Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
4a14403c 2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
33bb52fb 2978 else
b49e97c9
TS
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2984
33bb52fb 2985 if (hd->needs_lazy_stub)
b49e97c9 2986 {
1bbce132
MR
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
1bbce132 2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
b49e97c9
TS
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
b34976b6
AM
3011 einfo->failed = TRUE;
3012 return FALSE;
b49e97c9
TS
3013 }
3014
b34976b6 3015 return TRUE;
b49e97c9
TS
3016}
3017
3018/* A comparison routine used to sort .gptab entries. */
3019
3020static int
9719ad41 3021gptab_compare (const void *p1, const void *p2)
b49e97c9 3022{
9719ad41
RS
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027}
3028\f
b15e6682 3029/* Functions to manage the got entry hash table. */
f4416af6
AO
3030
3031/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034static INLINE hashval_t
9719ad41 3035mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3036{
3037#ifdef BFD64
3038 return addr + (addr >> 32);
3039#else
3040 return addr;
3041#endif
3042}
3043
f4416af6 3044static hashval_t
d9bf376d 3045mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3046{
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
e641e783 3049 return (entry->symndx
9ab066b4
RS
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
f4416af6
AO
3056}
3057
3058static int
3dff0dd1 3059mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3060{
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
e641e783 3064 return (e1->symndx == e2->symndx
9ab066b4
RS
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3071}
c224138d 3072
13db6b44
RS
3073static hashval_t
3074mips_got_page_ref_hash (const void *ref_)
3075{
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083}
3084
3085static int
3086mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087{
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097}
3098
c224138d
RS
3099static hashval_t
3100mips_got_page_entry_hash (const void *entry_)
3101{
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3105 return entry->sec->id;
c224138d
RS
3106}
3107
3108static int
3109mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110{
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3115 return entry1->sec == entry2->sec;
c224138d 3116}
b15e6682 3117\f
3dff0dd1 3118/* Create and return a new mips_got_info structure. */
5334aa52
RS
3119
3120static struct mips_got_info *
3dff0dd1 3121mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3122{
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3dff0dd1
RS
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
13db6b44
RS
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
5334aa52
RS
3137 return NULL;
3138
3139 return g;
3140}
3141
ee227692
RS
3142/* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145static struct mips_got_info *
3146mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147{
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3dff0dd1 3155 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3156 return tdata->got;
3157}
3158
d7206569
RS
3159/* Record that ABFD should use output GOT G. */
3160
3161static void
3162mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163{
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
13db6b44
RS
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3176 }
3177 tdata->got = g;
3178}
3179
0a44bf69
RS
3180/* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
f4416af6
AO
3183
3184static asection *
0a44bf69 3185mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3186{
0a44bf69 3187 const char *dname;
f4416af6 3188 asection *sreloc;
0a44bf69 3189 bfd *dynobj;
f4416af6 3190
0a44bf69
RS
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3193 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3194 if (sreloc == NULL && create_p)
3195 {
3d4d4302
AM
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
f4416af6 3203 if (sreloc == NULL
f4416af6 3204 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3206 return NULL;
3207 }
3208 return sreloc;
3209}
3210
e641e783
RS
3211/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213static int
3214mips_elf_reloc_tls_type (unsigned int r_type)
3215{
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
9ab066b4 3225 return GOT_TLS_NONE;
e641e783
RS
3226}
3227
3228/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230static int
3231mips_tls_got_entries (unsigned int type)
3232{
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
9ab066b4 3242 case GOT_TLS_NONE:
e641e783
RS
3243 return 0;
3244 }
3245 abort ();
3246}
3247
0f20cc35
DJ
3248/* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252static int
3253mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255{
3256 int indx = 0;
0f20cc35
DJ
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
0e1862bb
L
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3262 indx = h->dynindx;
3263
0e1862bb 3264 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
e641e783 3271 return 0;
0f20cc35 3272
9ab066b4 3273 switch (tls_type)
0f20cc35 3274 {
e641e783
RS
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
0f20cc35 3277
e641e783
RS
3278 case GOT_TLS_IE:
3279 return 1;
0f20cc35 3280
e641e783 3281 case GOT_TLS_LDM:
0e1862bb 3282 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3283
e641e783
RS
3284 default:
3285 return 0;
3286 }
0f20cc35
DJ
3287}
3288
ab361d49
RS
3289/* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
0f20cc35 3291
ab361d49
RS
3292static void
3293mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
0f20cc35 3296{
9ab066b4 3297 if (entry->tls_type)
ab361d49 3298 {
9ab066b4
RS
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
0f20cc35
DJ
3308}
3309
0f20cc35
DJ
3310/* Output a simple dynamic relocation into SRELOC. */
3311
3312static void
3313mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
861fb55a 3315 unsigned long reloc_index,
0f20cc35
DJ
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319{
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
861fb55a 3338 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3339}
3340
3341/* Initialize a set of TLS GOT entries for one symbol. */
3342
3343static void
9ab066b4
RS
3344mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
0f20cc35
DJ
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348{
23cc69b6 3349 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3350 int indx;
3351 asection *sreloc, *sgot;
9ab066b4 3352 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3353 bfd_boolean need_relocs = FALSE;
3354
23cc69b6 3355 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3356 if (htab == NULL)
3357 return;
3358
ce558b89 3359 sgot = htab->root.sgot;
0f20cc35
DJ
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
0e1862bb
L
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3370 indx = h->root.dynindx;
3371 }
3372
9ab066b4 3373 if (entry->tls_initialized)
0f20cc35
DJ
3374 return;
3375
0e1862bb 3376 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
0a44bf69 3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3390 got_offset = entry->gotidx;
0f20cc35 3391
9ab066b4 3392 switch (entry->tls_type)
0f20cc35 3393 {
e641e783
RS
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
861fb55a 3407 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3412 sgot->contents + got_offset2);
0f20cc35
DJ
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3417 sgot->contents + got_offset);
0f20cc35 3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3419 sgot->contents + got_offset2);
0f20cc35 3420 }
e641e783 3421 break;
0f20cc35 3422
e641e783
RS
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
0f20cc35
DJ
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3429 sgot->contents + got_offset);
0f20cc35
DJ
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3432 sgot->contents + got_offset);
0f20cc35
DJ
3433
3434 mips_elf_output_dynamic_relocation
861fb55a 3435 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3437 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3441 sgot->contents + got_offset);
3442 break;
0f20cc35 3443
e641e783 3444 case GOT_TLS_LDM:
0f20cc35
DJ
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
0e1862bb 3451 if (!bfd_link_pic (info))
0f20cc35
DJ
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
861fb55a 3456 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3459 break;
3460
3461 default:
3462 abort ();
0f20cc35
DJ
3463 }
3464
9ab066b4 3465 entry->tls_initialized = TRUE;
e641e783 3466}
0f20cc35 3467
0a44bf69
RS
3468/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472static bfd_vma
3473mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475{
1bbce132 3476 bfd_vma got_address, got_value;
0a44bf69
RS
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3480 BFD_ASSERT (htab != NULL);
3481
1bbce132
MR
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3484
3485 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
1bbce132
MR
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497}
3498
5c18022e 3499/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
b49e97c9
TS
3503
3504static bfd_vma
9719ad41 3505mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3506 bfd_vma value, unsigned long r_symndx,
0f20cc35 3507 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3508{
a8028dd0 3509 struct mips_elf_link_hash_table *htab;
b15e6682 3510 struct mips_got_entry *entry;
b49e97c9 3511
a8028dd0 3512 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3513 BFD_ASSERT (htab != NULL);
3514
a8028dd0
RS
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
0f20cc35 3517 if (!entry)
b15e6682 3518 return MINUS_ONE;
0f20cc35 3519
e641e783 3520 if (entry->tls_type)
9ab066b4
RS
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
b49e97c9
TS
3523}
3524
13fbec83 3525/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3526
3527static bfd_vma
13fbec83
RS
3528mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530{
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3551 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3552
3553 return got_index;
3554}
3555
3556/* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559static bfd_vma
3560mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3562{
a8028dd0 3563 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
b49e97c9 3567
a8028dd0 3568 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3569 BFD_ASSERT (htab != NULL);
3570
6c42ddb9
RS
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
f4416af6 3573
6c42ddb9
RS
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3577
6c42ddb9
RS
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
0f20cc35 3583
6c42ddb9 3584 gotidx = entry->gotidx;
ce558b89 3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3586
6c42ddb9 3587 if (lookup.tls_type)
0f20cc35 3588 {
0f20cc35
DJ
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
9ab066b4 3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3599 }
6c42ddb9 3600 return gotidx;
b49e97c9
TS
3601}
3602
5c18022e
RS
3603/* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3607 offset of the GOT entry from VALUE. */
b49e97c9
TS
3608
3609static bfd_vma
9719ad41 3610mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3611 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3612{
91d6fa6a 3613 bfd_vma page, got_index;
b15e6682 3614 struct mips_got_entry *entry;
b49e97c9 3615
0a44bf69 3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3619
b15e6682
AO
3620 if (!entry)
3621 return MINUS_ONE;
143d77c5 3622
91d6fa6a 3623 got_index = entry->gotidx;
b49e97c9
TS
3624
3625 if (offsetp)
f4416af6 3626 *offsetp = value - entry->d.address;
b49e97c9 3627
91d6fa6a 3628 return got_index;
b49e97c9
TS
3629}
3630
738e5348 3631/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
b49e97c9
TS
3634
3635static bfd_vma
9719ad41 3636mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3637 bfd_vma value, bfd_boolean external)
b49e97c9 3638{
b15e6682 3639 struct mips_got_entry *entry;
b49e97c9 3640
0a44bf69
RS
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3645 if (! external)
0a44bf69 3646 value = mips_elf_high (value) << 16;
b49e97c9 3647
738e5348
RS
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
a8028dd0
RS
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
b15e6682
AO
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
b49e97c9
TS
3657}
3658
3659/* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662static bfd_vma
a8028dd0 3663mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3664 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3665{
a8028dd0 3666 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3667 asection *sgot;
3668 bfd_vma gp;
3669
a8028dd0 3670 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3671 BFD_ASSERT (htab != NULL);
3672
ce558b89 3673 sgot = htab->root.sgot;
f4416af6 3674 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3676
91d6fa6a 3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3678}
3679
0a44bf69
RS
3680/* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
b49e97c9 3684
b15e6682 3685static struct mips_got_entry *
0a44bf69 3686mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3687 bfd *ibfd, bfd_vma value,
5c18022e 3688 unsigned long r_symndx,
0f20cc35
DJ
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
b49e97c9 3691{
ebc53538
RS
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
f4416af6 3694 struct mips_got_info *g;
0a44bf69 3695 struct mips_elf_link_hash_table *htab;
6c42ddb9 3696 bfd_vma gotidx;
0a44bf69
RS
3697
3698 htab = mips_elf_hash_table (info);
4dfe6ac6 3699 BFD_ASSERT (htab != NULL);
b15e6682 3700
d7206569 3701 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3702 if (g == NULL)
3703 {
d7206569 3704 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3705 BFD_ASSERT (g != NULL);
3706 }
b15e6682 3707
020d7251
RS
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3711
ebc53538
RS
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
df58fc94 3716 if (tls_ldm_reloc_p (r_type))
0f20cc35 3717 {
ebc53538
RS
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
0f20cc35
DJ
3720 }
3721 else if (h == NULL)
3722 {
ebc53538
RS
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
0f20cc35
DJ
3725 }
3726 else
ebc53538
RS
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
0f20cc35 3731
ebc53538
RS
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
0f20cc35 3734
6c42ddb9 3735 gotidx = entry->gotidx;
ce558b89 3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3737
ebc53538 3738 return entry;
0f20cc35
DJ
3739 }
3740
ebc53538
RS
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
b15e6682 3746 return NULL;
143d77c5 3747
ebc53538
RS
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
b15e6682 3751
cb22ccf4 3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3753 {
3754 /* We didn't allocate enough space in the GOT. */
4eca0228 3755 _bfd_error_handler
b49e97c9
TS
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
b15e6682 3758 return NULL;
b49e97c9
TS
3759 }
3760
ebc53538
RS
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
cb22ccf4
KCY
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
ebc53538
RS
3773 *entry = lookup;
3774 *loc = entry;
3775
ce558b89 3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3777
5c18022e 3778 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
5c18022e 3782 asection *s;
91d6fa6a 3783 bfd_byte *rloc;
0a44bf69 3784 bfd_vma got_address;
0a44bf69
RS
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
ebc53538 3789 + entry->gotidx);
0a44bf69 3790
91d6fa6a 3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3792 outrel.r_offset = got_address;
5c18022e
RS
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
91d6fa6a 3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3796 }
3797
ebc53538 3798 return entry;
b49e97c9
TS
3799}
3800
d4596a51
RS
3801/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806static bfd_size_type
3807count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808{
3809 bfd_size_type count;
3810
3811 count = 0;
0e1862bb
L
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826}
3827
b49e97c9 3828/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3829 appear towards the end. */
b49e97c9 3830
b34976b6 3831static bfd_boolean
d4596a51 3832mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3833{
a8028dd0 3834 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
b49e97c9 3837
a8028dd0 3838 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3839 BFD_ASSERT (htab != NULL);
3840
0f8c4b60 3841 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3842 return TRUE;
3843
a8028dd0 3844 g = htab->got_info;
d4596a51
RS
3845 if (g == NULL)
3846 return TRUE;
f4416af6 3847
b49e97c9 3848 hsd.low = NULL;
23cc69b6
RS
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
0f8c4b60 3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3857
3858 /* There should have been enough room in the symbol table to
44c410de 3859 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
d222d210 3867 htab->global_gotsym = hsd.low;
b49e97c9 3868
b34976b6 3869 return TRUE;
b49e97c9
TS
3870}
3871
3872/* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
b34976b6 3876static bfd_boolean
9719ad41 3877mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3878{
9719ad41 3879 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3880
b49e97c9
TS
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
b34976b6 3884 return TRUE;
b49e97c9 3885
634835ae 3886 switch (h->global_got_area)
f4416af6 3887 {
634835ae 3888 case GGA_NONE:
e17b0c35
MR
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3893 break;
0f20cc35 3894
634835ae 3895 case GGA_NORMAL:
b49e97c9
TS
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3898 break;
3899
3900 case GGA_RELOC_ONLY:
634835ae
RS
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
b49e97c9
TS
3905 }
3906
b34976b6 3907 return TRUE;
b49e97c9
TS
3908}
3909
ee227692
RS
3910/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914static bfd_boolean
3915mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917{
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
9ab066b4 3938 lookup->tls_initialized = FALSE;
ee227692
RS
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956}
3957
e641e783
RS
3958/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3960 using the GOT entry for calls. */
b49e97c9 3961
b34976b6 3962static bfd_boolean
9719ad41
RS
3963mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
e641e783 3965 bfd_boolean for_call, int r_type)
b49e97c9 3966{
a8028dd0 3967 struct mips_elf_link_hash_table *htab;
634835ae 3968 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
a8028dd0
RS
3971
3972 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3973 BFD_ASSERT (htab != NULL);
3974
634835ae 3975 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
f4416af6 3978
b49e97c9
TS
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
7c5fcef7
L
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
33bb52fb 3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3988 break;
3989 }
c152c796 3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3991 return FALSE;
7c5fcef7 3992 }
b49e97c9 3993
ee227692 3994 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3996 hmips->global_got_area = GGA_NORMAL;
86324f90 3997
f4416af6
AO
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4003}
f4416af6 4004
e641e783
RS
4005/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4007
4008static bfd_boolean
9719ad41 4009mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4010 struct bfd_link_info *info, int r_type)
f4416af6 4011{
a8028dd0
RS
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
ee227692 4014 struct mips_got_entry entry;
f4416af6 4015
a8028dd0 4016 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4017 BFD_ASSERT (htab != NULL);
4018
a8028dd0
RS
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
f4416af6
AO
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
e641e783 4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4026 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4027}
c224138d 4028
13db6b44
RS
4029/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
c224138d
RS
4032
4033static bfd_boolean
13db6b44
RS
4034mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
c224138d 4037{
a8028dd0 4038 struct mips_elf_link_hash_table *htab;
ee227692 4039 struct mips_got_info *g1, *g2;
13db6b44 4040 struct mips_got_page_ref lookup, *entry;
ee227692 4041 void **loc, **bfd_loc;
c224138d 4042
a8028dd0 4043 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4044 BFD_ASSERT (htab != NULL);
4045
ee227692
RS
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
a8028dd0 4048
13db6b44
RS
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4061 if (loc == NULL)
4062 return FALSE;
4063
13db6b44 4064 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
13db6b44 4071 *entry = lookup;
c224138d
RS
4072 *loc = entry;
4073 }
4074
ee227692
RS
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
13db6b44 4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
c224138d
RS
4087 return TRUE;
4088}
33bb52fb
RS
4089
4090/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092static void
4093mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095{
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4100 BFD_ASSERT (htab != NULL);
4101
33bb52fb
RS
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117}
4118\f
476366af
RS
4119/* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4123
4124static int
4125mips_elf_check_recreate_got (void **entryp, void *data)
4126{
4127 struct mips_got_entry *entry;
476366af 4128 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4129
4130 entry = (struct mips_got_entry *) *entryp;
476366af 4131 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
476366af 4140 arg->value = TRUE;
33bb52fb
RS
4141 return 0;
4142 }
4143 }
476366af 4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4145 return 1;
4146}
4147
476366af
RS
4148/* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4152
4153static int
4154mips_elf_recreate_got (void **entryp, void *data)
4155{
72e7511a 4156 struct mips_got_entry new_entry, *entry;
476366af 4157 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4158 void **slot;
4159
33bb52fb 4160 entry = (struct mips_got_entry *) *entryp;
476366af 4161 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
72e7511a
RS
4169 new_entry = *entry;
4170 entry = &new_entry;
33bb52fb 4171 h = entry->d.h;
72e7511a 4172 do
634835ae
RS
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
72e7511a
RS
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4179 entry->d.h = h;
4180 }
476366af 4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4182 if (slot == NULL)
4183 {
476366af 4184 arg->g = NULL;
33bb52fb
RS
4185 return 0;
4186 }
4187 if (*slot == NULL)
72e7511a
RS
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
476366af 4194 arg->g = NULL;
72e7511a
RS
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
476366af 4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4201 }
33bb52fb
RS
4202 return 1;
4203}
4204
13db6b44
RS
4205/* Return the maximum number of GOT page entries required for RANGE. */
4206
4207static bfd_vma
4208mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209{
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211}
4212
4213/* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215static bfd_boolean
b75d42bc 4216mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4217 asection *sec, bfd_signed_vma addend)
4218{
b75d42bc 4219 struct mips_got_info *g = arg->g;
13db6b44
RS
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
b75d42bc 4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
b75d42bc 4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297}
4298
4299/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304static bfd_boolean
4305mips_elf_resolve_got_page_ref (void **refp, void *data)
4306{
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
b75d42bc 4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382}
4383
33bb52fb 4384/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
33bb52fb
RS
4388
4389static bfd_boolean
476366af
RS
4390mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
33bb52fb 4392{
476366af
RS
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
33bb52fb 4397
476366af
RS
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
33bb52fb 4403 {
476366af
RS
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
33bb52fb
RS
4409 return FALSE;
4410
476366af
RS
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
33bb52fb 4416 }
13db6b44
RS
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
33bb52fb
RS
4427 return TRUE;
4428}
4429
c5d6fa44
RS
4430/* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433static bfd_boolean
4434mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436{
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
0e1862bb 4454 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4455 return TRUE;
4456
4457 return FALSE;
4458}
4459
6c42ddb9
RS
4460/* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4465
4466static int
d4596a51 4467mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4468{
020d7251 4469 struct bfd_link_info *info;
6ccf4795 4470 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4471 struct mips_got_info *g;
4472
020d7251 4473 info = (struct bfd_link_info *) data;
6ccf4795
RS
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
d4596a51 4476 if (h->global_got_area != GGA_NONE)
33bb52fb 4477 {
020d7251 4478 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
6ccf4795
RS
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
1bbce132 4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
6c42ddb9 4492 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4493 {
6c42ddb9 4494 g->reloc_only_gotno++;
23cc69b6 4495 g->global_gotno++;
23cc69b6 4496 }
33bb52fb
RS
4497 }
4498 return 1;
4499}
f4416af6 4500\f
d7206569
RS
4501/* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4503
4504static int
d7206569 4505mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4506{
d7206569
RS
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
f4416af6 4510
d7206569
RS
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
f4416af6 4515 {
d7206569
RS
4516 arg->g = NULL;
4517 return 0;
f4416af6 4518 }
d7206569 4519 if (!*slot)
c224138d 4520 {
d7206569
RS
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4523 }
f4416af6
AO
4524 return 1;
4525}
4526
d7206569
RS
4527/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4529
4530static int
d7206569 4531mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4532{
d7206569
RS
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
c224138d 4536
d7206569
RS
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
c224138d 4541 {
d7206569 4542 arg->g = NULL;
c224138d
RS
4543 return 0;
4544 }
d7206569
RS
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
c224138d
RS
4550 return 1;
4551}
4552
d7206569
RS
4553/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
c224138d
RS
4558
4559static int
d7206569 4560mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563{
d7206569 4564 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
e2ece73c 4572 /* And conservatively estimate how many local and TLS entries
c224138d 4573 would be needed. */
e2ece73c
RS
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
17214937
RS
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
e2ece73c 4579 conservatively as well. */
17214937 4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
c224138d 4589 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
c224138d
RS
4594 return 0;
4595
d7206569
RS
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
c224138d
RS
4598 return 0;
4599
d7206569 4600 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4601 return 1;
4602}
4603
d7206569 4604/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
d7206569
RS
4611static bfd_boolean
4612mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4614{
c224138d
RS
4615 unsigned int estimate;
4616 int result;
4617
476366af 4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4619 return FALSE;
4620
c224138d
RS
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
c224138d 4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4632
c224138d 4633 if (estimate <= arg->max_count)
f4416af6 4634 {
c224138d
RS
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
d7206569
RS
4639 arg->primary = g;
4640 return TRUE;
c224138d 4641 }
f4416af6 4642
c224138d 4643 /* Try merging with the primary GOT. */
d7206569 4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4645 if (result >= 0)
4646 return result;
f4416af6 4647 }
c224138d 4648
f4416af6 4649 /* If we can merge with the last-created got, do it. */
c224138d 4650 if (arg->current)
f4416af6 4651 {
d7206569 4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4653 if (result >= 0)
4654 return result;
f4416af6 4655 }
c224138d 4656
f4416af6
AO
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
c224138d
RS
4660 g->next = arg->current;
4661 arg->current = g;
0f20cc35 4662
d7206569 4663 return TRUE;
0f20cc35
DJ
4664}
4665
72e7511a
RS
4666/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670static bfd_boolean
4671mips_elf_set_gotidx (void **entryp, long gotidx)
4672{
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690}
4691
4692/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4695
4696static int
72e7511a 4697mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4698{
72e7511a
RS
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4701
4702 /* We're only interested in TLS symbols. */
72e7511a 4703 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4704 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4705 return 1;
4706
72e7511a 4707 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4709 {
6c42ddb9
RS
4710 arg->g = NULL;
4711 return 0;
f4416af6
AO
4712 }
4713
ead49a57 4714 /* Account for the entries we've just allocated. */
9ab066b4 4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4716 return 1;
4717}
4718
ab361d49
RS
4719/* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
f4416af6 4722
f4416af6 4723static int
ab361d49 4724mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4725{
ab361d49
RS
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
f4416af6 4728
ab361d49
RS
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736}
4737
4738/* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
72e7511a 4741 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4742
4743static int
4744mips_elf_set_global_gotidx (void **entryp, void *data)
4745{
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4748
ab361d49
RS
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4754 {
cb22ccf4 4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
cb22ccf4 4760 arg->g->assigned_low_gotno += 1;
72e7511a 4761
0e1862bb 4762 if (bfd_link_pic (arg->info)
ab361d49
RS
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
f4416af6
AO
4767 }
4768
4769 return 1;
4770}
4771
33bb52fb
RS
4772/* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
0626d451 4776static int
33bb52fb 4777mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4778{
33bb52fb
RS
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
0626d451 4782
33bb52fb
RS
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4786 BFD_ASSERT (htab != NULL);
4787
0626d451
RS
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
33bb52fb 4790 && entry->d.h->needs_lazy_stub)
f4416af6 4791 {
33bb52fb
RS
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
f4416af6 4794 }
143d77c5 4795
f4416af6
AO
4796 return 1;
4797}
4798
f4416af6
AO
4799/* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801static bfd_vma
9719ad41 4802mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4803{
d7206569 4804 if (!g->next)
f4416af6
AO
4805 return 0;
4806
d7206569 4807 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
143d77c5 4814
0f20cc35
DJ
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4817}
4818
4819/* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822static bfd_boolean
9719ad41 4823mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4824 asection *got, bfd_size_type pages)
f4416af6 4825{
a8028dd0 4826 struct mips_elf_link_hash_table *htab;
f4416af6 4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4828 struct mips_elf_traverse_got_arg tga;
a8028dd0 4829 struct mips_got_info *g, *gg;
33bb52fb 4830 unsigned int assign, needed_relocs;
d7206569 4831 bfd *dynobj, *ibfd;
f4416af6 4832
33bb52fb 4833 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4834 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4835 BFD_ASSERT (htab != NULL);
4836
a8028dd0 4837 g = htab->got_info;
f4416af6 4838
f4416af6
AO
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
f4416af6
AO
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
0a44bf69 4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4844 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4845 - htab->reserved_gotno);
c224138d 4846 got_per_bfd_arg.max_pages = pages;
0f20cc35 4847 /* The number of globals that will be included in the primary GOT.
ab361d49 4848 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
c72f2fb2 4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
f4416af6 4861
0f20cc35 4862 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4863 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4864 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
d7206569 4878 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4879
634835ae
RS
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
23cc69b6 4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4884 g->global_gotno = gg->global_gotno;
f4416af6 4885
ab361d49
RS
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4891
4892 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
0f20cc35 4907 gg->tls_gotno = 0;
f4416af6
AO
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
861fb55a 4915 assign += htab->reserved_gotno;
cb22ccf4 4916 g->assigned_low_gotno = assign;
c224138d
RS
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4919 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
ead49a57
RS
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
0f20cc35
DJ
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
1fd20d70 4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4938
ead49a57 4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4940 g = gn;
0626d451 4941
33bb52fb
RS
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
0626d451 4944 if (g)
33bb52fb 4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4946 }
4947 while (g);
4948
59b08994 4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4950
4951 needed_relocs = 0;
33bb52fb
RS
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
ab361d49
RS
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
cb22ccf4
KCY
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4964 if (!tga.g)
4965 return FALSE;
cb22ccf4
KCY
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
72e7511a 4968
0e1862bb 4969 if (bfd_link_pic (info))
33bb52fb 4970 {
cb22ccf4
KCY
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
861fb55a 4975 + htab->reserved_gotno);
33bb52fb 4976 }
ab361d49 4977 needed_relocs += g->relocs;
33bb52fb 4978 }
ab361d49 4979 needed_relocs += g->relocs;
33bb52fb
RS
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
143d77c5 4984
f4416af6
AO
4985 return TRUE;
4986}
143d77c5 4987
b49e97c9
TS
4988\f
4989/* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992static const Elf_Internal_Rela *
9719ad41
RS
4993mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
b49e97c9 4996{
c000e262
TS
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
b49e97c9
TS
4999 while (relocation < relend)
5000 {
c000e262
TS
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
b49e97c9
TS
5009 return NULL;
5010}
5011
020d7251 5012/* Return whether an input relocation is against a local symbol. */
b49e97c9 5013
b34976b6 5014static bfd_boolean
9719ad41
RS
5015mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
020d7251 5017 asection **local_sections)
b49e97c9
TS
5018{
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
b34976b6 5028 return TRUE;
b49e97c9 5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5030 return TRUE;
b49e97c9 5031
b34976b6 5032 return FALSE;
b49e97c9
TS
5033}
5034\f
5035/* Sign-extend VALUE, which has the indicated number of BITS. */
5036
a7ebbfdf 5037bfd_vma
9719ad41 5038_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5039{
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045}
5046
5047/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5048 range expressible by a signed number with the indicated number of
b49e97c9
TS
5049 BITS. */
5050
b34976b6 5051static bfd_boolean
9719ad41 5052mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5053{
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
b34976b6 5058 return TRUE;
b49e97c9
TS
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
b34976b6 5061 return TRUE;
b49e97c9
TS
5062
5063 /* All is well. */
b34976b6 5064 return FALSE;
b49e97c9
TS
5065}
5066
5067/* Calculate the %high function. */
5068
5069static bfd_vma
9719ad41 5070mips_elf_high (bfd_vma value)
b49e97c9
TS
5071{
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073}
5074
5075/* Calculate the %higher function. */
5076
5077static bfd_vma
9719ad41 5078mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5079{
5080#ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082#else
5083 abort ();
c5ae1840 5084 return MINUS_ONE;
b49e97c9
TS
5085#endif
5086}
5087
5088/* Calculate the %highest function. */
5089
5090static bfd_vma
9719ad41 5091mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5092{
5093#ifdef BFD64
b15e6682 5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5095#else
5096 abort ();
c5ae1840 5097 return MINUS_ONE;
b49e97c9
TS
5098#endif
5099}
5100\f
5101/* Create the .compact_rel section. */
5102
b34976b6 5103static bfd_boolean
9719ad41
RS
5104mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5106{
5107 flagword flags;
5108 register asection *s;
5109
3d4d4302 5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
3d4d4302 5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5116 if (s == NULL
b49e97c9
TS
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5119 return FALSE;
b49e97c9 5120
eea6121a 5121 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5122 }
5123
b34976b6 5124 return TRUE;
b49e97c9
TS
5125}
5126
5127/* Create the .got section to hold the global offset table. */
5128
b34976b6 5129static bfd_boolean
23cc69b6 5130mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5131{
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
14a793b2 5135 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
4dfe6ac6 5139 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5140
5141 /* This function may be called more than once. */
ce558b89 5142 if (htab->root.sgot)
23cc69b6 5143 return TRUE;
b49e97c9
TS
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
72b4917c
TS
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
87e0a731 5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5151 if (s == NULL
72b4917c 5152 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5153 return FALSE;
ce558b89 5154 htab->root.sgot = s;
b49e97c9
TS
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
14a793b2 5159 bh = NULL;
b49e97c9
TS
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5163 return FALSE;
14a793b2
AM
5164
5165 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5166 h->non_elf = 0;
5167 h->def_regular = 1;
b49e97c9 5168 h->type = STT_OBJECT;
2f9efdfc 5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5170 elf_hash_table (info)->hgot = h;
b49e97c9 5171
0e1862bb 5172 if (bfd_link_pic (info)
c152c796 5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5174 return FALSE;
b49e97c9 5175
3dff0dd1 5176 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
861fb55a 5180 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
861fb55a
DJ
5186 if (s == NULL)
5187 return FALSE;
ce558b89 5188 htab->root.sgotplt = s;
0a44bf69 5189
b34976b6 5190 return TRUE;
b49e97c9 5191}
b49e97c9 5192\f
0a44bf69
RS
5193/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197static bfd_boolean
5198is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199{
5200 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5201 && bfd_link_pic (info)
0a44bf69
RS
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204}
861fb55a
DJ
5205
5206/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211static bfd_boolean
8f0c309a
CLT
5212mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5214{
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
7361da2c
AB
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
df58fc94
RS
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5234 return TRUE;
5235
8f0c309a
CLT
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
861fb55a
DJ
5239 default:
5240 return FALSE;
5241 }
5242}
0a44bf69 5243\f
b49e97c9
TS
5244/* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
38a7df63 5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257static bfd_reloc_status_type
9719ad41
RS
5258mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
9719ad41 5267 bfd_boolean save_addend)
b49e97c9
TS
5268{
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
0a61c8c2 5276 bfd_vma gp;
b49e97c9
TS
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
0a61c8c2 5281 bfd_vma gp0;
b49e97c9
TS
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5290 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5291 symbol. */
b34976b6 5292 bfd_boolean local_p, was_local_p;
77434823
MR
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
b34976b6
AM
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
b34976b6 5305 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5306 relocation value. */
b34976b6
AM
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5310 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
4dfe6ac6 5316 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
b34976b6 5326 overflowed_p = FALSE;
b49e97c9
TS
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5332 local_sections);
bce03d3d 5333 was_local_p = local_p;
b49e97c9
TS
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
9d862524 5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
77434823
MR
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
b49e97c9 5354 symbol = sec->output_section->vma + sec->output_offset;
77434823 5355 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5356 symbol += sym->st_value;
77434823 5357 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
b49e97c9 5363
df58fc94
RS
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
ceab86af 5372 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5373 *namep = bfd_section_name (input_bfd, sec);
5374
9d862524
MR
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
b49e97c9
TS
5395 }
5396 else
5397 {
560e09e9
NC
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
b49e97c9
TS
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
560e09e9 5413 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5419 return bfd_reloc_notsupported;
5420
b34976b6 5421 gp_disp_p = TRUE;
b49e97c9 5422 }
bbe506e8
TS
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
b49e97c9
TS
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
59c2e50f 5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
a4d0f181
TS
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 in in _bfd_mips_elf_create_dynamic_sections.
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
0e1862bb 5463 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5e2b0d47
NC
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
b49e97c9
TS
5478 else
5479 {
1a72702b
AM
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
b49e97c9
TS
5486 }
5487
30c09090 5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5490 }
5491
738e5348
RS
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
0e1862bb 5502 && !bfd_link_relocatable (info)
738e5348
RS
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5506 || (local_p
698600e4
AM
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5509 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
8f0c309a 5515 {
698600e4 5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5517 value = 0;
5518 }
b49e97c9
TS
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
b49e97c9
TS
5534 }
5535
8f0c309a 5536 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
b49e97c9 5539 }
1bbce132
MR
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
0e1862bb 5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5546 || (local_p
698600e4
AM
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5550 {
b9d58d71 5551 if (local_p)
698600e4 5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5553 else
b49e97c9 5554 {
b9d58d71
TS
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5559 {
b9d58d71 5560 asection *o;
68ffbac6 5561
b9d58d71
TS
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5564 {
b9d58d71
TS
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
b49e97c9 5570 }
b9d58d71
TS
5571 if (sec == NULL)
5572 sec = h->call_stub;
b49e97c9 5573 }
b9d58d71 5574 else if (h->call_stub != NULL)
b49e97c9 5575 sec = h->call_stub;
b9d58d71
TS
5576 else
5577 sec = h->call_fp_stub;
5578 }
b49e97c9 5579
eea6121a 5580 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
861fb55a
DJ
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
c7318def
MR
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
1bbce132
MR
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
54806ffa
MR
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
0e1862bb 5602 && !bfd_link_relocatable (info)
1bbce132
MR
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
ce558b89 5610 sec = htab->root.splt;
1bbce132
MR
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
b49e97c9 5621
df58fc94 5622 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
4eca0228 5626 _bfd_error_handler
df58fc94
RS
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
b49e97c9 5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
0e1862bb 5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
df58fc94 5642 && !target_is_micromips_code_p)
9d862524
MR
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
df58fc94
RS
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
b49e97c9 5647
c5d6fa44 5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5649
0a61c8c2
RS
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
23cc69b6 5652 if (htab->got_info)
a8028dd0 5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
df58fc94
RS
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5662 {
df58fc94
RS
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5665 addend = 0;
5666 }
5667
e77760d2 5668 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5669 to need it, get it now. */
b49e97c9
TS
5670 switch (r_type)
5671 {
738e5348
RS
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
b49e97c9
TS
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
df58fc94
RS
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
d0f13682
CLT
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
df58fc94
RS
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
b49e97c9 5697 /* Find the index into the GOT where this value is located. */
df58fc94 5698 if (tls_ldm_reloc_p (r_type))
0f20cc35 5699 {
0a44bf69 5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5701 0, 0, NULL, r_type);
0f20cc35
DJ
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
b49e97c9 5706 {
0a44bf69
RS
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
df58fc94
RS
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
738e5348 5712 || call16_reloc_p (r_type)))
0a44bf69
RS
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
b49e97c9 5719 {
020d7251 5720 BFD_ASSERT (addend == 0);
13fbec83
RS
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
e641e783 5723 if (!TLS_RELOC_P (r_type)
020d7251
RS
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5727 }
5728 }
0a44bf69 5729 else if (!htab->is_vxworks
738e5348 5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5731 /* The calculation below does not involve "g". */
b49e97c9
TS
5732 break;
5733 else
5734 {
5c18022e 5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5736 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
a8028dd0 5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5743 break;
b49e97c9
TS
5744 }
5745
0a44bf69
RS
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
0a44bf69
RS
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
b49e97c9
TS
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
c3eb94b4
MF
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
b49e97c9
TS
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
0e1862bb 5790 if ((bfd_link_pic (info)
861fb55a 5791 || (htab->root.dynamic_sections_created
b49e97c9 5792 && h != NULL
f5385ebf 5793 && h->root.def_dynamic
861fb55a
DJ
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
cf35638d 5796 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
861fb55a 5802 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
b49e97c9
TS
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
092dcd75
CD
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
b49e97c9
TS
5832 break;
5833
b49e97c9
TS
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
df58fc94
RS
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
df58fc94
RS
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
77434823 5848 if (howto->partial_inplace && !section_p)
df58fc94 5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5850 else
5851 value = addend;
bc27bb05
MR
5852 value += symbol;
5853
9d862524
MR
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
77434823 5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
b49e97c9
TS
5868 break;
5869
0f20cc35 5870 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5871 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5872 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
d0f13682 5880 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5881 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5886 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5887 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5896 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
b49e97c9 5900 case R_MIPS_HI16:
d6f16593 5901 case R_MIPS16_HI16:
df58fc94 5902 case R_MICROMIPS_HI16:
b49e97c9
TS
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
d6f16593
MR
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
d6f16593 5920 if (r_type == R_MIPS16_HI16)
888b9c01 5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5927 else
5928 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
d6f16593 5933 case R_MIPS16_LO16:
df58fc94
RS
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
d6f16593
MR
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
888b9c01 5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
d6f16593
MR
5947 else
5948 value = addend + gp - p + 4;
b49e97c9 5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5950 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
df58fc94 5969 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
df58fc94
RS
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
a7ebbfdf 5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
538baf8b
AB
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6000 break;
6001
738e5348
RS
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
b49e97c9
TS
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
df58fc94
RS
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
0a44bf69 6008 /* VxWorks does not have separate local and global semantics for
738e5348 6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6010 if (!htab->is_vxworks && local_p)
b49e97c9 6011 {
5c18022e 6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6013 symbol + addend, !was_local_p);
b49e97c9
TS
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
a8028dd0 6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
0f20cc35
DJ
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
b49e97c9 6027 case R_MIPS_GOT_DISP:
d0f13682
CLT
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
df58fc94
RS
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
bce03d3d
AO
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
b49e97c9
TS
6043 break;
6044
6045 case R_MIPS_PC16:
bad36eac 6046 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
9d862524
MR
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
538baf8b
AB
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
b49e97c9
TS
6063 break;
6064
c9775dde
MR
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
7361da2c
AB
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
538baf8b
AB
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
538baf8b
AB
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
538baf8b
AB
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
df58fc94 6152 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
c3eb94b4 6162 value = symbol + addend - p;
538baf8b
AB
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
c3eb94b4 6179 value = symbol + addend - p;
538baf8b
AB
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
c3eb94b4 6196 value = symbol + addend - p;
538baf8b
AB
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
b49e97c9
TS
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
df58fc94
RS
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
df58fc94
RS
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
df58fc94 6233 case R_MICROMIPS_GOT_PAGE:
5c18022e 6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
a8028dd0 6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
df58fc94 6242 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6243 if (local_p)
5c18022e 6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6245 else
6246 value = addend;
b49e97c9
TS
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
df58fc94 6251 case R_MICROMIPS_SUB:
b49e97c9
TS
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
df58fc94 6257 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
df58fc94 6263 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
df58fc94 6269 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
b49e97c9 6274 case R_MIPS_JALR:
df58fc94 6275 case R_MICROMIPS_JALR:
1367d393
ILT
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
6280 return bfd_reloc_continue;
6281 value = symbol + addend;
6282 break;
b49e97c9 6283
1367d393 6284 case R_MIPS_PJUMP:
b49e97c9
TS
6285 case R_MIPS_GNU_VTINHERIT:
6286 case R_MIPS_GNU_VTENTRY:
6287 /* We don't do anything with these at present. */
6288 return bfd_reloc_continue;
6289
6290 default:
6291 /* An unrecognized relocation type. */
6292 return bfd_reloc_notsupported;
6293 }
6294
6295 /* Store the VALUE for our caller. */
6296 *valuep = value;
6297 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6298}
6299
6300/* Obtain the field relocated by RELOCATION. */
6301
6302static bfd_vma
9719ad41
RS
6303mips_elf_obtain_contents (reloc_howto_type *howto,
6304 const Elf_Internal_Rela *relocation,
6305 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6306{
6346d5ca 6307 bfd_vma x = 0;
b49e97c9 6308 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6309 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6310
6311 /* Obtain the bytes. */
6346d5ca
AM
6312 if (size != 0)
6313 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6314
b49e97c9
TS
6315 return x;
6316}
6317
6318/* It has been determined that the result of the RELOCATION is the
6319 VALUE. Use HOWTO to place VALUE into the output file at the
6320 appropriate position. The SECTION is the section to which the
68ffbac6 6321 relocation applies.
