PR23652, Use symbols from debug bfd for _bfd_elf_find_function
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9 35#include "elf-bfd.h"
0ba9378a 36#include "ecoff-bfd.h"
b49e97c9
TS
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
2f0c68f2 40#include "dwarf2.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
cb22ccf4
KCY
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
b15e6682
AO
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
13db6b44
RS
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
c224138d
RS
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
f4416af6
AO
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186};
187
d7206569 188/* Structure passed when merging bfds' gots. */
f4416af6
AO
189
190struct mips_elf_got_per_bfd_arg
191{
f4416af6
AO
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
c224138d
RS
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
0f20cc35
DJ
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
f4416af6
AO
213};
214
ab361d49
RS
215/* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
f4416af6 217
ab361d49 218struct mips_elf_traverse_got_arg
f4416af6 219{
ab361d49 220 struct bfd_link_info *info;
f4416af6
AO
221 struct mips_got_info *g;
222 int value;
0f20cc35
DJ
223};
224
f0abc2a1
AM
225struct _mips_elf_section_data
226{
227 struct bfd_elf_section_data elf;
228 union
229 {
f0abc2a1
AM
230 bfd_byte *tdata;
231 } u;
232};
233
234#define mips_elf_section_data(sec) \
68bfbfcc 235 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 236
d5eaccd7
RS
237#define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
4dfe6ac6 240 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 241
634835ae
RS
242/* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259#define GGA_NORMAL 0
260#define GGA_RELOC_ONLY 1
261#define GGA_NONE 2
262
861fb55a
DJ
263/* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290};
291
292/* Macros for populating a mips_elf_la25_stub. */
293
294#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 296#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 297#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
298#define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300#define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302#define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 304
b49e97c9
TS
305/* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308struct mips_elf_hash_sort_data
309{
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
0f20cc35
DJ
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
55f8b9d2 315 bfd_size_type min_got_dynindx;
f4416af6
AO
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 318 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 319 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 324 symbol without a GOT entry. */
55f8b9d2 325 bfd_size_type max_non_got_dynindx;
f16a9783
MS
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
b49e97c9
TS
331};
332
1bbce132
MR
333/* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338struct plt_entry
339{
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357};
358
b49e97c9
TS
359/* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362struct mips_elf_link_hash_entry
363{
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
861fb55a
DJ
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
b49e97c9
TS
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
b49e97c9
TS
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
b49e97c9
TS
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
7c5fcef7 387
f16a9783
MS
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
634835ae
RS
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
6ccf4795
RS
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
71782a75
RS
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
861fb55a
DJ
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
71782a75
RS
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
861fb55a
DJ
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
1bbce132
MR
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
b49e97c9
TS
429};
430
431/* MIPS ELF linker hash table. */
432
433struct mips_elf_link_hash_table
434{
435 struct elf_link_hash_table root;
861fb55a 436
b49e97c9
TS
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
861fb55a 439
b49e97c9
TS
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
861fb55a 442
e6aea42d
MR
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 445 bfd_boolean use_rld_obj_head;
861fb55a 446
b4082c70
DD
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
861fb55a 449
b49e97c9 450 /* This is set if we see any mips16 stub sections. */
b34976b6 451 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
833794fc
MR
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
8b10b0b3
MR
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
3734320d
MF
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
0a44bf69
RS
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks;
861fb55a 467
0e53d9da
AN
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported;
861fb55a 470
47275900
MR
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero;
473
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target;
476
0a44bf69
RS
477 /* Shortcuts to some dynamic sections, or NULL if they are not
478 being used. */
0a44bf69 479 asection *srelplt2;
4e41d0d7 480 asection *sstubs;
861fb55a 481
a8028dd0
RS
482 /* The master GOT information. */
483 struct mips_got_info *got_info;
861fb55a 484
d222d210
RS
485 /* The global symbol in the GOT with the lowest index in the dynamic
486 symbol table. */
487 struct elf_link_hash_entry *global_gotsym;
488
861fb55a 489 /* The size of the PLT header in bytes. */
0a44bf69 490 bfd_vma plt_header_size;
861fb55a 491
1bbce132
MR
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size;
494
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size;
497
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset;
500
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset;
503
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index;
861fb55a 506
33bb52fb
RS
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count;
861fb55a 509
5108fc1b
RS
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size;
861fb55a
DJ
512
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno;
515
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection *strampoline;
519
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 pairs. */
522 htab_t la25_stubs;
523
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
528
529 The function returns the new section on success, otherwise it
530 returns null. */
531 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
532
533 /* Small local sym cache. */
534 struct sym_cache sym_cache;
1bbce132
MR
535
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
538};
539
4dfe6ac6
NC
540/* Get the MIPS ELF linker hash table from a link_info structure. */
541
542#define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
545
861fb55a 546/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
547struct mips_htab_traverse_info
548{
861fb55a
DJ
549 /* The usual link-wide information. */
550 struct bfd_link_info *info;
551 bfd *output_bfd;
552
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
554 bfd_boolean error;
b49e97c9
TS
555};
556
6ae68ba3
MR
557/* MIPS ELF private object data. */
558
559struct mips_elf_obj_tdata
560{
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root;
563
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
565 bfd *abi_fp_bfd;
ee227692 566
b60bf9be
CF
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
568 bfd *abi_msa_bfd;
569
351cdf24
MF
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags;
572 bfd_boolean abiflags_valid;
573
ee227692
RS
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info *got;
698600e4
AM
576
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line *find_line_info;
581
582 /* An array of stub sections indexed by symbol number. */
583 asection **local_stubs;
584 asection **local_call_stubs;
585
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol *elf_data_symbol;
589 asymbol *elf_text_symbol;
590 asection *elf_data_section;
591 asection *elf_text_section;
6ae68ba3
MR
592};
593
594/* Get MIPS ELF private object data from BFD's tdata. */
595
596#define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
598
0f20cc35
DJ
599#define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 612 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 627
b49e97c9
TS
628/* Structure used to pass information to mips_elf_output_extsym. */
629
630struct extsym_info
631{
9e4aeb93
RS
632 bfd *abfd;
633 struct bfd_link_info *info;
b49e97c9
TS
634 struct ecoff_debug_info *debug;
635 const struct ecoff_debug_swap *swap;
b34976b6 636 bfd_boolean failed;
b49e97c9
TS
637};
638
8dc1a139 639/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
640
641static const char * const mips_elf_dynsym_rtproc_names[] =
642{
643 "_procedure_table",
644 "_procedure_string_table",
645 "_procedure_table_size",
646 NULL
647};
648
649/* These structures are used to generate the .compact_rel section on
8dc1a139 650 IRIX5. */
b49e97c9
TS
651
652typedef struct
653{
654 unsigned long id1; /* Always one? */
655 unsigned long num; /* Number of compact relocation entries. */
656 unsigned long id2; /* Always two? */
657 unsigned long offset; /* The file offset of the first relocation. */
658 unsigned long reserved0; /* Zero? */
659 unsigned long reserved1; /* Zero? */
660} Elf32_compact_rel;
661
662typedef struct
663{
664 bfd_byte id1[4];
665 bfd_byte num[4];
666 bfd_byte id2[4];
667 bfd_byte offset[4];
668 bfd_byte reserved0[4];
669 bfd_byte reserved1[4];
670} Elf32_External_compact_rel;
671
672typedef struct
673{
674 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype : 4; /* Relocation types. See below. */
676 unsigned int dist2to : 8;
677 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst; /* KONST field. See below. */
679 unsigned long vaddr; /* VADDR to be relocated. */
680} Elf32_crinfo;
681
682typedef struct
683{
684 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype : 4; /* Relocation types. See below. */
686 unsigned int dist2to : 8;
687 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst; /* KONST field. See below. */
689} Elf32_crinfo2;
690
691typedef struct
692{
693 bfd_byte info[4];
694 bfd_byte konst[4];
695 bfd_byte vaddr[4];
696} Elf32_External_crinfo;
697
698typedef struct
699{
700 bfd_byte info[4];
701 bfd_byte konst[4];
702} Elf32_External_crinfo2;
703
704/* These are the constants used to swap the bitfields in a crinfo. */
705
706#define CRINFO_CTYPE (0x1)
707#define CRINFO_CTYPE_SH (31)
708#define CRINFO_RTYPE (0xf)
709#define CRINFO_RTYPE_SH (27)
710#define CRINFO_DIST2TO (0xff)
711#define CRINFO_DIST2TO_SH (19)
712#define CRINFO_RELVADDR (0x7ffff)
713#define CRINFO_RELVADDR_SH (0)
714
715/* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718#define CRF_MIPS_LONG 1
719#define CRF_MIPS_SHORT 0
720
721/* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
723
724 (type) (konst)
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
729 */
730
731#define CRT_MIPS_REL32 0xa
732#define CRT_MIPS_WORD 0xb
733#define CRT_MIPS_GPHI_LO 0xc
734#define CRT_MIPS_JMPAD 0xd
735
736#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
740\f
741/* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
743
744typedef struct runtime_pdr {
ae9a127f
NC
745 bfd_vma adr; /* Memory address of start of procedure. */
746 long regmask; /* Save register mask. */
747 long regoffset; /* Save register offset. */
748 long fregmask; /* Save floating point register mask. */
749 long fregoffset; /* Save floating point register offset. */
750 long frameoffset; /* Frame size. */
751 short framereg; /* Frame pointer register. */
752 short pcreg; /* Offset or reg of return pc. */
753 long irpss; /* Index into the runtime string table. */
b49e97c9 754 long reserved;
ae9a127f 755 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
756} RPDR, *pRPDR;
757#define cbRPDR sizeof (RPDR)
758#define rpdNil ((pRPDR) 0)
759\f
b15e6682 760static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
761 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
762 struct mips_elf_link_hash_entry *, int);
b34976b6 763static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 764 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
765static bfd_vma mips_elf_high
766 (bfd_vma);
b34976b6 767static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
768 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
769 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
770 bfd_vma *, asection *);
f4416af6 771static bfd_vma mips_elf_adjust_gp
9719ad41 772 (bfd *, struct mips_got_info *, bfd *);
f4416af6 773
b49e97c9
TS
774/* This will be used when we sort the dynamic relocation records. */
775static bfd *reldyn_sorting_bfd;
776
6d30f5b2
NC
777/* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779#define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
782
cd8d5a82
CF
783/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786#define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
788
789/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792#define JALR_TO_BAL_P(abfd) 1
793
38a7df63
CF
794/* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
796 all CPUs. */
797#define JR_TO_B_P(abfd) 1
798
861fb55a
DJ
799/* True if ABFD is a PIC object. */
800#define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
802
351cdf24
MF
803/* Nonzero if ABFD is using the O32 ABI. */
804#define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
806
b49e97c9 807/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
808#define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
810
4a14403c 811/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 812#define ABI_64_P(abfd) \
141ff970 813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 814
4a14403c
TS
815/* Nonzero if ABFD is using NewABI conventions. */
816#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
817
e8faf7d1
MR
818/* Nonzero if ABFD has microMIPS code. */
819#define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
821
7361da2c
AB
822/* Nonzero if ABFD is MIPS R6. */
823#define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
826
4a14403c 827/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
828#define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
830
b49e97c9
TS
831/* Whether we are trying to be compatible with IRIX at all. */
832#define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
834
835/* The name of the options section. */
836#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 838
cc2e31b9
RS
839/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
843
351cdf24
MF
844/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
847
943284cc
DJ
848/* Whether the section is readonly. */
849#define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
852
b49e97c9 853/* The name of the stub section. */
ca07892d 854#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
855
856/* The size of an external REL relocation. */
857#define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
859
0a44bf69
RS
860/* The size of an external RELA relocation. */
861#define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
863
b49e97c9
TS
864/* The size of an external dynamic table entry. */
865#define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
867
868/* The size of a GOT entry. */
869#define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
871
b4082c70
DD
872/* The size of the .rld_map section. */
873#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
875
b49e97c9
TS
876/* The size of a symbol-table entry. */
877#define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
879
880/* The default alignment for sections, as a power of two. */
881#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 882 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
883
884/* Get word-sized data. */
885#define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
887
888/* Put out word-sized data. */
889#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
890 (ABI_64_P (abfd) \
891 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
892 : bfd_put_32 (abfd, val, ptr))
893
861fb55a
DJ
894/* The opcode for word-sized loads (LW or LD). */
895#define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
897
b49e97c9 898/* Add a dynamic symbol table-entry. */
9719ad41 899#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 900 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
901
902#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 904
0a44bf69
RS
905/* The name of the dynamic relocation section. */
906#define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
908
b49e97c9
TS
909/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 912#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 913
51e38d68
RS
914/* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
916 module pointer. */
917#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
919
f4416af6 920/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
921#define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
923
924/* The maximum size of the GOT for it to be addressable using 16-bit
925 offsets from $gp. */
0a44bf69 926#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 927
6a691779 928/* Instructions which appear in a stub. */
3d6746ca
DD
929#define STUB_LW(abfd) \
930 ((ABI_64_P (abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 932 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 933#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 934#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 935#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 936#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
937#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
939#define STUB_LI16S(abfd, VAL) \
940 ((ABI_64_P (abfd) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
943
1bbce132
MR
944/* Likewise for the microMIPS ASE. */
945#define STUB_LW_MICROMIPS(abfd) \
946 (ABI_64_P (abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 950#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
951#define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 954#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
955#define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957#define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959#define STUB_LI16S_MICROMIPS(abfd, VAL) \
960 (ABI_64_P (abfd) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
963
5108fc1b
RS
964#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
966#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
968#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
970
971/* The name of the dynamic interpreter. This is put in the .interp
972 section. */
973
07d6d2b8
AM
974#define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
977 : "/usr/lib/libc.so.1")
978
979#ifdef BFD64
ee6423ed
AO
980#define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
982#define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984#define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986#define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
988#else
ee6423ed 989#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
990#define ELF_R_SYM(bfd, i) \
991 (ELF32_R_SYM (i))
992#define ELF_R_TYPE(bfd, i) \
993 (ELF32_R_TYPE (i))
994#define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
996#endif
997\f
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1000
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1009
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1016
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1024 $f0/$f1 and $2/$3.)
1025
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1029
1030 We record any stubs that we find in the symbol table. */
1031
1032#define FN_STUB ".mips16.fn."
1033#define CALL_STUB ".mips16.call."
1034#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1035
1036#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1039\f
861fb55a 1040/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1041static const bfd_vma mips_o32_exec_plt0_entry[] =
1042{
861fb55a
DJ
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1047 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051};
1052
3734320d
MF
1053/* The format of the first PLT entry in an O32 executable using compact
1054 jumps. */
1055static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1056{
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1065};
1066
861fb55a
DJ
1067/* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1069static const bfd_vma mips_n32_exec_plt0_entry[] =
1070{
861fb55a
DJ
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1075 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1079};
1080
3734320d
MF
1081/* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1083 instead. */
1084static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1085{
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1094};
1095
861fb55a
DJ
1096/* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1098static const bfd_vma mips_n64_exec_plt0_entry[] =
1099{
861fb55a
DJ
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1104 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1108};
1109
3734320d
MF
1110/* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1112 entries. */
1113static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1114{
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1123};
1124
1125
1bbce132
MR
1126/* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1130
1131 The trailing NOP is for alignment and correct disassembly only. */
1132static const bfd_vma micromips_o32_exec_plt0_entry[] =
1133{
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1142 0x0c00 /* nop */
1143};
1144
833794fc
MR
1145/* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1148{
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1153 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1157};
1158
1bbce132 1159/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1160static const bfd_vma mips_exec_plt_entry[] =
1161{
861fb55a
DJ
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1166};
1167
7361da2c
AB
1168static const bfd_vma mipsr6_exec_plt_entry[] =
1169{
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1174};
1175
3734320d
MF
1176static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1177{
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1182};
1183
1bbce132
MR
1184/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187static const bfd_vma mips16_o32_exec_plt_entry[] =
1188{
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1192 0xeb00, /* jr $3 */
1193 0x653b, /* move $25, $3 */
1194 0x6500, /* nop */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1196};
1197
1198/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200static const bfd_vma micromips_o32_exec_plt_entry[] =
1201{
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1206};
1207
833794fc
MR
1208/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1210{
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1215};
1216
0a44bf69 1217/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1218static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1219{
0a44bf69
RS
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1226};
1227
1228/* The format of subsequent PLT entries. */
6d30f5b2
NC
1229static const bfd_vma mips_vxworks_exec_plt_entry[] =
1230{
0a44bf69
RS
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1239};
1240
1241/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1242static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1243{
0a44bf69
RS
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1250};
1251
1252/* The format of subsequent PLT entries. */
6d30f5b2
NC
1253static const bfd_vma mips_vxworks_shared_plt_entry[] =
1254{
0a44bf69
RS
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1257};
1258\f
d21911ea
MR
1259/* microMIPS 32-bit opcode helper installer. */
1260
1261static void
1262bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1263{
1264 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1265 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1266}
1267
1268/* microMIPS 32-bit opcode helper retriever. */
1269
1270static bfd_vma
1271bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1272{
1273 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1274}
1275\f
b49e97c9
TS
1276/* Look up an entry in a MIPS ELF linker hash table. */
1277
1278#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1281 (copy), (follow)))
1282
1283/* Traverse a MIPS ELF linker hash table. */
1284
1285#define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1287 (&(table)->root, \
9719ad41 1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1289 (info)))
1290
0f20cc35
DJ
1291/* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1293
