
1057
1058 When producing a relocatable object file, R_MIPS16_26 is
1059 handled mostly like R_MIPS_26. In particular, the addend is
1060 stored as a straight 26-bit value in a 32-bit instruction.
1061 (gas makes life simpler for itself by never adjusting a
1062 R_MIPS16_26 reloc to be against a section, so the addend is
1063 always zero). However, the 32 bit instruction is stored as 2
1064 16-bit values, rather than a single 32-bit value. In a
1065 big-endian file, the result is the same; in a little-endian
1066 file, the two 16-bit halves of the 32 bit value are swapped.
1067 This is so that a disassembler can recognize the jal
1068 instruction.
1069
1070 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1071 instruction stored as two 16-bit values. The addend A is the
1072 contents of the targ26 field. The calculation is the same as
1073 R_MIPS_26. When storing the calculated value, reorder the
1074 immediate value as shown above, and don't forget to store the
1075 value as two 16-bit values.
1076
1077 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1078 defined as
1079
1080 big-endian:
1081 +--------+----------------------+
1082 | | |
1083 | | targ26-16 |
1084 |31 26|25 0|
1085 +--------+----------------------+
1086
1087 little-endian:
1088 +----------+------+-------------+
1089 | | | |
1090 | sub1 | | sub2 |
1091 |0 9|10 15|16 31|
1092 +----------+--------------------+
1093 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1094 ((sub1 << 16) | sub2)).
1095
1096 When producing a relocatable object file, the calculation is
1097 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1098 When producing a fully linked file, the calculation is
1099 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1100 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101
1102 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1103 mode. A typical instruction will have a format like this:
1104
1105 +--------------+--------------------------------+
1106 | EXTEND | Imm 10:5 | Imm 15:11 |
1107 +--------------+--------------------------------+
1108 | Major | rx | ry | Imm 4:0 |
1109 +--------------+--------------------------------+
1110
1111 EXTEND is the five bit value 11110. Major is the instruction
1112 opcode.
1113
1114 This is handled exactly like R_MIPS_GPREL16, except that the
1115 addend is retrieved and stored as shown in this diagram; that
1116 is, the Imm fields above replace the V-rel16 field.
1117
1118 All we need to do here is shuffle the bits appropriately. As
1119 above, the two 16-bit halves must be swapped on a
1120 little-endian system.
1121
1122 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1123 access data when neither GP-relative nor PC-relative addressing
1124 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1125 except that the addend is retrieved and stored as shown above
1126 for R_MIPS16_GPREL.
1127 */
1128void
1129_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1130 bfd_boolean jal_shuffle, bfd_byte *data)
1131{
1132 bfd_vma extend, insn, val;
1133
1134 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1135 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1136 return;
1137
1138 /* Pick up the mips16 extend instruction and the real instruction. */
1139 extend = bfd_get_16 (abfd, data);
1140 insn = bfd_get_16 (abfd, data + 2);
1141 if (r_type == R_MIPS16_26)
1142 {
1143 if (jal_shuffle)
1144 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1145 | ((extend & 0x1f) << 21) | insn;
1146 else
1147 val = extend << 16 | insn;
1148 }
1149 else
1150 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1151 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1152 bfd_put_32 (abfd, val, data);
1153}
1154
1155void
1156_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1157 bfd_boolean jal_shuffle, bfd_byte *data)
1158{
1159 bfd_vma extend, insn, val;
1160
1161 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1162 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1163 return;
1164
1165 val = bfd_get_32 (abfd, data);
1166 if (r_type == R_MIPS16_26)
1167 {
1168 if (jal_shuffle)
1169 {
1170 insn = val & 0xffff;
1171 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1172 | ((val >> 21) & 0x1f);
1173 }
1174 else
1175 {
1176 insn = val & 0xffff;
1177 extend = val >> 16;
1178 }
1179 }
1180 else
1181 {
1182 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1183 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1184 }
1185 bfd_put_16 (abfd, insn, data + 2);
1186 bfd_put_16 (abfd, extend, data);
1187}
1188
b49e97c9 1189bfd_reloc_status_type
9719ad41
RS
1190_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1191 arelent *reloc_entry, asection *input_section,
1192 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1193{
1194 bfd_vma relocation;
a7ebbfdf 1195 bfd_signed_vma val;
30ac9238 1196 bfd_reloc_status_type status;
b49e97c9
TS
1197
1198 if (bfd_is_com_section (symbol->section))
1199 relocation = 0;
1200 else
1201 relocation = symbol->value;
1202
1203 relocation += symbol->section->output_section->vma;
1204 relocation += symbol->section->output_offset;
1205
07515404 1206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1207 return bfd_reloc_outofrange;
1208
b49e97c9 1209 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1210 val = reloc_entry->addend;
1211
30ac9238 1212 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1213
b49e97c9 1214 /* Adjust val for the final section location and GP value. If we
1049f94e 1215 are producing relocatable output, we don't want to do this for
b49e97c9 1216 an external symbol. */
1049f94e 1217 if (! relocatable
b49e97c9
TS
1218 || (symbol->flags & BSF_SECTION_SYM) != 0)
1219 val += relocation - gp;
1220
a7ebbfdf
TS
1221 if (reloc_entry->howto->partial_inplace)
1222 {
30ac9238
RS
1223 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1224 (bfd_byte *) data
1225 + reloc_entry->address);
1226 if (status != bfd_reloc_ok)
1227 return status;
a7ebbfdf
TS
1228 }
1229 else
1230 reloc_entry->addend = val;
b49e97c9 1231
1049f94e 1232 if (relocatable)
b49e97c9 1233 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1234
1235 return bfd_reloc_ok;
1236}
1237
1238/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1239 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1240 that contains the relocation field and DATA points to the start of
1241 INPUT_SECTION. */
1242
1243struct mips_hi16
1244{
1245 struct mips_hi16 *next;
1246 bfd_byte *data;
1247 asection *input_section;
1248 arelent rel;
1249};
1250
1251/* FIXME: This should not be a static variable. */
1252
1253static struct mips_hi16 *mips_hi16_list;
1254
1255/* A howto special_function for REL *HI16 relocations. We can only
1256 calculate the correct value once we've seen the partnering
1257 *LO16 relocation, so just save the information for later.
1258
1259 The ABI requires that the *LO16 immediately follow the *HI16.
1260 However, as a GNU extension, we permit an arbitrary number of
1261 *HI16s to be associated with a single *LO16. This significantly
1262 simplies the relocation handling in gcc. */
1263
1264bfd_reloc_status_type
1265_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1266 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1267 asection *input_section, bfd *output_bfd,
1268 char **error_message ATTRIBUTE_UNUSED)
1269{
1270 struct mips_hi16 *n;
1271
07515404 1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1273 return bfd_reloc_outofrange;
1274
1275 n = bfd_malloc (sizeof *n);
1276 if (n == NULL)
1277 return bfd_reloc_outofrange;
1278
1279 n->next = mips_hi16_list;
1280 n->data = data;
1281 n->input_section = input_section;
1282 n->rel = *reloc_entry;
1283 mips_hi16_list = n;
1284
1285 if (output_bfd != NULL)
1286 reloc_entry->address += input_section->output_offset;
1287
1288 return bfd_reloc_ok;
1289}
1290
1291/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1292 like any other 16-bit relocation when applied to global symbols, but is
1293 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294
1295bfd_reloc_status_type
1296_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1297 void *data, asection *input_section,
1298 bfd *output_bfd, char **error_message)
1299{
1300 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (symbol))
1302 || bfd_is_com_section (bfd_get_section (symbol)))
1303 /* The relocation is against a global symbol. */
1304 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1305 input_section, output_bfd,
1306 error_message);
1307
1308 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310}
1311
1312/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1313 is a straightforward 16 bit inplace relocation, but we must deal with
1314 any partnering high-part relocations as well. */
1315
1316bfd_reloc_status_type
1317_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320{
1321 bfd_vma vallo;
d6f16593 1322 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1323
07515404 1324 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1325 return bfd_reloc_outofrange;
1326
d6f16593
MR
1327 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1328 location);
1329 vallo = bfd_get_32 (abfd, location);
1330 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332
30ac9238
RS
1333 while (mips_hi16_list != NULL)
1334 {
1335 bfd_reloc_status_type ret;
1336 struct mips_hi16 *hi;
1337
1338 hi = mips_hi16_list;
1339
1340 /* R_MIPS_GOT16 relocations are something of a special case. We
1341 want to install the addend in the same way as for a R_MIPS_HI16
1342 relocation (with a rightshift of 16). However, since GOT16
1343 relocations can also be used with global symbols, their howto
1344 has a rightshift of 0. */
1345 if (hi->rel.howto->type == R_MIPS_GOT16)
1346 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1347
1348 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1349 carry or borrow will induce a change of +1 or -1 in the high part. */
1350 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1351
30ac9238
RS
1352 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1353 hi->input_section, output_bfd,
1354 error_message);
1355 if (ret != bfd_reloc_ok)
1356 return ret;
1357
1358 mips_hi16_list = hi->next;
1359 free (hi);
1360 }
1361
1362 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1363 input_section, output_bfd,
1364 error_message);
1365}
1366
1367/* A generic howto special_function. This calculates and installs the
1368 relocation itself, thus avoiding the oft-discussed problems in
1369 bfd_perform_relocation and bfd_install_relocation. */
1370
1371bfd_reloc_status_type
1372_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1373 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1374 asection *input_section, bfd *output_bfd,
1375 char **error_message ATTRIBUTE_UNUSED)
1376{
1377 bfd_signed_vma val;
1378 bfd_reloc_status_type status;
1379 bfd_boolean relocatable;
1380
1381 relocatable = (output_bfd != NULL);
1382
07515404 1383 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1384 return bfd_reloc_outofrange;
1385
1386 /* Build up the field adjustment in VAL. */
1387 val = 0;
1388 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1389 {
1390 /* Either we're calculating the final field value or we have a
1391 relocation against a section symbol. Add in the section's
1392 offset or address. */
1393 val += symbol->section->output_section->vma;
1394 val += symbol->section->output_offset;
1395 }
1396
1397 if (!relocatable)
1398 {
1399 /* We're calculating the final field value. Add in the symbol's value
1400 and, if pc-relative, subtract the address of the field itself. */
1401 val += symbol->value;
1402 if (reloc_entry->howto->pc_relative)
1403 {
1404 val -= input_section->output_section->vma;
1405 val -= input_section->output_offset;
1406 val -= reloc_entry->address;
1407 }
1408 }
1409
1410 /* VAL is now the final adjustment. If we're keeping this relocation
1411 in the output file, and if the relocation uses a separate addend,
1412 we just need to add VAL to that addend. Otherwise we need to add
1413 VAL to the relocation field itself. */
1414 if (relocatable && !reloc_entry->howto->partial_inplace)
1415 reloc_entry->addend += val;
1416 else
1417 {
d6f16593
MR
1418 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1419
30ac9238
RS
1420 /* Add in the separate addend, if any. */
1421 val += reloc_entry->addend;
1422
1423 /* Add VAL to the relocation field. */
d6f16593
MR
1424 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1425 location);
30ac9238 1426 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1427 location);
1428 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430
30ac9238
RS
1431 if (status != bfd_reloc_ok)
1432 return status;
1433 }
1434
1435 if (relocatable)
1436 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1437
1438 return bfd_reloc_ok;
1439}
1440\f
1441/* Swap an entry in a .gptab section. Note that these routines rely
1442 on the equivalence of the two elements of the union. */
1443
1444static void
9719ad41
RS
1445bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1446 Elf32_gptab *in)
b49e97c9
TS
1447{
1448 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1449 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1450}
1451
1452static void
9719ad41
RS
1453bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1454 Elf32_External_gptab *ex)
b49e97c9
TS
1455{
1456 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1457 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1458}
1459
1460static void
9719ad41
RS
1461bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1462 Elf32_External_compact_rel *ex)
b49e97c9
TS
1463{
1464 H_PUT_32 (abfd, in->id1, ex->id1);
1465 H_PUT_32 (abfd, in->num, ex->num);
1466 H_PUT_32 (abfd, in->id2, ex->id2);
1467 H_PUT_32 (abfd, in->offset, ex->offset);
1468 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1469 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1470}
1471
1472static void
9719ad41
RS
1473bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1474 Elf32_External_crinfo *ex)
b49e97c9
TS
1475{
1476 unsigned long l;
1477
1478 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1479 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1480 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1481 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1482 H_PUT_32 (abfd, l, ex->info);
1483 H_PUT_32 (abfd, in->konst, ex->konst);
1484 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1485}
b49e97c9
TS
1486\f
1487/* A .reginfo section holds a single Elf32_RegInfo structure. These
1488 routines swap this structure in and out. They are used outside of
1489 BFD, so they are globally visible. */
1490
1491void
9719ad41
RS
1492bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1493 Elf32_RegInfo *in)
b49e97c9
TS
1494{
1495 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1496 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1497 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1498 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1499 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1500 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1501}
1502
1503void
9719ad41
RS
1504bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1505 Elf32_External_RegInfo *ex)
b49e97c9
TS
1506{
1507 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1508 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1509 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1510 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1511 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1512 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1513}
1514
1515/* In the 64 bit ABI, the .MIPS.options section holds register
1516 information in an Elf64_Reginfo structure. These routines swap
1517 them in and out. They are globally visible because they are used
1518 outside of BFD. These routines are here so that gas can call them
1519 without worrying about whether the 64 bit ABI has been included. */
1520
1521void
9719ad41
RS
1522bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1523 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1524{
1525 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1526 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1527 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1528 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1529 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1530 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1531 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1532}
1533
1534void
9719ad41
RS
1535bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1536 Elf64_External_RegInfo *ex)
b49e97c9
TS
1537{
1538 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1539 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1540 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1541 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1542 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1543 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1544 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1545}
1546
1547/* Swap in an options header. */
1548
1549void
9719ad41
RS
1550bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1551 Elf_Internal_Options *in)
b49e97c9
TS
1552{
1553 in->kind = H_GET_8 (abfd, ex->kind);
1554 in->size = H_GET_8 (abfd, ex->size);
1555 in->section = H_GET_16 (abfd, ex->section);
1556 in->info = H_GET_32 (abfd, ex->info);
1557}
1558
1559/* Swap out an options header. */
1560
1561void
9719ad41
RS
1562bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1563 Elf_External_Options *ex)
b49e97c9
TS
1564{
1565 H_PUT_8 (abfd, in->kind, ex->kind);
1566 H_PUT_8 (abfd, in->size, ex->size);
1567 H_PUT_16 (abfd, in->section, ex->section);
1568 H_PUT_32 (abfd, in->info, ex->info);
1569}
1570\f
1571/* This function is called via qsort() to sort the dynamic relocation
1572 entries by increasing r_symndx value. */
1573
1574static int
9719ad41 1575sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1576{
947216bf
AM
1577 Elf_Internal_Rela int_reloc1;
1578 Elf_Internal_Rela int_reloc2;
b49e97c9 1579
947216bf
AM
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1581 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1582
947216bf 1583 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1584}
1585
f4416af6
AO
1586/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1587
1588static int
7e3102a7
AM
1589sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1590 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1591{
7e3102a7 1592#ifdef BFD64
f4416af6
AO
1593 Elf_Internal_Rela int_reloc1[3];
1594 Elf_Internal_Rela int_reloc2[3];
1595
1596 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1597 (reldyn_sorting_bfd, arg1, int_reloc1);
1598 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1599 (reldyn_sorting_bfd, arg2, int_reloc2);
1600
1601 return (ELF64_R_SYM (int_reloc1[0].r_info)
1602 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1603#else
1604 abort ();
1605#endif
f4416af6
AO
1606}
1607
1608
b49e97c9
TS
1609/* This routine is used to write out ECOFF debugging external symbol
1610 information. It is called via mips_elf_link_hash_traverse. The
1611 ECOFF external symbol information must match the ELF external
1612 symbol information. Unfortunately, at this point we don't know
1613 whether a symbol is required by reloc information, so the two
1614 tables may wind up being different. We must sort out the external
1615 symbol information before we can set the final size of the .mdebug
1616 section, and we must set the size of the .mdebug section before we
1617 can relocate any sections, and we can't know which symbols are
1618 required by relocation until we relocate the sections.
1619 Fortunately, it is relatively unlikely that any symbol will be
1620 stripped but required by a reloc. In particular, it can not happen
1621 when generating a final executable. */
1622
b34976b6 1623static bfd_boolean
9719ad41 1624mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1625{
9719ad41 1626 struct extsym_info *einfo = data;
b34976b6 1627 bfd_boolean strip;
b49e97c9
TS
1628 asection *sec, *output_section;
1629
1630 if (h->root.root.type == bfd_link_hash_warning)
1631 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1632
1633 if (h->root.indx == -2)
b34976b6 1634 strip = FALSE;
f5385ebf 1635 else if ((h->root.def_dynamic
77cfaee6
AM
1636 || h->root.ref_dynamic
1637 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1638 && !h->root.def_regular
1639 && !h->root.ref_regular)
b34976b6 1640 strip = TRUE;
b49e97c9
TS
1641 else if (einfo->info->strip == strip_all
1642 || (einfo->info->strip == strip_some
1643 && bfd_hash_lookup (einfo->info->keep_hash,
1644 h->root.root.root.string,
b34976b6
AM
1645 FALSE, FALSE) == NULL))
1646 strip = TRUE;
b49e97c9 1647 else
b34976b6 1648 strip = FALSE;
b49e97c9
TS
1649
1650 if (strip)
b34976b6 1651 return TRUE;
b49e97c9
TS
1652
1653 if (h->esym.ifd == -2)
1654 {
1655 h->esym.jmptbl = 0;
1656 h->esym.cobol_main = 0;
1657 h->esym.weakext = 0;
1658 h->esym.reserved = 0;
1659 h->esym.ifd = ifdNil;
1660 h->esym.asym.value = 0;
1661 h->esym.asym.st = stGlobal;
1662
1663 if (h->root.root.type == bfd_link_hash_undefined
1664 || h->root.root.type == bfd_link_hash_undefweak)
1665 {
1666 const char *name;
1667
1668 /* Use undefined class. Also, set class and type for some
1669 special symbols. */
1670 name = h->root.root.root.string;
1671 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1672 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1673 {
1674 h->esym.asym.sc = scData;
1675 h->esym.asym.st = stLabel;
1676 h->esym.asym.value = 0;
1677 }
1678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1679 {
1680 h->esym.asym.sc = scAbs;
1681 h->esym.asym.st = stLabel;
1682 h->esym.asym.value =
1683 mips_elf_hash_table (einfo->info)->procedure_count;
1684 }
4a14403c 1685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1686 {
1687 h->esym.asym.sc = scAbs;
1688 h->esym.asym.st = stLabel;
1689 h->esym.asym.value = elf_gp (einfo->abfd);
1690 }
1691 else
1692 h->esym.asym.sc = scUndefined;
1693 }
1694 else if (h->root.root.type != bfd_link_hash_defined
1695 && h->root.root.type != bfd_link_hash_defweak)
1696 h->esym.asym.sc = scAbs;
1697 else
1698 {
1699 const char *name;
1700
1701 sec = h->root.root.u.def.section;
1702 output_section = sec->output_section;
1703
1704 /* When making a shared library and symbol h is the one from
1705 the another shared library, OUTPUT_SECTION may be null. */
1706 if (output_section == NULL)
1707 h->esym.asym.sc = scUndefined;
1708 else
1709 {
1710 name = bfd_section_name (output_section->owner, output_section);
1711
1712 if (strcmp (name, ".text") == 0)
1713 h->esym.asym.sc = scText;
1714 else if (strcmp (name, ".data") == 0)
1715 h->esym.asym.sc = scData;
1716 else if (strcmp (name, ".sdata") == 0)
1717 h->esym.asym.sc = scSData;
1718 else if (strcmp (name, ".rodata") == 0
1719 || strcmp (name, ".rdata") == 0)
1720 h->esym.asym.sc = scRData;
1721 else if (strcmp (name, ".bss") == 0)
1722 h->esym.asym.sc = scBss;
1723 else if (strcmp (name, ".sbss") == 0)
1724 h->esym.asym.sc = scSBss;
1725 else if (strcmp (name, ".init") == 0)
1726 h->esym.asym.sc = scInit;
1727 else if (strcmp (name, ".fini") == 0)
1728 h->esym.asym.sc = scFini;
1729 else
1730 h->esym.asym.sc = scAbs;
1731 }
1732 }
1733
1734 h->esym.asym.reserved = 0;
1735 h->esym.asym.index = indexNil;
1736 }
1737
1738 if (h->root.root.type == bfd_link_hash_common)
1739 h->esym.asym.value = h->root.root.u.c.size;
1740 else if (h->root.root.type == bfd_link_hash_defined
1741 || h->root.root.type == bfd_link_hash_defweak)
1742 {
1743 if (h->esym.asym.sc == scCommon)
1744 h->esym.asym.sc = scBss;
1745 else if (h->esym.asym.sc == scSCommon)
1746 h->esym.asym.sc = scSBss;
1747
1748 sec = h->root.root.u.def.section;
1749 output_section = sec->output_section;
1750 if (output_section != NULL)
1751 h->esym.asym.value = (h->root.root.u.def.value
1752 + sec->output_offset
1753 + output_section->vma);
1754 else
1755 h->esym.asym.value = 0;
1756 }
f5385ebf 1757 else if (h->root.needs_plt)
b49e97c9
TS
1758 {
1759 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1760 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1761
1762 while (hd->root.root.type == bfd_link_hash_indirect)
1763 {
1764 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1765 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1766 }
1767
1768 if (!no_fn_stub)
1769 {
1770 /* Set type and value for a symbol with a function stub. */
1771 h->esym.asym.st = stProc;
1772 sec = hd->root.root.u.def.section;
1773 if (sec == NULL)
1774 h->esym.asym.value = 0;
1775 else
1776 {
1777 output_section = sec->output_section;
1778 if (output_section != NULL)
1779 h->esym.asym.value = (hd->root.plt.offset
1780 + sec->output_offset
1781 + output_section->vma);
1782 else
1783 h->esym.asym.value = 0;
1784 }
b49e97c9
TS
1785 }
1786 }
1787
1788 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1789 h->root.root.root.string,
1790 &h->esym))
1791 {
b34976b6
AM
1792 einfo->failed = TRUE;
1793 return FALSE;
b49e97c9
TS
1794 }
1795
b34976b6 1796 return TRUE;
b49e97c9
TS
1797}
1798
1799/* A comparison routine used to sort .gptab entries. */
1800
1801static int
9719ad41 1802gptab_compare (const void *p1, const void *p2)
b49e97c9 1803{
9719ad41
RS
1804 const Elf32_gptab *a1 = p1;
1805 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1806
1807 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1808}
1809\f
b15e6682 1810/* Functions to manage the got entry hash table. */
f4416af6
AO
1811
1812/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1813 hash number. */
1814
1815static INLINE hashval_t
9719ad41 1816mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1817{
1818#ifdef BFD64
1819 return addr + (addr >> 32);
1820#else
1821 return addr;
1822#endif
1823}
1824
1825/* got_entries only match if they're identical, except for gotidx, so
1826 use all fields to compute the hash, and compare the appropriate
1827 union members. */
1828
b15e6682 1829static hashval_t
9719ad41 1830mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1831{
1832 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1833
38985a1c 1834 return entry->symndx
0f20cc35 1835 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1836 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1837 : entry->abfd->id
1838 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1839 : entry->d.h->root.root.root.hash));
b15e6682
AO
1840}
1841
1842static int
9719ad41 1843mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1844{
1845 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1846 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1847
0f20cc35
DJ
1848 /* An LDM entry can only match another LDM entry. */
1849 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1850 return 0;
1851
b15e6682 1852 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1853 && (! e1->abfd ? e1->d.address == e2->d.address
1854 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1855 : e1->d.h == e2->d.h);
1856}
1857
1858/* multi_got_entries are still a match in the case of global objects,
1859 even if the input bfd in which they're referenced differs, so the
1860 hash computation and compare functions are adjusted
1861 accordingly. */
1862
1863static hashval_t
9719ad41 1864mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1865{
1866 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1867
1868 return entry->symndx
1869 + (! entry->abfd
1870 ? mips_elf_hash_bfd_vma (entry->d.address)
1871 : entry->symndx >= 0
0f20cc35
DJ
1872 ? ((entry->tls_type & GOT_TLS_LDM)
1873 ? (GOT_TLS_LDM << 17)
1874 : (entry->abfd->id
1875 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1876 : entry->d.h->root.root.root.hash);
1877}
1878
1879static int
9719ad41 1880mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1881{
1882 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1883 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1884
0f20cc35
DJ
1885 /* Any two LDM entries match. */
1886 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1887 return 1;
1888
1889 /* Nothing else matches an LDM entry. */
1890 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1891 return 0;
1892
f4416af6
AO
1893 return e1->symndx == e2->symndx
1894 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1895 : e1->abfd == NULL || e2->abfd == NULL
1896 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1897 : e1->d.h == e2->d.h);
b15e6682
AO
1898}
1899\f
f4416af6
AO
1900/* Returns the dynamic relocation section for DYNOBJ. */
1901
1902static asection *
9719ad41 1903mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1904{
1905 static const char dname[] = ".rel.dyn";
1906 asection *sreloc;
1907
1908 sreloc = bfd_get_section_by_name (dynobj, dname);
1909 if (sreloc == NULL && create_p)
1910 {
3496cb2a
L
1911 sreloc = bfd_make_section_with_flags (dynobj, dname,
1912 (SEC_ALLOC
1913 | SEC_LOAD
1914 | SEC_HAS_CONTENTS
1915 | SEC_IN_MEMORY
1916 | SEC_LINKER_CREATED
1917 | SEC_READONLY));
f4416af6 1918 if (sreloc == NULL
f4416af6 1919 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1921 return NULL;
1922 }
1923 return sreloc;
1924}
1925
b49e97c9
TS
1926/* Returns the GOT section for ABFD. */
1927
1928static asection *
9719ad41 1929mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1930{
f4416af6
AO
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
b49e97c9
TS
1936}
1937
1938/* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942static struct mips_got_info *
9719ad41 1943mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1944{
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
f4416af6 1948 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1949 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
f4416af6
AO
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
b49e97c9
TS
1957 return g;
1958}
1959
0f20cc35
DJ
1960/* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964static int
1965mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967{
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000}
2001
2002/* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005static int
2006mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007{
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015}
2016
2017/* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020static int
2021mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022{
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033}
2034
2035/* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038static int
2039mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040{
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048}
2049
2050/* Output a simple dynamic relocation into SRELOC. */
2051
2052static void
2053mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058{
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079}
2080
2081/* Initialize a set of TLS GOT entries for one symbol. */
2082
2083static void
2084mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089{
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203}
2204
2205/* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210static bfd_vma
2211mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214{
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242}
2243
b49e97c9 2244/* Returns the GOT offset at which the indicated address can be found.