38a7df63 6322 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6323 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6324
b34976b6 6325 Returns FALSE if anything goes wrong. */
b49e97c9 6326
b34976b6 6327static bfd_boolean
9719ad41
RS
6328mips_elf_perform_relocation (struct bfd_link_info *info,
6329 reloc_howto_type *howto,
6330 const Elf_Internal_Rela *relocation,
6331 bfd_vma value, bfd *input_bfd,
6332 asection *input_section, bfd_byte *contents,
38a7df63 6333 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6334{
6335 bfd_vma x;
6336 bfd_byte *location;
6337 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6338 unsigned int size;
b49e97c9
TS
6339
6340 /* Figure out where the relocation is occurring. */
6341 location = contents + relocation->r_offset;
6342
df58fc94 6343 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6344
b49e97c9
TS
6345 /* Obtain the current value. */
6346 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6347
6348 /* Clear the field we are setting. */
6349 x &= ~howto->dst_mask;
6350
b49e97c9
TS
6351 /* Set the field. */
6352 x |= (value & howto->dst_mask);
6353
a6ebf616 6354 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6355 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6356 {
6357 bfd_vma opcode = x >> 26;
6358
6359 if (r_type == R_MIPS16_26 ? opcode == 0x7
6360 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6361 : opcode == 0x1d)
6362 {
6363 info->callbacks->einfo
6364 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6365 input_bfd, input_section, relocation->r_offset);
6366 return TRUE;
6367 }
6368 }
38a7df63 6369 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6370 {
b34976b6 6371 bfd_boolean ok;
b49e97c9
TS
6372 bfd_vma opcode = x >> 26;
6373 bfd_vma jalx_opcode;
6374
6375 /* Check to see if the opcode is already JAL or JALX. */
6376 if (r_type == R_MIPS16_26)
6377 {
6378 ok = ((opcode == 0x6) || (opcode == 0x7));
6379 jalx_opcode = 0x7;
6380 }
df58fc94
RS
6381 else if (r_type == R_MICROMIPS_26_S1)
6382 {
6383 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6384 jalx_opcode = 0x3c;
6385 }
b49e97c9
TS
6386 else
6387 {
6388 ok = ((opcode == 0x3) || (opcode == 0x1d));
6389 jalx_opcode = 0x1d;
6390 }
6391
3bdf9505
MR
6392 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6393 convert J or JALS to JALX. */
b49e97c9
TS
6394 if (!ok)
6395 {
5f68df25
MR
6396 info->callbacks->einfo
6397 (_("%X%H: Unsupported jump between ISA modes; "
6398 "consider recompiling with interlinking enabled\n"),
6399 input_bfd, input_section, relocation->r_offset);
6400 return TRUE;
b49e97c9
TS
6401 }
6402
6403 /* Make this the JALX opcode. */
6404 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6405 }
9d862524
MR
6406 else if (cross_mode_jump_p && b_reloc_p (r_type))
6407 {
a6ebf616
MR
6408 bfd_boolean ok = FALSE;
6409 bfd_vma opcode = x >> 16;
6410 bfd_vma jalx_opcode = 0;
6411 bfd_vma addr;
6412 bfd_vma dest;
6413
6414 if (r_type == R_MICROMIPS_PC16_S1)
6415 {
6416 ok = opcode == 0x4060;
6417 jalx_opcode = 0x3c;
6418 value <<= 1;
6419 }
6420 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6421 {
6422 ok = opcode == 0x411;
6423 jalx_opcode = 0x1d;
6424 value <<= 2;
6425 }
6426
8b10b0b3 6427 if (ok && !bfd_link_pic (info))
a6ebf616 6428 {
8b10b0b3
MR
6429 addr = (input_section->output_section->vma
6430 + input_section->output_offset
6431 + relocation->r_offset
6432 + 4);
6433 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
a6ebf616 6434
8b10b0b3
MR
6435 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6436 {
6437 info->callbacks->einfo
6438 (_("%X%H: Cannot convert branch between ISA modes "
6439 "to JALX: relocation out of range\n"),
6440 input_bfd, input_section, relocation->r_offset);
6441 return TRUE;
6442 }
a6ebf616 6443
8b10b0b3
MR
6444 /* Make this the JALX opcode. */
6445 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6446 }
6447 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6448 {
6449 info->callbacks->einfo
8b10b0b3 6450 (_("%X%H: Unsupported branch between ISA modes\n"),
a6ebf616
MR
6451 input_bfd, input_section, relocation->r_offset);
6452 return TRUE;
6453 }
9d862524 6454 }
b49e97c9 6455
38a7df63
CF
6456 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6457 range. */
0e1862bb 6458 if (!bfd_link_relocatable (info)
38a7df63 6459 && !cross_mode_jump_p
cd8d5a82
CF
6460 && ((JAL_TO_BAL_P (input_bfd)
6461 && r_type == R_MIPS_26
6462 && (x >> 26) == 0x3) /* jal addr */
6463 || (JALR_TO_BAL_P (input_bfd)
6464 && r_type == R_MIPS_JALR
38a7df63
CF
6465 && x == 0x0320f809) /* jalr t9 */
6466 || (JR_TO_B_P (input_bfd)
6467 && r_type == R_MIPS_JALR
6468 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
6469 {
6470 bfd_vma addr;
6471 bfd_vma dest;
6472 bfd_signed_vma off;
6473
6474 addr = (input_section->output_section->vma
6475 + input_section->output_offset
6476 + relocation->r_offset
6477 + 4);
6478 if (r_type == R_MIPS_26)
6479 dest = (value << 2) | ((addr >> 28) << 28);
6480 else
6481 dest = value;
6482 off = dest - addr;
6483 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
6484 {
6485 if (x == 0x03200008) /* jr t9 */
6486 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6487 else
6488 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6489 }
1367d393
ILT
6490 }
6491
b49e97c9 6492 /* Put the value into the output. */
6346d5ca
AM
6493 size = bfd_get_reloc_size (howto);
6494 if (size != 0)
6495 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6496
0e1862bb 6497 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6498 location);
d6f16593 6499
b34976b6 6500 return TRUE;
b49e97c9 6501}
b49e97c9 6502\f
b49e97c9
TS
6503/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6504 is the original relocation, which is now being transformed into a
6505 dynamic relocation. The ADDENDP is adjusted if necessary; the
6506 caller should store the result in place of the original addend. */
6507
b34976b6 6508static bfd_boolean
9719ad41
RS
6509mips_elf_create_dynamic_relocation (bfd *output_bfd,
6510 struct bfd_link_info *info,
6511 const Elf_Internal_Rela *rel,
6512 struct mips_elf_link_hash_entry *h,
6513 asection *sec, bfd_vma symbol,
6514 bfd_vma *addendp, asection *input_section)
b49e97c9 6515{
947216bf 6516 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6517 asection *sreloc;
6518 bfd *dynobj;
6519 int r_type;
5d41f0b6
RS
6520 long indx;
6521 bfd_boolean defined_p;
0a44bf69 6522 struct mips_elf_link_hash_table *htab;
b49e97c9 6523
0a44bf69 6524 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6525 BFD_ASSERT (htab != NULL);
6526
b49e97c9
TS
6527 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6528 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6529 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6530 BFD_ASSERT (sreloc != NULL);
6531 BFD_ASSERT (sreloc->contents != NULL);
6532 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6533 < sreloc->size);
b49e97c9 6534
b49e97c9
TS
6535 outrel[0].r_offset =
6536 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6537 if (ABI_64_P (output_bfd))
6538 {
6539 outrel[1].r_offset =
6540 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6541 outrel[2].r_offset =
6542 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6543 }
b49e97c9 6544
c5ae1840 6545 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6546 /* The relocation field has been deleted. */
5d41f0b6
RS
6547 return TRUE;
6548
6549 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6550 {
6551 /* The relocation field has been converted into a relative value of
6552 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6553 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6554 *addendp += symbol;
5d41f0b6 6555 return TRUE;
0d591ff7 6556 }
b49e97c9 6557
5d41f0b6
RS
6558 /* We must now calculate the dynamic symbol table index to use
6559 in the relocation. */
d4a77f3f 6560 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6561 {
020d7251 6562 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6563 indx = h->root.dynindx;
6564 if (SGI_COMPAT (output_bfd))
6565 defined_p = h->root.def_regular;
6566 else
6567 /* ??? glibc's ld.so just adds the final GOT entry to the
6568 relocation field. It therefore treats relocs against
6569 defined symbols in the same way as relocs against
6570 undefined symbols. */
6571 defined_p = FALSE;
6572 }
b49e97c9
TS
6573 else
6574 {
5d41f0b6
RS
6575 if (sec != NULL && bfd_is_abs_section (sec))
6576 indx = 0;
6577 else if (sec == NULL || sec->owner == NULL)
fdd07405 6578 {
5d41f0b6
RS
6579 bfd_set_error (bfd_error_bad_value);
6580 return FALSE;
b49e97c9
TS
6581 }
6582 else
6583 {
5d41f0b6 6584 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6585 if (indx == 0)
6586 {
6587 asection *osec = htab->root.text_index_section;
6588 indx = elf_section_data (osec)->dynindx;
6589 }
5d41f0b6
RS
6590 if (indx == 0)
6591 abort ();
b49e97c9
TS
6592 }
6593
5d41f0b6
RS
6594 /* Instead of generating a relocation using the section
6595 symbol, we may as well make it a fully relative
6596 relocation. We want to avoid generating relocations to
6597 local symbols because we used to generate them
6598 incorrectly, without adding the original symbol value,
6599 which is mandated by the ABI for section symbols. In
6600 order to give dynamic loaders and applications time to
6601 phase out the incorrect use, we refrain from emitting
6602 section-relative relocations. It's not like they're
6603 useful, after all. This should be a bit more efficient
6604 as well. */
6605 /* ??? Although this behavior is compatible with glibc's ld.so,
6606 the ABI says that relocations against STN_UNDEF should have
6607 a symbol value of 0. Irix rld honors this, so relocations
6608 against STN_UNDEF have no effect. */
6609 if (!SGI_COMPAT (output_bfd))
6610 indx = 0;
6611 defined_p = TRUE;
b49e97c9
TS
6612 }
6613
5d41f0b6
RS
6614 /* If the relocation was previously an absolute relocation and
6615 this symbol will not be referred to by the relocation, we must
6616 adjust it by the value we give it in the dynamic symbol table.
6617 Otherwise leave the job up to the dynamic linker. */
6618 if (defined_p && r_type != R_MIPS_REL32)
6619 *addendp += symbol;
6620
0a44bf69
RS
6621 if (htab->is_vxworks)
6622 /* VxWorks uses non-relative relocations for this. */
6623 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6624 else
6625 /* The relocation is always an REL32 relocation because we don't
6626 know where the shared library will wind up at load-time. */
6627 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6628 R_MIPS_REL32);
6629
5d41f0b6
RS
6630 /* For strict adherence to the ABI specification, we should
6631 generate a R_MIPS_64 relocation record by itself before the
6632 _REL32/_64 record as well, such that the addend is read in as
6633 a 64-bit value (REL32 is a 32-bit relocation, after all).
6634 However, since none of the existing ELF64 MIPS dynamic
6635 loaders seems to care, we don't waste space with these
6636 artificial relocations. If this turns out to not be true,
6637 mips_elf_allocate_dynamic_relocation() should be tweaked so
6638 as to make room for a pair of dynamic relocations per
6639 invocation if ABI_64_P, and here we should generate an
6640 additional relocation record with R_MIPS_64 by itself for a
6641 NULL symbol before this relocation record. */
6642 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6643 ABI_64_P (output_bfd)
6644 ? R_MIPS_64
6645 : R_MIPS_NONE);
6646 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6647
6648 /* Adjust the output offset of the relocation to reference the
6649 correct location in the output file. */
6650 outrel[0].r_offset += (input_section->output_section->vma
6651 + input_section->output_offset);
6652 outrel[1].r_offset += (input_section->output_section->vma
6653 + input_section->output_offset);
6654 outrel[2].r_offset += (input_section->output_section->vma
6655 + input_section->output_offset);
6656
b49e97c9
TS
6657 /* Put the relocation back out. We have to use the special
6658 relocation outputter in the 64-bit case since the 64-bit
6659 relocation format is non-standard. */
6660 if (ABI_64_P (output_bfd))
6661 {
6662 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6663 (output_bfd, &outrel[0],
6664 (sreloc->contents
6665 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6666 }
0a44bf69
RS
6667 else if (htab->is_vxworks)
6668 {
6669 /* VxWorks uses RELA rather than REL dynamic relocations. */
6670 outrel[0].r_addend = *addendp;
6671 bfd_elf32_swap_reloca_out
6672 (output_bfd, &outrel[0],
6673 (sreloc->contents
6674 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6675 }
b49e97c9 6676 else
947216bf
AM
6677 bfd_elf32_swap_reloc_out
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6680
b49e97c9
TS
6681 /* We've now added another relocation. */
6682 ++sreloc->reloc_count;
6683
6684 /* Make sure the output section is writable. The dynamic linker
6685 will be writing to it. */
6686 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6687 |= SHF_WRITE;
6688
6689 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6690 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6691 {
3d4d4302 6692 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6693 bfd_byte *cr;
6694
6695 if (scpt)
6696 {
6697 Elf32_crinfo cptrel;
6698
6699 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6700 cptrel.vaddr = (rel->r_offset
6701 + input_section->output_section->vma
6702 + input_section->output_offset);
6703 if (r_type == R_MIPS_REL32)
6704 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6705 else
6706 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6707 mips_elf_set_cr_dist2to (cptrel, 0);
6708 cptrel.konst = *addendp;
6709
6710 cr = (scpt->contents
6711 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6712 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6713 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6714 ((Elf32_External_crinfo *) cr
6715 + scpt->reloc_count));
6716 ++scpt->reloc_count;
6717 }
6718 }
6719
943284cc
DJ
6720 /* If we've written this relocation for a readonly section,
6721 we need to set DF_TEXTREL again, so that we do not delete the
6722 DT_TEXTREL tag. */
6723 if (MIPS_ELF_READONLY_SECTION (input_section))
6724 info->flags |= DF_TEXTREL;
6725
b34976b6 6726 return TRUE;
b49e97c9
TS
6727}
6728\f
b49e97c9
TS
6729/* Return the MACH for a MIPS e_flags value. */
6730
6731unsigned long
9719ad41 6732_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6733{
6734 switch (flags & EF_MIPS_MACH)
6735 {
6736 case E_MIPS_MACH_3900:
6737 return bfd_mach_mips3900;
6738
6739 case E_MIPS_MACH_4010:
6740 return bfd_mach_mips4010;
6741
6742 case E_MIPS_MACH_4100:
6743 return bfd_mach_mips4100;
6744
6745 case E_MIPS_MACH_4111:
6746 return bfd_mach_mips4111;
6747
00707a0e
RS
6748 case E_MIPS_MACH_4120:
6749 return bfd_mach_mips4120;
6750
b49e97c9
TS
6751 case E_MIPS_MACH_4650:
6752 return bfd_mach_mips4650;
6753
00707a0e
RS
6754 case E_MIPS_MACH_5400:
6755 return bfd_mach_mips5400;
6756
6757 case E_MIPS_MACH_5500:
6758 return bfd_mach_mips5500;
6759
e407c74b
NC
6760 case E_MIPS_MACH_5900:
6761 return bfd_mach_mips5900;
6762
0d2e43ed
ILT
6763 case E_MIPS_MACH_9000:
6764 return bfd_mach_mips9000;
6765
b49e97c9
TS
6766 case E_MIPS_MACH_SB1:
6767 return bfd_mach_mips_sb1;
6768
350cc38d
MS
6769 case E_MIPS_MACH_LS2E:
6770 return bfd_mach_mips_loongson_2e;
6771
6772 case E_MIPS_MACH_LS2F:
6773 return bfd_mach_mips_loongson_2f;
6774
fd503541
NC
6775 case E_MIPS_MACH_LS3A:
6776 return bfd_mach_mips_loongson_3a;
6777
2c629856
N
6778 case E_MIPS_MACH_OCTEON3:
6779 return bfd_mach_mips_octeon3;
6780
432233b3
AP
6781 case E_MIPS_MACH_OCTEON2:
6782 return bfd_mach_mips_octeon2;
6783
6f179bd0
AN
6784 case E_MIPS_MACH_OCTEON:
6785 return bfd_mach_mips_octeon;
6786
52b6b6b9
JM
6787 case E_MIPS_MACH_XLR:
6788 return bfd_mach_mips_xlr;
6789
b49e97c9
TS
6790 default:
6791 switch (flags & EF_MIPS_ARCH)
6792 {
6793 default:
6794 case E_MIPS_ARCH_1:
6795 return bfd_mach_mips3000;
b49e97c9
TS
6796
6797 case E_MIPS_ARCH_2:
6798 return bfd_mach_mips6000;
b49e97c9
TS
6799
6800 case E_MIPS_ARCH_3:
6801 return bfd_mach_mips4000;
b49e97c9
TS
6802
6803 case E_MIPS_ARCH_4:
6804 return bfd_mach_mips8000;
b49e97c9
TS
6805
6806 case E_MIPS_ARCH_5:
6807 return bfd_mach_mips5;
b49e97c9
TS
6808
6809 case E_MIPS_ARCH_32:
6810 return bfd_mach_mipsisa32;
b49e97c9
TS
6811
6812 case E_MIPS_ARCH_64:
6813 return bfd_mach_mipsisa64;
af7ee8bf
CD
6814
6815 case E_MIPS_ARCH_32R2:
6816 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6817
6818 case E_MIPS_ARCH_64R2:
6819 return bfd_mach_mipsisa64r2;
7361da2c
AB
6820
6821 case E_MIPS_ARCH_32R6:
6822 return bfd_mach_mipsisa32r6;
6823
6824 case E_MIPS_ARCH_64R6:
6825 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6826 }
6827 }
6828
6829 return 0;
6830}
6831
6832/* Return printable name for ABI. */
6833
6834static INLINE char *
9719ad41 6835elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6836{
6837 flagword flags;
6838
6839 flags = elf_elfheader (abfd)->e_flags;
6840 switch (flags & EF_MIPS_ABI)
6841 {
6842 case 0:
6843 if (ABI_N32_P (abfd))
6844 return "N32";
6845 else if (ABI_64_P (abfd))
6846 return "64";
6847 else
6848 return "none";
6849 case E_MIPS_ABI_O32:
6850 return "O32";
6851 case E_MIPS_ABI_O64:
6852 return "O64";
6853 case E_MIPS_ABI_EABI32:
6854 return "EABI32";
6855 case E_MIPS_ABI_EABI64:
6856 return "EABI64";
6857 default:
6858 return "unknown abi";
6859 }
6860}
6861\f
6862/* MIPS ELF uses two common sections. One is the usual one, and the
6863 other is for small objects. All the small objects are kept
6864 together, and then referenced via the gp pointer, which yields
6865 faster assembler code. This is what we use for the small common
6866 section. This approach is copied from ecoff.c. */
6867static asection mips_elf_scom_section;
6868static asymbol mips_elf_scom_symbol;
6869static asymbol *mips_elf_scom_symbol_ptr;
6870
6871/* MIPS ELF also uses an acommon section, which represents an
6872 allocated common symbol which may be overridden by a
6873 definition in a shared library. */
6874static asection mips_elf_acom_section;
6875static asymbol mips_elf_acom_symbol;
6876static asymbol *mips_elf_acom_symbol_ptr;
6877
738e5348 6878/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6879
6880void
9719ad41 6881_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6882{
6883 elf_symbol_type *elfsym;
6884
738e5348 6885 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6886 elfsym = (elf_symbol_type *) asym;
6887 switch (elfsym->internal_elf_sym.st_shndx)
6888 {
6889 case SHN_MIPS_ACOMMON:
6890 /* This section is used in a dynamically linked executable file.
6891 It is an allocated common section. The dynamic linker can
6892 either resolve these symbols to something in a shared
6893 library, or it can just leave them here. For our purposes,
6894 we can consider these symbols to be in a new section. */
6895 if (mips_elf_acom_section.name == NULL)
6896 {
6897 /* Initialize the acommon section. */
6898 mips_elf_acom_section.name = ".acommon";
6899 mips_elf_acom_section.flags = SEC_ALLOC;
6900 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6901 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6902 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6903 mips_elf_acom_symbol.name = ".acommon";
6904 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6905 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6906 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6907 }
6908 asym->section = &mips_elf_acom_section;
6909 break;
6910
6911 case SHN_COMMON:
6912 /* Common symbols less than the GP size are automatically
6913 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6914 if (asym->value > elf_gp_size (abfd)
b59eed79 6915 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6916 || IRIX_COMPAT (abfd) == ict_irix6)
6917 break;
6918 /* Fall through. */
6919 case SHN_MIPS_SCOMMON:
6920 if (mips_elf_scom_section.name == NULL)
6921 {
6922 /* Initialize the small common section. */
6923 mips_elf_scom_section.name = ".scommon";
6924 mips_elf_scom_section.flags = SEC_IS_COMMON;
6925 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6926 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6927 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6928 mips_elf_scom_symbol.name = ".scommon";
6929 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6930 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6931 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6932 }
6933 asym->section = &mips_elf_scom_section;
6934 asym->value = elfsym->internal_elf_sym.st_size;
6935 break;
6936
6937 case SHN_MIPS_SUNDEFINED:
6938 asym->section = bfd_und_section_ptr;
6939 break;
6940
b49e97c9 6941 case SHN_MIPS_TEXT:
00b4930b
TS
6942 {
6943 asection *section = bfd_get_section_by_name (abfd, ".text");
6944
00b4930b
TS
6945 if (section != NULL)
6946 {
6947 asym->section = section;
6948 /* MIPS_TEXT is a bit special, the address is not an offset
6949 to the base of the .text section. So substract the section
6950 base address to make it an offset. */
6951 asym->value -= section->vma;
6952 }
6953 }
b49e97c9
TS
6954 break;
6955
6956 case SHN_MIPS_DATA:
00b4930b
TS
6957 {
6958 asection *section = bfd_get_section_by_name (abfd, ".data");
6959
00b4930b
TS
6960 if (section != NULL)
6961 {
6962 asym->section = section;
6963 /* MIPS_DATA is a bit special, the address is not an offset
6964 to the base of the .data section. So substract the section
6965 base address to make it an offset. */
6966 asym->value -= section->vma;
6967 }
6968 }
b49e97c9 6969 break;
b49e97c9 6970 }
738e5348 6971
df58fc94
RS
6972 /* If this is an odd-valued function symbol, assume it's a MIPS16
6973 or microMIPS one. */
738e5348
RS
6974 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6975 && (asym->value & 1) != 0)
6976 {
6977 asym->value--;
e8faf7d1 6978 if (MICROMIPS_P (abfd))
df58fc94
RS
6979 elfsym->internal_elf_sym.st_other
6980 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6981 else
6982 elfsym->internal_elf_sym.st_other
6983 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6984 }
b49e97c9
TS
6985}
6986\f
8c946ed5
RS
6987/* Implement elf_backend_eh_frame_address_size. This differs from
6988 the default in the way it handles EABI64.
6989
6990 EABI64 was originally specified as an LP64 ABI, and that is what
6991 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6992 historically accepted the combination of -mabi=eabi and -mlong32,
6993 and this ILP32 variation has become semi-official over time.
6994 Both forms use elf32 and have pointer-sized FDE addresses.
6995
6996 If an EABI object was generated by GCC 4.0 or above, it will have
6997 an empty .gcc_compiled_longXX section, where XX is the size of longs
6998 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6999 have no special marking to distinguish them from LP64 objects.
7000
7001 We don't want users of the official LP64 ABI to be punished for the
7002 existence of the ILP32 variant, but at the same time, we don't want
7003 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7004 We therefore take the following approach:
7005
7006 - If ABFD contains a .gcc_compiled_longXX section, use it to
7007 determine the pointer size.
7008
7009 - Otherwise check the type of the first relocation. Assume that
7010 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7011
7012 - Otherwise punt.
7013
7014 The second check is enough to detect LP64 objects generated by pre-4.0
7015 compilers because, in the kind of output generated by those compilers,
7016 the first relocation will be associated with either a CIE personality
7017 routine or an FDE start address. Furthermore, the compilers never
7018 used a special (non-pointer) encoding for this ABI.
7019
7020 Checking the relocation type should also be safe because there is no
7021 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7022 did so. */
7023
7024unsigned int
7025_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7026{
7027 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7028 return 8;
7029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7030 {
7031 bfd_boolean long32_p, long64_p;
7032
7033 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7034 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7035 if (long32_p && long64_p)
7036 return 0;
7037 if (long32_p)
7038 return 4;
7039 if (long64_p)
7040 return 8;
7041
7042 if (sec->reloc_count > 0
7043 && elf_section_data (sec)->relocs != NULL
7044 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7045 == R_MIPS_64))
7046 return 8;
7047
7048 return 0;
7049 }
7050 return 4;
7051}
7052\f
174fd7f9
RS
7053/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7054 relocations against two unnamed section symbols to resolve to the
7055 same address. For example, if we have code like:
7056
7057 lw $4,%got_disp(.data)($gp)
7058 lw $25,%got_disp(.text)($gp)
7059 jalr $25
7060
7061 then the linker will resolve both relocations to .data and the program
7062 will jump there rather than to .text.
7063
7064 We can work around this problem by giving names to local section symbols.
7065 This is also what the MIPSpro tools do. */
7066
7067bfd_boolean
7068_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7069{
7070 return SGI_COMPAT (abfd);
7071}
7072\f
b49e97c9
TS
7073/* Work over a section just before writing it out. This routine is
7074 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7075 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7076 a better way. */
7077
b34976b6 7078bfd_boolean
9719ad41 7079_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7080{
7081 if (hdr->sh_type == SHT_MIPS_REGINFO
7082 && hdr->sh_size > 0)
7083 {
7084 bfd_byte buf[4];
7085
7086 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7087 BFD_ASSERT (hdr->contents == NULL);
7088
7089 if (bfd_seek (abfd,
7090 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7091 SEEK_SET) != 0)
b34976b6 7092 return FALSE;
b49e97c9 7093 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7094 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7095 return FALSE;
b49e97c9
TS
7096 }
7097
7098 if (hdr->sh_type == SHT_MIPS_OPTIONS
7099 && hdr->bfd_section != NULL
f0abc2a1
AM
7100 && mips_elf_section_data (hdr->bfd_section) != NULL
7101 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7102 {
7103 bfd_byte *contents, *l, *lend;
7104
f0abc2a1
AM
7105 /* We stored the section contents in the tdata field in the
7106 set_section_contents routine. We save the section contents
7107 so that we don't have to read them again.
b49e97c9
TS
7108 At this point we know that elf_gp is set, so we can look
7109 through the section contents to see if there is an
7110 ODK_REGINFO structure. */
7111
f0abc2a1 7112 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7113 l = contents;
7114 lend = contents + hdr->sh_size;
7115 while (l + sizeof (Elf_External_Options) <= lend)
7116 {
7117 Elf_Internal_Options intopt;
7118
7119 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7120 &intopt);
1bc8074d
MR
7121 if (intopt.size < sizeof (Elf_External_Options))
7122 {
4eca0228 7123 _bfd_error_handler
695344c0 7124 /* xgettext:c-format */
1bc8074d
MR
7125 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7126 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7127 break;
7128 }
b49e97c9
TS
7129 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7130 {
7131 bfd_byte buf[8];
7132
7133 if (bfd_seek (abfd,
7134 (hdr->sh_offset
7135 + (l - contents)
7136 + sizeof (Elf_External_Options)
7137 + (sizeof (Elf64_External_RegInfo) - 8)),
7138 SEEK_SET) != 0)
b34976b6 7139 return FALSE;
b49e97c9 7140 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7141 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7142 return FALSE;
b49e97c9
TS
7143 }
7144 else if (intopt.kind == ODK_REGINFO)
7145 {
7146 bfd_byte buf[4];
7147
7148 if (bfd_seek (abfd,
7149 (hdr->sh_offset
7150 + (l - contents)
7151 + sizeof (Elf_External_Options)
7152 + (sizeof (Elf32_External_RegInfo) - 4)),
7153 SEEK_SET) != 0)
b34976b6 7154 return FALSE;
b49e97c9 7155 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7156 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7157 return FALSE;
b49e97c9
TS
7158 }
7159 l += intopt.size;
7160 }
7161 }
7162
7163 if (hdr->bfd_section != NULL)
7164 {
7165 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7166
2d0f9ad9
JM
7167 /* .sbss is not handled specially here because the GNU/Linux
7168 prelinker can convert .sbss from NOBITS to PROGBITS and
7169 changing it back to NOBITS breaks the binary. The entry in
7170 _bfd_mips_elf_special_sections will ensure the correct flags
7171 are set on .sbss if BFD creates it without reading it from an
7172 input file, and without special handling here the flags set
7173 on it in an input file will be followed. */
b49e97c9
TS
7174 if (strcmp (name, ".sdata") == 0
7175 || strcmp (name, ".lit8") == 0
7176 || strcmp (name, ".lit4") == 0)
fd6f9d17 7177 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7178 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7179 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7180 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7181 hdr->sh_flags = 0;
b49e97c9
TS
7182 else if (strcmp (name, ".rtproc") == 0)
7183 {
7184 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7185 {
7186 unsigned int adjust;
7187
7188 adjust = hdr->sh_size % hdr->sh_addralign;
7189 if (adjust != 0)
7190 hdr->sh_size += hdr->sh_addralign - adjust;
7191 }
7192 }
7193 }
7194
b34976b6 7195 return TRUE;
b49e97c9
TS
7196}
7197
7198/* Handle a MIPS specific section when reading an object file. This
7199 is called when elfcode.h finds a section with an unknown type.
7200 This routine supports both the 32-bit and 64-bit ELF ABI.
7201
7202 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7203 how to. */
7204
b34976b6 7205bfd_boolean
6dc132d9
L
7206_bfd_mips_elf_section_from_shdr (bfd *abfd,
7207 Elf_Internal_Shdr *hdr,
7208 const char *name,
7209 int shindex)
b49e97c9
TS
7210{
7211 flagword flags = 0;
7212
7213 /* There ought to be a place to keep ELF backend specific flags, but
7214 at the moment there isn't one. We just keep track of the
7215 sections by their name, instead. Fortunately, the ABI gives
7216 suggested names for all the MIPS specific sections, so we will
7217 probably get away with this. */
7218 switch (hdr->sh_type)
7219 {
7220 case SHT_MIPS_LIBLIST:
7221 if (strcmp (name, ".liblist") != 0)
b34976b6 7222 return FALSE;
b49e97c9
TS
7223 break;
7224 case SHT_MIPS_MSYM:
7225 if (strcmp (name, ".msym") != 0)
b34976b6 7226 return FALSE;
b49e97c9
TS
7227 break;
7228 case SHT_MIPS_CONFLICT:
7229 if (strcmp (name, ".conflict") != 0)
b34976b6 7230 return FALSE;
b49e97c9
TS
7231 break;
7232 case SHT_MIPS_GPTAB:
0112cd26 7233 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7234 return FALSE;
b49e97c9
TS
7235 break;
7236 case SHT_MIPS_UCODE:
7237 if (strcmp (name, ".ucode") != 0)
b34976b6 7238 return FALSE;
b49e97c9
TS
7239 break;
7240 case SHT_MIPS_DEBUG:
7241 if (strcmp (name, ".mdebug") != 0)
b34976b6 7242 return FALSE;
b49e97c9
TS
7243 flags = SEC_DEBUGGING;
7244 break;
7245 case SHT_MIPS_REGINFO:
7246 if (strcmp (name, ".reginfo") != 0
7247 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7248 return FALSE;
b49e97c9
TS
7249 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7250 break;
7251 case SHT_MIPS_IFACE:
7252 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7253 return FALSE;
b49e97c9
TS
7254 break;
7255 case SHT_MIPS_CONTENT:
0112cd26 7256 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7257 return FALSE;
b49e97c9
TS
7258 break;
7259 case SHT_MIPS_OPTIONS:
cc2e31b9 7260 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7261 return FALSE;
b49e97c9 7262 break;
351cdf24
MF
7263 case SHT_MIPS_ABIFLAGS:
7264 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7265 return FALSE;
7266 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7267 break;
b49e97c9 7268 case SHT_MIPS_DWARF:
1b315056 7269 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7270 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7271 return FALSE;
b49e97c9
TS
7272 break;
7273 case SHT_MIPS_SYMBOL_LIB:
7274 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7275 return FALSE;
b49e97c9
TS
7276 break;
7277 case SHT_MIPS_EVENTS:
0112cd26
NC
7278 if (! CONST_STRNEQ (name, ".MIPS.events")
7279 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7280 return FALSE;
b49e97c9
TS
7281 break;
7282 default:
cc2e31b9 7283 break;
b49e97c9
TS
7284 }
7285
6dc132d9 7286 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7287 return FALSE;
b49e97c9
TS
7288
7289 if (flags)
7290 {
7291 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7292 (bfd_get_section_flags (abfd,
7293 hdr->bfd_section)
7294 | flags)))
b34976b6 7295 return FALSE;
b49e97c9
TS
7296 }
7297
351cdf24
MF
7298 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7299 {
7300 Elf_External_ABIFlags_v0 ext;
7301
7302 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7303 &ext, 0, sizeof ext))
7304 return FALSE;
7305 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7306 &mips_elf_tdata (abfd)->abiflags);
7307 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7308 return FALSE;
7309 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7310 }
7311
b49e97c9
TS
7312 /* FIXME: We should record sh_info for a .gptab section. */
7313
7314 /* For a .reginfo section, set the gp value in the tdata information
7315 from the contents of this section. We need the gp value while
7316 processing relocs, so we just get it now. The .reginfo section
7317 is not used in the 64-bit MIPS ELF ABI. */
7318 if (hdr->sh_type == SHT_MIPS_REGINFO)
7319 {
7320 Elf32_External_RegInfo ext;
7321 Elf32_RegInfo s;
7322
9719ad41
RS
7323 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7324 &ext, 0, sizeof ext))
b34976b6 7325 return FALSE;
b49e97c9
TS
7326 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7327 elf_gp (abfd) = s.ri_gp_value;
7328 }
7329
7330 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7331 set the gp value based on what we find. We may see both
7332 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7333 they should agree. */
7334 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7335 {
7336 bfd_byte *contents, *l, *lend;
7337
9719ad41 7338 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7339 if (contents == NULL)
b34976b6 7340 return FALSE;
b49e97c9 7341 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7342 0, hdr->sh_size))
b49e97c9
TS
7343 {
7344 free (contents);
b34976b6 7345 return FALSE;
b49e97c9
TS
7346 }
7347 l = contents;
7348 lend = contents + hdr->sh_size;
7349 while (l + sizeof (Elf_External_Options) <= lend)
7350 {
7351 Elf_Internal_Options intopt;
7352
7353 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7354 &intopt);
1bc8074d
MR
7355 if (intopt.size < sizeof (Elf_External_Options))
7356 {
4eca0228 7357 _bfd_error_handler
695344c0 7358 /* xgettext:c-format */
1bc8074d
MR
7359 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7360 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7361 break;
7362 }
b49e97c9
TS
7363 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7364 {
7365 Elf64_Internal_RegInfo intreg;
7366
7367 bfd_mips_elf64_swap_reginfo_in
7368 (abfd,
7369 ((Elf64_External_RegInfo *)
7370 (l + sizeof (Elf_External_Options))),
7371 &intreg);
7372 elf_gp (abfd) = intreg.ri_gp_value;
7373 }
7374 else if (intopt.kind == ODK_REGINFO)
7375 {
7376 Elf32_RegInfo intreg;
7377
7378 bfd_mips_elf32_swap_reginfo_in
7379 (abfd,
7380 ((Elf32_External_RegInfo *)
7381 (l + sizeof (Elf_External_Options))),
7382 &intreg);
7383 elf_gp (abfd) = intreg.ri_gp_value;
7384 }
7385 l += intopt.size;
7386 }
7387 free (contents);
7388 }
7389
b34976b6 7390 return TRUE;
b49e97c9
TS
7391}
7392
7393/* Set the correct type for a MIPS ELF section. We do this by the
7394 section name, which is a hack, but ought to work. This routine is
7395 used by both the 32-bit and the 64-bit ABI. */
7396
b34976b6 7397bfd_boolean
9719ad41 7398_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7399{
0414f35b 7400 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7401
7402 if (strcmp (name, ".liblist") == 0)
7403 {
7404 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7405 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7406 /* The sh_link field is set in final_write_processing. */
7407 }
7408 else if (strcmp (name, ".conflict") == 0)
7409 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7410 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7411 {
7412 hdr->sh_type = SHT_MIPS_GPTAB;
7413 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7414 /* The sh_info field is set in final_write_processing. */
7415 }
7416 else if (strcmp (name, ".ucode") == 0)
7417 hdr->sh_type = SHT_MIPS_UCODE;
7418 else if (strcmp (name, ".mdebug") == 0)
7419 {
7420 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7421 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7422 entsize of 0. FIXME: Does this matter? */
7423 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7424 hdr->sh_entsize = 0;
7425 else
7426 hdr->sh_entsize = 1;
7427 }
7428 else if (strcmp (name, ".reginfo") == 0)
7429 {
7430 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7431 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7432 entsize of 0x18. FIXME: Does this matter? */
7433 if (SGI_COMPAT (abfd))
7434 {
7435 if ((abfd->flags & DYNAMIC) != 0)
7436 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7437 else
7438 hdr->sh_entsize = 1;
7439 }
7440 else
7441 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7442 }
7443 else if (SGI_COMPAT (abfd)
7444 && (strcmp (name, ".hash") == 0
7445 || strcmp (name, ".dynamic") == 0
7446 || strcmp (name, ".dynstr") == 0))
7447 {
7448 if (SGI_COMPAT (abfd))
7449 hdr->sh_entsize = 0;
7450#if 0
8dc1a139 7451 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7452 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7453#endif
7454 }
7455 else if (strcmp (name, ".got") == 0
7456 || strcmp (name, ".srdata") == 0
7457 || strcmp (name, ".sdata") == 0
7458 || strcmp (name, ".sbss") == 0
7459 || strcmp (name, ".lit4") == 0
7460 || strcmp (name, ".lit8") == 0)
7461 hdr->sh_flags |= SHF_MIPS_GPREL;
7462 else if (strcmp (name, ".MIPS.interfaces") == 0)
7463 {
7464 hdr->sh_type = SHT_MIPS_IFACE;
7465 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7466 }
0112cd26 7467 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7468 {
7469 hdr->sh_type = SHT_MIPS_CONTENT;
7470 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7471 /* The sh_info field is set in final_write_processing. */
7472 }
cc2e31b9 7473 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7474 {
7475 hdr->sh_type = SHT_MIPS_OPTIONS;
7476 hdr->sh_entsize = 1;
7477 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7478 }
351cdf24
MF
7479 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7480 {
7481 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7482 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7483 }
1b315056
CS
7484 else if (CONST_STRNEQ (name, ".debug_")
7485 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7486 {
7487 hdr->sh_type = SHT_MIPS_DWARF;
7488
7489 /* Irix facilities such as libexc expect a single .debug_frame
7490 per executable, the system ones have NOSTRIP set and the linker
7491 doesn't merge sections with different flags so ... */
7492 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7493 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7494 }
b49e97c9
TS
7495 else if (strcmp (name, ".MIPS.symlib") == 0)
7496 {
7497 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7498 /* The sh_link and sh_info fields are set in
7499 final_write_processing. */
7500 }
0112cd26
NC
7501 else if (CONST_STRNEQ (name, ".MIPS.events")
7502 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7503 {
7504 hdr->sh_type = SHT_MIPS_EVENTS;
7505 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7506 /* The sh_link field is set in final_write_processing. */
7507 }
7508 else if (strcmp (name, ".msym") == 0)
7509 {
7510 hdr->sh_type = SHT_MIPS_MSYM;
7511 hdr->sh_flags |= SHF_ALLOC;
7512 hdr->sh_entsize = 8;
7513 }
7514
7a79a000
TS
7515 /* The generic elf_fake_sections will set up REL_HDR using the default
7516 kind of relocations. We used to set up a second header for the
7517 non-default kind of relocations here, but only NewABI would use
7518 these, and the IRIX ld doesn't like resulting empty RELA sections.
7519 Thus we create those header only on demand now. */
b49e97c9 7520
b34976b6 7521 return TRUE;
b49e97c9
TS
7522}
7523
7524/* Given a BFD section, try to locate the corresponding ELF section
7525 index. This is used by both the 32-bit and the 64-bit ABI.
7526 Actually, it's not clear to me that the 64-bit ABI supports these,
7527 but for non-PIC objects we will certainly want support for at least
7528 the .scommon section. */
7529
b34976b6 7530bfd_boolean
9719ad41
RS
7531_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7532 asection *sec, int *retval)
b49e97c9
TS
7533{
7534 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7535 {
7536 *retval = SHN_MIPS_SCOMMON;
b34976b6 7537 return TRUE;
b49e97c9
TS
7538 }
7539 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7540 {
7541 *retval = SHN_MIPS_ACOMMON;
b34976b6 7542 return TRUE;
b49e97c9 7543 }
b34976b6 7544 return FALSE;
b49e97c9
TS
7545}
7546\f
7547/* Hook called by the linker routine which adds symbols from an object
7548 file. We must handle the special MIPS section numbers here. */
7549
b34976b6 7550bfd_boolean
9719ad41 7551_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7552 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7553 flagword *flagsp ATTRIBUTE_UNUSED,
7554 asection **secp, bfd_vma *valp)
b49e97c9
TS
7555{
7556 if (SGI_COMPAT (abfd)
7557 && (abfd->flags & DYNAMIC) != 0
7558 && strcmp (*namep, "_rld_new_interface") == 0)
7559 {
8dc1a139 7560 /* Skip IRIX5 rld entry name. */
b49e97c9 7561 *namep = NULL;
b34976b6 7562 return TRUE;
b49e97c9
TS
7563 }
7564
eedecc07
DD
7565 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7566 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7567 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7568 a magic symbol resolved by the linker, we ignore this bogus definition
7569 of _gp_disp. New ABI objects do not suffer from this problem so this
7570 is not done for them. */
7571 if (!NEWABI_P(abfd)
7572 && (sym->st_shndx == SHN_ABS)
7573 && (strcmp (*namep, "_gp_disp") == 0))
7574 {
7575 *namep = NULL;
7576 return TRUE;
7577 }
7578
b49e97c9
TS
7579 switch (sym->st_shndx)
7580 {
7581 case SHN_COMMON:
7582 /* Common symbols less than the GP size are automatically
7583 treated as SHN_MIPS_SCOMMON symbols. */
7584 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7585 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7586 || IRIX_COMPAT (abfd) == ict_irix6)
7587 break;
7588 /* Fall through. */
7589 case SHN_MIPS_SCOMMON:
7590 *secp = bfd_make_section_old_way (abfd, ".scommon");
7591 (*secp)->flags |= SEC_IS_COMMON;
7592 *valp = sym->st_size;
7593 break;
7594
7595 case SHN_MIPS_TEXT:
7596 /* This section is used in a shared object. */
698600e4 7597 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7598 {
7599 asymbol *elf_text_symbol;
7600 asection *elf_text_section;
7601 bfd_size_type amt = sizeof (asection);
7602
7603 elf_text_section = bfd_zalloc (abfd, amt);
7604 if (elf_text_section == NULL)
b34976b6 7605 return FALSE;
b49e97c9
TS
7606
7607 amt = sizeof (asymbol);
7608 elf_text_symbol = bfd_zalloc (abfd, amt);
7609 if (elf_text_symbol == NULL)
b34976b6 7610 return FALSE;
b49e97c9
TS
7611
7612 /* Initialize the section. */
7613
698600e4
AM
7614 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7615 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7616
7617 elf_text_section->symbol = elf_text_symbol;
698600e4 7618 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7619
7620 elf_text_section->name = ".text";
7621 elf_text_section->flags = SEC_NO_FLAGS;
7622 elf_text_section->output_section = NULL;
7623 elf_text_section->owner = abfd;
7624 elf_text_symbol->name = ".text";
7625 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7626 elf_text_symbol->section = elf_text_section;
7627 }
7628 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7629 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7630 so I took it out. */
698600e4 7631 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7632 break;
7633
7634 case SHN_MIPS_ACOMMON:
7635 /* Fall through. XXX Can we treat this as allocated data? */
7636 case SHN_MIPS_DATA:
7637 /* This section is used in a shared object. */
698600e4 7638 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7639 {
7640 asymbol *elf_data_symbol;
7641 asection *elf_data_section;
7642 bfd_size_type amt = sizeof (asection);
7643
7644 elf_data_section = bfd_zalloc (abfd, amt);
7645 if (elf_data_section == NULL)
b34976b6 7646 return FALSE;
b49e97c9
TS
7647
7648 amt = sizeof (asymbol);
7649 elf_data_symbol = bfd_zalloc (abfd, amt);
7650 if (elf_data_symbol == NULL)
b34976b6 7651 return FALSE;
b49e97c9
TS
7652
7653 /* Initialize the section. */
7654
698600e4
AM
7655 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7656 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7657
7658 elf_data_section->symbol = elf_data_symbol;
698600e4 7659 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7660
7661 elf_data_section->name = ".data";
7662 elf_data_section->flags = SEC_NO_FLAGS;
7663 elf_data_section->output_section = NULL;
7664 elf_data_section->owner = abfd;
7665 elf_data_symbol->name = ".data";
7666 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7667 elf_data_symbol->section = elf_data_section;
7668 }
7669 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7670 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7671 so I took it out. */
698600e4 7672 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7673 break;
7674
7675 case SHN_MIPS_SUNDEFINED:
7676 *secp = bfd_und_section_ptr;
7677 break;
7678 }
7679
7680 if (SGI_COMPAT (abfd)
0e1862bb 7681 && ! bfd_link_pic (info)
f13a99db 7682 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7683 && strcmp (*namep, "__rld_obj_head") == 0)
7684 {
7685 struct elf_link_hash_entry *h;
14a793b2 7686 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7687
7688 /* Mark __rld_obj_head as dynamic. */
14a793b2 7689 bh = NULL;
b49e97c9 7690 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7691 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7692 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7693 return FALSE;
14a793b2
AM
7694
7695 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7696 h->non_elf = 0;
7697 h->def_regular = 1;
b49e97c9
TS
7698 h->type = STT_OBJECT;
7699
c152c796 7700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7701 return FALSE;
b49e97c9 7702
b34976b6 7703 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7704 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7705 }
7706
7707 /* If this is a mips16 text symbol, add 1 to the value to make it
7708 odd. This will cause something like .word SYM to come up with
7709 the right value when it is loaded into the PC. */
df58fc94 7710 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7711 ++*valp;
7712
b34976b6 7713 return TRUE;
b49e97c9
TS
7714}
7715
7716/* This hook function is called before the linker writes out a global
7717 symbol. We mark symbols as small common if appropriate. This is
7718 also where we undo the increment of the value for a mips16 symbol. */
7719
6e0b88f1 7720int
9719ad41
RS
7721_bfd_mips_elf_link_output_symbol_hook
7722 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7723 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7724 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7725{
7726 /* If we see a common symbol, which implies a relocatable link, then
7727 if a symbol was small common in an input file, mark it as small
7728 common in the output file. */
7729 if (sym->st_shndx == SHN_COMMON
7730 && strcmp (input_sec->name, ".scommon") == 0)
7731 sym->st_shndx = SHN_MIPS_SCOMMON;
7732
df58fc94 7733 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7734 sym->st_value &= ~1;
b49e97c9 7735
6e0b88f1 7736 return 1;
b49e97c9
TS
7737}
7738\f
7739/* Functions for the dynamic linker. */
7740
7741/* Create dynamic sections when linking against a dynamic object. */
7742
b34976b6 7743bfd_boolean
9719ad41 7744_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7745{
7746 struct elf_link_hash_entry *h;
14a793b2 7747 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7748 flagword flags;
7749 register asection *s;
7750 const char * const *namep;
0a44bf69 7751 struct mips_elf_link_hash_table *htab;
b49e97c9 7752
0a44bf69 7753 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7754 BFD_ASSERT (htab != NULL);
7755
b49e97c9
TS
7756 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7757 | SEC_LINKER_CREATED | SEC_READONLY);
7758
0a44bf69
RS
7759 /* The psABI requires a read-only .dynamic section, but the VxWorks
7760 EABI doesn't. */
7761 if (!htab->is_vxworks)
b49e97c9 7762 {
3d4d4302 7763 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7764 if (s != NULL)
7765 {
7766 if (! bfd_set_section_flags (abfd, s, flags))
7767 return FALSE;
7768 }
b49e97c9
TS
7769 }
7770
7771 /* We need to create .got section. */
23cc69b6 7772 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7773 return FALSE;
7774
0a44bf69 7775 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7776 return FALSE;
b49e97c9 7777
b49e97c9 7778 /* Create .stub section. */
3d4d4302
AM
7779 s = bfd_make_section_anyway_with_flags (abfd,
7780 MIPS_ELF_STUB_SECTION_NAME (abfd),
7781 flags | SEC_CODE);
4e41d0d7
RS
7782 if (s == NULL
7783 || ! bfd_set_section_alignment (abfd, s,
7784 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7785 return FALSE;
7786 htab->sstubs = s;
b49e97c9 7787
e6aea42d 7788 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7789 && bfd_link_executable (info)
3d4d4302 7790 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7791 {
3d4d4302
AM
7792 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7793 flags &~ (flagword) SEC_READONLY);
b49e97c9 7794 if (s == NULL
b49e97c9
TS
7795 || ! bfd_set_section_alignment (abfd, s,
7796 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7797 return FALSE;
b49e97c9
TS
7798 }
7799
7800 /* On IRIX5, we adjust add some additional symbols and change the
7801 alignments of several sections. There is no ABI documentation
7802 indicating that this is necessary on IRIX6, nor any evidence that
7803 the linker takes such action. */
7804 if (IRIX_COMPAT (abfd) == ict_irix5)
7805 {
7806 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7807 {
14a793b2 7808 bh = NULL;
b49e97c9 7809 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7810 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7811 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7812 return FALSE;
14a793b2
AM
7813
7814 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7815 h->non_elf = 0;
7816 h->def_regular = 1;
b49e97c9
TS
7817 h->type = STT_SECTION;
7818
c152c796 7819 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7820 return FALSE;
b49e97c9
TS
7821 }
7822
7823 /* We need to create a .compact_rel section. */
7824 if (SGI_COMPAT (abfd))
7825 {
7826 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7827 return FALSE;
b49e97c9
TS
7828 }
7829
44c410de 7830 /* Change alignments of some sections. */
3d4d4302 7831 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7832 if (s != NULL)
a253d456
NC
7833 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7834
3d4d4302 7835 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7836 if (s != NULL)
a253d456
NC
7837 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7838
3d4d4302 7839 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7840 if (s != NULL)
a253d456
NC
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
3d4d4302 7843 /* ??? */
b49e97c9
TS
7844 s = bfd_get_section_by_name (abfd, ".reginfo");
7845 if (s != NULL)
a253d456
NC
7846 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7847
3d4d4302 7848 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7849 if (s != NULL)
a253d456 7850 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7851 }
7852
0e1862bb 7853 if (bfd_link_executable (info))
b49e97c9 7854 {
14a793b2
AM
7855 const char *name;
7856
7857 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7858 bh = NULL;
7859 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7860 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7861 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7862 return FALSE;
14a793b2
AM
7863
7864 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7865 h->non_elf = 0;
7866 h->def_regular = 1;
b49e97c9
TS
7867 h->type = STT_SECTION;
7868
c152c796 7869 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7870 return FALSE;
b49e97c9
TS
7871
7872 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7873 {
7874 /* __rld_map is a four byte word located in the .data section
7875 and is filled in by the rtld to contain a pointer to
7876 the _r_debug structure. Its symbol value will be set in
7877 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7878 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7879 BFD_ASSERT (s != NULL);
14a793b2 7880
0abfb97a
L
7881 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7882 bh = NULL;
7883 if (!(_bfd_generic_link_add_one_symbol
7884 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7885 get_elf_backend_data (abfd)->collect, &bh)))
7886 return FALSE;
b49e97c9 7887
0abfb97a
L
7888 h = (struct elf_link_hash_entry *) bh;
7889 h->non_elf = 0;
7890 h->def_regular = 1;
7891 h->type = STT_OBJECT;
7892
7893 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7894 return FALSE;
b4082c70 7895 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7896 }
7897 }
7898
861fb55a 7899 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7900 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7901 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7902 return FALSE;
7903
1bbce132
MR
7904 /* Do the usual VxWorks handling. */
7905 if (htab->is_vxworks
7906 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7907 return FALSE;
0a44bf69 7908
b34976b6 7909 return TRUE;
b49e97c9
TS
7910}
7911\f
c224138d
RS
7912/* Return true if relocation REL against section SEC is a REL rather than
7913 RELA relocation. RELOCS is the first relocation in the section and
7914 ABFD is the bfd that contains SEC. */
7915
7916static bfd_boolean
7917mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7918 const Elf_Internal_Rela *relocs,
7919 const Elf_Internal_Rela *rel)
7920{
7921 Elf_Internal_Shdr *rel_hdr;
7922 const struct elf_backend_data *bed;
7923
d4730f92
BS
7924 /* To determine which flavor of relocation this is, we depend on the
7925 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7926 rel_hdr = elf_section_data (sec)->rel.hdr;
7927 if (rel_hdr == NULL)
7928 return FALSE;
c224138d 7929 bed = get_elf_backend_data (abfd);
d4730f92
BS
7930 return ((size_t) (rel - relocs)
7931 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7932}
7933
7934/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7935 HOWTO is the relocation's howto and CONTENTS points to the contents
7936 of the section that REL is against. */
7937
7938static bfd_vma
7939mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7940 reloc_howto_type *howto, bfd_byte *contents)
7941{
7942 bfd_byte *location;
7943 unsigned int r_type;
7944 bfd_vma addend;
17c6c9d9 7945 bfd_vma bytes;
c224138d
RS
7946
7947 r_type = ELF_R_TYPE (abfd, rel->r_info);
7948 location = contents + rel->r_offset;
7949
7950 /* Get the addend, which is stored in the input file. */
df58fc94 7951 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7952 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7953 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7954
17c6c9d9
MR
7955 addend = bytes & howto->src_mask;
7956
7957 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7958 accordingly. */
7959 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7960 addend <<= 1;
7961
7962 return addend;
c224138d
RS
7963}
7964
7965/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7966 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7967 and update *ADDEND with the final addend. Return true on success
7968 or false if the LO16 could not be found. RELEND is the exclusive
7969 upper bound on the relocations for REL's section. */
7970
7971static bfd_boolean
7972mips_elf_add_lo16_rel_addend (bfd *abfd,
7973 const Elf_Internal_Rela *rel,
7974 const Elf_Internal_Rela *relend,
7975 bfd_byte *contents, bfd_vma *addend)
7976{
7977 unsigned int r_type, lo16_type;
7978 const Elf_Internal_Rela *lo16_relocation;
7979 reloc_howto_type *lo16_howto;
7980 bfd_vma l;
7981
7982 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7983 if (mips16_reloc_p (r_type))
c224138d 7984 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7985 else if (micromips_reloc_p (r_type))
7986 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7987 else if (r_type == R_MIPS_PCHI16)
7988 lo16_type = R_MIPS_PCLO16;
c224138d
RS
7989 else
7990 lo16_type = R_MIPS_LO16;
7991
7992 /* The combined value is the sum of the HI16 addend, left-shifted by
7993 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7994 code does a `lui' of the HI16 value, and then an `addiu' of the