1294#define TP_OFFSET 0x7000
1295#define DTP_OFFSET 0x8000
1296
1297static bfd_vma
1298dtprel_base (struct bfd_link_info *info)
1299{
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1304}
1305
1306static bfd_vma
1307tprel_base (struct bfd_link_info *info)
1308{
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info)->tls_sec == NULL)
1311 return 0;
1312 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1313}
1314
b49e97c9
TS
1315/* Create an entry in a MIPS ELF linker hash table. */
1316
1317static struct bfd_hash_entry *
9719ad41
RS
1318mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1319 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1320{
1321 struct mips_elf_link_hash_entry *ret =
1322 (struct mips_elf_link_hash_entry *) entry;
1323
1324 /* Allocate the structure if it has not already been allocated by a
1325 subclass. */
9719ad41
RS
1326 if (ret == NULL)
1327 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1328 if (ret == NULL)
b49e97c9
TS
1329 return (struct bfd_hash_entry *) ret;
1330
1331 /* Call the allocation method of the superclass. */
1332 ret = ((struct mips_elf_link_hash_entry *)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1334 table, string));
9719ad41 1335 if (ret != NULL)
b49e97c9
TS
1336 {
1337 /* Set local fields. */
1338 memset (&ret->esym, 0, sizeof (EXTR));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1341 ret->esym.ifd = -2;
861fb55a 1342 ret->la25_stub = 0;
b49e97c9 1343 ret->possibly_dynamic_relocs = 0;
b49e97c9 1344 ret->fn_stub = NULL;
b49e97c9
TS
1345 ret->call_stub = NULL;
1346 ret->call_fp_stub = NULL;
f16a9783 1347 ret->mipsxhash_loc = 0;
634835ae 1348 ret->global_got_area = GGA_NONE;
6ccf4795 1349 ret->got_only_for_calls = TRUE;
71782a75 1350 ret->readonly_reloc = FALSE;
861fb55a 1351 ret->has_static_relocs = FALSE;
71782a75
RS
1352 ret->no_fn_stub = FALSE;
1353 ret->need_fn_stub = FALSE;
861fb55a 1354 ret->has_nonpic_branches = FALSE;
33bb52fb 1355 ret->needs_lazy_stub = FALSE;
1bbce132 1356 ret->use_plt_entry = FALSE;
b49e97c9
TS
1357 }
1358
1359 return (struct bfd_hash_entry *) ret;
1360}
f0abc2a1 1361
6ae68ba3
MR
1362/* Allocate MIPS ELF private object data. */
1363
1364bfd_boolean
1365_bfd_mips_elf_mkobject (bfd *abfd)
1366{
1367 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1368 MIPS_ELF_DATA);
1369}
1370
f0abc2a1 1371bfd_boolean
9719ad41 1372_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1373{
f592407e
AM
1374 if (!sec->used_by_bfd)
1375 {
1376 struct _mips_elf_section_data *sdata;
1377 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1378
f592407e
AM
1379 sdata = bfd_zalloc (abfd, amt);
1380 if (sdata == NULL)
1381 return FALSE;
1382 sec->used_by_bfd = sdata;
1383 }
f0abc2a1
AM
1384
1385 return _bfd_elf_new_section_hook (abfd, sec);
1386}
b49e97c9
TS
1387\f
1388/* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1390
b34976b6 1391bfd_boolean
9719ad41
RS
1392_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1393 struct ecoff_debug_info *debug)
b49e97c9
TS
1394{
1395 HDRR *symhdr;
1396 const struct ecoff_debug_swap *swap;
9719ad41 1397 char *ext_hdr;
b49e97c9
TS
1398
1399 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1400 memset (debug, 0, sizeof (*debug));
1401
9719ad41 1402 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1403 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1404 goto error_return;
1405
9719ad41 1406 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1407 swap->external_hdr_size))
b49e97c9
TS
1408 goto error_return;
1409
1410 symhdr = &debug->symbolic_header;
1411 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1412
1413 /* The symbolic header contains absolute file offsets and sizes to
1414 read. */
1415#define READ(ptr, offset, count, size, type) \
1416 if (symhdr->count == 0) \
1417 debug->ptr = NULL; \
1418 else \
1419 { \
1420 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1421 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1422 if (debug->ptr == NULL) \
1423 goto error_return; \
9719ad41 1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1425 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1426 goto error_return; \
1427 }
1428
1429 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1430 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1431 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1432 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1433 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1434 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1435 union aux_ext *);
1436 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1437 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1438 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1439 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1440 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1441#undef READ
1442
1443 debug->fdr = NULL;
b49e97c9 1444
b34976b6 1445 return TRUE;
b49e97c9
TS
1446
1447 error_return:
1448 if (ext_hdr != NULL)
1449 free (ext_hdr);
1450 if (debug->line != NULL)
1451 free (debug->line);
1452 if (debug->external_dnr != NULL)
1453 free (debug->external_dnr);
1454 if (debug->external_pdr != NULL)
1455 free (debug->external_pdr);
1456 if (debug->external_sym != NULL)
1457 free (debug->external_sym);
1458 if (debug->external_opt != NULL)
1459 free (debug->external_opt);
1460 if (debug->external_aux != NULL)
1461 free (debug->external_aux);
1462 if (debug->ss != NULL)
1463 free (debug->ss);
1464 if (debug->ssext != NULL)
1465 free (debug->ssext);
1466 if (debug->external_fdr != NULL)
1467 free (debug->external_fdr);
1468 if (debug->external_rfd != NULL)
1469 free (debug->external_rfd);
1470 if (debug->external_ext != NULL)
1471 free (debug->external_ext);
b34976b6 1472 return FALSE;
b49e97c9
TS
1473}
1474\f
1475/* Swap RPDR (runtime procedure table entry) for output. */
1476
1477static void
9719ad41 1478ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1479{
1480 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1481 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1482 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1483 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1484 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1485 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1486
1487 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1488 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1489
1490 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1491}
1492
1493/* Create a runtime procedure table from the .mdebug section. */
1494
b34976b6 1495static bfd_boolean
9719ad41
RS
1496mips_elf_create_procedure_table (void *handle, bfd *abfd,
1497 struct bfd_link_info *info, asection *s,
1498 struct ecoff_debug_info *debug)
b49e97c9
TS
1499{
1500 const struct ecoff_debug_swap *swap;
1501 HDRR *hdr = &debug->symbolic_header;
1502 RPDR *rpdr, *rp;
1503 struct rpdr_ext *erp;
9719ad41 1504 void *rtproc;
b49e97c9
TS
1505 struct pdr_ext *epdr;
1506 struct sym_ext *esym;
1507 char *ss, **sv;
1508 char *str;
1509 bfd_size_type size;
1510 bfd_size_type count;
1511 unsigned long sindex;
1512 unsigned long i;
1513 PDR pdr;
1514 SYMR sym;
1515 const char *no_name_func = _("static procedure (no name)");
1516
1517 epdr = NULL;
1518 rpdr = NULL;
1519 esym = NULL;
1520 ss = NULL;
1521 sv = NULL;
1522
1523 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1524
1525 sindex = strlen (no_name_func) + 1;
1526 count = hdr->ipdMax;
1527 if (count > 0)
1528 {
1529 size = swap->external_pdr_size;
1530
9719ad41 1531 epdr = bfd_malloc (size * count);
b49e97c9
TS
1532 if (epdr == NULL)
1533 goto error_return;
1534
9719ad41 1535 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1536 goto error_return;
1537
1538 size = sizeof (RPDR);
9719ad41 1539 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1540 if (rpdr == NULL)
1541 goto error_return;
1542
1543 size = sizeof (char *);
9719ad41 1544 sv = bfd_malloc (size * count);
b49e97c9
TS
1545 if (sv == NULL)
1546 goto error_return;
1547
1548 count = hdr->isymMax;
1549 size = swap->external_sym_size;
9719ad41 1550 esym = bfd_malloc (size * count);
b49e97c9
TS
1551 if (esym == NULL)
1552 goto error_return;
1553
9719ad41 1554 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1555 goto error_return;
1556
1557 count = hdr->issMax;
9719ad41 1558 ss = bfd_malloc (count);
b49e97c9
TS
1559 if (ss == NULL)
1560 goto error_return;
f075ee0c 1561 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1562 goto error_return;
1563
1564 count = hdr->ipdMax;
1565 for (i = 0; i < (unsigned long) count; i++, rp++)
1566 {
9719ad41
RS
1567 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1568 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1569 rp->adr = sym.value;
1570 rp->regmask = pdr.regmask;
1571 rp->regoffset = pdr.regoffset;
1572 rp->fregmask = pdr.fregmask;
1573 rp->fregoffset = pdr.fregoffset;
1574 rp->frameoffset = pdr.frameoffset;
1575 rp->framereg = pdr.framereg;
1576 rp->pcreg = pdr.pcreg;
1577 rp->irpss = sindex;
1578 sv[i] = ss + sym.iss;
1579 sindex += strlen (sv[i]) + 1;
1580 }
1581 }
1582
1583 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1584 size = BFD_ALIGN (size, 16);
9719ad41 1585 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1586 if (rtproc == NULL)
1587 {
1588 mips_elf_hash_table (info)->procedure_count = 0;
1589 goto error_return;
1590 }
1591
1592 mips_elf_hash_table (info)->procedure_count = count + 2;
1593
9719ad41 1594 erp = rtproc;
b49e97c9
TS
1595 memset (erp, 0, sizeof (struct rpdr_ext));
1596 erp++;
1597 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1598 strcpy (str, no_name_func);
1599 str += strlen (no_name_func) + 1;
1600 for (i = 0; i < count; i++)
1601 {
1602 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1603 strcpy (str, sv[i]);
1604 str += strlen (sv[i]) + 1;
1605 }
1606 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1607
1608 /* Set the size and contents of .rtproc section. */
eea6121a 1609 s->size = size;
9719ad41 1610 s->contents = rtproc;
b49e97c9
TS
1611
1612 /* Skip this section later on (I don't think this currently
1613 matters, but someday it might). */
8423293d 1614 s->map_head.link_order = NULL;
b49e97c9
TS
1615
1616 if (epdr != NULL)
1617 free (epdr);
1618 if (rpdr != NULL)
1619 free (rpdr);
1620 if (esym != NULL)
1621 free (esym);
1622 if (ss != NULL)
1623 free (ss);
1624 if (sv != NULL)
1625 free (sv);
1626
b34976b6 1627 return TRUE;
b49e97c9
TS
1628
1629 error_return:
1630 if (epdr != NULL)
1631 free (epdr);
1632 if (rpdr != NULL)
1633 free (rpdr);
1634 if (esym != NULL)
1635 free (esym);
1636 if (ss != NULL)
1637 free (ss);
1638 if (sv != NULL)
1639 free (sv);
b34976b6 1640 return FALSE;
b49e97c9 1641}
738e5348 1642\f
861fb55a
DJ
1643/* We're going to create a stub for H. Create a symbol for the stub's
1644 value and size, to help make the disassembly easier to read. */
1645
1646static bfd_boolean
1647mips_elf_create_stub_symbol (struct bfd_link_info *info,
1648 struct mips_elf_link_hash_entry *h,
1649 const char *prefix, asection *s, bfd_vma value,
1650 bfd_vma size)
1651{
a848a227 1652 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1653 struct bfd_link_hash_entry *bh;
1654 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1655 char *name;
1656 bfd_boolean res;
861fb55a 1657
a848a227 1658 if (micromips_p)
df58fc94
RS
1659 value |= 1;
1660
861fb55a 1661 /* Create a new symbol. */
e1fa0163 1662 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1663 bh = NULL;
e1fa0163
NC
1664 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1665 BSF_LOCAL, s, value, NULL,
1666 TRUE, FALSE, &bh);
1667 free (name);
1668 if (! res)
861fb55a
DJ
1669 return FALSE;
1670
1671 /* Make it a local function. */
1672 elfh = (struct elf_link_hash_entry *) bh;
1673 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1674 elfh->size = size;
1675 elfh->forced_local = 1;
a848a227
MR
1676 if (micromips_p)
1677 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1678 return TRUE;
1679}
1680
738e5348
RS
1681/* We're about to redefine H. Create a symbol to represent H's
1682 current value and size, to help make the disassembly easier
1683 to read. */
1684
1685static bfd_boolean
1686mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1687 struct mips_elf_link_hash_entry *h,
1688 const char *prefix)
1689{
1690 struct bfd_link_hash_entry *bh;
1691 struct elf_link_hash_entry *elfh;
e1fa0163 1692 char *name;
738e5348
RS
1693 asection *s;
1694 bfd_vma value;
e1fa0163 1695 bfd_boolean res;
738e5348
RS
1696
1697 /* Read the symbol's value. */
1698 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1699 || h->root.root.type == bfd_link_hash_defweak);
1700 s = h->root.root.u.def.section;
1701 value = h->root.root.u.def.value;
1702
1703 /* Create a new symbol. */
e1fa0163 1704 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1705 bh = NULL;
e1fa0163
NC
1706 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1707 BSF_LOCAL, s, value, NULL,
1708 TRUE, FALSE, &bh);
1709 free (name);
1710 if (! res)
738e5348
RS
1711 return FALSE;
1712
1713 /* Make it local and copy the other attributes from H. */
1714 elfh = (struct elf_link_hash_entry *) bh;
1715 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1716 elfh->other = h->root.other;
1717 elfh->size = h->root.size;
1718 elfh->forced_local = 1;
1719 return TRUE;
1720}
1721
1722/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1723 function rather than to a hard-float stub. */
1724
1725static bfd_boolean
1726section_allows_mips16_refs_p (asection *section)
1727{
1728 const char *name;
1729
fd361982 1730 name = bfd_section_name (section);
738e5348
RS
1731 return (FN_STUB_P (name)
1732 || CALL_STUB_P (name)
1733 || CALL_FP_STUB_P (name)
1734 || strcmp (name, ".pdr") == 0);
1735}
1736
1737/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1738 stub section of some kind. Return the R_SYMNDX of the target
1739 function, or 0 if we can't decide which function that is. */
1740
1741static unsigned long
cb4437b8
MR
1742mips16_stub_symndx (const struct elf_backend_data *bed,
1743 asection *sec ATTRIBUTE_UNUSED,
502e814e 1744 const Elf_Internal_Rela *relocs,
738e5348
RS
1745 const Elf_Internal_Rela *relend)
1746{
cb4437b8 1747 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1748 const Elf_Internal_Rela *rel;
1749
cb4437b8
MR
1750 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1751 one in a compound relocation. */
1752 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1753 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1754 return ELF_R_SYM (sec->owner, rel->r_info);
1755
1756 /* Otherwise trust the first relocation, whatever its kind. This is
1757 the traditional behavior. */
1758 if (relocs < relend)
1759 return ELF_R_SYM (sec->owner, relocs->r_info);
1760
1761 return 0;
1762}
b49e97c9
TS
1763
1764/* Check the mips16 stubs for a particular symbol, and see if we can
1765 discard them. */
1766
861fb55a
DJ
1767static void
1768mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1769 struct mips_elf_link_hash_entry *h)
b49e97c9 1770{
738e5348
RS
1771 /* Dynamic symbols must use the standard call interface, in case other
1772 objects try to call them. */
1773 if (h->fn_stub != NULL
1774 && h->root.dynindx != -1)
1775 {
1776 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1777 h->need_fn_stub = TRUE;
1778 }
1779
b49e97c9
TS
1780 if (h->fn_stub != NULL
1781 && ! h->need_fn_stub)
1782 {
1783 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1784 are 16 bit calls. Clobber the size to 0 to prevent it from
1785 being included in the link. */
eea6121a 1786 h->fn_stub->size = 0;
b49e97c9
TS
1787 h->fn_stub->flags &= ~SEC_RELOC;
1788 h->fn_stub->reloc_count = 0;
1789 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1790 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1791 }
1792
1793 if (h->call_stub != NULL
30c09090 1794 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1795 {
1796 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1797 calls from other 16 bit functions are OK. Clobber the size
1798 to 0 to prevent it from being included in the link. */
eea6121a 1799 h->call_stub->size = 0;
b49e97c9
TS
1800 h->call_stub->flags &= ~SEC_RELOC;
1801 h->call_stub->reloc_count = 0;
1802 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1803 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1804 }
1805
1806 if (h->call_fp_stub != NULL
30c09090 1807 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1808 {
1809 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1810 calls from other 16 bit functions are OK. Clobber the size
1811 to 0 to prevent it from being included in the link. */
eea6121a 1812 h->call_fp_stub->size = 0;
b49e97c9
TS
1813 h->call_fp_stub->flags &= ~SEC_RELOC;
1814 h->call_fp_stub->reloc_count = 0;
1815 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1816 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1817 }
861fb55a
DJ
1818}
1819
1820/* Hashtable callbacks for mips_elf_la25_stubs. */
1821
1822static hashval_t
1823mips_elf_la25_stub_hash (const void *entry_)
1824{
1825 const struct mips_elf_la25_stub *entry;
1826
1827 entry = (struct mips_elf_la25_stub *) entry_;
1828 return entry->h->root.root.u.def.section->id
1829 + entry->h->root.root.u.def.value;
1830}
1831
1832static int
1833mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1834{
1835 const struct mips_elf_la25_stub *entry1, *entry2;
1836
1837 entry1 = (struct mips_elf_la25_stub *) entry1_;
1838 entry2 = (struct mips_elf_la25_stub *) entry2_;
1839 return ((entry1->h->root.root.u.def.section
1840 == entry2->h->root.root.u.def.section)
1841 && (entry1->h->root.root.u.def.value
1842 == entry2->h->root.root.u.def.value));
1843}
1844
1845/* Called by the linker to set up the la25 stub-creation code. FN is
1846 the linker's implementation of add_stub_function. Return true on
1847 success. */
1848
1849bfd_boolean
1850_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1851 asection *(*fn) (const char *, asection *,
1852 asection *))
1853{
1854 struct mips_elf_link_hash_table *htab;
1855
1856 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1857 if (htab == NULL)
1858 return FALSE;
1859
861fb55a
DJ
1860 htab->add_stub_section = fn;
1861 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1862 mips_elf_la25_stub_eq, NULL);
1863 if (htab->la25_stubs == NULL)
1864 return FALSE;
1865
1866 return TRUE;
1867}
1868
1869/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1870 that it or its fn_stub might need $25 to be valid on entry.
1871 Note that MIPS16 functions set up $gp using PC-relative instructions,
1872 so they themselves never need $25 to be valid. Only non-MIPS16
1873 entry points are of interest here. */
861fb55a
DJ
1874
1875static bfd_boolean
1876mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1877{
1878 return ((h->root.root.type == bfd_link_hash_defined
1879 || h->root.root.type == bfd_link_hash_defweak)
1880 && h->root.def_regular
1881 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1882 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1883 && (!ELF_ST_IS_MIPS16 (h->root.other)
1884 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1885 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1886 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1887}
1888
8f0c309a
CLT
1889/* Set *SEC to the input section that contains the target of STUB.
1890 Return the offset of the target from the start of that section. */
1891
1892static bfd_vma
1893mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1894 asection **sec)
1895{
1896 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1897 {
1898 BFD_ASSERT (stub->h->need_fn_stub);
1899 *sec = stub->h->fn_stub;
1900 return 0;
1901 }
1902 else
1903 {
1904 *sec = stub->h->root.root.u.def.section;
1905 return stub->h->root.root.u.def.value;
1906 }
1907}
1908
861fb55a
DJ
1909/* STUB describes an la25 stub that we have decided to implement
1910 by inserting an LUI/ADDIU pair before the target function.
1911 Create the section and redirect the function symbol to it. */
1912
1913static bfd_boolean
1914mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1915 struct bfd_link_info *info)
1916{
1917 struct mips_elf_link_hash_table *htab;
1918 char *name;
1919 asection *s, *input_section;
1920 unsigned int align;
1921
1922 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1923 if (htab == NULL)
1924 return FALSE;
861fb55a
DJ
1925
1926 /* Create a unique name for the new section. */
1927 name = bfd_malloc (11 + sizeof (".text.stub."));
1928 if (name == NULL)
1929 return FALSE;
1930 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1931
1932 /* Create the section. */
8f0c309a 1933 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1934 s = htab->add_stub_section (name, input_section,
1935 input_section->output_section);
1936 if (s == NULL)
1937 return FALSE;
1938
1939 /* Make sure that any padding goes before the stub. */
1940 align = input_section->alignment_power;
fd361982 1941 if (!bfd_set_section_alignment (s, align))
861fb55a
DJ
1942 return FALSE;
1943 if (align > 3)
1944 s->size = (1 << align) - 8;
1945
1946 /* Create a symbol for the stub. */
1947 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1948 stub->stub_section = s;
1949 stub->offset = s->size;
1950
1951 /* Allocate room for it. */
1952 s->size += 8;
1953 return TRUE;
1954}
1955
1956/* STUB describes an la25 stub that we have decided to implement
1957 with a separate trampoline. Allocate room for it and redirect
1958 the function symbol to it. */
1959
1960static bfd_boolean
1961mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1962 struct bfd_link_info *info)
1963{
1964 struct mips_elf_link_hash_table *htab;
1965 asection *s;
1966
1967 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1968 if (htab == NULL)
1969 return FALSE;
861fb55a
DJ
1970
1971 /* Create a trampoline section, if we haven't already. */
1972 s = htab->strampoline;
1973 if (s == NULL)
1974 {
1975 asection *input_section = stub->h->root.root.u.def.section;
1976 s = htab->add_stub_section (".text", NULL,
1977 input_section->output_section);
fd361982 1978 if (s == NULL || !bfd_set_section_alignment (s, 4))
861fb55a
DJ
1979 return FALSE;
1980 htab->strampoline = s;
1981 }
1982
1983 /* Create a symbol for the stub. */
1984 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1985 stub->stub_section = s;
1986 stub->offset = s->size;
1987
1988 /* Allocate room for it. */
1989 s->size += 16;
1990 return TRUE;
1991}
1992
1993/* H describes a symbol that needs an la25 stub. Make sure that an
1994 appropriate stub exists and point H at it. */
1995
1996static bfd_boolean
1997mips_elf_add_la25_stub (struct bfd_link_info *info,
1998 struct mips_elf_link_hash_entry *h)
1999{
2000 struct mips_elf_link_hash_table *htab;
2001 struct mips_elf_la25_stub search, *stub;
2002 bfd_boolean use_trampoline_p;
2003 asection *s;
2004 bfd_vma value;
2005 void **slot;
2006
861fb55a
DJ
2007 /* Describe the stub we want. */
2008 search.stub_section = NULL;
2009 search.offset = 0;
2010 search.h = h;
2011
2012 /* See if we've already created an equivalent stub. */
2013 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
2014 if (htab == NULL)
2015 return FALSE;
2016
861fb55a
DJ
2017 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2018 if (slot == NULL)
2019 return FALSE;
2020
2021 stub = (struct mips_elf_la25_stub *) *slot;
2022 if (stub != NULL)
2023 {
2024 /* We can reuse the existing stub. */
2025 h->la25_stub = stub;
2026 return TRUE;
2027 }
2028
2029 /* Create a permanent copy of ENTRY and add it to the hash table. */
2030 stub = bfd_malloc (sizeof (search));
2031 if (stub == NULL)
2032 return FALSE;
2033 *stub = search;
2034 *slot = stub;
2035
8f0c309a
CLT
2036 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2037 of the section and if we would need no more than 2 nops. */
2038 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2039 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2040 value &= ~1;
8f0c309a
CLT
2041 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2042
861fb55a
DJ
2043 h->la25_stub = stub;
2044 return (use_trampoline_p
2045 ? mips_elf_add_la25_trampoline (stub, info)
2046 : mips_elf_add_la25_intro (stub, info));
2047}
2048
2049/* A mips_elf_link_hash_traverse callback that is called before sizing
2050 sections. DATA points to a mips_htab_traverse_info structure. */
2051
2052static bfd_boolean
2053mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2054{
2055 struct mips_htab_traverse_info *hti;
2056
2057 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2058 if (!bfd_link_relocatable (hti->info))
861fb55a 2059 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2060
861fb55a
DJ
2061 if (mips_elf_local_pic_function_p (h))
2062 {
ba85c43e
NC
2063 /* PR 12845: If H is in a section that has been garbage
2064 collected it will have its output section set to *ABS*. */
2065 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2066 return TRUE;
2067
861fb55a
DJ
2068 /* H is a function that might need $25 to be valid on entry.