0f20cc35
DJ
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
b49e97c9
TS
2248
2249static bfd_vma
9719ad41 2250mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0f20cc35
DJ
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2253{
2254 asection *sgot;
2255 struct mips_got_info *g;
b15e6682 2256 struct mips_got_entry *entry;
b49e97c9
TS
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
0f20cc35
DJ
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
b15e6682 2263 return MINUS_ONE;
0f20cc35
DJ
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
b49e97c9
TS
2270}
2271
2272/* Returns the GOT index for the global symbol indicated by H. */
2273
2274static bfd_vma
0f20cc35
DJ
2275mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2277{
2278 bfd_vma index;
2279 asection *sgot;
f4416af6 2280 struct mips_got_info *g, *gg;
d0c7ff07 2281 long global_got_dynindx = 0;
b49e97c9 2282
f4416af6
AO
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
143d77c5 2287
f4416af6
AO
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2291 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2296 e.tls_type = 0;
f4416af6 2297
9719ad41 2298 p = htab_find (g->got_entries, &e);
f4416af6
AO
2299
2300 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
f4416af6
AO
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2322
0f20cc35
DJ
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
eea6121a 2349 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2350
2351 return index;
2352}
2353
2354/* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360static bfd_vma
9719ad41
RS
2361mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2363{
2364 asection *sgot;
2365 struct mips_got_info *g;
b15e6682
AO
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
b49e97c9
TS
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
f4416af6 2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682 2372 (value + 0x8000)
0f20cc35
DJ
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2375
b15e6682
AO
2376 if (!entry)
2377 return MINUS_ONE;
143d77c5 2378
b15e6682 2379 index = entry->gotidx;
b49e97c9
TS
2380
2381 if (offsetp)
f4416af6 2382 *offsetp = value - entry->d.address;
b49e97c9
TS
2383
2384 return index;
2385}
2386
2387/* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390static bfd_vma
9719ad41
RS
2391mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2393{
2394 asection *sgot;
2395 struct mips_got_info *g;
b15e6682 2396 struct mips_got_entry *entry;
b49e97c9
TS
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
0f20cc35
DJ
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
b15e6682
AO
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
b49e97c9
TS
2415}
2416
2417/* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420static bfd_vma
9719ad41
RS
2421mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2423{
2424 asection *sgot;
2425 bfd_vma gp;
f4416af6 2426 struct mips_got_info *g;
b49e97c9 2427
f4416af6
AO
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2431
f4416af6 2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2433}
2434
2435/* Create a local GOT entry for VALUE. Return the index of the entry,
0f20cc35
DJ
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
b49e97c9 2438
b15e6682 2439static struct mips_got_entry *
9719ad41
RS
2440mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
0f20cc35
DJ
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
b49e97c9 2446{
b15e6682 2447 struct mips_got_entry entry, **loc;
f4416af6 2448 struct mips_got_info *g;
b15e6682 2449
f4416af6
AO
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
0f20cc35 2453 entry.tls_type = 0;
f4416af6
AO
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
b15e6682 2461
0f20cc35
DJ
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
a008ac03 2466 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
b15e6682
AO
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
143d77c5 2497
b15e6682 2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2499 entry.tls_type = 0;
b15e6682
AO
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
143d77c5 2505
b15e6682
AO
2506 memcpy (*loc, &entry, sizeof entry);
2507
b49e97c9
TS
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
f4416af6 2510 (*loc)->gotidx = -1;
b49e97c9
TS
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
b15e6682 2515 return NULL;
b49e97c9
TS
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
b49e97c9
TS
2522}
2523
2524/* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
b34976b6 2531static bfd_boolean
9719ad41 2532mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2533{
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
f4416af6
AO
2540 g = mips_elf_got_info (dynobj, NULL);
2541
b49e97c9 2542 hsd.low = NULL;
143d77c5 2543 hsd.max_unref_got_dynindx =
f4416af6
AO
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
44c410de 2560 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
b49e97c9
TS
2567 g->global_gotsym = hsd.low;
2568
b34976b6 2569 return TRUE;
b49e97c9
TS
2570}
2571
2572/* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
b34976b6 2576static bfd_boolean
9719ad41 2577mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2578{
9719ad41 2579 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
b34976b6 2587 return TRUE;
b49e97c9 2588
f4416af6
AO
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
0f20cc35
DJ
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
f4416af6
AO
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
b49e97c9
TS
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
0f20cc35
DJ
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
b49e97c9
TS
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
b34976b6 2611 return TRUE;
b49e97c9
TS
2612}
2613
2614/* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
b34976b6 2618static bfd_boolean
9719ad41
RS
2619mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
b49e97c9 2623{
f4416af6
AO
2624 struct mips_got_entry entry, **loc;
2625
b49e97c9
TS
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
7c5fcef7
L
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
b34976b6 2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2635 break;
2636 }
c152c796 2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2638 return FALSE;
7c5fcef7 2639 }
b49e97c9 2640
f4416af6
AO
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2644 entry.tls_type = 0;
f4416af6
AO
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
b49e97c9
TS
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
f4416af6 2651 if (*loc)
0f20cc35
DJ
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
f4416af6
AO
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
143d77c5 2661
f4416af6 2662 entry.gotidx = -1;
0f20cc35
DJ
2663 entry.tls_type = tls_flag;
2664
f4416af6
AO
2665 memcpy (*loc, &entry, sizeof entry);
2666
b49e97c9 2667 if (h->got.offset != MINUS_ONE)
b34976b6 2668 return TRUE;
b49e97c9
TS
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
b49e97c9 2675
b34976b6 2676 return TRUE;
b49e97c9 2677}
f4416af6
AO
2678
2679/* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682static bfd_boolean
9719ad41 2683mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
f4416af6
AO
2686{
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
0f20cc35 2692 entry.tls_type = tls_flag;
f4416af6
AO
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
0f20cc35
DJ
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
f4416af6 2710
0f20cc35
DJ
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
f4416af6
AO
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
143d77c5 2735
f4416af6
AO
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739}
2740\f
2741/* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743static hashval_t
9719ad41 2744mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2745{
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750}
2751
2752/* Check whether two hash entries have the same bfd. */
2753
2754static int
9719ad41 2755mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2756{
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763}
2764
0b25d3e6 2765/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2766 be the master GOT data. */
2767
2768static struct mips_got_info *
9719ad41 2769mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2770{
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
9719ad41 2777 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2778 return p ? p->g : NULL;
2779}
2780
2781/* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785static int
9719ad41 2786mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2787{
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
143d77c5 2794
f4416af6
AO
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
0f20cc35
DJ
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
f4416af6 2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2833 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
143d77c5 2848
f4416af6
AO
2849 *entryp = entry;
2850
0f20cc35
DJ
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864}
2865
2866/* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873static int
9719ad41 2874mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2875{
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 2881 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 2882 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
143d77c5 2896
f4416af6
AO
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
0f20cc35
DJ
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
f4416af6
AO
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
0f20cc35
DJ
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
0f20cc35 2914 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
caec41ff 2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
2932
2933 arg->primary_count = arg->primary->local_gotno
0f20cc35 2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
0f20cc35 2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
0f20cc35 2943 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
caec41ff 2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
2958
2959 arg->current_count = arg->current->local_gotno
0f20cc35 2960 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
143d77c5 2969
0f20cc35
DJ
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974}
2975
2976/* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978static int
2979mips_elf_initialize_tls_index (void **entryp, void *p)
2980{
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
f4416af6
AO
3007 }
3008
0f20cc35
DJ
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
f4416af6
AO
3022 return 1;
3023}
3024
3025/* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3036 marked as not eligible for lazy resolution through a function
f4416af6
AO
3037 stub. */
3038static int
9719ad41 3039mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3040{
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
0f20cc35
DJ
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
f4416af6 3051 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
f4416af6
AO
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071}
3072
0626d451
RS
3073/* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075static int
9719ad41 3076mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3077{
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086}
3087
f4416af6
AO
3088/* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094static int
9719ad41 3095mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3096{
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
143d77c5 3110
f4416af6
AO
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
143d77c5 3130
f4416af6
AO
3131 return 1;
3132}
3133
3134/* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136static void
9719ad41 3137mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3138{
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150}
3151
3152/* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154static bfd_vma
9719ad41 3155mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3156{
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
143d77c5 3167
0f20cc35
DJ
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3170}
3171
3172/* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175static bfd_boolean
9719ad41
RS
3176mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
f4416af6
AO
3179{
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3186 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
f4416af6
AO
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
0f20cc35
DJ
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
0f20cc35 3220 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
0f20cc35 3231 g->next->tls_gotno = 0;
f4416af6 3232 g->next->assigned_gotno = 0;
0f20cc35
DJ
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
9719ad41 3237 NULL);
f4416af6
AO
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
143d77c5 3258
f4416af6
AO
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
143d77c5 3284
f4416af6
AO
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
0f20cc35 3334 gg->tls_gotno = 0;
f4416af6
AO
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
0f20cc35
DJ
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6
AO
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
0626d451
RS
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3363 }
3364 while (g);
3365
eea6121a 3366 got->size = (gg->next->local_gotno
0f20cc35
DJ
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3369
f4416af6
AO
3370 return TRUE;
3371}
143d77c5 3372
b49e97c9
TS
3373\f
3374/* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377static const Elf_Internal_Rela *
9719ad41
RS
3378mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
b49e97c9 3381{
b49e97c9
TS
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393}
3394
3395/* Return whether a relocation is against a local symbol. */
3396
b34976b6 3397static bfd_boolean
9719ad41
RS
3398mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
b49e97c9
TS
3402{
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
b34976b6 3413 return TRUE;
b49e97c9 3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3415 return TRUE;
b49e97c9
TS
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3427 if (h->root.forced_local)
b34976b6 3428 return TRUE;
b49e97c9
TS
3429 }
3430
b34976b6 3431 return FALSE;
b49e97c9
TS
3432}
3433\f
3434/* Sign-extend VALUE, which has the indicated number of BITS. */
3435
a7ebbfdf 3436bfd_vma
9719ad41 3437_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3438{
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444}
3445
3446/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3447 range expressible by a signed number with the indicated number of
b49e97c9
TS
3448 BITS. */
3449
b34976b6 3450static bfd_boolean
9719ad41 3451mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3452{
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
b34976b6 3457 return TRUE;
b49e97c9
TS
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
b34976b6 3460 return TRUE;
b49e97c9
TS
3461
3462 /* All is well. */
b34976b6 3463 return FALSE;
b49e97c9
TS
3464}
3465
3466/* Calculate the %high function. */
3467
3468static bfd_vma
9719ad41 3469mips_elf_high (bfd_vma value)
b49e97c9
TS
3470{
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472}
3473
3474/* Calculate the %higher function. */
3475
3476static bfd_vma
9719ad41 3477mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3478{
3479#ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481#else
3482 abort ();
c5ae1840 3483 return MINUS_ONE;
b49e97c9
TS
3484#endif
3485}
3486
3487/* Calculate the %highest function. */
3488
3489static bfd_vma
9719ad41 3490mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3491{
3492#ifdef BFD64
b15e6682 3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3494#else
3495 abort ();
c5ae1840 3496 return MINUS_ONE;
b49e97c9
TS
3497#endif
3498}
3499\f
3500/* Create the .compact_rel section. */
3501
b34976b6 3502static bfd_boolean
9719ad41
RS
3503mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3505{
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3496cb2a 3514 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3515 if (s == NULL
b49e97c9
TS
3516 || ! bfd_set_section_alignment (abfd, s,
3517 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3518 return FALSE;
b49e97c9 3519
eea6121a 3520 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3521 }
3522
b34976b6 3523 return TRUE;
b49e97c9
TS
3524}
3525
3526/* Create the .got section to hold the global offset table. */
3527
b34976b6 3528static bfd_boolean
9719ad41
RS
3529mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3530 bfd_boolean maybe_exclude)
b49e97c9
TS
3531{
3532 flagword flags;
3533 register asection *s;
3534 struct elf_link_hash_entry *h;
14a793b2 3535 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3536 struct mips_got_info *g;
3537 bfd_size_type amt;
3538
3539 /* This function may be called more than once. */
f4416af6
AO
3540 s = mips_elf_got_section (abfd, TRUE);
3541 if (s)
3542 {
3543 if (! maybe_exclude)
3544 s->flags &= ~SEC_EXCLUDE;
3545 return TRUE;
3546 }
b49e97c9
TS
3547
3548 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3549 | SEC_LINKER_CREATED);
3550
f4416af6
AO
3551 if (maybe_exclude)
3552 flags |= SEC_EXCLUDE;
3553
72b4917c
TS
3554 /* We have to use an alignment of 2**4 here because this is hardcoded
3555 in the function stub generation and in the linker script. */
3496cb2a 3556 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3557 if (s == NULL
72b4917c 3558 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3559 return FALSE;
b49e97c9
TS
3560
3561 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3562 linker script because we don't want to define the symbol if we
3563 are not creating a global offset table. */
14a793b2 3564 bh = NULL;
b49e97c9
TS
3565 if (! (_bfd_generic_link_add_one_symbol
3566 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3567 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3568 return FALSE;
14a793b2
AM
3569
3570 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3571 h->non_elf = 0;
3572 h->def_regular = 1;
b49e97c9
TS
3573 h->type = STT_OBJECT;
3574
3575 if (info->shared
c152c796 3576 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3577 return FALSE;
b49e97c9 3578
b49e97c9 3579 amt = sizeof (struct mips_got_info);
9719ad41 3580 g = bfd_alloc (abfd, amt);
b49e97c9 3581 if (g == NULL)
b34976b6 3582 return FALSE;
b49e97c9 3583 g->global_gotsym = NULL;
e3d54347 3584 g->global_gotno = 0;
0f20cc35 3585 g->tls_gotno = 0;
b49e97c9
TS
3586 g->local_gotno = MIPS_RESERVED_GOTNO;
3587 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
3588 g->bfd2got = NULL;
3589 g->next = NULL;
0f20cc35 3590 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3591 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3592 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3593 if (g->got_entries == NULL)
3594 return FALSE;
f0abc2a1
AM
3595 mips_elf_section_data (s)->u.got_info = g;
3596 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3597 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3598
b34976b6 3599 return TRUE;
b49e97c9 3600}
b49e97c9
TS
3601\f
3602/* Calculate the value produced by the RELOCATION (which comes from
3603 the INPUT_BFD). The ADDEND is the addend to use for this
3604 RELOCATION; RELOCATION->R_ADDEND is ignored.
3605
3606 The result of the relocation calculation is stored in VALUEP.
3607 REQUIRE_JALXP indicates whether or not the opcode used with this
3608 relocation must be JALX.
3609
3610 This function returns bfd_reloc_continue if the caller need take no
3611 further action regarding this relocation, bfd_reloc_notsupported if
3612 something goes dramatically wrong, bfd_reloc_overflow if an
3613 overflow occurs, and bfd_reloc_ok to indicate success. */
3614
3615static bfd_reloc_status_type
9719ad41
RS
3616mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3617 asection *input_section,
3618 struct bfd_link_info *info,
3619 const Elf_Internal_Rela *relocation,
3620 bfd_vma addend, reloc_howto_type *howto,
3621 Elf_Internal_Sym *local_syms,
3622 asection **local_sections, bfd_vma *valuep,
3623 const char **namep, bfd_boolean *require_jalxp,
3624 bfd_boolean save_addend)
b49e97c9
TS
3625{
3626 /* The eventual value we will return. */
3627 bfd_vma value;
3628 /* The address of the symbol against which the relocation is
3629 occurring. */
3630 bfd_vma symbol = 0;
3631 /* The final GP value to be used for the relocatable, executable, or
3632 shared object file being produced. */
3633 bfd_vma gp = MINUS_ONE;
3634 /* The place (section offset or address) of the storage unit being
3635 relocated. */
3636 bfd_vma p;
3637 /* The value of GP used to create the relocatable object. */
3638 bfd_vma gp0 = MINUS_ONE;
3639 /* The offset into the global offset table at which the address of
3640 the relocation entry symbol, adjusted by the addend, resides
3641 during execution. */
3642 bfd_vma g = MINUS_ONE;
3643 /* The section in which the symbol referenced by the relocation is
3644 located. */
3645 asection *sec = NULL;
3646 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3647 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3648 symbol. */
b34976b6
AM
3649 bfd_boolean local_p, was_local_p;
3650 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3651 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3652 /* TRUE if the symbol referred to by this relocation is
3653 "__gnu_local_gp". */
3654 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3655 Elf_Internal_Shdr *symtab_hdr;
3656 size_t extsymoff;
3657 unsigned long r_symndx;
3658 int r_type;
b34976b6 3659 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3660 relocation value. */
b34976b6
AM
3661 bfd_boolean overflowed_p;
3662 /* TRUE if this relocation refers to a MIPS16 function. */
3663 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3664
3665 /* Parse the relocation. */
3666 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3667 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3668 p = (input_section->output_section->vma
3669 + input_section->output_offset
3670 + relocation->r_offset);
3671
3672 /* Assume that there will be no overflow. */
b34976b6 3673 overflowed_p = FALSE;
b49e97c9
TS
3674
3675 /* Figure out whether or not the symbol is local, and get the offset
3676 used in the array of hash table entries. */
3677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3678 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3679 local_sections, FALSE);
bce03d3d 3680 was_local_p = local_p;
b49e97c9
TS
3681 if (! elf_bad_symtab (input_bfd))
3682 extsymoff = symtab_hdr->sh_info;
3683 else
3684 {
3685 /* The symbol table does not follow the rule that local symbols
3686 must come before globals. */
3687 extsymoff = 0;
3688 }
3689
3690 /* Figure out the value of the symbol. */
3691 if (local_p)
3692 {
3693 Elf_Internal_Sym *sym;
3694
3695 sym = local_syms + r_symndx;
3696 sec = local_sections[r_symndx];
3697
3698 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3699 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3700 || (sec->flags & SEC_MERGE))
b49e97c9 3701 symbol += sym->st_value;
d4df96e6
L
3702 if ((sec->flags & SEC_MERGE)
3703 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3704 {
3705 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3706 addend -= symbol;
3707 addend += sec->output_section->vma + sec->output_offset;
3708 }
b49e97c9
TS
3709
3710 /* MIPS16 text labels should be treated as odd. */
3711 if (sym->st_other == STO_MIPS16)
3712 ++symbol;
3713
3714 /* Record the name of this symbol, for our caller. */
3715 *namep = bfd_elf_string_from_elf_section (input_bfd,
3716 symtab_hdr->sh_link,
3717 sym->st_name);
3718 if (*namep == '\0')
3719 *namep = bfd_section_name (input_bfd, sec);
3720
3721 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3722 }
3723 else
3724 {
560e09e9
NC
3725 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3726
b49e97c9
TS
3727 /* For global symbols we look up the symbol in the hash-table. */
3728 h = ((struct mips_elf_link_hash_entry *)
3729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3730 /* Find the real hash-table entry for this symbol. */
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3734
3735 /* Record the name of this symbol, for our caller. */
3736 *namep = h->root.root.root.string;
3737
3738 /* See if this is the special _gp_disp symbol. Note that such a
3739 symbol must always be a global symbol. */
560e09e9 3740 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3741 && ! NEWABI_P (input_bfd))
3742 {
3743 /* Relocations against _gp_disp are permitted only with
3744 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3745 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3746 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3747 return bfd_reloc_notsupported;
3748
b34976b6 3749 gp_disp_p = TRUE;
b49e97c9 3750 }
bbe506e8
TS
3751 /* See if this is the special _gp symbol. Note that such a
3752 symbol must always be a global symbol. */
3753 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3754 gnu_local_gp_p = TRUE;
3755
3756
b49e97c9
TS
3757 /* If this symbol is defined, calculate its address. Note that
3758 _gp_disp is a magic symbol, always implicitly defined by the
3759 linker, so it's inappropriate to check to see whether or not
3760 its defined. */
3761 else if ((h->root.root.type == bfd_link_hash_defined
3762 || h->root.root.type == bfd_link_hash_defweak)
3763 && h->root.root.u.def.section)
3764 {
3765 sec = h->root.root.u.def.section;
3766 if (sec->output_section)
3767 symbol = (h->root.root.u.def.value
3768 + sec->output_section->vma
3769 + sec->output_offset);
3770 else
3771 symbol = h->root.root.u.def.value;
3772 }
3773 else if (h->root.root.type == bfd_link_hash_undefweak)
3774 /* We allow relocations against undefined weak symbols, giving
3775 it the value zero, so that you can undefined weak functions
3776 and check to see if they exist by looking at their
3777 addresses. */
3778 symbol = 0;
59c2e50f 3779 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3780 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3781 symbol = 0;
a4d0f181
TS
3782 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3783 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3784 {
3785 /* If this is a dynamic link, we should have created a
3786 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3787 in in _bfd_mips_elf_create_dynamic_sections.
3788 Otherwise, we should define the symbol with a value of 0.
3789 FIXME: It should probably get into the symbol table
3790 somehow as well. */
3791 BFD_ASSERT (! info->shared);
3792 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3793 symbol = 0;
3794 }
3795 else
3796 {
3797 if (! ((*info->callbacks->undefined_symbol)
3798 (info, h->root.root.root.string, input_bfd,
3799 input_section, relocation->r_offset,
59c2e50f
L
3800 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3801 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3802 return bfd_reloc_undefined;
3803 symbol = 0;
3804 }
3805
3806 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3807 }
3808
3809 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3810 need to redirect the call to the stub, unless we're already *in*
3811 a stub. */
1049f94e 3812 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3813 && ((h != NULL && h->fn_stub != NULL)
3814 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3815 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3816 && !mips_elf_stub_section_p (input_bfd, input_section))
3817 {
3818 /* This is a 32- or 64-bit call to a 16-bit function. We should
3819 have already noticed that we were going to need the
3820 stub. */
3821 if (local_p)
3822 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3823 else
3824 {
3825 BFD_ASSERT (h->need_fn_stub);
3826 sec = h->fn_stub;
3827 }
3828
3829 symbol = sec->output_section->vma + sec->output_offset;
3830 }
3831 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3832 need to redirect the call to the stub. */
1049f94e 3833 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3834 && h != NULL
3835 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3836 && !target_is_16_bit_code_p)
3837 {
3838 /* If both call_stub and call_fp_stub are defined, we can figure
3839 out which one to use by seeing which one appears in the input
3840 file. */
3841 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3842 {
3843 asection *o;
3844
3845 sec = NULL;
3846 for (o = input_bfd->sections; o != NULL; o = o->next)
3847 {
3848 if (strncmp (bfd_get_section_name (input_bfd, o),
3849 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3850 {
3851 sec = h->call_fp_stub;
3852 break;
3853 }
3854 }
3855 if (sec == NULL)
3856 sec = h->call_stub;
3857 }
3858 else if (h->call_stub != NULL)
3859 sec = h->call_stub;
3860 else
3861 sec = h->call_fp_stub;
3862
eea6121a 3863 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3864 symbol = sec->output_section->vma + sec->output_offset;
3865 }
3866
3867 /* Calls from 16-bit code to 32-bit code and vice versa require the
3868 special jalx instruction. */
1049f94e 3869 *require_jalxp = (!info->relocatable
b49e97c9
TS
3870 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3871 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3872
3873 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3874 local_sections, TRUE);
b49e97c9
TS
3875
3876 /* If we haven't already determined the GOT offset, or the GP value,
3877 and we're going to need it, get it now. */
3878 switch (r_type)
3879 {
0fdc1bf1 3880 case R_MIPS_GOT_PAGE:
93a2b7ae 3881 case R_MIPS_GOT_OFST:
d25aed71
RS
3882 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3883 bind locally. */
3884 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3885 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3886 break;
3887 /* Fall through. */
3888
b49e97c9
TS
3889 case R_MIPS_CALL16:
3890 case R_MIPS_GOT16:
3891 case R_MIPS_GOT_DISP:
3892 case R_MIPS_GOT_HI16:
3893 case R_MIPS_CALL_HI16:
3894 case R_MIPS_GOT_LO16:
3895 case R_MIPS_CALL_LO16:
0f20cc35
DJ
3896 case R_MIPS_TLS_GD:
3897 case R_MIPS_TLS_GOTTPREL:
3898 case R_MIPS_TLS_LDM:
b49e97c9 3899 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
3900 if (r_type == R_MIPS_TLS_LDM)
3901 {
3902 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3903 r_type);
3904 if (g == MINUS_ONE)
3905 return bfd_reloc_outofrange;
3906 }
3907 else if (!local_p)
b49e97c9 3908 {
0fdc1bf1
AO
3909 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3910 GOT_PAGE relocation that decays to GOT_DISP because the
3911 symbol turns out to be global. The addend is then added
3912 as GOT_OFST. */
3913 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3914 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3915 input_bfd,
0f20cc35
DJ
3916 (struct elf_link_hash_entry *) h,
3917 r_type, info);
3918 if (h->tls_type == GOT_NORMAL
3919 && (! elf_hash_table(info)->dynamic_sections_created
3920 || (info->shared
3921 && (info->symbolic || h->root.dynindx == -1)
3922 && h->root.def_regular)))
b49e97c9
TS
3923 {
3924 /* This is a static link or a -Bsymbolic link. The
3925 symbol is defined locally, or was forced to be local.
3926 We must initialize this entry in the GOT. */
3927 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3928 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3929 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3930 }
3931 }
3932 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3933 /* There's no need to create a local GOT entry here; the
3934 calculation for a local GOT16 entry does not involve G. */
3935 break;
3936 else
3937 {
f4416af6 3938 g = mips_elf_local_got_index (abfd, input_bfd,
0f20cc35
DJ
3939 info, symbol + addend, r_symndx, h,
3940 r_type);
b49e97c9
TS
3941 if (g == MINUS_ONE)
3942 return bfd_reloc_outofrange;
3943 }
3944
3945 /* Convert GOT indices to actual offsets. */
3946 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3947 abfd, input_bfd, g);
b49e97c9
TS
3948 break;
3949
3950 case R_MIPS_HI16:
3951 case R_MIPS_LO16:
b49e97c9
TS
3952 case R_MIPS_GPREL16:
3953 case R_MIPS_GPREL32:
3954 case R_MIPS_LITERAL:
d6f16593
MR
3955 case R_MIPS16_HI16:
3956 case R_MIPS16_LO16:
3957 case R_MIPS16_GPREL:
b49e97c9
TS
3958 gp0 = _bfd_get_gp_value (input_bfd);
3959 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3960 if (elf_hash_table (info)->dynobj)
3961 gp += mips_elf_adjust_gp (abfd,
3962 mips_elf_got_info
3963 (elf_hash_table (info)->dynobj, NULL),
3964 input_bfd);
b49e97c9
TS
3965 break;
3966
3967 default:
3968 break;
3969 }
3970
bbe506e8
TS
3971 if (gnu_local_gp_p)
3972 symbol = gp;
3973
b49e97c9
TS
3974 /* Figure out what kind of relocation is being performed. */
3975 switch (r_type)
3976 {
3977 case R_MIPS_NONE:
3978 return bfd_reloc_continue;
3979
3980 case R_MIPS_16:
a7ebbfdf 3981 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3982 overflowed_p = mips_elf_overflow_p (value, 16);
3983 break;
3984
3985 case R_MIPS_32:
3986 case R_MIPS_REL32:
3987 case R_MIPS_64:
3988 if ((info->shared
3989 || (elf_hash_table (info)->dynamic_sections_created
3990 && h != NULL
f5385ebf
AM
3991 && h->root.def_dynamic
3992 && !h->root.def_regular))
b49e97c9
TS
3993 && r_symndx != 0
3994 && (input_section->flags & SEC_ALLOC) != 0)
3995 {
3996 /* If we're creating a shared library, or this relocation is
3997 against a symbol in a shared library, then we can't know
3998 where the symbol will end up. So, we create a relocation
3999 record in the output, and leave the job up to the dynamic
4000 linker. */
4001 value = addend;
4002 if (!mips_elf_create_dynamic_relocation (abfd,
4003 info,
4004 relocation,
4005 h,
4006 sec,
4007 symbol,
4008 &value,
4009 input_section))
4010 return bfd_reloc_undefined;
4011 }
4012 else
4013 {
4014 if (r_type != R_MIPS_REL32)
4015 value = symbol + addend;
4016 else
4017 value = addend;
4018 }
4019 value &= howto->dst_mask;
092dcd75
CD
4020 break;
4021
4022 case R_MIPS_PC32:
4023 value = symbol + addend - p;
4024 value &= howto->dst_mask;
b49e97c9
TS
4025 break;
4026
0b25d3e6 4027 case R_MIPS_GNU_REL16_S2:
30ac9238 4028 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
4029 overflowed_p = mips_elf_overflow_p (value, 18);
4030 value = (value >> 2) & howto->dst_mask;
4031 break;
4032
b49e97c9
TS
4033 case R_MIPS16_26:
4034 /* The calculation for R_MIPS16_26 is just the same as for an
4035 R_MIPS_26. It's only the storage of the relocated field into
4036 the output file that's different. That's handled in
4037 mips_elf_perform_relocation. So, we just fall through to the
4038 R_MIPS_26 case here. */
4039 case R_MIPS_26:
4040 if (local_p)
30ac9238 4041 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4042 else
728b2f21
ILT
4043 {
4044 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4045 if (h->root.root.type != bfd_link_hash_undefweak)
4046 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4047 }
b49e97c9
TS
4048 value &= howto->dst_mask;
4049 break;
4050
0f20cc35
DJ
4051 case R_MIPS_TLS_DTPREL_HI16:
4052 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4053 & howto->dst_mask);
4054 break;
4055
4056 case R_MIPS_TLS_DTPREL_LO16:
4057 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4058 break;
4059
4060 case R_MIPS_TLS_TPREL_HI16:
4061 value = (mips_elf_high (addend + symbol - tprel_base (info))
4062 & howto->dst_mask);
4063 break;
4064
4065 case R_MIPS_TLS_TPREL_LO16:
4066 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4067 break;
4068
b49e97c9 4069 case R_MIPS_HI16:
d6f16593 4070 case R_MIPS16_HI16:
b49e97c9
TS
4071 if (!gp_disp_p)
4072 {
4073 value = mips_elf_high (addend + symbol);
4074 value &= howto->dst_mask;
4075 }
4076 else
4077 {
d6f16593
MR
4078 /* For MIPS16 ABI code we generate this sequence
4079 0: li $v0,%hi(_gp_disp)
4080 4: addiupc $v1,%lo(_gp_disp)
4081 8: sll $v0,16
4082 12: addu $v0,$v1
4083 14: move $gp,$v0
4084 So the offsets of hi and lo relocs are the same, but the
4085 $pc is four higher than $t9 would be, so reduce
4086 both reloc addends by 4. */
4087 if (r_type == R_MIPS16_HI16)
4088 value = mips_elf_high (addend + gp - p - 4);
4089 else
4090 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4091 overflowed_p = mips_elf_overflow_p (value, 16);
4092 }
4093 break;
4094
4095 case R_MIPS_LO16:
d6f16593 4096 case R_MIPS16_LO16:
b49e97c9
TS
4097 if (!gp_disp_p)
4098 value = (symbol + addend) & howto->dst_mask;
4099 else
4100 {
d6f16593
MR
4101 /* See the comment for R_MIPS16_HI16 above for the reason
4102 for this conditional. */
4103 if (r_type == R_MIPS16_LO16)
4104 value = addend + gp - p;
4105 else
4106 value = addend + gp - p + 4;
b49e97c9 4107 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4108 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4109 _gp_disp are normally generated from the .cpload
4110 pseudo-op. It generates code that normally looks like
4111 this:
4112
4113 lui $gp,%hi(_gp_disp)
4114 addiu $gp,$gp,%lo(_gp_disp)
4115 addu $gp,$gp,$t9
4116
4117 Here $t9 holds the address of the function being called,
4118 as required by the MIPS ELF ABI. The R_MIPS_LO16
4119 relocation can easily overflow in this situation, but the
4120 R_MIPS_HI16 relocation will handle the overflow.
4121 Therefore, we consider this a bug in the MIPS ABI, and do
4122 not check for overflow here. */
4123 }
4124 break;
4125
4126 case R_MIPS_LITERAL:
4127 /* Because we don't merge literal sections, we can handle this
4128 just like R_MIPS_GPREL16. In the long run, we should merge
4129 shared literals, and then we will need to additional work
4130 here. */
4131
4132 /* Fall through. */
4133
4134 case R_MIPS16_GPREL:
4135 /* The R_MIPS16_GPREL performs the same calculation as
4136 R_MIPS_GPREL16, but stores the relocated bits in a different
4137 order. We don't need to do anything special here; the
4138 differences are handled in mips_elf_perform_relocation. */
4139 case R_MIPS_GPREL16:
bce03d3d
AO
4140 /* Only sign-extend the addend if it was extracted from the
4141 instruction. If the addend was separate, leave it alone,
4142 otherwise we may lose significant bits. */
4143 if (howto->partial_inplace)
a7ebbfdf 4144 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4145 value = symbol + addend - gp;
4146 /* If the symbol was local, any earlier relocatable links will
4147 have adjusted its addend with the gp offset, so compensate
4148 for that now. Don't do it for symbols forced local in this
4149 link, though, since they won't have had the gp offset applied
4150 to them before. */
4151 if (was_local_p)
4152 value += gp0;
b49e97c9
TS
4153 overflowed_p = mips_elf_overflow_p (value, 16);
4154 break;
4155
4156 case R_MIPS_GOT16:
4157 case R_MIPS_CALL16:
4158 if (local_p)
4159 {
b34976b6 4160 bfd_boolean forced;
b49e97c9
TS
4161
4162 /* The special case is when the symbol is forced to be local. We
4163 need the full address in the GOT since no R_MIPS_LO16 relocation
4164 follows. */
4165 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4166 local_sections, FALSE);
f4416af6
AO
4167 value = mips_elf_got16_entry (abfd, input_bfd, info,
4168 symbol + addend, forced);
b49e97c9
TS
4169 if (value == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 value
4172 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4173 abfd, input_bfd, value);
b49e97c9
TS
4174 overflowed_p = mips_elf_overflow_p (value, 16);
4175 break;
4176 }
4177
4178 /* Fall through. */
4179
0f20cc35
DJ
4180 case R_MIPS_TLS_GD:
4181 case R_MIPS_TLS_GOTTPREL:
4182 case R_MIPS_TLS_LDM:
b49e97c9 4183 case R_MIPS_GOT_DISP:
0fdc1bf1 4184 got_disp:
b49e97c9
TS
4185 value = g;
4186 overflowed_p = mips_elf_overflow_p (value, 16);
4187 break;
4188
4189 case R_MIPS_GPREL32:
bce03d3d
AO
4190 value = (addend + symbol + gp0 - gp);
4191 if (!save_addend)
4192 value &= howto->dst_mask;
b49e97c9
TS
4193 break;
4194
4195 case R_MIPS_PC16:
a7ebbfdf 4196 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 4197 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
4198 break;
4199
4200 case R_MIPS_GOT_HI16:
4201 case R_MIPS_CALL_HI16:
4202 /* We're allowed to handle these two relocations identically.