7995 LO16 value.)
7996
7997 Scan ahead to find a matching LO16 relocation.
7998
7999 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8000 be immediately following. However, for the IRIX6 ABI, the next
8001 relocation may be a composed relocation consisting of several
8002 relocations for the same address. In that case, the R_MIPS_LO16
8003 relocation may occur as one of these. We permit a similar
8004 extension in general, as that is useful for GCC.
8005
8006 In some cases GCC dead code elimination removes the LO16 but keeps
8007 the corresponding HI16. This is strictly speaking a violation of
8008 the ABI but not immediately harmful. */
8009 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8010 if (lo16_relocation == NULL)
8011 return FALSE;
8012
8013 /* Obtain the addend kept there. */
8014 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8015 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8016
8017 l <<= lo16_howto->rightshift;
8018 l = _bfd_mips_elf_sign_extend (l, 16);
8019
8020 *addend <<= 16;
8021 *addend += l;
8022 return TRUE;
8023}
8024
8025/* Try to read the contents of section SEC in bfd ABFD. Return true and
8026 store the contents in *CONTENTS on success. Assume that *CONTENTS
8027 already holds the contents if it is nonull on entry. */
8028
8029static bfd_boolean
8030mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8031{
8032 if (*contents)
8033 return TRUE;
8034
8035 /* Get cached copy if it exists. */
8036 if (elf_section_data (sec)->this_hdr.contents != NULL)
8037 {
8038 *contents = elf_section_data (sec)->this_hdr.contents;
8039 return TRUE;
8040 }
8041
8042 return bfd_malloc_and_get_section (abfd, sec, contents);
8043}
8044
1bbce132
MR
8045/* Make a new PLT record to keep internal data. */
8046
8047static struct plt_entry *
8048mips_elf_make_plt_record (bfd *abfd)
8049{
8050 struct plt_entry *entry;
8051
8052 entry = bfd_zalloc (abfd, sizeof (*entry));
8053 if (entry == NULL)
8054 return NULL;
8055
8056 entry->stub_offset = MINUS_ONE;
8057 entry->mips_offset = MINUS_ONE;
8058 entry->comp_offset = MINUS_ONE;
8059 entry->gotplt_index = MINUS_ONE;
8060 return entry;
8061}
8062
b49e97c9 8063/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8064 allocate space in the global offset table and record the need for
8065 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8066
b34976b6 8067bfd_boolean
9719ad41
RS
8068_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8069 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8070{
8071 const char *name;
8072 bfd *dynobj;
8073 Elf_Internal_Shdr *symtab_hdr;
8074 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8075 size_t extsymoff;
8076 const Elf_Internal_Rela *rel;
8077 const Elf_Internal_Rela *rel_end;
b49e97c9 8078 asection *sreloc;
9c5bfbb7 8079 const struct elf_backend_data *bed;
0a44bf69 8080 struct mips_elf_link_hash_table *htab;
c224138d
RS
8081 bfd_byte *contents;
8082 bfd_vma addend;
8083 reloc_howto_type *howto;
b49e97c9 8084
0e1862bb 8085 if (bfd_link_relocatable (info))
b34976b6 8086 return TRUE;
b49e97c9 8087
0a44bf69 8088 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8089 BFD_ASSERT (htab != NULL);
8090
b49e97c9
TS
8091 dynobj = elf_hash_table (info)->dynobj;
8092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8093 sym_hashes = elf_sym_hashes (abfd);
8094 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8095
738e5348
RS
8096 bed = get_elf_backend_data (abfd);
8097 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8098
b49e97c9
TS
8099 /* Check for the mips16 stub sections. */
8100
8101 name = bfd_get_section_name (abfd, sec);
b9d58d71 8102 if (FN_STUB_P (name))
b49e97c9
TS
8103 {
8104 unsigned long r_symndx;
8105
8106 /* Look at the relocation information to figure out which symbol
8107 this is for. */
8108
cb4437b8 8109 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8110 if (r_symndx == 0)
8111 {
4eca0228 8112 _bfd_error_handler
695344c0 8113 /* xgettext:c-format */
738e5348
RS
8114 (_("%B: Warning: cannot determine the target function for"
8115 " stub section `%s'"),
8116 abfd, name);
8117 bfd_set_error (bfd_error_bad_value);
8118 return FALSE;
8119 }
b49e97c9
TS
8120
8121 if (r_symndx < extsymoff
8122 || sym_hashes[r_symndx - extsymoff] == NULL)
8123 {
8124 asection *o;
8125
8126 /* This stub is for a local symbol. This stub will only be
8127 needed if there is some relocation in this BFD, other
8128 than a 16 bit function call, which refers to this symbol. */
8129 for (o = abfd->sections; o != NULL; o = o->next)
8130 {
8131 Elf_Internal_Rela *sec_relocs;
8132 const Elf_Internal_Rela *r, *rend;
8133
8134 /* We can ignore stub sections when looking for relocs. */
8135 if ((o->flags & SEC_RELOC) == 0
8136 || o->reloc_count == 0
738e5348 8137 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8138 continue;
8139
45d6a902 8140 sec_relocs
9719ad41 8141 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8142 info->keep_memory);
b49e97c9 8143 if (sec_relocs == NULL)
b34976b6 8144 return FALSE;
b49e97c9
TS
8145
8146 rend = sec_relocs + o->reloc_count;
8147 for (r = sec_relocs; r < rend; r++)
8148 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8149 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8150 break;
8151
6cdc0ccc 8152 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8153 free (sec_relocs);
8154
8155 if (r < rend)
8156 break;
8157 }
8158
8159 if (o == NULL)
8160 {
8161 /* There is no non-call reloc for this stub, so we do
8162 not need it. Since this function is called before
8163 the linker maps input sections to output sections, we
8164 can easily discard it by setting the SEC_EXCLUDE
8165 flag. */
8166 sec->flags |= SEC_EXCLUDE;
b34976b6 8167 return TRUE;
b49e97c9
TS
8168 }
8169
8170 /* Record this stub in an array of local symbol stubs for
8171 this BFD. */
698600e4 8172 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8173 {
8174 unsigned long symcount;
8175 asection **n;
8176 bfd_size_type amt;
8177
8178 if (elf_bad_symtab (abfd))
8179 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8180 else
8181 symcount = symtab_hdr->sh_info;
8182 amt = symcount * sizeof (asection *);
9719ad41 8183 n = bfd_zalloc (abfd, amt);
b49e97c9 8184 if (n == NULL)
b34976b6 8185 return FALSE;
698600e4 8186 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8187 }
8188
b9d58d71 8189 sec->flags |= SEC_KEEP;
698600e4 8190 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8191
8192 /* We don't need to set mips16_stubs_seen in this case.
8193 That flag is used to see whether we need to look through
8194 the global symbol table for stubs. We don't need to set
8195 it here, because we just have a local stub. */
8196 }
8197 else
8198 {
8199 struct mips_elf_link_hash_entry *h;
8200
8201 h = ((struct mips_elf_link_hash_entry *)
8202 sym_hashes[r_symndx - extsymoff]);
8203
973a3492
L
8204 while (h->root.root.type == bfd_link_hash_indirect
8205 || h->root.root.type == bfd_link_hash_warning)
8206 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8207
b49e97c9
TS
8208 /* H is the symbol this stub is for. */
8209
b9d58d71
TS
8210 /* If we already have an appropriate stub for this function, we
8211 don't need another one, so we can discard this one. Since
8212 this function is called before the linker maps input sections
8213 to output sections, we can easily discard it by setting the
8214 SEC_EXCLUDE flag. */
8215 if (h->fn_stub != NULL)
8216 {
8217 sec->flags |= SEC_EXCLUDE;
8218 return TRUE;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
b49e97c9 8222 h->fn_stub = sec;
b34976b6 8223 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8224 }
8225 }
b9d58d71 8226 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8227 {
8228 unsigned long r_symndx;
8229 struct mips_elf_link_hash_entry *h;
8230 asection **loc;
8231
8232 /* Look at the relocation information to figure out which symbol
8233 this is for. */
8234
cb4437b8 8235 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8236 if (r_symndx == 0)
8237 {
4eca0228 8238 _bfd_error_handler
695344c0 8239 /* xgettext:c-format */
738e5348
RS
8240 (_("%B: Warning: cannot determine the target function for"
8241 " stub section `%s'"),
8242 abfd, name);
8243 bfd_set_error (bfd_error_bad_value);
8244 return FALSE;
8245 }
b49e97c9
TS
8246
8247 if (r_symndx < extsymoff
8248 || sym_hashes[r_symndx - extsymoff] == NULL)
8249 {
b9d58d71 8250 asection *o;
b49e97c9 8251
b9d58d71
TS
8252 /* This stub is for a local symbol. This stub will only be
8253 needed if there is some relocation (R_MIPS16_26) in this BFD
8254 that refers to this symbol. */
8255 for (o = abfd->sections; o != NULL; o = o->next)
8256 {
8257 Elf_Internal_Rela *sec_relocs;
8258 const Elf_Internal_Rela *r, *rend;
8259
8260 /* We can ignore stub sections when looking for relocs. */
8261 if ((o->flags & SEC_RELOC) == 0
8262 || o->reloc_count == 0
738e5348 8263 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8264 continue;
8265
8266 sec_relocs
8267 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8268 info->keep_memory);
8269 if (sec_relocs == NULL)
8270 return FALSE;
8271
8272 rend = sec_relocs + o->reloc_count;
8273 for (r = sec_relocs; r < rend; r++)
8274 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8275 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8276 break;
8277
8278 if (elf_section_data (o)->relocs != sec_relocs)
8279 free (sec_relocs);
8280
8281 if (r < rend)
8282 break;
8283 }
8284
8285 if (o == NULL)
8286 {
8287 /* There is no non-call reloc for this stub, so we do
8288 not need it. Since this function is called before
8289 the linker maps input sections to output sections, we
8290 can easily discard it by setting the SEC_EXCLUDE
8291 flag. */
8292 sec->flags |= SEC_EXCLUDE;
8293 return TRUE;
8294 }
8295
8296 /* Record this stub in an array of local symbol call_stubs for
8297 this BFD. */
698600e4 8298 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8299 {
8300 unsigned long symcount;
8301 asection **n;
8302 bfd_size_type amt;
8303
8304 if (elf_bad_symtab (abfd))
8305 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8306 else
8307 symcount = symtab_hdr->sh_info;
8308 amt = symcount * sizeof (asection *);
8309 n = bfd_zalloc (abfd, amt);
8310 if (n == NULL)
8311 return FALSE;
698600e4 8312 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8313 }
b49e97c9 8314
b9d58d71 8315 sec->flags |= SEC_KEEP;
698600e4 8316 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8317
b9d58d71
TS
8318 /* We don't need to set mips16_stubs_seen in this case.
8319 That flag is used to see whether we need to look through
8320 the global symbol table for stubs. We don't need to set
8321 it here, because we just have a local stub. */
8322 }
b49e97c9 8323 else
b49e97c9 8324 {
b9d58d71
TS
8325 h = ((struct mips_elf_link_hash_entry *)
8326 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8327
b9d58d71 8328 /* H is the symbol this stub is for. */
68ffbac6 8329
b9d58d71
TS
8330 if (CALL_FP_STUB_P (name))
8331 loc = &h->call_fp_stub;
8332 else
8333 loc = &h->call_stub;
68ffbac6 8334
b9d58d71
TS
8335 /* If we already have an appropriate stub for this function, we
8336 don't need another one, so we can discard this one. Since
8337 this function is called before the linker maps input sections
8338 to output sections, we can easily discard it by setting the
8339 SEC_EXCLUDE flag. */
8340 if (*loc != NULL)
8341 {
8342 sec->flags |= SEC_EXCLUDE;
8343 return TRUE;
8344 }
b49e97c9 8345
b9d58d71
TS
8346 sec->flags |= SEC_KEEP;
8347 *loc = sec;
8348 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8349 }
b49e97c9
TS
8350 }
8351
b49e97c9 8352 sreloc = NULL;
c224138d 8353 contents = NULL;
b49e97c9
TS
8354 for (rel = relocs; rel < rel_end; ++rel)
8355 {
8356 unsigned long r_symndx;
8357 unsigned int r_type;
8358 struct elf_link_hash_entry *h;
861fb55a 8359 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8360 bfd_boolean call_reloc_p;
8361 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8362
8363 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8364 r_type = ELF_R_TYPE (abfd, rel->r_info);
8365
8366 if (r_symndx < extsymoff)
8367 h = NULL;
8368 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8369 {
4eca0228 8370 _bfd_error_handler
695344c0 8371 /* xgettext:c-format */
d003868e
AM
8372 (_("%B: Malformed reloc detected for section %s"),
8373 abfd, name);
b49e97c9 8374 bfd_set_error (bfd_error_bad_value);
b34976b6 8375 return FALSE;
b49e97c9
TS
8376 }
8377 else
8378 {
8379 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8380 if (h != NULL)
8381 {
8382 while (h->root.type == bfd_link_hash_indirect
8383 || h->root.type == bfd_link_hash_warning)
8384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8385
8386 /* PR15323, ref flags aren't set for references in the
8387 same object. */
8388 h->root.non_ir_ref = 1;
8389 }
861fb55a 8390 }
b49e97c9 8391
861fb55a
DJ
8392 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8393 relocation into a dynamic one. */
8394 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8395
8396 /* Set CALL_RELOC_P to true if the relocation is for a call,
8397 and if pointer equality therefore doesn't matter. */
8398 call_reloc_p = FALSE;
8399
8400 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8401 into account when deciding how to define the symbol.
8402 Relocations in nonallocatable sections such as .pdr and
8403 .debug* should have no effect. */
8404 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8405
861fb55a
DJ
8406 switch (r_type)
8407 {
861fb55a
DJ
8408 case R_MIPS_CALL16:
8409 case R_MIPS_CALL_HI16:
8410 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8411 case R_MIPS16_CALL16:
8412 case R_MICROMIPS_CALL16:
8413 case R_MICROMIPS_CALL_HI16:
8414 case R_MICROMIPS_CALL_LO16:
8415 call_reloc_p = TRUE;
8416 /* Fall through. */
8417
8418 case R_MIPS_GOT16:
861fb55a
DJ
8419 case R_MIPS_GOT_HI16:
8420 case R_MIPS_GOT_LO16:
8421 case R_MIPS_GOT_PAGE:
8422 case R_MIPS_GOT_OFST:
8423 case R_MIPS_GOT_DISP:
8424 case R_MIPS_TLS_GOTTPREL:
8425 case R_MIPS_TLS_GD:
8426 case R_MIPS_TLS_LDM:
d0f13682 8427 case R_MIPS16_GOT16:
d0f13682
CLT
8428 case R_MIPS16_TLS_GOTTPREL:
8429 case R_MIPS16_TLS_GD:
8430 case R_MIPS16_TLS_LDM:
df58fc94 8431 case R_MICROMIPS_GOT16:
df58fc94
RS
8432 case R_MICROMIPS_GOT_HI16:
8433 case R_MICROMIPS_GOT_LO16:
8434 case R_MICROMIPS_GOT_PAGE:
8435 case R_MICROMIPS_GOT_OFST:
8436 case R_MICROMIPS_GOT_DISP:
8437 case R_MICROMIPS_TLS_GOTTPREL:
8438 case R_MICROMIPS_TLS_GD:
8439 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8440 if (dynobj == NULL)
8441 elf_hash_table (info)->dynobj = dynobj = abfd;
8442 if (!mips_elf_create_got_section (dynobj, info))
8443 return FALSE;
0e1862bb 8444 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8445 {
4eca0228 8446 _bfd_error_handler
695344c0 8447 /* xgettext:c-format */
861fb55a
DJ
8448 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8449 abfd, (unsigned long) rel->r_offset);
8450 bfd_set_error (bfd_error_bad_value);
8451 return FALSE;
b49e97c9 8452 }
c5d6fa44 8453 can_make_dynamic_p = TRUE;
861fb55a 8454 break;
b49e97c9 8455
c5d6fa44 8456 case R_MIPS_NONE:
99da6b5f 8457 case R_MIPS_JALR:
df58fc94 8458 case R_MICROMIPS_JALR:
c5d6fa44
RS
8459 /* These relocations have empty fields and are purely there to
8460 provide link information. The symbol value doesn't matter. */
8461 constrain_symbol_p = FALSE;
8462 break;
8463
8464 case R_MIPS_GPREL16:
8465 case R_MIPS_GPREL32:
8466 case R_MIPS16_GPREL:
8467 case R_MICROMIPS_GPREL16:
8468 /* GP-relative relocations always resolve to a definition in a
8469 regular input file, ignoring the one-definition rule. This is
8470 important for the GP setup sequence in NewABI code, which
8471 always resolves to a local function even if other relocations
8472 against the symbol wouldn't. */
8473 constrain_symbol_p = FALSE;
99da6b5f
AN
8474 break;
8475
861fb55a
DJ
8476 case R_MIPS_32:
8477 case R_MIPS_REL32:
8478 case R_MIPS_64:
8479 /* In VxWorks executables, references to external symbols
8480 must be handled using copy relocs or PLT entries; it is not
8481 possible to convert this relocation into a dynamic one.
8482
8483 For executables that use PLTs and copy-relocs, we have a
8484 choice between converting the relocation into a dynamic
8485 one or using copy relocations or PLT entries. It is
8486 usually better to do the former, unless the relocation is
8487 against a read-only section. */
0e1862bb 8488 if ((bfd_link_pic (info)
861fb55a
DJ
8489 || (h != NULL
8490 && !htab->is_vxworks
8491 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8492 && !(!info->nocopyreloc
8493 && !PIC_OBJECT_P (abfd)
8494 && MIPS_ELF_READONLY_SECTION (sec))))
8495 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8496 {
861fb55a 8497 can_make_dynamic_p = TRUE;
b49e97c9
TS
8498 if (dynobj == NULL)
8499 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8500 }
c5d6fa44 8501 break;
b49e97c9 8502
861fb55a
DJ
8503 case R_MIPS_26:
8504 case R_MIPS_PC16:
7361da2c
AB
8505 case R_MIPS_PC21_S2:
8506 case R_MIPS_PC26_S2:
861fb55a 8507 case R_MIPS16_26:
c9775dde 8508 case R_MIPS16_PC16_S1:
df58fc94
RS
8509 case R_MICROMIPS_26_S1:
8510 case R_MICROMIPS_PC7_S1:
8511 case R_MICROMIPS_PC10_S1:
8512 case R_MICROMIPS_PC16_S1:
8513 case R_MICROMIPS_PC23_S2:
c5d6fa44 8514 call_reloc_p = TRUE;
861fb55a 8515 break;
b49e97c9
TS
8516 }
8517
0a44bf69
RS
8518 if (h)
8519 {
c5d6fa44
RS
8520 if (constrain_symbol_p)
8521 {
8522 if (!can_make_dynamic_p)
8523 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8524
8525 if (!call_reloc_p)
8526 h->pointer_equality_needed = 1;
8527
8528 /* We must not create a stub for a symbol that has
8529 relocations related to taking the function's address.
8530 This doesn't apply to VxWorks, where CALL relocs refer
8531 to a .got.plt entry instead of a normal .got entry. */
8532 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8533 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8534 }
8535
0a44bf69
RS
8536 /* Relocations against the special VxWorks __GOTT_BASE__ and
8537 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8538 room for them in .rela.dyn. */
8539 if (is_gott_symbol (info, h))
8540 {
8541 if (sreloc == NULL)
8542 {
8543 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8544 if (sreloc == NULL)
8545 return FALSE;
8546 }
8547 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8548 if (MIPS_ELF_READONLY_SECTION (sec))
8549 /* We tell the dynamic linker that there are
8550 relocations against the text segment. */
8551 info->flags |= DF_TEXTREL;
0a44bf69
RS
8552 }
8553 }
df58fc94
RS
8554 else if (call_lo16_reloc_p (r_type)
8555 || got_lo16_reloc_p (r_type)
8556 || got_disp_reloc_p (r_type)
738e5348 8557 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8558 {
8559 /* We may need a local GOT entry for this relocation. We
8560 don't count R_MIPS_GOT_PAGE because we can estimate the
8561 maximum number of pages needed by looking at the size of
738e5348
RS
8562 the segment. Similar comments apply to R_MIPS*_GOT16 and
8563 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8564 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8565 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8566 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8567 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8568 rel->r_addend, info, r_type))
f4416af6 8569 return FALSE;
b49e97c9
TS
8570 }
8571
8f0c309a
CLT
8572 if (h != NULL
8573 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8574 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8575 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8576
b49e97c9
TS
8577 switch (r_type)
8578 {
8579 case R_MIPS_CALL16:
738e5348 8580 case R_MIPS16_CALL16:
df58fc94 8581 case R_MICROMIPS_CALL16:
b49e97c9
TS
8582 if (h == NULL)
8583 {
4eca0228 8584 _bfd_error_handler
695344c0 8585 /* xgettext:c-format */
d003868e
AM
8586 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8587 abfd, (unsigned long) rel->r_offset);
b49e97c9 8588 bfd_set_error (bfd_error_bad_value);
b34976b6 8589 return FALSE;
b49e97c9
TS
8590 }
8591 /* Fall through. */
8592
8593 case R_MIPS_CALL_HI16:
8594 case R_MIPS_CALL_LO16:
df58fc94
RS
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8597 if (h != NULL)
8598 {
6ccf4795
RS
8599 /* Make sure there is room in the regular GOT to hold the
8600 function's address. We may eliminate it in favour of
8601 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8602 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8603 r_type))
b34976b6 8604 return FALSE;
b49e97c9
TS
8605
8606 /* We need a stub, not a plt entry for the undefined
8607 function. But we record it as if it needs plt. See
c152c796 8608 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8609 h->needs_plt = 1;
b49e97c9
TS
8610 h->type = STT_FUNC;
8611 }
8612 break;
8613
0fdc1bf1 8614 case R_MIPS_GOT_PAGE:
df58fc94 8615 case R_MICROMIPS_GOT_PAGE:
738e5348 8616 case R_MIPS16_GOT16:
b49e97c9
TS
8617 case R_MIPS_GOT16:
8618 case R_MIPS_GOT_HI16:
8619 case R_MIPS_GOT_LO16:
df58fc94
RS
8620 case R_MICROMIPS_GOT16:
8621 case R_MICROMIPS_GOT_HI16:
8622 case R_MICROMIPS_GOT_LO16:
8623 if (!h || got_page_reloc_p (r_type))
c224138d 8624 {
3a3b6725
DJ
8625 /* This relocation needs (or may need, if h != NULL) a
8626 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8627 know for sure until we know whether the symbol is
8628 preemptible. */
c224138d
RS
8629 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8630 {
8631 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8632 return FALSE;
8633 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8634 addend = mips_elf_read_rel_addend (abfd, rel,
8635 howto, contents);
9684f078 8636 if (got16_reloc_p (r_type))
c224138d
RS
8637 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8638 contents, &addend);
8639 else
8640 addend <<= howto->rightshift;
8641 }
8642 else
8643 addend = rel->r_addend;
13db6b44
RS
8644 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8645 h, addend))
c224138d 8646 return FALSE;
13db6b44
RS
8647
8648 if (h)
8649 {
8650 struct mips_elf_link_hash_entry *hmips =
8651 (struct mips_elf_link_hash_entry *) h;
8652
8653 /* This symbol is definitely not overridable. */
8654 if (hmips->root.def_regular
0e1862bb 8655 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8656 && ! hmips->root.forced_local))
8657 h = NULL;
8658 }
c224138d 8659 }
13db6b44
RS
8660 /* If this is a global, overridable symbol, GOT_PAGE will
8661 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8662 /* Fall through. */
8663
b49e97c9 8664 case R_MIPS_GOT_DISP:
df58fc94 8665 case R_MICROMIPS_GOT_DISP:
6ccf4795 8666 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8667 FALSE, r_type))
b34976b6 8668 return FALSE;
b49e97c9
TS
8669 break;
8670
0f20cc35 8671 case R_MIPS_TLS_GOTTPREL:
d0f13682 8672 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8673 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8674 if (bfd_link_pic (info))
0f20cc35
DJ
8675 info->flags |= DF_STATIC_TLS;
8676 /* Fall through */
8677
8678 case R_MIPS_TLS_LDM:
d0f13682 8679 case R_MIPS16_TLS_LDM:
df58fc94
RS
8680 case R_MICROMIPS_TLS_LDM:
8681 if (tls_ldm_reloc_p (r_type))
0f20cc35 8682 {
cf35638d 8683 r_symndx = STN_UNDEF;
0f20cc35
DJ
8684 h = NULL;
8685 }
8686 /* Fall through */
8687
8688 case R_MIPS_TLS_GD:
d0f13682 8689 case R_MIPS16_TLS_GD:
df58fc94 8690 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8691 /* This symbol requires a global offset table entry, or two
8692 for TLS GD relocations. */
e641e783
RS
8693 if (h != NULL)
8694 {
8695 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8696 FALSE, r_type))
8697 return FALSE;
8698 }
8699 else
8700 {
8701 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8702 rel->r_addend,
8703 info, r_type))
8704 return FALSE;
8705 }
0f20cc35
DJ
8706 break;
8707
b49e97c9
TS
8708 case R_MIPS_32:
8709 case R_MIPS_REL32:
8710 case R_MIPS_64:
0a44bf69
RS
8711 /* In VxWorks executables, references to external symbols
8712 are handled using copy relocs or PLT stubs, so there's
8713 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8714 if (can_make_dynamic_p)
b49e97c9
TS
8715 {
8716 if (sreloc == NULL)
8717 {
0a44bf69 8718 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8719 if (sreloc == NULL)
f4416af6 8720 return FALSE;
b49e97c9 8721 }
0e1862bb 8722 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8723 {
8724 /* When creating a shared object, we must copy these
8725 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8726 relocs. Make room for this reloc in .rel(a).dyn. */
8727 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8728 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8729 /* We tell the dynamic linker that there are
8730 relocations against the text segment. */
8731 info->flags |= DF_TEXTREL;
8732 }
b49e97c9
TS
8733 else
8734 {
8735 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8736
9a59ad6b
DJ
8737 /* For a shared object, we must copy this relocation
8738 unless the symbol turns out to be undefined and
8739 weak with non-default visibility, in which case
8740 it will be left as zero.
8741
8742 We could elide R_MIPS_REL32 for locally binding symbols
8743 in shared libraries, but do not yet do so.
8744
8745 For an executable, we only need to copy this
8746 reloc if the symbol is defined in a dynamic
8747 object. */
b49e97c9
TS
8748 hmips = (struct mips_elf_link_hash_entry *) h;
8749 ++hmips->possibly_dynamic_relocs;
943284cc 8750 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8751 /* We need it to tell the dynamic linker if there
8752 are relocations against the text segment. */
8753 hmips->readonly_reloc = TRUE;
b49e97c9 8754 }
b49e97c9
TS
8755 }
8756
8757 if (SGI_COMPAT (abfd))
8758 mips_elf_hash_table (info)->compact_rel_size +=
8759 sizeof (Elf32_External_crinfo);
8760 break;
8761
8762 case R_MIPS_26:
8763 case R_MIPS_GPREL16:
8764 case R_MIPS_LITERAL:
8765 case R_MIPS_GPREL32:
df58fc94
RS
8766 case R_MICROMIPS_26_S1:
8767 case R_MICROMIPS_GPREL16:
8768 case R_MICROMIPS_LITERAL:
8769 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8770 if (SGI_COMPAT (abfd))
8771 mips_elf_hash_table (info)->compact_rel_size +=
8772 sizeof (Elf32_External_crinfo);
8773 break;
8774
8775 /* This relocation describes the C++ object vtable hierarchy.
8776 Reconstruct it for later use during GC. */
8777 case R_MIPS_GNU_VTINHERIT:
c152c796 8778 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8779 return FALSE;
b49e97c9
TS
8780 break;
8781
8782 /* This relocation describes which C++ vtable entries are actually
8783 used. Record for later use during GC. */
8784 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8785 BFD_ASSERT (h != NULL);
8786 if (h != NULL
8787 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8788 return FALSE;
b49e97c9
TS
8789 break;
8790
8791 default:
8792 break;
8793 }
8794
1bbce132
MR
8795 /* Record the need for a PLT entry. At this point we don't know
8796 yet if we are going to create a PLT in the first place, but
8797 we only record whether the relocation requires a standard MIPS
8798 or a compressed code entry anyway. If we don't make a PLT after
8799 all, then we'll just ignore these arrangements. Likewise if
8800 a PLT entry is not created because the symbol is satisfied
8801 locally. */
8802 if (h != NULL
54806ffa
MR
8803 && (branch_reloc_p (r_type)
8804 || mips16_branch_reloc_p (r_type)
8805 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8806 && !SYMBOL_CALLS_LOCAL (info, h))
8807 {
8808 if (h->plt.plist == NULL)
8809 h->plt.plist = mips_elf_make_plt_record (abfd);
8810 if (h->plt.plist == NULL)
8811 return FALSE;
8812
54806ffa 8813 if (branch_reloc_p (r_type))
1bbce132
MR
8814 h->plt.plist->need_mips = TRUE;
8815 else
8816 h->plt.plist->need_comp = TRUE;
8817 }
8818
738e5348
RS
8819 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8820 if there is one. We only need to handle global symbols here;
8821 we decide whether to keep or delete stubs for local symbols
8822 when processing the stub's relocations. */
b49e97c9 8823 if (h != NULL
738e5348
RS
8824 && !mips16_call_reloc_p (r_type)
8825 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8826 {
8827 struct mips_elf_link_hash_entry *mh;
8828
8829 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8830 mh->need_fn_stub = TRUE;
b49e97c9 8831 }
861fb55a
DJ
8832
8833 /* Refuse some position-dependent relocations when creating a
8834 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8835 not PIC, but we can create dynamic relocations and the result
8836 will be fine. Also do not refuse R_MIPS_LO16, which can be
8837 combined with R_MIPS_GOT16. */
0e1862bb 8838 if (bfd_link_pic (info))
861fb55a
DJ
8839 {
8840 switch (r_type)
8841 {
8842 case R_MIPS16_HI16:
8843 case R_MIPS_HI16:
8844 case R_MIPS_HIGHER:
8845 case R_MIPS_HIGHEST:
df58fc94
RS
8846 case R_MICROMIPS_HI16:
8847 case R_MICROMIPS_HIGHER:
8848 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8849 /* Don't refuse a high part relocation if it's against
8850 no symbol (e.g. part of a compound relocation). */
cf35638d 8851 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8852 break;
8853
8854 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8855 and has a special meaning. */
8856 if (!NEWABI_P (abfd) && h != NULL
8857 && strcmp (h->root.root.string, "_gp_disp") == 0)
8858 break;
8859
0fc1eb3c
RS
8860 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8861 if (is_gott_symbol (info, h))
8862 break;
8863
861fb55a
DJ
8864 /* FALLTHROUGH */
8865
8866 case R_MIPS16_26:
8867 case R_MIPS_26:
df58fc94 8868 case R_MICROMIPS_26_S1:
861fb55a 8869 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8870 _bfd_error_handler
695344c0 8871 /* xgettext:c-format */
861fb55a
DJ
8872 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8873 abfd, howto->name,
8874 (h) ? h->root.root.string : "a local symbol");
8875 bfd_set_error (bfd_error_bad_value);
8876 return FALSE;
8877 default:
8878 break;
8879 }
8880 }
b49e97c9
TS
8881 }
8882
b34976b6 8883 return TRUE;
b49e97c9
TS
8884}
8885\f
d0647110 8886bfd_boolean
9719ad41
RS
8887_bfd_mips_relax_section (bfd *abfd, asection *sec,
8888 struct bfd_link_info *link_info,
8889 bfd_boolean *again)
d0647110
AO
8890{
8891 Elf_Internal_Rela *internal_relocs;
8892 Elf_Internal_Rela *irel, *irelend;
8893 Elf_Internal_Shdr *symtab_hdr;
8894 bfd_byte *contents = NULL;
d0647110
AO
8895 size_t extsymoff;
8896 bfd_boolean changed_contents = FALSE;
8897 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8898 Elf_Internal_Sym *isymbuf = NULL;
8899
8900 /* We are not currently changing any sizes, so only one pass. */
8901 *again = FALSE;
8902
0e1862bb 8903 if (bfd_link_relocatable (link_info))
d0647110
AO
8904 return TRUE;
8905
9719ad41 8906 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8907 link_info->keep_memory);
d0647110
AO
8908 if (internal_relocs == NULL)
8909 return TRUE;
8910
8911 irelend = internal_relocs + sec->reloc_count
8912 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8913 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8914 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8915
8916 for (irel = internal_relocs; irel < irelend; irel++)
8917 {
8918 bfd_vma symval;
8919 bfd_signed_vma sym_offset;
8920 unsigned int r_type;
8921 unsigned long r_symndx;
8922 asection *sym_sec;
8923 unsigned long instruction;
8924
8925 /* Turn jalr into bgezal, and jr into beq, if they're marked
8926 with a JALR relocation, that indicate where they jump to.
8927 This saves some pipeline bubbles. */
8928 r_type = ELF_R_TYPE (abfd, irel->r_info);
8929 if (r_type != R_MIPS_JALR)
8930 continue;
8931
8932 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8933 /* Compute the address of the jump target. */
8934 if (r_symndx >= extsymoff)
8935 {
8936 struct mips_elf_link_hash_entry *h
8937 = ((struct mips_elf_link_hash_entry *)
8938 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8939
8940 while (h->root.root.type == bfd_link_hash_indirect
8941 || h->root.root.type == bfd_link_hash_warning)
8942 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8943
d0647110
AO
8944 /* If a symbol is undefined, or if it may be overridden,
8945 skip it. */
8946 if (! ((h->root.root.type == bfd_link_hash_defined
8947 || h->root.root.type == bfd_link_hash_defweak)
8948 && h->root.root.u.def.section)
0e1862bb 8949 || (bfd_link_pic (link_info) && ! link_info->symbolic
f5385ebf 8950 && !h->root.forced_local))
d0647110
AO
8951 continue;
8952
8953 sym_sec = h->root.root.u.def.section;
8954 if (sym_sec->output_section)
8955 symval = (h->root.root.u.def.value
8956 + sym_sec->output_section->vma
8957 + sym_sec->output_offset);
8958 else
8959 symval = h->root.root.u.def.value;
8960 }
8961 else
8962 {
8963 Elf_Internal_Sym *isym;
8964
8965 /* Read this BFD's symbols if we haven't done so already. */
8966 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8967 {
8968 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8969 if (isymbuf == NULL)
8970 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8971 symtab_hdr->sh_info, 0,
8972 NULL, NULL, NULL);
8973 if (isymbuf == NULL)
8974 goto relax_return;
8975 }
8976
8977 isym = isymbuf + r_symndx;
8978 if (isym->st_shndx == SHN_UNDEF)
8979 continue;
8980 else if (isym->st_shndx == SHN_ABS)
8981 sym_sec = bfd_abs_section_ptr;
8982 else if (isym->st_shndx == SHN_COMMON)
8983 sym_sec = bfd_com_section_ptr;
8984 else
8985 sym_sec
8986 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8987 symval = isym->st_value
8988 + sym_sec->output_section->vma
8989 + sym_sec->output_offset;
8990 }
8991
8992 /* Compute branch offset, from delay slot of the jump to the
8993 branch target. */
8994 sym_offset = (symval + irel->r_addend)
8995 - (sec_start + irel->r_offset + 4);
8996
8997 /* Branch offset must be properly aligned. */
8998 if ((sym_offset & 3) != 0)
8999 continue;
9000
9001 sym_offset >>= 2;
9002
9003 /* Check that it's in range. */
9004 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9005 continue;
143d77c5 9006
d0647110 9007 /* Get the section contents if we haven't done so already. */
c224138d
RS
9008 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9009 goto relax_return;
d0647110
AO
9010
9011 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9012
9013 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9014 if ((instruction & 0xfc1fffff) == 0x0000f809)
9015 instruction = 0x04110000;
9016 /* If it was jr <reg>, turn it into b <target>. */
9017 else if ((instruction & 0xfc1fffff) == 0x00000008)
9018 instruction = 0x10000000;
9019 else
9020 continue;
9021
9022 instruction |= (sym_offset & 0xffff);
9023 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9024 changed_contents = TRUE;
9025 }
9026
9027 if (contents != NULL
9028 && elf_section_data (sec)->this_hdr.contents != contents)
9029 {
9030 if (!changed_contents && !link_info->keep_memory)
9031 free (contents);
9032 else
9033 {
9034 /* Cache the section contents for elf_link_input_bfd. */
9035 elf_section_data (sec)->this_hdr.contents = contents;
9036 }
9037 }
9038 return TRUE;
9039
143d77c5 9040 relax_return:
eea6121a
AM
9041 if (contents != NULL
9042 && elf_section_data (sec)->this_hdr.contents != contents)
9043 free (contents);
d0647110
AO
9044 return FALSE;
9045}
9046\f
9a59ad6b
DJ
9047/* Allocate space for global sym dynamic relocs. */
9048
9049static bfd_boolean
9050allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9051{
9052 struct bfd_link_info *info = inf;
9053 bfd *dynobj;
9054 struct mips_elf_link_hash_entry *hmips;
9055 struct mips_elf_link_hash_table *htab;
9056
9057 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9058 BFD_ASSERT (htab != NULL);
9059
9a59ad6b
DJ
9060 dynobj = elf_hash_table (info)->dynobj;
9061 hmips = (struct mips_elf_link_hash_entry *) h;
9062
9063 /* VxWorks executables are handled elsewhere; we only need to
9064 allocate relocations in shared objects. */
0e1862bb 9065 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9066 return TRUE;
9067
7686d77d
AM
9068 /* Ignore indirect symbols. All relocations against such symbols
9069 will be redirected to the target symbol. */
9070 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9071 return TRUE;
9072
9a59ad6b
DJ
9073 /* If this symbol is defined in a dynamic object, or we are creating
9074 a shared library, we will need to copy any R_MIPS_32 or
9075 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9076 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9077 && hmips->possibly_dynamic_relocs != 0
9078 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9079 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9080 || bfd_link_pic (info)))
9a59ad6b
DJ
9081 {
9082 bfd_boolean do_copy = TRUE;
9083
9084 if (h->root.type == bfd_link_hash_undefweak)
9085 {
9086 /* Do not copy relocations for undefined weak symbols with
9087 non-default visibility. */
9088 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9089 do_copy = FALSE;
9090
9091 /* Make sure undefined weak symbols are output as a dynamic
9092 symbol in PIEs. */
9093 else if (h->dynindx == -1 && !h->forced_local)
9094 {
9095 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9096 return FALSE;
9097 }
9098 }
9099
9100 if (do_copy)
9101 {
aff469fa 9102 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9103 the SVR4 psABI requires it to have a dynamic symbol table
9104 index greater that DT_MIPS_GOTSYM if there are dynamic
9105 relocations against it.