2069 If we're creating a non-PIC relocatable object, mark H as
2070 being PIC. If we're creating a non-relocatable object with
2071 non-PIC branches and jumps to H, make sure that H has an la25
2072 stub. */
0e1862bb 2073 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2074 {
2075 if (!PIC_OBJECT_P (hti->output_bfd))
2076 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2077 }
2078 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2079 {
2080 hti->error = TRUE;
2081 return FALSE;
2082 }
2083 }
b34976b6 2084 return TRUE;
b49e97c9
TS
2085}
2086\f
d6f16593
MR
2087/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2088 Most mips16 instructions are 16 bits, but these instructions
2089 are 32 bits.
2090
2091 The format of these instructions is:
2092
2093 +--------------+--------------------------------+
2094 | JALX | X| Imm 20:16 | Imm 25:21 |
2095 +--------------+--------------------------------+
07d6d2b8 2096 | Immediate 15:0 |
d6f16593
MR
2097 +-----------------------------------------------+
2098
2099 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2100 Note that the immediate value in the first word is swapped.
2101
2102 When producing a relocatable object file, R_MIPS16_26 is
2103 handled mostly like R_MIPS_26. In particular, the addend is
2104 stored as a straight 26-bit value in a 32-bit instruction.
2105 (gas makes life simpler for itself by never adjusting a
2106 R_MIPS16_26 reloc to be against a section, so the addend is
2107 always zero). However, the 32 bit instruction is stored as 2
2108 16-bit values, rather than a single 32-bit value. In a
2109 big-endian file, the result is the same; in a little-endian
2110 file, the two 16-bit halves of the 32 bit value are swapped.
2111 This is so that a disassembler can recognize the jal
2112 instruction.
2113
2114 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2115 instruction stored as two 16-bit values. The addend A is the
2116 contents of the targ26 field. The calculation is the same as
2117 R_MIPS_26. When storing the calculated value, reorder the
2118 immediate value as shown above, and don't forget to store the
2119 value as two 16-bit values.
2120
2121 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2122 defined as
2123
2124 big-endian:
2125 +--------+----------------------+
07d6d2b8
AM
2126 | | |
2127 | | targ26-16 |
2128 |31 26|25 0|
d6f16593
MR
2129 +--------+----------------------+
2130
2131 little-endian:
2132 +----------+------+-------------+
07d6d2b8
AM
2133 | | | |
2134 | sub1 | | sub2 |
2135 |0 9|10 15|16 31|
d6f16593
MR
2136 +----------+--------------------+
2137 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2138 ((sub1 << 16) | sub2)).
2139
2140 When producing a relocatable object file, the calculation is
2141 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2142 When producing a fully linked file, the calculation is
2143 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2144 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2145
738e5348
RS
2146 The table below lists the other MIPS16 instruction relocations.
2147 Each one is calculated in the same way as the non-MIPS16 relocation
2148 given on the right, but using the extended MIPS16 layout of 16-bit
2149 immediate fields:
2150
2151 R_MIPS16_GPREL R_MIPS_GPREL16
2152 R_MIPS16_GOT16 R_MIPS_GOT16
2153 R_MIPS16_CALL16 R_MIPS_CALL16
2154 R_MIPS16_HI16 R_MIPS_HI16
2155 R_MIPS16_LO16 R_MIPS_LO16
2156
2157 A typical instruction will have a format like this:
d6f16593
MR
2158
2159 +--------------+--------------------------------+
2160 | EXTEND | Imm 10:5 | Imm 15:11 |
2161 +--------------+--------------------------------+
2162 | Major | rx | ry | Imm 4:0 |
2163 +--------------+--------------------------------+
2164
2165 EXTEND is the five bit value 11110. Major is the instruction
2166 opcode.
2167
738e5348
RS
2168 All we need to do here is shuffle the bits appropriately.
2169 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2170 little-endian system.
2171
2172 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2173 relocatable field is shifted by 1 rather than 2 and the same bit
2174 shuffling is done as with the relocations above. */
738e5348
RS
2175
2176static inline bfd_boolean
2177mips16_reloc_p (int r_type)
2178{
2179 switch (r_type)
2180 {
2181 case R_MIPS16_26:
2182 case R_MIPS16_GPREL:
2183 case R_MIPS16_GOT16:
2184 case R_MIPS16_CALL16:
2185 case R_MIPS16_HI16:
2186 case R_MIPS16_LO16:
d0f13682
CLT
2187 case R_MIPS16_TLS_GD:
2188 case R_MIPS16_TLS_LDM:
2189 case R_MIPS16_TLS_DTPREL_HI16:
2190 case R_MIPS16_TLS_DTPREL_LO16:
2191 case R_MIPS16_TLS_GOTTPREL:
2192 case R_MIPS16_TLS_TPREL_HI16:
2193 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2194 case R_MIPS16_PC16_S1:
738e5348
RS
2195 return TRUE;
2196
2197 default:
2198 return FALSE;
2199 }
2200}
2201
df58fc94
RS
2202/* Check if a microMIPS reloc. */
2203
2204static inline bfd_boolean
2205micromips_reloc_p (unsigned int r_type)
2206{
2207 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2208}
2209
2210/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2211 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2212 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2213
2214static inline bfd_boolean
2215micromips_reloc_shuffle_p (unsigned int r_type)
2216{
2217 return (micromips_reloc_p (r_type)
2218 && r_type != R_MICROMIPS_PC7_S1
2219 && r_type != R_MICROMIPS_PC10_S1);
2220}
2221
738e5348
RS
2222static inline bfd_boolean
2223got16_reloc_p (int r_type)
2224{
df58fc94
RS
2225 return (r_type == R_MIPS_GOT16
2226 || r_type == R_MIPS16_GOT16
2227 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2228}
2229
2230static inline bfd_boolean
2231call16_reloc_p (int r_type)
2232{
df58fc94
RS
2233 return (r_type == R_MIPS_CALL16
2234 || r_type == R_MIPS16_CALL16
2235 || r_type == R_MICROMIPS_CALL16);
2236}
2237
2238static inline bfd_boolean
2239got_disp_reloc_p (unsigned int r_type)
2240{
2241 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2242}
2243
2244static inline bfd_boolean
2245got_page_reloc_p (unsigned int r_type)
2246{
2247 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2248}
2249
df58fc94
RS
2250static inline bfd_boolean
2251got_lo16_reloc_p (unsigned int r_type)
2252{
2253 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2254}
2255
2256static inline bfd_boolean
2257call_hi16_reloc_p (unsigned int r_type)
2258{
2259 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2260}
2261
2262static inline bfd_boolean
2263call_lo16_reloc_p (unsigned int r_type)
2264{
2265 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2266}
2267
2268static inline bfd_boolean
2269hi16_reloc_p (int r_type)
2270{
df58fc94
RS
2271 return (r_type == R_MIPS_HI16
2272 || r_type == R_MIPS16_HI16
7361da2c
AB
2273 || r_type == R_MICROMIPS_HI16
2274 || r_type == R_MIPS_PCHI16);
738e5348 2275}
d6f16593 2276
738e5348
RS
2277static inline bfd_boolean
2278lo16_reloc_p (int r_type)
2279{
df58fc94
RS
2280 return (r_type == R_MIPS_LO16
2281 || r_type == R_MIPS16_LO16
7361da2c
AB
2282 || r_type == R_MICROMIPS_LO16
2283 || r_type == R_MIPS_PCLO16);
738e5348
RS
2284}
2285
2286static inline bfd_boolean
2287mips16_call_reloc_p (int r_type)
2288{
2289 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2290}
d6f16593 2291
38a7df63
CF
2292static inline bfd_boolean
2293jal_reloc_p (int r_type)
2294{
df58fc94
RS
2295 return (r_type == R_MIPS_26
2296 || r_type == R_MIPS16_26
2297 || r_type == R_MICROMIPS_26_S1);
2298}
2299
99aefae6
MR
2300static inline bfd_boolean
2301b_reloc_p (int r_type)
2302{
2303 return (r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
c9775dde 2306 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2307 || r_type == R_MIPS16_PC16_S1
2308 || r_type == R_MICROMIPS_PC16_S1
2309 || r_type == R_MICROMIPS_PC10_S1
2310 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2311}
2312
7361da2c
AB
2313static inline bfd_boolean
2314aligned_pcrel_reloc_p (int r_type)
2315{
2316 return (r_type == R_MIPS_PC18_S3
2317 || r_type == R_MIPS_PC19_S2);
2318}
2319
9d862524
MR
2320static inline bfd_boolean
2321branch_reloc_p (int r_type)
2322{
2323 return (r_type == R_MIPS_26
2324 || r_type == R_MIPS_PC26_S2
2325 || r_type == R_MIPS_PC21_S2
2326 || r_type == R_MIPS_PC16
2327 || r_type == R_MIPS_GNU_REL16_S2);
2328}
2329
c9775dde
MR
2330static inline bfd_boolean
2331mips16_branch_reloc_p (int r_type)
2332{
2333 return (r_type == R_MIPS16_26
2334 || r_type == R_MIPS16_PC16_S1);
2335}
2336
df58fc94
RS
2337static inline bfd_boolean
2338micromips_branch_reloc_p (int r_type)
2339{
2340 return (r_type == R_MICROMIPS_26_S1
2341 || r_type == R_MICROMIPS_PC16_S1
2342 || r_type == R_MICROMIPS_PC10_S1
2343 || r_type == R_MICROMIPS_PC7_S1);
2344}
2345
2346static inline bfd_boolean
2347tls_gd_reloc_p (unsigned int r_type)
2348{
d0f13682
CLT
2349 return (r_type == R_MIPS_TLS_GD
2350 || r_type == R_MIPS16_TLS_GD
2351 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2352}
2353
2354static inline bfd_boolean
2355tls_ldm_reloc_p (unsigned int r_type)
2356{
d0f13682
CLT
2357 return (r_type == R_MIPS_TLS_LDM
2358 || r_type == R_MIPS16_TLS_LDM
2359 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2360}
2361
2362static inline bfd_boolean
2363tls_gottprel_reloc_p (unsigned int r_type)
2364{
d0f13682
CLT
2365 return (r_type == R_MIPS_TLS_GOTTPREL
2366 || r_type == R_MIPS16_TLS_GOTTPREL
2367 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2368}
2369
d6f16593 2370void
df58fc94
RS
2371_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2372 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2373{
df58fc94 2374 bfd_vma first, second, val;
d6f16593 2375
df58fc94 2376 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2377 return;
2378
df58fc94
RS
2379 /* Pick up the first and second halfwords of the instruction. */
2380 first = bfd_get_16 (abfd, data);
2381 second = bfd_get_16 (abfd, data + 2);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 val = first << 16 | second;
2384 else if (r_type != R_MIPS16_26)
2385 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2386 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2387 else
df58fc94
RS
2388 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2389 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2390 bfd_put_32 (abfd, val, data);
2391}
2392
2393void
df58fc94
RS
2394_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2395 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2396{
df58fc94 2397 bfd_vma first, second, val;
d6f16593 2398
df58fc94 2399 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2400 return;
2401
2402 val = bfd_get_32 (abfd, data);
df58fc94 2403 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2404 {
df58fc94
RS
2405 second = val & 0xffff;
2406 first = val >> 16;
2407 }
2408 else if (r_type != R_MIPS16_26)
2409 {
2410 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2411 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2412 }
2413 else
2414 {
df58fc94
RS
2415 second = val & 0xffff;
2416 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2417 | ((val >> 21) & 0x1f);
d6f16593 2418 }
df58fc94
RS
2419 bfd_put_16 (abfd, second, data + 2);
2420 bfd_put_16 (abfd, first, data);
d6f16593
MR
2421}
2422
b49e97c9 2423bfd_reloc_status_type
9719ad41
RS
2424_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2425 arelent *reloc_entry, asection *input_section,
2426 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2427{
2428 bfd_vma relocation;
a7ebbfdf 2429 bfd_signed_vma val;
30ac9238 2430 bfd_reloc_status_type status;
b49e97c9
TS
2431
2432 if (bfd_is_com_section (symbol->section))
2433 relocation = 0;
2434 else
2435 relocation = symbol->value;
2436
2437 relocation += symbol->section->output_section->vma;
2438 relocation += symbol->section->output_offset;
2439
07515404 2440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2441 return bfd_reloc_outofrange;
2442
b49e97c9 2443 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2444 val = reloc_entry->addend;
2445
30ac9238 2446 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2447
b49e97c9 2448 /* Adjust val for the final section location and GP value. If we
1049f94e 2449 are producing relocatable output, we don't want to do this for
b49e97c9 2450 an external symbol. */
1049f94e 2451 if (! relocatable
b49e97c9
TS
2452 || (symbol->flags & BSF_SECTION_SYM) != 0)
2453 val += relocation - gp;
2454
a7ebbfdf
TS
2455 if (reloc_entry->howto->partial_inplace)
2456 {
30ac9238
RS
2457 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2458 (bfd_byte *) data
2459 + reloc_entry->address);
2460 if (status != bfd_reloc_ok)
2461 return status;
a7ebbfdf
TS
2462 }
2463 else
2464 reloc_entry->addend = val;
b49e97c9 2465
1049f94e 2466 if (relocatable)
b49e97c9 2467 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2468
2469 return bfd_reloc_ok;
2470}
2471
2472/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2473 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2474 that contains the relocation field and DATA points to the start of
2475 INPUT_SECTION. */
2476
2477struct mips_hi16
2478{
2479 struct mips_hi16 *next;
2480 bfd_byte *data;
2481 asection *input_section;
2482 arelent rel;
2483};
2484
2485/* FIXME: This should not be a static variable. */
2486
2487static struct mips_hi16 *mips_hi16_list;
2488
2489/* A howto special_function for REL *HI16 relocations. We can only
2490 calculate the correct value once we've seen the partnering
2491 *LO16 relocation, so just save the information for later.