4203 The dynamic linker is allowed to handle the CALL relocations
4204 differently by creating a lazy evaluation stub. */
4205 value = g;
4206 value = mips_elf_high (value);
4207 value &= howto->dst_mask;
4208 break;
4209
4210 case R_MIPS_GOT_LO16:
4211 case R_MIPS_CALL_LO16:
4212 value = g & howto->dst_mask;
4213 break;
4214
4215 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4216 /* GOT_PAGE relocations that reference non-local symbols decay
4217 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4218 0. */
93a2b7ae 4219 if (! local_p)
0fdc1bf1 4220 goto got_disp;
f4416af6 4221 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4222 if (value == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4225 abfd, input_bfd, value);
b49e97c9
TS
4226 overflowed_p = mips_elf_overflow_p (value, 16);
4227 break;
4228
4229 case R_MIPS_GOT_OFST:
93a2b7ae 4230 if (local_p)
0fdc1bf1
AO
4231 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4232 else
4233 value = addend;
b49e97c9
TS
4234 overflowed_p = mips_elf_overflow_p (value, 16);
4235 break;
4236
4237 case R_MIPS_SUB:
4238 value = symbol - addend;
4239 value &= howto->dst_mask;
4240 break;
4241
4242 case R_MIPS_HIGHER:
4243 value = mips_elf_higher (addend + symbol);
4244 value &= howto->dst_mask;
4245 break;
4246
4247 case R_MIPS_HIGHEST:
4248 value = mips_elf_highest (addend + symbol);
4249 value &= howto->dst_mask;
4250 break;
4251
4252 case R_MIPS_SCN_DISP:
4253 value = symbol + addend - sec->output_offset;
4254 value &= howto->dst_mask;
4255 break;
4256
b49e97c9 4257 case R_MIPS_JALR:
1367d393
ILT
4258 /* This relocation is only a hint. In some cases, we optimize
4259 it into a bal instruction. But we don't try to optimize
4260 branches to the PLT; that will wind up wasting time. */
4261 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4262 return bfd_reloc_continue;
4263 value = symbol + addend;
4264 break;
b49e97c9 4265
1367d393 4266 case R_MIPS_PJUMP:
b49e97c9
TS
4267 case R_MIPS_GNU_VTINHERIT:
4268 case R_MIPS_GNU_VTENTRY:
4269 /* We don't do anything with these at present. */
4270 return bfd_reloc_continue;
4271
4272 default:
4273 /* An unrecognized relocation type. */
4274 return bfd_reloc_notsupported;
4275 }
4276
4277 /* Store the VALUE for our caller. */
4278 *valuep = value;
4279 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4280}
4281
4282/* Obtain the field relocated by RELOCATION. */
4283
4284static bfd_vma
9719ad41
RS
4285mips_elf_obtain_contents (reloc_howto_type *howto,
4286 const Elf_Internal_Rela *relocation,
4287 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4288{
4289 bfd_vma x;
4290 bfd_byte *location = contents + relocation->r_offset;
4291
4292 /* Obtain the bytes. */
4293 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4294
b49e97c9
TS
4295 return x;
4296}
4297
4298/* It has been determined that the result of the RELOCATION is the
4299 VALUE. Use HOWTO to place VALUE into the output file at the
4300 appropriate position. The SECTION is the section to which the
b34976b6 4301 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4302 for the relocation must be either JAL or JALX, and it is
4303 unconditionally converted to JALX.
4304
b34976b6 4305 Returns FALSE if anything goes wrong. */
b49e97c9 4306
b34976b6 4307static bfd_boolean
9719ad41
RS
4308mips_elf_perform_relocation (struct bfd_link_info *info,
4309 reloc_howto_type *howto,
4310 const Elf_Internal_Rela *relocation,
4311 bfd_vma value, bfd *input_bfd,
4312 asection *input_section, bfd_byte *contents,
4313 bfd_boolean require_jalx)
b49e97c9
TS
4314{
4315 bfd_vma x;
4316 bfd_byte *location;
4317 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4318
4319 /* Figure out where the relocation is occurring. */
4320 location = contents + relocation->r_offset;
4321
d6f16593
MR
4322 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4323
b49e97c9
TS
4324 /* Obtain the current value. */
4325 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4326
4327 /* Clear the field we are setting. */
4328 x &= ~howto->dst_mask;
4329
b49e97c9
TS
4330 /* Set the field. */
4331 x |= (value & howto->dst_mask);
4332
4333 /* If required, turn JAL into JALX. */
4334 if (require_jalx)
4335 {
b34976b6 4336 bfd_boolean ok;
b49e97c9
TS
4337 bfd_vma opcode = x >> 26;
4338 bfd_vma jalx_opcode;
4339
4340 /* Check to see if the opcode is already JAL or JALX. */
4341 if (r_type == R_MIPS16_26)
4342 {
4343 ok = ((opcode == 0x6) || (opcode == 0x7));
4344 jalx_opcode = 0x7;
4345 }
4346 else
4347 {
4348 ok = ((opcode == 0x3) || (opcode == 0x1d));
4349 jalx_opcode = 0x1d;
4350 }
4351
4352 /* If the opcode is not JAL or JALX, there's a problem. */
4353 if (!ok)
4354 {
4355 (*_bfd_error_handler)
d003868e
AM
4356 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4357 input_bfd,
4358 input_section,
b49e97c9
TS
4359 (unsigned long) relocation->r_offset);
4360 bfd_set_error (bfd_error_bad_value);
b34976b6 4361 return FALSE;
b49e97c9
TS
4362 }
4363
4364 /* Make this the JALX opcode. */
4365 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4366 }
4367
1367d393
ILT
4368 /* On the RM9000, bal is faster than jal, because bal uses branch
4369 prediction hardware. If we are linking for the RM9000, and we
4370 see jal, and bal fits, use it instead. Note that this
4371 transformation should be safe for all architectures. */
4372 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4373 && !info->relocatable
4374 && !require_jalx
4375 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4376 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4377 {
4378 bfd_vma addr;
4379 bfd_vma dest;
4380 bfd_signed_vma off;
4381
4382 addr = (input_section->output_section->vma
4383 + input_section->output_offset
4384 + relocation->r_offset
4385 + 4);
4386 if (r_type == R_MIPS_26)
4387 dest = (value << 2) | ((addr >> 28) << 28);
4388 else
4389 dest = value;
4390 off = dest - addr;
4391 if (off <= 0x1ffff && off >= -0x20000)
4392 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4393 }
4394
b49e97c9
TS
4395 /* Put the value into the output. */
4396 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4397
4398 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4399 location);
4400
b34976b6 4401 return TRUE;
b49e97c9
TS
4402}
4403
b34976b6 4404/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4405
b34976b6 4406static bfd_boolean
9719ad41 4407mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4408{
4409 const char *name = bfd_get_section_name (abfd, section);
4410
4411 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4412 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4413 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4414}
4415\f
4416/* Add room for N relocations to the .rel.dyn section in ABFD. */
4417
4418static void
9719ad41 4419mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
4420{
4421 asection *s;
4422
f4416af6 4423 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
4424 BFD_ASSERT (s != NULL);
4425
eea6121a 4426 if (s->size == 0)
b49e97c9
TS
4427 {
4428 /* Make room for a null element. */
eea6121a 4429 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4430 ++s->reloc_count;
4431 }
eea6121a 4432 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4433}
4434
4435/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4436 is the original relocation, which is now being transformed into a
4437 dynamic relocation. The ADDENDP is adjusted if necessary; the
4438 caller should store the result in place of the original addend. */
4439
b34976b6 4440static bfd_boolean
9719ad41
RS
4441mips_elf_create_dynamic_relocation (bfd *output_bfd,
4442 struct bfd_link_info *info,
4443 const Elf_Internal_Rela *rel,
4444 struct mips_elf_link_hash_entry *h,
4445 asection *sec, bfd_vma symbol,
4446 bfd_vma *addendp, asection *input_section)
b49e97c9 4447{
947216bf 4448 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4449 asection *sreloc;
4450 bfd *dynobj;
4451 int r_type;
5d41f0b6
RS
4452 long indx;
4453 bfd_boolean defined_p;
b49e97c9
TS
4454
4455 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4456 dynobj = elf_hash_table (info)->dynobj;
f4416af6 4457 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
4458 BFD_ASSERT (sreloc != NULL);
4459 BFD_ASSERT (sreloc->contents != NULL);
4460 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4461 < sreloc->size);
b49e97c9 4462
b49e97c9
TS
4463 outrel[0].r_offset =
4464 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4465 outrel[1].r_offset =
4466 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4467 outrel[2].r_offset =
4468 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4469
c5ae1840 4470 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4471 /* The relocation field has been deleted. */
5d41f0b6
RS
4472 return TRUE;
4473
4474 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4475 {
4476 /* The relocation field has been converted into a relative value of
4477 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4478 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4479 *addendp += symbol;
5d41f0b6 4480 return TRUE;
0d591ff7 4481 }
b49e97c9 4482
5d41f0b6
RS
4483 /* We must now calculate the dynamic symbol table index to use
4484 in the relocation. */
4485 if (h != NULL
4486 && (! info->symbolic || !h->root.def_regular)
4487 /* h->root.dynindx may be -1 if this symbol was marked to
4488 become local. */
4489 && h->root.dynindx != -1)
4490 {
4491 indx = h->root.dynindx;
4492 if (SGI_COMPAT (output_bfd))
4493 defined_p = h->root.def_regular;
4494 else
4495 /* ??? glibc's ld.so just adds the final GOT entry to the
4496 relocation field. It therefore treats relocs against
4497 defined symbols in the same way as relocs against
4498 undefined symbols. */
4499 defined_p = FALSE;
4500 }
b49e97c9
TS
4501 else
4502 {
5d41f0b6
RS
4503 if (sec != NULL && bfd_is_abs_section (sec))
4504 indx = 0;
4505 else if (sec == NULL || sec->owner == NULL)
fdd07405 4506 {
5d41f0b6
RS
4507 bfd_set_error (bfd_error_bad_value);
4508 return FALSE;
b49e97c9
TS
4509 }
4510 else
4511 {
5d41f0b6
RS
4512 indx = elf_section_data (sec->output_section)->dynindx;
4513 if (indx == 0)
4514 abort ();
b49e97c9
TS
4515 }
4516
5d41f0b6
RS
4517 /* Instead of generating a relocation using the section
4518 symbol, we may as well make it a fully relative
4519 relocation. We want to avoid generating relocations to
4520 local symbols because we used to generate them
4521 incorrectly, without adding the original symbol value,
4522 which is mandated by the ABI for section symbols. In
4523 order to give dynamic loaders and applications time to
4524 phase out the incorrect use, we refrain from emitting
4525 section-relative relocations. It's not like they're
4526 useful, after all. This should be a bit more efficient
4527 as well. */
4528 /* ??? Although this behavior is compatible with glibc's ld.so,
4529 the ABI says that relocations against STN_UNDEF should have
4530 a symbol value of 0. Irix rld honors this, so relocations
4531 against STN_UNDEF have no effect. */
4532 if (!SGI_COMPAT (output_bfd))
4533 indx = 0;
4534 defined_p = TRUE;
b49e97c9
TS
4535 }
4536
5d41f0b6
RS
4537 /* If the relocation was previously an absolute relocation and
4538 this symbol will not be referred to by the relocation, we must
4539 adjust it by the value we give it in the dynamic symbol table.
4540 Otherwise leave the job up to the dynamic linker. */
4541 if (defined_p && r_type != R_MIPS_REL32)
4542 *addendp += symbol;
4543
4544 /* The relocation is always an REL32 relocation because we don't
4545 know where the shared library will wind up at load-time. */
4546 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4547 R_MIPS_REL32);
4548 /* For strict adherence to the ABI specification, we should
4549 generate a R_MIPS_64 relocation record by itself before the
4550 _REL32/_64 record as well, such that the addend is read in as
4551 a 64-bit value (REL32 is a 32-bit relocation, after all).
4552 However, since none of the existing ELF64 MIPS dynamic
4553 loaders seems to care, we don't waste space with these
4554 artificial relocations. If this turns out to not be true,
4555 mips_elf_allocate_dynamic_relocation() should be tweaked so
4556 as to make room for a pair of dynamic relocations per
4557 invocation if ABI_64_P, and here we should generate an
4558 additional relocation record with R_MIPS_64 by itself for a
4559 NULL symbol before this relocation record. */
4560 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4561 ABI_64_P (output_bfd)
4562 ? R_MIPS_64
4563 : R_MIPS_NONE);
4564 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4565
4566 /* Adjust the output offset of the relocation to reference the
4567 correct location in the output file. */
4568 outrel[0].r_offset += (input_section->output_section->vma
4569 + input_section->output_offset);
4570 outrel[1].r_offset += (input_section->output_section->vma
4571 + input_section->output_offset);
4572 outrel[2].r_offset += (input_section->output_section->vma
4573 + input_section->output_offset);
4574
b49e97c9
TS
4575 /* Put the relocation back out. We have to use the special
4576 relocation outputter in the 64-bit case since the 64-bit
4577 relocation format is non-standard. */
4578 if (ABI_64_P (output_bfd))
4579 {
4580 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4581 (output_bfd, &outrel[0],
4582 (sreloc->contents
4583 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4584 }
4585 else
947216bf
AM
4586 bfd_elf32_swap_reloc_out
4587 (output_bfd, &outrel[0],
4588 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4589
b49e97c9
TS
4590 /* We've now added another relocation. */
4591 ++sreloc->reloc_count;
4592
4593 /* Make sure the output section is writable. The dynamic linker
4594 will be writing to it. */
4595 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4596 |= SHF_WRITE;
4597
4598 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4599 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4600 {
4601 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4602 bfd_byte *cr;
4603
4604 if (scpt)
4605 {
4606 Elf32_crinfo cptrel;
4607
4608 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4609 cptrel.vaddr = (rel->r_offset
4610 + input_section->output_section->vma
4611 + input_section->output_offset);
4612 if (r_type == R_MIPS_REL32)
4613 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4614 else
4615 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4616 mips_elf_set_cr_dist2to (cptrel, 0);
4617 cptrel.konst = *addendp;
4618
4619 cr = (scpt->contents
4620 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4621 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4622 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4623 ((Elf32_External_crinfo *) cr
4624 + scpt->reloc_count));
4625 ++scpt->reloc_count;
4626 }
4627 }
4628
b34976b6 4629 return TRUE;
b49e97c9
TS
4630}
4631\f
b49e97c9
TS
4632/* Return the MACH for a MIPS e_flags value. */
4633
4634unsigned long
9719ad41 4635_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4636{
4637 switch (flags & EF_MIPS_MACH)
4638 {
4639 case E_MIPS_MACH_3900:
4640 return bfd_mach_mips3900;
4641
4642 case E_MIPS_MACH_4010:
4643 return bfd_mach_mips4010;
4644
4645 case E_MIPS_MACH_4100:
4646 return bfd_mach_mips4100;
4647
4648 case E_MIPS_MACH_4111:
4649 return bfd_mach_mips4111;
4650
00707a0e
RS
4651 case E_MIPS_MACH_4120:
4652 return bfd_mach_mips4120;
4653
b49e97c9
TS
4654 case E_MIPS_MACH_4650:
4655 return bfd_mach_mips4650;
4656
00707a0e
RS
4657 case E_MIPS_MACH_5400:
4658 return bfd_mach_mips5400;
4659
4660 case E_MIPS_MACH_5500:
4661 return bfd_mach_mips5500;
4662
0d2e43ed
ILT
4663 case E_MIPS_MACH_9000:
4664 return bfd_mach_mips9000;
4665
b49e97c9
TS
4666 case E_MIPS_MACH_SB1:
4667 return bfd_mach_mips_sb1;
4668
4669 default:
4670 switch (flags & EF_MIPS_ARCH)
4671 {
4672 default:
4673 case E_MIPS_ARCH_1:
4674 return bfd_mach_mips3000;
4675 break;
4676
4677 case E_MIPS_ARCH_2:
4678 return bfd_mach_mips6000;
4679 break;
4680
4681 case E_MIPS_ARCH_3:
4682 return bfd_mach_mips4000;
4683 break;
4684
4685 case E_MIPS_ARCH_4:
4686 return bfd_mach_mips8000;
4687 break;
4688
4689 case E_MIPS_ARCH_5:
4690 return bfd_mach_mips5;
4691 break;
4692
4693 case E_MIPS_ARCH_32:
4694 return bfd_mach_mipsisa32;
4695 break;
4696
4697 case E_MIPS_ARCH_64:
4698 return bfd_mach_mipsisa64;
4699 break;
af7ee8bf
CD
4700
4701 case E_MIPS_ARCH_32R2:
4702 return bfd_mach_mipsisa32r2;
4703 break;
5f74bc13
CD
4704
4705 case E_MIPS_ARCH_64R2:
4706 return bfd_mach_mipsisa64r2;
4707 break;
b49e97c9
TS
4708 }
4709 }
4710
4711 return 0;
4712}
4713
4714/* Return printable name for ABI. */
4715
4716static INLINE char *
9719ad41 4717elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4718{
4719 flagword flags;
4720
4721 flags = elf_elfheader (abfd)->e_flags;
4722 switch (flags & EF_MIPS_ABI)
4723 {
4724 case 0:
4725 if (ABI_N32_P (abfd))
4726 return "N32";
4727 else if (ABI_64_P (abfd))
4728 return "64";
4729 else
4730 return "none";
4731 case E_MIPS_ABI_O32:
4732 return "O32";
4733 case E_MIPS_ABI_O64:
4734 return "O64";
4735 case E_MIPS_ABI_EABI32:
4736 return "EABI32";
4737 case E_MIPS_ABI_EABI64:
4738 return "EABI64";
4739 default:
4740 return "unknown abi";
4741 }
4742}
4743\f
4744/* MIPS ELF uses two common sections. One is the usual one, and the
4745 other is for small objects. All the small objects are kept
4746 together, and then referenced via the gp pointer, which yields
4747 faster assembler code. This is what we use for the small common
4748 section. This approach is copied from ecoff.c. */
4749static asection mips_elf_scom_section;
4750static asymbol mips_elf_scom_symbol;
4751static asymbol *mips_elf_scom_symbol_ptr;
4752
4753/* MIPS ELF also uses an acommon section, which represents an
4754 allocated common symbol which may be overridden by a
4755 definition in a shared library. */
4756static asection mips_elf_acom_section;
4757static asymbol mips_elf_acom_symbol;
4758static asymbol *mips_elf_acom_symbol_ptr;
4759
4760/* Handle the special MIPS section numbers that a symbol may use.
4761 This is used for both the 32-bit and the 64-bit ABI. */
4762
4763void
9719ad41 4764_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4765{
4766 elf_symbol_type *elfsym;
4767
4768 elfsym = (elf_symbol_type *) asym;
4769 switch (elfsym->internal_elf_sym.st_shndx)
4770 {
4771 case SHN_MIPS_ACOMMON:
4772 /* This section is used in a dynamically linked executable file.
4773 It is an allocated common section. The dynamic linker can
4774 either resolve these symbols to something in a shared
4775 library, or it can just leave them here. For our purposes,
4776 we can consider these symbols to be in a new section. */
4777 if (mips_elf_acom_section.name == NULL)
4778 {
4779 /* Initialize the acommon section. */
4780 mips_elf_acom_section.name = ".acommon";
4781 mips_elf_acom_section.flags = SEC_ALLOC;
4782 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4783 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4784 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4785 mips_elf_acom_symbol.name = ".acommon";
4786 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4787 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4788 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4789 }
4790 asym->section = &mips_elf_acom_section;
4791 break;
4792
4793 case SHN_COMMON:
4794 /* Common symbols less than the GP size are automatically
4795 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4796 if (asym->value > elf_gp_size (abfd)
4797 || IRIX_COMPAT (abfd) == ict_irix6)
4798 break;
4799 /* Fall through. */
4800 case SHN_MIPS_SCOMMON:
4801 if (mips_elf_scom_section.name == NULL)
4802 {
4803 /* Initialize the small common section. */
4804 mips_elf_scom_section.name = ".scommon";
4805 mips_elf_scom_section.flags = SEC_IS_COMMON;
4806 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4807 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4808 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4809 mips_elf_scom_symbol.name = ".scommon";
4810 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4811 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4812 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4813 }
4814 asym->section = &mips_elf_scom_section;
4815 asym->value = elfsym->internal_elf_sym.st_size;
4816 break;
4817
4818 case SHN_MIPS_SUNDEFINED:
4819 asym->section = bfd_und_section_ptr;
4820 break;
4821
b49e97c9 4822 case SHN_MIPS_TEXT:
00b4930b
TS
4823 {
4824 asection *section = bfd_get_section_by_name (abfd, ".text");
4825
4826 BFD_ASSERT (SGI_COMPAT (abfd));
4827 if (section != NULL)
4828 {
4829 asym->section = section;
4830 /* MIPS_TEXT is a bit special, the address is not an offset
4831 to the base of the .text section. So substract the section
4832 base address to make it an offset. */
4833 asym->value -= section->vma;
4834 }
4835 }
b49e97c9
TS
4836 break;
4837
4838 case SHN_MIPS_DATA:
00b4930b
TS
4839 {
4840 asection *section = bfd_get_section_by_name (abfd, ".data");
4841
4842 BFD_ASSERT (SGI_COMPAT (abfd));
4843 if (section != NULL)
4844 {
4845 asym->section = section;
4846 /* MIPS_DATA is a bit special, the address is not an offset
4847 to the base of the .data section. So substract the section
4848 base address to make it an offset. */
4849 asym->value -= section->vma;
4850 }
4851 }
b49e97c9 4852 break;
b49e97c9
TS
4853 }
4854}
4855\f
8c946ed5
RS
4856/* Implement elf_backend_eh_frame_address_size. This differs from
4857 the default in the way it handles EABI64.
4858
4859 EABI64 was originally specified as an LP64 ABI, and that is what
4860 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4861 historically accepted the combination of -mabi=eabi and -mlong32,
4862 and this ILP32 variation has become semi-official over time.
4863 Both forms use elf32 and have pointer-sized FDE addresses.
4864
4865 If an EABI object was generated by GCC 4.0 or above, it will have
4866 an empty .gcc_compiled_longXX section, where XX is the size of longs
4867 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4868 have no special marking to distinguish them from LP64 objects.
4869
4870 We don't want users of the official LP64 ABI to be punished for the
4871 existence of the ILP32 variant, but at the same time, we don't want
4872 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4873 We therefore take the following approach:
4874
4875 - If ABFD contains a .gcc_compiled_longXX section, use it to
4876 determine the pointer size.
4877
4878 - Otherwise check the type of the first relocation. Assume that
4879 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4880
4881 - Otherwise punt.
4882
4883 The second check is enough to detect LP64 objects generated by pre-4.0
4884 compilers because, in the kind of output generated by those compilers,
4885 the first relocation will be associated with either a CIE personality
4886 routine or an FDE start address. Furthermore, the compilers never
4887 used a special (non-pointer) encoding for this ABI.
4888
4889 Checking the relocation type should also be safe because there is no
4890 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4891 did so. */
4892
4893unsigned int
4894_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4895{
4896 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4897 return 8;
4898 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4899 {
4900 bfd_boolean long32_p, long64_p;
4901
4902 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4903 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4904 if (long32_p && long64_p)
4905 return 0;
4906 if (long32_p)
4907 return 4;
4908 if (long64_p)
4909 return 8;
4910
4911 if (sec->reloc_count > 0
4912 && elf_section_data (sec)->relocs != NULL
4913 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4914 == R_MIPS_64))
4915 return 8;
4916
4917 return 0;
4918 }
4919 return 4;
4920}
4921\f
174fd7f9
RS
4922/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4923 relocations against two unnamed section symbols to resolve to the
4924 same address. For example, if we have code like:
4925
4926 lw $4,%got_disp(.data)($gp)
4927 lw $25,%got_disp(.text)($gp)
4928 jalr $25
4929
4930 then the linker will resolve both relocations to .data and the program
4931 will jump there rather than to .text.
4932
4933 We can work around this problem by giving names to local section symbols.
4934 This is also what the MIPSpro tools do. */
4935
4936bfd_boolean
4937_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4938{
4939 return SGI_COMPAT (abfd);
4940}
4941\f
b49e97c9
TS
4942/* Work over a section just before writing it out. This routine is
4943 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4944 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4945 a better way. */
4946
b34976b6 4947bfd_boolean
9719ad41 4948_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4949{
4950 if (hdr->sh_type == SHT_MIPS_REGINFO
4951 && hdr->sh_size > 0)
4952 {
4953 bfd_byte buf[4];
4954
4955 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4956 BFD_ASSERT (hdr->contents == NULL);
4957
4958 if (bfd_seek (abfd,
4959 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4960 SEEK_SET) != 0)
b34976b6 4961 return FALSE;
b49e97c9 4962 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4963 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4964 return FALSE;
b49e97c9
TS
4965 }
4966
4967 if (hdr->sh_type == SHT_MIPS_OPTIONS
4968 && hdr->bfd_section != NULL
f0abc2a1
AM
4969 && mips_elf_section_data (hdr->bfd_section) != NULL
4970 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4971 {
4972 bfd_byte *contents, *l, *lend;
4973
f0abc2a1
AM
4974 /* We stored the section contents in the tdata field in the
4975 set_section_contents routine. We save the section contents
4976 so that we don't have to read them again.
b49e97c9
TS
4977 At this point we know that elf_gp is set, so we can look
4978 through the section contents to see if there is an
4979 ODK_REGINFO structure. */
4980
f0abc2a1 4981 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4982 l = contents;
4983 lend = contents + hdr->sh_size;
4984 while (l + sizeof (Elf_External_Options) <= lend)
4985 {
4986 Elf_Internal_Options intopt;
4987
4988 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4989 &intopt);
1bc8074d
MR
4990 if (intopt.size < sizeof (Elf_External_Options))
4991 {
4992 (*_bfd_error_handler)
4993 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
4994 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
4995 break;
4996 }
b49e97c9
TS
4997 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4998 {
4999 bfd_byte buf[8];
5000
5001 if (bfd_seek (abfd,
5002 (hdr->sh_offset
5003 + (l - contents)
5004 + sizeof (Elf_External_Options)
5005 + (sizeof (Elf64_External_RegInfo) - 8)),
5006 SEEK_SET) != 0)
b34976b6 5007 return FALSE;
b49e97c9 5008 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5009 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5010 return FALSE;
b49e97c9
TS
5011 }
5012 else if (intopt.kind == ODK_REGINFO)
5013 {
5014 bfd_byte buf[4];
5015
5016 if (bfd_seek (abfd,
5017 (hdr->sh_offset
5018 + (l - contents)
5019 + sizeof (Elf_External_Options)
5020 + (sizeof (Elf32_External_RegInfo) - 4)),
5021 SEEK_SET) != 0)
b34976b6 5022 return FALSE;
b49e97c9 5023 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5024 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5025 return FALSE;
b49e97c9
TS
5026 }
5027 l += intopt.size;
5028 }
5029 }
5030
5031 if (hdr->bfd_section != NULL)
5032 {
5033 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5034
5035 if (strcmp (name, ".sdata") == 0
5036 || strcmp (name, ".lit8") == 0
5037 || strcmp (name, ".lit4") == 0)
5038 {
5039 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5040 hdr->sh_type = SHT_PROGBITS;
5041 }
5042 else if (strcmp (name, ".sbss") == 0)
5043 {
5044 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5045 hdr->sh_type = SHT_NOBITS;
5046 }
5047 else if (strcmp (name, ".srdata") == 0)
5048 {
5049 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5050 hdr->sh_type = SHT_PROGBITS;
5051 }
5052 else if (strcmp (name, ".compact_rel") == 0)
5053 {
5054 hdr->sh_flags = 0;
5055 hdr->sh_type = SHT_PROGBITS;
5056 }
5057 else if (strcmp (name, ".rtproc") == 0)
5058 {
5059 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5060 {
5061 unsigned int adjust;
5062
5063 adjust = hdr->sh_size % hdr->sh_addralign;
5064 if (adjust != 0)
5065 hdr->sh_size += hdr->sh_addralign - adjust;
5066 }
5067 }
5068 }
5069
b34976b6 5070 return TRUE;
b49e97c9
TS
5071}
5072
5073/* Handle a MIPS specific section when reading an object file. This
5074 is called when elfcode.h finds a section with an unknown type.