9106
9107 VxWorks does not enforce the same mapping between the GOT
9108 and the symbol table, so the same requirement does not
9109 apply there. */
6ccf4795
RS
9110 if (!htab->is_vxworks)
9111 {
9112 if (hmips->global_got_area > GGA_RELOC_ONLY)
9113 hmips->global_got_area = GGA_RELOC_ONLY;
9114 hmips->got_only_for_calls = FALSE;
9115 }
aff469fa 9116
9a59ad6b
DJ
9117 mips_elf_allocate_dynamic_relocations
9118 (dynobj, info, hmips->possibly_dynamic_relocs);
9119 if (hmips->readonly_reloc)
9120 /* We tell the dynamic linker that there are relocations
9121 against the text segment. */
9122 info->flags |= DF_TEXTREL;
9123 }
9124 }
9125
9126 return TRUE;
9127}
9128
b49e97c9
TS
9129/* Adjust a symbol defined by a dynamic object and referenced by a
9130 regular object. The current definition is in some section of the
9131 dynamic object, but we're not including those sections. We have to
9132 change the definition to something the rest of the link can
9133 understand. */
9134
b34976b6 9135bfd_boolean
9719ad41
RS
9136_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9137 struct elf_link_hash_entry *h)
b49e97c9
TS
9138{
9139 bfd *dynobj;
9140 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9141 struct mips_elf_link_hash_table *htab;
5474d94f 9142 asection *s, *srel;
b49e97c9 9143
5108fc1b 9144 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9145 BFD_ASSERT (htab != NULL);
9146
b49e97c9 9147 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9148 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9149
9150 /* Make sure we know what is going on here. */
9151 BFD_ASSERT (dynobj != NULL
f5385ebf 9152 && (h->needs_plt
f6e332e6 9153 || h->u.weakdef != NULL
f5385ebf
AM
9154 || (h->def_dynamic
9155 && h->ref_regular
9156 && !h->def_regular)));
b49e97c9 9157
b49e97c9 9158 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9159
861fb55a
DJ
9160 /* If there are call relocations against an externally-defined symbol,
9161 see whether we can create a MIPS lazy-binding stub for it. We can
9162 only do this if all references to the function are through call
9163 relocations, and in that case, the traditional lazy-binding stubs
9164 are much more efficient than PLT entries.
9165
9166 Traditional stubs are only available on SVR4 psABI-based systems;
9167 VxWorks always uses PLTs instead. */
9168 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9169 {
9170 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9171 return TRUE;
b49e97c9
TS
9172
9173 /* If this symbol is not defined in a regular file, then set
9174 the symbol to the stub location. This is required to make
9175 function pointers compare as equal between the normal
9176 executable and the shared library. */
f5385ebf 9177 if (!h->def_regular)
b49e97c9 9178 {
33bb52fb
RS
9179 hmips->needs_lazy_stub = TRUE;
9180 htab->lazy_stub_count++;
b34976b6 9181 return TRUE;
b49e97c9
TS
9182 }
9183 }
861fb55a
DJ
9184 /* As above, VxWorks requires PLT entries for externally-defined
9185 functions that are only accessed through call relocations.
b49e97c9 9186
861fb55a
DJ
9187 Both VxWorks and non-VxWorks targets also need PLT entries if there
9188 are static-only relocations against an externally-defined function.
9189 This can technically occur for shared libraries if there are
9190 branches to the symbol, although it is unlikely that this will be
9191 used in practice due to the short ranges involved. It can occur
9192 for any relative or absolute relocation in executables; in that
9193 case, the PLT entry becomes the function's canonical address. */
9194 else if (((h->needs_plt && !hmips->no_fn_stub)
9195 || (h->type == STT_FUNC && hmips->has_static_relocs))
9196 && htab->use_plts_and_copy_relocs
9197 && !SYMBOL_CALLS_LOCAL (info, h)
9198 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9199 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9200 {
1bbce132
MR
9201 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9202 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9203
9204 /* If this is the first symbol to need a PLT entry, then make some
9205 basic setup. Also work out PLT entry sizes. We'll need them
9206 for PLT offset calculations. */
9207 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9208 {
ce558b89 9209 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9210 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9211
861fb55a
DJ
9212 /* If we're using the PLT additions to the psABI, each PLT
9213 entry is 16 bytes and the PLT0 entry is 32 bytes.
9214 Encourage better cache usage by aligning. We do this
9215 lazily to avoid pessimizing traditional objects. */
9216 if (!htab->is_vxworks
ce558b89 9217 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9218 return FALSE;
0a44bf69 9219
861fb55a
DJ
9220 /* Make sure that .got.plt is word-aligned. We do this lazily
9221 for the same reason as above. */
ce558b89 9222 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9223 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9224 return FALSE;
0a44bf69 9225
861fb55a
DJ
9226 /* On non-VxWorks targets, the first two entries in .got.plt
9227 are reserved. */
9228 if (!htab->is_vxworks)
1bbce132
MR
9229 htab->plt_got_index
9230 += (get_elf_backend_data (dynobj)->got_header_size
9231 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9232
861fb55a
DJ
9233 /* On VxWorks, also allocate room for the header's
9234 .rela.plt.unloaded entries. */
0e1862bb 9235 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9236 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9237
9238 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9239 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9242 else if (htab->is_vxworks)
9243 htab->plt_mips_entry_size
9244 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9245 else if (newabi_p)
9246 htab->plt_mips_entry_size
9247 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9248 else if (!micromips_p)
1bbce132
MR
9249 {
9250 htab->plt_mips_entry_size
9251 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9252 htab->plt_comp_entry_size
833794fc
MR
9253 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9254 }
9255 else if (htab->insn32)
9256 {
9257 htab->plt_mips_entry_size
9258 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9259 htab->plt_comp_entry_size
9260 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9261 }
9262 else
9263 {
9264 htab->plt_mips_entry_size
9265 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9266 htab->plt_comp_entry_size
833794fc 9267 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9268 }
0a44bf69
RS
9269 }
9270
1bbce132
MR
9271 if (h->plt.plist == NULL)
9272 h->plt.plist = mips_elf_make_plt_record (dynobj);
9273 if (h->plt.plist == NULL)
9274 return FALSE;
9275
9276 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9277 n32 or n64, so always use a standard entry there.
9278
9279 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9280 all MIPS16 calls will go via that stub, and there is no benefit
9281 to having a MIPS16 entry. And in the case of call_stub a
9282 standard entry actually has to be used as the stub ends with a J
9283 instruction. */
9284 if (newabi_p
9285 || htab->is_vxworks
9286 || hmips->call_stub
9287 || hmips->call_fp_stub)
9288 {
9289 h->plt.plist->need_mips = TRUE;
9290 h->plt.plist->need_comp = FALSE;
9291 }
9292
9293 /* Otherwise, if there are no direct calls to the function, we
9294 have a free choice of whether to use standard or compressed
9295 entries. Prefer microMIPS entries if the object is known to
9296 contain microMIPS code, so that it becomes possible to create
9297 pure microMIPS binaries. Prefer standard entries otherwise,
9298 because MIPS16 ones are no smaller and are usually slower. */
9299 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9300 {
9301 if (micromips_p)
9302 h->plt.plist->need_comp = TRUE;
9303 else
9304 h->plt.plist->need_mips = TRUE;
9305 }
9306
9307 if (h->plt.plist->need_mips)
9308 {
9309 h->plt.plist->mips_offset = htab->plt_mips_offset;
9310 htab->plt_mips_offset += htab->plt_mips_entry_size;
9311 }
9312 if (h->plt.plist->need_comp)
9313 {
9314 h->plt.plist->comp_offset = htab->plt_comp_offset;
9315 htab->plt_comp_offset += htab->plt_comp_entry_size;
9316 }
9317
9318 /* Reserve the corresponding .got.plt entry now too. */
9319 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9320
9321 /* If the output file has no definition of the symbol, set the
861fb55a 9322 symbol's value to the address of the stub. */
0e1862bb 9323 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9324 hmips->use_plt_entry = TRUE;
0a44bf69 9325
1bbce132 9326 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9327 htab->root.srelplt->size += (htab->is_vxworks
9328 ? MIPS_ELF_RELA_SIZE (dynobj)
9329 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9330
9331 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9332 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9333 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9334
861fb55a
DJ
9335 /* All relocations against this symbol that could have been made
9336 dynamic will now refer to the PLT entry instead. */
9337 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9338
0a44bf69
RS
9339 return TRUE;
9340 }
9341
9342 /* If this is a weak symbol, and there is a real definition, the
9343 processor independent code will have arranged for us to see the
9344 real definition first, and we can just use the same value. */
9345 if (h->u.weakdef != NULL)
9346 {
9347 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9348 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9349 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9350 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9351 return TRUE;
9352 }
9353
861fb55a
DJ
9354 /* Otherwise, there is nothing further to do for symbols defined
9355 in regular objects. */
9356 if (h->def_regular)
0a44bf69
RS
9357 return TRUE;
9358
861fb55a
DJ
9359 /* There's also nothing more to do if we'll convert all relocations
9360 against this symbol into dynamic relocations. */
9361 if (!hmips->has_static_relocs)
9362 return TRUE;
9363
9364 /* We're now relying on copy relocations. Complain if we have
9365 some that we can't convert. */
0e1862bb 9366 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9367 {
4eca0228
AM
9368 _bfd_error_handler (_("non-dynamic relocations refer to "
9369 "dynamic symbol %s"),
9370 h->root.root.string);
861fb55a
DJ
9371 bfd_set_error (bfd_error_bad_value);
9372 return FALSE;
9373 }
9374
0a44bf69
RS
9375 /* We must allocate the symbol in our .dynbss section, which will
9376 become part of the .bss section of the executable. There will be
9377 an entry for this symbol in the .dynsym section. The dynamic
9378 object will contain position independent code, so all references
9379 from the dynamic object to this symbol will go through the global
9380 offset table. The dynamic linker will use the .dynsym entry to
9381 determine the address it must put in the global offset table, so
9382 both the dynamic object and the regular object will refer to the
9383 same memory location for the variable. */
9384
5474d94f
AM
9385 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9386 {
9387 s = htab->root.sdynrelro;
9388 srel = htab->root.sreldynrelro;
9389 }
9390 else
9391 {
9392 s = htab->root.sdynbss;
9393 srel = htab->root.srelbss;
9394 }
0a44bf69
RS
9395 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9396 {
861fb55a 9397 if (htab->is_vxworks)
5474d94f 9398 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9399 else
9400 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9401 h->needs_copy = 1;
9402 }
9403
861fb55a
DJ
9404 /* All relocations against this symbol that could have been made
9405 dynamic will now refer to the local copy instead. */
9406 hmips->possibly_dynamic_relocs = 0;
9407
5474d94f 9408 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9409}
b49e97c9
TS
9410\f
9411/* This function is called after all the input files have been read,
9412 and the input sections have been assigned to output sections. We
9413 check for any mips16 stub sections that we can discard. */
9414
b34976b6 9415bfd_boolean
9719ad41
RS
9416_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9417 struct bfd_link_info *info)
b49e97c9 9418{
351cdf24 9419 asection *sect;
0a44bf69 9420 struct mips_elf_link_hash_table *htab;
861fb55a 9421 struct mips_htab_traverse_info hti;
0a44bf69
RS
9422
9423 htab = mips_elf_hash_table (info);
4dfe6ac6 9424 BFD_ASSERT (htab != NULL);
f4416af6 9425
b49e97c9 9426 /* The .reginfo section has a fixed size. */
351cdf24
MF
9427 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9428 if (sect != NULL)
9429 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9430
9431 /* The .MIPS.abiflags section has a fixed size. */
9432 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9433 if (sect != NULL)
9434 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9435
861fb55a
DJ
9436 hti.info = info;
9437 hti.output_bfd = output_bfd;
9438 hti.error = FALSE;
9439 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9440 mips_elf_check_symbols, &hti);
9441 if (hti.error)
9442 return FALSE;
f4416af6 9443
33bb52fb
RS
9444 return TRUE;
9445}
9446
9447/* If the link uses a GOT, lay it out and work out its size. */
9448
9449static bfd_boolean
9450mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9451{
9452 bfd *dynobj;
9453 asection *s;
9454 struct mips_got_info *g;
33bb52fb
RS
9455 bfd_size_type loadable_size = 0;
9456 bfd_size_type page_gotno;
d7206569 9457 bfd *ibfd;
ab361d49 9458 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9459 struct mips_elf_link_hash_table *htab;
9460
9461 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9462 BFD_ASSERT (htab != NULL);
9463
ce558b89 9464 s = htab->root.sgot;
f4416af6 9465 if (s == NULL)
b34976b6 9466 return TRUE;
b49e97c9 9467
33bb52fb 9468 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9469 g = htab->got_info;
9470
861fb55a
DJ
9471 /* Allocate room for the reserved entries. VxWorks always reserves
9472 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9473 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9474 if (htab->is_vxworks)
9475 htab->reserved_gotno = 3;
9476 else
9477 htab->reserved_gotno = 2;
9478 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9479 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9480
6c42ddb9
RS
9481 /* Decide which symbols need to go in the global part of the GOT and
9482 count the number of reloc-only GOT symbols. */
020d7251 9483 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9484
13db6b44
RS
9485 if (!mips_elf_resolve_final_got_entries (info, g))
9486 return FALSE;
9487
33bb52fb
RS
9488 /* Calculate the total loadable size of the output. That
9489 will give us the maximum number of GOT_PAGE entries
9490 required. */
c72f2fb2 9491 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9492 {
9493 asection *subsection;
5108fc1b 9494
d7206569 9495 for (subsection = ibfd->sections;
33bb52fb
RS
9496 subsection;
9497 subsection = subsection->next)
9498 {
9499 if ((subsection->flags & SEC_ALLOC) == 0)
9500 continue;
9501 loadable_size += ((subsection->size + 0xf)
9502 &~ (bfd_size_type) 0xf);
9503 }
9504 }
f4416af6 9505
0a44bf69 9506 if (htab->is_vxworks)
738e5348 9507 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9508 relocations against local symbols evaluate to "G", and the EABI does
9509 not include R_MIPS_GOT_PAGE. */
c224138d 9510 page_gotno = 0;
0a44bf69
RS
9511 else
9512 /* Assume there are two loadable segments consisting of contiguous
9513 sections. Is 5 enough? */
c224138d
RS
9514 page_gotno = (loadable_size >> 16) + 5;
9515
13db6b44 9516 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9517 conservative. */
9518 if (page_gotno > g->page_gotno)
9519 page_gotno = g->page_gotno;
f4416af6 9520
c224138d 9521 g->local_gotno += page_gotno;
cb22ccf4 9522 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9523
ab361d49
RS
9524 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9525 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9526 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9527
0a44bf69
RS
9528 /* VxWorks does not support multiple GOTs. It initializes $gp to
9529 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9530 dynamic loader. */
57093f5e 9531 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9532 {
a8028dd0 9533 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9534 return FALSE;
9535 }
9536 else
9537 {
d7206569
RS
9538 /* Record that all bfds use G. This also has the effect of freeing
9539 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9540 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9541 if (mips_elf_bfd_got (ibfd, FALSE))
9542 mips_elf_replace_bfd_got (ibfd, g);
9543 mips_elf_replace_bfd_got (output_bfd, g);
9544
33bb52fb 9545 /* Set up TLS entries. */
0f20cc35 9546 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9547 tga.info = info;
9548 tga.g = g;
9549 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9550 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9551 if (!tga.g)
9552 return FALSE;
1fd20d70
RS
9553 BFD_ASSERT (g->tls_assigned_gotno
9554 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9555
57093f5e 9556 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9557 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9558 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9559
33bb52fb 9560 /* Allocate room for the TLS relocations. */
ab361d49
RS
9561 if (g->relocs)
9562 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9563 }
b49e97c9 9564
b34976b6 9565 return TRUE;
b49e97c9
TS
9566}
9567
33bb52fb
RS
9568/* Estimate the size of the .MIPS.stubs section. */
9569
9570static void
9571mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9572{
9573 struct mips_elf_link_hash_table *htab;
9574 bfd_size_type dynsymcount;
9575
9576 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9577 BFD_ASSERT (htab != NULL);
9578
33bb52fb
RS
9579 if (htab->lazy_stub_count == 0)
9580 return;
9581
9582 /* IRIX rld assumes that a function stub isn't at the end of the .text
9583 section, so add a dummy entry to the end. */
9584 htab->lazy_stub_count++;
9585
9586 /* Get a worst-case estimate of the number of dynamic symbols needed.
9587 At this point, dynsymcount does not account for section symbols
9588 and count_section_dynsyms may overestimate the number that will
9589 be needed. */
9590 dynsymcount = (elf_hash_table (info)->dynsymcount
9591 + count_section_dynsyms (output_bfd, info));
9592
1bbce132
MR
9593 /* Determine the size of one stub entry. There's no disadvantage
9594 from using microMIPS code here, so for the sake of pure-microMIPS
9595 binaries we prefer it whenever there's any microMIPS code in
9596 output produced at all. This has a benefit of stubs being
833794fc
MR
9597 shorter by 4 bytes each too, unless in the insn32 mode. */
9598 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9599 htab->function_stub_size = (dynsymcount > 0x10000
9600 ? MIPS_FUNCTION_STUB_BIG_SIZE
9601 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9602 else if (htab->insn32)
9603 htab->function_stub_size = (dynsymcount > 0x10000
9604 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9605 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9606 else
9607 htab->function_stub_size = (dynsymcount > 0x10000
9608 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9609 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9610
9611 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9612}
9613
1bbce132
MR
9614/* A mips_elf_link_hash_traverse callback for which DATA points to a
9615 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9616 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9617
9618static bfd_boolean
af924177 9619mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9620{
1bbce132 9621 struct mips_htab_traverse_info *hti = data;
33bb52fb 9622 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9623 struct bfd_link_info *info;
9624 bfd *output_bfd;
9625
9626 info = hti->info;
9627 output_bfd = hti->output_bfd;
9628 htab = mips_elf_hash_table (info);
9629 BFD_ASSERT (htab != NULL);
33bb52fb 9630
33bb52fb
RS
9631 if (h->needs_lazy_stub)
9632 {
1bbce132
MR
9633 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9634 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9635 bfd_vma isa_bit = micromips_p;
9636
9637 BFD_ASSERT (htab->root.dynobj != NULL);
9638 if (h->root.plt.plist == NULL)
9639 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9640 if (h->root.plt.plist == NULL)
9641 {
9642 hti->error = TRUE;
9643 return FALSE;
9644 }
33bb52fb 9645 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9646 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9647 h->root.plt.plist->stub_offset = htab->sstubs->size;
9648 h->root.other = other;
33bb52fb
RS
9649 htab->sstubs->size += htab->function_stub_size;
9650 }
9651 return TRUE;
9652}
9653
9654/* Allocate offsets in the stubs section to each symbol that needs one.
9655 Set the final size of the .MIPS.stub section. */
9656
1bbce132 9657static bfd_boolean
33bb52fb
RS
9658mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9659{
1bbce132
MR
9660 bfd *output_bfd = info->output_bfd;
9661 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9662 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9663 bfd_vma isa_bit = micromips_p;
33bb52fb 9664 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9665 struct mips_htab_traverse_info hti;
9666 struct elf_link_hash_entry *h;
9667 bfd *dynobj;
33bb52fb
RS
9668
9669 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9670 BFD_ASSERT (htab != NULL);
9671
33bb52fb 9672 if (htab->lazy_stub_count == 0)
1bbce132 9673 return TRUE;
33bb52fb
RS
9674
9675 htab->sstubs->size = 0;
1bbce132
MR
9676 hti.info = info;
9677 hti.output_bfd = output_bfd;
9678 hti.error = FALSE;
9679 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9680 if (hti.error)
9681 return FALSE;
33bb52fb
RS
9682 htab->sstubs->size += htab->function_stub_size;
9683 BFD_ASSERT (htab->sstubs->size
9684 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9685
9686 dynobj = elf_hash_table (info)->dynobj;
9687 BFD_ASSERT (dynobj != NULL);
9688 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9689 if (h == NULL)
9690 return FALSE;
9691 h->root.u.def.value = isa_bit;
9692 h->other = other;
9693 h->type = STT_FUNC;
9694
9695 return TRUE;
9696}
9697
9698/* A mips_elf_link_hash_traverse callback for which DATA points to a
9699 bfd_link_info. If H uses the address of a PLT entry as the value
9700 of the symbol, then set the entry in the symbol table now. Prefer
9701 a standard MIPS PLT entry. */
9702
9703static bfd_boolean
9704mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9705{
9706 struct bfd_link_info *info = data;
9707 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9708 struct mips_elf_link_hash_table *htab;
9709 unsigned int other;
9710 bfd_vma isa_bit;
9711 bfd_vma val;
9712
9713 htab = mips_elf_hash_table (info);
9714 BFD_ASSERT (htab != NULL);
9715
9716 if (h->use_plt_entry)
9717 {
9718 BFD_ASSERT (h->root.plt.plist != NULL);
9719 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9720 || h->root.plt.plist->comp_offset != MINUS_ONE);
9721
9722 val = htab->plt_header_size;
9723 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9724 {
9725 isa_bit = 0;
9726 val += h->root.plt.plist->mips_offset;
9727 other = 0;
9728 }
9729 else
9730 {
9731 isa_bit = 1;
9732 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9733 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9734 }
9735 val += isa_bit;
9736 /* For VxWorks, point at the PLT load stub rather than the lazy
9737 resolution stub; this stub will become the canonical function
9738 address. */
9739 if (htab->is_vxworks)
9740 val += 8;
9741
ce558b89 9742 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9743 h->root.root.u.def.value = val;
9744 h->root.other = other;
9745 }
9746
9747 return TRUE;
33bb52fb
RS
9748}
9749
b49e97c9
TS
9750/* Set the sizes of the dynamic sections. */
9751
b34976b6 9752bfd_boolean
9719ad41
RS
9753_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9754 struct bfd_link_info *info)
b49e97c9
TS
9755{
9756 bfd *dynobj;
861fb55a 9757 asection *s, *sreldyn;
b34976b6 9758 bfd_boolean reltext;
0a44bf69 9759 struct mips_elf_link_hash_table *htab;
b49e97c9 9760
0a44bf69 9761 htab = mips_elf_hash_table (info);
4dfe6ac6 9762 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9763 dynobj = elf_hash_table (info)->dynobj;
9764 BFD_ASSERT (dynobj != NULL);
9765
9766 if (elf_hash_table (info)->dynamic_sections_created)
9767 {
9768 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9769 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9770 {
3d4d4302 9771 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9772 BFD_ASSERT (s != NULL);
eea6121a 9773 s->size
b49e97c9
TS
9774 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9775 s->contents
9776 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9777 }
861fb55a 9778
1bbce132
MR
9779 /* Figure out the size of the PLT header if we know that we
9780 are using it. For the sake of cache alignment always use
9781 a standard header whenever any standard entries are present
9782 even if microMIPS entries are present as well. This also
9783 lets the microMIPS header rely on the value of $v0 only set
9784 by microMIPS entries, for a small size reduction.
9785
9786 Set symbol table entry values for symbols that use the
9787 address of their PLT entry now that we can calculate it.
9788
9789 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9790 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9791 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9792 {
1bbce132
MR
9793 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9794 && !htab->plt_mips_offset);
9795 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9796 bfd_vma isa_bit = micromips_p;
861fb55a 9797 struct elf_link_hash_entry *h;
1bbce132 9798 bfd_vma size;
861fb55a
DJ
9799
9800 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9801 BFD_ASSERT (htab->root.sgotplt->size == 0);
9802 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9803
0e1862bb 9804 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9805 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9806 else if (htab->is_vxworks)
9807 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9808 else if (ABI_64_P (output_bfd))
9809 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9810 else if (ABI_N32_P (output_bfd))
9811 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9812 else if (!micromips_p)
9813 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9814 else if (htab->insn32)
9815 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9816 else
9817 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9818
1bbce132
MR
9819 htab->plt_header_is_comp = micromips_p;
9820 htab->plt_header_size = size;
ce558b89
AM
9821 htab->root.splt->size = (size
9822 + htab->plt_mips_offset
9823 + htab->plt_comp_offset);
9824 htab->root.sgotplt->size = (htab->plt_got_index
9825 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9826
9827 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9828
9829 if (htab->root.hplt == NULL)
9830 {
ce558b89 9831 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9832 "_PROCEDURE_LINKAGE_TABLE_");
9833 htab->root.hplt = h;
9834 if (h == NULL)
9835 return FALSE;
9836 }
9837
9838 h = htab->root.hplt;
9839 h->root.u.def.value = isa_bit;
9840 h->other = other;
861fb55a
DJ
9841 h->type = STT_FUNC;
9842 }
9843 }
4e41d0d7 9844
9a59ad6b 9845 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9846 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9847
33bb52fb
RS
9848 mips_elf_estimate_stub_size (output_bfd, info);
9849
9850 if (!mips_elf_lay_out_got (output_bfd, info))
9851 return FALSE;
9852
9853 mips_elf_lay_out_lazy_stubs (info);
9854
b49e97c9
TS
9855 /* The check_relocs and adjust_dynamic_symbol entry points have
9856 determined the sizes of the various dynamic sections. Allocate
9857 memory for them. */
b34976b6 9858 reltext = FALSE;
b49e97c9
TS
9859 for (s = dynobj->sections; s != NULL; s = s->next)
9860 {
9861 const char *name;
b49e97c9
TS
9862
9863 /* It's OK to base decisions on the section name, because none
9864 of the dynobj section names depend upon the input files. */
9865 name = bfd_get_section_name (dynobj, s);
9866
9867 if ((s->flags & SEC_LINKER_CREATED) == 0)
9868 continue;
9869
0112cd26 9870 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9871 {
c456f082 9872 if (s->size != 0)
b49e97c9
TS
9873 {
9874 const char *outname;
9875 asection *target;
9876
9877 /* If this relocation section applies to a read only
9878 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9879 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9880 assert a DT_TEXTREL entry rather than testing whether
9881 there exists a relocation to a read only section or
9882 not. */
9883 outname = bfd_get_section_name (output_bfd,
9884 s->output_section);
9885 target = bfd_get_section_by_name (output_bfd, outname + 4);
9886 if ((target != NULL
9887 && (target->flags & SEC_READONLY) != 0
9888 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9889 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9890 reltext = TRUE;
b49e97c9
TS
9891
9892 /* We use the reloc_count field as a counter if we need
9893 to copy relocs into the output file. */
0a44bf69 9894 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9895 s->reloc_count = 0;
f4416af6
AO
9896
9897 /* If combreloc is enabled, elf_link_sort_relocs() will
9898 sort relocations, but in a different way than we do,
9899 and before we're done creating relocations. Also, it
9900 will move them around between input sections'
9901 relocation's contents, so our sorting would be
9902 broken, so don't let it run. */
9903 info->combreloc = 0;
b49e97c9
TS
9904 }
9905 }
0e1862bb 9906 else if (bfd_link_executable (info)
b49e97c9 9907 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9908 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9909 {
5108fc1b 9910 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9911 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9912 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9913 }
9914 else if (SGI_COMPAT (output_bfd)
0112cd26 9915 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9916 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9917 else if (s == htab->root.splt)
861fb55a
DJ
9918 {
9919 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9920 room for an extra nop to fill the delay slot. This is
9921 for CPUs without load interlocking. */
9922 if (! LOAD_INTERLOCKS_P (output_bfd)
9923 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9924 s->size += 4;
9925 }
0112cd26 9926 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9927 && s != htab->root.sgot
9928 && s != htab->root.sgotplt
861fb55a 9929 && s != htab->sstubs
5474d94f
AM
9930 && s != htab->root.sdynbss
9931 && s != htab->root.sdynrelro)
b49e97c9
TS
9932 {
9933 /* It's not one of our sections, so don't allocate space. */
9934 continue;
9935 }
9936
c456f082 9937 if (s->size == 0)
b49e97c9 9938 {
8423293d 9939 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9940 continue;
9941 }
9942
c456f082
AM
9943 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9944 continue;
9945
b49e97c9 9946 /* Allocate memory for the section contents. */
eea6121a 9947 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9948 if (s->contents == NULL)
b49e97c9
TS
9949 {
9950 bfd_set_error (bfd_error_no_memory);
b34976b6 9951 return FALSE;
b49e97c9
TS
9952 }
9953 }
9954
9955 if (elf_hash_table (info)->dynamic_sections_created)
9956 {
9957 /* Add some entries to the .dynamic section. We fill in the
9958 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9959 must add the entries now so that we get the correct size for
5750dcec 9960 the .dynamic section. */
af5978fb
RS
9961
9962 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9963 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9964 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9965 may only look at the first one they see. */
0e1862bb 9966 if (!bfd_link_pic (info)
af5978fb
RS
9967 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9968 return FALSE;
b49e97c9 9969
0e1862bb 9970 if (bfd_link_executable (info)
a5499fa4
MF
9971 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9972 return FALSE;
9973
5750dcec
DJ
9974 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9975 used by the debugger. */
0e1862bb 9976 if (bfd_link_executable (info)
5750dcec
DJ
9977 && !SGI_COMPAT (output_bfd)
9978 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9979 return FALSE;
9980
0a44bf69 9981 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9982 info->flags |= DF_TEXTREL;
9983
9984 if ((info->flags & DF_TEXTREL) != 0)
9985 {
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9987 return FALSE;
943284cc
DJ
9988
9989 /* Clear the DF_TEXTREL flag. It will be set again if we
9990 write out an actual text relocation; we may not, because
9991 at this point we do not know whether e.g. any .eh_frame
9992 absolute relocations have been converted to PC-relative. */
9993 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9994 }
9995
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9997 return FALSE;
b49e97c9 9998
861fb55a 9999 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10000 if (htab->is_vxworks)
b49e97c9 10001 {
0a44bf69
RS
10002 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10003 use any of the DT_MIPS_* tags. */
861fb55a 10004 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10005 {
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10007 return FALSE;
b49e97c9 10008
0a44bf69
RS
10009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10010 return FALSE;
b49e97c9 10011
0a44bf69
RS
10012 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10013 return FALSE;
10014 }
b49e97c9 10015 }
0a44bf69
RS
10016 else
10017 {
861fb55a 10018 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10019 {
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10021 return FALSE;
b49e97c9 10022
0a44bf69
RS
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10024 return FALSE;
b49e97c9 10025
0a44bf69
RS
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10027 return FALSE;
10028 }
b49e97c9 10029
0a44bf69
RS
10030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10031 return FALSE;
b49e97c9 10032
0a44bf69
RS
10033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10034 return FALSE;
b49e97c9 10035
0a44bf69
RS
10036 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10037 return FALSE;
b49e97c9 10038
0a44bf69
RS
10039 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10040 return FALSE;
b49e97c9 10041
0a44bf69
RS
10042 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10043 return FALSE;
b49e97c9 10044
0a44bf69
RS
10045 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10046 return FALSE;
b49e97c9 10047
0a44bf69
RS
10048 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10049 return FALSE;
10050
10051 if (IRIX_COMPAT (dynobj) == ict_irix5
10052 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10053 return FALSE;
10054
10055 if (IRIX_COMPAT (dynobj) == ict_irix6
10056 && (bfd_get_section_by_name
af0edeb8 10057 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10058 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10059 return FALSE;
10060 }
ce558b89 10061 if (htab->root.splt->size > 0)
861fb55a
DJ
10062 {
10063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10064 return FALSE;
10065
10066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10067 return FALSE;
10068
10069 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10070 return FALSE;
10071
10072 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10073 return FALSE;
10074 }
7a2b07ff
NS
10075 if (htab->is_vxworks
10076 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10077 return FALSE;
b49e97c9
TS
10078 }
10079
b34976b6 10080 return TRUE;
b49e97c9
TS
10081}
10082\f
81d43bff
RS
10083/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10084 Adjust its R_ADDEND field so that it is correct for the output file.