2492
2493 The ABI requires that the *LO16 immediately follow the *HI16.
2494 However, as a GNU extension, we permit an arbitrary number of
2495 *HI16s to be associated with a single *LO16. This significantly
2496 simplies the relocation handling in gcc. */
2497
2498bfd_reloc_status_type
2499_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2500 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2501 asection *input_section, bfd *output_bfd,
2502 char **error_message ATTRIBUTE_UNUSED)
2503{
2504 struct mips_hi16 *n;
2505
07515404 2506 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2507 return bfd_reloc_outofrange;
2508
2509 n = bfd_malloc (sizeof *n);
2510 if (n == NULL)
2511 return bfd_reloc_outofrange;
2512
2513 n->next = mips_hi16_list;
2514 n->data = data;
2515 n->input_section = input_section;
2516 n->rel = *reloc_entry;
2517 mips_hi16_list = n;
2518
2519 if (output_bfd != NULL)
2520 reloc_entry->address += input_section->output_offset;
2521
2522 return bfd_reloc_ok;
2523}
2524
738e5348 2525/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2526 like any other 16-bit relocation when applied to global symbols, but is
2527 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2528
2529bfd_reloc_status_type
2530_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533{
2534 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
e6f7f6d1
AM
2535 || bfd_is_und_section (bfd_asymbol_section (symbol))
2536 || bfd_is_com_section (bfd_asymbol_section (symbol)))
30ac9238
RS
2537 /* The relocation is against a global symbol. */
2538 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2539 input_section, output_bfd,
2540 error_message);
2541
2542 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2543 input_section, output_bfd, error_message);
2544}
2545
2546/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2547 is a straightforward 16 bit inplace relocation, but we must deal with
2548 any partnering high-part relocations as well. */
2549
2550bfd_reloc_status_type
2551_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2552 void *data, asection *input_section,
2553 bfd *output_bfd, char **error_message)
2554{
2555 bfd_vma vallo;
d6f16593 2556 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2557
07515404 2558 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2559 return bfd_reloc_outofrange;
2560
df58fc94 2561 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2562 location);
df58fc94
RS
2563 vallo = bfd_get_32 (abfd, location);
2564 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2565 location);
d6f16593 2566
30ac9238
RS
2567 while (mips_hi16_list != NULL)
2568 {
2569 bfd_reloc_status_type ret;
2570 struct mips_hi16 *hi;
2571
2572 hi = mips_hi16_list;
2573
738e5348
RS
2574 /* R_MIPS*_GOT16 relocations are something of a special case. We
2575 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2576 relocation (with a rightshift of 16). However, since GOT16
2577 relocations can also be used with global symbols, their howto
2578 has a rightshift of 0. */
2579 if (hi->rel.howto->type == R_MIPS_GOT16)
2580 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2581 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2582 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2583 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2584 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2585
2586 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2587 carry or borrow will induce a change of +1 or -1 in the high part. */
2588 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2589
30ac9238
RS
2590 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2591 hi->input_section, output_bfd,
2592 error_message);
2593 if (ret != bfd_reloc_ok)
2594 return ret;
2595
2596 mips_hi16_list = hi->next;
2597 free (hi);
2598 }
2599
2600 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2601 input_section, output_bfd,
2602 error_message);
2603}
2604
2605/* A generic howto special_function. This calculates and installs the
2606 relocation itself, thus avoiding the oft-discussed problems in
2607 bfd_perform_relocation and bfd_install_relocation. */
2608
2609bfd_reloc_status_type
2610_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2611 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2612 asection *input_section, bfd *output_bfd,
2613 char **error_message ATTRIBUTE_UNUSED)
2614{
2615 bfd_signed_vma val;
2616 bfd_reloc_status_type status;
2617 bfd_boolean relocatable;
2618
2619 relocatable = (output_bfd != NULL);
2620
07515404 2621 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2622 return bfd_reloc_outofrange;
2623
2624 /* Build up the field adjustment in VAL. */
2625 val = 0;
2626 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2627 {
2628 /* Either we're calculating the final field value or we have a
2629 relocation against a section symbol. Add in the section's
2630 offset or address. */
2631 val += symbol->section->output_section->vma;
2632 val += symbol->section->output_offset;
2633 }
2634
2635 if (!relocatable)
2636 {
2637 /* We're calculating the final field value. Add in the symbol's value
2638 and, if pc-relative, subtract the address of the field itself. */
2639 val += symbol->value;
2640 if (reloc_entry->howto->pc_relative)
2641 {
2642 val -= input_section->output_section->vma;
2643 val -= input_section->output_offset;
2644 val -= reloc_entry->address;
2645 }
2646 }
2647
2648 /* VAL is now the final adjustment. If we're keeping this relocation
2649 in the output file, and if the relocation uses a separate addend,
2650 we just need to add VAL to that addend. Otherwise we need to add
2651 VAL to the relocation field itself. */
2652 if (relocatable && !reloc_entry->howto->partial_inplace)
2653 reloc_entry->addend += val;
2654 else
2655 {
d6f16593
MR
2656 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2657
30ac9238
RS
2658 /* Add in the separate addend, if any. */
2659 val += reloc_entry->addend;
2660
2661 /* Add VAL to the relocation field. */
df58fc94
RS
2662 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2663 location);
30ac9238 2664 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2665 location);
df58fc94
RS
2666 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2667 location);
d6f16593 2668
30ac9238
RS
2669 if (status != bfd_reloc_ok)
2670 return status;
2671 }
2672
2673 if (relocatable)
2674 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2675
2676 return bfd_reloc_ok;
2677}
2678\f
2679/* Swap an entry in a .gptab section. Note that these routines rely
2680 on the equivalence of the two elements of the union. */
2681
2682static void
9719ad41
RS
2683bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2684 Elf32_gptab *in)
b49e97c9
TS
2685{
2686 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2687 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2688}
2689
2690static void
9719ad41
RS
2691bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2692 Elf32_External_gptab *ex)
b49e97c9
TS
2693{
2694 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2695 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2696}
2697
2698static void
9719ad41
RS
2699bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2700 Elf32_External_compact_rel *ex)
b49e97c9
TS
2701{
2702 H_PUT_32 (abfd, in->id1, ex->id1);
2703 H_PUT_32 (abfd, in->num, ex->num);
2704 H_PUT_32 (abfd, in->id2, ex->id2);
2705 H_PUT_32 (abfd, in->offset, ex->offset);
2706 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2707 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2708}
2709
2710static void
9719ad41
RS
2711bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2712 Elf32_External_crinfo *ex)
b49e97c9
TS
2713{
2714 unsigned long l;
2715
2716 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2717 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2718 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2719 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2720 H_PUT_32 (abfd, l, ex->info);
2721 H_PUT_32 (abfd, in->konst, ex->konst);
2722 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2723}
b49e97c9
TS
2724\f
2725/* A .reginfo section holds a single Elf32_RegInfo structure. These
2726 routines swap this structure in and out. They are used outside of
2727 BFD, so they are globally visible. */
2728
2729void
9719ad41
RS
2730bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2731 Elf32_RegInfo *in)
b49e97c9
TS
2732{
2733 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2734 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2735 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2736 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2737 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2738 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2739}
2740
2741void
9719ad41
RS
2742bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2743 Elf32_External_RegInfo *ex)
b49e97c9
TS
2744{
2745 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2746 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2747 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2748 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2749 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2750 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2751}
2752
2753/* In the 64 bit ABI, the .MIPS.options section holds register
2754 information in an Elf64_Reginfo structure. These routines swap
2755 them in and out. They are globally visible because they are used
2756 outside of BFD. These routines are here so that gas can call them
2757 without worrying about whether the 64 bit ABI has been included. */
2758
2759void
9719ad41
RS
2760bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2761 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2762{
2763 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2764 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2765 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2766 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2767 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2768 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2769 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2770}
2771
2772void
9719ad41
RS
2773bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2774 Elf64_External_RegInfo *ex)
b49e97c9
TS
2775{
2776 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2777 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2778 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2779 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2780 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2781 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2782 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2783}
2784
2785/* Swap in an options header. */
2786
2787void
9719ad41
RS
2788bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2789 Elf_Internal_Options *in)
b49e97c9
TS
2790{
2791 in->kind = H_GET_8 (abfd, ex->kind);
2792 in->size = H_GET_8 (abfd, ex->size);
2793 in->section = H_GET_16 (abfd, ex->section);
2794 in->info = H_GET_32 (abfd, ex->info);
2795}
2796
2797/* Swap out an options header. */
2798
2799void
9719ad41
RS
2800bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2801 Elf_External_Options *ex)
b49e97c9
TS
2802{
2803 H_PUT_8 (abfd, in->kind, ex->kind);
2804 H_PUT_8 (abfd, in->size, ex->size);
2805 H_PUT_16 (abfd, in->section, ex->section);
2806 H_PUT_32 (abfd, in->info, ex->info);
2807}
351cdf24
MF
2808
2809/* Swap in an abiflags structure. */
2810
2811void
2812bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2813 const Elf_External_ABIFlags_v0 *ex,
2814 Elf_Internal_ABIFlags_v0 *in)
2815{
2816 in->version = H_GET_16 (abfd, ex->version);
2817 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2818 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2819 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2820 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2821 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2822 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2823 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2824 in->ases = H_GET_32 (abfd, ex->ases);
2825 in->flags1 = H_GET_32 (abfd, ex->flags1);
2826 in->flags2 = H_GET_32 (abfd, ex->flags2);
2827}
2828
2829/* Swap out an abiflags structure. */
2830
2831void
2832bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2833 const Elf_Internal_ABIFlags_v0 *in,
2834 Elf_External_ABIFlags_v0 *ex)
2835{
2836 H_PUT_16 (abfd, in->version, ex->version);
2837 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2838 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2839 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2840 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2841 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2842 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2843 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2844 H_PUT_32 (abfd, in->ases, ex->ases);
2845 H_PUT_32 (abfd, in->flags1, ex->flags1);
2846 H_PUT_32 (abfd, in->flags2, ex->flags2);
2847}
b49e97c9
TS
2848\f
2849/* This function is called via qsort() to sort the dynamic relocation
2850 entries by increasing r_symndx value. */
2851
2852static int
9719ad41 2853sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2854{
947216bf
AM
2855 Elf_Internal_Rela int_reloc1;
2856 Elf_Internal_Rela int_reloc2;
6870500c 2857 int diff;
b49e97c9 2858
947216bf
AM
2859 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2860 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2861
6870500c
RS
2862 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2863 if (diff != 0)
2864 return diff;
2865
2866 if (int_reloc1.r_offset < int_reloc2.r_offset)
2867 return -1;
2868 if (int_reloc1.r_offset > int_reloc2.r_offset)
2869 return 1;
2870 return 0;
b49e97c9
TS
2871}
2872
f4416af6
AO
2873/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2874
2875static int
7e3102a7
AM
2876sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2877 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2878{
7e3102a7 2879#ifdef BFD64
f4416af6
AO
2880 Elf_Internal_Rela int_reloc1[3];
2881 Elf_Internal_Rela int_reloc2[3];
2882
2883 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2884 (reldyn_sorting_bfd, arg1, int_reloc1);
2885 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2886 (reldyn_sorting_bfd, arg2, int_reloc2);
2887
6870500c
RS
2888 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2889 return -1;
2890 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2891 return 1;
2892
2893 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2894 return -1;
2895 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2896 return 1;
2897 return 0;
7e3102a7
AM
2898#else
2899 abort ();
2900#endif
f4416af6
AO
2901}
2902
2903
b49e97c9
TS
2904/* This routine is used to write out ECOFF debugging external symbol
2905 information. It is called via mips_elf_link_hash_traverse. The
2906 ECOFF external symbol information must match the ELF external
2907 symbol information. Unfortunately, at this point we don't know
2908 whether a symbol is required by reloc information, so the two
2909 tables may wind up being different. We must sort out the external
2910 symbol information before we can set the final size of the .mdebug
2911 section, and we must set the size of the .mdebug section before we
2912 can relocate any sections, and we can't know which symbols are
2913 required by relocation until we relocate the sections.
2914 Fortunately, it is relatively unlikely that any symbol will be
2915 stripped but required by a reloc. In particular, it can not happen
2916 when generating a final executable. */
2917
b34976b6 2918static bfd_boolean
9719ad41 2919mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2920{
9719ad41 2921 struct extsym_info *einfo = data;
b34976b6 2922 bfd_boolean strip;
b49e97c9
TS
2923 asection *sec, *output_section;
2924
b49e97c9 2925 if (h->root.indx == -2)
b34976b6 2926 strip = FALSE;
f5385ebf 2927 else if ((h->root.def_dynamic
77cfaee6
AM
2928 || h->root.ref_dynamic
2929 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2930 && !h->root.def_regular
2931 && !h->root.ref_regular)
b34976b6 2932 strip = TRUE;
b49e97c9
TS
2933 else if (einfo->info->strip == strip_all
2934 || (einfo->info->strip == strip_some
2935 && bfd_hash_lookup (einfo->info->keep_hash,
2936 h->root.root.root.string,
b34976b6
AM
2937 FALSE, FALSE) == NULL))
2938 strip = TRUE;
b49e97c9 2939 else
b34976b6 2940 strip = FALSE;
b49e97c9
TS
2941
2942 if (strip)
b34976b6 2943 return TRUE;
b49e97c9
TS
2944
2945 if (h->esym.ifd == -2)
2946 {
2947 h->esym.jmptbl = 0;
2948 h->esym.cobol_main = 0;
2949 h->esym.weakext = 0;
2950 h->esym.reserved = 0;
2951 h->esym.ifd = ifdNil;
2952 h->esym.asym.value = 0;
2953 h->esym.asym.st = stGlobal;
2954
2955 if (h->root.root.type == bfd_link_hash_undefined
2956 || h->root.root.type == bfd_link_hash_undefweak)
2957 {
2958 const char *name;
2959
2960 /* Use undefined class. Also, set class and type for some
07d6d2b8 2961 special symbols. */
b49e97c9
TS
2962 name = h->root.root.root.string;
2963 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2964 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2965 {
2966 h->esym.asym.sc = scData;
2967 h->esym.asym.st = stLabel;
2968 h->esym.asym.value = 0;
2969 }
2970 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2971 {
2972 h->esym.asym.sc = scAbs;
2973 h->esym.asym.st = stLabel;
2974 h->esym.asym.value =
2975 mips_elf_hash_table (einfo->info)->procedure_count;
2976 }
b49e97c9
TS
2977 else
2978 h->esym.asym.sc = scUndefined;
2979 }
2980 else if (h->root.root.type != bfd_link_hash_defined
2981 && h->root.root.type != bfd_link_hash_defweak)
2982 h->esym.asym.sc = scAbs;
2983 else
2984 {
2985 const char *name;
2986
2987 sec = h->root.root.u.def.section;
2988 output_section = sec->output_section;
2989
2990 /* When making a shared library and symbol h is the one from
2991 the another shared library, OUTPUT_SECTION may be null. */
2992 if (output_section == NULL)
2993 h->esym.asym.sc = scUndefined;
2994 else
2995 {
fd361982 2996 name = bfd_section_name (output_section);
b49e97c9
TS
2997
2998 if (strcmp (name, ".text") == 0)
2999 h->esym.asym.sc = scText;
3000 else if (strcmp (name, ".data") == 0)
3001 h->esym.asym.sc = scData;
3002 else if (strcmp (name, ".sdata") == 0)
3003 h->esym.asym.sc = scSData;
3004 else if (strcmp (name, ".rodata") == 0
3005 || strcmp (name, ".rdata") == 0)
3006 h->esym.asym.sc = scRData;
3007 else if (strcmp (name, ".bss") == 0)
3008 h->esym.asym.sc = scBss;
3009 else if (strcmp (name, ".sbss") == 0)
3010 h->esym.asym.sc = scSBss;
3011 else if (strcmp (name, ".init") == 0)
3012 h->esym.asym.sc = scInit;
3013 else if (strcmp (name, ".fini") == 0)
3014 h->esym.asym.sc = scFini;
3015 else
3016 h->esym.asym.sc = scAbs;
3017 }
3018 }
3019
3020 h->esym.asym.reserved = 0;
3021 h->esym.asym.index = indexNil;
3022 }
3023
3024 if (h->root.root.type == bfd_link_hash_common)
3025 h->esym.asym.value = h->root.root.u.c.size;
3026 else if (h->root.root.type == bfd_link_hash_defined
3027 || h->root.root.type == bfd_link_hash_defweak)
3028 {
3029 if (h->esym.asym.sc == scCommon)
3030 h->esym.asym.sc = scBss;
3031 else if (h->esym.asym.sc == scSCommon)
3032 h->esym.asym.sc = scSBss;
3033
3034 sec = h->root.root.u.def.section;
3035 output_section = sec->output_section;
3036 if (output_section != NULL)
3037 h->esym.asym.value = (h->root.root.u.def.value
3038 + sec->output_offset
3039 + output_section->vma);
3040 else
3041 h->esym.asym.value = 0;
3042 }
33bb52fb 3043 else
b49e97c9
TS
3044 {
3045 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3046
3047 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3048 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3049
33bb52fb 3050 if (hd->needs_lazy_stub)
b49e97c9 3051 {
1bbce132
MR
3052 BFD_ASSERT (hd->root.plt.plist != NULL);
3053 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3054 /* Set type and value for a symbol with a function stub. */
3055 h->esym.asym.st = stProc;
3056 sec = hd->root.root.u.def.section;
3057 if (sec == NULL)
3058 h->esym.asym.value = 0;
3059 else
3060 {
3061 output_section = sec->output_section;
3062 if (output_section != NULL)
1bbce132 3063 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3064 + sec->output_offset
3065 + output_section->vma);
3066 else
3067 h->esym.asym.value = 0;
3068 }
b49e97c9
TS
3069 }
3070 }
3071
3072 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3073 h->root.root.root.string,
3074 &h->esym))
3075 {
b34976b6
AM
3076 einfo->failed = TRUE;
3077 return FALSE;
b49e97c9
TS
3078 }
3079
b34976b6 3080 return TRUE;
b49e97c9
TS
3081}
3082
3083/* A comparison routine used to sort .gptab entries. */
3084
3085static int
9719ad41 3086gptab_compare (const void *p1, const void *p2)
b49e97c9 3087{
9719ad41
RS
3088 const Elf32_gptab *a1 = p1;
3089 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3090
3091 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3092}
3093\f
b15e6682 3094/* Functions to manage the got entry hash table. */
f4416af6
AO
3095
3096/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3097 hash number. */
3098
3099static INLINE hashval_t
9719ad41 3100mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3101{
3102#ifdef BFD64
3103 return addr + (addr >> 32);
3104#else
3105 return addr;
3106#endif
3107}
3108
f4416af6 3109static hashval_t
d9bf376d 3110mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3111{
3112 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3113
e641e783 3114 return (entry->symndx
9ab066b4
RS
3115 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3116 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3117 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3118 : entry->symndx >= 0 ? (entry->abfd->id
3119 + mips_elf_hash_bfd_vma (entry->d.addend))
3120 : entry->d.h->root.root.root.hash));
f4416af6
AO
3121}
3122
3123static int
3dff0dd1 3124mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3125{
3126 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3127 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3128
e641e783 3129 return (e1->symndx == e2->symndx
9ab066b4
RS
3130 && e1->tls_type == e2->tls_type
3131 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3132 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3133 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3134 && e1->d.addend == e2->d.addend)
3135 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3136}
c224138d 3137
13db6b44
RS
3138static hashval_t
3139mips_got_page_ref_hash (const void *ref_)
3140{
3141 const struct mips_got_page_ref *ref;
3142
3143 ref = (const struct mips_got_page_ref *) ref_;