5075 This routine supports both the 32-bit and 64-bit ELF ABI.
5076
5077 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5078 how to. */
5079
b34976b6 5080bfd_boolean
6dc132d9
L
5081_bfd_mips_elf_section_from_shdr (bfd *abfd,
5082 Elf_Internal_Shdr *hdr,
5083 const char *name,
5084 int shindex)
b49e97c9
TS
5085{
5086 flagword flags = 0;
5087
5088 /* There ought to be a place to keep ELF backend specific flags, but
5089 at the moment there isn't one. We just keep track of the
5090 sections by their name, instead. Fortunately, the ABI gives
5091 suggested names for all the MIPS specific sections, so we will
5092 probably get away with this. */
5093 switch (hdr->sh_type)
5094 {
5095 case SHT_MIPS_LIBLIST:
5096 if (strcmp (name, ".liblist") != 0)
b34976b6 5097 return FALSE;
b49e97c9
TS
5098 break;
5099 case SHT_MIPS_MSYM:
5100 if (strcmp (name, ".msym") != 0)
b34976b6 5101 return FALSE;
b49e97c9
TS
5102 break;
5103 case SHT_MIPS_CONFLICT:
5104 if (strcmp (name, ".conflict") != 0)
b34976b6 5105 return FALSE;
b49e97c9
TS
5106 break;
5107 case SHT_MIPS_GPTAB:
5108 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5109 return FALSE;
b49e97c9
TS
5110 break;
5111 case SHT_MIPS_UCODE:
5112 if (strcmp (name, ".ucode") != 0)
b34976b6 5113 return FALSE;
b49e97c9
TS
5114 break;
5115 case SHT_MIPS_DEBUG:
5116 if (strcmp (name, ".mdebug") != 0)
b34976b6 5117 return FALSE;
b49e97c9
TS
5118 flags = SEC_DEBUGGING;
5119 break;
5120 case SHT_MIPS_REGINFO:
5121 if (strcmp (name, ".reginfo") != 0
5122 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5123 return FALSE;
b49e97c9
TS
5124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5125 break;
5126 case SHT_MIPS_IFACE:
5127 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5128 return FALSE;
b49e97c9
TS
5129 break;
5130 case SHT_MIPS_CONTENT:
5131 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5132 return FALSE;
b49e97c9
TS
5133 break;
5134 case SHT_MIPS_OPTIONS:
cc2e31b9 5135 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5136 return FALSE;
b49e97c9
TS
5137 break;
5138 case SHT_MIPS_DWARF:
5139 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5140 return FALSE;
b49e97c9
TS
5141 break;
5142 case SHT_MIPS_SYMBOL_LIB:
5143 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5144 return FALSE;
b49e97c9
TS
5145 break;
5146 case SHT_MIPS_EVENTS:
5147 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5148 && strncmp (name, ".MIPS.post_rel",
5149 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5150 return FALSE;
b49e97c9
TS
5151 break;
5152 default:
cc2e31b9 5153 break;
b49e97c9
TS
5154 }
5155
6dc132d9 5156 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5157 return FALSE;
b49e97c9
TS
5158
5159 if (flags)
5160 {
5161 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5162 (bfd_get_section_flags (abfd,
5163 hdr->bfd_section)
5164 | flags)))
b34976b6 5165 return FALSE;
b49e97c9
TS
5166 }
5167
5168 /* FIXME: We should record sh_info for a .gptab section. */
5169
5170 /* For a .reginfo section, set the gp value in the tdata information
5171 from the contents of this section. We need the gp value while
5172 processing relocs, so we just get it now. The .reginfo section
5173 is not used in the 64-bit MIPS ELF ABI. */
5174 if (hdr->sh_type == SHT_MIPS_REGINFO)
5175 {
5176 Elf32_External_RegInfo ext;
5177 Elf32_RegInfo s;
5178
9719ad41
RS
5179 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5180 &ext, 0, sizeof ext))
b34976b6 5181 return FALSE;
b49e97c9
TS
5182 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5183 elf_gp (abfd) = s.ri_gp_value;
5184 }
5185
5186 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5187 set the gp value based on what we find. We may see both
5188 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5189 they should agree. */
5190 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5191 {
5192 bfd_byte *contents, *l, *lend;
5193
9719ad41 5194 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5195 if (contents == NULL)
b34976b6 5196 return FALSE;
b49e97c9 5197 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5198 0, hdr->sh_size))
b49e97c9
TS
5199 {
5200 free (contents);
b34976b6 5201 return FALSE;
b49e97c9
TS
5202 }
5203 l = contents;
5204 lend = contents + hdr->sh_size;
5205 while (l + sizeof (Elf_External_Options) <= lend)
5206 {
5207 Elf_Internal_Options intopt;
5208
5209 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5210 &intopt);
1bc8074d
MR
5211 if (intopt.size < sizeof (Elf_External_Options))
5212 {
5213 (*_bfd_error_handler)
5214 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5215 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5216 break;
5217 }
b49e97c9
TS
5218 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5219 {
5220 Elf64_Internal_RegInfo intreg;
5221
5222 bfd_mips_elf64_swap_reginfo_in
5223 (abfd,
5224 ((Elf64_External_RegInfo *)
5225 (l + sizeof (Elf_External_Options))),
5226 &intreg);
5227 elf_gp (abfd) = intreg.ri_gp_value;
5228 }
5229 else if (intopt.kind == ODK_REGINFO)
5230 {
5231 Elf32_RegInfo intreg;
5232
5233 bfd_mips_elf32_swap_reginfo_in
5234 (abfd,
5235 ((Elf32_External_RegInfo *)
5236 (l + sizeof (Elf_External_Options))),
5237 &intreg);
5238 elf_gp (abfd) = intreg.ri_gp_value;
5239 }
5240 l += intopt.size;
5241 }
5242 free (contents);
5243 }
5244
b34976b6 5245 return TRUE;
b49e97c9
TS
5246}
5247
5248/* Set the correct type for a MIPS ELF section. We do this by the
5249 section name, which is a hack, but ought to work. This routine is
5250 used by both the 32-bit and the 64-bit ABI. */
5251
b34976b6 5252bfd_boolean
9719ad41 5253_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5254{
5255 register const char *name;
1bc8074d 5256 unsigned int sh_type;
b49e97c9
TS
5257
5258 name = bfd_get_section_name (abfd, sec);
1bc8074d 5259 sh_type = hdr->sh_type;
b49e97c9
TS
5260
5261 if (strcmp (name, ".liblist") == 0)
5262 {
5263 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5264 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5265 /* The sh_link field is set in final_write_processing. */
5266 }
5267 else if (strcmp (name, ".conflict") == 0)
5268 hdr->sh_type = SHT_MIPS_CONFLICT;
5269 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5270 {
5271 hdr->sh_type = SHT_MIPS_GPTAB;
5272 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5273 /* The sh_info field is set in final_write_processing. */
5274 }
5275 else if (strcmp (name, ".ucode") == 0)
5276 hdr->sh_type = SHT_MIPS_UCODE;
5277 else if (strcmp (name, ".mdebug") == 0)
5278 {
5279 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5280 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5281 entsize of 0. FIXME: Does this matter? */
5282 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5283 hdr->sh_entsize = 0;
5284 else
5285 hdr->sh_entsize = 1;
5286 }
5287 else if (strcmp (name, ".reginfo") == 0)
5288 {
5289 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5290 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5291 entsize of 0x18. FIXME: Does this matter? */
5292 if (SGI_COMPAT (abfd))
5293 {
5294 if ((abfd->flags & DYNAMIC) != 0)
5295 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5296 else
5297 hdr->sh_entsize = 1;
5298 }
5299 else
5300 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5301 }
5302 else if (SGI_COMPAT (abfd)
5303 && (strcmp (name, ".hash") == 0
5304 || strcmp (name, ".dynamic") == 0
5305 || strcmp (name, ".dynstr") == 0))
5306 {
5307 if (SGI_COMPAT (abfd))
5308 hdr->sh_entsize = 0;
5309#if 0
8dc1a139 5310 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5311 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5312#endif
5313 }
5314 else if (strcmp (name, ".got") == 0
5315 || strcmp (name, ".srdata") == 0
5316 || strcmp (name, ".sdata") == 0
5317 || strcmp (name, ".sbss") == 0
5318 || strcmp (name, ".lit4") == 0
5319 || strcmp (name, ".lit8") == 0)
5320 hdr->sh_flags |= SHF_MIPS_GPREL;
5321 else if (strcmp (name, ".MIPS.interfaces") == 0)
5322 {
5323 hdr->sh_type = SHT_MIPS_IFACE;
5324 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5325 }
5326 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5327 {
5328 hdr->sh_type = SHT_MIPS_CONTENT;
5329 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5330 /* The sh_info field is set in final_write_processing. */
5331 }
cc2e31b9 5332 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5333 {
5334 hdr->sh_type = SHT_MIPS_OPTIONS;
5335 hdr->sh_entsize = 1;
5336 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5337 }
5338 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5339 hdr->sh_type = SHT_MIPS_DWARF;
5340 else if (strcmp (name, ".MIPS.symlib") == 0)
5341 {
5342 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5343 /* The sh_link and sh_info fields are set in
5344 final_write_processing. */
5345 }
5346 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5347 || strncmp (name, ".MIPS.post_rel",
5348 sizeof ".MIPS.post_rel" - 1) == 0)
5349 {
5350 hdr->sh_type = SHT_MIPS_EVENTS;
5351 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5352 /* The sh_link field is set in final_write_processing. */
5353 }
5354 else if (strcmp (name, ".msym") == 0)
5355 {
5356 hdr->sh_type = SHT_MIPS_MSYM;
5357 hdr->sh_flags |= SHF_ALLOC;
5358 hdr->sh_entsize = 8;
5359 }
5360
1bc8074d
MR
5361 /* In the unlikely event a special section is empty it has to lose its
5362 special meaning. This may happen e.g. when using `strip' with the
5363 "--only-keep-debug" option. */
5364 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5365 hdr->sh_type = sh_type;
5366
7a79a000
TS
5367 /* The generic elf_fake_sections will set up REL_HDR using the default
5368 kind of relocations. We used to set up a second header for the
5369 non-default kind of relocations here, but only NewABI would use
5370 these, and the IRIX ld doesn't like resulting empty RELA sections.
5371 Thus we create those header only on demand now. */
b49e97c9 5372
b34976b6 5373 return TRUE;
b49e97c9
TS
5374}
5375
5376/* Given a BFD section, try to locate the corresponding ELF section
5377 index. This is used by both the 32-bit and the 64-bit ABI.
5378 Actually, it's not clear to me that the 64-bit ABI supports these,
5379 but for non-PIC objects we will certainly want support for at least
5380 the .scommon section. */
5381
b34976b6 5382bfd_boolean
9719ad41
RS
5383_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5384 asection *sec, int *retval)
b49e97c9
TS
5385{
5386 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5387 {
5388 *retval = SHN_MIPS_SCOMMON;
b34976b6 5389 return TRUE;
b49e97c9
TS
5390 }
5391 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5392 {
5393 *retval = SHN_MIPS_ACOMMON;
b34976b6 5394 return TRUE;
b49e97c9 5395 }
b34976b6 5396 return FALSE;
b49e97c9
TS
5397}
5398\f
5399/* Hook called by the linker routine which adds symbols from an object
5400 file. We must handle the special MIPS section numbers here. */
5401
b34976b6 5402bfd_boolean
9719ad41 5403_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5404 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5405 flagword *flagsp ATTRIBUTE_UNUSED,
5406 asection **secp, bfd_vma *valp)
b49e97c9
TS
5407{
5408 if (SGI_COMPAT (abfd)
5409 && (abfd->flags & DYNAMIC) != 0
5410 && strcmp (*namep, "_rld_new_interface") == 0)
5411 {
8dc1a139 5412 /* Skip IRIX5 rld entry name. */
b49e97c9 5413 *namep = NULL;
b34976b6 5414 return TRUE;
b49e97c9
TS
5415 }
5416
5417 switch (sym->st_shndx)
5418 {
5419 case SHN_COMMON:
5420 /* Common symbols less than the GP size are automatically
5421 treated as SHN_MIPS_SCOMMON symbols. */
5422 if (sym->st_size > elf_gp_size (abfd)
5423 || IRIX_COMPAT (abfd) == ict_irix6)
5424 break;
5425 /* Fall through. */
5426 case SHN_MIPS_SCOMMON:
5427 *secp = bfd_make_section_old_way (abfd, ".scommon");
5428 (*secp)->flags |= SEC_IS_COMMON;
5429 *valp = sym->st_size;
5430 break;
5431
5432 case SHN_MIPS_TEXT:
5433 /* This section is used in a shared object. */
5434 if (elf_tdata (abfd)->elf_text_section == NULL)
5435 {
5436 asymbol *elf_text_symbol;
5437 asection *elf_text_section;
5438 bfd_size_type amt = sizeof (asection);
5439
5440 elf_text_section = bfd_zalloc (abfd, amt);
5441 if (elf_text_section == NULL)
b34976b6 5442 return FALSE;
b49e97c9
TS
5443
5444 amt = sizeof (asymbol);
5445 elf_text_symbol = bfd_zalloc (abfd, amt);
5446 if (elf_text_symbol == NULL)
b34976b6 5447 return FALSE;
b49e97c9
TS
5448
5449 /* Initialize the section. */
5450
5451 elf_tdata (abfd)->elf_text_section = elf_text_section;
5452 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5453
5454 elf_text_section->symbol = elf_text_symbol;
5455 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5456
5457 elf_text_section->name = ".text";
5458 elf_text_section->flags = SEC_NO_FLAGS;
5459 elf_text_section->output_section = NULL;
5460 elf_text_section->owner = abfd;
5461 elf_text_symbol->name = ".text";
5462 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5463 elf_text_symbol->section = elf_text_section;
5464 }
5465 /* This code used to do *secp = bfd_und_section_ptr if
5466 info->shared. I don't know why, and that doesn't make sense,
5467 so I took it out. */
5468 *secp = elf_tdata (abfd)->elf_text_section;
5469 break;
5470
5471 case SHN_MIPS_ACOMMON:
5472 /* Fall through. XXX Can we treat this as allocated data? */
5473 case SHN_MIPS_DATA:
5474 /* This section is used in a shared object. */
5475 if (elf_tdata (abfd)->elf_data_section == NULL)
5476 {
5477 asymbol *elf_data_symbol;
5478 asection *elf_data_section;
5479 bfd_size_type amt = sizeof (asection);
5480
5481 elf_data_section = bfd_zalloc (abfd, amt);
5482 if (elf_data_section == NULL)
b34976b6 5483 return FALSE;
b49e97c9
TS
5484
5485 amt = sizeof (asymbol);
5486 elf_data_symbol = bfd_zalloc (abfd, amt);
5487 if (elf_data_symbol == NULL)
b34976b6 5488 return FALSE;
b49e97c9
TS
5489
5490 /* Initialize the section. */
5491
5492 elf_tdata (abfd)->elf_data_section = elf_data_section;
5493 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5494
5495 elf_data_section->symbol = elf_data_symbol;
5496 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5497
5498 elf_data_section->name = ".data";
5499 elf_data_section->flags = SEC_NO_FLAGS;
5500 elf_data_section->output_section = NULL;
5501 elf_data_section->owner = abfd;
5502 elf_data_symbol->name = ".data";
5503 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5504 elf_data_symbol->section = elf_data_section;
5505 }
5506 /* This code used to do *secp = bfd_und_section_ptr if
5507 info->shared. I don't know why, and that doesn't make sense,
5508 so I took it out. */
5509 *secp = elf_tdata (abfd)->elf_data_section;
5510 break;
5511
5512 case SHN_MIPS_SUNDEFINED:
5513 *secp = bfd_und_section_ptr;
5514 break;
5515 }
5516
5517 if (SGI_COMPAT (abfd)
5518 && ! info->shared
5519 && info->hash->creator == abfd->xvec
5520 && strcmp (*namep, "__rld_obj_head") == 0)
5521 {
5522 struct elf_link_hash_entry *h;
14a793b2 5523 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5524
5525 /* Mark __rld_obj_head as dynamic. */
14a793b2 5526 bh = NULL;
b49e97c9 5527 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5528 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5529 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5530 return FALSE;
14a793b2
AM
5531
5532 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5533 h->non_elf = 0;
5534 h->def_regular = 1;
b49e97c9
TS
5535 h->type = STT_OBJECT;
5536
c152c796 5537 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5538 return FALSE;
b49e97c9 5539
b34976b6 5540 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5541 }
5542
5543 /* If this is a mips16 text symbol, add 1 to the value to make it
5544 odd. This will cause something like .word SYM to come up with
5545 the right value when it is loaded into the PC. */
5546 if (sym->st_other == STO_MIPS16)
5547 ++*valp;
5548
b34976b6 5549 return TRUE;
b49e97c9
TS
5550}
5551
5552/* This hook function is called before the linker writes out a global
5553 symbol. We mark symbols as small common if appropriate. This is
5554 also where we undo the increment of the value for a mips16 symbol. */
5555
b34976b6 5556bfd_boolean
9719ad41
RS
5557_bfd_mips_elf_link_output_symbol_hook
5558 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5559 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5560 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5561{
5562 /* If we see a common symbol, which implies a relocatable link, then
5563 if a symbol was small common in an input file, mark it as small
5564 common in the output file. */
5565 if (sym->st_shndx == SHN_COMMON
5566 && strcmp (input_sec->name, ".scommon") == 0)
5567 sym->st_shndx = SHN_MIPS_SCOMMON;
5568
79cda7cf
FF
5569 if (sym->st_other == STO_MIPS16)
5570 sym->st_value &= ~1;
b49e97c9 5571
b34976b6 5572 return TRUE;
b49e97c9
TS
5573}
5574\f
5575/* Functions for the dynamic linker. */
5576
5577/* Create dynamic sections when linking against a dynamic object. */
5578
b34976b6 5579bfd_boolean
9719ad41 5580_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5581{
5582 struct elf_link_hash_entry *h;
14a793b2 5583 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5584 flagword flags;
5585 register asection *s;
5586 const char * const *namep;
5587
5588 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5589 | SEC_LINKER_CREATED | SEC_READONLY);
5590
5591 /* Mips ABI requests the .dynamic section to be read only. */
5592 s = bfd_get_section_by_name (abfd, ".dynamic");
5593 if (s != NULL)
5594 {
5595 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 5596 return FALSE;
b49e97c9
TS
5597 }
5598
5599 /* We need to create .got section. */
f4416af6
AO
5600 if (! mips_elf_create_got_section (abfd, info, FALSE))
5601 return FALSE;
5602
5603 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 5604 return FALSE;
b49e97c9 5605
b49e97c9
TS
5606 /* Create .stub section. */
5607 if (bfd_get_section_by_name (abfd,
5608 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5609 {
3496cb2a
L
5610 s = bfd_make_section_with_flags (abfd,
5611 MIPS_ELF_STUB_SECTION_NAME (abfd),
5612 flags | SEC_CODE);
b49e97c9 5613 if (s == NULL
b49e97c9
TS
5614 || ! bfd_set_section_alignment (abfd, s,
5615 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5616 return FALSE;
b49e97c9
TS
5617 }
5618
5619 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5620 && !info->shared
5621 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5622 {
3496cb2a
L
5623 s = bfd_make_section_with_flags (abfd, ".rld_map",
5624 flags &~ (flagword) SEC_READONLY);
b49e97c9 5625 if (s == NULL
b49e97c9
TS
5626 || ! bfd_set_section_alignment (abfd, s,
5627 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5628 return FALSE;
b49e97c9
TS
5629 }
5630
5631 /* On IRIX5, we adjust add some additional symbols and change the
5632 alignments of several sections. There is no ABI documentation
5633 indicating that this is necessary on IRIX6, nor any evidence that
5634 the linker takes such action. */
5635 if (IRIX_COMPAT (abfd) == ict_irix5)
5636 {
5637 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5638 {
14a793b2 5639 bh = NULL;
b49e97c9 5640 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5641 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5642 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5643 return FALSE;
14a793b2
AM
5644
5645 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5646 h->non_elf = 0;
5647 h->def_regular = 1;
b49e97c9
TS
5648 h->type = STT_SECTION;
5649
c152c796 5650 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5651 return FALSE;
b49e97c9
TS
5652 }
5653
5654 /* We need to create a .compact_rel section. */
5655 if (SGI_COMPAT (abfd))
5656 {
5657 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5658 return FALSE;
b49e97c9
TS
5659 }
5660
44c410de 5661 /* Change alignments of some sections. */
b49e97c9
TS
5662 s = bfd_get_section_by_name (abfd, ".hash");
5663 if (s != NULL)
d80dcc6a 5664 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5665 s = bfd_get_section_by_name (abfd, ".dynsym");
5666 if (s != NULL)
d80dcc6a 5667 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5668 s = bfd_get_section_by_name (abfd, ".dynstr");
5669 if (s != NULL)
d80dcc6a 5670 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5671 s = bfd_get_section_by_name (abfd, ".reginfo");
5672 if (s != NULL)
d80dcc6a 5673 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5674 s = bfd_get_section_by_name (abfd, ".dynamic");
5675 if (s != NULL)
d80dcc6a 5676 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5677 }
5678
5679 if (!info->shared)
5680 {
14a793b2
AM
5681 const char *name;
5682
5683 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5684 bh = NULL;
5685 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5686 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5687 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5688 return FALSE;
14a793b2
AM
5689
5690 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5691 h->non_elf = 0;
5692 h->def_regular = 1;
b49e97c9
TS
5693 h->type = STT_SECTION;
5694
c152c796 5695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5696 return FALSE;
b49e97c9
TS
5697
5698 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5699 {
5700 /* __rld_map is a four byte word located in the .data section
5701 and is filled in by the rtld to contain a pointer to
5702 the _r_debug structure. Its symbol value will be set in
5703 _bfd_mips_elf_finish_dynamic_symbol. */
5704 s = bfd_get_section_by_name (abfd, ".rld_map");
5705 BFD_ASSERT (s != NULL);
5706
14a793b2
AM
5707 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5708 bh = NULL;
5709 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5710 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5711 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5712 return FALSE;
14a793b2
AM
5713
5714 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5715 h->non_elf = 0;
5716 h->def_regular = 1;
b49e97c9
TS
5717 h->type = STT_OBJECT;
5718
c152c796 5719 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5720 return FALSE;
b49e97c9
TS
5721 }
5722 }
5723
b34976b6 5724 return TRUE;
b49e97c9
TS
5725}
5726\f
5727/* Look through the relocs for a section during the first phase, and
5728 allocate space in the global offset table. */
5729
b34976b6 5730bfd_boolean
9719ad41
RS
5731_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5732 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5733{
5734 const char *name;
5735 bfd *dynobj;
5736 Elf_Internal_Shdr *symtab_hdr;
5737 struct elf_link_hash_entry **sym_hashes;
5738 struct mips_got_info *g;
5739 size_t extsymoff;
5740 const Elf_Internal_Rela *rel;
5741 const Elf_Internal_Rela *rel_end;
5742 asection *sgot;
5743 asection *sreloc;
9c5bfbb7 5744 const struct elf_backend_data *bed;
b49e97c9 5745
1049f94e 5746 if (info->relocatable)
b34976b6 5747 return TRUE;
b49e97c9
TS
5748
5749 dynobj = elf_hash_table (info)->dynobj;
5750 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5751 sym_hashes = elf_sym_hashes (abfd);
5752 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5753
5754 /* Check for the mips16 stub sections. */
5755
5756 name = bfd_get_section_name (abfd, sec);
5757 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5758 {
5759 unsigned long r_symndx;
5760
5761 /* Look at the relocation information to figure out which symbol
5762 this is for. */
5763
5764 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5765
5766 if (r_symndx < extsymoff
5767 || sym_hashes[r_symndx - extsymoff] == NULL)
5768 {
5769 asection *o;
5770
5771 /* This stub is for a local symbol. This stub will only be
5772 needed if there is some relocation in this BFD, other
5773 than a 16 bit function call, which refers to this symbol. */
5774 for (o = abfd->sections; o != NULL; o = o->next)
5775 {
5776 Elf_Internal_Rela *sec_relocs;
5777 const Elf_Internal_Rela *r, *rend;
5778
5779 /* We can ignore stub sections when looking for relocs. */
5780 if ((o->flags & SEC_RELOC) == 0
5781 || o->reloc_count == 0
5782 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5783 sizeof FN_STUB - 1) == 0
5784 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5785 sizeof CALL_STUB - 1) == 0
5786 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5787 sizeof CALL_FP_STUB - 1) == 0)
5788 continue;
5789
45d6a902 5790 sec_relocs
9719ad41 5791 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5792 info->keep_memory);
b49e97c9 5793 if (sec_relocs == NULL)
b34976b6 5794 return FALSE;
b49e97c9
TS
5795
5796 rend = sec_relocs + o->reloc_count;
5797 for (r = sec_relocs; r < rend; r++)
5798 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5799 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5800 break;
5801
6cdc0ccc 5802 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5803 free (sec_relocs);
5804
5805 if (r < rend)
5806 break;
5807 }
5808
5809 if (o == NULL)
5810 {
5811 /* There is no non-call reloc for this stub, so we do
5812 not need it. Since this function is called before
5813 the linker maps input sections to output sections, we
5814 can easily discard it by setting the SEC_EXCLUDE
5815 flag. */
5816 sec->flags |= SEC_EXCLUDE;
b34976b6 5817 return TRUE;
b49e97c9
TS
5818 }
5819
5820 /* Record this stub in an array of local symbol stubs for
5821 this BFD. */
5822 if (elf_tdata (abfd)->local_stubs == NULL)
5823 {
5824 unsigned long symcount;
5825 asection **n;
5826 bfd_size_type amt;
5827
5828 if (elf_bad_symtab (abfd))
5829 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5830 else
5831 symcount = symtab_hdr->sh_info;
5832 amt = symcount * sizeof (asection *);
9719ad41 5833 n = bfd_zalloc (abfd, amt);
b49e97c9 5834 if (n == NULL)
b34976b6 5835 return FALSE;
b49e97c9
TS
5836 elf_tdata (abfd)->local_stubs = n;
5837 }
5838
5839 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5840
5841 /* We don't need to set mips16_stubs_seen in this case.
5842 That flag is used to see whether we need to look through
5843 the global symbol table for stubs. We don't need to set
5844 it here, because we just have a local stub. */
5845 }
5846 else
5847 {
5848 struct mips_elf_link_hash_entry *h;
5849
5850 h = ((struct mips_elf_link_hash_entry *)
5851 sym_hashes[r_symndx - extsymoff]);
5852
973a3492
L
5853 while (h->root.root.type == bfd_link_hash_indirect
5854 || h->root.root.type == bfd_link_hash_warning)
5855 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5856
b49e97c9
TS
5857 /* H is the symbol this stub is for. */
5858
5859 h->fn_stub = sec;
b34976b6 5860 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5861 }
5862 }
5863 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5864 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5865 {
5866 unsigned long r_symndx;
5867 struct mips_elf_link_hash_entry *h;
5868 asection **loc;
5869
5870 /* Look at the relocation information to figure out which symbol
5871 this is for. */
5872
5873 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5874
5875 if (r_symndx < extsymoff
5876 || sym_hashes[r_symndx - extsymoff] == NULL)
5877 {
5878 /* This stub was actually built for a static symbol defined
5879 in the same file. We assume that all static symbols in
5880 mips16 code are themselves mips16, so we can simply
5881 discard this stub. Since this function is called before
5882 the linker maps input sections to output sections, we can
5883 easily discard it by setting the SEC_EXCLUDE flag. */
5884 sec->flags |= SEC_EXCLUDE;
b34976b6 5885 return TRUE;
b49e97c9
TS
5886 }
5887
5888 h = ((struct mips_elf_link_hash_entry *)
5889 sym_hashes[r_symndx - extsymoff]);
5890
5891 /* H is the symbol this stub is for. */
5892
5893 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5894 loc = &h->call_fp_stub;
5895 else
5896 loc = &h->call_stub;
5897
5898 /* If we already have an appropriate stub for this function, we
5899 don't need another one, so we can discard this one. Since
5900 this function is called before the linker maps input sections
5901 to output sections, we can easily discard it by setting the
5902 SEC_EXCLUDE flag. We can also discard this section if we
5903 happen to already know that this is a mips16 function; it is
5904 not necessary to check this here, as it is checked later, but
5905 it is slightly faster to check now. */
5906 if (*loc != NULL || h->root.other == STO_MIPS16)
5907 {
5908 sec->flags |= SEC_EXCLUDE;
b34976b6 5909 return TRUE;
b49e97c9
TS
5910 }
5911
5912 *loc = sec;
b34976b6 5913 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5914 }
5915
5916 if (dynobj == NULL)
5917 {
5918 sgot = NULL;
5919 g = NULL;
5920 }
5921 else
5922 {
f4416af6 5923 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5924 if (sgot == NULL)
5925 g = NULL;
5926 else
5927 {
f0abc2a1
AM
5928 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5929 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5930 BFD_ASSERT (g != NULL);
5931 }
5932 }
5933
5934 sreloc = NULL;
5935 bed = get_elf_backend_data (abfd);
5936 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5937 for (rel = relocs; rel < rel_end; ++rel)
5938 {
5939 unsigned long r_symndx;
5940 unsigned int r_type;
5941 struct elf_link_hash_entry *h;
5942
5943 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5944 r_type = ELF_R_TYPE (abfd, rel->r_info);
5945
5946 if (r_symndx < extsymoff)
5947 h = NULL;
5948 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5949 {
5950 (*_bfd_error_handler)
d003868e
AM
5951 (_("%B: Malformed reloc detected for section %s"),
5952 abfd, name);
b49e97c9 5953 bfd_set_error (bfd_error_bad_value);
b34976b6 5954 return FALSE;
b49e97c9
TS
5955 }
5956 else
5957 {
5958 h = sym_hashes[r_symndx - extsymoff];
5959
5960 /* This may be an indirect symbol created because of a version. */
5961 if (h != NULL)
5962 {
5963 while (h->root.type == bfd_link_hash_indirect)
5964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5965 }
5966 }
5967
5968 /* Some relocs require a global offset table. */
5969 if (dynobj == NULL || sgot == NULL)
5970 {
5971 switch (r_type)
5972 {
5973 case R_MIPS_GOT16:
5974 case R_MIPS_CALL16:
5975 case R_MIPS_CALL_HI16:
5976 case R_MIPS_CALL_LO16:
5977 case R_MIPS_GOT_HI16:
5978 case R_MIPS_GOT_LO16:
5979 case R_MIPS_GOT_PAGE:
5980 case R_MIPS_GOT_OFST:
5981 case R_MIPS_GOT_DISP:
0f20cc35
DJ
5982 case R_MIPS_TLS_GD:
5983 case R_MIPS_TLS_LDM:
b49e97c9
TS
5984 if (dynobj == NULL)
5985 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 5986 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 5987 return FALSE;
b49e97c9
TS
5988 g = mips_elf_got_info (dynobj, &sgot);
5989 break;
5990
5991 case R_MIPS_32:
5992 case R_MIPS_REL32:
5993 case R_MIPS_64:
5994 if (dynobj == NULL
5995 && (info->shared || h != NULL)
5996 && (sec->flags & SEC_ALLOC) != 0)
5997 elf_hash_table (info)->dynobj = dynobj = abfd;
5998 break;
5999
6000 default:
6001 break;
6002 }
6003 }
6004
6005 if (!h && (r_type == R_MIPS_CALL_LO16
6006 || r_type == R_MIPS_GOT_LO16
6007 || r_type == R_MIPS_GOT_DISP))
6008 {
6009 /* We may need a local GOT entry for this relocation. We
6010 don't count R_MIPS_GOT_PAGE because we can estimate the
6011 maximum number of pages needed by looking at the size of
6012 the segment. Similar comments apply to R_MIPS_GOT16 and
6013 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6014 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6015 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6016 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6017 rel->r_addend, g, 0))
f4416af6 6018 return FALSE;
b49e97c9
TS
6019 }
6020
6021 switch (r_type)
6022 {
6023 case R_MIPS_CALL16:
6024 if (h == NULL)
6025 {
6026 (*_bfd_error_handler)
d003868e
AM
6027 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6028 abfd, (unsigned long) rel->r_offset);
b49e97c9 6029 bfd_set_error (bfd_error_bad_value);
b34976b6 6030 return FALSE;
b49e97c9
TS
6031 }
6032 /* Fall through. */
6033
6034 case R_MIPS_CALL_HI16:
6035 case R_MIPS_CALL_LO16:
6036 if (h != NULL)
6037 {
6038 /* This symbol requires a global offset table entry. */
0f20cc35 6039 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6040 return FALSE;
b49e97c9
TS
6041
6042 /* We need a stub, not a plt entry for the undefined
6043 function. But we record it as if it needs plt. See
c152c796 6044 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6045 h->needs_plt = 1;
b49e97c9
TS
6046 h->type = STT_FUNC;
6047 }
6048 break;
6049
0fdc1bf1
AO
6050 case R_MIPS_GOT_PAGE:
6051 /* If this is a global, overridable symbol, GOT_PAGE will
6052 decay to GOT_DISP, so we'll need a GOT entry for it. */
6053 if (h == NULL)
6054 break;
6055 else
6056 {
6057 struct mips_elf_link_hash_entry *hmips =
6058 (struct mips_elf_link_hash_entry *) h;
143d77c5 6059
0fdc1bf1
AO
6060 while (hmips->root.root.type == bfd_link_hash_indirect
6061 || hmips->root.root.type == bfd_link_hash_warning)
6062 hmips = (struct mips_elf_link_hash_entry *)
6063 hmips->root.root.u.i.link;
143d77c5 6064
f5385ebf 6065 if (hmips->root.def_regular
0fdc1bf1 6066 && ! (info->shared && ! info->symbolic
f5385ebf 6067 && ! hmips->root.forced_local))
0fdc1bf1
AO
6068 break;
6069 }
6070 /* Fall through. */
6071
b49e97c9
TS
6072 case R_MIPS_GOT16:
6073 case R_MIPS_GOT_HI16:
6074 case R_MIPS_GOT_LO16:
6075 case R_MIPS_GOT_DISP:
0f20cc35 6076 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6077 return FALSE;
b49e97c9
TS
6078 break;
6079
0f20cc35
DJ
6080 case R_MIPS_TLS_GOTTPREL:
6081 if (info->shared)
6082 info->flags |= DF_STATIC_TLS;
6083 /* Fall through */
6084
6085 case R_MIPS_TLS_LDM:
6086 if (r_type == R_MIPS_TLS_LDM)
6087 {
6088 r_symndx = 0;
6089 h = NULL;
6090 }
6091 /* Fall through */
6092
6093 case R_MIPS_TLS_GD:
6094 /* This symbol requires a global offset table entry, or two
6095 for TLS GD relocations. */
6096 {
6097 unsigned char flag = (r_type == R_MIPS_TLS_GD
6098 ? GOT_TLS_GD
6099 : r_type == R_MIPS_TLS_LDM
6100 ? GOT_TLS_LDM
6101 : GOT_TLS_IE);
6102 if (h != NULL)
6103 {
6104 struct mips_elf_link_hash_entry *hmips =
6105 (struct mips_elf_link_hash_entry *) h;
6106 hmips->tls_type |= flag;
6107
6108 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6109 return FALSE;
6110 }
6111 else
6112 {
6113 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6114
6115 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6116 rel->r_addend, g, flag))
6117 return FALSE;
6118 }
6119 }
6120 break;
6121
b49e97c9
TS
6122 case R_MIPS_32:
6123 case R_MIPS_REL32:
6124 case R_MIPS_64:
6125 if ((info->shared || h != NULL)
6126 && (sec->flags & SEC_ALLOC) != 0)
6127 {
6128 if (sreloc == NULL)
6129 {
f4416af6 6130 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 6131 if (sreloc == NULL)
f4416af6 6132 return FALSE;
b49e97c9 6133 }
82f0cfbd 6134#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
b49e97c9 6135 if (info->shared)
82f0cfbd
EC
6136 {
6137 /* When creating a shared object, we must copy these
6138 reloc types into the output file as R_MIPS_REL32
6139 relocs. We make room for this reloc in the
6140 .rel.dyn reloc section. */
6141 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6142 if ((sec->flags & MIPS_READONLY_SECTION)
6143 == MIPS_READONLY_SECTION)
6144 /* We tell the dynamic linker that there are
6145 relocations against the text segment. */
6146 info->flags |= DF_TEXTREL;
6147 }
b49e97c9
TS
6148 else
6149 {
6150 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6151
b49e97c9
TS
6152 /* We only need to copy this reloc if the symbol is
6153 defined in a dynamic object. */
6154 hmips = (struct mips_elf_link_hash_entry *) h;
6155 ++hmips->possibly_dynamic_relocs;
82f0cfbd
EC
6156 if ((sec->flags & MIPS_READONLY_SECTION)
6157 == MIPS_READONLY_SECTION)
6158 /* We need it to tell the dynamic linker if there
6159 are relocations against the text segment. */
6160 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6161 }
6162
6163 /* Even though we don't directly need a GOT entry for
6164 this symbol, a symbol must have a dynamic symbol
6165 table index greater that DT_MIPS_GOTSYM if there are
6166 dynamic relocations against it. */
f4416af6
AO
6167 if (h != NULL)
6168 {
6169 if (dynobj == NULL)
6170 elf_hash_table (info)->dynobj = dynobj = abfd;
6171 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6172 return FALSE;
6173 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6174 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6175 return FALSE;
6176 }
b49e97c9
TS
6177 }
6178
6179 if (SGI_COMPAT (abfd))
6180 mips_elf_hash_table (info)->compact_rel_size +=
6181 sizeof (Elf32_External_crinfo);
6182 break;
6183
6184 case R_MIPS_26:
6185 case R_MIPS_GPREL16:
6186 case R_MIPS_LITERAL:
6187 case R_MIPS_GPREL32:
6188 if (SGI_COMPAT (abfd))
6189 mips_elf_hash_table (info)->compact_rel_size +=
6190 sizeof (Elf32_External_crinfo);
6191 break;
6192
6193 /* This relocation describes the C++ object vtable hierarchy.