10085 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10086 and sections respectively; both use symbol indexes. */
10087
10088static void
10089mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10090 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10091 asection **local_sections, Elf_Internal_Rela *rel)
10092{
10093 unsigned int r_type, r_symndx;
10094 Elf_Internal_Sym *sym;
10095 asection *sec;
10096
020d7251 10097 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10098 {
10099 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10100 if (gprel16_reloc_p (r_type)
81d43bff 10101 || r_type == R_MIPS_GPREL32
df58fc94 10102 || literal_reloc_p (r_type))
81d43bff
RS
10103 {
10104 rel->r_addend += _bfd_get_gp_value (input_bfd);
10105 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10106 }
10107
10108 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10109 sym = local_syms + r_symndx;
10110
10111 /* Adjust REL's addend to account for section merging. */
0e1862bb 10112 if (!bfd_link_relocatable (info))
81d43bff
RS
10113 {
10114 sec = local_sections[r_symndx];
10115 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10116 }
10117
10118 /* This would normally be done by the rela_normal code in elflink.c. */
10119 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10120 rel->r_addend += local_sections[r_symndx]->output_offset;
10121 }
10122}
10123
545fd46b
MR
10124/* Handle relocations against symbols from removed linkonce sections,
10125 or sections discarded by a linker script. We use this wrapper around
10126 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10127 on 64-bit ELF targets. In this case for any relocation handled, which
10128 always be the first in a triplet, the remaining two have to be processed
10129 together with the first, even if they are R_MIPS_NONE. It is the symbol
10130 index referred by the first reloc that applies to all the three and the
10131 remaining two never refer to an object symbol. And it is the final
10132 relocation (the last non-null one) that determines the output field of
10133 the whole relocation so retrieve the corresponding howto structure for
10134 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10135
10136 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10137 and therefore requires to be pasted in a loop. It also defines a block
10138 and does not protect any of its arguments, hence the extra brackets. */
10139
10140static void
10141mips_reloc_against_discarded_section (bfd *output_bfd,
10142 struct bfd_link_info *info,
10143 bfd *input_bfd, asection *input_section,
10144 Elf_Internal_Rela **rel,
10145 const Elf_Internal_Rela **relend,
10146 bfd_boolean rel_reloc,
10147 reloc_howto_type *howto,
10148 bfd_byte *contents)
10149{
10150 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10151 int count = bed->s->int_rels_per_ext_rel;
10152 unsigned int r_type;
10153 int i;
10154
10155 for (i = count - 1; i > 0; i--)
10156 {
10157 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10158 if (r_type != R_MIPS_NONE)
10159 {
10160 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10161 break;
10162 }
10163 }
10164 do
10165 {
10166 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10167 (*rel), count, (*relend),
10168 howto, i, contents);
10169 }
10170 while (0);
10171}
10172
b49e97c9
TS
10173/* Relocate a MIPS ELF section. */
10174
b34976b6 10175bfd_boolean
9719ad41
RS
10176_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10177 bfd *input_bfd, asection *input_section,
10178 bfd_byte *contents, Elf_Internal_Rela *relocs,
10179 Elf_Internal_Sym *local_syms,
10180 asection **local_sections)
b49e97c9
TS
10181{
10182 Elf_Internal_Rela *rel;
10183 const Elf_Internal_Rela *relend;
10184 bfd_vma addend = 0;
b34976b6 10185 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 10186 const struct elf_backend_data *bed;
b49e97c9
TS
10187
10188 bed = get_elf_backend_data (output_bfd);
10189 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10190 for (rel = relocs; rel < relend; ++rel)
10191 {
10192 const char *name;
c9adbffe 10193 bfd_vma value = 0;
b49e97c9 10194 reloc_howto_type *howto;
ad3d9127 10195 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10196 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10197 REL relocation. */
b34976b6 10198 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10199 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10200 const char *msg;
ab96bf03
AM
10201 unsigned long r_symndx;
10202 asection *sec;
749b8d9d
L
10203 Elf_Internal_Shdr *symtab_hdr;
10204 struct elf_link_hash_entry *h;
d4730f92 10205 bfd_boolean rel_reloc;
b49e97c9 10206
d4730f92
BS
10207 rel_reloc = (NEWABI_P (input_bfd)
10208 && mips_elf_rel_relocation_p (input_bfd, input_section,
10209 relocs, rel));
b49e97c9 10210 /* Find the relocation howto for this relocation. */
d4730f92 10211 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10212
10213 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10214 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10215 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10216 {
10217 sec = local_sections[r_symndx];
10218 h = NULL;
10219 }
ab96bf03
AM
10220 else
10221 {
ab96bf03 10222 unsigned long extsymoff;
ab96bf03 10223
ab96bf03
AM
10224 extsymoff = 0;
10225 if (!elf_bad_symtab (input_bfd))
10226 extsymoff = symtab_hdr->sh_info;
10227 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10228 while (h->root.type == bfd_link_hash_indirect
10229 || h->root.type == bfd_link_hash_warning)
10230 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10231
10232 sec = NULL;
10233 if (h->root.type == bfd_link_hash_defined
10234 || h->root.type == bfd_link_hash_defweak)
10235 sec = h->root.u.def.section;
10236 }
10237
dbaa2011 10238 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10239 {
10240 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10241 input_section, &rel, &relend,
10242 rel_reloc, howto, contents);
10243 continue;
10244 }
ab96bf03 10245
4a14403c 10246 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10247 {
10248 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10249 64-bit code, but make sure all their addresses are in the
10250 lowermost or uppermost 32-bit section of the 64-bit address
10251 space. Thus, when they use an R_MIPS_64 they mean what is
10252 usually meant by R_MIPS_32, with the exception that the
10253 stored value is sign-extended to 64 bits. */
b34976b6 10254 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10255
10256 /* On big-endian systems, we need to lie about the position
10257 of the reloc. */
10258 if (bfd_big_endian (input_bfd))
10259 rel->r_offset += 4;
10260 }
b49e97c9
TS
10261
10262 if (!use_saved_addend_p)
10263 {
b49e97c9
TS
10264 /* If these relocations were originally of the REL variety,
10265 we must pull the addend out of the field that will be
10266 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10267 RELA relocation. */
10268 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10269 relocs, rel))
b49e97c9 10270 {
b34976b6 10271 rela_relocation_p = FALSE;
c224138d
RS
10272 addend = mips_elf_read_rel_addend (input_bfd, rel,
10273 howto, contents);
738e5348
RS
10274 if (hi16_reloc_p (r_type)
10275 || (got16_reloc_p (r_type)
b49e97c9 10276 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10277 local_sections)))
b49e97c9 10278 {
c224138d
RS
10279 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10280 contents, &addend))
749b8d9d 10281 {
749b8d9d
L
10282 if (h)
10283 name = h->root.root.string;
10284 else
10285 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10286 local_syms + r_symndx,
10287 sec);
4eca0228 10288 _bfd_error_handler
695344c0 10289 /* xgettext:c-format */
749b8d9d
L
10290 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10291 input_bfd, input_section, name, howto->name,
10292 rel->r_offset);
749b8d9d 10293 }
b49e97c9 10294 }
30ac9238
RS
10295 else
10296 addend <<= howto->rightshift;
b49e97c9
TS
10297 }
10298 else
10299 addend = rel->r_addend;
81d43bff
RS
10300 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10301 local_syms, local_sections, rel);
b49e97c9
TS
10302 }
10303
0e1862bb 10304 if (bfd_link_relocatable (info))
b49e97c9 10305 {
4a14403c 10306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10307 && bfd_big_endian (input_bfd))
10308 rel->r_offset -= 4;
10309
81d43bff 10310 if (!rela_relocation_p && rel->r_addend)
5a659663 10311 {
81d43bff 10312 addend += rel->r_addend;
738e5348 10313 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10314 addend = mips_elf_high (addend);
10315 else if (r_type == R_MIPS_HIGHER)
10316 addend = mips_elf_higher (addend);
10317 else if (r_type == R_MIPS_HIGHEST)
10318 addend = mips_elf_highest (addend);
30ac9238
RS
10319 else
10320 addend >>= howto->rightshift;
b49e97c9 10321
30ac9238
RS
10322 /* We use the source mask, rather than the destination
10323 mask because the place to which we are writing will be
10324 source of the addend in the final link. */
b49e97c9
TS
10325 addend &= howto->src_mask;
10326
5a659663 10327 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10328 /* See the comment above about using R_MIPS_64 in the 32-bit
10329 ABI. Here, we need to update the addend. It would be
10330 possible to get away with just using the R_MIPS_32 reloc
10331 but for endianness. */
10332 {
10333 bfd_vma sign_bits;
10334 bfd_vma low_bits;
10335 bfd_vma high_bits;
10336
10337 if (addend & ((bfd_vma) 1 << 31))
10338#ifdef BFD64
10339 sign_bits = ((bfd_vma) 1 << 32) - 1;
10340#else
10341 sign_bits = -1;
10342#endif
10343 else
10344 sign_bits = 0;
10345
10346 /* If we don't know that we have a 64-bit type,
10347 do two separate stores. */
10348 if (bfd_big_endian (input_bfd))
10349 {
10350 /* Store the sign-bits (which are most significant)
10351 first. */
10352 low_bits = sign_bits;
10353 high_bits = addend;
10354 }
10355 else
10356 {
10357 low_bits = addend;
10358 high_bits = sign_bits;
10359 }
10360 bfd_put_32 (input_bfd, low_bits,
10361 contents + rel->r_offset);
10362 bfd_put_32 (input_bfd, high_bits,
10363 contents + rel->r_offset + 4);
10364 continue;
10365 }
10366
10367 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10368 input_bfd, input_section,
b34976b6
AM
10369 contents, FALSE))
10370 return FALSE;
b49e97c9
TS
10371 }
10372
10373 /* Go on to the next relocation. */
10374 continue;
10375 }
10376
10377 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10378 relocations for the same offset. In that case we are
10379 supposed to treat the output of each relocation as the addend
10380 for the next. */
10381 if (rel + 1 < relend
10382 && rel->r_offset == rel[1].r_offset
10383 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10384 use_saved_addend_p = TRUE;
b49e97c9 10385 else
b34976b6 10386 use_saved_addend_p = FALSE;
b49e97c9
TS
10387
10388 /* Figure out what value we are supposed to relocate. */
10389 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10390 input_section, info, rel,
10391 addend, howto, local_syms,
10392 local_sections, &value,
38a7df63 10393 &name, &cross_mode_jump_p,
bce03d3d 10394 use_saved_addend_p))
b49e97c9
TS
10395 {
10396 case bfd_reloc_continue:
10397 /* There's nothing to do. */
10398 continue;
10399
10400 case bfd_reloc_undefined:
10401 /* mips_elf_calculate_relocation already called the
10402 undefined_symbol callback. There's no real point in
10403 trying to perform the relocation at this point, so we
10404 just skip ahead to the next relocation. */
10405 continue;
10406
10407 case bfd_reloc_notsupported:
10408 msg = _("internal error: unsupported relocation error");
10409 info->callbacks->warning
10410 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10411 return FALSE;
b49e97c9
TS
10412
10413 case bfd_reloc_overflow:
10414 if (use_saved_addend_p)
10415 /* Ignore overflow until we reach the last relocation for
10416 a given location. */
10417 ;
10418 else
10419 {
0e53d9da
AN
10420 struct mips_elf_link_hash_table *htab;
10421
10422 htab = mips_elf_hash_table (info);
4dfe6ac6 10423 BFD_ASSERT (htab != NULL);
b49e97c9 10424 BFD_ASSERT (name != NULL);
0e53d9da 10425 if (!htab->small_data_overflow_reported
9684f078 10426 && (gprel16_reloc_p (howto->type)
df58fc94 10427 || literal_reloc_p (howto->type)))
0e53d9da 10428 {
91d6fa6a
NC
10429 msg = _("small-data section exceeds 64KB;"
10430 " lower small-data size limit (see option -G)");
0e53d9da
AN
10431
10432 htab->small_data_overflow_reported = TRUE;
10433 (*info->callbacks->einfo) ("%P: %s\n", msg);
10434 }
1a72702b
AM
10435 (*info->callbacks->reloc_overflow)
10436 (info, NULL, name, howto->name, (bfd_vma) 0,
10437 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10438 }
10439 break;
10440
10441 case bfd_reloc_ok:
10442 break;
10443
df58fc94 10444 case bfd_reloc_outofrange:
7db9a74e 10445 msg = NULL;
df58fc94 10446 if (jal_reloc_p (howto->type))
9d862524
MR
10447 msg = (cross_mode_jump_p
10448 ? _("Cannot convert a jump to JALX "
10449 "for a non-word-aligned address")
10450 : (howto->type == R_MIPS16_26
10451 ? _("Jump to a non-word-aligned address")
10452 : _("Jump to a non-instruction-aligned address")));
99aefae6 10453 else if (b_reloc_p (howto->type))
a6ebf616
MR
10454 msg = (cross_mode_jump_p
10455 ? _("Cannot convert a branch to JALX "
10456 "for a non-word-aligned address")
10457 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10458 else if (aligned_pcrel_reloc_p (howto->type))
10459 msg = _("PC-relative load from unaligned address");
10460 if (msg)
df58fc94 10461 {
de341542 10462 info->callbacks->einfo
ed53407e
MR
10463 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10464 break;
7361da2c 10465 }
df58fc94
RS
10466 /* Fall through. */
10467
b49e97c9
TS
10468 default:
10469 abort ();
10470 break;
10471 }
10472
10473 /* If we've got another relocation for the address, keep going
10474 until we reach the last one. */
10475 if (use_saved_addend_p)
10476 {
10477 addend = value;
10478 continue;
10479 }
10480
4a14403c 10481 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10482 /* See the comment above about using R_MIPS_64 in the 32-bit
10483 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10484 that calculated the right value. Now, however, we
10485 sign-extend the 32-bit result to 64-bits, and store it as a
10486 64-bit value. We are especially generous here in that we
10487 go to extreme lengths to support this usage on systems with
10488 only a 32-bit VMA. */
10489 {
10490 bfd_vma sign_bits;
10491 bfd_vma low_bits;
10492 bfd_vma high_bits;
10493
10494 if (value & ((bfd_vma) 1 << 31))
10495#ifdef BFD64
10496 sign_bits = ((bfd_vma) 1 << 32) - 1;
10497#else
10498 sign_bits = -1;
10499#endif
10500 else
10501 sign_bits = 0;
10502
10503 /* If we don't know that we have a 64-bit type,
10504 do two separate stores. */
10505 if (bfd_big_endian (input_bfd))
10506 {
10507 /* Undo what we did above. */
10508 rel->r_offset -= 4;
10509 /* Store the sign-bits (which are most significant)
10510 first. */
10511 low_bits = sign_bits;
10512 high_bits = value;
10513 }
10514 else
10515 {
10516 low_bits = value;
10517 high_bits = sign_bits;
10518 }
10519 bfd_put_32 (input_bfd, low_bits,
10520 contents + rel->r_offset);
10521 bfd_put_32 (input_bfd, high_bits,
10522 contents + rel->r_offset + 4);
10523 continue;
10524 }
10525
10526 /* Actually perform the relocation. */
10527 if (! mips_elf_perform_relocation (info, howto, rel, value,
10528 input_bfd, input_section,
38a7df63 10529 contents, cross_mode_jump_p))
b34976b6 10530 return FALSE;
b49e97c9
TS
10531 }
10532
b34976b6 10533 return TRUE;
b49e97c9
TS
10534}
10535\f
861fb55a
DJ
10536/* A function that iterates over each entry in la25_stubs and fills
10537 in the code for each one. DATA points to a mips_htab_traverse_info. */
10538
10539static int
10540mips_elf_create_la25_stub (void **slot, void *data)
10541{
10542 struct mips_htab_traverse_info *hti;
10543 struct mips_elf_link_hash_table *htab;
10544 struct mips_elf_la25_stub *stub;
10545 asection *s;
10546 bfd_byte *loc;
10547 bfd_vma offset, target, target_high, target_low;
10548
10549 stub = (struct mips_elf_la25_stub *) *slot;
10550 hti = (struct mips_htab_traverse_info *) data;
10551 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10552 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10553
10554 /* Create the section contents, if we haven't already. */
10555 s = stub->stub_section;
10556 loc = s->contents;
10557 if (loc == NULL)
10558 {
10559 loc = bfd_malloc (s->size);
10560 if (loc == NULL)
10561 {
10562 hti->error = TRUE;
10563 return FALSE;
10564 }
10565 s->contents = loc;
10566 }
10567
10568 /* Work out where in the section this stub should go. */
10569 offset = stub->offset;
10570
10571 /* Work out the target address. */
8f0c309a
CLT
10572 target = mips_elf_get_la25_target (stub, &s);
10573 target += s->output_section->vma + s->output_offset;
10574
861fb55a
DJ
10575 target_high = ((target + 0x8000) >> 16) & 0xffff;
10576 target_low = (target & 0xffff);
10577
10578 if (stub->stub_section != htab->strampoline)
10579 {
df58fc94 10580 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10581 of the section and write the two instructions at the end. */
10582 memset (loc, 0, offset);
10583 loc += offset;
df58fc94
RS
10584 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10585 {
d21911ea
MR
10586 bfd_put_micromips_32 (hti->output_bfd,
10587 LA25_LUI_MICROMIPS (target_high),
10588 loc);
10589 bfd_put_micromips_32 (hti->output_bfd,
10590 LA25_ADDIU_MICROMIPS (target_low),
10591 loc + 4);
df58fc94
RS
10592 }
10593 else
10594 {
10595 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10596 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10597 }
861fb55a
DJ
10598 }
10599 else
10600 {
10601 /* This is trampoline. */
10602 loc += offset;
df58fc94
RS
10603 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10604 {
d21911ea
MR
10605 bfd_put_micromips_32 (hti->output_bfd,
10606 LA25_LUI_MICROMIPS (target_high), loc);
10607 bfd_put_micromips_32 (hti->output_bfd,
10608 LA25_J_MICROMIPS (target), loc + 4);
10609 bfd_put_micromips_32 (hti->output_bfd,
10610 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10611 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10612 }
10613 else
10614 {
10615 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10616 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10617 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10618 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10619 }
861fb55a
DJ
10620 }
10621 return TRUE;
10622}
10623
b49e97c9
TS
10624/* If NAME is one of the special IRIX6 symbols defined by the linker,
10625 adjust it appropriately now. */
10626
10627static void
9719ad41
RS
10628mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10629 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10630{
10631 /* The linker script takes care of providing names and values for
10632 these, but we must place them into the right sections. */
10633 static const char* const text_section_symbols[] = {
10634 "_ftext",
10635 "_etext",
10636 "__dso_displacement",
10637 "__elf_header",
10638 "__program_header_table",
10639 NULL
10640 };
10641
10642 static const char* const data_section_symbols[] = {
10643 "_fdata",
10644 "_edata",
10645 "_end",
10646 "_fbss",
10647 NULL
10648 };
10649
10650 const char* const *p;
10651 int i;
10652
10653 for (i = 0; i < 2; ++i)
10654 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10655 *p;
10656 ++p)
10657 if (strcmp (*p, name) == 0)
10658 {
10659 /* All of these symbols are given type STT_SECTION by the
10660 IRIX6 linker. */
10661 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10662 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10663
10664 /* The IRIX linker puts these symbols in special sections. */
10665 if (i == 0)
10666 sym->st_shndx = SHN_MIPS_TEXT;
10667 else
10668 sym->st_shndx = SHN_MIPS_DATA;
10669
10670 break;
10671 }
10672}
10673
10674/* Finish up dynamic symbol handling. We set the contents of various
10675 dynamic sections here. */
10676
b34976b6 10677bfd_boolean
9719ad41
RS
10678_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10679 struct bfd_link_info *info,
10680 struct elf_link_hash_entry *h,
10681 Elf_Internal_Sym *sym)
b49e97c9
TS
10682{
10683 bfd *dynobj;
b49e97c9 10684 asection *sgot;
f4416af6 10685 struct mips_got_info *g, *gg;
b49e97c9 10686 const char *name;
3d6746ca 10687 int idx;
5108fc1b 10688 struct mips_elf_link_hash_table *htab;
738e5348 10689 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10690
5108fc1b 10691 htab = mips_elf_hash_table (info);
4dfe6ac6 10692 BFD_ASSERT (htab != NULL);
b49e97c9 10693 dynobj = elf_hash_table (info)->dynobj;
738e5348 10694 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10695
861fb55a
DJ
10696 BFD_ASSERT (!htab->is_vxworks);
10697
1bbce132
MR
10698 if (h->plt.plist != NULL
10699 && (h->plt.plist->mips_offset != MINUS_ONE
10700 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10701 {
10702 /* We've decided to create a PLT entry for this symbol. */
10703 bfd_byte *loc;
1bbce132 10704 bfd_vma header_address, got_address;
861fb55a 10705 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10706 bfd_vma got_index;
10707 bfd_vma isa_bit;
10708
10709 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10710
10711 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10712 BFD_ASSERT (h->dynindx != -1);
ce558b89 10713 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10714 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10715 BFD_ASSERT (!h->def_regular);
10716
10717 /* Calculate the address of the PLT header. */
1bbce132 10718 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10719 header_address = (htab->root.splt->output_section->vma
10720 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10721
10722 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10723 got_address = (htab->root.sgotplt->output_section->vma
10724 + htab->root.sgotplt->output_offset
1bbce132
MR
10725 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10726
861fb55a
DJ
10727 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10728 got_address_low = got_address & 0xffff;
10729
10730 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10731 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10732 if (ABI_64_P (output_bfd))
10733 bfd_put_64 (output_bfd, header_address, loc);
10734 else
10735 bfd_put_32 (output_bfd, header_address, loc);
10736
1bbce132
MR
10737 /* Now handle the PLT itself. First the standard entry (the order
10738 does not matter, we just have to pick one). */
10739 if (h->plt.plist->mips_offset != MINUS_ONE)
10740 {
10741 const bfd_vma *plt_entry;
10742 bfd_vma plt_offset;
861fb55a 10743
1bbce132 10744 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10745
ce558b89 10746 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10747
1bbce132 10748 /* Find out where the .plt entry should go. */
ce558b89 10749 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10750
10751 /* Pick the load opcode. */
10752 load = MIPS_ELF_LOAD_WORD (output_bfd);
10753
10754 /* Fill in the PLT entry itself. */
7361da2c
AB
10755
10756 if (MIPSR6_P (output_bfd))
10757 plt_entry = mipsr6_exec_plt_entry;
10758 else
10759 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10760 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10761 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10762 loc + 4);
10763
10764 if (! LOAD_INTERLOCKS_P (output_bfd))
10765 {
10766 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10767 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10768 }
10769 else
10770 {
10771 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10772 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10773 loc + 12);
10774 }
6d30f5b2 10775 }
1bbce132
MR
10776
10777 /* Now the compressed entry. They come after any standard ones. */
10778 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10779 {
1bbce132
MR
10780 bfd_vma plt_offset;
10781
10782 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10783 + h->plt.plist->comp_offset);
10784
ce558b89 10785 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10786
10787 /* Find out where the .plt entry should go. */
ce558b89 10788 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10789
10790 /* Fill in the PLT entry itself. */
833794fc
MR
10791 if (!MICROMIPS_P (output_bfd))
10792 {
10793 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10794
10795 bfd_put_16 (output_bfd, plt_entry[0], loc);
10796 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10797 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10798 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10799 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10800 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10801 bfd_put_32 (output_bfd, got_address, loc + 12);
10802 }
10803 else if (htab->insn32)
10804 {
10805 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10806
10807 bfd_put_16 (output_bfd, plt_entry[0], loc);
10808 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10809 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10810 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10811 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10812 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10813 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10814 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10815 }
10816 else
1bbce132
MR
10817 {
10818 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10819 bfd_signed_vma gotpc_offset;
10820 bfd_vma loc_address;
10821
10822 BFD_ASSERT (got_address % 4 == 0);
10823
ce558b89
AM
10824 loc_address = (htab->root.splt->output_section->vma
10825 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10826 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10827
10828 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10829 if (gotpc_offset + 0x1000000 >= 0x2000000)
10830 {
4eca0228 10831 _bfd_error_handler
695344c0 10832 /* xgettext:c-format */
1bbce132
MR
10833 (_("%B: `%A' offset of %ld from `%A' "
10834 "beyond the range of ADDIUPC"),
10835 output_bfd,
ce558b89
AM
10836 htab->root.sgotplt->output_section,
10837 htab->root.splt->output_section,
1bbce132
MR
10838 (long) gotpc_offset);
10839 bfd_set_error (bfd_error_no_error);
10840 return FALSE;
10841 }
10842 bfd_put_16 (output_bfd,
10843 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10844 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10845 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10846 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10847 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10848 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10849 }
6d30f5b2 10850 }
861fb55a
DJ
10851
10852 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10853 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10854 got_index - 2, h->dynindx,
861fb55a
DJ
10855 R_MIPS_JUMP_SLOT, got_address);
10856
10857 /* We distinguish between PLT entries and lazy-binding stubs by
10858 giving the former an st_other value of STO_MIPS_PLT. Set the
10859 flag and leave the value if there are any relocations in the
10860 binary where pointer equality matters. */
10861 sym->st_shndx = SHN_UNDEF;
10862 if (h->pointer_equality_needed)
1bbce132 10863 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10864 else
1bbce132
MR
10865 {
10866 sym->st_value = 0;
10867 sym->st_other = 0;
10868 }
861fb55a 10869 }
1bbce132
MR
10870
10871 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10872 {
861fb55a 10873 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10874 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10875 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10876 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10877 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10878 bfd_vma isa_bit = micromips_p;
10879 bfd_vma stub_big_size;
10880
833794fc 10881 if (!micromips_p)
1bbce132 10882 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10883 else if (htab->insn32)
10884 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10885 else
10886 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10887
10888 /* This symbol has a stub. Set it up. */
10889
10890 BFD_ASSERT (h->dynindx != -1);
10891
1bbce132 10892 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10893
10894 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10895 sign extension at runtime in the stub, resulting in a negative
10896 index value. */
10897 if (h->dynindx & ~0x7fffffff)
b34976b6 10898 return FALSE;
b49e97c9
TS
10899
10900 /* Fill the stub. */
1bbce132
MR
10901 if (micromips_p)
10902 {
10903 idx = 0;
10904 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10905 stub + idx);
10906 idx += 4;
833794fc
MR
10907 if (htab->insn32)
10908 {
10909 bfd_put_micromips_32 (output_bfd,
40fc1451 10910 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10911 idx += 4;
10912 }
10913 else
10914 {
10915 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10916 idx += 2;
10917 }
1bbce132
MR
10918 if (stub_size == stub_big_size)
10919 {
10920 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10921
10922 bfd_put_micromips_32 (output_bfd,
10923 STUB_LUI_MICROMIPS (dynindx_hi),
10924 stub + idx);
10925 idx += 4;
10926 }
833794fc
MR
10927 if (htab->insn32)
10928 {
10929 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10930 stub + idx);
10931 idx += 4;
10932 }
10933 else
10934 {
10935 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10936 idx += 2;
10937 }
1bbce132
MR
10938
10939 /* If a large stub is not required and sign extension is not a
10940 problem, then use legacy code in the stub. */
10941 if (stub_size == stub_big_size)
10942 bfd_put_micromips_32 (output_bfd,
10943 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10944 stub + idx);
10945 else if (h->dynindx & ~0x7fff)
10946 bfd_put_micromips_32 (output_bfd,
10947 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10948 stub + idx);
10949 else
10950 bfd_put_micromips_32 (output_bfd,
10951 STUB_LI16S_MICROMIPS (output_bfd,
10952 h->dynindx),
10953 stub + idx);
10954 }
3d6746ca 10955 else
1bbce132
MR
10956 {
10957 idx = 0;
10958 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10959 idx += 4;
40fc1451 10960 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10961 idx += 4;
10962 if (stub_size == stub_big_size)
10963 {
10964 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10965 stub + idx);
10966 idx += 4;
10967 }
10968 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10969 idx += 4;
10970
10971 /* If a large stub is not required and sign extension is not a
10972 problem, then use legacy code in the stub. */
10973 if (stub_size == stub_big_size)
10974 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10975 stub + idx);
10976 else if (h->dynindx & ~0x7fff)
10977 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10978 stub + idx);
10979 else
10980 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10981 stub + idx);
10982 }
5108fc1b 10983
1bbce132
MR
10984 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10985 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10986 stub, stub_size);
b49e97c9 10987
1bbce132 10988 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10989 only for the referenced symbol. */
10990 sym->st_shndx = SHN_UNDEF;
10991
10992 /* The run-time linker uses the st_value field of the symbol
10993 to reset the global offset table entry for this external
10994 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10995 sym->st_value = (htab->sstubs->output_section->vma
10996 + htab->sstubs->output_offset
1bbce132
MR
10997 + h->plt.plist->stub_offset
10998 + isa_bit);
10999 sym->st_other = other;
b49e97c9
TS
11000 }
11001
738e5348
RS
11002 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11003 refer to the stub, since only the stub uses the standard calling
11004 conventions. */
11005 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11006 {
11007 BFD_ASSERT (hmips->need_fn_stub);
11008 sym->st_value = (hmips->fn_stub->output_section->vma
11009 + hmips->fn_stub->output_offset);
11010 sym->st_size = hmips->fn_stub->size;
11011 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11012 }
11013
b49e97c9 11014 BFD_ASSERT (h->dynindx != -1
f5385ebf 11015 || h->forced_local);
b49e97c9 11016
ce558b89 11017 sgot = htab->root.sgot;
a8028dd0 11018 g = htab->got_info;
b49e97c9
TS
11019 BFD_ASSERT (g != NULL);
11020
11021 /* Run through the global symbol table, creating GOT entries for all
11022 the symbols that need them. */
020d7251 11023 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11024 {
11025 bfd_vma offset;
11026 bfd_vma value;
11027
6eaa6adc 11028 value = sym->st_value;
13fbec83 11029 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11030 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11031 }
11032
e641e783 11033 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11034 {
11035 struct mips_got_entry e, *p;
0626d451 11036 bfd_vma entry;
f4416af6 11037 bfd_vma offset;
f4416af6
AO
11038
11039 gg = g;
11040
11041 e.abfd = output_bfd;
11042 e.symndx = -1;
738e5348 11043 e.d.h = hmips;
9ab066b4 11044 e.tls_type = GOT_TLS_NONE;
143d77c5 11045
f4416af6
AO
11046 for (g = g->next; g->next != gg; g = g->next)
11047 {
11048 if (g->got_entries
11049 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11050 &e)))
11051 {
11052 offset = p->gotidx;
ce558b89 11053 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11054 if (bfd_link_pic (info)
0626d451
RS
11055 || (elf_hash_table (info)->dynamic_sections_created
11056 && p->d.h != NULL
f5385ebf
AM
11057 && p->d.h->root.def_dynamic
11058 && !p->d.h->root.def_regular))
0626d451
RS
11059 {
11060 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11061 the various compatibility problems, it's easier to mock
11062 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11063 mips_elf_create_dynamic_relocation to calculate the
11064 appropriate addend. */
11065 Elf_Internal_Rela rel[3];
11066
11067 memset (rel, 0, sizeof (rel));
11068 if (ABI_64_P (output_bfd))
11069 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11070 else
11071 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11072 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11073
11074 entry = 0;
11075 if (! (mips_elf_create_dynamic_relocation
11076 (output_bfd, info, rel,
11077 e.d.h, NULL, sym->st_value, &entry, sgot)))
11078 return FALSE;
11079 }
11080 else
11081 entry = sym->st_value;
11082 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11083 }
11084 }
11085 }
11086
b49e97c9
TS
11087 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11088 name = h->root.root.string;
9637f6ef 11089 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11090 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11091 sym->st_shndx = SHN_ABS;
11092 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11093 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11094 {
11095 sym->st_shndx = SHN_ABS;
11096 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11097 sym->st_value = 1;
11098 }
4a14403c 11099 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
11100 {
11101 sym->st_shndx = SHN_ABS;
11102 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11103 sym->st_value = elf_gp (output_bfd);
11104 }
11105 else if (SGI_COMPAT (output_bfd))
11106 {
11107 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11108 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11109 {
11110 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11111 sym->st_other = STO_PROTECTED;
11112 sym->st_value = 0;
11113 sym->st_shndx = SHN_MIPS_DATA;
11114 }
11115 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11116 {
11117 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11118 sym->st_other = STO_PROTECTED;
11119 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11120 sym->st_shndx = SHN_ABS;
11121 }
11122 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11123 {
11124 if (h->type == STT_FUNC)
11125 sym->st_shndx = SHN_MIPS_TEXT;
11126 else if (h->type == STT_OBJECT)
11127 sym->st_shndx = SHN_MIPS_DATA;
11128 }
11129 }
11130
861fb55a
DJ
11131 /* Emit a copy reloc, if needed. */
11132 if (h->needs_copy)
11133 {
11134 asection *s;
11135 bfd_vma symval;
11136
11137 BFD_ASSERT (h->dynindx != -1);
11138 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11139
11140 s = mips_elf_rel_dyn_section (info, FALSE);
11141 symval = (h->root.u.def.section->output_section->vma
11142 + h->root.u.def.section->output_offset
11143 + h->root.u.def.value);
11144 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11145 h->dynindx, R_MIPS_COPY, symval);
11146 }
11147
b49e97c9
TS
11148 /* Handle the IRIX6-specific symbols. */
11149 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11150 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11151
cbf8d970
MR
11152 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11153 to treat compressed symbols like any other. */
30c09090 11154 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11155 {
11156 BFD_ASSERT (sym->st_value & 1);
11157 sym->st_other -= STO_MIPS16;
11158 }
cbf8d970
MR
11159 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11160 {
11161 BFD_ASSERT (sym->st_value & 1);
11162 sym->st_other -= STO_MICROMIPS;
11163 }
b49e97c9 11164
b34976b6 11165 return TRUE;
b49e97c9
TS
11166}
11167
0a44bf69
RS
11168/* Likewise, for VxWorks. */
11169
11170bfd_boolean
11171_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11172 struct bfd_link_info *info,
11173 struct elf_link_hash_entry *h,
11174 Elf_Internal_Sym *sym)
11175{
11176 bfd *dynobj;
11177 asection *sgot;
11178 struct mips_got_info *g;
11179 struct mips_elf_link_hash_table *htab;
020d7251 11180 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11181
11182 htab = mips_elf_hash_table (info);
4dfe6ac6 11183 BFD_ASSERT (htab != NULL);
0a44bf69 11184 dynobj = elf_hash_table (info)->dynobj;
020d7251 11185 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11186
1bbce132 11187 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11188 {
6d79d2ed 11189 bfd_byte *loc;
1bbce132 11190 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11191 Elf_Internal_Rela rel;
11192 static const bfd_vma *plt_entry;
1bbce132
MR
11193 bfd_vma gotplt_index;
11194 bfd_vma plt_offset;
11195
11196 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11197 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11198
11199 BFD_ASSERT (h->dynindx != -1);
ce558b89 11200 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11201 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11202 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11203
11204 /* Calculate the address of the .plt entry. */
ce558b89
AM
11205 plt_address = (htab->root.splt->output_section->vma
11206 + htab->root.splt->output_offset
1bbce132 11207 + plt_offset);
0a44bf69
RS
11208
11209 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11210 got_address = (htab->root.sgotplt->output_section->vma
11211 + htab->root.sgotplt->output_offset
1bbce132 11212 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11213
11214 /* Calculate the offset of the .got.plt entry from
11215 _GLOBAL_OFFSET_TABLE_. */
11216 got_offset = mips_elf_gotplt_index (info, h);
11217
11218 /* Calculate the offset for the branch at the start of the PLT
11219 entry. The branch jumps to the beginning of .plt. */
1bbce132 11220 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11221
11222 /* Fill in the initial value of the .got.plt entry. */
11223 bfd_put_32 (output_bfd, plt_address,
ce558b89 11224 (htab->root.sgotplt->contents
1bbce132 11225 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11226
11227 /* Find out where the .plt entry should go. */
ce558b89 11228 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11229
0e1862bb 11230 if (bfd_link_pic (info))
0a44bf69
RS
11231 {
11232 plt_entry = mips_vxworks_shared_plt_entry;
11233 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11234 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11235 }
11236 else
11237 {
11238 bfd_vma got_address_high, got_address_low;
11239
11240 plt_entry = mips_vxworks_exec_plt_entry;
11241 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11242 got_address_low = got_address & 0xffff;
11243
11244 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11245 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11246 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11247 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11248 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11249 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11250 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11251 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11252
11253 loc = (htab->srelplt2->contents
1bbce132 11254 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11255
11256 /* Emit a relocation for the .got.plt entry. */
11257 rel.r_offset = got_address;
11258 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11259 rel.r_addend = plt_offset;
0a44bf69
RS
11260 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11261
11262 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11263 loc += sizeof (Elf32_External_Rela);
11264 rel.r_offset = plt_address + 8;
11265 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11266 rel.r_addend = got_offset;
11267 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11268
11269 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11270 loc += sizeof (Elf32_External_Rela);
11271 rel.r_offset += 4;
11272 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274 }
11275
11276 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11277 loc = (htab->root.srelplt->contents
1bbce132 11278 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11279 rel.r_offset = got_address;
11280 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11281 rel.r_addend = 0;
11282 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11283
11284 if (!h->def_regular)
11285 sym->st_shndx = SHN_UNDEF;
11286 }
11287
11288 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11289
ce558b89 11290 sgot = htab->root.sgot;
a8028dd0 11291 g = htab->got_info;
0a44bf69
RS
11292 BFD_ASSERT (g != NULL);
11293
11294 /* See if this symbol has an entry in the GOT. */
020d7251 11295 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11296 {
11297 bfd_vma offset;
11298 Elf_Internal_Rela outrel;
11299 bfd_byte *loc;
11300 asection *s;
11301
11302 /* Install the symbol value in the GOT. */
13fbec83 11303 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11304 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11305
11306 /* Add a dynamic relocation for it. */
11307 s = mips_elf_rel_dyn_section (info, FALSE);
11308 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11309 outrel.r_offset = (sgot->output_section->vma
11310 + sgot->output_offset
11311 + offset);
11312 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11313 outrel.r_addend = 0;
11314 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11315 }
11316
11317 /* Emit a copy reloc, if needed. */
11318 if (h->needs_copy)
11319 {
11320 Elf_Internal_Rela rel;
5474d94f
AM
11321 asection *srel;
11322 bfd_byte *loc;
0a44bf69
RS
11323
11324 BFD_ASSERT (h->dynindx != -1);
11325
11326 rel.r_offset = (h->root.u.def.section->output_section->vma
11327 + h->root.u.def.section->output_offset
11328 + h->root.u.def.value);
11329 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11330 rel.r_addend = 0;
5474d94f
AM
11331 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11332 srel = htab->root.sreldynrelro;
11333 else
11334 srel = htab->root.srelbss;
11335 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11337 ++srel->reloc_count;
0a44bf69
RS
11338 }
11339
df58fc94
RS
11340 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11341 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11342 sym->st_value &= ~1;
11343
11344 return TRUE;
11345}
11346
861fb55a
DJ
11347/* Write out a plt0 entry to the beginning of .plt. */
11348
1bbce132 11349static bfd_boolean
861fb55a
DJ
11350mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11351{
11352 bfd_byte *loc;
11353 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11354 static const bfd_vma *plt_entry;
11355 struct mips_elf_link_hash_table *htab;
11356
11357 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11358 BFD_ASSERT (htab != NULL);
11359
861fb55a
DJ
11360 if (ABI_64_P (output_bfd))
11361 plt_entry = mips_n64_exec_plt0_entry;
11362 else if (ABI_N32_P (output_bfd))
11363 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11364 else if (!htab->plt_header_is_comp)
861fb55a 11365 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11366 else if (htab->insn32)
11367 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11368 else
11369 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11370
11371 /* Calculate the value of .got.plt. */
ce558b89
AM
11372 gotplt_value = (htab->root.sgotplt->output_section->vma
11373 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11374 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11375 gotplt_value_low = gotplt_value & 0xffff;
11376
11377 /* The PLT sequence is not safe for N64 if .got.plt's address can
11378 not be loaded in two instructions. */
11379 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11380 || ~(gotplt_value | 0x7fffffff) == 0);
11381
11382 /* Install the PLT header. */
ce558b89 11383 loc = htab->root.splt->contents;
1bbce132
MR
11384 if (plt_entry == micromips_o32_exec_plt0_entry)
11385 {
11386 bfd_vma gotpc_offset;
11387 bfd_vma loc_address;
11388 size_t i;
11389
11390 BFD_ASSERT (gotplt_value % 4 == 0);
11391
ce558b89
AM
11392 loc_address = (htab->root.splt->output_section->vma
11393 + htab->root.splt->output_offset);
1bbce132
MR
11394 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11395
11396 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11397 if (gotpc_offset + 0x1000000 >= 0x2000000)
11398 {
4eca0228 11399 _bfd_error_handler
695344c0 11400 /* xgettext:c-format */
1bbce132
MR
11401 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11402 output_bfd,
ce558b89
AM
11403 htab->root.sgotplt->output_section,
11404 htab->root.splt->output_section,
1bbce132
MR
11405 (long) gotpc_offset);
11406 bfd_set_error (bfd_error_no_error);
11407 return FALSE;
11408 }
11409 bfd_put_16 (output_bfd,
11410 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11411 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11412 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11413 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11414 }
833794fc
MR
11415 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11416 {
11417 size_t i;
11418
11419 bfd_put_16 (output_bfd, plt_entry[0], loc);
11420 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11421 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11422 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11423 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11424 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11425 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11426 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11427 }
1bbce132
MR
11428 else
11429 {
11430 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11431 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11432 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11433 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11434 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11435 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11436 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11437 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11438 }
11439
11440 return TRUE;
861fb55a
DJ
11441}
11442
0a44bf69
RS
11443/* Install the PLT header for a VxWorks executable and finalize the
11444 contents of .rela.plt.unloaded. */
11445
11446static void
11447mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11448{
11449 Elf_Internal_Rela rela;
11450 bfd_byte *loc;
11451 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11452 static const bfd_vma *plt_entry;
11453 struct mips_elf_link_hash_table *htab;
11454
11455 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11456 BFD_ASSERT (htab != NULL);
11457
0a44bf69
RS
11458 plt_entry = mips_vxworks_exec_plt0_entry;
11459
11460 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11461 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11462 + htab->root.hgot->root.u.def.section->output_offset
11463 + htab->root.hgot->root.u.def.value);
11464
11465 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11466 got_value_low = got_value & 0xffff;
11467
11468 /* Calculate the address of the PLT header. */
ce558b89
AM
11469 plt_address = (htab->root.splt->output_section->vma
11470 + htab->root.splt->output_offset);
0a44bf69
RS
11471
11472 /* Install the PLT header. */
ce558b89 11473 loc = htab->root.splt->contents;
0a44bf69
RS
11474 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11475 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11476 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11477 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11478 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11479 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11480
11481 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11482 loc = htab->srelplt2->contents;
11483 rela.r_offset = plt_address;
11484 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11485 rela.r_addend = 0;
11486 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11487 loc += sizeof (Elf32_External_Rela);
11488
11489 /* Output the relocation for the following addiu of
11490 %lo(_GLOBAL_OFFSET_TABLE_). */
11491 rela.r_offset += 4;
11492 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11493 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11494 loc += sizeof (Elf32_External_Rela);
11495
11496 /* Fix up the remaining relocations. They may have the wrong
11497 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11498 in which symbols were output. */
11499 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11500 {
11501 Elf_Internal_Rela rel;
11502
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11507
11508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11509 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11511 loc += sizeof (Elf32_External_Rela);
11512
11513 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11514 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11515 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11516 loc += sizeof (Elf32_External_Rela);
11517 }
11518}
11519
11520/* Install the PLT header for a VxWorks shared library. */
11521
11522static void
11523mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11524{
11525 unsigned int i;
11526 struct mips_elf_link_hash_table *htab;
11527
11528 htab = mips_elf_hash_table (info);
4dfe6ac6 11529 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11530
11531 /* We just need to copy the entry byte-by-byte. */
11532 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11533 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11534 htab->root.splt->contents + i * 4);
0a44bf69
RS
11535}
11536
b49e97c9
TS
11537/* Finish up the dynamic sections. */
11538
b34976b6 11539bfd_boolean
9719ad41
RS
11540_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11541 struct bfd_link_info *info)
b49e97c9
TS
11542{
11543 bfd *dynobj;
11544 asection *sdyn;
11545 asection *sgot;
f4416af6 11546 struct mips_got_info *gg, *g;
0a44bf69 11547 struct mips_elf_link_hash_table *htab;
b49e97c9 11548
0a44bf69 11549 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11550 BFD_ASSERT (htab != NULL);
11551
b49e97c9
TS
11552 dynobj = elf_hash_table (info)->dynobj;
11553
3d4d4302 11554 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11555
ce558b89 11556 sgot = htab->root.sgot;
23cc69b6 11557 gg = htab->got_info;
b49e97c9
TS
11558
11559 if (elf_hash_table (info)->dynamic_sections_created)
11560 {
11561 bfd_byte *b;
943284cc 11562 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11563
11564 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11565 BFD_ASSERT (gg != NULL);
11566
d7206569 11567 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11568 BFD_ASSERT (g != NULL);
11569
11570 for (b = sdyn->contents;
eea6121a 11571 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11572 b += MIPS_ELF_DYN_SIZE (dynobj))
11573 {
11574 Elf_Internal_Dyn dyn;
11575 const char *name;
11576 size_t elemsize;
11577 asection *s;
b34976b6 11578 bfd_boolean swap_out_p;
b49e97c9
TS
11579
11580 /* Read in the current dynamic entry. */
11581 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11582
11583 /* Assume that we're going to modify it and write it out. */
b34976b6 11584 swap_out_p = TRUE;
b49e97c9
TS
11585
11586 switch (dyn.d_tag)
11587 {
11588 case DT_RELENT:
b49e97c9
TS
11589 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11590 break;
11591
0a44bf69
RS
11592 case DT_RELAENT:
11593 BFD_ASSERT (htab->is_vxworks);
11594 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11595 break;
11596
b49e97c9
TS
11597 case DT_STRSZ:
11598 /* Rewrite DT_STRSZ. */
11599 dyn.d_un.d_val =
11600 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11601 break;
11602
11603 case DT_PLTGOT:
ce558b89 11604 s = htab->root.sgot;
861fb55a
DJ
11605 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11606 break;
11607
11608 case DT_MIPS_PLTGOT:
ce558b89 11609 s = htab->root.sgotplt;
861fb55a 11610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11611 break;
11612
11613 case DT_MIPS_RLD_VERSION:
11614 dyn.d_un.d_val = 1; /* XXX */
11615 break;
11616
11617 case DT_MIPS_FLAGS:
11618 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11619 break;
11620
b49e97c9 11621 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11622 {
11623 time_t t;
11624 time (&t);
11625 dyn.d_un.d_val = t;
11626 }
b49e97c9
TS
11627 break;
11628
11629 case DT_MIPS_ICHECKSUM:
11630 /* XXX FIXME: */
b34976b6 11631 swap_out_p = FALSE;
b49e97c9
TS
11632 break;
11633
11634 case DT_MIPS_IVERSION:
11635 /* XXX FIXME: */
b34976b6 11636 swap_out_p = FALSE;
b49e97c9
TS
11637 break;
11638
11639 case DT_MIPS_BASE_ADDRESS:
11640 s = output_bfd->sections;
11641 BFD_ASSERT (s != NULL);
11642 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11643 break;
11644
11645 case DT_MIPS_LOCAL_GOTNO:
11646 dyn.d_un.d_val = g->local_gotno;
11647 break;
11648
11649 case DT_MIPS_UNREFEXTNO:
11650 /* The index into the dynamic symbol table which is the
11651 entry of the first external symbol that is not
11652 referenced within the same object. */
11653 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11654 break;
11655
11656 case DT_MIPS_GOTSYM:
d222d210 11657 if (htab->global_gotsym)
b49e97c9 11658 {
d222d210 11659 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11660 break;
11661 }
11662 /* In case if we don't have global got symbols we default
11663 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11664 DT_MIPS_SYMTABNO. */
11665 /* Fall through. */
b49e97c9
TS
11666
11667 case DT_MIPS_SYMTABNO:
11668 name = ".dynsym";
11669 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11670 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11671
131e2f8e
MF
11672 if (s != NULL)
11673 dyn.d_un.d_val = s->size / elemsize;
11674 else
11675 dyn.d_un.d_val = 0;
b49e97c9
TS
11676 break;
11677
11678 case DT_MIPS_HIPAGENO:
861fb55a 11679 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11680 break;
11681
11682 case DT_MIPS_RLD_MAP:
b4082c70
DD
11683 {
11684 struct elf_link_hash_entry *h;
11685 h = mips_elf_hash_table (info)->rld_symbol;
11686 if (!h)
11687 {
11688 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11689 swap_out_p = FALSE;
11690 break;
11691 }
11692 s = h->root.u.def.section;
a5499fa4
MF
11693
11694 /* The MIPS_RLD_MAP tag stores the absolute address of the
11695 debug pointer. */
b4082c70
DD
11696 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11697 + h->root.u.def.value);
11698 }
b49e97c9
TS
11699 break;
11700
a5499fa4
MF
11701 case DT_MIPS_RLD_MAP_REL:
11702 {
11703 struct elf_link_hash_entry *h;
11704 bfd_vma dt_addr, rld_addr;
11705 h = mips_elf_hash_table (info)->rld_symbol;
11706 if (!h)
11707 {
11708 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11709 swap_out_p = FALSE;
11710 break;
11711 }
11712 s = h->root.u.def.section;
11713
11714 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11715 pointer, relative to the address of the tag. */
11716 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11717 + (b - sdyn->contents));
a5499fa4
MF
11718 rld_addr = (s->output_section->vma + s->output_offset
11719 + h->root.u.def.value);
11720 dyn.d_un.d_ptr = rld_addr - dt_addr;
11721 }
11722 break;
11723
b49e97c9
TS
11724 case DT_MIPS_OPTIONS:
11725 s = (bfd_get_section_by_name
11726 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11727 dyn.d_un.d_ptr = s->vma;
11728 break;
11729
0a44bf69 11730 case DT_PLTREL:
861fb55a
DJ
11731 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11732 if (htab->is_vxworks)
11733 dyn.d_un.d_val = DT_RELA;
11734 else
11735 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11736 break;
11737
11738 case DT_PLTRELSZ:
861fb55a 11739 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11740 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11741 break;
11742
11743 case DT_JMPREL:
861fb55a 11744 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11745 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11746 + htab->root.srelplt->output_offset);
0a44bf69
RS
11747 break;
11748
943284cc
DJ
11749 case DT_TEXTREL:
11750 /* If we didn't need any text relocations after all, delete
11751 the dynamic tag. */
11752 if (!(info->flags & DF_TEXTREL))
11753 {
11754 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11755 swap_out_p = FALSE;
11756 }
11757 break;
11758
11759 case DT_FLAGS:
11760 /* If we didn't need any text relocations after all, clear
11761 DF_TEXTREL from DT_FLAGS. */
11762 if (!(info->flags & DF_TEXTREL))
11763 dyn.d_un.d_val &= ~DF_TEXTREL;
11764 else
11765 swap_out_p = FALSE;
11766 break;
11767
b49e97c9 11768 default:
b34976b6 11769 swap_out_p = FALSE;
7a2b07ff
NS
11770 if (htab->is_vxworks
11771 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11772 swap_out_p = TRUE;
b49e97c9
TS
11773 break;
11774 }
11775
943284cc 11776 if (swap_out_p || dyn_skipped)
b49e97c9 11777 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11778 (dynobj, &dyn, b - dyn_skipped);
11779
11780 if (dyn_to_skip)
11781 {
11782 dyn_skipped += dyn_to_skip;
11783 dyn_to_skip = 0;
11784 }
b49e97c9 11785 }
943284cc
DJ
11786
11787 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11788 if (dyn_skipped > 0)
11789 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11790 }
11791
b55fd4d4
DJ
11792 if (sgot != NULL && sgot->size > 0
11793 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11794 {
0a44bf69
RS
11795 if (htab->is_vxworks)
11796 {
11797 /* The first entry of the global offset table points to the
11798 ".dynamic" section. The second is initialized by the
11799 loader and contains the shared library identifier.
11800 The third is also initialized by the loader and points
11801 to the lazy resolution stub. */
11802 MIPS_ELF_PUT_WORD (output_bfd,
11803 sdyn->output_offset + sdyn->output_section->vma,
11804 sgot->contents);
11805 MIPS_ELF_PUT_WORD (output_bfd, 0,
11806 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11807 MIPS_ELF_PUT_WORD (output_bfd, 0,
11808 sgot->contents
11809 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11810 }
11811 else
11812 {
11813 /* The first entry of the global offset table will be filled at
11814 runtime. The second entry will be used by some runtime loaders.