3144 return ((ref->symndx >= 0
3145 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3146 : ref->u.h->root.root.root.hash)
3147 + mips_elf_hash_bfd_vma (ref->addend));
3148}
3149
3150static int
3151mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3152{
3153 const struct mips_got_page_ref *ref1, *ref2;
3154
3155 ref1 = (const struct mips_got_page_ref *) ref1_;
3156 ref2 = (const struct mips_got_page_ref *) ref2_;
3157 return (ref1->symndx == ref2->symndx
3158 && (ref1->symndx < 0
3159 ? ref1->u.h == ref2->u.h
3160 : ref1->u.abfd == ref2->u.abfd)
3161 && ref1->addend == ref2->addend);
3162}
3163
c224138d
RS
3164static hashval_t
3165mips_got_page_entry_hash (const void *entry_)
3166{
3167 const struct mips_got_page_entry *entry;
3168
3169 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3170 return entry->sec->id;
c224138d
RS
3171}
3172
3173static int
3174mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3175{
3176 const struct mips_got_page_entry *entry1, *entry2;
3177
3178 entry1 = (const struct mips_got_page_entry *) entry1_;
3179 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3180 return entry1->sec == entry2->sec;
c224138d 3181}
b15e6682 3182\f
3dff0dd1 3183/* Create and return a new mips_got_info structure. */
5334aa52
RS
3184
3185static struct mips_got_info *
3dff0dd1 3186mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3187{
3188 struct mips_got_info *g;
3189
3190 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3191 if (g == NULL)
3192 return NULL;
3193
3dff0dd1
RS
3194 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3195 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3196 if (g->got_entries == NULL)
3197 return NULL;
3198
13db6b44
RS
3199 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3200 mips_got_page_ref_eq, NULL);
3201 if (g->got_page_refs == NULL)
5334aa52
RS
3202 return NULL;
3203
3204 return g;
3205}
3206
ee227692
RS
3207/* Return the GOT info for input bfd ABFD, trying to create a new one if
3208 CREATE_P and if ABFD doesn't already have a GOT. */
3209
3210static struct mips_got_info *
3211mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3212{
3213 struct mips_elf_obj_tdata *tdata;
3214
3215 if (!is_mips_elf (abfd))
3216 return NULL;
3217
3218 tdata = mips_elf_tdata (abfd);
3219 if (!tdata->got && create_p)
3dff0dd1 3220 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3221 return tdata->got;
3222}
3223
d7206569
RS
3224/* Record that ABFD should use output GOT G. */
3225
3226static void
3227mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3228{
3229 struct mips_elf_obj_tdata *tdata;
3230
3231 BFD_ASSERT (is_mips_elf (abfd));
3232 tdata = mips_elf_tdata (abfd);
3233 if (tdata->got)
3234 {
3235 /* The GOT structure itself and the hash table entries are
3236 allocated to a bfd, but the hash tables aren't. */
3237 htab_delete (tdata->got->got_entries);
13db6b44
RS
3238 htab_delete (tdata->got->got_page_refs);
3239 if (tdata->got->got_page_entries)
3240 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3241 }
3242 tdata->got = g;
3243}
3244
0a44bf69
RS
3245/* Return the dynamic relocation section. If it doesn't exist, try to
3246 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3247 if creation fails. */
f4416af6
AO
3248
3249static asection *
0a44bf69 3250mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3251{
0a44bf69 3252 const char *dname;
f4416af6 3253 asection *sreloc;
0a44bf69 3254 bfd *dynobj;
f4416af6 3255
0a44bf69
RS
3256 dname = MIPS_ELF_REL_DYN_NAME (info);
3257 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3258 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3259 if (sreloc == NULL && create_p)
3260 {
3d4d4302
AM
3261 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3262 (SEC_ALLOC
3263 | SEC_LOAD
3264 | SEC_HAS_CONTENTS
3265 | SEC_IN_MEMORY
3266 | SEC_LINKER_CREATED
3267 | SEC_READONLY));
f4416af6 3268 if (sreloc == NULL
fd361982
AM
3269 || !bfd_set_section_alignment (sreloc,
3270 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3271 return NULL;
3272 }
3273 return sreloc;
3274}
3275
e641e783
RS
3276/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3277
3278static int
3279mips_elf_reloc_tls_type (unsigned int r_type)
3280{
3281 if (tls_gd_reloc_p (r_type))
3282 return GOT_TLS_GD;
3283
3284 if (tls_ldm_reloc_p (r_type))
3285 return GOT_TLS_LDM;
3286
3287 if (tls_gottprel_reloc_p (r_type))
3288 return GOT_TLS_IE;
3289
9ab066b4 3290 return GOT_TLS_NONE;
e641e783
RS
3291}
3292
3293/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3294
3295static int
3296mips_tls_got_entries (unsigned int type)
3297{
3298 switch (type)
3299 {
3300 case GOT_TLS_GD:
3301 case GOT_TLS_LDM:
3302 return 2;
3303
3304 case GOT_TLS_IE:
3305 return 1;
3306
9ab066b4 3307 case GOT_TLS_NONE:
e641e783
RS
3308 return 0;
3309 }
3310 abort ();
3311}
3312
0f20cc35
DJ
3313/* Count the number of relocations needed for a TLS GOT entry, with
3314 access types from TLS_TYPE, and symbol H (or a local symbol if H
3315 is NULL). */
3316
3317static int
3318mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3319 struct elf_link_hash_entry *h)
3320{
3321 int indx = 0;
0f20cc35
DJ
3322 bfd_boolean need_relocs = FALSE;
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
1cb83cac
MR
3325 if (h != NULL
3326 && h->dynindx != -1
3327 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3328 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3329 indx = h->dynindx;
3330
9143e72c 3331 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3332 && (h == NULL
3333 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3334 || h->root.type != bfd_link_hash_undefweak))
3335 need_relocs = TRUE;
3336
3337 if (!need_relocs)
e641e783 3338 return 0;
0f20cc35 3339
9ab066b4 3340 switch (tls_type)
0f20cc35 3341 {
e641e783
RS
3342 case GOT_TLS_GD:
3343 return indx != 0 ? 2 : 1;
0f20cc35 3344
e641e783
RS
3345 case GOT_TLS_IE:
3346 return 1;
0f20cc35 3347
e641e783 3348 case GOT_TLS_LDM:
9143e72c 3349 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3350
e641e783
RS
3351 default:
3352 return 0;
3353 }
0f20cc35
DJ
3354}
3355
ab361d49
RS
3356/* Add the number of GOT entries and TLS relocations required by ENTRY
3357 to G. */
0f20cc35 3358
ab361d49
RS
3359static void
3360mips_elf_count_got_entry (struct bfd_link_info *info,
3361 struct mips_got_info *g,
3362 struct mips_got_entry *entry)
0f20cc35 3363{
9ab066b4 3364 if (entry->tls_type)
ab361d49 3365 {
9ab066b4
RS
3366 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3367 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3368 entry->symndx < 0
3369 ? &entry->d.h->root : NULL);
3370 }
3371 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3372 g->local_gotno += 1;
3373 else
3374 g->global_gotno += 1;
0f20cc35
DJ
3375}
3376
0f20cc35
DJ
3377/* Output a simple dynamic relocation into SRELOC. */
3378
3379static void
3380mips_elf_output_dynamic_relocation (bfd *output_bfd,
3381 asection *sreloc,
861fb55a 3382 unsigned long reloc_index,
0f20cc35
DJ
3383 unsigned long indx,
3384 int r_type,
3385 bfd_vma offset)
3386{
3387 Elf_Internal_Rela rel[3];
3388
3389 memset (rel, 0, sizeof (rel));
3390
3391 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3392 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3393
3394 if (ABI_64_P (output_bfd))
3395 {
3396 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3397 (output_bfd, &rel[0],
3398 (sreloc->contents
861fb55a 3399 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3400 }
3401 else
3402 bfd_elf32_swap_reloc_out
3403 (output_bfd, &rel[0],
3404 (sreloc->contents
861fb55a 3405 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3406}
3407
3408/* Initialize a set of TLS GOT entries for one symbol. */
3409
3410static void
9ab066b4
RS
3411mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3412 struct mips_got_entry *entry,
0f20cc35
DJ
3413 struct mips_elf_link_hash_entry *h,
3414 bfd_vma value)
3415{
1cb83cac 3416 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3417 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3418 int indx;
3419 asection *sreloc, *sgot;
9ab066b4 3420 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3421 bfd_boolean need_relocs = FALSE;
3422
23cc69b6 3423 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3424 if (htab == NULL)
3425 return;
3426
ce558b89 3427 sgot = htab->root.sgot;
0f20cc35
DJ
3428
3429 indx = 0;
1cb83cac
MR
3430 if (h != NULL
3431 && h->root.dynindx != -1
3432 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3433 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3434 indx = h->root.dynindx;
0f20cc35 3435
9ab066b4 3436 if (entry->tls_initialized)
0f20cc35
DJ
3437 return;
3438
9143e72c 3439 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3440 && (h == NULL
3441 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3442 || h->root.type != bfd_link_hash_undefweak))
3443 need_relocs = TRUE;
3444
3445 /* MINUS_ONE means the symbol is not defined in this object. It may not
3446 be defined at all; assume that the value doesn't matter in that
3447 case. Otherwise complain if we would use the value. */
3448 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3449 || h->root.root.type == bfd_link_hash_undefweak);
3450
3451 /* Emit necessary relocations. */
0a44bf69 3452 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3453 got_offset = entry->gotidx;
0f20cc35 3454
9ab066b4 3455 switch (entry->tls_type)
0f20cc35 3456 {
e641e783
RS
3457 case GOT_TLS_GD:
3458 /* General Dynamic. */
3459 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3460
3461 if (need_relocs)
3462 {
3463 mips_elf_output_dynamic_relocation
861fb55a 3464 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3465 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3466 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3467
3468 if (indx)
3469 mips_elf_output_dynamic_relocation
861fb55a 3470 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3471 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3472 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3473 else
3474 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3475 sgot->contents + got_offset2);
0f20cc35
DJ
3476 }
3477 else
3478 {
3479 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3480 sgot->contents + got_offset);
0f20cc35 3481 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3482 sgot->contents + got_offset2);
0f20cc35 3483 }
e641e783 3484 break;
0f20cc35 3485
e641e783
RS
3486 case GOT_TLS_IE:
3487 /* Initial Exec model. */
0f20cc35
DJ
3488 if (need_relocs)
3489 {
3490 if (indx == 0)
3491 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3492 sgot->contents + got_offset);
0f20cc35
DJ
3493 else
3494 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3495 sgot->contents + got_offset);
0f20cc35
DJ
3496
3497 mips_elf_output_dynamic_relocation
861fb55a 3498 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3499 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3500 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3501 }
3502 else
3503 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3504 sgot->contents + got_offset);
3505 break;
0f20cc35 3506
e641e783 3507 case GOT_TLS_LDM:
0f20cc35
DJ
3508 /* The initial offset is zero, and the LD offsets will include the
3509 bias by DTP_OFFSET. */
3510 MIPS_ELF_PUT_WORD (abfd, 0,
3511 sgot->contents + got_offset
3512 + MIPS_ELF_GOT_SIZE (abfd));
3513
9143e72c 3514 if (!bfd_link_dll (info))
0f20cc35
DJ
3515 MIPS_ELF_PUT_WORD (abfd, 1,
3516 sgot->contents + got_offset);
3517 else
3518 mips_elf_output_dynamic_relocation
861fb55a 3519 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3520 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3521 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3522 break;
3523
3524 default:
3525 abort ();
0f20cc35
DJ
3526 }
3527
9ab066b4 3528 entry->tls_initialized = TRUE;
e641e783 3529}
0f20cc35 3530
0a44bf69
RS
3531/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3532 for global symbol H. .got.plt comes before the GOT, so the offset
3533 will be negative. */
3534
3535static bfd_vma
3536mips_elf_gotplt_index (struct bfd_link_info *info,
3537 struct elf_link_hash_entry *h)
3538{
1bbce132 3539 bfd_vma got_address, got_value;
0a44bf69
RS
3540 struct mips_elf_link_hash_table *htab;
3541
3542 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3543 BFD_ASSERT (htab != NULL);
3544
1bbce132
MR
3545 BFD_ASSERT (h->plt.plist != NULL);
3546 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3547
3548 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3549 got_address = (htab->root.sgotplt->output_section->vma
3550 + htab->root.sgotplt->output_offset
1bbce132
MR
3551 + (h->plt.plist->gotplt_index
3552 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3553
3554 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3555 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3556 + htab->root.hgot->root.u.def.section->output_offset
3557 + htab->root.hgot->root.u.def.value);
3558
3559 return got_address - got_value;
3560}
3561
5c18022e 3562/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3563 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3564 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3565 offset can be found. */
b49e97c9
TS
3566
3567static bfd_vma
9719ad41 3568mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3569 bfd_vma value, unsigned long r_symndx,
0f20cc35 3570 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3571{
a8028dd0 3572 struct mips_elf_link_hash_table *htab;
b15e6682 3573 struct mips_got_entry *entry;
b49e97c9 3574
a8028dd0 3575 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3576 BFD_ASSERT (htab != NULL);
3577
a8028dd0
RS
3578 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3579 r_symndx, h, r_type);
0f20cc35 3580 if (!entry)
b15e6682 3581 return MINUS_ONE;
0f20cc35 3582
e641e783 3583 if (entry->tls_type)
9ab066b4
RS
3584 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3585 return entry->gotidx;
b49e97c9
TS
3586}
3587
13fbec83 3588/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3589
3590static bfd_vma
13fbec83
RS
3591mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3592 struct elf_link_hash_entry *h)
3593{
3594 struct mips_elf_link_hash_table *htab;
3595 long global_got_dynindx;
3596 struct mips_got_info *g;
3597 bfd_vma got_index;
3598
3599 htab = mips_elf_hash_table (info);
3600 BFD_ASSERT (htab != NULL);
3601
3602 global_got_dynindx = 0;
3603 if (htab->global_gotsym != NULL)
3604 global_got_dynindx = htab->global_gotsym->dynindx;
3605
3606 /* Once we determine the global GOT entry with the lowest dynamic
3607 symbol table index, we must put all dynamic symbols with greater
3608 indices into the primary GOT. That makes it easy to calculate the
3609 GOT offset. */
3610 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3611 g = mips_elf_bfd_got (obfd, FALSE);
3612 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3613 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3614 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3615
3616 return got_index;
3617}
3618
3619/* Return the GOT index for the global symbol indicated by H, which is
3620 referenced by a relocation of type R_TYPE in IBFD. */
3621
3622static bfd_vma
3623mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3624 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3625{
a8028dd0 3626 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3627 struct mips_got_info *g;
3628 struct mips_got_entry lookup, *entry;
3629 bfd_vma gotidx;
b49e97c9 3630
a8028dd0 3631 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3632 BFD_ASSERT (htab != NULL);
3633
6c42ddb9
RS
3634 g = mips_elf_bfd_got (ibfd, FALSE);
3635 BFD_ASSERT (g);
f4416af6 3636
6c42ddb9
RS
3637 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3638 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3639 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3640
6c42ddb9
RS
3641 lookup.abfd = ibfd;
3642 lookup.symndx = -1;
3643 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3644 entry = htab_find (g->got_entries, &lookup);
3645 BFD_ASSERT (entry);
0f20cc35 3646
6c42ddb9 3647 gotidx = entry->gotidx;
ce558b89 3648 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3649
6c42ddb9 3650 if (lookup.tls_type)
0f20cc35 3651 {
0f20cc35
DJ
3652 bfd_vma value = MINUS_ONE;
3653
3654 if ((h->root.type == bfd_link_hash_defined
3655 || h->root.type == bfd_link_hash_defweak)
3656 && h->root.u.def.section->output_section)
3657 value = (h->root.u.def.value
3658 + h->root.u.def.section->output_offset
3659 + h->root.u.def.section->output_section->vma);
3660
9ab066b4 3661 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3662 }
6c42ddb9 3663 return gotidx;
b49e97c9
TS
3664}
3665
5c18022e
RS
3666/* Find a GOT page entry that points to within 32KB of VALUE. These
3667 entries are supposed to be placed at small offsets in the GOT, i.e.,
3668 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3669 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3670 offset of the GOT entry from VALUE. */
b49e97c9
TS
3671
3672static bfd_vma
9719ad41 3673mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3674 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3675{
91d6fa6a 3676 bfd_vma page, got_index;
b15e6682 3677 struct mips_got_entry *entry;
b49e97c9 3678
0a44bf69 3679 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3680 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3681 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3682
b15e6682
AO
3683 if (!entry)
3684 return MINUS_ONE;
143d77c5 3685
91d6fa6a 3686 got_index = entry->gotidx;
b49e97c9
TS
3687
3688 if (offsetp)
f4416af6 3689 *offsetp = value - entry->d.address;
b49e97c9 3690
91d6fa6a 3691 return got_index;
b49e97c9
TS
3692}
3693
738e5348 3694/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3695 EXTERNAL is true if the relocation was originally against a global
3696 symbol that binds locally. */
b49e97c9
TS
3697
3698static bfd_vma
9719ad41 3699mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3700 bfd_vma value, bfd_boolean external)
b49e97c9 3701{
b15e6682 3702 struct mips_got_entry *entry;
b49e97c9 3703
0a44bf69
RS
3704 /* GOT16 relocations against local symbols are followed by a LO16
3705 relocation; those against global symbols are not. Thus if the
3706 symbol was originally local, the GOT16 relocation should load the
3707 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3708 if (! external)
0a44bf69 3709 value = mips_elf_high (value) << 16;
b49e97c9 3710
738e5348
RS
3711 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3712 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3713 same in all cases. */
a8028dd0
RS
3714 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3715 NULL, R_MIPS_GOT16);
b15e6682
AO
3716 if (entry)
3717 return entry->gotidx;
3718 else
3719 return MINUS_ONE;
b49e97c9
TS
3720}
3721
3722/* Returns the offset for the entry at the INDEXth position
3723 in the GOT. */
3724
3725static bfd_vma
a8028dd0 3726mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3727 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3728{
a8028dd0 3729 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3730 asection *sgot;
3731 bfd_vma gp;
3732
a8028dd0 3733 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3734 BFD_ASSERT (htab != NULL);
3735
ce558b89 3736 sgot = htab->root.sgot;
f4416af6 3737 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3738 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3739
91d6fa6a 3740 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3741}
3742
0a44bf69
RS
3743/* Create and return a local GOT entry for VALUE, which was calculated
3744 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3745 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3746 instead. */
b49e97c9 3747
b15e6682 3748static struct mips_got_entry *
0a44bf69 3749mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3750 bfd *ibfd, bfd_vma value,
5c18022e 3751 unsigned long r_symndx,
0f20cc35
DJ
3752 struct mips_elf_link_hash_entry *h,
3753 int r_type)
b49e97c9 3754{
ebc53538
RS
3755 struct mips_got_entry lookup, *entry;
3756 void **loc;
f4416af6 3757 struct mips_got_info *g;
0a44bf69 3758 struct mips_elf_link_hash_table *htab;
6c42ddb9 3759 bfd_vma gotidx;
0a44bf69
RS
3760
3761 htab = mips_elf_hash_table (info);
4dfe6ac6 3762 BFD_ASSERT (htab != NULL);
b15e6682 3763
d7206569 3764 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3765 if (g == NULL)
3766 {
d7206569 3767 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3768 BFD_ASSERT (g != NULL);
3769 }
b15e6682 3770
020d7251
RS
3771 /* This function shouldn't be called for symbols that live in the global
3772 area of the GOT. */
3773 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3774
ebc53538
RS
3775 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3776 if (lookup.tls_type)
3777 {
3778 lookup.abfd = ibfd;
df58fc94 3779 if (tls_ldm_reloc_p (r_type))
0f20cc35 3780 {
ebc53538
RS
3781 lookup.symndx = 0;
3782 lookup.d.addend = 0;
0f20cc35
DJ
3783 }
3784 else if (h == NULL)
3785 {
ebc53538
RS
3786 lookup.symndx = r_symndx;
3787 lookup.d.addend = 0;
0f20cc35
DJ
3788 }
3789 else
ebc53538
RS
3790 {
3791 lookup.symndx = -1;
3792 lookup.d.h = h;
3793 }
0f20cc35 3794
ebc53538
RS
3795 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3796 BFD_ASSERT (entry);
0f20cc35 3797
6c42ddb9 3798 gotidx = entry->gotidx;
ce558b89 3799 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3800
ebc53538 3801 return entry;
0f20cc35
DJ
3802 }
3803
ebc53538
RS
3804 lookup.abfd = NULL;
3805 lookup.symndx = -1;
3806 lookup.d.address = value;
3807 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3808 if (!loc)
b15e6682 3809 return NULL;
143d77c5 3810
ebc53538
RS
3811 entry = (struct mips_got_entry *) *loc;
3812 if (entry)
3813 return entry;
b15e6682 3814
cb22ccf4 3815 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3816 {
3817 /* We didn't allocate enough space in the GOT. */
4eca0228 3818 _bfd_error_handler
b49e97c9
TS
3819 (_("not enough GOT space for local GOT entries"));
3820 bfd_set_error (bfd_error_bad_value);
b15e6682 3821 return NULL;
b49e97c9
TS
3822 }
3823
ebc53538
RS
3824 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3825 if (!entry)
3826 return NULL;
3827
cb22ccf4
KCY
3828 if (got16_reloc_p (r_type)
3829 || call16_reloc_p (r_type)
3830 || got_page_reloc_p (r_type)
3831 || got_disp_reloc_p (r_type))
3832 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3833 else
3834 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3835
ebc53538
RS
3836 *entry = lookup;
3837 *loc = entry;
3838
ce558b89 3839 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3840