6194 Reconstruct it for later use during GC. */
6195 case R_MIPS_GNU_VTINHERIT:
c152c796 6196 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6197 return FALSE;
b49e97c9
TS
6198 break;
6199
6200 /* This relocation describes which C++ vtable entries are actually
6201 used. Record for later use during GC. */
6202 case R_MIPS_GNU_VTENTRY:
c152c796 6203 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6204 return FALSE;
b49e97c9
TS
6205 break;
6206
6207 default:
6208 break;
6209 }
6210
6211 /* We must not create a stub for a symbol that has relocations
6212 related to taking the function's address. */
6213 switch (r_type)
6214 {
6215 default:
6216 if (h != NULL)
6217 {
6218 struct mips_elf_link_hash_entry *mh;
6219
6220 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6221 mh->no_fn_stub = TRUE;
b49e97c9
TS
6222 }
6223 break;
6224 case R_MIPS_CALL16:
6225 case R_MIPS_CALL_HI16:
6226 case R_MIPS_CALL_LO16:
2b86c02e 6227 case R_MIPS_JALR:
b49e97c9
TS
6228 break;
6229 }
6230
6231 /* If this reloc is not a 16 bit call, and it has a global
6232 symbol, then we will need the fn_stub if there is one.
6233 References from a stub section do not count. */
6234 if (h != NULL
6235 && r_type != R_MIPS16_26
6236 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6237 sizeof FN_STUB - 1) != 0
6238 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6239 sizeof CALL_STUB - 1) != 0
6240 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6241 sizeof CALL_FP_STUB - 1) != 0)
6242 {
6243 struct mips_elf_link_hash_entry *mh;
6244
6245 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6246 mh->need_fn_stub = TRUE;
b49e97c9
TS
6247 }
6248 }
6249
b34976b6 6250 return TRUE;
b49e97c9
TS
6251}
6252\f
d0647110 6253bfd_boolean
9719ad41
RS
6254_bfd_mips_relax_section (bfd *abfd, asection *sec,
6255 struct bfd_link_info *link_info,
6256 bfd_boolean *again)
d0647110
AO
6257{
6258 Elf_Internal_Rela *internal_relocs;
6259 Elf_Internal_Rela *irel, *irelend;
6260 Elf_Internal_Shdr *symtab_hdr;
6261 bfd_byte *contents = NULL;
d0647110
AO
6262 size_t extsymoff;
6263 bfd_boolean changed_contents = FALSE;
6264 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6265 Elf_Internal_Sym *isymbuf = NULL;
6266
6267 /* We are not currently changing any sizes, so only one pass. */
6268 *again = FALSE;
6269
1049f94e 6270 if (link_info->relocatable)
d0647110
AO
6271 return TRUE;
6272
9719ad41 6273 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6274 link_info->keep_memory);
d0647110
AO
6275 if (internal_relocs == NULL)
6276 return TRUE;
6277
6278 irelend = internal_relocs + sec->reloc_count
6279 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6280 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6281 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6282
6283 for (irel = internal_relocs; irel < irelend; irel++)
6284 {
6285 bfd_vma symval;
6286 bfd_signed_vma sym_offset;
6287 unsigned int r_type;
6288 unsigned long r_symndx;
6289 asection *sym_sec;
6290 unsigned long instruction;
6291
6292 /* Turn jalr into bgezal, and jr into beq, if they're marked
6293 with a JALR relocation, that indicate where they jump to.
6294 This saves some pipeline bubbles. */
6295 r_type = ELF_R_TYPE (abfd, irel->r_info);
6296 if (r_type != R_MIPS_JALR)
6297 continue;
6298
6299 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6300 /* Compute the address of the jump target. */
6301 if (r_symndx >= extsymoff)
6302 {
6303 struct mips_elf_link_hash_entry *h
6304 = ((struct mips_elf_link_hash_entry *)
6305 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6306
6307 while (h->root.root.type == bfd_link_hash_indirect
6308 || h->root.root.type == bfd_link_hash_warning)
6309 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6310
d0647110
AO
6311 /* If a symbol is undefined, or if it may be overridden,
6312 skip it. */
6313 if (! ((h->root.root.type == bfd_link_hash_defined
6314 || h->root.root.type == bfd_link_hash_defweak)
6315 && h->root.root.u.def.section)
6316 || (link_info->shared && ! link_info->symbolic
f5385ebf 6317 && !h->root.forced_local))
d0647110
AO
6318 continue;
6319
6320 sym_sec = h->root.root.u.def.section;
6321 if (sym_sec->output_section)
6322 symval = (h->root.root.u.def.value
6323 + sym_sec->output_section->vma
6324 + sym_sec->output_offset);
6325 else
6326 symval = h->root.root.u.def.value;
6327 }
6328 else
6329 {
6330 Elf_Internal_Sym *isym;
6331
6332 /* Read this BFD's symbols if we haven't done so already. */
6333 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6334 {
6335 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6336 if (isymbuf == NULL)
6337 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6338 symtab_hdr->sh_info, 0,
6339 NULL, NULL, NULL);
6340 if (isymbuf == NULL)
6341 goto relax_return;
6342 }
6343
6344 isym = isymbuf + r_symndx;
6345 if (isym->st_shndx == SHN_UNDEF)
6346 continue;
6347 else if (isym->st_shndx == SHN_ABS)
6348 sym_sec = bfd_abs_section_ptr;
6349 else if (isym->st_shndx == SHN_COMMON)
6350 sym_sec = bfd_com_section_ptr;
6351 else
6352 sym_sec
6353 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6354 symval = isym->st_value
6355 + sym_sec->output_section->vma
6356 + sym_sec->output_offset;
6357 }
6358
6359 /* Compute branch offset, from delay slot of the jump to the
6360 branch target. */
6361 sym_offset = (symval + irel->r_addend)
6362 - (sec_start + irel->r_offset + 4);
6363
6364 /* Branch offset must be properly aligned. */
6365 if ((sym_offset & 3) != 0)
6366 continue;
6367
6368 sym_offset >>= 2;
6369
6370 /* Check that it's in range. */
6371 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6372 continue;
143d77c5 6373
d0647110
AO
6374 /* Get the section contents if we haven't done so already. */
6375 if (contents == NULL)
6376 {
6377 /* Get cached copy if it exists. */
6378 if (elf_section_data (sec)->this_hdr.contents != NULL)
6379 contents = elf_section_data (sec)->this_hdr.contents;
6380 else
6381 {
eea6121a 6382 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6383 goto relax_return;
6384 }
6385 }
6386
6387 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6388
6389 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6390 if ((instruction & 0xfc1fffff) == 0x0000f809)
6391 instruction = 0x04110000;
6392 /* If it was jr <reg>, turn it into b <target>. */
6393 else if ((instruction & 0xfc1fffff) == 0x00000008)
6394 instruction = 0x10000000;
6395 else
6396 continue;
6397
6398 instruction |= (sym_offset & 0xffff);
6399 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6400 changed_contents = TRUE;
6401 }
6402
6403 if (contents != NULL
6404 && elf_section_data (sec)->this_hdr.contents != contents)
6405 {
6406 if (!changed_contents && !link_info->keep_memory)
6407 free (contents);
6408 else
6409 {
6410 /* Cache the section contents for elf_link_input_bfd. */
6411 elf_section_data (sec)->this_hdr.contents = contents;
6412 }
6413 }
6414 return TRUE;
6415
143d77c5 6416 relax_return:
eea6121a
AM
6417 if (contents != NULL
6418 && elf_section_data (sec)->this_hdr.contents != contents)
6419 free (contents);
d0647110
AO
6420 return FALSE;
6421}
6422\f
b49e97c9
TS
6423/* Adjust a symbol defined by a dynamic object and referenced by a
6424 regular object. The current definition is in some section of the
6425 dynamic object, but we're not including those sections. We have to
6426 change the definition to something the rest of the link can
6427 understand. */
6428
b34976b6 6429bfd_boolean
9719ad41
RS
6430_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6431 struct elf_link_hash_entry *h)
b49e97c9
TS
6432{
6433 bfd *dynobj;
6434 struct mips_elf_link_hash_entry *hmips;
6435 asection *s;
6436
6437 dynobj = elf_hash_table (info)->dynobj;
6438
6439 /* Make sure we know what is going on here. */
6440 BFD_ASSERT (dynobj != NULL
f5385ebf 6441 && (h->needs_plt
f6e332e6 6442 || h->u.weakdef != NULL
f5385ebf
AM
6443 || (h->def_dynamic
6444 && h->ref_regular
6445 && !h->def_regular)));
b49e97c9
TS
6446
6447 /* If this symbol is defined in a dynamic object, we need to copy
6448 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6449 file. */
6450 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6451 if (! info->relocatable
b49e97c9
TS
6452 && hmips->possibly_dynamic_relocs != 0
6453 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6454 || !h->def_regular))
b49e97c9
TS
6455 {
6456 mips_elf_allocate_dynamic_relocations (dynobj,
6457 hmips->possibly_dynamic_relocs);
82f0cfbd 6458 if (hmips->readonly_reloc)
b49e97c9
TS
6459 /* We tell the dynamic linker that there are relocations
6460 against the text segment. */
6461 info->flags |= DF_TEXTREL;
6462 }
6463
6464 /* For a function, create a stub, if allowed. */
6465 if (! hmips->no_fn_stub
f5385ebf 6466 && h->needs_plt)
b49e97c9
TS
6467 {
6468 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6469 return TRUE;
b49e97c9
TS
6470
6471 /* If this symbol is not defined in a regular file, then set
6472 the symbol to the stub location. This is required to make
6473 function pointers compare as equal between the normal
6474 executable and the shared library. */
f5385ebf 6475 if (!h->def_regular)
b49e97c9
TS
6476 {
6477 /* We need .stub section. */
6478 s = bfd_get_section_by_name (dynobj,
6479 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6480 BFD_ASSERT (s != NULL);
6481
6482 h->root.u.def.section = s;
eea6121a 6483 h->root.u.def.value = s->size;
b49e97c9
TS
6484
6485 /* XXX Write this stub address somewhere. */
eea6121a 6486 h->plt.offset = s->size;
b49e97c9
TS
6487
6488 /* Make room for this stub code. */
eea6121a 6489 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6490
6491 /* The last half word of the stub will be filled with the index
6492 of this symbol in .dynsym section. */
b34976b6 6493 return TRUE;
b49e97c9
TS
6494 }
6495 }
6496 else if ((h->type == STT_FUNC)
f5385ebf 6497 && !h->needs_plt)
b49e97c9
TS
6498 {
6499 /* This will set the entry for this symbol in the GOT to 0, and
6500 the dynamic linker will take care of this. */
6501 h->root.u.def.value = 0;
b34976b6 6502 return TRUE;
b49e97c9
TS
6503 }
6504
6505 /* If this is a weak symbol, and there is a real definition, the
6506 processor independent code will have arranged for us to see the
6507 real definition first, and we can just use the same value. */
f6e332e6 6508 if (h->u.weakdef != NULL)
b49e97c9 6509 {
f6e332e6
AM
6510 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6511 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6512 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6513 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6514 return TRUE;
b49e97c9
TS
6515 }
6516
6517 /* This is a reference to a symbol defined by a dynamic object which
6518 is not a function. */
6519
b34976b6 6520 return TRUE;
b49e97c9
TS
6521}
6522\f
6523/* This function is called after all the input files have been read,
6524 and the input sections have been assigned to output sections. We
6525 check for any mips16 stub sections that we can discard. */
6526
b34976b6 6527bfd_boolean
9719ad41
RS
6528_bfd_mips_elf_always_size_sections (bfd *output_bfd,
6529 struct bfd_link_info *info)
b49e97c9
TS
6530{
6531 asection *ri;
6532
f4416af6
AO
6533 bfd *dynobj;
6534 asection *s;
6535 struct mips_got_info *g;
6536 int i;
6537 bfd_size_type loadable_size = 0;
6538 bfd_size_type local_gotno;
6539 bfd *sub;
0f20cc35 6540 struct mips_elf_count_tls_arg count_tls_arg;
f4416af6 6541
b49e97c9
TS
6542 /* The .reginfo section has a fixed size. */
6543 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6544 if (ri != NULL)
9719ad41 6545 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 6546
1049f94e 6547 if (! (info->relocatable
f4416af6
AO
6548 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6549 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 6550 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
6551
6552 dynobj = elf_hash_table (info)->dynobj;
6553 if (dynobj == NULL)
6554 /* Relocatable links don't have it. */
6555 return TRUE;
143d77c5 6556
f4416af6
AO
6557 g = mips_elf_got_info (dynobj, &s);
6558 if (s == NULL)
b34976b6 6559 return TRUE;
b49e97c9 6560
f4416af6
AO
6561 /* Calculate the total loadable size of the output. That
6562 will give us the maximum number of GOT_PAGE entries
6563 required. */
6564 for (sub = info->input_bfds; sub; sub = sub->link_next)
6565 {
6566 asection *subsection;
6567
6568 for (subsection = sub->sections;
6569 subsection;
6570 subsection = subsection->next)
6571 {
6572 if ((subsection->flags & SEC_ALLOC) == 0)
6573 continue;
eea6121a 6574 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
6575 &~ (bfd_size_type) 0xf);
6576 }
6577 }
6578
6579 /* There has to be a global GOT entry for every symbol with
6580 a dynamic symbol table index of DT_MIPS_GOTSYM or
6581 higher. Therefore, it make sense to put those symbols
6582 that need GOT entries at the end of the symbol table. We
6583 do that here. */
6584 if (! mips_elf_sort_hash_table (info, 1))
6585 return FALSE;
6586
6587 if (g->global_gotsym != NULL)
6588 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6589 else
6590 /* If there are no global symbols, or none requiring
6591 relocations, then GLOBAL_GOTSYM will be NULL. */
6592 i = 0;
6593
6594 /* In the worst case, we'll get one stub per dynamic symbol, plus
6595 one to account for the dummy entry at the end required by IRIX
6596 rld. */
6597 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6598
6599 /* Assume there are two loadable segments consisting of
6600 contiguous sections. Is 5 enough? */
6601 local_gotno = (loadable_size >> 16) + 5;
6602
6603 g->local_gotno += local_gotno;
eea6121a 6604 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
6605
6606 g->global_gotno = i;
eea6121a 6607 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 6608
0f20cc35
DJ
6609 /* We need to calculate tls_gotno for global symbols at this point
6610 instead of building it up earlier, to avoid doublecounting
6611 entries for one global symbol from multiple input files. */
6612 count_tls_arg.info = info;
6613 count_tls_arg.needed = 0;
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 mips_elf_count_global_tls_entries,
6616 &count_tls_arg);
6617 g->tls_gotno += count_tls_arg.needed;
6618 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6619
6620 mips_elf_resolve_final_got_entries (g);
6621
6622 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6623 {
6624 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6625 return FALSE;
6626 }
6627 else
6628 {
6629 /* Set up TLS entries for the first GOT. */
6630 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6631 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6632 }
b49e97c9 6633
b34976b6 6634 return TRUE;
b49e97c9
TS
6635}
6636
6637/* Set the sizes of the dynamic sections. */
6638
b34976b6 6639bfd_boolean
9719ad41
RS
6640_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6641 struct bfd_link_info *info)
b49e97c9
TS
6642{
6643 bfd *dynobj;
6644 asection *s;
b34976b6 6645 bfd_boolean reltext;
b49e97c9
TS
6646
6647 dynobj = elf_hash_table (info)->dynobj;
6648 BFD_ASSERT (dynobj != NULL);
6649
6650 if (elf_hash_table (info)->dynamic_sections_created)
6651 {
6652 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 6653 if (info->executable)
b49e97c9
TS
6654 {
6655 s = bfd_get_section_by_name (dynobj, ".interp");
6656 BFD_ASSERT (s != NULL);
eea6121a 6657 s->size
b49e97c9
TS
6658 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6659 s->contents
6660 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6661 }
6662 }
6663
6664 /* The check_relocs and adjust_dynamic_symbol entry points have
6665 determined the sizes of the various dynamic sections. Allocate
6666 memory for them. */
b34976b6 6667 reltext = FALSE;
b49e97c9
TS
6668 for (s = dynobj->sections; s != NULL; s = s->next)
6669 {
6670 const char *name;
b49e97c9
TS
6671
6672 /* It's OK to base decisions on the section name, because none
6673 of the dynobj section names depend upon the input files. */
6674 name = bfd_get_section_name (dynobj, s);
6675
6676 if ((s->flags & SEC_LINKER_CREATED) == 0)
6677 continue;
6678
b49e97c9
TS
6679 if (strncmp (name, ".rel", 4) == 0)
6680 {
c456f082 6681 if (s->size != 0)
b49e97c9
TS
6682 {
6683 const char *outname;
6684 asection *target;
6685
6686 /* If this relocation section applies to a read only
6687 section, then we probably need a DT_TEXTREL entry.
6688 If the relocation section is .rel.dyn, we always
6689 assert a DT_TEXTREL entry rather than testing whether
6690 there exists a relocation to a read only section or
6691 not. */
6692 outname = bfd_get_section_name (output_bfd,
6693 s->output_section);
6694 target = bfd_get_section_by_name (output_bfd, outname + 4);
6695 if ((target != NULL
6696 && (target->flags & SEC_READONLY) != 0
6697 && (target->flags & SEC_ALLOC) != 0)
6698 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6699 reltext = TRUE;
b49e97c9
TS
6700
6701 /* We use the reloc_count field as a counter if we need
6702 to copy relocs into the output file. */
6703 if (strcmp (name, ".rel.dyn") != 0)
6704 s->reloc_count = 0;
f4416af6
AO
6705
6706 /* If combreloc is enabled, elf_link_sort_relocs() will
6707 sort relocations, but in a different way than we do,
6708 and before we're done creating relocations. Also, it
6709 will move them around between input sections'
6710 relocation's contents, so our sorting would be
6711 broken, so don't let it run. */
6712 info->combreloc = 0;
b49e97c9
TS
6713 }
6714 }
6715 else if (strncmp (name, ".got", 4) == 0)
6716 {
f4416af6
AO
6717 /* _bfd_mips_elf_always_size_sections() has already done
6718 most of the work, but some symbols may have been mapped
6719 to versions that we must now resolve in the got_entries
6720 hash tables. */
6721 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6722 struct mips_got_info *g = gg;
6723 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6724 unsigned int needed_relocs = 0;
143d77c5 6725
f4416af6 6726 if (gg->next)
b49e97c9 6727 {
f4416af6
AO
6728 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6729 set_got_offset_arg.info = info;
b49e97c9 6730
0f20cc35
DJ
6731 /* NOTE 2005-02-03: How can this call, or the next, ever
6732 find any indirect entries to resolve? They were all
6733 resolved in mips_elf_multi_got. */
f4416af6
AO
6734 mips_elf_resolve_final_got_entries (gg);
6735 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6736 {
f4416af6
AO
6737 unsigned int save_assign;
6738
6739 mips_elf_resolve_final_got_entries (g);
6740
6741 /* Assign offsets to global GOT entries. */
6742 save_assign = g->assigned_gotno;
6743 g->assigned_gotno = g->local_gotno;
6744 set_got_offset_arg.g = g;
6745 set_got_offset_arg.needed_relocs = 0;
6746 htab_traverse (g->got_entries,
6747 mips_elf_set_global_got_offset,
6748 &set_got_offset_arg);
6749 needed_relocs += set_got_offset_arg.needed_relocs;
6750 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6751 <= g->global_gotno);
6752
6753 g->assigned_gotno = save_assign;
6754 if (info->shared)
6755 {
6756 needed_relocs += g->local_gotno - g->assigned_gotno;
6757 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6758 + g->next->global_gotno
0f20cc35 6759 + g->next->tls_gotno
f4416af6
AO
6760 + MIPS_RESERVED_GOTNO);
6761 }
b49e97c9 6762 }
0f20cc35
DJ
6763 }
6764 else
6765 {
6766 struct mips_elf_count_tls_arg arg;
6767 arg.info = info;
6768 arg.needed = 0;
b49e97c9 6769
0f20cc35
DJ
6770 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6771 &arg);
6772 elf_link_hash_traverse (elf_hash_table (info),
6773 mips_elf_count_global_tls_relocs,
6774 &arg);
6775
6776 needed_relocs += arg.needed;
f4416af6 6777 }
0f20cc35
DJ
6778
6779 if (needed_relocs)
6780 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
b49e97c9
TS
6781 }
6782 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6783 {
8dc1a139 6784 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6785 of .text section. So put a dummy. XXX */
eea6121a 6786 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6787 }
6788 else if (! info->shared
6789 && ! mips_elf_hash_table (info)->use_rld_obj_head
6790 && strncmp (name, ".rld_map", 8) == 0)
6791 {
6792 /* We add a room for __rld_map. It will be filled in by the
6793 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6794 s->size += 4;
b49e97c9
TS
6795 }
6796 else if (SGI_COMPAT (output_bfd)
6797 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6798 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6799 else if (strncmp (name, ".init", 5) != 0)
6800 {
6801 /* It's not one of our sections, so don't allocate space. */
6802 continue;
6803 }
6804
c456f082 6805 if (s->size == 0)
b49e97c9 6806 {
8423293d 6807 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
6808 continue;
6809 }
6810
c456f082
AM
6811 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6812 continue;
6813
b49e97c9 6814 /* Allocate memory for the section contents. */
eea6121a 6815 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 6816 if (s->contents == NULL)
b49e97c9
TS
6817 {
6818 bfd_set_error (bfd_error_no_memory);
b34976b6 6819 return FALSE;
b49e97c9
TS
6820 }
6821 }
6822
6823 if (elf_hash_table (info)->dynamic_sections_created)
6824 {
6825 /* Add some entries to the .dynamic section. We fill in the
6826 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6827 must add the entries now so that we get the correct size for
6828 the .dynamic section. The DT_DEBUG entry is filled in by the
6829 dynamic linker and used by the debugger. */
6830 if (! info->shared)
6831 {
6832 /* SGI object has the equivalence of DT_DEBUG in the
6833 DT_MIPS_RLD_MAP entry. */
6834 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6835 return FALSE;
b49e97c9
TS
6836 if (!SGI_COMPAT (output_bfd))
6837 {
6838 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6839 return FALSE;
b49e97c9
TS
6840 }
6841 }
6842 else
6843 {
6844 /* Shared libraries on traditional mips have DT_DEBUG. */
6845 if (!SGI_COMPAT (output_bfd))
6846 {
6847 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6848 return FALSE;
b49e97c9
TS
6849 }
6850 }
6851
6852 if (reltext && SGI_COMPAT (output_bfd))
6853 info->flags |= DF_TEXTREL;
6854
6855 if ((info->flags & DF_TEXTREL) != 0)
6856 {
6857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6858 return FALSE;
b49e97c9
TS
6859 }
6860
6861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6862 return FALSE;
b49e97c9 6863
f4416af6 6864 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6865 {
6866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6867 return FALSE;
b49e97c9
TS
6868
6869 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6870 return FALSE;
b49e97c9
TS
6871
6872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6873 return FALSE;
b49e97c9
TS
6874 }
6875
b49e97c9 6876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6877 return FALSE;
b49e97c9
TS
6878
6879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6880 return FALSE;
b49e97c9 6881
b49e97c9 6882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6883 return FALSE;
b49e97c9
TS
6884
6885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6886 return FALSE;
b49e97c9
TS
6887
6888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6889 return FALSE;
b49e97c9
TS
6890
6891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6892 return FALSE;
b49e97c9
TS
6893
6894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6895 return FALSE;
b49e97c9
TS
6896
6897 if (IRIX_COMPAT (dynobj) == ict_irix5
6898 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6899 return FALSE;
b49e97c9
TS
6900
6901 if (IRIX_COMPAT (dynobj) == ict_irix6
6902 && (bfd_get_section_by_name
6903 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6904 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6905 return FALSE;
b49e97c9
TS
6906 }
6907
b34976b6 6908 return TRUE;
b49e97c9
TS
6909}
6910\f
6911/* Relocate a MIPS ELF section. */
6912
b34976b6 6913bfd_boolean
9719ad41
RS
6914_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6915 bfd *input_bfd, asection *input_section,
6916 bfd_byte *contents, Elf_Internal_Rela *relocs,
6917 Elf_Internal_Sym *local_syms,
6918 asection **local_sections)
b49e97c9
TS
6919{
6920 Elf_Internal_Rela *rel;
6921 const Elf_Internal_Rela *relend;
6922 bfd_vma addend = 0;
b34976b6 6923 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6924 const struct elf_backend_data *bed;
b49e97c9
TS
6925
6926 bed = get_elf_backend_data (output_bfd);
6927 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6928 for (rel = relocs; rel < relend; ++rel)
6929 {
6930 const char *name;
6931 bfd_vma value;
6932 reloc_howto_type *howto;
b34976b6
AM
6933 bfd_boolean require_jalx;
6934 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6935 REL relocation. */
b34976b6 6936 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6937 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6938 const char *msg;
b49e97c9
TS
6939
6940 /* Find the relocation howto for this relocation. */
4a14403c 6941 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6942 {
6943 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6944 64-bit code, but make sure all their addresses are in the
6945 lowermost or uppermost 32-bit section of the 64-bit address
6946 space. Thus, when they use an R_MIPS_64 they mean what is
6947 usually meant by R_MIPS_32, with the exception that the
6948 stored value is sign-extended to 64 bits. */
b34976b6 6949 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6950
6951 /* On big-endian systems, we need to lie about the position
6952 of the reloc. */
6953 if (bfd_big_endian (input_bfd))
6954 rel->r_offset += 4;
6955 }
6956 else
6957 /* NewABI defaults to RELA relocations. */
6958 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6959 NEWABI_P (input_bfd)
6960 && (MIPS_RELOC_RELA_P
6961 (input_bfd, input_section,
6962 rel - relocs)));
b49e97c9
TS
6963
6964 if (!use_saved_addend_p)
6965 {
6966 Elf_Internal_Shdr *rel_hdr;
6967
6968 /* If these relocations were originally of the REL variety,
6969 we must pull the addend out of the field that will be
6970 relocated. Otherwise, we simply use the contents of the
6971 RELA relocation. To determine which flavor or relocation
6972 this is, we depend on the fact that the INPUT_SECTION's
6973 REL_HDR is read before its REL_HDR2. */
6974 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6975 if ((size_t) (rel - relocs)
6976 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6977 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6978 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6979 {
d6f16593
MR
6980 bfd_byte *location = contents + rel->r_offset;
6981
b49e97c9 6982 /* Note that this is a REL relocation. */
b34976b6 6983 rela_relocation_p = FALSE;
b49e97c9
TS
6984
6985 /* Get the addend, which is stored in the input file. */
d6f16593
MR
6986 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6987 location);
b49e97c9
TS
6988 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6989 contents);
d6f16593
MR
6990 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
6991 location);
6992
b49e97c9
TS
6993 addend &= howto->src_mask;
6994
6995 /* For some kinds of relocations, the ADDEND is a
6996 combination of the addend stored in two different
6997 relocations. */
d6f16593 6998 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
6999 || (r_type == R_MIPS_GOT16
7000 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7001 local_sections, FALSE)))
b49e97c9
TS
7002 {
7003 bfd_vma l;
7004 const Elf_Internal_Rela *lo16_relocation;
7005 reloc_howto_type *lo16_howto;
d6f16593
MR
7006 bfd_byte *lo16_location;
7007 int lo16_type;
7008
7009 if (r_type == R_MIPS16_HI16)
7010 lo16_type = R_MIPS16_LO16;
7011 else
7012 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7013
7014 /* The combined value is the sum of the HI16 addend,
7015 left-shifted by sixteen bits, and the LO16
7016 addend, sign extended. (Usually, the code does
7017 a `lui' of the HI16 value, and then an `addiu' of
7018 the LO16 value.)