11815 This isn't the case of IRIX rld. */
11816 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11817 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11818 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11819 }
b49e97c9 11820
54938e2a
TS
11821 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11822 = MIPS_ELF_GOT_SIZE (output_bfd);
11823 }
b49e97c9 11824
f4416af6
AO
11825 /* Generate dynamic relocations for the non-primary gots. */
11826 if (gg != NULL && gg->next)
11827 {
11828 Elf_Internal_Rela rel[3];
11829 bfd_vma addend = 0;
11830
11831 memset (rel, 0, sizeof (rel));
11832 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11833
11834 for (g = gg->next; g->next != gg; g = g->next)
11835 {
91d6fa6a 11836 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11837 + g->next->tls_gotno;
f4416af6 11838
9719ad41 11839 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11840 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11841 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11842 sgot->contents
91d6fa6a 11843 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11844
0e1862bb 11845 if (! bfd_link_pic (info))
f4416af6
AO
11846 continue;
11847
cb22ccf4 11848 for (; got_index < g->local_gotno; got_index++)
f4416af6 11849 {
cb22ccf4
KCY
11850 if (got_index >= g->assigned_low_gotno
11851 && got_index <= g->assigned_high_gotno)
11852 continue;
11853
f4416af6 11854 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11855 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11856 if (!(mips_elf_create_dynamic_relocation
11857 (output_bfd, info, rel, NULL,
11858 bfd_abs_section_ptr,
11859 0, &addend, sgot)))
11860 return FALSE;
11861 BFD_ASSERT (addend == 0);
11862 }
11863 }
11864 }
11865
3133ddbf
DJ
11866 /* The generation of dynamic relocations for the non-primary gots
11867 adds more dynamic relocations. We cannot count them until
11868 here. */
11869
11870 if (elf_hash_table (info)->dynamic_sections_created)
11871 {
11872 bfd_byte *b;
11873 bfd_boolean swap_out_p;
11874
11875 BFD_ASSERT (sdyn != NULL);
11876
11877 for (b = sdyn->contents;
11878 b < sdyn->contents + sdyn->size;
11879 b += MIPS_ELF_DYN_SIZE (dynobj))
11880 {
11881 Elf_Internal_Dyn dyn;
11882 asection *s;
11883
11884 /* Read in the current dynamic entry. */
11885 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11886
11887 /* Assume that we're going to modify it and write it out. */
11888 swap_out_p = TRUE;
11889
11890 switch (dyn.d_tag)
11891 {
11892 case DT_RELSZ:
11893 /* Reduce DT_RELSZ to account for any relocations we
11894 decided not to make. This is for the n64 irix rld,
11895 which doesn't seem to apply any relocations if there
11896 are trailing null entries. */
0a44bf69 11897 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11898 dyn.d_un.d_val = (s->reloc_count
11899 * (ABI_64_P (output_bfd)
11900 ? sizeof (Elf64_Mips_External_Rel)
11901 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11902 /* Adjust the section size too. Tools like the prelinker
11903 can reasonably expect the values to the same. */
11904 elf_section_data (s->output_section)->this_hdr.sh_size
11905 = dyn.d_un.d_val;
3133ddbf
DJ
11906 break;
11907
11908 default:
11909 swap_out_p = FALSE;
11910 break;
11911 }
11912
11913 if (swap_out_p)
11914 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11915 (dynobj, &dyn, b);
11916 }
11917 }
11918
b49e97c9 11919 {
b49e97c9
TS
11920 asection *s;
11921 Elf32_compact_rel cpt;
11922
b49e97c9
TS
11923 if (SGI_COMPAT (output_bfd))
11924 {
11925 /* Write .compact_rel section out. */
3d4d4302 11926 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11927 if (s != NULL)
11928 {
11929 cpt.id1 = 1;
11930 cpt.num = s->reloc_count;
11931 cpt.id2 = 2;
11932 cpt.offset = (s->output_section->filepos
11933 + sizeof (Elf32_External_compact_rel));
11934 cpt.reserved0 = 0;
11935 cpt.reserved1 = 0;
11936 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11937 ((Elf32_External_compact_rel *)
11938 s->contents));
11939
11940 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11941 if (htab->sstubs != NULL)
b49e97c9
TS
11942 {
11943 file_ptr dummy_offset;
11944
4e41d0d7
RS
11945 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11946 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11947 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11948 htab->function_stub_size);
b49e97c9
TS
11949 }
11950 }
11951 }
11952
0a44bf69
RS
11953 /* The psABI says that the dynamic relocations must be sorted in
11954 increasing order of r_symndx. The VxWorks EABI doesn't require
11955 this, and because the code below handles REL rather than RELA
11956 relocations, using it for VxWorks would be outright harmful. */
11957 if (!htab->is_vxworks)
b49e97c9 11958 {
0a44bf69
RS
11959 s = mips_elf_rel_dyn_section (info, FALSE);
11960 if (s != NULL
11961 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11962 {
11963 reldyn_sorting_bfd = output_bfd;
b49e97c9 11964
0a44bf69
RS
11965 if (ABI_64_P (output_bfd))
11966 qsort ((Elf64_External_Rel *) s->contents + 1,
11967 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11968 sort_dynamic_relocs_64);
11969 else
11970 qsort ((Elf32_External_Rel *) s->contents + 1,
11971 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11972 sort_dynamic_relocs);
11973 }
b49e97c9 11974 }
b49e97c9
TS
11975 }
11976
ce558b89 11977 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11978 {
861fb55a
DJ
11979 if (htab->is_vxworks)
11980 {
0e1862bb 11981 if (bfd_link_pic (info))
861fb55a
DJ
11982 mips_vxworks_finish_shared_plt (output_bfd, info);
11983 else
11984 mips_vxworks_finish_exec_plt (output_bfd, info);
11985 }
0a44bf69 11986 else
861fb55a 11987 {
0e1862bb 11988 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11989 if (!mips_finish_exec_plt (output_bfd, info))
11990 return FALSE;
861fb55a 11991 }
0a44bf69 11992 }
b34976b6 11993 return TRUE;
b49e97c9
TS
11994}
11995
b49e97c9 11996
64543e1a
RS
11997/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11998
11999static void
9719ad41 12000mips_set_isa_flags (bfd *abfd)
b49e97c9 12001{
64543e1a 12002 flagword val;
b49e97c9
TS
12003
12004 switch (bfd_get_mach (abfd))
12005 {
12006 default:
12007 case bfd_mach_mips3000:
12008 val = E_MIPS_ARCH_1;
12009 break;
12010
12011 case bfd_mach_mips3900:
12012 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12013 break;
12014
12015 case bfd_mach_mips6000:
12016 val = E_MIPS_ARCH_2;
12017 break;
12018
12019 case bfd_mach_mips4000:
12020 case bfd_mach_mips4300:
12021 case bfd_mach_mips4400:
12022 case bfd_mach_mips4600:
12023 val = E_MIPS_ARCH_3;
12024 break;
12025
12026 case bfd_mach_mips4010:
12027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12028 break;
12029
12030 case bfd_mach_mips4100:
12031 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12032 break;
12033
12034 case bfd_mach_mips4111:
12035 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12036 break;
12037
00707a0e
RS
12038 case bfd_mach_mips4120:
12039 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12040 break;
12041
b49e97c9
TS
12042 case bfd_mach_mips4650:
12043 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12044 break;
12045
00707a0e
RS
12046 case bfd_mach_mips5400:
12047 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12048 break;
12049
12050 case bfd_mach_mips5500:
12051 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12052 break;
12053
e407c74b
NC
12054 case bfd_mach_mips5900:
12055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12056 break;
12057
0d2e43ed
ILT
12058 case bfd_mach_mips9000:
12059 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12060 break;
12061
b49e97c9 12062 case bfd_mach_mips5000:
5a7ea749 12063 case bfd_mach_mips7000:
b49e97c9
TS
12064 case bfd_mach_mips8000:
12065 case bfd_mach_mips10000:
12066 case bfd_mach_mips12000:
3aa3176b
TS
12067 case bfd_mach_mips14000:
12068 case bfd_mach_mips16000:
b49e97c9
TS
12069 val = E_MIPS_ARCH_4;
12070 break;
12071
12072 case bfd_mach_mips5:
12073 val = E_MIPS_ARCH_5;
12074 break;
12075
350cc38d
MS
12076 case bfd_mach_mips_loongson_2e:
12077 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12078 break;
12079
12080 case bfd_mach_mips_loongson_2f:
12081 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12082 break;
12083
b49e97c9
TS
12084 case bfd_mach_mips_sb1:
12085 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12086 break;
12087
d051516a 12088 case bfd_mach_mips_loongson_3a:
4ba154f5 12089 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
12090 break;
12091
6f179bd0 12092 case bfd_mach_mips_octeon:
dd6a37e7 12093 case bfd_mach_mips_octeonp:
6f179bd0
AN
12094 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12095 break;
12096
2c629856
N
12097 case bfd_mach_mips_octeon3:
12098 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12099 break;
12100
52b6b6b9
JM
12101 case bfd_mach_mips_xlr:
12102 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12103 break;
12104
432233b3
AP
12105 case bfd_mach_mips_octeon2:
12106 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12107 break;
12108
b49e97c9
TS
12109 case bfd_mach_mipsisa32:
12110 val = E_MIPS_ARCH_32;
12111 break;
12112
12113 case bfd_mach_mipsisa64:
12114 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12115 break;
12116
12117 case bfd_mach_mipsisa32r2:
ae52f483
AB
12118 case bfd_mach_mipsisa32r3:
12119 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12120 val = E_MIPS_ARCH_32R2;
12121 break;
5f74bc13
CD
12122
12123 case bfd_mach_mipsisa64r2:
ae52f483
AB
12124 case bfd_mach_mipsisa64r3:
12125 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12126 val = E_MIPS_ARCH_64R2;
12127 break;
7361da2c
AB
12128
12129 case bfd_mach_mipsisa32r6:
12130 val = E_MIPS_ARCH_32R6;
12131 break;
12132
12133 case bfd_mach_mipsisa64r6:
12134 val = E_MIPS_ARCH_64R6;
12135 break;
b49e97c9 12136 }
b49e97c9
TS
12137 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12138 elf_elfheader (abfd)->e_flags |= val;
12139
64543e1a
RS
12140}
12141
12142
28dbcedc
AM
12143/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12144 Don't do so for code sections. We want to keep ordering of HI16/LO16
12145 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12146 relocs to be sorted. */
12147
12148bfd_boolean
12149_bfd_mips_elf_sort_relocs_p (asection *sec)
12150{
12151 return (sec->flags & SEC_CODE) == 0;
12152}
12153
12154
64543e1a
RS
12155/* The final processing done just before writing out a MIPS ELF object
12156 file. This gets the MIPS architecture right based on the machine
12157 number. This is used by both the 32-bit and the 64-bit ABI. */
12158
12159void
9719ad41
RS
12160_bfd_mips_elf_final_write_processing (bfd *abfd,
12161 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12162{
12163 unsigned int i;
12164 Elf_Internal_Shdr **hdrpp;
12165 const char *name;
12166 asection *sec;
12167
12168 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12169 is nonzero. This is for compatibility with old objects, which used
12170 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12171 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12172 mips_set_isa_flags (abfd);
12173
b49e97c9
TS
12174 /* Set the sh_info field for .gptab sections and other appropriate
12175 info for each special section. */
12176 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12177 i < elf_numsections (abfd);
12178 i++, hdrpp++)
12179 {
12180 switch ((*hdrpp)->sh_type)
12181 {
12182 case SHT_MIPS_MSYM:
12183 case SHT_MIPS_LIBLIST:
12184 sec = bfd_get_section_by_name (abfd, ".dynstr");
12185 if (sec != NULL)
12186 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12187 break;
12188
12189 case SHT_MIPS_GPTAB:
12190 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12191 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12192 BFD_ASSERT (name != NULL
0112cd26 12193 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12194 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12195 BFD_ASSERT (sec != NULL);
12196 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12197 break;
12198
12199 case SHT_MIPS_CONTENT:
12200 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12201 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12202 BFD_ASSERT (name != NULL
0112cd26 12203 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12204 sec = bfd_get_section_by_name (abfd,
12205 name + sizeof ".MIPS.content" - 1);
12206 BFD_ASSERT (sec != NULL);
12207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12208 break;
12209
12210 case SHT_MIPS_SYMBOL_LIB:
12211 sec = bfd_get_section_by_name (abfd, ".dynsym");
12212 if (sec != NULL)
12213 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12214 sec = bfd_get_section_by_name (abfd, ".liblist");
12215 if (sec != NULL)
12216 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12217 break;
12218
12219 case SHT_MIPS_EVENTS:
12220 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12221 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12222 BFD_ASSERT (name != NULL);
0112cd26 12223 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12224 sec = bfd_get_section_by_name (abfd,
12225 name + sizeof ".MIPS.events" - 1);
12226 else
12227 {
0112cd26 12228 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12229 sec = bfd_get_section_by_name (abfd,
12230 (name
12231 + sizeof ".MIPS.post_rel" - 1));
12232 }
12233 BFD_ASSERT (sec != NULL);
12234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12235 break;
12236
12237 }
12238 }
12239}
12240\f
8dc1a139 12241/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12242 segments. */
12243
12244int
a6b96beb
AM
12245_bfd_mips_elf_additional_program_headers (bfd *abfd,
12246 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12247{
12248 asection *s;
12249 int ret = 0;
12250
12251 /* See if we need a PT_MIPS_REGINFO segment. */
12252 s = bfd_get_section_by_name (abfd, ".reginfo");
12253 if (s && (s->flags & SEC_LOAD))
12254 ++ret;
12255
351cdf24
MF
12256 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12257 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12258 ++ret;
12259
b49e97c9
TS
12260 /* See if we need a PT_MIPS_OPTIONS segment. */
12261 if (IRIX_COMPAT (abfd) == ict_irix6
12262 && bfd_get_section_by_name (abfd,
12263 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12264 ++ret;
12265
12266 /* See if we need a PT_MIPS_RTPROC segment. */
12267 if (IRIX_COMPAT (abfd) == ict_irix5
12268 && bfd_get_section_by_name (abfd, ".dynamic")
12269 && bfd_get_section_by_name (abfd, ".mdebug"))
12270 ++ret;
12271
98c904a8
RS
12272 /* Allocate a PT_NULL header in dynamic objects. See
12273 _bfd_mips_elf_modify_segment_map for details. */
12274 if (!SGI_COMPAT (abfd)
12275 && bfd_get_section_by_name (abfd, ".dynamic"))
12276 ++ret;
12277
b49e97c9
TS
12278 return ret;
12279}
12280
8dc1a139 12281/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12282
b34976b6 12283bfd_boolean
9719ad41 12284_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12285 struct bfd_link_info *info)
b49e97c9
TS
12286{
12287 asection *s;
12288 struct elf_segment_map *m, **pm;
12289 bfd_size_type amt;
12290
12291 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12292 segment. */
12293 s = bfd_get_section_by_name (abfd, ".reginfo");
12294 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12295 {
12bd6957 12296 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12297 if (m->p_type == PT_MIPS_REGINFO)
12298 break;
12299 if (m == NULL)
12300 {
12301 amt = sizeof *m;
9719ad41 12302 m = bfd_zalloc (abfd, amt);
b49e97c9 12303 if (m == NULL)
b34976b6 12304 return FALSE;
b49e97c9
TS
12305
12306 m->p_type = PT_MIPS_REGINFO;
12307 m->count = 1;
12308 m->sections[0] = s;
12309
12310 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12311 pm = &elf_seg_map (abfd);
b49e97c9
TS
12312 while (*pm != NULL
12313 && ((*pm)->p_type == PT_PHDR
12314 || (*pm)->p_type == PT_INTERP))
12315 pm = &(*pm)->next;
12316
12317 m->next = *pm;
12318 *pm = m;
12319 }
12320 }
12321
351cdf24
MF
12322 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12323 segment. */
12324 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12325 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12326 {
12327 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12328 if (m->p_type == PT_MIPS_ABIFLAGS)
12329 break;
12330 if (m == NULL)
12331 {
12332 amt = sizeof *m;
12333 m = bfd_zalloc (abfd, amt);
12334 if (m == NULL)
12335 return FALSE;
12336
12337 m->p_type = PT_MIPS_ABIFLAGS;
12338 m->count = 1;
12339 m->sections[0] = s;
12340
12341 /* We want to put it after the PHDR and INTERP segments. */
12342 pm = &elf_seg_map (abfd);
12343 while (*pm != NULL
12344 && ((*pm)->p_type == PT_PHDR
12345 || (*pm)->p_type == PT_INTERP))
12346 pm = &(*pm)->next;
12347
12348 m->next = *pm;
12349 *pm = m;
12350 }
12351 }
12352
b49e97c9
TS
12353 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12354 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12355 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12356 table. */
c1fd6598
AO
12357 if (NEWABI_P (abfd)
12358 /* On non-IRIX6 new abi, we'll have already created a segment
12359 for this section, so don't create another. I'm not sure this
12360 is not also the case for IRIX 6, but I can't test it right
12361 now. */
12362 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12363 {
12364 for (s = abfd->sections; s; s = s->next)
12365 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12366 break;
12367
12368 if (s)
12369 {
12370 struct elf_segment_map *options_segment;
12371
12bd6957 12372 pm = &elf_seg_map (abfd);
98a8deaf
RS
12373 while (*pm != NULL
12374 && ((*pm)->p_type == PT_PHDR
12375 || (*pm)->p_type == PT_INTERP))
12376 pm = &(*pm)->next;
b49e97c9 12377
8ded5a0f
AM
12378 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12379 {
12380 amt = sizeof (struct elf_segment_map);
12381 options_segment = bfd_zalloc (abfd, amt);
12382 options_segment->next = *pm;
12383 options_segment->p_type = PT_MIPS_OPTIONS;
12384 options_segment->p_flags = PF_R;
12385 options_segment->p_flags_valid = TRUE;
12386 options_segment->count = 1;
12387 options_segment->sections[0] = s;
12388 *pm = options_segment;
12389 }
b49e97c9
TS
12390 }
12391 }
12392 else
12393 {
12394 if (IRIX_COMPAT (abfd) == ict_irix5)
12395 {
12396 /* If there are .dynamic and .mdebug sections, we make a room
12397 for the RTPROC header. FIXME: Rewrite without section names. */
12398 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12399 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12400 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12401 {
12bd6957 12402 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12403 if (m->p_type == PT_MIPS_RTPROC)
12404 break;
12405 if (m == NULL)
12406 {
12407 amt = sizeof *m;
9719ad41 12408 m = bfd_zalloc (abfd, amt);
b49e97c9 12409 if (m == NULL)
b34976b6 12410 return FALSE;
b49e97c9
TS
12411
12412 m->p_type = PT_MIPS_RTPROC;
12413
12414 s = bfd_get_section_by_name (abfd, ".rtproc");
12415 if (s == NULL)
12416 {
12417 m->count = 0;
12418 m->p_flags = 0;
12419 m->p_flags_valid = 1;
12420 }
12421 else
12422 {
12423 m->count = 1;
12424 m->sections[0] = s;
12425 }
12426
12427 /* We want to put it after the DYNAMIC segment. */
12bd6957 12428 pm = &elf_seg_map (abfd);
b49e97c9
TS
12429 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12430 pm = &(*pm)->next;
12431 if (*pm != NULL)
12432 pm = &(*pm)->next;
12433
12434 m->next = *pm;
12435 *pm = m;
12436 }
12437 }
12438 }
8dc1a139 12439 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12440 .dynstr, .dynsym, and .hash sections, and everything in
12441 between. */
12bd6957 12442 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12443 pm = &(*pm)->next)
12444 if ((*pm)->p_type == PT_DYNAMIC)
12445 break;
12446 m = *pm;
f6f62d6f
RS
12447 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12448 glibc's dynamic linker has traditionally derived the number of
12449 tags from the p_filesz field, and sometimes allocates stack
12450 arrays of that size. An overly-big PT_DYNAMIC segment can
12451 be actively harmful in such cases. Making PT_DYNAMIC contain
12452 other sections can also make life hard for the prelinker,
12453 which might move one of the other sections to a different
12454 PT_LOAD segment. */
12455 if (SGI_COMPAT (abfd)
12456 && m != NULL
12457 && m->count == 1
12458 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12459 {
12460 static const char *sec_names[] =
12461 {
12462 ".dynamic", ".dynstr", ".dynsym", ".hash"
12463 };
12464 bfd_vma low, high;
12465 unsigned int i, c;
12466 struct elf_segment_map *n;
12467
792b4a53 12468 low = ~(bfd_vma) 0;
b49e97c9
TS
12469 high = 0;
12470 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12471 {
12472 s = bfd_get_section_by_name (abfd, sec_names[i]);
12473 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12474 {
12475 bfd_size_type sz;
12476
12477 if (low > s->vma)
12478 low = s->vma;
eea6121a 12479 sz = s->size;
b49e97c9
TS
12480 if (high < s->vma + sz)
12481 high = s->vma + sz;
12482 }
12483 }
12484
12485 c = 0;
12486 for (s = abfd->sections; s != NULL; s = s->next)
12487 if ((s->flags & SEC_LOAD) != 0
12488 && s->vma >= low
eea6121a 12489 && s->vma + s->size <= high)
b49e97c9
TS
12490 ++c;
12491
12492 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12493 n = bfd_zalloc (abfd, amt);
b49e97c9 12494 if (n == NULL)
b34976b6 12495 return FALSE;
b49e97c9
TS
12496 *n = *m;
12497 n->count = c;
12498
12499 i = 0;
12500 for (s = abfd->sections; s != NULL; s = s->next)
12501 {
12502 if ((s->flags & SEC_LOAD) != 0
12503 && s->vma >= low
eea6121a 12504 && s->vma + s->size <= high)
b49e97c9
TS
12505 {
12506 n->sections[i] = s;
12507 ++i;
12508 }
12509 }
12510
12511 *pm = n;
12512 }
12513 }
12514
98c904a8
RS
12515 /* Allocate a spare program header in dynamic objects so that tools
12516 like the prelinker can add an extra PT_LOAD entry.
12517
12518 If the prelinker needs to make room for a new PT_LOAD entry, its
12519 standard procedure is to move the first (read-only) sections into
12520 the new (writable) segment. However, the MIPS ABI requires
12521 .dynamic to be in a read-only segment, and the section will often
12522 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12523
12524 Although the prelinker could in principle move .dynamic to a
12525 writable segment, it seems better to allocate a spare program
12526 header instead, and avoid the need to move any sections.
12527 There is a long tradition of allocating spare dynamic tags,
12528 so allocating a spare program header seems like a natural
7c8b76cc
JM
12529 extension.
12530
12531 If INFO is NULL, we may be copying an already prelinked binary
12532 with objcopy or strip, so do not add this header. */
12533 if (info != NULL
12534 && !SGI_COMPAT (abfd)
98c904a8
RS
12535 && bfd_get_section_by_name (abfd, ".dynamic"))
12536 {
12bd6957 12537 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12538 if ((*pm)->p_type == PT_NULL)
12539 break;
12540 if (*pm == NULL)
12541 {
12542 m = bfd_zalloc (abfd, sizeof (*m));
12543 if (m == NULL)
12544 return FALSE;
12545
12546 m->p_type = PT_NULL;
12547 *pm = m;
12548 }
12549 }
12550
b34976b6 12551 return TRUE;
b49e97c9
TS
12552}
12553\f
12554/* Return the section that should be marked against GC for a given
12555 relocation. */
12556
12557asection *
9719ad41 12558_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12559 struct bfd_link_info *info,
9719ad41
RS
12560 Elf_Internal_Rela *rel,
12561 struct elf_link_hash_entry *h,
12562 Elf_Internal_Sym *sym)
b49e97c9
TS
12563{
12564 /* ??? Do mips16 stub sections need to be handled special? */
12565
12566 if (h != NULL)
07adf181
AM
12567 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12568 {
12569 case R_MIPS_GNU_VTINHERIT:
12570 case R_MIPS_GNU_VTENTRY:
12571 return NULL;
12572 }
b49e97c9 12573
07adf181 12574 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12575}
12576
12577/* Update the got entry reference counts for the section being removed. */
12578
b34976b6 12579bfd_boolean
9719ad41
RS
12580_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12581 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12582 asection *sec ATTRIBUTE_UNUSED,
12583 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12584{
12585#if 0
12586 Elf_Internal_Shdr *symtab_hdr;
12587 struct elf_link_hash_entry **sym_hashes;
12588 bfd_signed_vma *local_got_refcounts;
12589 const Elf_Internal_Rela *rel, *relend;
12590 unsigned long r_symndx;
12591 struct elf_link_hash_entry *h;
12592
0e1862bb 12593 if (bfd_link_relocatable (info))
7dda2462
TG
12594 return TRUE;
12595
b49e97c9
TS
12596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12597 sym_hashes = elf_sym_hashes (abfd);
12598 local_got_refcounts = elf_local_got_refcounts (abfd);
12599
12600 relend = relocs + sec->reloc_count;
12601 for (rel = relocs; rel < relend; rel++)
12602 switch (ELF_R_TYPE (abfd, rel->r_info))
12603 {
738e5348
RS
12604 case R_MIPS16_GOT16:
12605 case R_MIPS16_CALL16:
b49e97c9
TS
12606 case R_MIPS_GOT16:
12607 case R_MIPS_CALL16:
12608 case R_MIPS_CALL_HI16:
12609 case R_MIPS_CALL_LO16:
12610 case R_MIPS_GOT_HI16:
12611 case R_MIPS_GOT_LO16:
4a14403c
TS
12612 case R_MIPS_GOT_DISP:
12613 case R_MIPS_GOT_PAGE:
12614 case R_MIPS_GOT_OFST:
df58fc94
RS
12615 case R_MICROMIPS_GOT16:
12616 case R_MICROMIPS_CALL16:
12617 case R_MICROMIPS_CALL_HI16:
12618 case R_MICROMIPS_CALL_LO16:
12619 case R_MICROMIPS_GOT_HI16:
12620 case R_MICROMIPS_GOT_LO16:
12621 case R_MICROMIPS_GOT_DISP:
12622 case R_MICROMIPS_GOT_PAGE:
12623 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12624 /* ??? It would seem that the existing MIPS code does no sort
12625 of reference counting or whatnot on its GOT and PLT entries,
12626 so it is not possible to garbage collect them at this time. */
12627 break;
12628
12629 default:
12630 break;
12631 }
12632#endif
12633
b34976b6 12634 return TRUE;
b49e97c9 12635}
351cdf24
MF
12636
12637/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12638
12639bfd_boolean
12640_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12641 elf_gc_mark_hook_fn gc_mark_hook)
12642{
12643 bfd *sub;
12644
12645 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12646
12647 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12648 {
12649 asection *o;
12650
12651 if (! is_mips_elf (sub))
12652 continue;
12653
12654 for (o = sub->sections; o != NULL; o = o->next)
12655 if (!o->gc_mark
12656 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12657 (bfd_get_section_name (sub, o)))
12658 {
12659 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12660 return FALSE;
12661 }
12662 }
12663
12664 return TRUE;
12665}
b49e97c9
TS
12666\f
12667/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12668 hiding the old indirect symbol. Process additional relocation
12669 information. Also called for weakdefs, in which case we just let
12670 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12671
12672void
fcfa13d2 12673_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12674 struct elf_link_hash_entry *dir,
12675 struct elf_link_hash_entry *ind)
b49e97c9
TS
12676{
12677 struct mips_elf_link_hash_entry *dirmips, *indmips;
12678
fcfa13d2 12679 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12680
861fb55a
DJ
12681 dirmips = (struct mips_elf_link_hash_entry *) dir;
12682 indmips = (struct mips_elf_link_hash_entry *) ind;
12683 /* Any absolute non-dynamic relocations against an indirect or weak
12684 definition will be against the target symbol. */
12685 if (indmips->has_static_relocs)
12686 dirmips->has_static_relocs = TRUE;
12687
b49e97c9
TS
12688 if (ind->root.type != bfd_link_hash_indirect)
12689 return;
12690
b49e97c9
TS
12691 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12692 if (indmips->readonly_reloc)
b34976b6 12693 dirmips->readonly_reloc = TRUE;
b49e97c9 12694 if (indmips->no_fn_stub)
b34976b6 12695 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12696 if (indmips->fn_stub)
12697 {
12698 dirmips->fn_stub = indmips->fn_stub;
12699 indmips->fn_stub = NULL;
12700 }
12701 if (indmips->need_fn_stub)
12702 {
12703 dirmips->need_fn_stub = TRUE;
12704 indmips->need_fn_stub = FALSE;
12705 }
12706 if (indmips->call_stub)
12707 {
12708 dirmips->call_stub = indmips->call_stub;
12709 indmips->call_stub = NULL;
12710 }
12711 if (indmips->call_fp_stub)
12712 {
12713 dirmips->call_fp_stub = indmips->call_fp_stub;
12714 indmips->call_fp_stub = NULL;
12715 }
634835ae
RS
12716 if (indmips->global_got_area < dirmips->global_got_area)
12717 dirmips->global_got_area = indmips->global_got_area;
12718 if (indmips->global_got_area < GGA_NONE)
12719 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12720 if (indmips->has_nonpic_branches)
12721 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12722}
b49e97c9 12723\f
d01414a5
TS
12724#define PDR_SIZE 32
12725
b34976b6 12726bfd_boolean
9719ad41
RS
12727_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12728 struct bfd_link_info *info)
d01414a5
TS
12729{
12730 asection *o;
b34976b6 12731 bfd_boolean ret = FALSE;
d01414a5
TS
12732 unsigned char *tdata;
12733 size_t i, skip;
12734
12735 o = bfd_get_section_by_name (abfd, ".pdr");
12736 if (! o)
b34976b6 12737 return FALSE;
eea6121a 12738 if (o->size == 0)
b34976b6 12739 return FALSE;
eea6121a 12740 if (o->size % PDR_SIZE != 0)
b34976b6 12741 return FALSE;
d01414a5
TS
12742 if (o->output_section != NULL
12743 && bfd_is_abs_section (o->output_section))
b34976b6 12744 return FALSE;
d01414a5 12745
eea6121a 12746 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12747 if (! tdata)
b34976b6 12748 return FALSE;
d01414a5 12749
9719ad41 12750 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12751 info->keep_memory);
d01414a5
TS
12752 if (!cookie->rels)
12753 {
12754 free (tdata);
b34976b6 12755 return FALSE;
d01414a5
TS
12756 }
12757
12758 cookie->rel = cookie->rels;
12759 cookie->relend = cookie->rels + o->reloc_count;
12760
eea6121a 12761 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12762 {
c152c796 12763 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12764 {
12765 tdata[i] = 1;
12766 skip ++;
12767 }
12768 }
12769
12770 if (skip != 0)
12771 {
f0abc2a1 12772 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12773 if (o->rawsize == 0)
12774 o->rawsize = o->size;
eea6121a 12775 o->size -= skip * PDR_SIZE;
b34976b6 12776 ret = TRUE;
d01414a5
TS
12777 }
12778 else
12779 free (tdata);
12780
12781 if (! info->keep_memory)
12782 free (cookie->rels);
12783
12784 return ret;
12785}
12786
b34976b6 12787bfd_boolean
9719ad41 12788_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12789{
12790 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12791 return TRUE;
12792 return FALSE;
53bfd6b4 12793}
d01414a5 12794
b34976b6 12795bfd_boolean
c7b8f16e
JB
12796_bfd_mips_elf_write_section (bfd *output_bfd,
12797 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12798 asection *sec, bfd_byte *contents)
d01414a5
TS
12799{
12800 bfd_byte *to, *from, *end;
12801 int i;
12802
12803 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12804 return FALSE;
d01414a5 12805
f0abc2a1 12806 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12807 return FALSE;
d01414a5
TS
12808
12809 to = contents;
eea6121a 12810 end = contents + sec->size;
d01414a5
TS
12811 for (from = contents, i = 0;
12812 from < end;
12813 from += PDR_SIZE, i++)
12814 {
f0abc2a1 12815 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12816 continue;
12817 if (to != from)
12818 memcpy (to, from, PDR_SIZE);
12819 to += PDR_SIZE;
12820 }
12821 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12822 sec->output_offset, sec->size);
b34976b6 12823 return TRUE;
d01414a5 12824}
53bfd6b4 12825\f
df58fc94
RS
12826/* microMIPS code retains local labels for linker relaxation. Omit them
12827 from output by default for clarity. */
12828
12829bfd_boolean
12830_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12831{
12832 return _bfd_elf_is_local_label_name (abfd, sym->name);
12833}
12834
b49e97c9
TS
12835/* MIPS ELF uses a special find_nearest_line routine in order the
12836 handle the ECOFF debugging information. */
12837
12838struct mips_elf_find_line
12839{
12840 struct ecoff_debug_info d;
12841 struct ecoff_find_line i;
12842};
12843
b34976b6 12844bfd_boolean
fb167eb2
AM
12845_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12846 asection *section, bfd_vma offset,
9719ad41
RS
12847 const char **filename_ptr,
12848 const char **functionname_ptr,
fb167eb2
AM
12849 unsigned int *line_ptr,
12850 unsigned int *discriminator_ptr)
b49e97c9
TS
12851{
12852 asection *msec;
12853
fb167eb2 12854 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12855 filename_ptr, functionname_ptr,
fb167eb2
AM
12856 line_ptr, discriminator_ptr,
12857 dwarf_debug_sections,
12858 ABI_64_P (abfd) ? 8 : 0,
12859 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12860 return TRUE;
b49e97c9 12861
fb167eb2 12862 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12863 filename_ptr, functionname_ptr,
fb167eb2 12864 line_ptr))
b34976b6 12865 return TRUE;
b49e97c9
TS
12866
12867 msec = bfd_get_section_by_name (abfd, ".mdebug");
12868 if (msec != NULL)
12869 {
12870 flagword origflags;
12871 struct mips_elf_find_line *fi;
12872 const struct ecoff_debug_swap * const swap =
12873 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12874
12875 /* If we are called during a link, mips_elf_final_link may have
12876 cleared the SEC_HAS_CONTENTS field. We force it back on here
12877 if appropriate (which it normally will be). */
12878 origflags = msec->flags;
12879 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12880 msec->flags |= SEC_HAS_CONTENTS;
12881
698600e4 12882 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12883 if (fi == NULL)
12884 {
12885 bfd_size_type external_fdr_size;
12886 char *fraw_src;
12887 char *fraw_end;
12888 struct fdr *fdr_ptr;
12889 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12890
9719ad41 12891 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12892 if (fi == NULL)
12893 {
12894 msec->flags = origflags;
b34976b6 12895 return FALSE;
b49e97c9
TS
12896 }
12897
12898 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12899 {
12900 msec->flags = origflags;
b34976b6 12901 return FALSE;
b49e97c9
TS
12902 }
12903
12904 /* Swap in the FDR information. */
12905 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12906 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12907 if (fi->d.fdr == NULL)
12908 {
12909 msec->flags = origflags;
b34976b6 12910 return FALSE;
b49e97c9
TS
12911 }
12912 external_fdr_size = swap->external_fdr_size;
12913 fdr_ptr = fi->d.fdr;
12914 fraw_src = (char *) fi->d.external_fdr;
12915 fraw_end = (fraw_src
12916 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12917 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12918 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12919
698600e4 12920 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12921
12922 /* Note that we don't bother to ever free this information.
12923 find_nearest_line is either called all the time, as in
12924 objdump -l, so the information should be saved, or it is
12925 rarely called, as in ld error messages, so the memory
12926 wasted is unimportant. Still, it would probably be a
12927 good idea for free_cached_info to throw it away. */
12928 }
12929
12930 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12931 &fi->i, filename_ptr, functionname_ptr,
12932 line_ptr))
12933 {
12934 msec->flags = origflags;
b34976b6 12935 return TRUE;
b49e97c9
TS
12936 }
12937
12938 msec->flags = origflags;
12939 }
12940
12941 /* Fall back on the generic ELF find_nearest_line routine. */
12942
fb167eb2 12943 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12944 filename_ptr, functionname_ptr,
fb167eb2 12945 line_ptr, discriminator_ptr);
b49e97c9 12946}
4ab527b0
FF
12947
12948bfd_boolean
12949_bfd_mips_elf_find_inliner_info (bfd *abfd,
12950 const char **filename_ptr,
12951 const char **functionname_ptr,
12952 unsigned int *line_ptr)
12953{
12954 bfd_boolean found;
12955 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12956 functionname_ptr, line_ptr,
12957 & elf_tdata (abfd)->dwarf2_find_line_info);
12958 return found;
12959}
12960
b49e97c9
TS
12961\f
12962/* When are writing out the .options or .MIPS.options section,
12963 remember the bytes we are writing out, so that we can install the
12964 GP value in the section_processing routine. */
12965
b34976b6 12966bfd_boolean
9719ad41
RS
12967_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12968 const void *location,
12969 file_ptr offset, bfd_size_type count)
b49e97c9 12970{
cc2e31b9 12971 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12972 {
12973 bfd_byte *c;
12974
12975 if (elf_section_data (section) == NULL)
12976 {
12977 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12978 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12979 if (elf_section_data (section) == NULL)
b34976b6 12980 return FALSE;
b49e97c9 12981 }
f0abc2a1 12982 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12983 if (c == NULL)
12984 {
eea6121a 12985 c = bfd_zalloc (abfd, section->size);
b49e97c9 12986 if (c == NULL)
b34976b6 12987 return FALSE;
f0abc2a1 12988 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12989 }
12990
9719ad41 12991 memcpy (c + offset, location, count);
b49e97c9
TS
12992 }
12993
12994 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12995 count);
12996}
12997
12998/* This is almost identical to bfd_generic_get_... except that some
12999 MIPS relocations need to be handled specially. Sigh. */
13000
13001bfd_byte *
9719ad41
RS
13002_bfd_elf_mips_get_relocated_section_contents
13003 (bfd *abfd,
13004 struct bfd_link_info *link_info,
13005 struct bfd_link_order *link_order,
13006 bfd_byte *data,
13007 bfd_boolean relocatable,
13008 asymbol **symbols)
b49e97c9
TS
13009{
13010 /* Get enough memory to hold the stuff */
13011 bfd *input_bfd = link_order->u.indirect.section->owner;
13012 asection *input_section = link_order->u.indirect.section;
eea6121a 13013 bfd_size_type sz;
b49e97c9
TS
13014
13015 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13016 arelent **reloc_vector = NULL;
13017 long reloc_count;
13018
13019 if (reloc_size < 0)
13020 goto error_return;
13021
9719ad41 13022 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13023 if (reloc_vector == NULL && reloc_size != 0)
13024 goto error_return;
13025
13026 /* read in the section */
eea6121a
AM
13027 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13028 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13029 goto error_return;
13030
b49e97c9
TS
13031 reloc_count = bfd_canonicalize_reloc (input_bfd,
13032 input_section,
13033 reloc_vector,
13034 symbols);
13035 if (reloc_count < 0)
13036 goto error_return;
13037
13038 if (reloc_count > 0)
13039 {
13040 arelent **parent;
13041 /* for mips */
13042 int gp_found;
13043 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13044
13045 {
13046 struct bfd_hash_entry *h;
13047 struct bfd_link_hash_entry *lh;
13048 /* Skip all this stuff if we aren't mixing formats. */
13049 if (abfd && input_bfd
13050 && abfd->xvec == input_bfd->xvec)
13051 lh = 0;
13052 else
13053 {
b34976b6 13054 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13055 lh = (struct bfd_link_hash_entry *) h;
13056 }
13057 lookup:
13058 if (lh)
13059 {
13060 switch (lh->type)
13061 {
13062 case bfd_link_hash_undefined:
13063 case bfd_link_hash_undefweak:
13064 case bfd_link_hash_common:
13065 gp_found = 0;
13066 break;
13067 case bfd_link_hash_defined:
13068 case bfd_link_hash_defweak:
13069 gp_found = 1;
13070 gp = lh->u.def.value;
13071 break;
13072 case bfd_link_hash_indirect:
13073 case bfd_link_hash_warning:
13074 lh = lh->u.i.link;
13075 /* @@FIXME ignoring warning for now */
13076 goto lookup;
13077 case bfd_link_hash_new:
13078 default:
13079 abort ();
13080 }
13081 }
13082 else
13083 gp_found = 0;
13084 }
13085 /* end mips */
9719ad41 13086 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13087 {
9719ad41 13088 char *error_message = NULL;
b49e97c9
TS
13089 bfd_reloc_status_type r;
13090
13091 /* Specific to MIPS: Deal with relocation types that require
13092 knowing the gp of the output bfd. */
13093 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13094
8236346f
EC
13095 /* If we've managed to find the gp and have a special
13096 function for the relocation then go ahead, else default
13097 to the generic handling. */
13098 if (gp_found
13099 && (*parent)->howto->special_function
13100 == _bfd_mips_elf32_gprel16_reloc)
13101 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13102 input_section, relocatable,
13103 data, gp);
13104 else
86324f90 13105 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13106 input_section,
13107 relocatable ? abfd : NULL,
13108 &error_message);
b49e97c9 13109
1049f94e 13110 if (relocatable)
b49e97c9
TS
13111 {
13112 asection *os = input_section->output_section;
13113
13114 /* A partial link, so keep the relocs */
13115 os->orelocation[os->reloc_count] = *parent;
13116 os->reloc_count++;
13117 }
13118
13119 if (r != bfd_reloc_ok)
13120 {
13121 switch (r)
13122 {
13123 case bfd_reloc_undefined:
1a72702b
AM
13124 (*link_info->callbacks->undefined_symbol)
13125 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13126 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13127 break;
13128 case bfd_reloc_dangerous:
9719ad41 13129 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13130 (*link_info->callbacks->reloc_dangerous)
13131 (link_info, error_message,
13132 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13133 break;
13134 case bfd_reloc_overflow:
1a72702b
AM
13135 (*link_info->callbacks->reloc_overflow)
13136 (link_info, NULL,
13137 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13138 (*parent)->howto->name, (*parent)->addend,
13139 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13140 break;
13141 case bfd_reloc_outofrange:
13142 default:
13143 abort ();
13144 break;
13145 }
13146
13147 }
13148 }
13149 }
13150 if (reloc_vector != NULL)
13151 free (reloc_vector);
13152 return data;
13153
13154error_return:
13155 if (reloc_vector != NULL)
13156 free (reloc_vector);
13157 return NULL;
13158}
13159\f
df58fc94
RS
13160static bfd_boolean
13161mips_elf_relax_delete_bytes (bfd *abfd,
13162 asection *sec, bfd_vma addr, int count)
13163{
13164 Elf_Internal_Shdr *symtab_hdr;
13165 unsigned int sec_shndx;
13166 bfd_byte *contents;
13167 Elf_Internal_Rela *irel, *irelend;
13168 Elf_Internal_Sym *isym;
13169 Elf_Internal_Sym *isymend;
13170 struct elf_link_hash_entry **sym_hashes;
13171 struct elf_link_hash_entry **end_hashes;
13172 struct elf_link_hash_entry **start_hashes;
13173 unsigned int symcount;
13174
13175 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13176 contents = elf_section_data (sec)->this_hdr.contents;
13177
13178 irel = elf_section_data (sec)->relocs;
13179 irelend = irel + sec->reloc_count;
13180
13181 /* Actually delete the bytes. */
13182 memmove (contents + addr, contents + addr + count,
13183 (size_t) (sec->size - addr - count));
13184 sec->size -= count;
13185
13186 /* Adjust all the relocs. */
13187 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13188 {
13189 /* Get the new reloc address. */
13190 if (irel->r_offset > addr)
13191 irel->r_offset -= count;
13192 }
13193
13194 BFD_ASSERT (addr % 2 == 0);
13195 BFD_ASSERT (count % 2 == 0);
13196
13197 /* Adjust the local symbols defined in this section. */
13198 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13199 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13200 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13201 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13202 isym->st_value -= count;
13203
13204 /* Now adjust the global symbols defined in this section. */
13205 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13206 - symtab_hdr->sh_info);
13207 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13208 end_hashes = sym_hashes + symcount;
13209
13210 for (; sym_hashes < end_hashes; sym_hashes++)
13211 {
13212 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13213
13214 if ((sym_hash->root.type == bfd_link_hash_defined
13215 || sym_hash->root.type == bfd_link_hash_defweak)
13216 && sym_hash->root.u.def.section == sec)
13217 {
2309ddf2 13218 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13219
df58fc94
RS
13220 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13221 value &= MINUS_TWO;
13222 if (value > addr)
13223 sym_hash->root.u.def.value -= count;
13224 }
13225 }
13226
13227 return TRUE;
13228}
13229
13230
13231/* Opcodes needed for microMIPS relaxation as found in
13232 opcodes/micromips-opc.c. */
13233
13234struct opcode_descriptor {
13235 unsigned long match;
13236 unsigned long mask;
13237};
13238
13239/* The $ra register aka $31. */
13240
13241#define RA 31
13242
13243/* 32-bit instruction format register fields. */
13244
13245#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13246#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13247
13248/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13249
13250#define OP16_VALID_REG(r) \
13251 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13252
13253
13254/* 32-bit and 16-bit branches. */
13255
13256static const struct opcode_descriptor b_insns_32[] = {
13257 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13258 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13259 { 0, 0 } /* End marker for find_match(). */
13260};
13261
13262static const struct opcode_descriptor bc_insn_32 =
13263 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13264
13265static const struct opcode_descriptor bz_insn_32 =
13266 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13267
13268static const struct opcode_descriptor bzal_insn_32 =
13269 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13270
13271static const struct opcode_descriptor beq_insn_32 =
13272 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13273
13274static const struct opcode_descriptor b_insn_16 =
13275 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13276
13277static const struct opcode_descriptor bz_insn_16 =
c088dedf 13278 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13279
13280
13281/* 32-bit and 16-bit branch EQ and NE zero. */
13282
13283/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13284 eq and second the ne. This convention is used when replacing a
13285 32-bit BEQ/BNE with the 16-bit version. */
13286
13287#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13288
13289static const struct opcode_descriptor bz_rs_insns_32[] = {
13290 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13291 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13292 { 0, 0 } /* End marker for find_match(). */
13293};
13294
13295static const struct opcode_descriptor bz_rt_insns_32[] = {
13296 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13297 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13298 { 0, 0 } /* End marker for find_match(). */
13299};
13300
13301static const struct opcode_descriptor bzc_insns_32[] = {
13302 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13303 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13304 { 0, 0 } /* End marker for find_match(). */
13305};
13306
13307static const struct opcode_descriptor bz_insns_16[] = {
13308 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13309 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13310 { 0, 0 } /* End marker for find_match(). */
13311};
13312
13313/* Switch between a 5-bit register index and its 3-bit shorthand. */
13314
e67f83e5 13315#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13316#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13317
13318
13319/* 32-bit instructions with a delay slot. */
13320
13321static const struct opcode_descriptor jal_insn_32_bd16 =
13322 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13323
13324static const struct opcode_descriptor jal_insn_32_bd32 =
13325 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13326
13327static const struct opcode_descriptor jal_x_insn_32_bd32 =
13328 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13329
13330static const struct opcode_descriptor j_insn_32 =
13331 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13332
13333static const struct opcode_descriptor jalr_insn_32 =
13334 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13335
13336/* This table can be compacted, because no opcode replacement is made. */
13337
13338static const struct opcode_descriptor ds_insns_32_bd16[] = {
13339 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13340
13341 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13342 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13343
13344 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13345 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13346 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13347 { 0, 0 } /* End marker for find_match(). */
13348};
13349
13350/* This table can be compacted, because no opcode replacement is made. */
13351
13352static const struct opcode_descriptor ds_insns_32_bd32[] = {
13353 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13354
13355 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13356 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13357 { 0, 0 } /* End marker for find_match(). */
13358};
13359
13360
13361/* 16-bit instructions with a delay slot. */
13362
13363static const struct opcode_descriptor jalr_insn_16_bd16 =
13364 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13365
13366static const struct opcode_descriptor jalr_insn_16_bd32 =
13367 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13368
13369static const struct opcode_descriptor jr_insn_16 =
13370 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13371
13372#define JR16_REG(opcode) ((opcode) & 0x1f)
13373
13374/* This table can be compacted, because no opcode replacement is made. */
13375
13376static const struct opcode_descriptor ds_insns_16_bd16[] = {
13377 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13378
13379 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13380 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13381 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13382 { 0, 0 } /* End marker for find_match(). */
13383};
13384
13385
13386/* LUI instruction. */
13387
13388static const struct opcode_descriptor lui_insn =
13389 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13390
13391
13392/* ADDIU instruction. */
13393
13394static const struct opcode_descriptor addiu_insn =
13395 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13396
13397static const struct opcode_descriptor addiupc_insn =
13398 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13399
13400#define ADDIUPC_REG_FIELD(r) \
13401 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13402
13403
13404/* Relaxable instructions in a JAL delay slot: MOVE. */
13405
13406/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13407 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13408#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13409#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13410
13411#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13412#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13413
13414static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13415 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13416 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13417 { 0, 0 } /* End marker for find_match(). */
13418};
13419
13420static const struct opcode_descriptor move_insn_16 =
13421 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13422
13423
13424/* NOP instructions. */
13425
13426static const struct opcode_descriptor nop_insn_32 =
13427 { /* "nop", "", */ 0x00000000, 0xffffffff };
13428
13429static const struct opcode_descriptor nop_insn_16 =
13430 { /* "nop", "", */ 0x0c00, 0xffff };
13431
13432
13433/* Instruction match support. */
13434
13435#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13436
13437static int
13438find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13439{
13440 unsigned long indx;
13441
13442 for (indx = 0; insn[indx].mask != 0; indx++)
13443 if (MATCH (opcode, insn[indx]))
13444 return indx;
13445
13446 return -1;
13447}
13448
13449
13450/* Branch and delay slot decoding support. */
13451
13452/* If PTR points to what *might* be a 16-bit branch or jump, then
13453 return the minimum length of its delay slot, otherwise return 0.
13454 Non-zero results are not definitive as we might be checking against
13455 the second half of another instruction. */
13456
13457static int
13458check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13459{
13460 unsigned long opcode;
13461 int bdsize;
13462
13463 opcode = bfd_get_16 (abfd, ptr);
13464 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13465 /* 16-bit branch/jump with a 32-bit delay slot. */
13466 bdsize = 4;
13467 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13468 || find_match (opcode, ds_insns_16_bd16) >= 0)
13469 /* 16-bit branch/jump with a 16-bit delay slot. */
13470 bdsize = 2;
13471 else
13472 /* No delay slot. */
13473 bdsize = 0;
13474
13475 return bdsize;
13476}
13477
13478/* If PTR points to what *might* be a 32-bit branch or jump, then
13479 return the minimum length of its delay slot, otherwise return 0.