5c18022e 3841 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3842 if (htab->is_vxworks)
3843 {
3844 Elf_Internal_Rela outrel;
5c18022e 3845 asection *s;
91d6fa6a 3846 bfd_byte *rloc;
0a44bf69 3847 bfd_vma got_address;
0a44bf69
RS
3848
3849 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3850 got_address = (htab->root.sgot->output_section->vma
3851 + htab->root.sgot->output_offset
ebc53538 3852 + entry->gotidx);
0a44bf69 3853
91d6fa6a 3854 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3855 outrel.r_offset = got_address;
5c18022e
RS
3856 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3857 outrel.r_addend = value;
91d6fa6a 3858 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3859 }
3860
ebc53538 3861 return entry;
b49e97c9
TS
3862}
3863
d4596a51
RS
3864/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3865 The number might be exact or a worst-case estimate, depending on how
3866 much information is available to elf_backend_omit_section_dynsym at
3867 the current linking stage. */
3868
3869static bfd_size_type
3870count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3871{
3872 bfd_size_type count;
3873
3874 count = 0;
0e1862bb
L
3875 if (bfd_link_pic (info)
3876 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3877 {
3878 asection *p;
3879 const struct elf_backend_data *bed;
3880
3881 bed = get_elf_backend_data (output_bfd);
3882 for (p = output_bfd->sections; p ; p = p->next)
3883 if ((p->flags & SEC_EXCLUDE) == 0
3884 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3885 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3887 ++count;
3888 }
3889 return count;
3890}
3891
b49e97c9 3892/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3893 appear towards the end. */
b49e97c9 3894
b34976b6 3895static bfd_boolean
d4596a51 3896mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3897{
a8028dd0 3898 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3899 struct mips_elf_hash_sort_data hsd;
3900 struct mips_got_info *g;
b49e97c9 3901
a8028dd0 3902 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3903 BFD_ASSERT (htab != NULL);
3904
0f8c4b60 3905 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3906 return TRUE;
3907
a8028dd0 3908 g = htab->got_info;
d4596a51
RS
3909 if (g == NULL)
3910 return TRUE;
f4416af6 3911
b49e97c9 3912 hsd.low = NULL;
23cc69b6
RS
3913 hsd.max_unref_got_dynindx
3914 = hsd.min_got_dynindx
0f8c4b60 3915 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3916 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3917 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3918 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3919 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
f16a9783
MS
3920 hsd.output_bfd = abfd;
3921 if (htab->root.dynobj != NULL
3922 && htab->root.dynamic_sections_created
3923 && info->emit_gnu_hash)
3924 {
3925 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3926 BFD_ASSERT (s != NULL);
3927 hsd.mipsxhash = s->contents;
3928 BFD_ASSERT (hsd.mipsxhash != NULL);
3929 }
3930 else
3931 hsd.mipsxhash = NULL;
0f8c4b60 3932 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3933
3934 /* There should have been enough room in the symbol table to
44c410de 3935 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3936 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3937 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3938 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3939 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3940
3941 /* Now we know which dynamic symbol has the lowest dynamic symbol
3942 table index in the GOT. */
d222d210 3943 htab->global_gotsym = hsd.low;
b49e97c9 3944
b34976b6 3945 return TRUE;
b49e97c9
TS
3946}
3947
3948/* If H needs a GOT entry, assign it the highest available dynamic
3949 index. Otherwise, assign it the lowest available dynamic
3950 index. */
3951
b34976b6 3952static bfd_boolean
9719ad41 3953mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3954{
9719ad41 3955 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3956
b49e97c9
TS
3957 /* Symbols without dynamic symbol table entries aren't interesting
3958 at all. */
3959 if (h->root.dynindx == -1)
b34976b6 3960 return TRUE;
b49e97c9 3961
634835ae 3962 switch (h->global_got_area)
f4416af6 3963 {
634835ae 3964 case GGA_NONE:
e17b0c35
MR
3965 if (h->root.forced_local)
3966 h->root.dynindx = hsd->max_local_dynindx++;
3967 else
3968 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3969 break;
0f20cc35 3970
634835ae 3971 case GGA_NORMAL:
b49e97c9
TS
3972 h->root.dynindx = --hsd->min_got_dynindx;
3973 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3974 break;
3975
3976 case GGA_RELOC_ONLY:
634835ae
RS
3977 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3978 hsd->low = (struct elf_link_hash_entry *) h;
3979 h->root.dynindx = hsd->max_unref_got_dynindx++;
3980 break;
b49e97c9
TS
3981 }
3982
f16a9783
MS
3983 /* Populate the .MIPS.xhash translation table entry with
3984 the symbol dynindx. */
3985 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3986 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3987 hsd->mipsxhash + h->mipsxhash_loc);
3988
b34976b6 3989 return TRUE;
b49e97c9
TS
3990}
3991
ee227692
RS
3992/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3993 (which is owned by the caller and shouldn't be added to the
3994 hash table directly). */
3995
3996static bfd_boolean
3997mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3998 struct mips_got_entry *lookup)
3999{
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_entry *entry;
4002 struct mips_got_info *g;
4003 void **loc, **bfd_loc;
4004
4005 /* Make sure there's a slot for this entry in the master GOT. */
4006 htab = mips_elf_hash_table (info);
4007 g = htab->got_info;
4008 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4009 if (!loc)
4010 return FALSE;
4011
4012 /* Populate the entry if it isn't already. */
4013 entry = (struct mips_got_entry *) *loc;
4014 if (!entry)
4015 {
4016 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4017 if (!entry)
4018 return FALSE;
4019
9ab066b4 4020 lookup->tls_initialized = FALSE;
ee227692
RS
4021 lookup->gotidx = -1;
4022 *entry = *lookup;
4023 *loc = entry;
4024 }
4025
4026 /* Reuse the same GOT entry for the BFD's GOT. */
4027 g = mips_elf_bfd_got (abfd, TRUE);
4028 if (!g)
4029 return FALSE;
4030
4031 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4032 if (!bfd_loc)
4033 return FALSE;
4034
4035 if (!*bfd_loc)
4036 *bfd_loc = entry;
4037 return TRUE;
4038}
4039
e641e783
RS
4040/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4041 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4042 using the GOT entry for calls. */
b49e97c9 4043
b34976b6 4044static bfd_boolean
9719ad41
RS
4045mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4046 bfd *abfd, struct bfd_link_info *info,
e641e783 4047 bfd_boolean for_call, int r_type)
b49e97c9 4048{
a8028dd0 4049 struct mips_elf_link_hash_table *htab;
634835ae 4050 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4051 struct mips_got_entry entry;
4052 unsigned char tls_type;
a8028dd0
RS
4053
4054 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4055 BFD_ASSERT (htab != NULL);
4056
634835ae 4057 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4058 if (!for_call)
4059 hmips->got_only_for_calls = FALSE;
f4416af6 4060
b49e97c9
TS
4061 /* A global symbol in the GOT must also be in the dynamic symbol
4062 table. */
7c5fcef7
L
4063 if (h->dynindx == -1)
4064 {
4065 switch (ELF_ST_VISIBILITY (h->other))
4066 {
4067 case STV_INTERNAL:
4068 case STV_HIDDEN:
47275900 4069 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4070 break;
4071 }
c152c796 4072 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4073 return FALSE;
7c5fcef7 4074 }
b49e97c9 4075
ee227692 4076 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4077 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4078 hmips->global_got_area = GGA_NORMAL;
86324f90 4079
f4416af6
AO
4080 entry.abfd = abfd;
4081 entry.symndx = -1;
4082 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4083 entry.tls_type = tls_type;
4084 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4085}
f4416af6 4086
e641e783
RS
4087/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4088 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4089
4090static bfd_boolean
9719ad41 4091mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4092 struct bfd_link_info *info, int r_type)
f4416af6 4093{
a8028dd0
RS
4094 struct mips_elf_link_hash_table *htab;
4095 struct mips_got_info *g;
ee227692 4096 struct mips_got_entry entry;
f4416af6 4097
a8028dd0 4098 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4099 BFD_ASSERT (htab != NULL);
4100
a8028dd0
RS
4101 g = htab->got_info;
4102 BFD_ASSERT (g != NULL);
4103
f4416af6
AO
4104 entry.abfd = abfd;
4105 entry.symndx = symndx;
4106 entry.d.addend = addend;
e641e783 4107 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4108 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4109}
c224138d 4110
13db6b44
RS
4111/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4112 H is the symbol's hash table entry, or null if SYMNDX is local
4113 to ABFD. */
c224138d
RS
4114
4115static bfd_boolean
13db6b44
RS
4116mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4117 long symndx, struct elf_link_hash_entry *h,
4118 bfd_signed_vma addend)
c224138d 4119{
a8028dd0 4120 struct mips_elf_link_hash_table *htab;
ee227692 4121 struct mips_got_info *g1, *g2;
13db6b44 4122 struct mips_got_page_ref lookup, *entry;
ee227692 4123 void **loc, **bfd_loc;
c224138d 4124
a8028dd0 4125 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4126 BFD_ASSERT (htab != NULL);
4127
ee227692
RS
4128 g1 = htab->got_info;
4129 BFD_ASSERT (g1 != NULL);
a8028dd0 4130
13db6b44
RS
4131 if (h)
4132 {
4133 lookup.symndx = -1;
4134 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4135 }
4136 else
4137 {
4138 lookup.symndx = symndx;
4139 lookup.u.abfd = abfd;
4140 }
4141 lookup.addend = addend;
4142 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4143 if (loc == NULL)
4144 return FALSE;
4145
13db6b44 4146 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4147 if (!entry)
4148 {
4149 entry = bfd_alloc (abfd, sizeof (*entry));
4150 if (!entry)
4151 return FALSE;
4152
13db6b44 4153 *entry = lookup;
c224138d
RS
4154 *loc = entry;
4155 }
4156
ee227692
RS
4157 /* Add the same entry to the BFD's GOT. */
4158 g2 = mips_elf_bfd_got (abfd, TRUE);
4159 if (!g2)
4160 return FALSE;
4161
13db6b44 4162 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4163 if (!bfd_loc)
4164 return FALSE;
4165
4166 if (!*bfd_loc)
4167 *bfd_loc = entry;
4168
c224138d
RS
4169 return TRUE;
4170}
33bb52fb
RS
4171
4172/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4173
4174static void
4175mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4176 unsigned int n)
4177{
4178 asection *s;
4179 struct mips_elf_link_hash_table *htab;
4180
4181 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4182 BFD_ASSERT (htab != NULL);
4183
33bb52fb
RS
4184 s = mips_elf_rel_dyn_section (info, FALSE);
4185 BFD_ASSERT (s != NULL);
4186
4187 if (htab->is_vxworks)
4188 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4189 else
4190 {
4191 if (s->size == 0)
4192 {
4193 /* Make room for a null element. */
4194 s->size += MIPS_ELF_REL_SIZE (abfd);
4195 ++s->reloc_count;
4196 }
4197 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4198 }
4199}
4200\f
476366af
RS
4201/* A htab_traverse callback for GOT entries, with DATA pointing to a
4202 mips_elf_traverse_got_arg structure. Count the number of GOT
4203 entries and TLS relocs. Set DATA->value to true if we need
4204 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4205
4206static int
4207mips_elf_check_recreate_got (void **entryp, void *data)
4208{
4209 struct mips_got_entry *entry;
476366af 4210 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4211
4212 entry = (struct mips_got_entry *) *entryp;
476366af 4213 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4214 if (entry->abfd != NULL && entry->symndx == -1)
4215 {
4216 struct mips_elf_link_hash_entry *h;
4217
4218 h = entry->d.h;
4219 if (h->root.root.type == bfd_link_hash_indirect
4220 || h->root.root.type == bfd_link_hash_warning)
4221 {
476366af 4222 arg->value = TRUE;
33bb52fb
RS
4223 return 0;
4224 }
4225 }
476366af 4226 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4227 return 1;
4228}
4229
476366af
RS
4230/* A htab_traverse callback for GOT entries, with DATA pointing to a
4231 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4232 converting entries for indirect and warning symbols into entries
4233 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4234
4235static int
4236mips_elf_recreate_got (void **entryp, void *data)
4237{
72e7511a 4238 struct mips_got_entry new_entry, *entry;
476366af 4239 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4240 void **slot;
4241
33bb52fb 4242 entry = (struct mips_got_entry *) *entryp;
476366af 4243 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4244 if (entry->abfd != NULL
4245 && entry->symndx == -1
4246 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4247 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4248 {
4249 struct mips_elf_link_hash_entry *h;
4250
72e7511a
RS
4251 new_entry = *entry;
4252 entry = &new_entry;
33bb52fb 4253 h = entry->d.h;
72e7511a 4254 do
634835ae
RS
4255 {
4256 BFD_ASSERT (h->global_got_area == GGA_NONE);
4257 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4258 }
72e7511a
RS
4259 while (h->root.root.type == bfd_link_hash_indirect
4260 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4261 entry->d.h = h;
4262 }
476366af 4263 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4264 if (slot == NULL)
4265 {
476366af 4266 arg->g = NULL;
33bb52fb
RS
4267 return 0;
4268 }
4269 if (*slot == NULL)
72e7511a
RS
4270 {
4271 if (entry == &new_entry)
4272 {
4273 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4274 if (!entry)
4275 {
476366af 4276 arg->g = NULL;
72e7511a
RS
4277 return 0;
4278 }
4279 *entry = new_entry;
4280 }
4281 *slot = entry;
476366af 4282 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4283 }
33bb52fb
RS
4284 return 1;
4285}
4286
13db6b44
RS
4287/* Return the maximum number of GOT page entries required for RANGE. */
4288
4289static bfd_vma
4290mips_elf_pages_for_range (const struct mips_got_page_range *range)
4291{
4292 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4293}
4294
4295/* Record that G requires a page entry that can reach SEC + ADDEND. */
4296
4297static bfd_boolean
b75d42bc 4298mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4299 asection *sec, bfd_signed_vma addend)
4300{
b75d42bc 4301 struct mips_got_info *g = arg->g;
13db6b44
RS
4302 struct mips_got_page_entry lookup, *entry;
4303 struct mips_got_page_range **range_ptr, *range;
4304 bfd_vma old_pages, new_pages;
4305 void **loc;
4306
4307 /* Find the mips_got_page_entry hash table entry for this section. */
4308 lookup.sec = sec;
4309 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4310 if (loc == NULL)
4311 return FALSE;
4312
4313 /* Create a mips_got_page_entry if this is the first time we've
4314 seen the section. */
4315 entry = (struct mips_got_page_entry *) *loc;
4316 if (!entry)
4317 {
b75d42bc 4318 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4319 if (!entry)
4320 return FALSE;
4321
4322 entry->sec = sec;
4323 *loc = entry;
4324 }
4325
4326 /* Skip over ranges whose maximum extent cannot share a page entry
4327 with ADDEND. */
4328 range_ptr = &entry->ranges;
4329 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4330 range_ptr = &(*range_ptr)->next;
4331
4332 /* If we scanned to the end of the list, or found a range whose
4333 minimum extent cannot share a page entry with ADDEND, create
4334 a new singleton range. */
4335 range = *range_ptr;
4336 if (!range || addend < range->min_addend - 0xffff)
4337 {
b75d42bc 4338 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4339 if (!range)
4340 return FALSE;
4341
4342 range->next = *range_ptr;
4343 range->min_addend = addend;
4344 range->max_addend = addend;
4345
4346 *range_ptr = range;
4347 entry->num_pages++;
4348 g->page_gotno++;
4349 return TRUE;
4350 }
4351
4352 /* Remember how many pages the old range contributed. */
4353 old_pages = mips_elf_pages_for_range (range);
4354
4355 /* Update the ranges. */
4356 if (addend < range->min_addend)
4357 range->min_addend = addend;
4358 else if (addend > range->max_addend)
4359 {
4360 if (range->next && addend >= range->next->min_addend - 0xffff)
4361 {
4362 old_pages += mips_elf_pages_for_range (range->next);
4363 range->max_addend = range->next->max_addend;
4364 range->next = range->next->next;
4365 }
4366 else
4367 range->max_addend = addend;
4368 }
4369
4370 /* Record any change in the total estimate. */
4371 new_pages = mips_elf_pages_for_range (range);
4372 if (old_pages != new_pages)
4373 {
4374 entry->num_pages += new_pages - old_pages;
4375 g->page_gotno += new_pages - old_pages;
4376 }
4377
4378 return TRUE;
4379}
4380
4381/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4382 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4383 whether the page reference described by *REFP needs a GOT page entry,
4384 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4385
4386static bfd_boolean
4387mips_elf_resolve_got_page_ref (void **refp, void *data)
4388{
4389 struct mips_got_page_ref *ref;
4390 struct mips_elf_traverse_got_arg *arg;
4391 struct mips_elf_link_hash_table *htab;
4392 asection *sec;
4393 bfd_vma addend;
4394
4395 ref = (struct mips_got_page_ref *) *refp;
4396 arg = (struct mips_elf_traverse_got_arg *) data;
4397 htab = mips_elf_hash_table (arg->info);
4398
4399 if (ref->symndx < 0)
4400 {
4401 struct mips_elf_link_hash_entry *h;
4402
4403 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4404 h = ref->u.h;
4405 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4406 return 1;
4407
4408 /* Ignore undefined symbols; we'll issue an error later if
4409 appropriate. */
4410 if (!((h->root.root.type == bfd_link_hash_defined
4411 || h->root.root.type == bfd_link_hash_defweak)
4412 && h->root.root.u.def.section))
4413 return 1;
4414
4415 sec = h->root.root.u.def.section;
4416 addend = h->root.root.u.def.value + ref->addend;
4417 }
4418 else
4419 {
4420 Elf_Internal_Sym *isym;
4421
4422 /* Read in the symbol. */
4423 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4424 ref->symndx);
4425 if (isym == NULL)
4426 {
4427 arg->g = NULL;
4428 return 0;
4429 }
4430
4431 /* Get the associated input section. */
4432 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4433 if (sec == NULL)
4434 {
4435 arg->g = NULL;
4436 return 0;
4437 }
4438
4439 /* If this is a mergable section, work out the section and offset
4440 of the merged data. For section symbols, the addend specifies
4441 of the offset _of_ the first byte in the data, otherwise it
4442 specifies the offset _from_ the first byte. */
4443 if (sec->flags & SEC_MERGE)
4444 {
4445 void *secinfo;
4446
4447 secinfo = elf_section_data (sec)->sec_info;
4448 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4449 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4450 isym->st_value + ref->addend);
4451 else
4452 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4453 isym->st_value) + ref->addend;
4454 }
4455 else
4456 addend = isym->st_value + ref->addend;
4457 }
b75d42bc 4458 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4459 {
4460 arg->g = NULL;
4461 return 0;
4462 }
4463 return 1;
4464}
4465
33bb52fb 4466/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4467 replace them with entries for the target symbol. Convert g->got_page_refs
4468 into got_page_entry structures and estimate the number of page entries
4469 that they require. */
33bb52fb
RS
4470
4471static bfd_boolean
476366af
RS
4472mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4473 struct mips_got_info *g)
33bb52fb 4474{
476366af
RS
4475 struct mips_elf_traverse_got_arg tga;
4476 struct mips_got_info oldg;
4477
4478 oldg = *g;
33bb52fb 4479
476366af
RS
4480 tga.info = info;
4481 tga.g = g;
4482 tga.value = FALSE;
4483 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4484 if (tga.value)
33bb52fb 4485 {
476366af
RS
4486 *g = oldg;
4487 g->got_entries = htab_create (htab_size (oldg.got_entries),
4488 mips_elf_got_entry_hash,
4489 mips_elf_got_entry_eq, NULL);
4490 if (!g->got_entries)
33bb52fb
RS
4491 return FALSE;
4492
476366af
RS
4493 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4494 if (!tga.g)
4495 return FALSE;
4496
4497 htab_delete (oldg.got_entries);
33bb52fb 4498 }
13db6b44
RS
4499
4500 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4501 mips_got_page_entry_eq, NULL);
4502 if (g->got_page_entries == NULL)
4503 return FALSE;
4504
4505 tga.info = info;
4506 tga.g = g;
4507 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4508
33bb52fb
RS
4509 return TRUE;
4510}
4511
c5d6fa44
RS
4512/* Return true if a GOT entry for H should live in the local rather than
4513 global GOT area. */
4514
4515static bfd_boolean
4516mips_use_local_got_p (struct bfd_link_info *info,
4517 struct mips_elf_link_hash_entry *h)
4518{
4519 /* Symbols that aren't in the dynamic symbol table must live in the
4520 local GOT. This includes symbols that are completely undefined
4521 and which therefore don't bind locally. We'll report undefined
4522 symbols later if appropriate. */
4523 if (h->root.dynindx == -1)
4524 return TRUE;
4525
47275900
MR
4526 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4527 to the local GOT, as they would be implicitly relocated by the
4528 base address by the dynamic loader. */
4529 if (bfd_is_abs_symbol (&h->root.root))
4530 return FALSE;
4531
c5d6fa44
RS
4532 /* Symbols that bind locally can (and in the case of forced-local
4533 symbols, must) live in the local GOT. */
4534 if (h->got_only_for_calls
4535 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4536 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4537 return TRUE;
4538
4539 /* If this is an executable that must provide a definition of the symbol,
4540 either though PLTs or copy relocations, then that address should go in
4541 the local rather than global GOT. */
0e1862bb 4542 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4543 return TRUE;
4544
4545 return FALSE;
4546}
4547
6c42ddb9
RS
4548/* A mips_elf_link_hash_traverse callback for which DATA points to the
4549 link_info structure. Decide whether the hash entry needs an entry in
4550 the global part of the primary GOT, setting global_got_area accordingly.