7019
4030e8f6
CD
7020 Scan ahead to find a matching LO16 relocation.
7021
7022 According to the MIPS ELF ABI, the R_MIPS_LO16
7023 relocation must be immediately following.
7024 However, for the IRIX6 ABI, the next relocation
7025 may be a composed relocation consisting of
7026 several relocations for the same address. In
7027 that case, the R_MIPS_LO16 relocation may occur
7028 as one of these. We permit a similar extension
7029 in general, as that is useful for GCC. */
7030 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7031 lo16_type,
b49e97c9
TS
7032 rel, relend);
7033 if (lo16_relocation == NULL)
b34976b6 7034 return FALSE;
b49e97c9 7035
d6f16593
MR
7036 lo16_location = contents + lo16_relocation->r_offset;
7037
b49e97c9 7038 /* Obtain the addend kept there. */
4030e8f6 7039 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7040 lo16_type, FALSE);
7041 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7042 lo16_location);
b49e97c9
TS
7043 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7044 input_bfd, contents);
d6f16593
MR
7045 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7046 lo16_location);
b49e97c9 7047 l &= lo16_howto->src_mask;
5a659663 7048 l <<= lo16_howto->rightshift;
a7ebbfdf 7049 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7050
7051 addend <<= 16;
7052
7053 /* Compute the combined addend. */
7054 addend += l;
b49e97c9 7055 }
30ac9238
RS
7056 else
7057 addend <<= howto->rightshift;
b49e97c9
TS
7058 }
7059 else
7060 addend = rel->r_addend;
7061 }
7062
1049f94e 7063 if (info->relocatable)
b49e97c9
TS
7064 {
7065 Elf_Internal_Sym *sym;
7066 unsigned long r_symndx;
7067
4a14403c 7068 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7069 && bfd_big_endian (input_bfd))
7070 rel->r_offset -= 4;
7071
7072 /* Since we're just relocating, all we need to do is copy
7073 the relocations back out to the object file, unless
7074 they're against a section symbol, in which case we need
7075 to adjust by the section offset, or unless they're GP
7076 relative in which case we need to adjust by the amount
1049f94e 7077 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
7078
7079 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 7080 FALSE))
b49e97c9
TS
7081 /* There's nothing to do for non-local relocations. */
7082 continue;
7083
7084 if (r_type == R_MIPS16_GPREL
7085 || r_type == R_MIPS_GPREL16
7086 || r_type == R_MIPS_GPREL32
7087 || r_type == R_MIPS_LITERAL)
7088 addend -= (_bfd_get_gp_value (output_bfd)
7089 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
7090
7091 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7092 sym = local_syms + r_symndx;
7093 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7094 /* Adjust the addend appropriately. */
7095 addend += local_sections[r_symndx]->output_offset;
7096
30ac9238
RS
7097 if (rela_relocation_p)
7098 /* If this is a RELA relocation, just update the addend. */
7099 rel->r_addend = addend;
7100 else
5a659663 7101 {
30ac9238 7102 if (r_type == R_MIPS_HI16
4030e8f6 7103 || r_type == R_MIPS_GOT16)
5a659663
TS
7104 addend = mips_elf_high (addend);
7105 else if (r_type == R_MIPS_HIGHER)
7106 addend = mips_elf_higher (addend);
7107 else if (r_type == R_MIPS_HIGHEST)
7108 addend = mips_elf_highest (addend);
30ac9238
RS
7109 else
7110 addend >>= howto->rightshift;
b49e97c9 7111
30ac9238
RS
7112 /* We use the source mask, rather than the destination
7113 mask because the place to which we are writing will be
7114 source of the addend in the final link. */
b49e97c9
TS
7115 addend &= howto->src_mask;
7116
5a659663 7117 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7118 /* See the comment above about using R_MIPS_64 in the 32-bit
7119 ABI. Here, we need to update the addend. It would be
7120 possible to get away with just using the R_MIPS_32 reloc
7121 but for endianness. */
7122 {
7123 bfd_vma sign_bits;
7124 bfd_vma low_bits;
7125 bfd_vma high_bits;
7126
7127 if (addend & ((bfd_vma) 1 << 31))
7128#ifdef BFD64
7129 sign_bits = ((bfd_vma) 1 << 32) - 1;
7130#else
7131 sign_bits = -1;
7132#endif
7133 else
7134 sign_bits = 0;
7135
7136 /* If we don't know that we have a 64-bit type,
7137 do two separate stores. */
7138 if (bfd_big_endian (input_bfd))
7139 {
7140 /* Store the sign-bits (which are most significant)
7141 first. */
7142 low_bits = sign_bits;
7143 high_bits = addend;
7144 }
7145 else
7146 {
7147 low_bits = addend;
7148 high_bits = sign_bits;
7149 }
7150 bfd_put_32 (input_bfd, low_bits,
7151 contents + rel->r_offset);
7152 bfd_put_32 (input_bfd, high_bits,
7153 contents + rel->r_offset + 4);
7154 continue;
7155 }
7156
7157 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7158 input_bfd, input_section,
b34976b6
AM
7159 contents, FALSE))
7160 return FALSE;
b49e97c9
TS
7161 }
7162
7163 /* Go on to the next relocation. */
7164 continue;
7165 }
7166
7167 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7168 relocations for the same offset. In that case we are
7169 supposed to treat the output of each relocation as the addend
7170 for the next. */
7171 if (rel + 1 < relend
7172 && rel->r_offset == rel[1].r_offset
7173 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7174 use_saved_addend_p = TRUE;
b49e97c9 7175 else
b34976b6 7176 use_saved_addend_p = FALSE;
b49e97c9
TS
7177
7178 /* Figure out what value we are supposed to relocate. */
7179 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7180 input_section, info, rel,
7181 addend, howto, local_syms,
7182 local_sections, &value,
bce03d3d
AO
7183 &name, &require_jalx,
7184 use_saved_addend_p))
b49e97c9
TS
7185 {
7186 case bfd_reloc_continue:
7187 /* There's nothing to do. */
7188 continue;
7189
7190 case bfd_reloc_undefined:
7191 /* mips_elf_calculate_relocation already called the
7192 undefined_symbol callback. There's no real point in
7193 trying to perform the relocation at this point, so we
7194 just skip ahead to the next relocation. */
7195 continue;
7196
7197 case bfd_reloc_notsupported:
7198 msg = _("internal error: unsupported relocation error");
7199 info->callbacks->warning
7200 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7201 return FALSE;
b49e97c9
TS
7202
7203 case bfd_reloc_overflow:
7204 if (use_saved_addend_p)
7205 /* Ignore overflow until we reach the last relocation for
7206 a given location. */
7207 ;
7208 else
7209 {
7210 BFD_ASSERT (name != NULL);
7211 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7212 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7213 input_bfd, input_section, rel->r_offset)))
b34976b6 7214 return FALSE;
b49e97c9
TS
7215 }
7216 break;
7217
7218 case bfd_reloc_ok:
7219 break;
7220
7221 default:
7222 abort ();
7223 break;
7224 }
7225
7226 /* If we've got another relocation for the address, keep going
7227 until we reach the last one. */
7228 if (use_saved_addend_p)
7229 {
7230 addend = value;
7231 continue;
7232 }
7233
4a14403c 7234 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7235 /* See the comment above about using R_MIPS_64 in the 32-bit
7236 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7237 that calculated the right value. Now, however, we
7238 sign-extend the 32-bit result to 64-bits, and store it as a
7239 64-bit value. We are especially generous here in that we
7240 go to extreme lengths to support this usage on systems with
7241 only a 32-bit VMA. */
7242 {
7243 bfd_vma sign_bits;
7244 bfd_vma low_bits;
7245 bfd_vma high_bits;
7246
7247 if (value & ((bfd_vma) 1 << 31))
7248#ifdef BFD64
7249 sign_bits = ((bfd_vma) 1 << 32) - 1;
7250#else
7251 sign_bits = -1;
7252#endif
7253 else
7254 sign_bits = 0;
7255
7256 /* If we don't know that we have a 64-bit type,
7257 do two separate stores. */
7258 if (bfd_big_endian (input_bfd))
7259 {
7260 /* Undo what we did above. */
7261 rel->r_offset -= 4;
7262 /* Store the sign-bits (which are most significant)
7263 first. */
7264 low_bits = sign_bits;
7265 high_bits = value;
7266 }
7267 else
7268 {
7269 low_bits = value;
7270 high_bits = sign_bits;
7271 }
7272 bfd_put_32 (input_bfd, low_bits,
7273 contents + rel->r_offset);
7274 bfd_put_32 (input_bfd, high_bits,
7275 contents + rel->r_offset + 4);
7276 continue;
7277 }
7278
7279 /* Actually perform the relocation. */
7280 if (! mips_elf_perform_relocation (info, howto, rel, value,
7281 input_bfd, input_section,
7282 contents, require_jalx))
b34976b6 7283 return FALSE;
b49e97c9
TS
7284 }
7285
b34976b6 7286 return TRUE;
b49e97c9
TS
7287}
7288\f
7289/* If NAME is one of the special IRIX6 symbols defined by the linker,
7290 adjust it appropriately now. */
7291
7292static void
9719ad41
RS
7293mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7294 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7295{
7296 /* The linker script takes care of providing names and values for
7297 these, but we must place them into the right sections. */
7298 static const char* const text_section_symbols[] = {
7299 "_ftext",
7300 "_etext",
7301 "__dso_displacement",
7302 "__elf_header",
7303 "__program_header_table",
7304 NULL
7305 };
7306
7307 static const char* const data_section_symbols[] = {
7308 "_fdata",
7309 "_edata",
7310 "_end",
7311 "_fbss",
7312 NULL
7313 };
7314
7315 const char* const *p;
7316 int i;
7317
7318 for (i = 0; i < 2; ++i)
7319 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7320 *p;
7321 ++p)
7322 if (strcmp (*p, name) == 0)
7323 {
7324 /* All of these symbols are given type STT_SECTION by the
7325 IRIX6 linker. */
7326 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7327 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7328
7329 /* The IRIX linker puts these symbols in special sections. */
7330 if (i == 0)
7331 sym->st_shndx = SHN_MIPS_TEXT;
7332 else
7333 sym->st_shndx = SHN_MIPS_DATA;
7334
7335 break;
7336 }
7337}
7338
7339/* Finish up dynamic symbol handling. We set the contents of various
7340 dynamic sections here. */
7341
b34976b6 7342bfd_boolean
9719ad41
RS
7343_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7344 struct bfd_link_info *info,
7345 struct elf_link_hash_entry *h,
7346 Elf_Internal_Sym *sym)
b49e97c9
TS
7347{
7348 bfd *dynobj;
b49e97c9 7349 asection *sgot;
f4416af6 7350 struct mips_got_info *g, *gg;
b49e97c9 7351 const char *name;
b49e97c9
TS
7352
7353 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 7354
c5ae1840 7355 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
7356 {
7357 asection *s;
7358 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7359
7360 /* This symbol has a stub. Set it up. */
7361
7362 BFD_ASSERT (h->dynindx != -1);
7363
7364 s = bfd_get_section_by_name (dynobj,
7365 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7366 BFD_ASSERT (s != NULL);
7367
7368 /* FIXME: Can h->dynindex be more than 64K? */
7369 if (h->dynindx & 0xffff0000)
b34976b6 7370 return FALSE;
b49e97c9
TS
7371
7372 /* Fill the stub. */
7373 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7374 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7375 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7376 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7377
eea6121a 7378 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
7379 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7380
7381 /* Mark the symbol as undefined. plt.offset != -1 occurs
7382 only for the referenced symbol. */
7383 sym->st_shndx = SHN_UNDEF;
7384
7385 /* The run-time linker uses the st_value field of the symbol
7386 to reset the global offset table entry for this external
7387 to its stub address when unlinking a shared object. */
c5ae1840
TS
7388 sym->st_value = (s->output_section->vma + s->output_offset
7389 + h->plt.offset);
b49e97c9
TS
7390 }
7391
7392 BFD_ASSERT (h->dynindx != -1
f5385ebf 7393 || h->forced_local);
b49e97c9 7394
f4416af6 7395 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7396 BFD_ASSERT (sgot != NULL);
f4416af6 7397 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 7398 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
7399 BFD_ASSERT (g != NULL);
7400
7401 /* Run through the global symbol table, creating GOT entries for all
7402 the symbols that need them. */
7403 if (g->global_gotsym != NULL
7404 && h->dynindx >= g->global_gotsym->dynindx)
7405 {
7406 bfd_vma offset;
7407 bfd_vma value;
7408
6eaa6adc 7409 value = sym->st_value;
0f20cc35 7410 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
7411 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7412 }
7413
0f20cc35 7414 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
7415 {
7416 struct mips_got_entry e, *p;
0626d451 7417 bfd_vma entry;
f4416af6 7418 bfd_vma offset;
f4416af6
AO
7419
7420 gg = g;
7421
7422 e.abfd = output_bfd;
7423 e.symndx = -1;
7424 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 7425 e.tls_type = 0;
143d77c5 7426
f4416af6
AO
7427 for (g = g->next; g->next != gg; g = g->next)
7428 {
7429 if (g->got_entries
7430 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7431 &e)))
7432 {
7433 offset = p->gotidx;
0626d451
RS
7434 if (info->shared
7435 || (elf_hash_table (info)->dynamic_sections_created
7436 && p->d.h != NULL
f5385ebf
AM
7437 && p->d.h->root.def_dynamic
7438 && !p->d.h->root.def_regular))
0626d451
RS
7439 {
7440 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7441 the various compatibility problems, it's easier to mock
7442 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7443 mips_elf_create_dynamic_relocation to calculate the
7444 appropriate addend. */
7445 Elf_Internal_Rela rel[3];
7446
7447 memset (rel, 0, sizeof (rel));
7448 if (ABI_64_P (output_bfd))
7449 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7450 else
7451 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7452 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7453
7454 entry = 0;
7455 if (! (mips_elf_create_dynamic_relocation
7456 (output_bfd, info, rel,
7457 e.d.h, NULL, sym->st_value, &entry, sgot)))
7458 return FALSE;
7459 }
7460 else
7461 entry = sym->st_value;
7462 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
7463 }
7464 }
7465 }
7466
b49e97c9
TS
7467 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7468 name = h->root.root.string;
7469 if (strcmp (name, "_DYNAMIC") == 0
7470 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7471 sym->st_shndx = SHN_ABS;
7472 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7473 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7474 {
7475 sym->st_shndx = SHN_ABS;
7476 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7477 sym->st_value = 1;
7478 }
4a14403c 7479 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7480 {
7481 sym->st_shndx = SHN_ABS;
7482 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7483 sym->st_value = elf_gp (output_bfd);
7484 }
7485 else if (SGI_COMPAT (output_bfd))
7486 {
7487 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7488 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7489 {
7490 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7491 sym->st_other = STO_PROTECTED;
7492 sym->st_value = 0;
7493 sym->st_shndx = SHN_MIPS_DATA;
7494 }
7495 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7496 {
7497 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7498 sym->st_other = STO_PROTECTED;
7499 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7500 sym->st_shndx = SHN_ABS;
7501 }
7502 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7503 {
7504 if (h->type == STT_FUNC)
7505 sym->st_shndx = SHN_MIPS_TEXT;
7506 else if (h->type == STT_OBJECT)
7507 sym->st_shndx = SHN_MIPS_DATA;
7508 }
7509 }
7510
7511 /* Handle the IRIX6-specific symbols. */
7512 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7513 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7514
7515 if (! info->shared)
7516 {
7517 if (! mips_elf_hash_table (info)->use_rld_obj_head
7518 && (strcmp (name, "__rld_map") == 0
7519 || strcmp (name, "__RLD_MAP") == 0))
7520 {
7521 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7522 BFD_ASSERT (s != NULL);
7523 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 7524 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
7525 if (mips_elf_hash_table (info)->rld_value == 0)
7526 mips_elf_hash_table (info)->rld_value = sym->st_value;
7527 }
7528 else if (mips_elf_hash_table (info)->use_rld_obj_head
7529 && strcmp (name, "__rld_obj_head") == 0)
7530 {
7531 /* IRIX6 does not use a .rld_map section. */
7532 if (IRIX_COMPAT (output_bfd) == ict_irix5
7533 || IRIX_COMPAT (output_bfd) == ict_none)
7534 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7535 != NULL);
7536 mips_elf_hash_table (info)->rld_value = sym->st_value;
7537 }
7538 }
7539
7540 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
7541 if (sym->st_other == STO_MIPS16)
7542 sym->st_value &= ~1;
b49e97c9 7543
b34976b6 7544 return TRUE;
b49e97c9
TS
7545}
7546
7547/* Finish up the dynamic sections. */
7548
b34976b6 7549bfd_boolean
9719ad41
RS
7550_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7551 struct bfd_link_info *info)
b49e97c9
TS
7552{
7553 bfd *dynobj;
7554 asection *sdyn;
7555 asection *sgot;
f4416af6 7556 struct mips_got_info *gg, *g;
b49e97c9
TS
7557
7558 dynobj = elf_hash_table (info)->dynobj;
7559
7560 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7561
f4416af6 7562 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7563 if (sgot == NULL)
f4416af6 7564 gg = g = NULL;
b49e97c9
TS
7565 else
7566 {
f4416af6
AO
7567 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7568 gg = mips_elf_section_data (sgot)->u.got_info;
7569 BFD_ASSERT (gg != NULL);
7570 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
7571 BFD_ASSERT (g != NULL);
7572 }
7573
7574 if (elf_hash_table (info)->dynamic_sections_created)
7575 {
7576 bfd_byte *b;
7577
7578 BFD_ASSERT (sdyn != NULL);
7579 BFD_ASSERT (g != NULL);
7580
7581 for (b = sdyn->contents;
eea6121a 7582 b < sdyn->contents + sdyn->size;
b49e97c9
TS
7583 b += MIPS_ELF_DYN_SIZE (dynobj))
7584 {
7585 Elf_Internal_Dyn dyn;
7586 const char *name;
7587 size_t elemsize;
7588 asection *s;
b34976b6 7589 bfd_boolean swap_out_p;
b49e97c9
TS
7590
7591 /* Read in the current dynamic entry. */
7592 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7593
7594 /* Assume that we're going to modify it and write it out. */
b34976b6 7595 swap_out_p = TRUE;
b49e97c9
TS
7596
7597 switch (dyn.d_tag)
7598 {
7599 case DT_RELENT:
f4416af6 7600 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
7601 BFD_ASSERT (s != NULL);
7602 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7603 break;
7604
7605 case DT_STRSZ:
7606 /* Rewrite DT_STRSZ. */
7607 dyn.d_un.d_val =
7608 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7609 break;
7610
7611 case DT_PLTGOT:
7612 name = ".got";
b49e97c9
TS
7613 s = bfd_get_section_by_name (output_bfd, name);
7614 BFD_ASSERT (s != NULL);
7615 dyn.d_un.d_ptr = s->vma;
7616 break;
7617
7618 case DT_MIPS_RLD_VERSION:
7619 dyn.d_un.d_val = 1; /* XXX */
7620 break;
7621
7622 case DT_MIPS_FLAGS:
7623 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7624 break;
7625
b49e97c9
TS
7626 case DT_MIPS_TIME_STAMP:
7627 time ((time_t *) &dyn.d_un.d_val);
7628 break;
7629
7630 case DT_MIPS_ICHECKSUM:
7631 /* XXX FIXME: */
b34976b6 7632 swap_out_p = FALSE;
b49e97c9
TS
7633 break;
7634
7635 case DT_MIPS_IVERSION:
7636 /* XXX FIXME: */
b34976b6 7637 swap_out_p = FALSE;
b49e97c9
TS
7638 break;
7639
7640 case DT_MIPS_BASE_ADDRESS:
7641 s = output_bfd->sections;
7642 BFD_ASSERT (s != NULL);
7643 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7644 break;
7645
7646 case DT_MIPS_LOCAL_GOTNO:
7647 dyn.d_un.d_val = g->local_gotno;
7648 break;
7649
7650 case DT_MIPS_UNREFEXTNO:
7651 /* The index into the dynamic symbol table which is the
7652 entry of the first external symbol that is not
7653 referenced within the same object. */
7654 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7655 break;
7656
7657 case DT_MIPS_GOTSYM:
f4416af6 7658 if (gg->global_gotsym)
b49e97c9 7659 {
f4416af6 7660 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7661 break;
7662 }
7663 /* In case if we don't have global got symbols we default
7664 to setting DT_MIPS_GOTSYM to the same value as
7665 DT_MIPS_SYMTABNO, so we just fall through. */
7666
7667 case DT_MIPS_SYMTABNO:
7668 name = ".dynsym";
7669 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7670 s = bfd_get_section_by_name (output_bfd, name);
7671 BFD_ASSERT (s != NULL);
7672
eea6121a 7673 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
7674 break;
7675
7676 case DT_MIPS_HIPAGENO:
7677 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7678 break;
7679
7680 case DT_MIPS_RLD_MAP:
7681 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7682 break;
7683
7684 case DT_MIPS_OPTIONS:
7685 s = (bfd_get_section_by_name
7686 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7687 dyn.d_un.d_ptr = s->vma;
7688 break;
7689
b49e97c9 7690 default:
b34976b6 7691 swap_out_p = FALSE;
b49e97c9
TS
7692 break;
7693 }
7694
7695 if (swap_out_p)
7696 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7697 (dynobj, &dyn, b);
7698 }
7699 }
7700
7701 /* The first entry of the global offset table will be filled at
7702 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7703 This isn't the case of IRIX rld. */
eea6121a 7704 if (sgot != NULL && sgot->size > 0)
b49e97c9 7705 {
9719ad41
RS
7706 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7707 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7708 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7709 }
7710
7711 if (sgot != NULL)
7712 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7713 = MIPS_ELF_GOT_SIZE (output_bfd);
7714
f4416af6
AO
7715 /* Generate dynamic relocations for the non-primary gots. */
7716 if (gg != NULL && gg->next)
7717 {
7718 Elf_Internal_Rela rel[3];
7719 bfd_vma addend = 0;
7720
7721 memset (rel, 0, sizeof (rel));
7722 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7723
7724 for (g = gg->next; g->next != gg; g = g->next)
7725 {
0f20cc35
DJ
7726 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7727 + g->next->tls_gotno;
f4416af6 7728
9719ad41 7729 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7730 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7731 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7732 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7733
7734 if (! info->shared)
7735 continue;
7736
7737 while (index < g->assigned_gotno)
7738 {
7739 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7740 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7741 if (!(mips_elf_create_dynamic_relocation
7742 (output_bfd, info, rel, NULL,
7743 bfd_abs_section_ptr,
7744 0, &addend, sgot)))
7745 return FALSE;
7746 BFD_ASSERT (addend == 0);
7747 }
7748 }
7749 }
7750
3133ddbf
DJ
7751 /* The generation of dynamic relocations for the non-primary gots
7752 adds more dynamic relocations. We cannot count them until
7753 here. */
7754
7755 if (elf_hash_table (info)->dynamic_sections_created)
7756 {
7757 bfd_byte *b;
7758 bfd_boolean swap_out_p;
7759
7760 BFD_ASSERT (sdyn != NULL);
7761
7762 for (b = sdyn->contents;
7763 b < sdyn->contents + sdyn->size;
7764 b += MIPS_ELF_DYN_SIZE (dynobj))
7765 {
7766 Elf_Internal_Dyn dyn;
7767 asection *s;
7768
7769 /* Read in the current dynamic entry. */
7770 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7771
7772 /* Assume that we're going to modify it and write it out. */
7773 swap_out_p = TRUE;
7774
7775 switch (dyn.d_tag)
7776 {
7777 case DT_RELSZ:
7778 /* Reduce DT_RELSZ to account for any relocations we
7779 decided not to make. This is for the n64 irix rld,
7780 which doesn't seem to apply any relocations if there
7781 are trailing null entries. */
7782 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7783 dyn.d_un.d_val = (s->reloc_count
7784 * (ABI_64_P (output_bfd)
7785 ? sizeof (Elf64_Mips_External_Rel)
7786 : sizeof (Elf32_External_Rel)));
7787 break;
7788
7789 default:
7790 swap_out_p = FALSE;
7791 break;
7792 }
7793
7794 if (swap_out_p)
7795 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7796 (dynobj, &dyn, b);
7797 }
7798 }
7799
b49e97c9 7800 {
b49e97c9
TS
7801 asection *s;
7802 Elf32_compact_rel cpt;
7803
b49e97c9
TS
7804 if (SGI_COMPAT (output_bfd))
7805 {
7806 /* Write .compact_rel section out. */
7807 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7808 if (s != NULL)
7809 {
7810 cpt.id1 = 1;
7811 cpt.num = s->reloc_count;
7812 cpt.id2 = 2;
7813 cpt.offset = (s->output_section->filepos
7814 + sizeof (Elf32_External_compact_rel));
7815 cpt.reserved0 = 0;
7816 cpt.reserved1 = 0;
7817 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7818 ((Elf32_External_compact_rel *)
7819 s->contents));
7820
7821 /* Clean up a dummy stub function entry in .text. */
7822 s = bfd_get_section_by_name (dynobj,
7823 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7824 if (s != NULL)
7825 {
7826 file_ptr dummy_offset;
7827
eea6121a
AM
7828 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7829 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7830 memset (s->contents + dummy_offset, 0,
7831 MIPS_FUNCTION_STUB_SIZE);
7832 }
7833 }
7834 }
7835
7836 /* We need to sort the entries of the dynamic relocation section. */
7837
f4416af6
AO
7838 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7839
7840 if (s != NULL
eea6121a 7841 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7842 {
f4416af6 7843 reldyn_sorting_bfd = output_bfd;
b49e97c9 7844
f4416af6 7845 if (ABI_64_P (output_bfd))
9719ad41 7846 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7847 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7848 else
9719ad41 7849 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7850 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7851 }
b49e97c9
TS
7852 }
7853
b34976b6 7854 return TRUE;
b49e97c9
TS
7855}
7856
b49e97c9 7857
64543e1a
RS
7858/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7859
7860static void
9719ad41 7861mips_set_isa_flags (bfd *abfd)
b49e97c9 7862{
64543e1a 7863 flagword val;
b49e97c9
TS
7864
7865 switch (bfd_get_mach (abfd))
7866 {
7867 default:
7868 case bfd_mach_mips3000:
7869 val = E_MIPS_ARCH_1;
7870 break;
7871
7872 case bfd_mach_mips3900:
7873 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7874 break;
7875
7876 case bfd_mach_mips6000:
7877 val = E_MIPS_ARCH_2;
7878 break;
7879
7880 case bfd_mach_mips4000:
7881 case bfd_mach_mips4300:
7882 case bfd_mach_mips4400:
7883 case bfd_mach_mips4600:
7884 val = E_MIPS_ARCH_3;
7885 break;
7886
7887 case bfd_mach_mips4010:
7888 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7889 break;
7890
7891 case bfd_mach_mips4100:
7892 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7893 break;
7894
7895 case bfd_mach_mips4111:
7896 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7897 break;
7898
00707a0e
RS
7899 case bfd_mach_mips4120:
7900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7901 break;
7902
b49e97c9
TS
7903 case bfd_mach_mips4650:
7904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7905 break;
7906
00707a0e
RS
7907 case bfd_mach_mips5400:
7908 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7909 break;
7910
7911 case bfd_mach_mips5500:
7912 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7913 break;
7914
0d2e43ed
ILT
7915 case bfd_mach_mips9000:
7916 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7917 break;
7918
b49e97c9 7919 case bfd_mach_mips5000:
5a7ea749 7920 case bfd_mach_mips7000:
b49e97c9
TS
7921 case bfd_mach_mips8000:
7922 case bfd_mach_mips10000:
7923 case bfd_mach_mips12000:
7924 val = E_MIPS_ARCH_4;
7925 break;
7926
7927 case bfd_mach_mips5:
7928 val = E_MIPS_ARCH_5;
7929 break;
7930
7931 case bfd_mach_mips_sb1:
7932 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7933 break;
7934
7935 case bfd_mach_mipsisa32:
7936 val = E_MIPS_ARCH_32;
7937 break;
7938
7939 case bfd_mach_mipsisa64:
7940 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7941 break;
7942
7943 case bfd_mach_mipsisa32r2:
7944 val = E_MIPS_ARCH_32R2;
7945 break;
5f74bc13
CD
7946
7947 case bfd_mach_mipsisa64r2:
7948 val = E_MIPS_ARCH_64R2;
7949 break;
b49e97c9 7950 }
b49e97c9
TS
7951 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7952 elf_elfheader (abfd)->e_flags |= val;
7953
64543e1a
RS
7954}
7955
7956
7957/* The final processing done just before writing out a MIPS ELF object
7958 file. This gets the MIPS architecture right based on the machine
7959 number. This is used by both the 32-bit and the 64-bit ABI. */
7960
7961void
9719ad41
RS
7962_bfd_mips_elf_final_write_processing (bfd *abfd,
7963 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7964{
7965 unsigned int i;
7966 Elf_Internal_Shdr **hdrpp;
7967 const char *name;
7968 asection *sec;
7969
7970 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7971 is nonzero. This is for compatibility with old objects, which used
7972 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7973 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7974 mips_set_isa_flags (abfd);
7975
b49e97c9
TS
7976 /* Set the sh_info field for .gptab sections and other appropriate
7977 info for each special section. */
7978 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7979 i < elf_numsections (abfd);
7980 i++, hdrpp++)
7981 {
7982 switch ((*hdrpp)->sh_type)
7983 {
7984 case SHT_MIPS_MSYM:
7985 case SHT_MIPS_LIBLIST:
7986 sec = bfd_get_section_by_name (abfd, ".dynstr");