13480 Non-zero results are not definitive as we might be checking against
13481 the second half of another instruction. */
13482
13483static int
13484check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13485{
13486 unsigned long opcode;
13487 int bdsize;
13488
d21911ea 13489 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13490 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13491 /* 32-bit branch/jump with a 32-bit delay slot. */
13492 bdsize = 4;
13493 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13494 /* 32-bit branch/jump with a 16-bit delay slot. */
13495 bdsize = 2;
13496 else
13497 /* No delay slot. */
13498 bdsize = 0;
13499
13500 return bdsize;
13501}
13502
13503/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13504 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13505
13506static bfd_boolean
13507check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13508{
13509 unsigned long opcode;
13510
13511 opcode = bfd_get_16 (abfd, ptr);
13512 if (MATCH (opcode, b_insn_16)
13513 /* B16 */
13514 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13515 /* JR16 */
13516 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13517 /* BEQZ16, BNEZ16 */
13518 || (MATCH (opcode, jalr_insn_16_bd32)
13519 /* JALR16 */
13520 && reg != JR16_REG (opcode) && reg != RA))
13521 return TRUE;
13522
13523 return FALSE;
13524}
13525
13526/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13527 then return TRUE, otherwise FALSE. */
13528
f41e5fcc 13529static bfd_boolean
df58fc94
RS
13530check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13531{
13532 unsigned long opcode;
13533
d21911ea 13534 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13535 if (MATCH (opcode, j_insn_32)
13536 /* J */
13537 || MATCH (opcode, bc_insn_32)
13538 /* BC1F, BC1T, BC2F, BC2T */
13539 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13540 /* JAL, JALX */
13541 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13542 /* BGEZ, BGTZ, BLEZ, BLTZ */
13543 || (MATCH (opcode, bzal_insn_32)
13544 /* BGEZAL, BLTZAL */
13545 && reg != OP32_SREG (opcode) && reg != RA)
13546 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13547 /* JALR, JALR.HB, BEQ, BNE */
13548 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13549 return TRUE;
13550
13551 return FALSE;
13552}
13553
80cab405
MR
13554/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13555 IRELEND) at OFFSET indicate that there must be a compact branch there,
13556 then return TRUE, otherwise FALSE. */
df58fc94
RS
13557
13558static bfd_boolean
80cab405
MR
13559check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13560 const Elf_Internal_Rela *internal_relocs,
13561 const Elf_Internal_Rela *irelend)
df58fc94 13562{
80cab405
MR
13563 const Elf_Internal_Rela *irel;
13564 unsigned long opcode;
13565
d21911ea 13566 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13567 if (find_match (opcode, bzc_insns_32) < 0)
13568 return FALSE;
df58fc94
RS
13569
13570 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13571 if (irel->r_offset == offset
13572 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13573 return TRUE;
13574
df58fc94
RS
13575 return FALSE;
13576}
80cab405
MR
13577
13578/* Bitsize checking. */
13579#define IS_BITSIZE(val, N) \
13580 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13581 - (1ULL << ((N) - 1))) == (val))
13582
df58fc94
RS
13583\f
13584bfd_boolean
13585_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13586 struct bfd_link_info *link_info,
13587 bfd_boolean *again)
13588{
833794fc 13589 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13590 Elf_Internal_Shdr *symtab_hdr;
13591 Elf_Internal_Rela *internal_relocs;
13592 Elf_Internal_Rela *irel, *irelend;
13593 bfd_byte *contents = NULL;
13594 Elf_Internal_Sym *isymbuf = NULL;
13595
13596 /* Assume nothing changes. */
13597 *again = FALSE;
13598
13599 /* We don't have to do anything for a relocatable link, if
13600 this section does not have relocs, or if this is not a
13601 code section. */
13602
0e1862bb 13603 if (bfd_link_relocatable (link_info)
df58fc94
RS
13604 || (sec->flags & SEC_RELOC) == 0
13605 || sec->reloc_count == 0
13606 || (sec->flags & SEC_CODE) == 0)
13607 return TRUE;
13608
13609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13610
13611 /* Get a copy of the native relocations. */
13612 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13613 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13614 link_info->keep_memory));
13615 if (internal_relocs == NULL)
13616 goto error_return;
13617
13618 /* Walk through them looking for relaxing opportunities. */
13619 irelend = internal_relocs + sec->reloc_count;
13620 for (irel = internal_relocs; irel < irelend; irel++)
13621 {
13622 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13623 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13624 bfd_boolean target_is_micromips_code_p;
13625 unsigned long opcode;
13626 bfd_vma symval;
13627 bfd_vma pcrval;
2309ddf2 13628 bfd_byte *ptr;
df58fc94
RS
13629 int fndopc;
13630
13631 /* The number of bytes to delete for relaxation and from where
13632 to delete these bytes starting at irel->r_offset. */
13633 int delcnt = 0;
13634 int deloff = 0;
13635
13636 /* If this isn't something that can be relaxed, then ignore
13637 this reloc. */
13638 if (r_type != R_MICROMIPS_HI16
13639 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13640 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13641 continue;
13642
13643 /* Get the section contents if we haven't done so already. */
13644 if (contents == NULL)
13645 {
13646 /* Get cached copy if it exists. */
13647 if (elf_section_data (sec)->this_hdr.contents != NULL)
13648 contents = elf_section_data (sec)->this_hdr.contents;
13649 /* Go get them off disk. */
13650 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13651 goto error_return;
13652 }
2309ddf2 13653 ptr = contents + irel->r_offset;
df58fc94
RS
13654
13655 /* Read this BFD's local symbols if we haven't done so already. */
13656 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13657 {
13658 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13659 if (isymbuf == NULL)
13660 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13661 symtab_hdr->sh_info, 0,
13662 NULL, NULL, NULL);
13663 if (isymbuf == NULL)
13664 goto error_return;
13665 }
13666
13667 /* Get the value of the symbol referred to by the reloc. */
13668 if (r_symndx < symtab_hdr->sh_info)
13669 {
13670 /* A local symbol. */
13671 Elf_Internal_Sym *isym;
13672 asection *sym_sec;
13673
13674 isym = isymbuf + r_symndx;
13675 if (isym->st_shndx == SHN_UNDEF)
13676 sym_sec = bfd_und_section_ptr;
13677 else if (isym->st_shndx == SHN_ABS)
13678 sym_sec = bfd_abs_section_ptr;
13679 else if (isym->st_shndx == SHN_COMMON)
13680 sym_sec = bfd_com_section_ptr;
13681 else
13682 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13683 symval = (isym->st_value
13684 + sym_sec->output_section->vma
13685 + sym_sec->output_offset);
13686 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13687 }
13688 else
13689 {
13690 unsigned long indx;
13691 struct elf_link_hash_entry *h;
13692
13693 /* An external symbol. */
13694 indx = r_symndx - symtab_hdr->sh_info;
13695 h = elf_sym_hashes (abfd)[indx];
13696 BFD_ASSERT (h != NULL);
13697
13698 if (h->root.type != bfd_link_hash_defined
13699 && h->root.type != bfd_link_hash_defweak)
13700 /* This appears to be a reference to an undefined
13701 symbol. Just ignore it -- it will be caught by the
13702 regular reloc processing. */
13703 continue;
13704
13705 symval = (h->root.u.def.value
13706 + h->root.u.def.section->output_section->vma
13707 + h->root.u.def.section->output_offset);
13708 target_is_micromips_code_p = (!h->needs_plt
13709 && ELF_ST_IS_MICROMIPS (h->other));
13710 }
13711
13712
13713 /* For simplicity of coding, we are going to modify the
13714 section contents, the section relocs, and the BFD symbol
13715 table. We must tell the rest of the code not to free up this
13716 information. It would be possible to instead create a table
13717 of changes which have to be made, as is done in coff-mips.c;
13718 that would be more work, but would require less memory when
13719 the linker is run. */
13720
13721 /* Only 32-bit instructions relaxed. */
13722 if (irel->r_offset + 4 > sec->size)
13723 continue;
13724
d21911ea 13725 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13726
13727 /* This is the pc-relative distance from the instruction the
13728 relocation is applied to, to the symbol referred. */
13729 pcrval = (symval
13730 - (sec->output_section->vma + sec->output_offset)
13731 - irel->r_offset);
13732
13733 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13734 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13735 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13736
13737 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13738
13739 where pcrval has first to be adjusted to apply against the LO16
13740 location (we make the adjustment later on, when we have figured
13741 out the offset). */
13742 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13743 {
80cab405 13744 bfd_boolean bzc = FALSE;
df58fc94
RS
13745 unsigned long nextopc;
13746 unsigned long reg;
13747 bfd_vma offset;
13748
13749 /* Give up if the previous reloc was a HI16 against this symbol
13750 too. */
13751 if (irel > internal_relocs
13752 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13753 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13754 continue;
13755
13756 /* Or if the next reloc is not a LO16 against this symbol. */
13757 if (irel + 1 >= irelend
13758 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13759 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13760 continue;
13761
13762 /* Or if the second next reloc is a LO16 against this symbol too. */
13763 if (irel + 2 >= irelend
13764 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13765 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13766 continue;
13767
80cab405
MR
13768 /* See if the LUI instruction *might* be in a branch delay slot.
13769 We check whether what looks like a 16-bit branch or jump is
13770 actually an immediate argument to a compact branch, and let
13771 it through if so. */
df58fc94 13772 if (irel->r_offset >= 2
2309ddf2 13773 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13774 && !(irel->r_offset >= 4
80cab405
MR
13775 && (bzc = check_relocated_bzc (abfd,
13776 ptr - 4, irel->r_offset - 4,
13777 internal_relocs, irelend))))
df58fc94
RS
13778 continue;
13779 if (irel->r_offset >= 4
80cab405 13780 && !bzc
2309ddf2 13781 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13782 continue;
13783
13784 reg = OP32_SREG (opcode);
13785
13786 /* We only relax adjacent instructions or ones separated with
13787 a branch or jump that has a delay slot. The branch or jump
13788 must not fiddle with the register used to hold the address.
13789 Subtract 4 for the LUI itself. */
13790 offset = irel[1].r_offset - irel[0].r_offset;
13791 switch (offset - 4)
13792 {
13793 case 0:
13794 break;
13795 case 2:
2309ddf2 13796 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13797 break;
13798 continue;
13799 case 4:
2309ddf2 13800 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13801 break;
13802 continue;
13803 default:
13804 continue;
13805 }
13806
d21911ea 13807 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13808
13809 /* Give up unless the same register is used with both
13810 relocations. */
13811 if (OP32_SREG (nextopc) != reg)
13812 continue;
13813
13814 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13815 and rounding up to take masking of the two LSBs into account. */
13816 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13817
13818 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13819 if (IS_BITSIZE (symval, 16))
13820 {
13821 /* Fix the relocation's type. */
13822 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13823
13824 /* Instructions using R_MICROMIPS_LO16 have the base or
13825 source register in bits 20:16. This register becomes $0
13826 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13827 nextopc &= ~0x001f0000;
13828 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13829 contents + irel[1].r_offset);
13830 }
13831
13832 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13833 We add 4 to take LUI deletion into account while checking
13834 the PC-relative distance. */
13835 else if (symval % 4 == 0
13836 && IS_BITSIZE (pcrval + 4, 25)
13837 && MATCH (nextopc, addiu_insn)
13838 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13839 && OP16_VALID_REG (OP32_TREG (nextopc)))
13840 {
13841 /* Fix the relocation's type. */
13842 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13843
13844 /* Replace ADDIU with the ADDIUPC version. */
13845 nextopc = (addiupc_insn.match
13846 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13847
d21911ea
MR
13848 bfd_put_micromips_32 (abfd, nextopc,
13849 contents + irel[1].r_offset);
df58fc94
RS
13850 }
13851
13852 /* Can't do anything, give up, sigh... */
13853 else
13854 continue;
13855
13856 /* Fix the relocation's type. */
13857 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13858
13859 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13860 delcnt = 4;
13861 deloff = 0;
13862 }
13863
13864 /* Compact branch relaxation -- due to the multitude of macros
13865 employed by the compiler/assembler, compact branches are not
13866 always generated. Obviously, this can/will be fixed elsewhere,
13867 but there is no drawback in double checking it here. */
13868 else if (r_type == R_MICROMIPS_PC16_S1
13869 && irel->r_offset + 5 < sec->size
13870 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13871 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13872 && ((!insn32
13873 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13874 nop_insn_16) ? 2 : 0))
13875 || (irel->r_offset + 7 < sec->size
13876 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13877 ptr + 4),
13878 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13879 {
13880 unsigned long reg;
13881
13882 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13883
13884 /* Replace BEQZ/BNEZ with the compact version. */
13885 opcode = (bzc_insns_32[fndopc].match
13886 | BZC32_REG_FIELD (reg)
13887 | (opcode & 0xffff)); /* Addend value. */
13888
d21911ea 13889 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13890
833794fc
MR
13891 /* Delete the delay slot NOP: two or four bytes from
13892 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13893 deloff = 4;
13894 }
13895
13896 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13897 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13898 else if (!insn32
13899 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13900 && IS_BITSIZE (pcrval - 2, 11)
13901 && find_match (opcode, b_insns_32) >= 0)
13902 {
13903 /* Fix the relocation's type. */
13904 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13905
a8685210 13906 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13907 bfd_put_16 (abfd,
13908 (b_insn_16.match
13909 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13910 ptr);
df58fc94
RS
13911
13912 /* Delete 2 bytes from irel->r_offset + 2. */
13913 delcnt = 2;
13914 deloff = 2;
13915 }
13916
13917 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13918 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13919 else if (!insn32
13920 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13921 && IS_BITSIZE (pcrval - 2, 8)
13922 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13923 && OP16_VALID_REG (OP32_SREG (opcode)))
13924 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13925 && OP16_VALID_REG (OP32_TREG (opcode)))))
13926 {
13927 unsigned long reg;
13928
13929 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13930
13931 /* Fix the relocation's type. */
13932 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13933
a8685210 13934 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13935 bfd_put_16 (abfd,
13936 (bz_insns_16[fndopc].match
13937 | BZ16_REG_FIELD (reg)
13938 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13939 ptr);
df58fc94
RS
13940
13941 /* Delete 2 bytes from irel->r_offset + 2. */
13942 delcnt = 2;
13943 deloff = 2;
13944 }
13945
13946 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13947 else if (!insn32
13948 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13949 && target_is_micromips_code_p
13950 && irel->r_offset + 7 < sec->size
13951 && MATCH (opcode, jal_insn_32_bd32))
13952 {
13953 unsigned long n32opc;
13954 bfd_boolean relaxed = FALSE;
13955
d21911ea 13956 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13957
13958 if (MATCH (n32opc, nop_insn_32))
13959 {
13960 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13961 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13962
13963 relaxed = TRUE;
13964 }
13965 else if (find_match (n32opc, move_insns_32) >= 0)
13966 {
13967 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13968 bfd_put_16 (abfd,
13969 (move_insn_16.match
13970 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13971 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13972 ptr + 4);
df58fc94
RS
13973
13974 relaxed = TRUE;
13975 }
13976 /* Other 32-bit instructions relaxable to 16-bit
13977 instructions will be handled here later. */
13978
13979 if (relaxed)
13980 {
13981 /* JAL with 32-bit delay slot that is changed to a JALS
13982 with 16-bit delay slot. */
d21911ea 13983 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13984
13985 /* Delete 2 bytes from irel->r_offset + 6. */
13986 delcnt = 2;
13987 deloff = 6;
13988 }
13989 }
13990
13991 if (delcnt != 0)
13992 {
13993 /* Note that we've changed the relocs, section contents, etc. */
13994 elf_section_data (sec)->relocs = internal_relocs;
13995 elf_section_data (sec)->this_hdr.contents = contents;
13996 symtab_hdr->contents = (unsigned char *) isymbuf;
13997
13998 /* Delete bytes depending on the delcnt and deloff. */
13999 if (!mips_elf_relax_delete_bytes (abfd, sec,
14000 irel->r_offset + deloff, delcnt))
14001 goto error_return;
14002
14003 /* That will change things, so we should relax again.
14004 Note that this is not required, and it may be slow. */
14005 *again = TRUE;
14006 }
14007 }
14008
14009 if (isymbuf != NULL
14010 && symtab_hdr->contents != (unsigned char *) isymbuf)
14011 {
14012 if (! link_info->keep_memory)
14013 free (isymbuf);
14014 else
14015 {
14016 /* Cache the symbols for elf_link_input_bfd. */
14017 symtab_hdr->contents = (unsigned char *) isymbuf;
14018 }
14019 }
14020
14021 if (contents != NULL
14022 && elf_section_data (sec)->this_hdr.contents != contents)
14023 {
14024 if (! link_info->keep_memory)
14025 free (contents);
14026 else
14027 {
14028 /* Cache the section contents for elf_link_input_bfd. */
14029 elf_section_data (sec)->this_hdr.contents = contents;
14030 }
14031 }
14032
14033 if (internal_relocs != NULL
14034 && elf_section_data (sec)->relocs != internal_relocs)
14035 free (internal_relocs);
14036
14037 return TRUE;
14038
14039 error_return:
14040 if (isymbuf != NULL
14041 && symtab_hdr->contents != (unsigned char *) isymbuf)
14042 free (isymbuf);
14043 if (contents != NULL
14044 && elf_section_data (sec)->this_hdr.contents != contents)
14045 free (contents);
14046 if (internal_relocs != NULL
14047 && elf_section_data (sec)->relocs != internal_relocs)
14048 free (internal_relocs);
14049
14050 return FALSE;
14051}
14052\f
b49e97c9
TS
14053/* Create a MIPS ELF linker hash table. */
14054
14055struct bfd_link_hash_table *
9719ad41 14056_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14057{
14058 struct mips_elf_link_hash_table *ret;
14059 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14060
7bf52ea2 14061 ret = bfd_zmalloc (amt);
9719ad41 14062 if (ret == NULL)
b49e97c9
TS
14063 return NULL;
14064
66eb6687
AM
14065 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14066 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14067 sizeof (struct mips_elf_link_hash_entry),
14068 MIPS_ELF_DATA))
b49e97c9 14069 {
e2d34d7d 14070 free (ret);
b49e97c9
TS
14071 return NULL;
14072 }
1bbce132
MR
14073 ret->root.init_plt_refcount.plist = NULL;
14074 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14075
b49e97c9
TS
14076 return &ret->root.root;
14077}
0a44bf69
RS
14078
14079/* Likewise, but indicate that the target is VxWorks. */
14080
14081struct bfd_link_hash_table *
14082_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14083{
14084 struct bfd_link_hash_table *ret;
14085
14086 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14087 if (ret)
14088 {
14089 struct mips_elf_link_hash_table *htab;
14090
14091 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14092 htab->use_plts_and_copy_relocs = TRUE;
14093 htab->is_vxworks = TRUE;
0a44bf69
RS
14094 }
14095 return ret;
14096}
861fb55a
DJ
14097
14098/* A function that the linker calls if we are allowed to use PLTs
14099 and copy relocs. */
14100
14101void
14102_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14103{
14104 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14105}
833794fc
MR
14106
14107/* A function that the linker calls to select between all or only
8b10b0b3
MR
14108 32-bit microMIPS instructions, and between making or ignoring
14109 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
14110
14111void
8b10b0b3
MR
14112_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14113 bfd_boolean ignore_branch_isa)
833794fc 14114{
8b10b0b3
MR
14115 mips_elf_hash_table (info)->insn32 = insn32;
14116 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 14117}
b49e97c9 14118\f
c97c330b
MF
14119/* Structure for saying that BFD machine EXTENSION extends BASE. */
14120
14121struct mips_mach_extension
14122{
14123 unsigned long extension, base;
14124};
14125
14126
14127/* An array describing how BFD machines relate to one another. The entries
14128 are ordered topologically with MIPS I extensions listed last. */
14129
14130static const struct mips_mach_extension mips_mach_extensions[] =
14131{
14132 /* MIPS64r2 extensions. */
14133 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14134 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14135 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14136 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14137 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14138
14139 /* MIPS64 extensions. */
14140 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14141 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14142 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14143
14144 /* MIPS V extensions. */
14145 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14146
14147 /* R10000 extensions. */
14148 { bfd_mach_mips12000, bfd_mach_mips10000 },
14149 { bfd_mach_mips14000, bfd_mach_mips10000 },
14150 { bfd_mach_mips16000, bfd_mach_mips10000 },
14151
14152 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14153 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14154 better to allow vr5400 and vr5500 code to be merged anyway, since
14155 many libraries will just use the core ISA. Perhaps we could add
14156 some sort of ASE flag if this ever proves a problem. */
14157 { bfd_mach_mips5500, bfd_mach_mips5400 },
14158 { bfd_mach_mips5400, bfd_mach_mips5000 },
14159
14160 /* MIPS IV extensions. */
14161 { bfd_mach_mips5, bfd_mach_mips8000 },
14162 { bfd_mach_mips10000, bfd_mach_mips8000 },
14163 { bfd_mach_mips5000, bfd_mach_mips8000 },
14164 { bfd_mach_mips7000, bfd_mach_mips8000 },
14165 { bfd_mach_mips9000, bfd_mach_mips8000 },
14166
14167 /* VR4100 extensions. */
14168 { bfd_mach_mips4120, bfd_mach_mips4100 },
14169 { bfd_mach_mips4111, bfd_mach_mips4100 },
14170
14171 /* MIPS III extensions. */
14172 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14173 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14174 { bfd_mach_mips8000, bfd_mach_mips4000 },
14175 { bfd_mach_mips4650, bfd_mach_mips4000 },
14176 { bfd_mach_mips4600, bfd_mach_mips4000 },
14177 { bfd_mach_mips4400, bfd_mach_mips4000 },
14178 { bfd_mach_mips4300, bfd_mach_mips4000 },
14179 { bfd_mach_mips4100, bfd_mach_mips4000 },
14180 { bfd_mach_mips4010, bfd_mach_mips4000 },
14181 { bfd_mach_mips5900, bfd_mach_mips4000 },
14182
14183 /* MIPS32 extensions. */
14184 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14185
14186 /* MIPS II extensions. */
14187 { bfd_mach_mips4000, bfd_mach_mips6000 },
14188 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14189
14190 /* MIPS I extensions. */
14191 { bfd_mach_mips6000, bfd_mach_mips3000 },
14192 { bfd_mach_mips3900, bfd_mach_mips3000 }
14193};
14194
14195/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14196
14197static bfd_boolean
14198mips_mach_extends_p (unsigned long base, unsigned long extension)
14199{
14200 size_t i;
14201
14202 if (extension == base)
14203 return TRUE;
14204
14205 if (base == bfd_mach_mipsisa32
14206 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14207 return TRUE;
14208
14209 if (base == bfd_mach_mipsisa32r2
14210 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14211 return TRUE;
14212
14213 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14214 if (extension == mips_mach_extensions[i].extension)
14215 {
14216 extension = mips_mach_extensions[i].base;
14217 if (extension == base)
14218 return TRUE;
14219 }
14220
14221 return FALSE;
14222}
14223
14224/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14225
14226static unsigned long
14227bfd_mips_isa_ext_mach (unsigned int isa_ext)
14228{
14229 switch (isa_ext)
14230 {
14231 case AFL_EXT_3900: return bfd_mach_mips3900;
14232 case AFL_EXT_4010: return bfd_mach_mips4010;
14233 case AFL_EXT_4100: return bfd_mach_mips4100;
14234 case AFL_EXT_4111: return bfd_mach_mips4111;
14235 case AFL_EXT_4120: return bfd_mach_mips4120;
14236 case AFL_EXT_4650: return bfd_mach_mips4650;
14237 case AFL_EXT_5400: return bfd_mach_mips5400;
14238 case AFL_EXT_5500: return bfd_mach_mips5500;
14239 case AFL_EXT_5900: return bfd_mach_mips5900;
14240 case AFL_EXT_10000: return bfd_mach_mips10000;
14241 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14242 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14243 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14244 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14245 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14246 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14247 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14248 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14249 default: return bfd_mach_mips3000;
14250 }
14251}
14252
351cdf24
MF
14253/* Return the .MIPS.abiflags value representing each ISA Extension. */
14254
14255unsigned int
14256bfd_mips_isa_ext (bfd *abfd)
14257{
14258 switch (bfd_get_mach (abfd))
14259 {
c97c330b
MF
14260 case bfd_mach_mips3900: return AFL_EXT_3900;
14261 case bfd_mach_mips4010: return AFL_EXT_4010;
14262 case bfd_mach_mips4100: return AFL_EXT_4100;
14263 case bfd_mach_mips4111: return AFL_EXT_4111;
14264 case bfd_mach_mips4120: return AFL_EXT_4120;
14265 case bfd_mach_mips4650: return AFL_EXT_4650;
14266 case bfd_mach_mips5400: return AFL_EXT_5400;
14267 case bfd_mach_mips5500: return AFL_EXT_5500;
14268 case bfd_mach_mips5900: return AFL_EXT_5900;
14269 case bfd_mach_mips10000: return AFL_EXT_10000;
14270 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14271 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14272 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14273 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14274 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14275 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14276 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14277 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14278 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14279 default: return 0;
14280 }
14281}
14282
14283/* Encode ISA level and revision as a single value. */
14284#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14285
14286/* Decode a single value into level and revision. */
14287#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14288#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14289
14290/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14291
14292static void
14293update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14294{
c97c330b 14295 int new_isa = 0;
351cdf24
MF
14296 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14297 {
c97c330b
MF
14298 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14299 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14300 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14301 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14302 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14303 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14304 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14305 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14306 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14307 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14308 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14309 default:
4eca0228 14310 _bfd_error_handler
695344c0 14311 /* xgettext:c-format */
351cdf24
MF
14312 (_("%B: Unknown architecture %s"),
14313 abfd, bfd_printable_name (abfd));
14314 }
14315
c97c330b
MF
14316 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14317 {
14318 abiflags->isa_level = ISA_LEVEL (new_isa);
14319 abiflags->isa_rev = ISA_REV (new_isa);
14320 }
14321
14322 /* Update the isa_ext if ABFD describes a further extension. */
14323 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14324 bfd_get_mach (abfd)))
14325 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14326}
14327
14328/* Return true if the given ELF header flags describe a 32-bit binary. */
14329
14330static bfd_boolean
14331mips_32bit_flags_p (flagword flags)
14332{
14333 return ((flags & EF_MIPS_32BITMODE) != 0
14334 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14335 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14336 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14337 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14338 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14339 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14340 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14341}
14342
14343/* Infer the content of the ABI flags based on the elf header. */
14344
14345static void
14346infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14347{
14348 obj_attribute *in_attr;
14349
14350 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14351 update_mips_abiflags_isa (abfd, abiflags);
14352
14353 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14354 abiflags->gpr_size = AFL_REG_32;
14355 else
14356 abiflags->gpr_size = AFL_REG_64;
14357
14358 abiflags->cpr1_size = AFL_REG_NONE;
14359
14360 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14361 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14362
14363 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14364 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14365 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14366 && abiflags->gpr_size == AFL_REG_32))
14367 abiflags->cpr1_size = AFL_REG_32;
14368 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14369 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14370 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14371 abiflags->cpr1_size = AFL_REG_64;
14372
14373 abiflags->cpr2_size = AFL_REG_NONE;
14374
14375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14376 abiflags->ases |= AFL_ASE_MDMX;
14377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14378 abiflags->ases |= AFL_ASE_MIPS16;
14379 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14380 abiflags->ases |= AFL_ASE_MICROMIPS;
14381
14382 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14383 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14384 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14385 && abiflags->isa_level >= 32
14386 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14387 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14388}
14389
b49e97c9
TS
14390/* We need to use a special link routine to handle the .reginfo and
14391 the .mdebug sections. We need to merge all instances of these
14392 sections together, not write them all out sequentially. */
14393
b34976b6 14394bfd_boolean
9719ad41 14395_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14396{
b49e97c9
TS
14397 asection *o;
14398 struct bfd_link_order *p;
14399 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14400 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14401 Elf32_RegInfo reginfo;
14402 struct ecoff_debug_info debug;
861fb55a 14403 struct mips_htab_traverse_info hti;
7a2a6943
NC
14404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14405 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14406 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14407 void *mdebug_handle = NULL;
b49e97c9
TS
14408 asection *s;
14409 EXTR esym;
14410 unsigned int i;
14411 bfd_size_type amt;
0a44bf69 14412 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14413
14414 static const char * const secname[] =
14415 {
14416 ".text", ".init", ".fini", ".data",
14417 ".rodata", ".sdata", ".sbss", ".bss"
14418 };
14419 static const int sc[] =
14420 {
14421 scText, scInit, scFini, scData,
14422 scRData, scSData, scSBss, scBss
14423 };
14424
d4596a51
RS
14425 /* Sort the dynamic symbols so that those with GOT entries come after
14426 those without. */
0a44bf69 14427 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14428 BFD_ASSERT (htab != NULL);
14429
d4596a51
RS
14430 if (!mips_elf_sort_hash_table (abfd, info))
14431 return FALSE;
b49e97c9 14432
861fb55a
DJ
14433 /* Create any scheduled LA25 stubs. */
14434 hti.info = info;
14435 hti.output_bfd = abfd;
14436 hti.error = FALSE;
14437 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14438 if (hti.error)
14439 return FALSE;
14440
b49e97c9
TS
14441 /* Get a value for the GP register. */
14442 if (elf_gp (abfd) == 0)
14443 {
14444 struct bfd_link_hash_entry *h;
14445
b34976b6 14446 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14447 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14448 elf_gp (abfd) = (h->u.def.value
14449 + h->u.def.section->output_section->vma
14450 + h->u.def.section->output_offset);
0a44bf69
RS
14451 else if (htab->is_vxworks
14452 && (h = bfd_link_hash_lookup (info->hash,
14453 "_GLOBAL_OFFSET_TABLE_",
14454 FALSE, FALSE, TRUE))
14455 && h->type == bfd_link_hash_defined)
14456 elf_gp (abfd) = (h->u.def.section->output_section->vma
14457 + h->u.def.section->output_offset
14458 + h->u.def.value);
0e1862bb 14459 else if (bfd_link_relocatable (info))
b49e97c9
TS
14460 {
14461 bfd_vma lo = MINUS_ONE;
14462
14463 /* Find the GP-relative section with the lowest offset. */
9719ad41 14464 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14465 if (o->vma < lo
14466 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14467 lo = o->vma;
14468
14469 /* And calculate GP relative to that. */
0a44bf69 14470 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14471 }
14472 else
14473 {
14474 /* If the relocate_section function needs to do a reloc
14475 involving the GP value, it should make a reloc_dangerous
14476 callback to warn that GP is not defined. */
14477 }
14478 }
14479
14480 /* Go through the sections and collect the .reginfo and .mdebug
14481 information. */
351cdf24 14482 abiflags_sec = NULL;
b49e97c9
TS
14483 reginfo_sec = NULL;
14484 mdebug_sec = NULL;
14485 gptab_data_sec = NULL;
14486 gptab_bss_sec = NULL;
9719ad41 14487 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14488 {
351cdf24
MF
14489 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14490 {
14491 /* We have found the .MIPS.abiflags section in the output file.
14492 Look through all the link_orders comprising it and remove them.
14493 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14494 for (p = o->map_head.link_order; p != NULL; p = p->next)
14495 {
14496 asection *input_section;
14497
14498 if (p->type != bfd_indirect_link_order)
14499 {
14500 if (p->type == bfd_data_link_order)
14501 continue;
14502 abort ();
14503 }
14504
14505 input_section = p->u.indirect.section;
14506
14507 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14508 elf_link_input_bfd ignores this section. */
14509 input_section->flags &= ~SEC_HAS_CONTENTS;
14510 }
14511
14512 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14513 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14514
14515 /* Skip this section later on (I don't think this currently
14516 matters, but someday it might). */
14517 o->map_head.link_order = NULL;
14518
14519 abiflags_sec = o;
14520 }
14521
b49e97c9
TS
14522 if (strcmp (o->name, ".reginfo") == 0)
14523 {
14524 memset (&reginfo, 0, sizeof reginfo);
14525
14526 /* We have found the .reginfo section in the output file.
14527 Look through all the link_orders comprising it and merge
14528 the information together. */
8423293d 14529 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14530 {
14531 asection *input_section;
14532 bfd *input_bfd;
14533 Elf32_External_RegInfo ext;
14534 Elf32_RegInfo sub;
14535
14536 if (p->type != bfd_indirect_link_order)
14537 {
14538 if (p->type == bfd_data_link_order)
14539 continue;
14540 abort ();
14541 }
14542
14543 input_section = p->u.indirect.section;
14544 input_bfd = input_section->owner;
14545
b49e97c9 14546 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14547 &ext, 0, sizeof ext))
b34976b6 14548 return FALSE;
b49e97c9
TS
14549
14550 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14551
14552 reginfo.ri_gprmask |= sub.ri_gprmask;
14553 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14554 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14555 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14556 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14557
14558 /* ri_gp_value is set by the function
14559 mips_elf32_section_processing when the section is
14560 finally written out. */
14561
14562 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14563 elf_link_input_bfd ignores this section. */
14564 input_section->flags &= ~SEC_HAS_CONTENTS;
14565 }
14566
14567 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14568 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14569
14570 /* Skip this section later on (I don't think this currently
14571 matters, but someday it might). */
8423293d 14572 o->map_head.link_order = NULL;
b49e97c9
TS
14573
14574 reginfo_sec = o;
14575 }
14576
14577 if (strcmp (o->name, ".mdebug") == 0)
14578 {
14579 struct extsym_info einfo;
14580 bfd_vma last;
14581
14582 /* We have found the .mdebug section in the output file.