4551 Count the number of global symbols that are in the primary GOT only
4552 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4553
4554static int
d4596a51 4555mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4556{
020d7251 4557 struct bfd_link_info *info;
6ccf4795 4558 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4559 struct mips_got_info *g;
4560
020d7251 4561 info = (struct bfd_link_info *) data;
6ccf4795
RS
4562 htab = mips_elf_hash_table (info);
4563 g = htab->got_info;
d4596a51 4564 if (h->global_got_area != GGA_NONE)
33bb52fb 4565 {
020d7251 4566 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4567 local or global GOT. */
4568 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4569 /* The symbol belongs in the local GOT. We no longer need this
4570 entry if it was only used for relocations; those relocations
4571 will be against the null or section symbol instead of H. */
4572 h->global_got_area = GGA_NONE;
6ccf4795
RS
4573 else if (htab->is_vxworks
4574 && h->got_only_for_calls
1bbce132 4575 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4576 /* On VxWorks, calls can refer directly to the .got.plt entry;
4577 they don't need entries in the regular GOT. .got.plt entries
4578 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4579 h->global_got_area = GGA_NONE;
6c42ddb9 4580 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4581 {
6c42ddb9 4582 g->reloc_only_gotno++;
23cc69b6 4583 g->global_gotno++;
23cc69b6 4584 }
33bb52fb
RS
4585 }
4586 return 1;
4587}
f4416af6 4588\f
d7206569
RS
4589/* A htab_traverse callback for GOT entries. Add each one to the GOT
4590 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4591
4592static int
d7206569 4593mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4594{
d7206569
RS
4595 struct mips_got_entry *entry;
4596 struct mips_elf_traverse_got_arg *arg;
4597 void **slot;
f4416af6 4598
d7206569
RS
4599 entry = (struct mips_got_entry *) *entryp;
4600 arg = (struct mips_elf_traverse_got_arg *) data;
4601 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4602 if (!slot)
f4416af6 4603 {
d7206569
RS
4604 arg->g = NULL;
4605 return 0;
f4416af6 4606 }
d7206569 4607 if (!*slot)
c224138d 4608 {
d7206569
RS
4609 *slot = entry;
4610 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4611 }
f4416af6
AO
4612 return 1;
4613}
4614
d7206569
RS
4615/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4616 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4617
4618static int
d7206569 4619mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4620{
d7206569
RS
4621 struct mips_got_page_entry *entry;
4622 struct mips_elf_traverse_got_arg *arg;
4623 void **slot;
c224138d 4624
d7206569
RS
4625 entry = (struct mips_got_page_entry *) *entryp;
4626 arg = (struct mips_elf_traverse_got_arg *) data;
4627 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4628 if (!slot)
c224138d 4629 {
d7206569 4630 arg->g = NULL;
c224138d
RS
4631 return 0;
4632 }
d7206569
RS
4633 if (!*slot)
4634 {
4635 *slot = entry;
4636 arg->g->page_gotno += entry->num_pages;
4637 }
c224138d
RS
4638 return 1;
4639}
4640
d7206569
RS
4641/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4642 this would lead to overflow, 1 if they were merged successfully,
4643 and 0 if a merge failed due to lack of memory. (These values are chosen
4644 so that nonnegative return values can be returned by a htab_traverse
4645 callback.) */
c224138d
RS
4646
4647static int
d7206569 4648mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4649 struct mips_got_info *to,
4650 struct mips_elf_got_per_bfd_arg *arg)
4651{
d7206569 4652 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4653 unsigned int estimate;
4654
4655 /* Work out how many page entries we would need for the combined GOT. */
4656 estimate = arg->max_pages;
4657 if (estimate >= from->page_gotno + to->page_gotno)
4658 estimate = from->page_gotno + to->page_gotno;
4659
e2ece73c 4660 /* And conservatively estimate how many local and TLS entries
c224138d 4661 would be needed. */
e2ece73c
RS
4662 estimate += from->local_gotno + to->local_gotno;
4663 estimate += from->tls_gotno + to->tls_gotno;
4664
17214937
RS
4665 /* If we're merging with the primary got, any TLS relocations will
4666 come after the full set of global entries. Otherwise estimate those
e2ece73c 4667 conservatively as well. */
17214937 4668 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4669 estimate += arg->global_count;
4670 else
4671 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4672
4673 /* Bail out if the combined GOT might be too big. */
4674 if (estimate > arg->max_count)
4675 return -1;
4676
c224138d 4677 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4678 tga.info = arg->info;
4679 tga.g = to;
4680 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4681 if (!tga.g)
c224138d
RS
4682 return 0;
4683
d7206569
RS
4684 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4685 if (!tga.g)
c224138d
RS
4686 return 0;
4687
d7206569 4688 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4689 return 1;
4690}
4691
d7206569 4692/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4693 as possible of the primary got, since it doesn't require explicit
4694 dynamic relocations, but don't use bfds that would reference global
4695 symbols out of the addressable range. Failing the primary got,
4696 attempt to merge with the current got, or finish the current got
4697 and then make make the new got current. */
4698
d7206569
RS
4699static bfd_boolean
4700mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4701 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4702{
c224138d
RS
4703 unsigned int estimate;
4704 int result;
4705
476366af 4706 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4707 return FALSE;
4708
c224138d
RS
4709 /* Work out the number of page, local and TLS entries. */
4710 estimate = arg->max_pages;
4711 if (estimate > g->page_gotno)
4712 estimate = g->page_gotno;
4713 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4714
4715 /* We place TLS GOT entries after both locals and globals. The globals
4716 for the primary GOT may overflow the normal GOT size limit, so be
4717 sure not to merge a GOT which requires TLS with the primary GOT in that
4718 case. This doesn't affect non-primary GOTs. */
c224138d 4719 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4720
c224138d 4721 if (estimate <= arg->max_count)
f4416af6 4722 {
c224138d
RS
4723 /* If we don't have a primary GOT, use it as
4724 a starting point for the primary GOT. */
4725 if (!arg->primary)
4726 {
d7206569
RS
4727 arg->primary = g;
4728 return TRUE;
c224138d 4729 }
f4416af6 4730
c224138d 4731 /* Try merging with the primary GOT. */
d7206569 4732 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4733 if (result >= 0)
4734 return result;
f4416af6 4735 }
c224138d 4736
f4416af6 4737 /* If we can merge with the last-created got, do it. */
c224138d 4738 if (arg->current)
f4416af6 4739 {
d7206569 4740 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4741 if (result >= 0)
4742 return result;
f4416af6 4743 }
c224138d 4744
f4416af6
AO
4745 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4746 fits; if it turns out that it doesn't, we'll get relocation
4747 overflows anyway. */
c224138d
RS
4748 g->next = arg->current;
4749 arg->current = g;
0f20cc35 4750
d7206569 4751 return TRUE;
0f20cc35
DJ
4752}
4753
72e7511a
RS
4754/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4755 to GOTIDX, duplicating the entry if it has already been assigned
4756 an index in a different GOT. */
4757
4758static bfd_boolean
4759mips_elf_set_gotidx (void **entryp, long gotidx)
4760{
4761 struct mips_got_entry *entry;
4762
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->gotidx > 0)
4765 {
4766 struct mips_got_entry *new_entry;
4767
4768 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4769 if (!new_entry)
4770 return FALSE;
4771
4772 *new_entry = *entry;
4773 *entryp = new_entry;
4774 entry = new_entry;
4775 }
4776 entry->gotidx = gotidx;
4777 return TRUE;
4778}
4779
4780/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4781 mips_elf_traverse_got_arg in which DATA->value is the size of one
4782 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4783
4784static int
72e7511a 4785mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4786{
72e7511a
RS
4787 struct mips_got_entry *entry;
4788 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4789
4790 /* We're only interested in TLS symbols. */
72e7511a 4791 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4792 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4793 return 1;
4794
72e7511a 4795 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4796 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4797 {
6c42ddb9
RS
4798 arg->g = NULL;
4799 return 0;
f4416af6
AO
4800 }
4801
ead49a57 4802 /* Account for the entries we've just allocated. */
9ab066b4 4803 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4804 return 1;
4805}
4806
ab361d49
RS
4807/* A htab_traverse callback for GOT entries, where DATA points to a
4808 mips_elf_traverse_got_arg. Set the global_got_area of each global
4809 symbol to DATA->value. */
f4416af6 4810
f4416af6 4811static int
ab361d49 4812mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4813{
ab361d49
RS
4814 struct mips_got_entry *entry;
4815 struct mips_elf_traverse_got_arg *arg;
f4416af6 4816
ab361d49
RS
4817 entry = (struct mips_got_entry *) *entryp;
4818 arg = (struct mips_elf_traverse_got_arg *) data;
4819 if (entry->abfd != NULL
4820 && entry->symndx == -1
4821 && entry->d.h->global_got_area != GGA_NONE)
4822 entry->d.h->global_got_area = arg->value;
4823 return 1;
4824}
4825
4826/* A htab_traverse callback for secondary GOT entries, where DATA points
4827 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4828 and record the number of relocations they require. DATA->value is
72e7511a 4829 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4830
4831static int
4832mips_elf_set_global_gotidx (void **entryp, void *data)
4833{
4834 struct mips_got_entry *entry;
4835 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4836
ab361d49
RS
4837 entry = (struct mips_got_entry *) *entryp;
4838 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4839 if (entry->abfd != NULL
4840 && entry->symndx == -1
4841 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4842 {
cb22ccf4 4843 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4844 {
4845 arg->g = NULL;
4846 return 0;
4847 }
cb22ccf4 4848 arg->g->assigned_low_gotno += 1;
72e7511a 4849
0e1862bb 4850 if (bfd_link_pic (arg->info)
ab361d49
RS
4851 || (elf_hash_table (arg->info)->dynamic_sections_created
4852 && entry->d.h->root.def_dynamic
4853 && !entry->d.h->root.def_regular))
4854 arg->g->relocs += 1;
f4416af6
AO
4855 }
4856
4857 return 1;
4858}
4859
33bb52fb
RS
4860/* A htab_traverse callback for GOT entries for which DATA is the
4861 bfd_link_info. Forbid any global symbols from having traditional
4862 lazy-binding stubs. */
4863
0626d451 4864static int
33bb52fb 4865mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4866{
33bb52fb
RS
4867 struct bfd_link_info *info;
4868 struct mips_elf_link_hash_table *htab;
4869 struct mips_got_entry *entry;
0626d451 4870
33bb52fb
RS
4871 entry = (struct mips_got_entry *) *entryp;
4872 info = (struct bfd_link_info *) data;
4873 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4874 BFD_ASSERT (htab != NULL);
4875
0626d451
RS
4876 if (entry->abfd != NULL
4877 && entry->symndx == -1
33bb52fb 4878 && entry->d.h->needs_lazy_stub)
f4416af6 4879 {
33bb52fb
RS
4880 entry->d.h->needs_lazy_stub = FALSE;
4881 htab->lazy_stub_count--;
f4416af6 4882 }
143d77c5 4883
f4416af6
AO
4884 return 1;
4885}
4886
f4416af6
AO
4887/* Return the offset of an input bfd IBFD's GOT from the beginning of
4888 the primary GOT. */
4889static bfd_vma
9719ad41 4890mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4891{
d7206569 4892 if (!g->next)
f4416af6
AO
4893 return 0;
4894
d7206569 4895 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4896 if (! g)
4897 return 0;
4898
4899 BFD_ASSERT (g->next);
4900
4901 g = g->next;
143d77c5 4902
0f20cc35
DJ
4903 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4904 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4905}
4906
4907/* Turn a single GOT that is too big for 16-bit addressing into
4908 a sequence of GOTs, each one 16-bit addressable. */
4909
4910static bfd_boolean
9719ad41 4911mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4912 asection *got, bfd_size_type pages)
f4416af6 4913{
a8028dd0 4914 struct mips_elf_link_hash_table *htab;
f4416af6 4915 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4916 struct mips_elf_traverse_got_arg tga;
a8028dd0 4917 struct mips_got_info *g, *gg;
33bb52fb 4918 unsigned int assign, needed_relocs;
d7206569 4919 bfd *dynobj, *ibfd;
f4416af6 4920
33bb52fb 4921 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4922 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4923 BFD_ASSERT (htab != NULL);
4924
a8028dd0 4925 g = htab->got_info;
f4416af6 4926
f4416af6
AO
4927 got_per_bfd_arg.obfd = abfd;
4928 got_per_bfd_arg.info = info;
f4416af6
AO
4929 got_per_bfd_arg.current = NULL;
4930 got_per_bfd_arg.primary = NULL;
0a44bf69 4931 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4932 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4933 - htab->reserved_gotno);
c224138d 4934 got_per_bfd_arg.max_pages = pages;
0f20cc35 4935 /* The number of globals that will be included in the primary GOT.
ab361d49 4936 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4937 information. */
4938 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4939
4940 /* Try to merge the GOTs of input bfds together, as long as they
4941 don't seem to exceed the maximum GOT size, choosing one of them
4942 to be the primary GOT. */
c72f2fb2 4943 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4944 {
4945 gg = mips_elf_bfd_got (ibfd, FALSE);
4946 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4947 return FALSE;
4948 }
f4416af6 4949
0f20cc35 4950 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4951 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4952 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4953 else
4954 g->next = got_per_bfd_arg.primary;
4955 g->next->next = got_per_bfd_arg.current;
4956
4957 /* GG is now the master GOT, and G is the primary GOT. */
4958 gg = g;
4959 g = g->next;
4960
4961 /* Map the output bfd to the primary got. That's what we're going
4962 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4963 didn't mark in check_relocs, and we want a quick way to find it.
4964 We can't just use gg->next because we're going to reverse the
4965 list. */
d7206569 4966 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4967
634835ae
RS
4968 /* Every symbol that is referenced in a dynamic relocation must be
4969 present in the primary GOT, so arrange for them to appear after
4970 those that are actually referenced. */
23cc69b6 4971 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4972 g->global_gotno = gg->global_gotno;
f4416af6 4973
ab361d49
RS
4974 tga.info = info;
4975 tga.value = GGA_RELOC_ONLY;
4976 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4977 tga.value = GGA_NORMAL;
4978 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4979
4980 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4981 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4982 entries in each GOT. We can then compute the end of a GOT by
4983 adding local_gotno to global_gotno. We reverse the list and make
4984 it circular since then we'll be able to quickly compute the
4985 beginning of a GOT, by computing the end of its predecessor. To
4986 avoid special cases for the primary GOT, while still preserving
4987 assertions that are valid for both single- and multi-got links,
4988 we arrange for the main got struct to have the right number of
4989 global entries, but set its local_gotno such that the initial
4990 offset of the primary GOT is zero. Remember that the primary GOT
4991 will become the last item in the circular linked list, so it
4992 points back to the master GOT. */
4993 gg->local_gotno = -g->global_gotno;
4994 gg->global_gotno = g->global_gotno;
0f20cc35 4995 gg->tls_gotno = 0;
f4416af6
AO
4996 assign = 0;
4997 gg->next = gg;
4998
4999 do
5000 {
5001 struct mips_got_info *gn;
5002
861fb55a 5003 assign += htab->reserved_gotno;
cb22ccf4 5004 g->assigned_low_gotno = assign;
c224138d
RS
5005 g->local_gotno += assign;
5006 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 5007 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
5008 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5009
ead49a57
RS
5010 /* Take g out of the direct list, and push it onto the reversed
5011 list that gg points to. g->next is guaranteed to be nonnull after
5012 this operation, as required by mips_elf_initialize_tls_index. */
5013 gn = g->next;
5014 g->next = gg->next;
5015 gg->next = g;
5016
0f20cc35
DJ
5017 /* Set up any TLS entries. We always place the TLS entries after
5018 all non-TLS entries. */
5019 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
5020 tga.g = g;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5023 if (!tga.g)
5024 return FALSE;
1fd20d70 5025 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 5026
ead49a57 5027 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5028 g = gn;
0626d451 5029
33bb52fb
RS
5030 /* Forbid global symbols in every non-primary GOT from having
5031 lazy-binding stubs. */
0626d451 5032 if (g)
33bb52fb 5033 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5034 }
5035 while (g);
5036
59b08994 5037 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5038
5039 needed_relocs = 0;
33bb52fb
RS
5040 for (g = gg->next; g && g->next != gg; g = g->next)
5041 {
5042 unsigned int save_assign;
5043
ab361d49
RS
5044 /* Assign offsets to global GOT entries and count how many
5045 relocations they need. */
cb22ccf4
KCY
5046 save_assign = g->assigned_low_gotno;
5047 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5048 tga.info = info;
5049 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5050 tga.g = g;
5051 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5052 if (!tga.g)
5053 return FALSE;
cb22ccf4
KCY
5054 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5055 g->assigned_low_gotno = save_assign;
72e7511a 5056
0e1862bb 5057 if (bfd_link_pic (info))
33bb52fb 5058 {
cb22ccf4
KCY
5059 g->relocs += g->local_gotno - g->assigned_low_gotno;
5060 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5061 + g->next->global_gotno
5062 + g->next->tls_gotno
861fb55a 5063 + htab->reserved_gotno);
33bb52fb 5064 }
ab361d49 5065 needed_relocs += g->relocs;
33bb52fb 5066 }
ab361d49 5067 needed_relocs += g->relocs;
33bb52fb
RS
5068
5069 if (needed_relocs)
5070 mips_elf_allocate_dynamic_relocations (dynobj, info,
5071 needed_relocs);
143d77c5 5072
f4416af6
AO
5073 return TRUE;
5074}
143d77c5 5075
b49e97c9
TS
5076\f
5077/* Returns the first relocation of type r_type found, beginning with
5078 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5079
5080static const Elf_Internal_Rela *
9719ad41
RS
5081mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5082 const Elf_Internal_Rela *relocation,
5083 const Elf_Internal_Rela *relend)
b49e97c9 5084{
c000e262
TS
5085 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5086
b49e97c9
TS
5087 while (relocation < relend)
5088 {
c000e262
TS
5089 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5090 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5091 return relocation;
5092
5093 ++relocation;
5094 }
5095
5096 /* We didn't find it. */
b49e97c9
TS
5097 return NULL;
5098}
5099
020d7251 5100/* Return whether an input relocation is against a local symbol. */
b49e97c9 5101
b34976b6 5102static bfd_boolean
9719ad41
RS
5103mips_elf_local_relocation_p (bfd *input_bfd,
5104 const Elf_Internal_Rela *relocation,
020d7251 5105 asection **local_sections)
b49e97c9
TS
5106{
5107 unsigned long r_symndx;
5108 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5109 size_t extsymoff;
5110
5111 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5112 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5113 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5114
5115 if (r_symndx < extsymoff)
b34976b6 5116 return TRUE;
b49e97c9 5117 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5118 return TRUE;
b49e97c9 5119
b34976b6 5120 return FALSE;
b49e97c9
TS
5121}
5122\f
5123/* Sign-extend VALUE, which has the indicated number of BITS. */
5124
a7ebbfdf 5125bfd_vma
9719ad41 5126_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5127{
5128 if (value & ((bfd_vma) 1 << (bits - 1)))
5129 /* VALUE is negative. */
5130 value |= ((bfd_vma) - 1) << bits;
5131
5132 return value;
5133}
5134
5135/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5136 range expressible by a signed number with the indicated number of
b49e97c9
TS
5137 BITS. */
5138
b34976b6 5139static bfd_boolean
9719ad41 5140mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5141{
5142 bfd_signed_vma svalue = (bfd_signed_vma) value;
5143
5144 if (svalue > (1 << (bits - 1)) - 1)
5145 /* The value is too big. */
b34976b6 5146 return TRUE;
b49e97c9
TS
5147 else if (svalue < -(1 << (bits - 1)))
5148 /* The value is too small. */
b34976b6 5149 return TRUE;
b49e97c9
TS
5150
5151 /* All is well. */
b34976b6 5152 return FALSE;
b49e97c9
TS
5153}
5154
5155/* Calculate the %high function. */
5156
5157static bfd_vma
9719ad41 5158mips_elf_high (bfd_vma value)
b49e97c9
TS
5159{
5160 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5161}
5162
5163/* Calculate the %higher function. */
5164
5165static bfd_vma
9719ad41 5166mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5167{
5168#ifdef BFD64
5169 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5170#else
5171 abort ();
c5ae1840 5172 return MINUS_ONE;
b49e97c9
TS
5173#endif
5174}
5175
5176/* Calculate the %highest function. */
5177
5178static bfd_vma
9719ad41 5179mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5180{
5181#ifdef BFD64
b15e6682 5182 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5183#else
5184 abort ();
c5ae1840 5185 return MINUS_ONE;
b49e97c9
TS
5186#endif
5187}
5188\f
5189/* Create the .compact_rel section. */
5190
b34976b6 5191static bfd_boolean
9719ad41
RS
5192mips_elf_create_compact_rel_section
5193 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5194{
5195 flagword flags;
5196 register asection *s;
5197
3d4d4302 5198 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5199 {
5200 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5201 | SEC_READONLY);
5202
3d4d4302 5203 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5204 if (s == NULL
fd361982 5205 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5206 return FALSE;
b49e97c9 5207
eea6121a 5208 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5209 }
5210
b34976b6 5211 return TRUE;
b49e97c9
TS
5212}
5213
5214/* Create the .got section to hold the global offset table. */
5215
b34976b6 5216static bfd_boolean
23cc69b6 5217mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5218{
5219 flagword flags;
5220 register asection *s;
5221 struct elf_link_hash_entry *h;
14a793b2 5222 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5223 struct mips_elf_link_hash_table *htab;
5224
5225 htab = mips_elf_hash_table (info);
4dfe6ac6 5226 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5227
5228 /* This function may be called more than once. */
ce558b89 5229 if (htab->root.sgot)
23cc69b6 5230 return TRUE;
b49e97c9
TS
5231
5232 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5233 | SEC_LINKER_CREATED);
5234
72b4917c
TS
5235 /* We have to use an alignment of 2**4 here because this is hardcoded
5236 in the function stub generation and in the linker script. */
87e0a731 5237 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5238 if (s == NULL
fd361982 5239 || !bfd_set_section_alignment (s, 4))
b34976b6 5240 return FALSE;
ce558b89 5241 htab->root.sgot = s;
b49e97c9
TS
5242
5243 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5244 linker script because we don't want to define the symbol if we
5245 are not creating a global offset table. */
14a793b2 5246 bh = NULL;
b49e97c9
TS
5247 if (! (_bfd_generic_link_add_one_symbol
5248 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5249 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5250 return FALSE;
14a793b2
AM
5251
5252 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5253 h->non_elf = 0;
5254 h->def_regular = 1;
b49e97c9 5255 h->type = STT_OBJECT;
2f9efdfc 5256 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5257 elf_hash_table (info)->hgot = h;
b49e97c9 5258
0e1862bb 5259 if (bfd_link_pic (info)
c152c796 5260 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5261 return FALSE;
b49e97c9 5262
3dff0dd1 5263 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5264 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5265 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5266
861fb55a 5267 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5268 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5269 SEC_ALLOC | SEC_LOAD
5270 | SEC_HAS_CONTENTS
5271 | SEC_IN_MEMORY
5272 | SEC_LINKER_CREATED);
861fb55a
DJ
5273 if (s == NULL)
5274 return FALSE;
ce558b89 5275 htab->root.sgotplt = s;
0a44bf69 5276
b34976b6 5277 return TRUE;
b49e97c9 5278}
b49e97c9 5279\f
0a44bf69
RS
5280/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5281 __GOTT_INDEX__ symbols. These symbols are only special for
5282 shared objects; they are not used in executables. */
5283
5284static bfd_boolean
5285is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5286{
5287 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5288 && bfd_link_pic (info)
0a44bf69
RS
5289 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5290 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5291}
861fb55a
DJ
5292
5293/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5294 require an la25 stub. See also mips_elf_local_pic_function_p,
5295 which determines whether the destination function ever requires a
5296 stub. */
5297
5298static bfd_boolean
8f0c309a
CLT
5299mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5300 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5301{
5302 /* We specifically ignore branches and jumps from EF_PIC objects,
5303 where the onus is on the compiler or programmer to perform any
5304 necessary initialization of $25. Sometimes such initialization
5305 is unnecessary; for example, -mno-shared functions do not use
5306 the incoming value of $25, and may therefore be called directly. */
5307 if (PIC_OBJECT_P (input_bfd))
5308 return FALSE;
5309
5310 switch (r_type)
5311 {
5312 case R_MIPS_26:
5313 case R_MIPS_PC16:
7361da2c
AB
5314 case R_MIPS_PC21_S2:
5315 case R_MIPS_PC26_S2:
df58fc94
RS
5316 case R_MICROMIPS_26_S1:
5317 case R_MICROMIPS_PC7_S1:
5318 case R_MICROMIPS_PC10_S1:
5319 case R_MICROMIPS_PC16_S1:
5320 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5321 return TRUE;
5322
8f0c309a
CLT
5323 case R_MIPS16_26:
5324 return !target_is_16_bit_code_p;
5325
861fb55a
DJ
5326 default:
5327 return FALSE;
5328 }
5329}
0a44bf69 5330\f
47275900
MR
5331/* Obtain the field relocated by RELOCATION. */
5332
5333static bfd_vma
5334mips_elf_obtain_contents (reloc_howto_type *howto,
5335 const Elf_Internal_Rela *relocation,
5336 bfd *input_bfd, bfd_byte *contents)
5337{
5338 bfd_vma x = 0;
5339 bfd_byte *location = contents + relocation->r_offset;
5340 unsigned int size = bfd_get_reloc_size (howto);
5341
5342 /* Obtain the bytes. */
5343 if (size != 0)
5344 x = bfd_get (8 * size, input_bfd, location);
5345
5346 return x;
5347}
5348
98e10ffa
MR
5349/* Store the field relocated by RELOCATION. */
5350
5351static void
5352mips_elf_store_contents (reloc_howto_type *howto,
5353 const Elf_Internal_Rela *relocation,
5354 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5355{
5356 bfd_byte *location = contents + relocation->r_offset;
5357 unsigned int size = bfd_get_reloc_size (howto);
5358
5359 /* Put the value into the output. */
5360 if (size != 0)
5361 bfd_put (8 * size, input_bfd, x, location);
5362}
5363
47275900
MR
5364/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5365 RELOCATION described by HOWTO, with a move of 0 to the load target
5366 register, returning TRUE if that is successful and FALSE otherwise.