7987 if (sec != NULL)
7988 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7989 break;
7990
7991 case SHT_MIPS_GPTAB:
7992 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7993 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7994 BFD_ASSERT (name != NULL
7995 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7996 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7997 BFD_ASSERT (sec != NULL);
7998 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7999 break;
8000
8001 case SHT_MIPS_CONTENT:
8002 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8003 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8004 BFD_ASSERT (name != NULL
8005 && strncmp (name, ".MIPS.content",
8006 sizeof ".MIPS.content" - 1) == 0);
8007 sec = bfd_get_section_by_name (abfd,
8008 name + sizeof ".MIPS.content" - 1);
8009 BFD_ASSERT (sec != NULL);
8010 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8011 break;
8012
8013 case SHT_MIPS_SYMBOL_LIB:
8014 sec = bfd_get_section_by_name (abfd, ".dynsym");
8015 if (sec != NULL)
8016 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8017 sec = bfd_get_section_by_name (abfd, ".liblist");
8018 if (sec != NULL)
8019 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8020 break;
8021
8022 case SHT_MIPS_EVENTS:
8023 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8024 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8025 BFD_ASSERT (name != NULL);
8026 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8027 sec = bfd_get_section_by_name (abfd,
8028 name + sizeof ".MIPS.events" - 1);
8029 else
8030 {
8031 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8032 sizeof ".MIPS.post_rel" - 1) == 0);
8033 sec = bfd_get_section_by_name (abfd,
8034 (name
8035 + sizeof ".MIPS.post_rel" - 1));
8036 }
8037 BFD_ASSERT (sec != NULL);
8038 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8039 break;
8040
8041 }
8042 }
8043}
8044\f
8dc1a139 8045/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
8046 segments. */
8047
8048int
9719ad41 8049_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
8050{
8051 asection *s;
8052 int ret = 0;
8053
8054 /* See if we need a PT_MIPS_REGINFO segment. */
8055 s = bfd_get_section_by_name (abfd, ".reginfo");
8056 if (s && (s->flags & SEC_LOAD))
8057 ++ret;
8058
8059 /* See if we need a PT_MIPS_OPTIONS segment. */
8060 if (IRIX_COMPAT (abfd) == ict_irix6
8061 && bfd_get_section_by_name (abfd,
8062 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8063 ++ret;
8064
8065 /* See if we need a PT_MIPS_RTPROC segment. */
8066 if (IRIX_COMPAT (abfd) == ict_irix5
8067 && bfd_get_section_by_name (abfd, ".dynamic")
8068 && bfd_get_section_by_name (abfd, ".mdebug"))
8069 ++ret;
8070
8071 return ret;
8072}
8073
8dc1a139 8074/* Modify the segment map for an IRIX5 executable. */
b49e97c9 8075
b34976b6 8076bfd_boolean
9719ad41
RS
8077_bfd_mips_elf_modify_segment_map (bfd *abfd,
8078 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
8079{
8080 asection *s;
8081 struct elf_segment_map *m, **pm;
8082 bfd_size_type amt;
8083
8084 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8085 segment. */
8086 s = bfd_get_section_by_name (abfd, ".reginfo");
8087 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8088 {
8089 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8090 if (m->p_type == PT_MIPS_REGINFO)
8091 break;
8092 if (m == NULL)
8093 {
8094 amt = sizeof *m;
9719ad41 8095 m = bfd_zalloc (abfd, amt);
b49e97c9 8096 if (m == NULL)
b34976b6 8097 return FALSE;
b49e97c9
TS
8098
8099 m->p_type = PT_MIPS_REGINFO;
8100 m->count = 1;
8101 m->sections[0] = s;
8102
8103 /* We want to put it after the PHDR and INTERP segments. */
8104 pm = &elf_tdata (abfd)->segment_map;
8105 while (*pm != NULL
8106 && ((*pm)->p_type == PT_PHDR
8107 || (*pm)->p_type == PT_INTERP))
8108 pm = &(*pm)->next;
8109
8110 m->next = *pm;
8111 *pm = m;
8112 }
8113 }
8114
8115 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8116 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 8117 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 8118 table. */
c1fd6598
AO
8119 if (NEWABI_P (abfd)
8120 /* On non-IRIX6 new abi, we'll have already created a segment
8121 for this section, so don't create another. I'm not sure this
8122 is not also the case for IRIX 6, but I can't test it right
8123 now. */
8124 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
8125 {
8126 for (s = abfd->sections; s; s = s->next)
8127 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8128 break;
8129
8130 if (s)
8131 {
8132 struct elf_segment_map *options_segment;
8133
98a8deaf
RS
8134 pm = &elf_tdata (abfd)->segment_map;
8135 while (*pm != NULL
8136 && ((*pm)->p_type == PT_PHDR
8137 || (*pm)->p_type == PT_INTERP))
8138 pm = &(*pm)->next;
b49e97c9
TS
8139
8140 amt = sizeof (struct elf_segment_map);
8141 options_segment = bfd_zalloc (abfd, amt);
8142 options_segment->next = *pm;
8143 options_segment->p_type = PT_MIPS_OPTIONS;
8144 options_segment->p_flags = PF_R;
b34976b6 8145 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
8146 options_segment->count = 1;
8147 options_segment->sections[0] = s;
8148 *pm = options_segment;
8149 }
8150 }
8151 else
8152 {
8153 if (IRIX_COMPAT (abfd) == ict_irix5)
8154 {
8155 /* If there are .dynamic and .mdebug sections, we make a room
8156 for the RTPROC header. FIXME: Rewrite without section names. */
8157 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8158 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8159 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8160 {
8161 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8162 if (m->p_type == PT_MIPS_RTPROC)
8163 break;
8164 if (m == NULL)
8165 {
8166 amt = sizeof *m;
9719ad41 8167 m = bfd_zalloc (abfd, amt);
b49e97c9 8168 if (m == NULL)
b34976b6 8169 return FALSE;
b49e97c9
TS
8170
8171 m->p_type = PT_MIPS_RTPROC;
8172
8173 s = bfd_get_section_by_name (abfd, ".rtproc");
8174 if (s == NULL)
8175 {
8176 m->count = 0;
8177 m->p_flags = 0;
8178 m->p_flags_valid = 1;
8179 }
8180 else
8181 {
8182 m->count = 1;
8183 m->sections[0] = s;
8184 }
8185
8186 /* We want to put it after the DYNAMIC segment. */
8187 pm = &elf_tdata (abfd)->segment_map;
8188 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8189 pm = &(*pm)->next;
8190 if (*pm != NULL)
8191 pm = &(*pm)->next;
8192
8193 m->next = *pm;
8194 *pm = m;
8195 }
8196 }
8197 }
8dc1a139 8198 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
8199 .dynstr, .dynsym, and .hash sections, and everything in
8200 between. */
8201 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8202 pm = &(*pm)->next)
8203 if ((*pm)->p_type == PT_DYNAMIC)
8204 break;
8205 m = *pm;
8206 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8207 {
8208 /* For a normal mips executable the permissions for the PT_DYNAMIC
8209 segment are read, write and execute. We do that here since
8210 the code in elf.c sets only the read permission. This matters
8211 sometimes for the dynamic linker. */
8212 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8213 {
8214 m->p_flags = PF_R | PF_W | PF_X;
8215 m->p_flags_valid = 1;
8216 }
8217 }
8218 if (m != NULL
8219 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8220 {
8221 static const char *sec_names[] =
8222 {
8223 ".dynamic", ".dynstr", ".dynsym", ".hash"
8224 };
8225 bfd_vma low, high;
8226 unsigned int i, c;
8227 struct elf_segment_map *n;
8228
792b4a53 8229 low = ~(bfd_vma) 0;
b49e97c9
TS
8230 high = 0;
8231 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8232 {
8233 s = bfd_get_section_by_name (abfd, sec_names[i]);
8234 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8235 {
8236 bfd_size_type sz;
8237
8238 if (low > s->vma)
8239 low = s->vma;
eea6121a 8240 sz = s->size;
b49e97c9
TS
8241 if (high < s->vma + sz)
8242 high = s->vma + sz;
8243 }
8244 }
8245
8246 c = 0;
8247 for (s = abfd->sections; s != NULL; s = s->next)
8248 if ((s->flags & SEC_LOAD) != 0
8249 && s->vma >= low
eea6121a 8250 && s->vma + s->size <= high)
b49e97c9
TS
8251 ++c;
8252
8253 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 8254 n = bfd_zalloc (abfd, amt);
b49e97c9 8255 if (n == NULL)
b34976b6 8256 return FALSE;
b49e97c9
TS
8257 *n = *m;
8258 n->count = c;
8259
8260 i = 0;
8261 for (s = abfd->sections; s != NULL; s = s->next)
8262 {
8263 if ((s->flags & SEC_LOAD) != 0
8264 && s->vma >= low
eea6121a 8265 && s->vma + s->size <= high)
b49e97c9
TS
8266 {
8267 n->sections[i] = s;
8268 ++i;
8269 }
8270 }
8271
8272 *pm = n;
8273 }
8274 }
8275
b34976b6 8276 return TRUE;
b49e97c9
TS
8277}
8278\f
8279/* Return the section that should be marked against GC for a given
8280 relocation. */
8281
8282asection *
9719ad41
RS
8283_bfd_mips_elf_gc_mark_hook (asection *sec,
8284 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8285 Elf_Internal_Rela *rel,
8286 struct elf_link_hash_entry *h,
8287 Elf_Internal_Sym *sym)
b49e97c9
TS
8288{
8289 /* ??? Do mips16 stub sections need to be handled special? */
8290
8291 if (h != NULL)
8292 {
1e2f5b6e 8293 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
8294 {
8295 case R_MIPS_GNU_VTINHERIT:
8296 case R_MIPS_GNU_VTENTRY:
8297 break;
8298
8299 default:
8300 switch (h->root.type)
8301 {
8302 case bfd_link_hash_defined:
8303 case bfd_link_hash_defweak:
8304 return h->root.u.def.section;
8305
8306 case bfd_link_hash_common:
8307 return h->root.u.c.p->section;
8308
8309 default:
8310 break;
8311 }
8312 }
8313 }
8314 else
1e2f5b6e 8315 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
8316
8317 return NULL;
8318}
8319
8320/* Update the got entry reference counts for the section being removed. */
8321
b34976b6 8322bfd_boolean
9719ad41
RS
8323_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8324 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8325 asection *sec ATTRIBUTE_UNUSED,
8326 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
8327{
8328#if 0
8329 Elf_Internal_Shdr *symtab_hdr;
8330 struct elf_link_hash_entry **sym_hashes;
8331 bfd_signed_vma *local_got_refcounts;
8332 const Elf_Internal_Rela *rel, *relend;
8333 unsigned long r_symndx;
8334 struct elf_link_hash_entry *h;
8335
8336 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8337 sym_hashes = elf_sym_hashes (abfd);
8338 local_got_refcounts = elf_local_got_refcounts (abfd);
8339
8340 relend = relocs + sec->reloc_count;
8341 for (rel = relocs; rel < relend; rel++)
8342 switch (ELF_R_TYPE (abfd, rel->r_info))
8343 {
8344 case R_MIPS_GOT16:
8345 case R_MIPS_CALL16:
8346 case R_MIPS_CALL_HI16:
8347 case R_MIPS_CALL_LO16:
8348 case R_MIPS_GOT_HI16:
8349 case R_MIPS_GOT_LO16:
4a14403c
TS
8350 case R_MIPS_GOT_DISP:
8351 case R_MIPS_GOT_PAGE:
8352 case R_MIPS_GOT_OFST:
b49e97c9
TS
8353 /* ??? It would seem that the existing MIPS code does no sort
8354 of reference counting or whatnot on its GOT and PLT entries,
8355 so it is not possible to garbage collect them at this time. */
8356 break;
8357
8358 default:
8359 break;
8360 }
8361#endif
8362
b34976b6 8363 return TRUE;
b49e97c9
TS
8364}
8365\f
8366/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8367 hiding the old indirect symbol. Process additional relocation
8368 information. Also called for weakdefs, in which case we just let
8369 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8370
8371void
9719ad41
RS
8372_bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
8373 struct elf_link_hash_entry *dir,
8374 struct elf_link_hash_entry *ind)
b49e97c9
TS
8375{
8376 struct mips_elf_link_hash_entry *dirmips, *indmips;
8377
b48fa14c 8378 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
b49e97c9
TS
8379
8380 if (ind->root.type != bfd_link_hash_indirect)
8381 return;
8382
8383 dirmips = (struct mips_elf_link_hash_entry *) dir;
8384 indmips = (struct mips_elf_link_hash_entry *) ind;
8385 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8386 if (indmips->readonly_reloc)
b34976b6 8387 dirmips->readonly_reloc = TRUE;
b49e97c9 8388 if (indmips->no_fn_stub)
b34976b6 8389 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
8390
8391 if (dirmips->tls_type == 0)
8392 dirmips->tls_type = indmips->tls_type;
8393 else
8394 BFD_ASSERT (indmips->tls_type == 0);
b49e97c9
TS
8395}
8396
8397void
9719ad41
RS
8398_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8399 struct elf_link_hash_entry *entry,
8400 bfd_boolean force_local)
b49e97c9
TS
8401{
8402 bfd *dynobj;
8403 asection *got;
8404 struct mips_got_info *g;
8405 struct mips_elf_link_hash_entry *h;
7c5fcef7 8406
b49e97c9 8407 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
8408 if (h->forced_local)
8409 return;
4b555070 8410 h->forced_local = force_local;
7c5fcef7 8411
b49e97c9 8412 dynobj = elf_hash_table (info)->dynobj;
0f20cc35 8413 if (dynobj != NULL && force_local && h->root.type != STT_TLS)
f4416af6 8414 {
c45a316a
AM
8415 got = mips_elf_got_section (dynobj, FALSE);
8416 g = mips_elf_section_data (got)->u.got_info;
f4416af6 8417
c45a316a
AM
8418 if (g->next)
8419 {
8420 struct mips_got_entry e;
8421 struct mips_got_info *gg = g;
8422
8423 /* Since we're turning what used to be a global symbol into a
8424 local one, bump up the number of local entries of each GOT
8425 that had an entry for it. This will automatically decrease
8426 the number of global entries, since global_gotno is actually
8427 the upper limit of global entries. */
8428 e.abfd = dynobj;
8429 e.symndx = -1;
8430 e.d.h = h;
0f20cc35 8431 e.tls_type = 0;
c45a316a
AM
8432
8433 for (g = g->next; g != gg; g = g->next)
8434 if (htab_find (g->got_entries, &e))
8435 {
8436 BFD_ASSERT (g->global_gotno > 0);
8437 g->local_gotno++;
8438 g->global_gotno--;
8439 }
b49e97c9 8440
c45a316a
AM
8441 /* If this was a global symbol forced into the primary GOT, we
8442 no longer need an entry for it. We can't release the entry
8443 at this point, but we must at least stop counting it as one
8444 of the symbols that required a forced got entry. */
8445 if (h->root.got.offset == 2)
8446 {
8447 BFD_ASSERT (gg->assigned_gotno > 0);
8448 gg->assigned_gotno--;
8449 }
8450 }
8451 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8452 /* If we haven't got through GOT allocation yet, just bump up the
8453 number of local entries, as this symbol won't be counted as
8454 global. */
8455 g->local_gotno++;
8456 else if (h->root.got.offset == 1)
f4416af6 8457 {
c45a316a
AM
8458 /* If we're past non-multi-GOT allocation and this symbol had
8459 been marked for a global got entry, give it a local entry
8460 instead. */
8461 BFD_ASSERT (g->global_gotno > 0);
8462 g->local_gotno++;
8463 g->global_gotno--;
f4416af6
AO
8464 }
8465 }
f4416af6
AO
8466
8467 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
8468}
8469\f
d01414a5
TS
8470#define PDR_SIZE 32
8471
b34976b6 8472bfd_boolean
9719ad41
RS
8473_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8474 struct bfd_link_info *info)
d01414a5
TS
8475{
8476 asection *o;
b34976b6 8477 bfd_boolean ret = FALSE;
d01414a5
TS
8478 unsigned char *tdata;
8479 size_t i, skip;
8480
8481 o = bfd_get_section_by_name (abfd, ".pdr");
8482 if (! o)
b34976b6 8483 return FALSE;
eea6121a 8484 if (o->size == 0)
b34976b6 8485 return FALSE;
eea6121a 8486 if (o->size % PDR_SIZE != 0)
b34976b6 8487 return FALSE;
d01414a5
TS
8488 if (o->output_section != NULL
8489 && bfd_is_abs_section (o->output_section))
b34976b6 8490 return FALSE;
d01414a5 8491
eea6121a 8492 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 8493 if (! tdata)
b34976b6 8494 return FALSE;
d01414a5 8495
9719ad41 8496 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8497 info->keep_memory);
d01414a5
TS
8498 if (!cookie->rels)
8499 {
8500 free (tdata);
b34976b6 8501 return FALSE;
d01414a5
TS
8502 }
8503
8504 cookie->rel = cookie->rels;
8505 cookie->relend = cookie->rels + o->reloc_count;
8506
eea6121a 8507 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 8508 {
c152c796 8509 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
8510 {
8511 tdata[i] = 1;
8512 skip ++;
8513 }
8514 }
8515
8516 if (skip != 0)
8517 {
f0abc2a1 8518 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 8519 o->size -= skip * PDR_SIZE;
b34976b6 8520 ret = TRUE;
d01414a5
TS
8521 }
8522 else
8523 free (tdata);
8524
8525 if (! info->keep_memory)
8526 free (cookie->rels);
8527
8528 return ret;
8529}
8530
b34976b6 8531bfd_boolean
9719ad41 8532_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
8533{
8534 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
8535 return TRUE;
8536 return FALSE;
53bfd6b4 8537}
d01414a5 8538
b34976b6 8539bfd_boolean
9719ad41
RS
8540_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8541 bfd_byte *contents)
d01414a5
TS
8542{
8543 bfd_byte *to, *from, *end;
8544 int i;
8545
8546 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 8547 return FALSE;
d01414a5 8548
f0abc2a1 8549 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 8550 return FALSE;
d01414a5
TS
8551
8552 to = contents;
eea6121a 8553 end = contents + sec->size;
d01414a5
TS
8554 for (from = contents, i = 0;
8555 from < end;
8556 from += PDR_SIZE, i++)
8557 {
f0abc2a1 8558 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
8559 continue;
8560 if (to != from)
8561 memcpy (to, from, PDR_SIZE);
8562 to += PDR_SIZE;
8563 }
8564 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 8565 sec->output_offset, sec->size);
b34976b6 8566 return TRUE;
d01414a5 8567}
53bfd6b4 8568\f
b49e97c9
TS
8569/* MIPS ELF uses a special find_nearest_line routine in order the
8570 handle the ECOFF debugging information. */
8571
8572struct mips_elf_find_line
8573{
8574 struct ecoff_debug_info d;
8575 struct ecoff_find_line i;
8576};
8577
b34976b6 8578bfd_boolean
9719ad41
RS
8579_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8580 asymbol **symbols, bfd_vma offset,
8581 const char **filename_ptr,
8582 const char **functionname_ptr,
8583 unsigned int *line_ptr)
b49e97c9
TS
8584{
8585 asection *msec;
8586
8587 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8588 filename_ptr, functionname_ptr,
8589 line_ptr))
b34976b6 8590 return TRUE;
b49e97c9
TS
8591
8592 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8593 filename_ptr, functionname_ptr,
9719ad41 8594 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 8595 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 8596 return TRUE;
b49e97c9
TS
8597
8598 msec = bfd_get_section_by_name (abfd, ".mdebug");
8599 if (msec != NULL)
8600 {
8601 flagword origflags;
8602 struct mips_elf_find_line *fi;
8603 const struct ecoff_debug_swap * const swap =
8604 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8605
8606 /* If we are called during a link, mips_elf_final_link may have
8607 cleared the SEC_HAS_CONTENTS field. We force it back on here
8608 if appropriate (which it normally will be). */
8609 origflags = msec->flags;
8610 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8611 msec->flags |= SEC_HAS_CONTENTS;
8612
8613 fi = elf_tdata (abfd)->find_line_info;
8614 if (fi == NULL)
8615 {
8616 bfd_size_type external_fdr_size;
8617 char *fraw_src;
8618 char *fraw_end;
8619 struct fdr *fdr_ptr;
8620 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8621
9719ad41 8622 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
8623 if (fi == NULL)
8624 {
8625 msec->flags = origflags;
b34976b6 8626 return FALSE;
b49e97c9
TS
8627 }
8628
8629 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8630 {
8631 msec->flags = origflags;
b34976b6 8632 return FALSE;
b49e97c9
TS
8633 }
8634
8635 /* Swap in the FDR information. */
8636 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 8637 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
8638 if (fi->d.fdr == NULL)
8639 {
8640 msec->flags = origflags;
b34976b6 8641 return FALSE;
b49e97c9
TS
8642 }
8643 external_fdr_size = swap->external_fdr_size;
8644 fdr_ptr = fi->d.fdr;
8645 fraw_src = (char *) fi->d.external_fdr;
8646 fraw_end = (fraw_src
8647 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8648 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 8649 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
8650
8651 elf_tdata (abfd)->find_line_info = fi;
8652
8653 /* Note that we don't bother to ever free this information.
8654 find_nearest_line is either called all the time, as in
8655 objdump -l, so the information should be saved, or it is
8656 rarely called, as in ld error messages, so the memory
8657 wasted is unimportant. Still, it would probably be a
8658 good idea for free_cached_info to throw it away. */
8659 }
8660
8661 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8662 &fi->i, filename_ptr, functionname_ptr,
8663 line_ptr))
8664 {
8665 msec->flags = origflags;
b34976b6 8666 return TRUE;
b49e97c9
TS
8667 }
8668
8669 msec->flags = origflags;
8670 }
8671
8672 /* Fall back on the generic ELF find_nearest_line routine. */
8673
8674 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8675 filename_ptr, functionname_ptr,
8676 line_ptr);
8677}
4ab527b0
FF
8678
8679bfd_boolean
8680_bfd_mips_elf_find_inliner_info (bfd *abfd,
8681 const char **filename_ptr,
8682 const char **functionname_ptr,
8683 unsigned int *line_ptr)
8684{
8685 bfd_boolean found;
8686 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8687 functionname_ptr, line_ptr,
8688 & elf_tdata (abfd)->dwarf2_find_line_info);
8689 return found;
8690}
8691
b49e97c9
TS
8692\f
8693/* When are writing out the .options or .MIPS.options section,
8694 remember the bytes we are writing out, so that we can install the
8695 GP value in the section_processing routine. */
8696
b34976b6 8697bfd_boolean
9719ad41
RS
8698_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8699 const void *location,
8700 file_ptr offset, bfd_size_type count)
b49e97c9 8701{
cc2e31b9 8702 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
8703 {
8704 bfd_byte *c;
8705
8706 if (elf_section_data (section) == NULL)
8707 {
8708 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 8709 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 8710 if (elf_section_data (section) == NULL)
b34976b6 8711 return FALSE;
b49e97c9 8712 }
f0abc2a1 8713 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8714 if (c == NULL)
8715 {
eea6121a 8716 c = bfd_zalloc (abfd, section->size);
b49e97c9 8717 if (c == NULL)
b34976b6 8718 return FALSE;
f0abc2a1 8719 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8720 }
8721
9719ad41 8722 memcpy (c + offset, location, count);
b49e97c9
TS
8723 }
8724
8725 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8726 count);
8727}
8728
8729/* This is almost identical to bfd_generic_get_... except that some
8730 MIPS relocations need to be handled specially. Sigh. */
8731
8732bfd_byte *
9719ad41
RS
8733_bfd_elf_mips_get_relocated_section_contents
8734 (bfd *abfd,
8735 struct bfd_link_info *link_info,
8736 struct bfd_link_order *link_order,
8737 bfd_byte *data,
8738 bfd_boolean relocatable,
8739 asymbol **symbols)
b49e97c9
TS
8740{
8741 /* Get enough memory to hold the stuff */
8742 bfd *input_bfd = link_order->u.indirect.section->owner;
8743 asection *input_section = link_order->u.indirect.section;
eea6121a 8744 bfd_size_type sz;
b49e97c9
TS
8745
8746 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8747 arelent **reloc_vector = NULL;
8748 long reloc_count;
8749
8750 if (reloc_size < 0)
8751 goto error_return;
8752
9719ad41 8753 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
8754 if (reloc_vector == NULL && reloc_size != 0)
8755 goto error_return;
8756
8757 /* read in the section */
eea6121a
AM
8758 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8759 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8760 goto error_return;
8761
b49e97c9
TS
8762 reloc_count = bfd_canonicalize_reloc (input_bfd,
8763 input_section,
8764 reloc_vector,
8765 symbols);
8766 if (reloc_count < 0)
8767 goto error_return;
8768
8769 if (reloc_count > 0)
8770 {
8771 arelent **parent;
8772 /* for mips */
8773 int gp_found;
8774 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8775
8776 {
8777 struct bfd_hash_entry *h;
8778 struct bfd_link_hash_entry *lh;
8779 /* Skip all this stuff if we aren't mixing formats. */
8780 if (abfd && input_bfd
8781 && abfd->xvec == input_bfd->xvec)
8782 lh = 0;
8783 else
8784 {
b34976b6 8785 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8786 lh = (struct bfd_link_hash_entry *) h;
8787 }
8788 lookup:
8789 if (lh)
8790 {
8791 switch (lh->type)
8792 {
8793 case bfd_link_hash_undefined:
8794 case bfd_link_hash_undefweak:
8795 case bfd_link_hash_common:
8796 gp_found = 0;
8797 break;
8798 case bfd_link_hash_defined:
8799 case bfd_link_hash_defweak:
8800 gp_found = 1;
8801 gp = lh->u.def.value;
8802 break;
8803 case bfd_link_hash_indirect:
8804 case bfd_link_hash_warning:
8805 lh = lh->u.i.link;
8806 /* @@FIXME ignoring warning for now */
8807 goto lookup;
8808 case bfd_link_hash_new:
8809 default:
8810 abort ();
8811 }
8812 }
8813 else
8814 gp_found = 0;
8815 }
8816 /* end mips */
9719ad41 8817 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8818 {
9719ad41 8819 char *error_message = NULL;
b49e97c9
TS
8820 bfd_reloc_status_type r;
8821
8822 /* Specific to MIPS: Deal with relocation types that require
8823 knowing the gp of the output bfd. */
8824 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 8825
8236346f
EC
8826 /* If we've managed to find the gp and have a special
8827 function for the relocation then go ahead, else default
8828 to the generic handling. */
8829 if (gp_found
8830 && (*parent)->howto->special_function
8831 == _bfd_mips_elf32_gprel16_reloc)
8832 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8833 input_section, relocatable,
8834 data, gp);
8835 else
8836 r = bfd_perform_relocation (input_bfd, *parent, data,
8837 input_section,
8838 relocatable ? abfd : NULL,
8839 &error_message);
b49e97c9 8840
1049f94e 8841 if (relocatable)
b49e97c9
TS
8842 {
8843 asection *os = input_section->output_section;
8844
8845 /* A partial link, so keep the relocs */
8846 os->orelocation[os->reloc_count] = *parent;
8847 os->reloc_count++;
8848 }
8849
8850 if (r != bfd_reloc_ok)
8851 {
8852 switch (r)
8853 {
8854 case bfd_reloc_undefined:
8855 if (!((*link_info->callbacks->undefined_symbol)
8856 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8857 input_bfd, input_section, (*parent)->address,
b34976b6 8858 TRUE)))
b49e97c9
TS
8859 goto error_return;
8860 break;
8861 case bfd_reloc_dangerous:
9719ad41 8862 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8863 if (!((*link_info->callbacks->reloc_dangerous)
8864 (link_info, error_message, input_bfd, input_section,
8865 (*parent)->address)))
8866 goto error_return;
8867 break;
8868 case bfd_reloc_overflow:
8869 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8870 (link_info, NULL,
8871 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8872 (*parent)->howto->name, (*parent)->addend,
8873 input_bfd, input_section, (*parent)->address)))
8874 goto error_return;
8875 break;
8876 case bfd_reloc_outofrange:
8877 default:
8878 abort ();
8879 break;
8880 }
8881
8882 }
8883 }
8884 }
8885 if (reloc_vector != NULL)
8886 free (reloc_vector);
8887 return data;
8888
8889error_return:
8890 if (reloc_vector != NULL)
8891 free (reloc_vector);
8892 return NULL;
8893}
8894\f
8895/* Create a MIPS ELF linker hash table. */
8896
8897struct bfd_link_hash_table *
9719ad41 8898_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8899{
8900 struct mips_elf_link_hash_table *ret;
8901 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8902
9719ad41
RS
8903 ret = bfd_malloc (amt);
8904 if (ret == NULL)
b49e97c9
TS
8905 return NULL;
8906
8907 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8908 mips_elf_link_hash_newfunc))
8909 {
e2d34d7d 8910 free (ret);
b49e97c9
TS
8911 return NULL;
8912 }
8913
8914#if 0
8915 /* We no longer use this. */
8916 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8917 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8918#endif
8919 ret->procedure_count = 0;
8920 ret->compact_rel_size = 0;
b34976b6 8921 ret->use_rld_obj_head = FALSE;
b49e97c9 8922 ret->rld_value = 0;
b34976b6 8923 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8924
8925 return &ret->root.root;
8926}
8927\f
8928/* We need to use a special link routine to handle the .reginfo and
8929 the .mdebug sections. We need to merge all instances of these
8930 sections together, not write them all out sequentially. */
8931
b34976b6 8932bfd_boolean
9719ad41 8933_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 8934{
b49e97c9
TS
8935 asection *o;
8936 struct bfd_link_order *p;
8937 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8938 asection *rtproc_sec;
8939 Elf32_RegInfo reginfo;
8940 struct ecoff_debug_info debug;
7a2a6943
NC
8941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8942 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8943 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8944 void *mdebug_handle = NULL;
b49e97c9
TS
8945 asection *s;
8946 EXTR esym;
8947 unsigned int i;
8948 bfd_size_type amt;
8949
8950 static const char * const secname[] =
8951 {
8952 ".text", ".init", ".fini", ".data",
8953 ".rodata", ".sdata", ".sbss", ".bss"
8954 };
8955 static const int sc[] =
8956 {
8957 scText, scInit, scFini, scData,
8958 scRData, scSData, scSBss, scBss
8959 };
8960
b49e97c9
TS
8961 /* We'd carefully arranged the dynamic symbol indices, and then the
8962 generic size_dynamic_sections renumbered them out from under us.