14583 Look through all the link_orders comprising it and merge
14584 the information together. */
14585 symhdr->magic = swap->sym_magic;
14586 /* FIXME: What should the version stamp be? */
14587 symhdr->vstamp = 0;
14588 symhdr->ilineMax = 0;
14589 symhdr->cbLine = 0;
14590 symhdr->idnMax = 0;
14591 symhdr->ipdMax = 0;
14592 symhdr->isymMax = 0;
14593 symhdr->ioptMax = 0;
14594 symhdr->iauxMax = 0;
14595 symhdr->issMax = 0;
14596 symhdr->issExtMax = 0;
14597 symhdr->ifdMax = 0;
14598 symhdr->crfd = 0;
14599 symhdr->iextMax = 0;
14600
14601 /* We accumulate the debugging information itself in the
14602 debug_info structure. */
14603 debug.line = NULL;
14604 debug.external_dnr = NULL;
14605 debug.external_pdr = NULL;
14606 debug.external_sym = NULL;
14607 debug.external_opt = NULL;
14608 debug.external_aux = NULL;
14609 debug.ss = NULL;
14610 debug.ssext = debug.ssext_end = NULL;
14611 debug.external_fdr = NULL;
14612 debug.external_rfd = NULL;
14613 debug.external_ext = debug.external_ext_end = NULL;
14614
14615 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14616 if (mdebug_handle == NULL)
b34976b6 14617 return FALSE;
b49e97c9
TS
14618
14619 esym.jmptbl = 0;
14620 esym.cobol_main = 0;
14621 esym.weakext = 0;
14622 esym.reserved = 0;
14623 esym.ifd = ifdNil;
14624 esym.asym.iss = issNil;
14625 esym.asym.st = stLocal;
14626 esym.asym.reserved = 0;
14627 esym.asym.index = indexNil;
14628 last = 0;
14629 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14630 {
14631 esym.asym.sc = sc[i];
14632 s = bfd_get_section_by_name (abfd, secname[i]);
14633 if (s != NULL)
14634 {
14635 esym.asym.value = s->vma;
eea6121a 14636 last = s->vma + s->size;
b49e97c9
TS
14637 }
14638 else
14639 esym.asym.value = last;
14640 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14641 secname[i], &esym))
b34976b6 14642 return FALSE;
b49e97c9
TS
14643 }
14644
8423293d 14645 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14646 {
14647 asection *input_section;
14648 bfd *input_bfd;
14649 const struct ecoff_debug_swap *input_swap;
14650 struct ecoff_debug_info input_debug;
14651 char *eraw_src;
14652 char *eraw_end;
14653
14654 if (p->type != bfd_indirect_link_order)
14655 {
14656 if (p->type == bfd_data_link_order)
14657 continue;
14658 abort ();
14659 }
14660
14661 input_section = p->u.indirect.section;
14662 input_bfd = input_section->owner;
14663
d5eaccd7 14664 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14665 {
14666 /* I don't know what a non MIPS ELF bfd would be
14667 doing with a .mdebug section, but I don't really
14668 want to deal with it. */
14669 continue;
14670 }
14671
14672 input_swap = (get_elf_backend_data (input_bfd)
14673 ->elf_backend_ecoff_debug_swap);
14674
eea6121a 14675 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14676
14677 /* The ECOFF linking code expects that we have already
14678 read in the debugging information and set up an
14679 ecoff_debug_info structure, so we do that now. */
14680 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14681 &input_debug))
b34976b6 14682 return FALSE;
b49e97c9
TS
14683
14684 if (! (bfd_ecoff_debug_accumulate
14685 (mdebug_handle, abfd, &debug, swap, input_bfd,
14686 &input_debug, input_swap, info)))
b34976b6 14687 return FALSE;
b49e97c9
TS
14688
14689 /* Loop through the external symbols. For each one with
14690 interesting information, try to find the symbol in
14691 the linker global hash table and save the information
14692 for the output external symbols. */
14693 eraw_src = input_debug.external_ext;
14694 eraw_end = (eraw_src
14695 + (input_debug.symbolic_header.iextMax
14696 * input_swap->external_ext_size));
14697 for (;
14698 eraw_src < eraw_end;
14699 eraw_src += input_swap->external_ext_size)
14700 {
14701 EXTR ext;
14702 const char *name;
14703 struct mips_elf_link_hash_entry *h;
14704
9719ad41 14705 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14706 if (ext.asym.sc == scNil
14707 || ext.asym.sc == scUndefined
14708 || ext.asym.sc == scSUndefined)
14709 continue;
14710
14711 name = input_debug.ssext + ext.asym.iss;
14712 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14713 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14714 if (h == NULL || h->esym.ifd != -2)
14715 continue;
14716
14717 if (ext.ifd != -1)
14718 {
14719 BFD_ASSERT (ext.ifd
14720 < input_debug.symbolic_header.ifdMax);
14721 ext.ifd = input_debug.ifdmap[ext.ifd];
14722 }
14723
14724 h->esym = ext;
14725 }
14726
14727 /* Free up the information we just read. */
14728 free (input_debug.line);
14729 free (input_debug.external_dnr);
14730 free (input_debug.external_pdr);
14731 free (input_debug.external_sym);
14732 free (input_debug.external_opt);
14733 free (input_debug.external_aux);
14734 free (input_debug.ss);
14735 free (input_debug.ssext);
14736 free (input_debug.external_fdr);
14737 free (input_debug.external_rfd);
14738 free (input_debug.external_ext);
14739
14740 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14741 elf_link_input_bfd ignores this section. */
14742 input_section->flags &= ~SEC_HAS_CONTENTS;
14743 }
14744
0e1862bb 14745 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14746 {
14747 /* Create .rtproc section. */
87e0a731 14748 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14749 if (rtproc_sec == NULL)
14750 {
14751 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14752 | SEC_LINKER_CREATED | SEC_READONLY);
14753
87e0a731
AM
14754 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14755 ".rtproc",
14756 flags);
b49e97c9 14757 if (rtproc_sec == NULL
b49e97c9 14758 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14759 return FALSE;
b49e97c9
TS
14760 }
14761
14762 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14763 info, rtproc_sec,
14764 &debug))
b34976b6 14765 return FALSE;
b49e97c9
TS
14766 }
14767
14768 /* Build the external symbol information. */
14769 einfo.abfd = abfd;
14770 einfo.info = info;
14771 einfo.debug = &debug;
14772 einfo.swap = swap;
b34976b6 14773 einfo.failed = FALSE;
b49e97c9 14774 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14775 mips_elf_output_extsym, &einfo);
b49e97c9 14776 if (einfo.failed)
b34976b6 14777 return FALSE;
b49e97c9
TS
14778
14779 /* Set the size of the .mdebug section. */
eea6121a 14780 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14781
14782 /* Skip this section later on (I don't think this currently
14783 matters, but someday it might). */
8423293d 14784 o->map_head.link_order = NULL;
b49e97c9
TS
14785
14786 mdebug_sec = o;
14787 }
14788
0112cd26 14789 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14790 {
14791 const char *subname;
14792 unsigned int c;
14793 Elf32_gptab *tab;
14794 Elf32_External_gptab *ext_tab;
14795 unsigned int j;
14796
14797 /* The .gptab.sdata and .gptab.sbss sections hold
14798 information describing how the small data area would
14799 change depending upon the -G switch. These sections
14800 not used in executables files. */
0e1862bb 14801 if (! bfd_link_relocatable (info))
b49e97c9 14802 {
8423293d 14803 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14804 {
14805 asection *input_section;
14806
14807 if (p->type != bfd_indirect_link_order)
14808 {
14809 if (p->type == bfd_data_link_order)
14810 continue;
14811 abort ();
14812 }
14813
14814 input_section = p->u.indirect.section;
14815
14816 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14817 elf_link_input_bfd ignores this section. */
14818 input_section->flags &= ~SEC_HAS_CONTENTS;
14819 }
14820
14821 /* Skip this section later on (I don't think this
14822 currently matters, but someday it might). */
8423293d 14823 o->map_head.link_order = NULL;
b49e97c9
TS
14824
14825 /* Really remove the section. */
5daa8fe7 14826 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14827 --abfd->section_count;
14828
14829 continue;
14830 }
14831
14832 /* There is one gptab for initialized data, and one for
14833 uninitialized data. */
14834 if (strcmp (o->name, ".gptab.sdata") == 0)
14835 gptab_data_sec = o;
14836 else if (strcmp (o->name, ".gptab.sbss") == 0)
14837 gptab_bss_sec = o;
14838 else
14839 {
4eca0228 14840 _bfd_error_handler
695344c0 14841 /* xgettext:c-format */
b49e97c9
TS
14842 (_("%s: illegal section name `%s'"),
14843 bfd_get_filename (abfd), o->name);
14844 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14845 return FALSE;
b49e97c9
TS
14846 }
14847
14848 /* The linker script always combines .gptab.data and
14849 .gptab.sdata into .gptab.sdata, and likewise for
14850 .gptab.bss and .gptab.sbss. It is possible that there is
14851 no .sdata or .sbss section in the output file, in which
14852 case we must change the name of the output section. */
14853 subname = o->name + sizeof ".gptab" - 1;
14854 if (bfd_get_section_by_name (abfd, subname) == NULL)
14855 {
14856 if (o == gptab_data_sec)
14857 o->name = ".gptab.data";
14858 else
14859 o->name = ".gptab.bss";
14860 subname = o->name + sizeof ".gptab" - 1;
14861 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14862 }
14863
14864 /* Set up the first entry. */
14865 c = 1;
14866 amt = c * sizeof (Elf32_gptab);
9719ad41 14867 tab = bfd_malloc (amt);
b49e97c9 14868 if (tab == NULL)
b34976b6 14869 return FALSE;
b49e97c9
TS
14870 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14871 tab[0].gt_header.gt_unused = 0;
14872
14873 /* Combine the input sections. */
8423293d 14874 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14875 {
14876 asection *input_section;
14877 bfd *input_bfd;
14878 bfd_size_type size;
14879 unsigned long last;
14880 bfd_size_type gpentry;
14881
14882 if (p->type != bfd_indirect_link_order)
14883 {
14884 if (p->type == bfd_data_link_order)
14885 continue;
14886 abort ();
14887 }
14888
14889 input_section = p->u.indirect.section;
14890 input_bfd = input_section->owner;
14891
14892 /* Combine the gptab entries for this input section one
14893 by one. We know that the input gptab entries are
14894 sorted by ascending -G value. */
eea6121a 14895 size = input_section->size;
b49e97c9
TS
14896 last = 0;
14897 for (gpentry = sizeof (Elf32_External_gptab);
14898 gpentry < size;
14899 gpentry += sizeof (Elf32_External_gptab))
14900 {
14901 Elf32_External_gptab ext_gptab;
14902 Elf32_gptab int_gptab;
14903 unsigned long val;
14904 unsigned long add;
b34976b6 14905 bfd_boolean exact;
b49e97c9
TS
14906 unsigned int look;
14907
14908 if (! (bfd_get_section_contents
9719ad41
RS
14909 (input_bfd, input_section, &ext_gptab, gpentry,
14910 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14911 {
14912 free (tab);
b34976b6 14913 return FALSE;
b49e97c9
TS
14914 }
14915
14916 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14917 &int_gptab);
14918 val = int_gptab.gt_entry.gt_g_value;
14919 add = int_gptab.gt_entry.gt_bytes - last;
14920
b34976b6 14921 exact = FALSE;
b49e97c9
TS
14922 for (look = 1; look < c; look++)
14923 {
14924 if (tab[look].gt_entry.gt_g_value >= val)
14925 tab[look].gt_entry.gt_bytes += add;
14926
14927 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14928 exact = TRUE;
b49e97c9
TS
14929 }
14930
14931 if (! exact)
14932 {
14933 Elf32_gptab *new_tab;
14934 unsigned int max;
14935
14936 /* We need a new table entry. */
14937 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14938 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14939 if (new_tab == NULL)
14940 {
14941 free (tab);
b34976b6 14942 return FALSE;
b49e97c9
TS
14943 }
14944 tab = new_tab;
14945 tab[c].gt_entry.gt_g_value = val;
14946 tab[c].gt_entry.gt_bytes = add;
14947
14948 /* Merge in the size for the next smallest -G
14949 value, since that will be implied by this new
14950 value. */
14951 max = 0;
14952 for (look = 1; look < c; look++)
14953 {
14954 if (tab[look].gt_entry.gt_g_value < val
14955 && (max == 0
14956 || (tab[look].gt_entry.gt_g_value
14957 > tab[max].gt_entry.gt_g_value)))
14958 max = look;
14959 }
14960 if (max != 0)
14961 tab[c].gt_entry.gt_bytes +=
14962 tab[max].gt_entry.gt_bytes;
14963
14964 ++c;
14965 }
14966
14967 last = int_gptab.gt_entry.gt_bytes;
14968 }
14969
14970 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14971 elf_link_input_bfd ignores this section. */
14972 input_section->flags &= ~SEC_HAS_CONTENTS;
14973 }
14974
14975 /* The table must be sorted by -G value. */
14976 if (c > 2)
14977 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14978
14979 /* Swap out the table. */
14980 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14981 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14982 if (ext_tab == NULL)
14983 {
14984 free (tab);
b34976b6 14985 return FALSE;
b49e97c9
TS
14986 }
14987
14988 for (j = 0; j < c; j++)
14989 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14990 free (tab);
14991
eea6121a 14992 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14993 o->contents = (bfd_byte *) ext_tab;
14994
14995 /* Skip this section later on (I don't think this currently
14996 matters, but someday it might). */
8423293d 14997 o->map_head.link_order = NULL;
b49e97c9
TS
14998 }
14999 }
15000
15001 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15002 if (!bfd_elf_final_link (abfd, info))
b34976b6 15003 return FALSE;
b49e97c9
TS
15004
15005 /* Now write out the computed sections. */
15006
351cdf24
MF
15007 if (abiflags_sec != NULL)
15008 {
15009 Elf_External_ABIFlags_v0 ext;
15010 Elf_Internal_ABIFlags_v0 *abiflags;
15011
15012 abiflags = &mips_elf_tdata (abfd)->abiflags;
15013
15014 /* Set up the abiflags if no valid input sections were found. */
15015 if (!mips_elf_tdata (abfd)->abiflags_valid)
15016 {
15017 infer_mips_abiflags (abfd, abiflags);
15018 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15019 }
15020 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15021 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15022 return FALSE;
15023 }
15024
9719ad41 15025 if (reginfo_sec != NULL)
b49e97c9
TS
15026 {
15027 Elf32_External_RegInfo ext;
15028
15029 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15030 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15031 return FALSE;
b49e97c9
TS
15032 }
15033
9719ad41 15034 if (mdebug_sec != NULL)
b49e97c9
TS
15035 {
15036 BFD_ASSERT (abfd->output_has_begun);
15037 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15038 swap, info,
15039 mdebug_sec->filepos))
b34976b6 15040 return FALSE;
b49e97c9
TS
15041
15042 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15043 }
15044
9719ad41 15045 if (gptab_data_sec != NULL)
b49e97c9
TS
15046 {
15047 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15048 gptab_data_sec->contents,
eea6121a 15049 0, gptab_data_sec->size))
b34976b6 15050 return FALSE;
b49e97c9
TS
15051 }
15052
9719ad41 15053 if (gptab_bss_sec != NULL)
b49e97c9
TS
15054 {
15055 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15056 gptab_bss_sec->contents,
eea6121a 15057 0, gptab_bss_sec->size))
b34976b6 15058 return FALSE;
b49e97c9
TS
15059 }
15060
15061 if (SGI_COMPAT (abfd))
15062 {
15063 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15064 if (rtproc_sec != NULL)
15065 {
15066 if (! bfd_set_section_contents (abfd, rtproc_sec,
15067 rtproc_sec->contents,
eea6121a 15068 0, rtproc_sec->size))
b34976b6 15069 return FALSE;
b49e97c9
TS
15070 }
15071 }
15072
b34976b6 15073 return TRUE;
b49e97c9
TS
15074}
15075\f
b2e9744f
MR
15076/* Merge object file header flags from IBFD into OBFD. Raise an error
15077 if there are conflicting settings. */
15078
15079static bfd_boolean
50e03d47 15080mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15081{
50e03d47 15082 bfd *obfd = info->output_bfd;
b2e9744f
MR
15083 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15084 flagword old_flags;
15085 flagword new_flags;
15086 bfd_boolean ok;
15087
15088 new_flags = elf_elfheader (ibfd)->e_flags;
15089 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15090 old_flags = elf_elfheader (obfd)->e_flags;
15091
15092 /* Check flag compatibility. */
15093
15094 new_flags &= ~EF_MIPS_NOREORDER;
15095 old_flags &= ~EF_MIPS_NOREORDER;
15096
15097 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15098 doesn't seem to matter. */
15099 new_flags &= ~EF_MIPS_XGOT;
15100 old_flags &= ~EF_MIPS_XGOT;
15101
15102 /* MIPSpro generates ucode info in n64 objects. Again, we should
15103 just be able to ignore this. */
15104 new_flags &= ~EF_MIPS_UCODE;
15105 old_flags &= ~EF_MIPS_UCODE;
15106
15107 /* DSOs should only be linked with CPIC code. */
15108 if ((ibfd->flags & DYNAMIC) != 0)
15109 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15110
15111 if (new_flags == old_flags)
15112 return TRUE;
15113
15114 ok = TRUE;
15115
15116 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15117 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15118 {
4eca0228 15119 _bfd_error_handler
b2e9744f
MR
15120 (_("%B: warning: linking abicalls files with non-abicalls files"),
15121 ibfd);
15122 ok = TRUE;
15123 }
15124
15125 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15126 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15127 if (! (new_flags & EF_MIPS_PIC))
15128 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15129
15130 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15131 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15132
15133 /* Compare the ISAs. */
15134 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15135 {
4eca0228 15136 _bfd_error_handler
b2e9744f
MR
15137 (_("%B: linking 32-bit code with 64-bit code"),
15138 ibfd);
15139 ok = FALSE;
15140 }
15141 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15142 {
15143 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15144 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15145 {
15146 /* Copy the architecture info from IBFD to OBFD. Also copy
15147 the 32-bit flag (if set) so that we continue to recognise
15148 OBFD as a 32-bit binary. */
15149 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15150 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15151 elf_elfheader (obfd)->e_flags
15152 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15153
15154 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15155 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15156
15157 /* Copy across the ABI flags if OBFD doesn't use them
15158 and if that was what caused us to treat IBFD as 32-bit. */
15159 if ((old_flags & EF_MIPS_ABI) == 0
15160 && mips_32bit_flags_p (new_flags)
15161 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15162 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15163 }
15164 else
15165 {
15166 /* The ISAs aren't compatible. */
4eca0228 15167 _bfd_error_handler
695344c0 15168 /* xgettext:c-format */
b2e9744f
MR
15169 (_("%B: linking %s module with previous %s modules"),
15170 ibfd,
15171 bfd_printable_name (ibfd),
15172 bfd_printable_name (obfd));
15173 ok = FALSE;
15174 }
15175 }
15176
15177 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15178 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15179
15180 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15181 does set EI_CLASS differently from any 32-bit ABI. */
15182 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15183 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15184 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15185 {
15186 /* Only error if both are set (to different values). */
15187 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15188 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15189 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15190 {
4eca0228 15191 _bfd_error_handler
695344c0 15192 /* xgettext:c-format */
b2e9744f
MR
15193 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15194 ibfd,
15195 elf_mips_abi_name (ibfd),
15196 elf_mips_abi_name (obfd));
15197 ok = FALSE;
15198 }
15199 new_flags &= ~EF_MIPS_ABI;
15200 old_flags &= ~EF_MIPS_ABI;
15201 }
15202
15203 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15204 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15205 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15206 {
15207 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15208 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15209 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15210 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15211 int micro_mis = old_m16 && new_micro;
15212 int m16_mis = old_micro && new_m16;
15213
15214 if (m16_mis || micro_mis)
15215 {
4eca0228 15216 _bfd_error_handler
695344c0 15217 /* xgettext:c-format */
b2e9744f
MR
15218 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15219 ibfd,
15220 m16_mis ? "MIPS16" : "microMIPS",
15221 m16_mis ? "microMIPS" : "MIPS16");
15222 ok = FALSE;
15223 }
15224
15225 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15226
15227 new_flags &= ~ EF_MIPS_ARCH_ASE;
15228 old_flags &= ~ EF_MIPS_ARCH_ASE;
15229 }
15230
15231 /* Compare NaN encodings. */
15232 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15233 {
695344c0 15234 /* xgettext:c-format */
b2e9744f
MR
15235 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15236 ibfd,
15237 (new_flags & EF_MIPS_NAN2008
15238 ? "-mnan=2008" : "-mnan=legacy"),
15239 (old_flags & EF_MIPS_NAN2008
15240 ? "-mnan=2008" : "-mnan=legacy"));
15241 ok = FALSE;
15242 new_flags &= ~EF_MIPS_NAN2008;
15243 old_flags &= ~EF_MIPS_NAN2008;
15244 }
15245
15246 /* Compare FP64 state. */
15247 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15248 {
695344c0 15249 /* xgettext:c-format */
b2e9744f
MR
15250 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15251 ibfd,
15252 (new_flags & EF_MIPS_FP64
15253 ? "-mfp64" : "-mfp32"),
15254 (old_flags & EF_MIPS_FP64
15255 ? "-mfp64" : "-mfp32"));
15256 ok = FALSE;
15257 new_flags &= ~EF_MIPS_FP64;
15258 old_flags &= ~EF_MIPS_FP64;
15259 }
15260
15261 /* Warn about any other mismatches */
15262 if (new_flags != old_flags)
15263 {
695344c0 15264 /* xgettext:c-format */
4eca0228 15265 _bfd_error_handler
b2e9744f
MR
15266 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15267 "(0x%lx)"),
15268 ibfd, (unsigned long) new_flags,
15269 (unsigned long) old_flags);
15270 ok = FALSE;
15271 }
15272
15273 return ok;
15274}
15275
2cf19d5c
JM
15276/* Merge object attributes from IBFD into OBFD. Raise an error if
15277 there are conflicting attributes. */
15278static bfd_boolean
50e03d47 15279mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15280{
50e03d47 15281 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15282 obj_attribute *in_attr;
15283 obj_attribute *out_attr;
6ae68ba3 15284 bfd *abi_fp_bfd;
b60bf9be 15285 bfd *abi_msa_bfd;
6ae68ba3
MR
15286
15287 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15288 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15289 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15290 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15291
b60bf9be
CF
15292 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15293 if (!abi_msa_bfd
15294 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15295 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15296
2cf19d5c
JM
15297 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15298 {
15299 /* This is the first object. Copy the attributes. */
15300 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15301
15302 /* Use the Tag_null value to indicate the attributes have been
15303 initialized. */
15304 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15305
15306 return TRUE;
15307 }
15308
15309 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15310 non-conflicting ones. */
2cf19d5c
JM
15311 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15312 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15313 {
757a636f 15314 int out_fp, in_fp;
6ae68ba3 15315
757a636f
RS
15316 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15317 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15318 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15319 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15320 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15321 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15322 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15323 || in_fp == Val_GNU_MIPS_ABI_FP_64
15324 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15325 {
15326 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15327 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15328 }
15329 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15330 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15331 || out_fp == Val_GNU_MIPS_ABI_FP_64
15332 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15333 /* Keep the current setting. */;
15334 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15335 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15336 {
15337 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15338 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15339 }
15340 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15341 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15342 /* Keep the current setting. */;
757a636f
RS
15343 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15344 {
15345 const char *out_string, *in_string;
6ae68ba3 15346
757a636f
RS
15347 out_string = _bfd_mips_fp_abi_string (out_fp);
15348 in_string = _bfd_mips_fp_abi_string (in_fp);
15349 /* First warn about cases involving unrecognised ABIs. */
15350 if (!out_string && !in_string)
695344c0 15351 /* xgettext:c-format */
757a636f
RS
15352 _bfd_error_handler
15353 (_("Warning: %B uses unknown floating point ABI %d "
15354 "(set by %B), %B uses unknown floating point ABI %d"),
15355 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15356 else if (!out_string)
15357 _bfd_error_handler
695344c0 15358 /* xgettext:c-format */
757a636f
RS
15359 (_("Warning: %B uses unknown floating point ABI %d "
15360 "(set by %B), %B uses %s"),
15361 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15362 else if (!in_string)
15363 _bfd_error_handler
695344c0 15364 /* xgettext:c-format */
757a636f
RS
15365 (_("Warning: %B uses %s (set by %B), "
15366 "%B uses unknown floating point ABI %d"),
15367 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15368 else
15369 {
15370 /* If one of the bfds is soft-float, the other must be
15371 hard-float. The exact choice of hard-float ABI isn't
15372 really relevant to the error message. */
15373 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15374 out_string = "-mhard-float";
15375 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15376 in_string = "-mhard-float";
15377 _bfd_error_handler
695344c0 15378 /* xgettext:c-format */
757a636f
RS
15379 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15380 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15381 }
15382 }
2cf19d5c
JM
15383 }
15384
b60bf9be
CF
15385 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15386 non-conflicting ones. */
15387 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15388 {
15389 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15390 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15391 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15392 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15393 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15394 {
15395 case Val_GNU_MIPS_ABI_MSA_128:
15396 _bfd_error_handler
695344c0 15397 /* xgettext:c-format */
b60bf9be
CF
15398 (_("Warning: %B uses %s (set by %B), "
15399 "%B uses unknown MSA ABI %d"),
15400 obfd, abi_msa_bfd, ibfd,
15401 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15402 break;
15403
15404 default:
15405 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15406 {
15407 case Val_GNU_MIPS_ABI_MSA_128:
15408 _bfd_error_handler
695344c0 15409 /* xgettext:c-format */
b60bf9be
CF
15410 (_("Warning: %B uses unknown MSA ABI %d "
15411 "(set by %B), %B uses %s"),
15412 obfd, abi_msa_bfd, ibfd,
15413 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15414 break;
15415
15416 default:
15417 _bfd_error_handler
695344c0 15418 /* xgettext:c-format */
b60bf9be
CF
15419 (_("Warning: %B uses unknown MSA ABI %d "
15420 "(set by %B), %B uses unknown MSA ABI %d"),
15421 obfd, abi_msa_bfd, ibfd,
15422 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15423 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15424 break;
15425 }
15426 }
15427 }
15428
2cf19d5c 15429 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15430 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15431}
15432
a3dc0a7f
MR
15433/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15434 there are conflicting settings. */
15435
15436static bfd_boolean
15437mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15438{
15439 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15440 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15441 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15442
15443 /* Update the output abiflags fp_abi using the computed fp_abi. */
15444 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15445
15446#define max(a, b) ((a) > (b) ? (a) : (b))
15447 /* Merge abiflags. */
15448 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15449 in_tdata->abiflags.isa_level);
15450 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15451 in_tdata->abiflags.isa_rev);
15452 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15453 in_tdata->abiflags.gpr_size);
15454 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15455 in_tdata->abiflags.cpr1_size);
15456 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15457 in_tdata->abiflags.cpr2_size);
15458#undef max
15459 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15460 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15461
15462 return TRUE;
15463}
15464
b49e97c9
TS
15465/* Merge backend specific data from an object file to the output
15466 object file when linking. */
15467
b34976b6 15468bfd_boolean
50e03d47 15469_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15470{
50e03d47 15471 bfd *obfd = info->output_bfd;
cf8502c1
MR
15472 struct mips_elf_obj_tdata *out_tdata;
15473 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15474 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15475 asection *sec;
d537eeb5 15476 bfd_boolean ok;
b49e97c9 15477
58238693 15478 /* Check if we have the same endianness. */
50e03d47 15479 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15480 {
4eca0228 15481 _bfd_error_handler
d003868e
AM
15482 (_("%B: endianness incompatible with that of the selected emulation"),
15483 ibfd);
aa701218
AO
15484 return FALSE;
15485 }
b49e97c9 15486
d5eaccd7 15487 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15488 return TRUE;
b49e97c9 15489
cf8502c1
MR
15490 in_tdata = mips_elf_tdata (ibfd);
15491 out_tdata = mips_elf_tdata (obfd);
15492
aa701218
AO
15493 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15494 {
4eca0228 15495 _bfd_error_handler
d003868e
AM
15496 (_("%B: ABI is incompatible with that of the selected emulation"),
15497 ibfd);
aa701218
AO
15498 return FALSE;
15499 }
15500
23ba6f18
MR
15501 /* Check to see if the input BFD actually contains any sections. If not,
15502 then it has no attributes, and its flags may not have been initialized
15503 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15504 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15505 {
15506 /* Ignore synthetic sections and empty .text, .data and .bss sections
15507 which are automatically generated by gas. Also ignore fake
15508 (s)common sections, since merely defining a common symbol does
15509 not affect compatibility. */
15510 if ((sec->flags & SEC_IS_COMMON) == 0
15511 && strcmp (sec->name, ".reginfo")
15512 && strcmp (sec->name, ".mdebug")
15513 && (sec->size != 0
15514 || (strcmp (sec->name, ".text")
15515 && strcmp (sec->name, ".data")
15516 && strcmp (sec->name, ".bss"))))
15517 {
15518 null_input_bfd = FALSE;
15519 break;
15520 }
15521 }
15522 if (null_input_bfd)
15523 return TRUE;
15524
28d45e28 15525 /* Populate abiflags using existing information. */
23ba6f18
MR
15526 if (in_tdata->abiflags_valid)
15527 {
15528 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15529 Elf_Internal_ABIFlags_v0 in_abiflags;
15530 Elf_Internal_ABIFlags_v0 abiflags;
15531
15532 /* Set up the FP ABI attribute from the abiflags if it is not already
15533 set. */
23ba6f18
MR
15534 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15535 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15536
351cdf24 15537 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15538 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15539
15540 /* It is not possible to infer the correct ISA revision
15541 for R3 or R5 so drop down to R2 for the checks. */
15542 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15543 in_abiflags.isa_rev = 2;
15544
c97c330b
MF
15545 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15546 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15547 _bfd_error_handler
351cdf24
MF
15548 (_("%B: warning: Inconsistent ISA between e_flags and "
15549 ".MIPS.abiflags"), ibfd);
15550 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15551 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15552 _bfd_error_handler
dcb1c796 15553 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15554 ".MIPS.abiflags"), ibfd);
15555 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15556 _bfd_error_handler
351cdf24
MF
15557 (_("%B: warning: Inconsistent ASEs between e_flags and "
15558 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15559 /* The isa_ext is allowed to be an extension of what can be inferred
15560 from e_flags. */
15561 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15562 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15563 _bfd_error_handler
351cdf24
MF
15564 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15565 ".MIPS.abiflags"), ibfd);
15566 if (in_abiflags.flags2 != 0)
4eca0228 15567 _bfd_error_handler
351cdf24
MF
15568 (_("%B: warning: Unexpected flag in the flags2 field of "
15569 ".MIPS.abiflags (0x%lx)"), ibfd,
15570 (unsigned long) in_abiflags.flags2);
15571 }
28d45e28
MR
15572 else
15573 {
15574 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15575 in_tdata->abiflags_valid = TRUE;
15576 }
15577
cf8502c1 15578 if (!out_tdata->abiflags_valid)
351cdf24
MF
15579 {
15580 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15581 out_tdata->abiflags = in_tdata->abiflags;
15582 out_tdata->abiflags_valid = TRUE;
351cdf24 15583 }
b49e97c9
TS
15584
15585 if (! elf_flags_init (obfd))
15586 {
b34976b6 15587 elf_flags_init (obfd) = TRUE;
351cdf24 15588 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15589 elf_elfheader (obfd)->e_ident[EI_CLASS]
15590 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15591
15592 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15593 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15594 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15595 bfd_get_mach (ibfd))))
b49e97c9
TS
15596 {
15597 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15598 bfd_get_mach (ibfd)))
b34976b6 15599 return FALSE;
351cdf24
MF
15600
15601 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15602 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15603 }
15604
d537eeb5 15605 ok = TRUE;
b49e97c9 15606 }
d537eeb5 15607 else
50e03d47 15608 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15609
50e03d47 15610 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15611
a3dc0a7f 15612 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15613
d537eeb5 15614 if (!ok)
b49e97c9
TS
15615 {
15616 bfd_set_error (bfd_error_bad_value);
b34976b6 15617 return FALSE;
b49e97c9
TS
15618 }
15619
b34976b6 15620 return TRUE;
b49e97c9
TS
15621}
15622
15623/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15624
b34976b6 15625bfd_boolean
9719ad41 15626_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15627{
15628 BFD_ASSERT (!elf_flags_init (abfd)
15629 || elf_elfheader (abfd)->e_flags == flags);
15630
15631 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15632 elf_flags_init (abfd) = TRUE;
15633 return TRUE;
b49e97c9
TS
15634}
15635
ad9563d6
CM
15636char *
15637_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15638{
15639 switch (dtag)
15640 {
15641 default: return "";
15642 case DT_MIPS_RLD_VERSION:
15643 return "MIPS_RLD_VERSION";
15644 case DT_MIPS_TIME_STAMP:
15645 return "MIPS_TIME_STAMP";
15646 case DT_MIPS_ICHECKSUM:
15647 return "MIPS_ICHECKSUM";
15648 case DT_MIPS_IVERSION:
15649 return "MIPS_IVERSION";
15650 case DT_MIPS_FLAGS:
15651 return "MIPS_FLAGS";
15652 case DT_MIPS_BASE_ADDRESS:
15653 return "MIPS_BASE_ADDRESS";
15654 case DT_MIPS_MSYM:
15655 return "MIPS_MSYM";
15656 case DT_MIPS_CONFLICT:
15657 return "MIPS_CONFLICT";
15658 case DT_MIPS_LIBLIST:
15659 return "MIPS_LIBLIST";
15660 case DT_MIPS_LOCAL_GOTNO:
15661 return "MIPS_LOCAL_GOTNO";
15662 case DT_MIPS_CONFLICTNO:
15663 return "MIPS_CONFLICTNO";
15664 case DT_MIPS_LIBLISTNO:
15665 return "MIPS_LIBLISTNO";
15666 case DT_MIPS_SYMTABNO:
15667 return "MIPS_SYMTABNO";
15668 case DT_MIPS_UNREFEXTNO:
15669 return "MIPS_UNREFEXTNO";
15670 case DT_MIPS_GOTSYM:
15671 return "MIPS_GOTSYM";
15672 case DT_MIPS_HIPAGENO:
15673 return "MIPS_HIPAGENO";
15674 case DT_MIPS_RLD_MAP:
15675 return "MIPS_RLD_MAP";
a5499fa4
MF
15676 case DT_MIPS_RLD_MAP_REL:
15677 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15678 case DT_MIPS_DELTA_CLASS:
15679 return "MIPS_DELTA_CLASS";
15680 case DT_MIPS_DELTA_CLASS_NO:
15681 return "MIPS_DELTA_CLASS_NO";
15682 case DT_MIPS_DELTA_INSTANCE:
15683 return "MIPS_DELTA_INSTANCE";
15684 case DT_MIPS_DELTA_INSTANCE_NO:
15685 return "MIPS_DELTA_INSTANCE_NO";
15686 case DT_MIPS_DELTA_RELOC:
15687 return "MIPS_DELTA_RELOC";
15688 case DT_MIPS_DELTA_RELOC_NO:
15689 return "MIPS_DELTA_RELOC_NO";
15690 case DT_MIPS_DELTA_SYM:
15691 return "MIPS_DELTA_SYM";
15692 case DT_MIPS_DELTA_SYM_NO:
15693 return "MIPS_DELTA_SYM_NO";
15694 case DT_MIPS_DELTA_CLASSSYM:
15695 return "MIPS_DELTA_CLASSSYM";
15696 case DT_MIPS_DELTA_CLASSSYM_NO:
15697 return "MIPS_DELTA_CLASSSYM_NO";
15698 case DT_MIPS_CXX_FLAGS:
15699 return "MIPS_CXX_FLAGS";
15700 case DT_MIPS_PIXIE_INIT:
15701 return "MIPS_PIXIE_INIT";
15702 case DT_MIPS_SYMBOL_LIB:
15703 return "MIPS_SYMBOL_LIB";
15704 case DT_MIPS_LOCALPAGE_GOTIDX:
15705 return "MIPS_LOCALPAGE_GOTIDX";
15706 case DT_MIPS_LOCAL_GOTIDX:
15707 return "MIPS_LOCAL_GOTIDX";
15708 case DT_MIPS_HIDDEN_GOTIDX:
15709 return "MIPS_HIDDEN_GOTIDX";
15710 case DT_MIPS_PROTECTED_GOTIDX:
15711 return "MIPS_PROTECTED_GOT_IDX";
15712 case DT_MIPS_OPTIONS:
15713 return "MIPS_OPTIONS";
15714 case DT_MIPS_INTERFACE:
15715 return "MIPS_INTERFACE";
15716 case DT_MIPS_DYNSTR_ALIGN:
15717 return "DT_MIPS_DYNSTR_ALIGN";
15718 case DT_MIPS_INTERFACE_SIZE:
15719 return "DT_MIPS_INTERFACE_SIZE";
15720 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15721 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15722 case DT_MIPS_PERF_SUFFIX:
15723 return "DT_MIPS_PERF_SUFFIX";
15724 case DT_MIPS_COMPACT_SIZE:
15725 return "DT_MIPS_COMPACT_SIZE";
15726 case DT_MIPS_GP_VALUE:
15727 return "DT_MIPS_GP_VALUE";
15728 case DT_MIPS_AUX_DYNAMIC:
15729 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15730 case DT_MIPS_PLTGOT:
15731 return "DT_MIPS_PLTGOT";
15732 case DT_MIPS_RWPLT:
15733 return "DT_MIPS_RWPLT";
ad9563d6
CM
15734 }
15735}
15736
757a636f
RS
15737/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15738 not known. */
15739
15740const char *
15741_bfd_mips_fp_abi_string (int fp)
15742{
15743 switch (fp)
15744 {
15745 /* These strings aren't translated because they're simply
15746 option lists. */
15747 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15748 return "-mdouble-float";
15749
15750 case Val_GNU_MIPS_ABI_FP_SINGLE:
15751 return "-msingle-float";
15752
15753 case Val_GNU_MIPS_ABI_FP_SOFT:
15754 return "-msoft-float";
15755
351cdf24
MF
15756 case Val_GNU_MIPS_ABI_FP_OLD_64:
15757 return _("-mips32r2 -mfp64 (12 callee-saved)");
15758
15759 case Val_GNU_MIPS_ABI_FP_XX:
15760 return "-mfpxx";
15761
757a636f 15762 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15763 return "-mgp32 -mfp64";
15764
15765 case Val_GNU_MIPS_ABI_FP_64A:
15766 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15767
15768 default:
15769 return 0;
15770 }
15771}
15772
351cdf24
MF
15773static void
15774print_mips_ases (FILE *file, unsigned int mask)
15775{
15776 if (mask & AFL_ASE_DSP)
15777 fputs ("\n\tDSP ASE", file);
15778 if (mask & AFL_ASE_DSPR2)
15779 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15780 if (mask & AFL_ASE_DSPR3)
15781 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15782 if (mask & AFL_ASE_EVA)
15783 fputs ("\n\tEnhanced VA Scheme", file);
15784 if (mask & AFL_ASE_MCU)
15785 fputs ("\n\tMCU (MicroController) ASE", file);
15786 if (mask & AFL_ASE_MDMX)
15787 fputs ("\n\tMDMX ASE", file);
15788 if (mask & AFL_ASE_MIPS3D)
15789 fputs ("\n\tMIPS-3D ASE", file);
15790 if (mask & AFL_ASE_MT)
15791 fputs ("\n\tMT ASE", file);
15792 if (mask & AFL_ASE_SMARTMIPS)
15793 fputs ("\n\tSmartMIPS ASE", file);
15794 if (mask & AFL_ASE_VIRT)
15795 fputs ("\n\tVZ ASE", file);
15796 if (mask & AFL_ASE_MSA)
15797 fputs ("\n\tMSA ASE", file);
15798 if (mask & AFL_ASE_MIPS16)
15799 fputs ("\n\tMIPS16 ASE", file);
15800 if (mask & AFL_ASE_MICROMIPS)
15801 fputs ("\n\tMICROMIPS ASE", file);
15802 if (mask & AFL_ASE_XPA)
15803 fputs ("\n\tXPA ASE", file);
15804 if (mask == 0)
15805 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15806 else if ((mask & ~AFL_ASE_MASK) != 0)
15807 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15808}
15809
15810static void
15811print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15812{
15813 switch (isa_ext)
15814 {
15815 case 0:
15816 fputs (_("None"), file);
15817 break;
15818 case AFL_EXT_XLR:
15819 fputs ("RMI XLR", file);
15820 break;
2c629856
N
15821 case AFL_EXT_OCTEON3:
15822 fputs ("Cavium Networks Octeon3", file);
15823 break;
351cdf24
MF
15824 case AFL_EXT_OCTEON2:
15825 fputs ("Cavium Networks Octeon2", file);
15826 break;
15827 case AFL_EXT_OCTEONP:
15828 fputs ("Cavium Networks OcteonP", file);
15829 break;
15830 case AFL_EXT_LOONGSON_3A:
15831 fputs ("Loongson 3A", file);
15832 break;
15833 case AFL_EXT_OCTEON:
15834 fputs ("Cavium Networks Octeon", file);
15835 break;
15836 case AFL_EXT_5900:
15837 fputs ("Toshiba R5900", file);
15838 break;
15839 case AFL_EXT_4650:
15840 fputs ("MIPS R4650", file);
15841 break;
15842 case AFL_EXT_4010:
15843 fputs ("LSI R4010", file);
15844 break;
15845 case AFL_EXT_4100:
15846 fputs ("NEC VR4100", file);
15847 break;
15848 case AFL_EXT_3900:
15849 fputs ("Toshiba R3900", file);
15850 break;
15851 case AFL_EXT_10000:
15852 fputs ("MIPS R10000", file);
15853 break;
15854 case AFL_EXT_SB1:
15855 fputs ("Broadcom SB-1", file);
15856 break;
15857 case AFL_EXT_4111:
15858 fputs ("NEC VR4111/VR4181", file);
15859 break;
15860 case AFL_EXT_4120:
15861 fputs ("NEC VR4120", file);
15862 break;
15863 case AFL_EXT_5400:
15864 fputs ("NEC VR5400", file);
15865 break;
15866 case AFL_EXT_5500:
15867 fputs ("NEC VR5500", file);
15868 break;
15869 case AFL_EXT_LOONGSON_2E:
15870 fputs ("ST Microelectronics Loongson 2E", file);
15871 break;
15872 case AFL_EXT_LOONGSON_2F:
15873 fputs ("ST Microelectronics Loongson 2F", file);
15874 break;
15875 default:
00ac7aa0 15876 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15877 break;
15878 }
15879}
15880
15881static void
15882print_mips_fp_abi_value (FILE *file, int val)
15883{
15884 switch (val)
15885 {
15886 case Val_GNU_MIPS_ABI_FP_ANY:
15887 fprintf (file, _("Hard or soft float\n"));
15888 break;
15889 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15890 fprintf (file, _("Hard float (double precision)\n"));
15891 break;
15892 case Val_GNU_MIPS_ABI_FP_SINGLE:
15893 fprintf (file, _("Hard float (single precision)\n"));
15894 break;
15895 case Val_GNU_MIPS_ABI_FP_SOFT:
15896 fprintf (file, _("Soft float\n"));
15897 break;
15898 case Val_GNU_MIPS_ABI_FP_OLD_64:
15899 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15900 break;
15901 case Val_GNU_MIPS_ABI_FP_XX:
15902 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15903 break;
15904 case Val_GNU_MIPS_ABI_FP_64:
15905 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15906 break;
15907 case Val_GNU_MIPS_ABI_FP_64A:
15908 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15909 break;
15910 default:
15911 fprintf (file, "??? (%d)\n", val);
15912 break;
15913 }
15914}
15915
15916static int
15917get_mips_reg_size (int reg_size)
15918{
15919 return (reg_size == AFL_REG_NONE) ? 0
15920 : (reg_size == AFL_REG_32) ? 32
15921 : (reg_size == AFL_REG_64) ? 64
15922 : (reg_size == AFL_REG_128) ? 128
15923 : -1;
15924}
15925
b34976b6 15926bfd_boolean
9719ad41 15927_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15928{
9719ad41 15929 FILE *file = ptr;
b49e97c9
TS
15930
15931 BFD_ASSERT (abfd != NULL && ptr != NULL);
15932
15933 /* Print normal ELF private data. */
15934 _bfd_elf_print_private_bfd_data (abfd, ptr);
15935
15936 /* xgettext:c-format */
15937 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15938
15939 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15940 fprintf (file, _(" [abi=O32]"));
15941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15942 fprintf (file, _(" [abi=O64]"));
15943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15944 fprintf (file, _(" [abi=EABI32]"));
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15946 fprintf (file, _(" [abi=EABI64]"));
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15948 fprintf (file, _(" [abi unknown]"));
15949 else if (ABI_N32_P (abfd))
15950 fprintf (file, _(" [abi=N32]"));
15951 else if (ABI_64_P (abfd))
15952 fprintf (file, _(" [abi=64]"));
15953 else
15954 fprintf (file, _(" [no abi set]"));
15955
15956 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15957 fprintf (file, " [mips1]");
b49e97c9 15958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15959 fprintf (file, " [mips2]");
b49e97c9 15960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15961 fprintf (file, " [mips3]");
b49e97c9 15962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15963 fprintf (file, " [mips4]");
b49e97c9 15964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15965 fprintf (file, " [mips5]");
b49e97c9 15966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15967 fprintf (file, " [mips32]");
b49e97c9 15968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15969 fprintf (file, " [mips64]");
af7ee8bf 15970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15971 fprintf (file, " [mips32r2]");
5f74bc13 15972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15973 fprintf (file, " [mips64r2]");
7361da2c
AB
15974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15975 fprintf (file, " [mips32r6]");
15976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15977 fprintf (file, " [mips64r6]");
b49e97c9
TS
15978 else
15979 fprintf (file, _(" [unknown ISA]"));
15980
40d32fc6 15981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15982 fprintf (file, " [mdmx]");
40d32fc6
CD
15983
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15985 fprintf (file, " [mips16]");
40d32fc6 15986
df58fc94
RS
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15988 fprintf (file, " [micromips]");
15989
ba92f887
MR
15990 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15991 fprintf (file, " [nan2008]");
15992
5baf5e34 15993 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15994 fprintf (file, " [old fp64]");
5baf5e34 15995
b49e97c9 15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15997 fprintf (file, " [32bitmode]");
b49e97c9
TS
15998 else
15999 fprintf (file, _(" [not 32bitmode]"));
16000
c0e3f241 16001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16002 fprintf (file, " [noreorder]");
c0e3f241
CD
16003
16004 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16005 fprintf (file, " [PIC]");
c0e3f241
CD
16006
16007 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16008 fprintf (file, " [CPIC]");
c0e3f241
CD
16009
16010 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16011 fprintf (file, " [XGOT]");
c0e3f241
CD
16012
16013 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16014 fprintf (file, " [UCODE]");
c0e3f241 16015
b49e97c9
TS
16016 fputc ('\n', file);
16017
351cdf24
MF
16018 if (mips_elf_tdata (abfd)->abiflags_valid)
16019 {
16020 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16021 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16022 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16023 if (abiflags->isa_rev > 1)
16024 fprintf (file, "r%d", abiflags->isa_rev);
16025 fprintf (file, "\nGPR size: %d",
16026 get_mips_reg_size (abiflags->gpr_size));
16027 fprintf (file, "\nCPR1 size: %d",
16028 get_mips_reg_size (abiflags->cpr1_size));
16029 fprintf (file, "\nCPR2 size: %d",
16030 get_mips_reg_size (abiflags->cpr2_size));
16031 fputs ("\nFP ABI: ", file);
16032 print_mips_fp_abi_value (file, abiflags->fp_abi);
16033 fputs ("ISA Extension: ", file);
16034 print_mips_isa_ext (file, abiflags->isa_ext);
16035 fputs ("\nASEs:", file);
16036 print_mips_ases (file, abiflags->ases);
16037 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16038 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16039 fputc ('\n', file);
16040 }
16041
b34976b6 16042 return TRUE;
b49e97c9 16043}
2f89ff8d 16044
b35d266b 16045const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16046{
0112cd26
NC
16047 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16048 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16049 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16050 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16051 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16052 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16053 { NULL, 0, 0, 0, 0 }
2f89ff8d 16054};
5e2b0d47 16055
8992f0d7
TS
16056/* Merge non visibility st_other attributes. Ensure that the
16057 STO_OPTIONAL flag is copied into h->other, even if this is not a
16058 definiton of the symbol. */
5e2b0d47
NC
16059void
16060_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16061 const Elf_Internal_Sym *isym,
16062 bfd_boolean definition,
16063 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16064{
8992f0d7
TS
16065 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16066 {
16067 unsigned char other;
16068
16069 other = (definition ? isym->st_other : h->other);
16070 other &= ~ELF_ST_VISIBILITY (-1);
16071 h->other = other | ELF_ST_VISIBILITY (h->other);
16072 }
16073
16074 if (!definition
5e2b0d47
NC
16075 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16076 h->other |= STO_OPTIONAL;
16077}
12ac1cf5
NC
16078
16079/* Decide whether an undefined symbol is special and can be ignored.
16080 This is the case for OPTIONAL symbols on IRIX. */
16081bfd_boolean
16082_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16083{
16084 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16085}
e0764319
NC
16086
16087bfd_boolean
16088_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16089{
16090 return (sym->st_shndx == SHN_COMMON
16091 || sym->st_shndx == SHN_MIPS_ACOMMON
16092 || sym->st_shndx == SHN_MIPS_SCOMMON);
16093}
861fb55a
DJ
16094
16095/* Return address for Ith PLT stub in section PLT, for relocation REL
16096 or (bfd_vma) -1 if it should not be included. */
16097
16098bfd_vma
16099_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16100 const arelent *rel ATTRIBUTE_UNUSED)
16101{
16102 return (plt->vma
16103 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16104 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16105}
16106
1bbce132
MR
16107/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16108 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16109 and .got.plt and also the slots may be of a different size each we walk
16110 the PLT manually fetching instructions and matching them against known
16111 patterns. To make things easier standard MIPS slots, if any, always come
16112 first. As we don't create proper ELF symbols we use the UDATA.I member
16113 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16114 with the ST_OTHER member of the ELF symbol. */
16115
16116long
16117_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16118 long symcount ATTRIBUTE_UNUSED,
16119 asymbol **syms ATTRIBUTE_UNUSED,
16120 long dynsymcount, asymbol **dynsyms,
16121 asymbol **ret)
16122{
16123 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16124 static const char microsuffix[] = "@micromipsplt";
16125 static const char m16suffix[] = "@mips16plt";
16126 static const char mipssuffix[] = "@plt";
16127
16128 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16130 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16131 Elf_Internal_Shdr *hdr;
16132 bfd_byte *plt_data;
16133 bfd_vma plt_offset;
16134 unsigned int other;
16135 bfd_vma entry_size;
16136 bfd_vma plt0_size;
16137 asection *relplt;
16138 bfd_vma opcode;
16139 asection *plt;
16140 asymbol *send;
16141 size_t size;
16142 char *names;
16143 long counti;
16144 arelent *p;
16145 asymbol *s;
16146 char *nend;
16147 long count;
16148 long pi;
16149 long i;
16150 long n;
16151
16152 *ret = NULL;
16153
16154 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16155 return 0;
16156
16157 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16158 if (relplt == NULL)
16159 return 0;
16160
16161 hdr = &elf_section_data (relplt)->this_hdr;
16162 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16163 return 0;
16164
16165 plt = bfd_get_section_by_name (abfd, ".plt");
16166 if (plt == NULL)
16167 return 0;
16168
16169 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16170 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16171 return -1;
16172 p = relplt->relocation;
16173
16174 /* Calculating the exact amount of space required for symbols would
16175 require two passes over the PLT, so just pessimise assuming two
16176 PLT slots per relocation. */
16177 count = relplt->size / hdr->sh_entsize;
16178 counti = count * bed->s->int_rels_per_ext_rel;
16179 size = 2 * count * sizeof (asymbol);
16180 size += count * (sizeof (mipssuffix) +
16181 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16182 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16183 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16184
16185 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16186 size += sizeof (asymbol) + sizeof (pltname);
16187
16188 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16189 return -1;
16190
16191 if (plt->size < 16)
16192 return -1;
16193
16194 s = *ret = bfd_malloc (size);
16195 if (s == NULL)
16196 return -1;
16197 send = s + 2 * count + 1;
16198
16199 names = (char *) send;
16200 nend = (char *) s + size;
16201 n = 0;
16202
16203 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16204 if (opcode == 0x3302fffe)
16205 {
16206 if (!micromips_p)
16207 return -1;
16208 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16209 other = STO_MICROMIPS;
16210 }
833794fc
MR
16211 else if (opcode == 0x0398c1d0)
16212 {
16213 if (!micromips_p)
16214 return -1;
16215 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16216 other = STO_MICROMIPS;
16217 }
1bbce132
MR
16218 else
16219 {
16220 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16221 other = 0;
16222 }
16223
16224 s->the_bfd = abfd;
16225 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16226 s->section = plt;
16227 s->value = 0;
16228 s->name = names;
16229 s->udata.i = other;
16230 memcpy (names, pltname, sizeof (pltname));
16231 names += sizeof (pltname);
16232 ++s, ++n;
16233
16234 pi = 0;
16235 for (plt_offset = plt0_size;
16236 plt_offset + 8 <= plt->size && s < send;
16237 plt_offset += entry_size)
16238 {
16239 bfd_vma gotplt_addr;
16240 const char *suffix;
16241 bfd_vma gotplt_hi;
16242 bfd_vma gotplt_lo;
16243 size_t suffixlen;
16244
16245 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16246
16247 /* Check if the second word matches the expected MIPS16 instruction. */
16248 if (opcode == 0x651aeb00)
16249 {
16250 if (micromips_p)
16251 return -1;
16252 /* Truncated table??? */
16253 if (plt_offset + 16 > plt->size)
16254 break;
16255 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16256 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16257 suffixlen = sizeof (m16suffix);
16258 suffix = m16suffix;
16259 other = STO_MIPS16;
16260 }
833794fc 16261 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16262 else if (opcode == 0xff220000)
16263 {
16264 if (!micromips_p)
16265 return -1;
16266 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16267 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16268 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16269 gotplt_lo <<= 2;
16270 gotplt_addr = gotplt_hi + gotplt_lo;
16271 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16272 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16273 suffixlen = sizeof (microsuffix);
16274 suffix = microsuffix;
16275 other = STO_MICROMIPS;
16276 }
833794fc
MR
16277 /* Likewise the expected microMIPS instruction (insn32 mode). */
16278 else if ((opcode & 0xffff0000) == 0xff2f0000)
16279 {
16280 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16281 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16282 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16283 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16284 gotplt_addr = gotplt_hi + gotplt_lo;
16285 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16286 suffixlen = sizeof (microsuffix);
16287 suffix = microsuffix;
16288 other = STO_MICROMIPS;
16289 }
1bbce132
MR
16290 /* Otherwise assume standard MIPS code. */
16291 else
16292 {
16293 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16294 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16295 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16296 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16297 gotplt_addr = gotplt_hi + gotplt_lo;
16298 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16299 suffixlen = sizeof (mipssuffix);
16300 suffix = mipssuffix;
16301 other = 0;
16302 }
16303 /* Truncated table??? */
16304 if (plt_offset + entry_size > plt->size)
16305 break;
16306
16307 for (i = 0;
16308 i < count && p[pi].address != gotplt_addr;
16309 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16310
16311 if (i < count)
16312 {
16313 size_t namelen;
16314 size_t len;
16315
16316 *s = **p[pi].sym_ptr_ptr;
16317 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16318 we are defining a symbol, ensure one of them is set. */
16319 if ((s->flags & BSF_LOCAL) == 0)
16320 s->flags |= BSF_GLOBAL;
16321 s->flags |= BSF_SYNTHETIC;
16322 s->section = plt;
16323 s->value = plt_offset;
16324 s->name = names;
16325 s->udata.i = other;
16326
16327 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16328 namelen = len + suffixlen;
16329 if (names + namelen > nend)
16330 break;
16331
16332 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16333 names += len;
16334 memcpy (names, suffix, suffixlen);
16335 names += suffixlen;
16336
16337 ++s, ++n;
16338 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16339 }
16340 }
16341
16342 free (plt_data);
16343
16344 return n;
16345}
16346
5e7fc731
MR
16347/* Return the ABI flags associated with ABFD if available. */
16348
16349Elf_Internal_ABIFlags_v0 *
16350bfd_mips_elf_get_abiflags (bfd *abfd)
16351{
16352 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16353
16354 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16355}
16356
861fb55a
DJ
16357void
16358_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16359{
16360 struct mips_elf_link_hash_table *htab;
16361 Elf_Internal_Ehdr *i_ehdrp;
16362
16363 i_ehdrp = elf_elfheader (abfd);
16364 if (link_info)
16365 {
16366 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16367 BFD_ASSERT (htab != NULL);
16368
861fb55a
DJ
16369 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16370 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16371 }
0af03126
L
16372
16373 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16374
16375 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16376 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16377 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16378}
2f0c68f2
CM
16379
16380int
16381_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16382{
16383 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16384}
16385
16386/* Return the opcode for can't unwind. */
16387
16388int
16389_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16390{
16391 return COMPACT_EH_CANT_UNWIND_OPCODE;
16392}
This page took 2.123122 seconds and 4 git commands to generate.