8963 Rather than trying somehow to prevent the renumbering, just do
8964 the sort again. */
8965 if (elf_hash_table (info)->dynamic_sections_created)
8966 {
8967 bfd *dynobj;
8968 asection *got;
8969 struct mips_got_info *g;
7a2a6943 8970 bfd_size_type dynsecsymcount;
b49e97c9
TS
8971
8972 /* When we resort, we must tell mips_elf_sort_hash_table what
8973 the lowest index it may use is. That's the number of section
8974 symbols we're going to add. The generic ELF linker only
8975 adds these symbols when building a shared object. Note that
8976 we count the sections after (possibly) removing the .options
8977 section above. */
7a2a6943
NC
8978
8979 dynsecsymcount = 0;
8980 if (info->shared)
8981 {
8982 asection * p;
8983
8984 for (p = abfd->sections; p ; p = p->next)
8985 if ((p->flags & SEC_EXCLUDE) == 0
8986 && (p->flags & SEC_ALLOC) != 0
8987 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8988 ++ dynsecsymcount;
8989 }
8990
8991 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 8992 return FALSE;
b49e97c9
TS
8993
8994 /* Make sure we didn't grow the global .got region. */
8995 dynobj = elf_hash_table (info)->dynobj;
f4416af6 8996 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 8997 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
8998
8999 if (g->global_gotsym != NULL)
9000 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9001 - g->global_gotsym->dynindx)
9002 <= g->global_gotno);
9003 }
9004
b49e97c9
TS
9005 /* Get a value for the GP register. */
9006 if (elf_gp (abfd) == 0)
9007 {
9008 struct bfd_link_hash_entry *h;
9009
b34976b6 9010 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 9011 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
9012 elf_gp (abfd) = (h->u.def.value
9013 + h->u.def.section->output_section->vma
9014 + h->u.def.section->output_offset);
1049f94e 9015 else if (info->relocatable)
b49e97c9
TS
9016 {
9017 bfd_vma lo = MINUS_ONE;
9018
9019 /* Find the GP-relative section with the lowest offset. */
9719ad41 9020 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9021 if (o->vma < lo
9022 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9023 lo = o->vma;
9024
9025 /* And calculate GP relative to that. */
9026 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9027 }
9028 else
9029 {
9030 /* If the relocate_section function needs to do a reloc
9031 involving the GP value, it should make a reloc_dangerous
9032 callback to warn that GP is not defined. */
9033 }
9034 }
9035
9036 /* Go through the sections and collect the .reginfo and .mdebug
9037 information. */
9038 reginfo_sec = NULL;
9039 mdebug_sec = NULL;
9040 gptab_data_sec = NULL;
9041 gptab_bss_sec = NULL;
9719ad41 9042 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9043 {
9044 if (strcmp (o->name, ".reginfo") == 0)
9045 {
9046 memset (&reginfo, 0, sizeof reginfo);
9047
9048 /* We have found the .reginfo section in the output file.
9049 Look through all the link_orders comprising it and merge
9050 the information together. */
8423293d 9051 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9052 {
9053 asection *input_section;
9054 bfd *input_bfd;
9055 Elf32_External_RegInfo ext;
9056 Elf32_RegInfo sub;
9057
9058 if (p->type != bfd_indirect_link_order)
9059 {
9060 if (p->type == bfd_data_link_order)
9061 continue;
9062 abort ();
9063 }
9064
9065 input_section = p->u.indirect.section;
9066 input_bfd = input_section->owner;
9067
b49e97c9 9068 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 9069 &ext, 0, sizeof ext))
b34976b6 9070 return FALSE;
b49e97c9
TS
9071
9072 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9073
9074 reginfo.ri_gprmask |= sub.ri_gprmask;
9075 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9076 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9077 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9078 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9079
9080 /* ri_gp_value is set by the function
9081 mips_elf32_section_processing when the section is
9082 finally written out. */
9083
9084 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9085 elf_link_input_bfd ignores this section. */
9086 input_section->flags &= ~SEC_HAS_CONTENTS;
9087 }
9088
9089 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 9090 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
9091
9092 /* Skip this section later on (I don't think this currently
9093 matters, but someday it might). */
8423293d 9094 o->map_head.link_order = NULL;
b49e97c9
TS
9095
9096 reginfo_sec = o;
9097 }
9098
9099 if (strcmp (o->name, ".mdebug") == 0)
9100 {
9101 struct extsym_info einfo;
9102 bfd_vma last;
9103
9104 /* We have found the .mdebug section in the output file.
9105 Look through all the link_orders comprising it and merge
9106 the information together. */
9107 symhdr->magic = swap->sym_magic;
9108 /* FIXME: What should the version stamp be? */
9109 symhdr->vstamp = 0;
9110 symhdr->ilineMax = 0;
9111 symhdr->cbLine = 0;
9112 symhdr->idnMax = 0;
9113 symhdr->ipdMax = 0;
9114 symhdr->isymMax = 0;
9115 symhdr->ioptMax = 0;
9116 symhdr->iauxMax = 0;
9117 symhdr->issMax = 0;
9118 symhdr->issExtMax = 0;
9119 symhdr->ifdMax = 0;
9120 symhdr->crfd = 0;
9121 symhdr->iextMax = 0;
9122
9123 /* We accumulate the debugging information itself in the
9124 debug_info structure. */
9125 debug.line = NULL;
9126 debug.external_dnr = NULL;
9127 debug.external_pdr = NULL;
9128 debug.external_sym = NULL;
9129 debug.external_opt = NULL;
9130 debug.external_aux = NULL;
9131 debug.ss = NULL;
9132 debug.ssext = debug.ssext_end = NULL;
9133 debug.external_fdr = NULL;
9134 debug.external_rfd = NULL;
9135 debug.external_ext = debug.external_ext_end = NULL;
9136
9137 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 9138 if (mdebug_handle == NULL)
b34976b6 9139 return FALSE;
b49e97c9
TS
9140
9141 esym.jmptbl = 0;
9142 esym.cobol_main = 0;
9143 esym.weakext = 0;
9144 esym.reserved = 0;
9145 esym.ifd = ifdNil;
9146 esym.asym.iss = issNil;
9147 esym.asym.st = stLocal;
9148 esym.asym.reserved = 0;
9149 esym.asym.index = indexNil;
9150 last = 0;
9151 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9152 {
9153 esym.asym.sc = sc[i];
9154 s = bfd_get_section_by_name (abfd, secname[i]);
9155 if (s != NULL)
9156 {
9157 esym.asym.value = s->vma;
eea6121a 9158 last = s->vma + s->size;
b49e97c9
TS
9159 }
9160 else
9161 esym.asym.value = last;
9162 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9163 secname[i], &esym))
b34976b6 9164 return FALSE;
b49e97c9
TS
9165 }
9166
8423293d 9167 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9168 {
9169 asection *input_section;
9170 bfd *input_bfd;
9171 const struct ecoff_debug_swap *input_swap;
9172 struct ecoff_debug_info input_debug;
9173 char *eraw_src;
9174 char *eraw_end;
9175
9176 if (p->type != bfd_indirect_link_order)
9177 {
9178 if (p->type == bfd_data_link_order)
9179 continue;
9180 abort ();
9181 }
9182
9183 input_section = p->u.indirect.section;
9184 input_bfd = input_section->owner;
9185
9186 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9187 || (get_elf_backend_data (input_bfd)
9188 ->elf_backend_ecoff_debug_swap) == NULL)
9189 {
9190 /* I don't know what a non MIPS ELF bfd would be
9191 doing with a .mdebug section, but I don't really
9192 want to deal with it. */
9193 continue;
9194 }
9195
9196 input_swap = (get_elf_backend_data (input_bfd)
9197 ->elf_backend_ecoff_debug_swap);
9198
eea6121a 9199 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
9200
9201 /* The ECOFF linking code expects that we have already
9202 read in the debugging information and set up an
9203 ecoff_debug_info structure, so we do that now. */
9204 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9205 &input_debug))
b34976b6 9206 return FALSE;
b49e97c9
TS
9207
9208 if (! (bfd_ecoff_debug_accumulate
9209 (mdebug_handle, abfd, &debug, swap, input_bfd,
9210 &input_debug, input_swap, info)))
b34976b6 9211 return FALSE;
b49e97c9
TS
9212
9213 /* Loop through the external symbols. For each one with
9214 interesting information, try to find the symbol in
9215 the linker global hash table and save the information
9216 for the output external symbols. */
9217 eraw_src = input_debug.external_ext;
9218 eraw_end = (eraw_src
9219 + (input_debug.symbolic_header.iextMax
9220 * input_swap->external_ext_size));
9221 for (;
9222 eraw_src < eraw_end;
9223 eraw_src += input_swap->external_ext_size)
9224 {
9225 EXTR ext;
9226 const char *name;
9227 struct mips_elf_link_hash_entry *h;
9228
9719ad41 9229 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
9230 if (ext.asym.sc == scNil
9231 || ext.asym.sc == scUndefined
9232 || ext.asym.sc == scSUndefined)
9233 continue;
9234
9235 name = input_debug.ssext + ext.asym.iss;
9236 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 9237 name, FALSE, FALSE, TRUE);
b49e97c9
TS
9238 if (h == NULL || h->esym.ifd != -2)
9239 continue;
9240
9241 if (ext.ifd != -1)
9242 {
9243 BFD_ASSERT (ext.ifd
9244 < input_debug.symbolic_header.ifdMax);
9245 ext.ifd = input_debug.ifdmap[ext.ifd];
9246 }
9247
9248 h->esym = ext;
9249 }
9250
9251 /* Free up the information we just read. */
9252 free (input_debug.line);
9253 free (input_debug.external_dnr);
9254 free (input_debug.external_pdr);
9255 free (input_debug.external_sym);
9256 free (input_debug.external_opt);
9257 free (input_debug.external_aux);
9258 free (input_debug.ss);
9259 free (input_debug.ssext);
9260 free (input_debug.external_fdr);
9261 free (input_debug.external_rfd);
9262 free (input_debug.external_ext);
9263
9264 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9265 elf_link_input_bfd ignores this section. */
9266 input_section->flags &= ~SEC_HAS_CONTENTS;
9267 }
9268
9269 if (SGI_COMPAT (abfd) && info->shared)
9270 {
9271 /* Create .rtproc section. */
9272 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9273 if (rtproc_sec == NULL)
9274 {
9275 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9276 | SEC_LINKER_CREATED | SEC_READONLY);
9277
3496cb2a
L
9278 rtproc_sec = bfd_make_section_with_flags (abfd,
9279 ".rtproc",
9280 flags);
b49e97c9 9281 if (rtproc_sec == NULL
b49e97c9 9282 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 9283 return FALSE;
b49e97c9
TS
9284 }
9285
9286 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9287 info, rtproc_sec,
9288 &debug))
b34976b6 9289 return FALSE;
b49e97c9
TS
9290 }
9291
9292 /* Build the external symbol information. */
9293 einfo.abfd = abfd;
9294 einfo.info = info;
9295 einfo.debug = &debug;
9296 einfo.swap = swap;
b34976b6 9297 einfo.failed = FALSE;
b49e97c9 9298 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 9299 mips_elf_output_extsym, &einfo);
b49e97c9 9300 if (einfo.failed)
b34976b6 9301 return FALSE;
b49e97c9
TS
9302
9303 /* Set the size of the .mdebug section. */
eea6121a 9304 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
9305
9306 /* Skip this section later on (I don't think this currently
9307 matters, but someday it might). */
8423293d 9308 o->map_head.link_order = NULL;
b49e97c9
TS
9309
9310 mdebug_sec = o;
9311 }
9312
9313 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9314 {
9315 const char *subname;
9316 unsigned int c;
9317 Elf32_gptab *tab;
9318 Elf32_External_gptab *ext_tab;
9319 unsigned int j;
9320
9321 /* The .gptab.sdata and .gptab.sbss sections hold
9322 information describing how the small data area would
9323 change depending upon the -G switch. These sections
9324 not used in executables files. */
1049f94e 9325 if (! info->relocatable)
b49e97c9 9326 {
8423293d 9327 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9328 {
9329 asection *input_section;
9330
9331 if (p->type != bfd_indirect_link_order)
9332 {
9333 if (p->type == bfd_data_link_order)
9334 continue;
9335 abort ();
9336 }
9337
9338 input_section = p->u.indirect.section;
9339
9340 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9341 elf_link_input_bfd ignores this section. */
9342 input_section->flags &= ~SEC_HAS_CONTENTS;
9343 }
9344
9345 /* Skip this section later on (I don't think this
9346 currently matters, but someday it might). */
8423293d 9347 o->map_head.link_order = NULL;
b49e97c9
TS
9348
9349 /* Really remove the section. */
5daa8fe7 9350 bfd_section_list_remove (abfd, o);
b49e97c9
TS
9351 --abfd->section_count;
9352
9353 continue;
9354 }
9355
9356 /* There is one gptab for initialized data, and one for
9357 uninitialized data. */
9358 if (strcmp (o->name, ".gptab.sdata") == 0)
9359 gptab_data_sec = o;
9360 else if (strcmp (o->name, ".gptab.sbss") == 0)
9361 gptab_bss_sec = o;
9362 else
9363 {
9364 (*_bfd_error_handler)
9365 (_("%s: illegal section name `%s'"),
9366 bfd_get_filename (abfd), o->name);
9367 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 9368 return FALSE;
b49e97c9
TS
9369 }
9370
9371 /* The linker script always combines .gptab.data and
9372 .gptab.sdata into .gptab.sdata, and likewise for
9373 .gptab.bss and .gptab.sbss. It is possible that there is
9374 no .sdata or .sbss section in the output file, in which
9375 case we must change the name of the output section. */
9376 subname = o->name + sizeof ".gptab" - 1;
9377 if (bfd_get_section_by_name (abfd, subname) == NULL)
9378 {
9379 if (o == gptab_data_sec)
9380 o->name = ".gptab.data";
9381 else
9382 o->name = ".gptab.bss";
9383 subname = o->name + sizeof ".gptab" - 1;
9384 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9385 }
9386
9387 /* Set up the first entry. */
9388 c = 1;
9389 amt = c * sizeof (Elf32_gptab);
9719ad41 9390 tab = bfd_malloc (amt);
b49e97c9 9391 if (tab == NULL)
b34976b6 9392 return FALSE;
b49e97c9
TS
9393 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9394 tab[0].gt_header.gt_unused = 0;
9395
9396 /* Combine the input sections. */
8423293d 9397 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9398 {
9399 asection *input_section;
9400 bfd *input_bfd;
9401 bfd_size_type size;
9402 unsigned long last;
9403 bfd_size_type gpentry;
9404
9405 if (p->type != bfd_indirect_link_order)
9406 {
9407 if (p->type == bfd_data_link_order)
9408 continue;
9409 abort ();
9410 }
9411
9412 input_section = p->u.indirect.section;
9413 input_bfd = input_section->owner;
9414
9415 /* Combine the gptab entries for this input section one
9416 by one. We know that the input gptab entries are
9417 sorted by ascending -G value. */
eea6121a 9418 size = input_section->size;
b49e97c9
TS
9419 last = 0;
9420 for (gpentry = sizeof (Elf32_External_gptab);
9421 gpentry < size;
9422 gpentry += sizeof (Elf32_External_gptab))
9423 {
9424 Elf32_External_gptab ext_gptab;
9425 Elf32_gptab int_gptab;
9426 unsigned long val;
9427 unsigned long add;
b34976b6 9428 bfd_boolean exact;
b49e97c9
TS
9429 unsigned int look;
9430
9431 if (! (bfd_get_section_contents
9719ad41
RS
9432 (input_bfd, input_section, &ext_gptab, gpentry,
9433 sizeof (Elf32_External_gptab))))
b49e97c9
TS
9434 {
9435 free (tab);
b34976b6 9436 return FALSE;
b49e97c9
TS
9437 }
9438
9439 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9440 &int_gptab);
9441 val = int_gptab.gt_entry.gt_g_value;
9442 add = int_gptab.gt_entry.gt_bytes - last;
9443
b34976b6 9444 exact = FALSE;
b49e97c9
TS
9445 for (look = 1; look < c; look++)
9446 {
9447 if (tab[look].gt_entry.gt_g_value >= val)
9448 tab[look].gt_entry.gt_bytes += add;
9449
9450 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 9451 exact = TRUE;
b49e97c9
TS
9452 }
9453
9454 if (! exact)
9455 {
9456 Elf32_gptab *new_tab;
9457 unsigned int max;
9458
9459 /* We need a new table entry. */
9460 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 9461 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
9462 if (new_tab == NULL)
9463 {
9464 free (tab);
b34976b6 9465 return FALSE;
b49e97c9
TS
9466 }
9467 tab = new_tab;
9468 tab[c].gt_entry.gt_g_value = val;
9469 tab[c].gt_entry.gt_bytes = add;
9470
9471 /* Merge in the size for the next smallest -G
9472 value, since that will be implied by this new
9473 value. */
9474 max = 0;
9475 for (look = 1; look < c; look++)
9476 {
9477 if (tab[look].gt_entry.gt_g_value < val
9478 && (max == 0
9479 || (tab[look].gt_entry.gt_g_value
9480 > tab[max].gt_entry.gt_g_value)))
9481 max = look;
9482 }
9483 if (max != 0)
9484 tab[c].gt_entry.gt_bytes +=
9485 tab[max].gt_entry.gt_bytes;
9486
9487 ++c;
9488 }
9489
9490 last = int_gptab.gt_entry.gt_bytes;
9491 }
9492
9493 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9494 elf_link_input_bfd ignores this section. */
9495 input_section->flags &= ~SEC_HAS_CONTENTS;
9496 }
9497
9498 /* The table must be sorted by -G value. */
9499 if (c > 2)
9500 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9501
9502 /* Swap out the table. */
9503 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 9504 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
9505 if (ext_tab == NULL)
9506 {
9507 free (tab);
b34976b6 9508 return FALSE;
b49e97c9
TS
9509 }
9510
9511 for (j = 0; j < c; j++)
9512 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9513 free (tab);
9514
eea6121a 9515 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
9516 o->contents = (bfd_byte *) ext_tab;
9517
9518 /* Skip this section later on (I don't think this currently
9519 matters, but someday it might). */
8423293d 9520 o->map_head.link_order = NULL;
b49e97c9
TS
9521 }
9522 }
9523
9524 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 9525 if (!bfd_elf_final_link (abfd, info))
b34976b6 9526 return FALSE;
b49e97c9
TS
9527
9528 /* Now write out the computed sections. */
9529
9719ad41 9530 if (reginfo_sec != NULL)
b49e97c9
TS
9531 {
9532 Elf32_External_RegInfo ext;
9533
9534 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 9535 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 9536 return FALSE;
b49e97c9
TS
9537 }
9538
9719ad41 9539 if (mdebug_sec != NULL)
b49e97c9
TS
9540 {
9541 BFD_ASSERT (abfd->output_has_begun);
9542 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9543 swap, info,
9544 mdebug_sec->filepos))
b34976b6 9545 return FALSE;
b49e97c9
TS
9546
9547 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9548 }
9549
9719ad41 9550 if (gptab_data_sec != NULL)
b49e97c9
TS
9551 {
9552 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9553 gptab_data_sec->contents,
eea6121a 9554 0, gptab_data_sec->size))
b34976b6 9555 return FALSE;
b49e97c9
TS
9556 }
9557
9719ad41 9558 if (gptab_bss_sec != NULL)
b49e97c9
TS
9559 {
9560 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9561 gptab_bss_sec->contents,
eea6121a 9562 0, gptab_bss_sec->size))
b34976b6 9563 return FALSE;
b49e97c9
TS
9564 }
9565
9566 if (SGI_COMPAT (abfd))
9567 {
9568 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9569 if (rtproc_sec != NULL)
9570 {
9571 if (! bfd_set_section_contents (abfd, rtproc_sec,
9572 rtproc_sec->contents,
eea6121a 9573 0, rtproc_sec->size))
b34976b6 9574 return FALSE;
b49e97c9
TS
9575 }
9576 }
9577
b34976b6 9578 return TRUE;
b49e97c9
TS
9579}
9580\f
64543e1a
RS
9581/* Structure for saying that BFD machine EXTENSION extends BASE. */
9582
9583struct mips_mach_extension {
9584 unsigned long extension, base;
9585};
9586
9587
9588/* An array describing how BFD machines relate to one another. The entries
9589 are ordered topologically with MIPS I extensions listed last. */
9590
9591static const struct mips_mach_extension mips_mach_extensions[] = {
9592 /* MIPS64 extensions. */
5f74bc13 9593 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
9594 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9595
9596 /* MIPS V extensions. */
9597 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9598
9599 /* R10000 extensions. */
9600 { bfd_mach_mips12000, bfd_mach_mips10000 },
9601
9602 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9603 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9604 better to allow vr5400 and vr5500 code to be merged anyway, since
9605 many libraries will just use the core ISA. Perhaps we could add
9606 some sort of ASE flag if this ever proves a problem. */
9607 { bfd_mach_mips5500, bfd_mach_mips5400 },
9608 { bfd_mach_mips5400, bfd_mach_mips5000 },
9609
9610 /* MIPS IV extensions. */
9611 { bfd_mach_mips5, bfd_mach_mips8000 },
9612 { bfd_mach_mips10000, bfd_mach_mips8000 },
9613 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 9614 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 9615 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
9616
9617 /* VR4100 extensions. */
9618 { bfd_mach_mips4120, bfd_mach_mips4100 },
9619 { bfd_mach_mips4111, bfd_mach_mips4100 },
9620
9621 /* MIPS III extensions. */
9622 { bfd_mach_mips8000, bfd_mach_mips4000 },
9623 { bfd_mach_mips4650, bfd_mach_mips4000 },
9624 { bfd_mach_mips4600, bfd_mach_mips4000 },
9625 { bfd_mach_mips4400, bfd_mach_mips4000 },
9626 { bfd_mach_mips4300, bfd_mach_mips4000 },
9627 { bfd_mach_mips4100, bfd_mach_mips4000 },
9628 { bfd_mach_mips4010, bfd_mach_mips4000 },
9629
9630 /* MIPS32 extensions. */
9631 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9632
9633 /* MIPS II extensions. */
9634 { bfd_mach_mips4000, bfd_mach_mips6000 },
9635 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9636
9637 /* MIPS I extensions. */
9638 { bfd_mach_mips6000, bfd_mach_mips3000 },
9639 { bfd_mach_mips3900, bfd_mach_mips3000 }
9640};
9641
9642
9643/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9644
9645static bfd_boolean
9719ad41 9646mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
9647{
9648 size_t i;
9649
9650 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9651 if (extension == mips_mach_extensions[i].extension)
9652 extension = mips_mach_extensions[i].base;
9653
9654 return extension == base;
9655}
9656
9657
9658/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9659
b34976b6 9660static bfd_boolean
9719ad41 9661mips_32bit_flags_p (flagword flags)
00707a0e 9662{
64543e1a
RS
9663 return ((flags & EF_MIPS_32BITMODE) != 0
9664 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9665 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9666 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9667 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9668 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9669 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9670}
9671
64543e1a 9672
b49e97c9
TS
9673/* Merge backend specific data from an object file to the output
9674 object file when linking. */
9675
b34976b6 9676bfd_boolean
9719ad41 9677_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
9678{
9679 flagword old_flags;
9680 flagword new_flags;
b34976b6
AM
9681 bfd_boolean ok;
9682 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9683 asection *sec;
9684
9685 /* Check if we have the same endianess */
82e51918 9686 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9687 {
9688 (*_bfd_error_handler)
d003868e
AM
9689 (_("%B: endianness incompatible with that of the selected emulation"),
9690 ibfd);
aa701218
AO
9691 return FALSE;
9692 }
b49e97c9
TS
9693
9694 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9695 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9696 return TRUE;
b49e97c9 9697
aa701218
AO
9698 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9699 {
9700 (*_bfd_error_handler)
d003868e
AM
9701 (_("%B: ABI is incompatible with that of the selected emulation"),
9702 ibfd);
aa701218
AO
9703 return FALSE;
9704 }
9705
b49e97c9
TS
9706 new_flags = elf_elfheader (ibfd)->e_flags;
9707 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9708 old_flags = elf_elfheader (obfd)->e_flags;
9709
9710 if (! elf_flags_init (obfd))
9711 {
b34976b6 9712 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9713 elf_elfheader (obfd)->e_flags = new_flags;
9714 elf_elfheader (obfd)->e_ident[EI_CLASS]
9715 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9716
9717 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9718 && bfd_get_arch_info (obfd)->the_default)
9719 {
9720 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9721 bfd_get_mach (ibfd)))
b34976b6 9722 return FALSE;
b49e97c9
TS
9723 }
9724
b34976b6 9725 return TRUE;
b49e97c9
TS
9726 }
9727
9728 /* Check flag compatibility. */
9729
9730 new_flags &= ~EF_MIPS_NOREORDER;
9731 old_flags &= ~EF_MIPS_NOREORDER;
9732
f4416af6
AO
9733 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9734 doesn't seem to matter. */
9735 new_flags &= ~EF_MIPS_XGOT;
9736 old_flags &= ~EF_MIPS_XGOT;
9737
98a8deaf
RS
9738 /* MIPSpro generates ucode info in n64 objects. Again, we should
9739 just be able to ignore this. */
9740 new_flags &= ~EF_MIPS_UCODE;
9741 old_flags &= ~EF_MIPS_UCODE;
9742
b49e97c9 9743 if (new_flags == old_flags)
b34976b6 9744 return TRUE;
b49e97c9
TS
9745
9746 /* Check to see if the input BFD actually contains any sections.
9747 If not, its flags may not have been initialised either, but it cannot
9748 actually cause any incompatibility. */
9749 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9750 {
9751 /* Ignore synthetic sections and empty .text, .data and .bss sections
9752 which are automatically generated by gas. */
9753 if (strcmp (sec->name, ".reginfo")
9754 && strcmp (sec->name, ".mdebug")
eea6121a 9755 && (sec->size != 0
d13d89fa
NS
9756 || (strcmp (sec->name, ".text")
9757 && strcmp (sec->name, ".data")
9758 && strcmp (sec->name, ".bss"))))
b49e97c9 9759 {
b34976b6 9760 null_input_bfd = FALSE;
b49e97c9
TS
9761 break;
9762 }
9763 }
9764 if (null_input_bfd)
b34976b6 9765 return TRUE;
b49e97c9 9766
b34976b6 9767 ok = TRUE;
b49e97c9 9768
143d77c5
EC
9769 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9770 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9771 {
b49e97c9 9772 (*_bfd_error_handler)
d003868e
AM
9773 (_("%B: warning: linking PIC files with non-PIC files"),
9774 ibfd);
143d77c5 9775 ok = TRUE;
b49e97c9
TS
9776 }
9777
143d77c5
EC
9778 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9779 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9780 if (! (new_flags & EF_MIPS_PIC))
9781 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9782
9783 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9784 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9785
64543e1a
RS
9786 /* Compare the ISAs. */
9787 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9788 {
64543e1a 9789 (*_bfd_error_handler)
d003868e
AM
9790 (_("%B: linking 32-bit code with 64-bit code"),
9791 ibfd);
64543e1a
RS
9792 ok = FALSE;
9793 }
9794 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9795 {
9796 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9797 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9798 {
64543e1a
RS
9799 /* Copy the architecture info from IBFD to OBFD. Also copy
9800 the 32-bit flag (if set) so that we continue to recognise
9801 OBFD as a 32-bit binary. */
9802 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9803 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9804 elf_elfheader (obfd)->e_flags
9805 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9806
9807 /* Copy across the ABI flags if OBFD doesn't use them
9808 and if that was what caused us to treat IBFD as 32-bit. */
9809 if ((old_flags & EF_MIPS_ABI) == 0
9810 && mips_32bit_flags_p (new_flags)
9811 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9812 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9813 }
9814 else
9815 {
64543e1a 9816 /* The ISAs aren't compatible. */
b49e97c9 9817 (*_bfd_error_handler)
d003868e
AM
9818 (_("%B: linking %s module with previous %s modules"),
9819 ibfd,
64543e1a
RS
9820 bfd_printable_name (ibfd),
9821 bfd_printable_name (obfd));
b34976b6 9822 ok = FALSE;
b49e97c9 9823 }
b49e97c9
TS
9824 }
9825
64543e1a
RS
9826 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9827 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9828
9829 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9830 does set EI_CLASS differently from any 32-bit ABI. */
9831 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9832 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9833 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9834 {
9835 /* Only error if both are set (to different values). */
9836 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9837 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9838 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9839 {
9840 (*_bfd_error_handler)
d003868e
AM
9841 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9842 ibfd,
b49e97c9
TS
9843 elf_mips_abi_name (ibfd),
9844 elf_mips_abi_name (obfd));
b34976b6 9845 ok = FALSE;
b49e97c9
TS
9846 }
9847 new_flags &= ~EF_MIPS_ABI;
9848 old_flags &= ~EF_MIPS_ABI;
9849 }
9850
fb39dac1
RS
9851 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9852 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9853 {
9854 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9855
9856 new_flags &= ~ EF_MIPS_ARCH_ASE;
9857 old_flags &= ~ EF_MIPS_ARCH_ASE;
9858 }
9859
b49e97c9
TS
9860 /* Warn about any other mismatches */
9861 if (new_flags != old_flags)
9862 {
9863 (*_bfd_error_handler)
d003868e
AM
9864 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9865 ibfd, (unsigned long) new_flags,
b49e97c9 9866 (unsigned long) old_flags);
b34976b6 9867 ok = FALSE;
b49e97c9
TS
9868 }
9869
9870 if (! ok)
9871 {
9872 bfd_set_error (bfd_error_bad_value);
b34976b6 9873 return FALSE;
b49e97c9
TS
9874 }
9875
b34976b6 9876 return TRUE;
b49e97c9
TS
9877}
9878
9879/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9880
b34976b6 9881bfd_boolean
9719ad41 9882_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9883{
9884 BFD_ASSERT (!elf_flags_init (abfd)
9885 || elf_elfheader (abfd)->e_flags == flags);
9886
9887 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9888 elf_flags_init (abfd) = TRUE;
9889 return TRUE;
b49e97c9
TS
9890}
9891
b34976b6 9892bfd_boolean
9719ad41 9893_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9894{
9719ad41 9895 FILE *file = ptr;
b49e97c9
TS
9896
9897 BFD_ASSERT (abfd != NULL && ptr != NULL);
9898
9899 /* Print normal ELF private data. */
9900 _bfd_elf_print_private_bfd_data (abfd, ptr);
9901
9902 /* xgettext:c-format */
9903 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9904
9905 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9906 fprintf (file, _(" [abi=O32]"));
9907 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9908 fprintf (file, _(" [abi=O64]"));
9909 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9910 fprintf (file, _(" [abi=EABI32]"));
9911 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9912 fprintf (file, _(" [abi=EABI64]"));
9913 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9914 fprintf (file, _(" [abi unknown]"));
9915 else if (ABI_N32_P (abfd))
9916 fprintf (file, _(" [abi=N32]"));
9917 else if (ABI_64_P (abfd))
9918 fprintf (file, _(" [abi=64]"));
9919 else
9920 fprintf (file, _(" [no abi set]"));
9921
9922 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9923 fprintf (file, _(" [mips1]"));
9924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9925 fprintf (file, _(" [mips2]"));
9926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9927 fprintf (file, _(" [mips3]"));
9928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9929 fprintf (file, _(" [mips4]"));
9930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9931 fprintf (file, _(" [mips5]"));
9932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9933 fprintf (file, _(" [mips32]"));
9934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9935 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9937 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9938 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9939 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9940 else
9941 fprintf (file, _(" [unknown ISA]"));
9942
40d32fc6
CD
9943 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9944 fprintf (file, _(" [mdmx]"));
9945
9946 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9947 fprintf (file, _(" [mips16]"));
9948
b49e97c9
TS
9949 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9950 fprintf (file, _(" [32bitmode]"));
9951 else
9952 fprintf (file, _(" [not 32bitmode]"));
9953
9954 fputc ('\n', file);
9955
b34976b6 9956 return TRUE;
b49e97c9 9957}
2f89ff8d 9958
b35d266b 9959const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 9960{
7dcb9820
AM
9961 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9962 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 9963 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
9964 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9965 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9966 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 9967 { NULL, 0, 0, 0, 0 }
2f89ff8d 9968};
This page took 0.984829 seconds and 4 git commands to generate.