5367 If DOIT is FALSE, then only determine it patching is possible and
5368 return status without actually changing CONTENTS.
5369*/
5370
5371static bfd_boolean
5372mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5373 const Elf_Internal_Rela *relocation,
5374 reloc_howto_type *howto, bfd_boolean doit)
5375{
5376 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5377 bfd_byte *location = contents + relocation->r_offset;
5378 bfd_boolean nullified = TRUE;
5379 bfd_vma x;
5380
5381 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5382
5383 /* Obtain the current value. */
5384 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5385
5386 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5387 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5388 if (mips16_reloc_p (r_type)
5389 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5390 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5391 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5392 else if (micromips_reloc_p (r_type)
5393 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5394 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5395 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5396 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5397 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5398 else
5399 nullified = FALSE;
5400
5401 /* Put the value into the output. */
5402 if (doit && nullified)
5403 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5404
5405 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5406
5407 return nullified;
5408}
5409
b49e97c9
TS
5410/* Calculate the value produced by the RELOCATION (which comes from
5411 the INPUT_BFD). The ADDEND is the addend to use for this
5412 RELOCATION; RELOCATION->R_ADDEND is ignored.
5413
5414 The result of the relocation calculation is stored in VALUEP.
38a7df63 5415 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5416 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5417
5418 This function returns bfd_reloc_continue if the caller need take no
5419 further action regarding this relocation, bfd_reloc_notsupported if
5420 something goes dramatically wrong, bfd_reloc_overflow if an
5421 overflow occurs, and bfd_reloc_ok to indicate success. */
5422
5423static bfd_reloc_status_type
9719ad41 5424mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5425 asection *input_section, bfd_byte *contents,
9719ad41
RS
5426 struct bfd_link_info *info,
5427 const Elf_Internal_Rela *relocation,
5428 bfd_vma addend, reloc_howto_type *howto,
5429 Elf_Internal_Sym *local_syms,
5430 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5431 const char **namep,
5432 bfd_boolean *cross_mode_jump_p,
9719ad41 5433 bfd_boolean save_addend)
b49e97c9
TS
5434{
5435 /* The eventual value we will return. */
5436 bfd_vma value;
5437 /* The address of the symbol against which the relocation is
5438 occurring. */
5439 bfd_vma symbol = 0;
5440 /* The final GP value to be used for the relocatable, executable, or
5441 shared object file being produced. */
0a61c8c2 5442 bfd_vma gp;
b49e97c9
TS
5443 /* The place (section offset or address) of the storage unit being
5444 relocated. */
5445 bfd_vma p;
5446 /* The value of GP used to create the relocatable object. */
0a61c8c2 5447 bfd_vma gp0;
b49e97c9
TS
5448 /* The offset into the global offset table at which the address of
5449 the relocation entry symbol, adjusted by the addend, resides
5450 during execution. */
5451 bfd_vma g = MINUS_ONE;
5452 /* The section in which the symbol referenced by the relocation is
5453 located. */
5454 asection *sec = NULL;
5455 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5456 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5457 symbol. */
b34976b6 5458 bfd_boolean local_p, was_local_p;
77434823
MR
5459 /* TRUE if the symbol referred to by this relocation is a section
5460 symbol. */
5461 bfd_boolean section_p = FALSE;
b34976b6
AM
5462 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5463 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5464 /* TRUE if the symbol referred to by this relocation is
5465 "__gnu_local_gp". */
5466 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5467 Elf_Internal_Shdr *symtab_hdr;
5468 size_t extsymoff;
5469 unsigned long r_symndx;
5470 int r_type;
b34976b6 5471 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5472 relocation value. */
b34976b6
AM
5473 bfd_boolean overflowed_p;
5474 /* TRUE if this relocation refers to a MIPS16 function. */
5475 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5476 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5477 struct mips_elf_link_hash_table *htab;
5478 bfd *dynobj;
ad951203 5479 bfd_boolean resolved_to_zero;
0a44bf69
RS
5480
5481 dynobj = elf_hash_table (info)->dynobj;
5482 htab = mips_elf_hash_table (info);
4dfe6ac6 5483 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5484
5485 /* Parse the relocation. */
5486 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5487 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5488 p = (input_section->output_section->vma
5489 + input_section->output_offset
5490 + relocation->r_offset);
5491
5492 /* Assume that there will be no overflow. */
b34976b6 5493 overflowed_p = FALSE;
b49e97c9
TS
5494
5495 /* Figure out whether or not the symbol is local, and get the offset
5496 used in the array of hash table entries. */
5497 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5498 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5499 local_sections);
bce03d3d 5500 was_local_p = local_p;
b49e97c9
TS
5501 if (! elf_bad_symtab (input_bfd))
5502 extsymoff = symtab_hdr->sh_info;
5503 else
5504 {
5505 /* The symbol table does not follow the rule that local symbols
5506 must come before globals. */
5507 extsymoff = 0;
5508 }
5509
5510 /* Figure out the value of the symbol. */
5511 if (local_p)
5512 {
9d862524 5513 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5514 Elf_Internal_Sym *sym;
5515
5516 sym = local_syms + r_symndx;
5517 sec = local_sections[r_symndx];
5518
77434823
MR
5519 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5520
b49e97c9 5521 symbol = sec->output_section->vma + sec->output_offset;
77434823 5522 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5523 symbol += sym->st_value;
77434823 5524 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5525 {
5526 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5527 addend -= symbol;
5528 addend += sec->output_section->vma + sec->output_offset;
5529 }
b49e97c9 5530
df58fc94
RS
5531 /* MIPS16/microMIPS text labels should be treated as odd. */
5532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5533 ++symbol;
5534
5535 /* Record the name of this symbol, for our caller. */
5536 *namep = bfd_elf_string_from_elf_section (input_bfd,
5537 symtab_hdr->sh_link,
5538 sym->st_name);
ceab86af 5539 if (*namep == NULL || **namep == '\0')
fd361982 5540 *namep = bfd_section_name (sec);
b49e97c9 5541
9d862524 5542 /* For relocations against a section symbol and ones against no
07d6d2b8 5543 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5544 if (section_p || r_symndx == STN_UNDEF)
5545 {
5546 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5547 target_is_micromips_code_p = (addend & 1) && micromips_p;
5548 }
5549 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5550 from the value of the symbol plus addend. */
9d862524
MR
5551 else if (bfd_is_abs_section (sec))
5552 {
5553 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5554 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5555 }
5556 /* Otherwise just use the regular symbol annotation available. */
5557 else
5558 {
5559 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5560 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5561 }
b49e97c9
TS
5562 }
5563 else
5564 {
560e09e9
NC
5565 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5566
b49e97c9
TS
5567 /* For global symbols we look up the symbol in the hash-table. */
5568 h = ((struct mips_elf_link_hash_entry *)
5569 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5570 /* Find the real hash-table entry for this symbol. */
5571 while (h->root.root.type == bfd_link_hash_indirect
5572 || h->root.root.type == bfd_link_hash_warning)
5573 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5574
5575 /* Record the name of this symbol, for our caller. */
5576 *namep = h->root.root.root.string;
5577
5578 /* See if this is the special _gp_disp symbol. Note that such a
5579 symbol must always be a global symbol. */
560e09e9 5580 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5581 && ! NEWABI_P (input_bfd))
5582 {
5583 /* Relocations against _gp_disp are permitted only with
5584 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5585 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5586 return bfd_reloc_notsupported;
5587
b34976b6 5588 gp_disp_p = TRUE;
b49e97c9 5589 }
bbe506e8
TS
5590 /* See if this is the special _gp symbol. Note that such a
5591 symbol must always be a global symbol. */
5592 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5593 gnu_local_gp_p = TRUE;
5594
5595
b49e97c9
TS
5596 /* If this symbol is defined, calculate its address. Note that
5597 _gp_disp is a magic symbol, always implicitly defined by the
5598 linker, so it's inappropriate to check to see whether or not
5599 its defined. */
5600 else if ((h->root.root.type == bfd_link_hash_defined
5601 || h->root.root.type == bfd_link_hash_defweak)
5602 && h->root.root.u.def.section)
5603 {
5604 sec = h->root.root.u.def.section;
5605 if (sec->output_section)
5606 symbol = (h->root.root.u.def.value
5607 + sec->output_section->vma
5608 + sec->output_offset);
5609 else
5610 symbol = h->root.root.u.def.value;
5611 }
5612 else if (h->root.root.type == bfd_link_hash_undefweak)
5613 /* We allow relocations against undefined weak symbols, giving
5614 it the value zero, so that you can undefined weak functions
5615 and check to see if they exist by looking at their
5616 addresses. */
5617 symbol = 0;
59c2e50f 5618 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5619 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5620 symbol = 0;
a4d0f181
TS
5621 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5622 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5623 {
5624 /* If this is a dynamic link, we should have created a
5625 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5626 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5627 Otherwise, we should define the symbol with a value of 0.
5628 FIXME: It should probably get into the symbol table
5629 somehow as well. */
0e1862bb 5630 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5631 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5632 symbol = 0;
5633 }
5e2b0d47
NC
5634 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5635 {
5636 /* This is an optional symbol - an Irix specific extension to the
5637 ELF spec. Ignore it for now.
5638 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5639 than simply ignoring them, but we do not handle this for now.
5640 For information see the "64-bit ELF Object File Specification"
5641 which is available from here:
5642 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5643 symbol = 0;
5644 }
b49e97c9
TS
5645 else
5646 {
dfb93f11
JC
5647 bfd_boolean reject_undefined
5648 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5649 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5650
1a72702b
AM
5651 (*info->callbacks->undefined_symbol)
5652 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5653 input_section, relocation->r_offset, reject_undefined);
5654
5655 if (reject_undefined)
5656 return bfd_reloc_undefined;
5657
5658 symbol = 0;
b49e97c9
TS
5659 }
5660
30c09090 5661 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5662 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5663 }
5664
738e5348
RS
5665 /* If this is a reference to a 16-bit function with a stub, we need
5666 to redirect the relocation to the stub unless:
5667
5668 (a) the relocation is for a MIPS16 JAL;
5669
5670 (b) the relocation is for a MIPS16 PIC call, and there are no
5671 non-MIPS16 uses of the GOT slot; or
5672
5673 (c) the section allows direct references to MIPS16 functions. */
5674 if (r_type != R_MIPS16_26
0e1862bb 5675 && !bfd_link_relocatable (info)
738e5348
RS
5676 && ((h != NULL
5677 && h->fn_stub != NULL
5678 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5679 || (local_p
698600e4
AM
5680 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5681 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5682 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5683 {
5684 /* This is a 32- or 64-bit call to a 16-bit function. We should
5685 have already noticed that we were going to need the
5686 stub. */
5687 if (local_p)
8f0c309a 5688 {
698600e4 5689 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5690 value = 0;
5691 }
b49e97c9
TS
5692 else
5693 {
5694 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5695 if (h->la25_stub)
5696 {
5697 /* If a LA25 header for the stub itself exists, point to the
5698 prepended LUI/ADDIU sequence. */
5699 sec = h->la25_stub->stub_section;
5700 value = h->la25_stub->offset;
5701 }
5702 else
5703 {
5704 sec = h->fn_stub;
5705 value = 0;
5706 }
b49e97c9
TS
5707 }
5708
8f0c309a 5709 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5710 /* The target is 16-bit, but the stub isn't. */
5711 target_is_16_bit_code_p = FALSE;
b49e97c9 5712 }
1bbce132
MR
5713 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5714 to a standard MIPS function, we need to redirect the call to the stub.
5715 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5716 indirect calls should use an indirect stub instead. */
0e1862bb 5717 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5718 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5719 || (local_p
698600e4
AM
5720 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5721 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5722 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5723 {
b9d58d71 5724 if (local_p)
698600e4 5725 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5726 else
b49e97c9 5727 {
b9d58d71
TS
5728 /* If both call_stub and call_fp_stub are defined, we can figure
5729 out which one to use by checking which one appears in the input
5730 file. */
5731 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5732 {
b9d58d71 5733 asection *o;
68ffbac6 5734
b9d58d71
TS
5735 sec = NULL;
5736 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5737 {
fd361982 5738 if (CALL_FP_STUB_P (bfd_section_name (o)))
b9d58d71
TS
5739 {
5740 sec = h->call_fp_stub;
5741 break;
5742 }
b49e97c9 5743 }
b9d58d71
TS
5744 if (sec == NULL)
5745 sec = h->call_stub;
b49e97c9 5746 }
b9d58d71 5747 else if (h->call_stub != NULL)
b49e97c9 5748 sec = h->call_stub;
b9d58d71
TS
5749 else
5750 sec = h->call_fp_stub;
07d6d2b8 5751 }
b49e97c9 5752
eea6121a 5753 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5754 symbol = sec->output_section->vma + sec->output_offset;
5755 }
861fb55a
DJ
5756 /* If this is a direct call to a PIC function, redirect to the
5757 non-PIC stub. */
5758 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5759 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5760 target_is_16_bit_code_p))
c7318def
MR
5761 {
5762 symbol = (h->la25_stub->stub_section->output_section->vma
5763 + h->la25_stub->stub_section->output_offset
5764 + h->la25_stub->offset);
5765 if (ELF_ST_IS_MICROMIPS (h->root.other))
5766 symbol |= 1;
5767 }
1bbce132
MR
5768 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5769 entry is used if a standard PLT entry has also been made. In this
5770 case the symbol will have been set by mips_elf_set_plt_sym_value
5771 to point to the standard PLT entry, so redirect to the compressed
5772 one. */
54806ffa
MR
5773 else if ((mips16_branch_reloc_p (r_type)
5774 || micromips_branch_reloc_p (r_type))
0e1862bb 5775 && !bfd_link_relocatable (info)
1bbce132
MR
5776 && h != NULL
5777 && h->use_plt_entry
5778 && h->root.plt.plist->comp_offset != MINUS_ONE
5779 && h->root.plt.plist->mips_offset != MINUS_ONE)
5780 {
5781 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5782
ce558b89 5783 sec = htab->root.splt;
1bbce132
MR
5784 symbol = (sec->output_section->vma
5785 + sec->output_offset
5786 + htab->plt_header_size
5787 + htab->plt_mips_offset
5788 + h->root.plt.plist->comp_offset
5789 + 1);
5790
5791 target_is_16_bit_code_p = !micromips_p;
5792 target_is_micromips_code_p = micromips_p;
5793 }
b49e97c9 5794
df58fc94 5795 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5796 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5797 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5798 {
4eca0228 5799 _bfd_error_handler
df58fc94
RS
5800 (_("MIPS16 and microMIPS functions cannot call each other"));
5801 return bfd_reloc_notsupported;
5802 }
5803
b49e97c9 5804 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5805 mode change. However, we can ignore calls to undefined weak symbols,
5806 which should never be executed at runtime. This exception is important
5807 because the assembly writer may have "known" that any definition of the
5808 symbol would be 16-bit code, and that direct jumps were therefore
5809 acceptable. */
0e1862bb 5810 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5811 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5812 && ((mips16_branch_reloc_p (r_type)
5813 && !target_is_16_bit_code_p)
5814 || (micromips_branch_reloc_p (r_type)
df58fc94 5815 && !target_is_micromips_code_p)
9d862524
MR
5816 || ((branch_reloc_p (r_type)
5817 || r_type == R_MIPS_JALR)
df58fc94
RS
5818 && (target_is_16_bit_code_p
5819 || target_is_micromips_code_p))));
b49e97c9 5820
47275900
MR
5821 resolved_to_zero = (h != NULL
5822 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5823
5824 switch (r_type)
5825 {
5826 case R_MIPS16_CALL16:
5827 case R_MIPS16_GOT16:
5828 case R_MIPS_CALL16:
5829 case R_MIPS_GOT16:
5830 case R_MIPS_GOT_PAGE:
5831 case R_MIPS_GOT_DISP:
5832 case R_MIPS_GOT_LO16:
5833 case R_MIPS_CALL_LO16:
5834 case R_MICROMIPS_CALL16:
5835 case R_MICROMIPS_GOT16:
5836 case R_MICROMIPS_GOT_PAGE:
5837 case R_MICROMIPS_GOT_DISP:
5838 case R_MICROMIPS_GOT_LO16:
5839 case R_MICROMIPS_CALL_LO16:
5840 if (resolved_to_zero
5841 && !bfd_link_relocatable (info)
5842 && mips_elf_nullify_got_load (input_bfd, contents,
5843 relocation, howto, TRUE))
5844 return bfd_reloc_continue;
5845
5846 /* Fall through. */
5847 case R_MIPS_GOT_HI16:
5848 case R_MIPS_CALL_HI16:
5849 case R_MICROMIPS_GOT_HI16:
5850 case R_MICROMIPS_CALL_HI16:
5851 if (resolved_to_zero
5852 && htab->use_absolute_zero
5853 && bfd_link_pic (info))
5854 {
5855 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5856 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5857 FALSE, FALSE, FALSE);
5858 BFD_ASSERT (h != NULL);
5859 }
5860 break;
5861 }
5862
c5d6fa44 5863 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5864
0a61c8c2
RS
5865 gp0 = _bfd_get_gp_value (input_bfd);
5866 gp = _bfd_get_gp_value (abfd);
23cc69b6 5867 if (htab->got_info)
a8028dd0 5868 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5869
5870 if (gnu_local_gp_p)
5871 symbol = gp;
5872
df58fc94
RS
5873 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5874 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5875 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5876 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5877 {
df58fc94
RS
5878 r_type = (micromips_reloc_p (r_type)
5879 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5880 addend = 0;
5881 }
5882
e77760d2 5883 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5884 to need it, get it now. */
b49e97c9
TS
5885 switch (r_type)
5886 {
738e5348
RS
5887 case R_MIPS16_CALL16:
5888 case R_MIPS16_GOT16:
b49e97c9
TS
5889 case R_MIPS_CALL16:
5890 case R_MIPS_GOT16:
5891 case R_MIPS_GOT_DISP:
5892 case R_MIPS_GOT_HI16:
5893 case R_MIPS_CALL_HI16:
5894 case R_MIPS_GOT_LO16:
5895 case R_MIPS_CALL_LO16:
df58fc94
RS
5896 case R_MICROMIPS_CALL16:
5897 case R_MICROMIPS_GOT16:
5898 case R_MICROMIPS_GOT_DISP:
5899 case R_MICROMIPS_GOT_HI16:
5900 case R_MICROMIPS_CALL_HI16:
5901 case R_MICROMIPS_GOT_LO16:
5902 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5903 case R_MIPS_TLS_GD:
5904 case R_MIPS_TLS_GOTTPREL:
5905 case R_MIPS_TLS_LDM:
d0f13682
CLT
5906 case R_MIPS16_TLS_GD:
5907 case R_MIPS16_TLS_GOTTPREL:
5908 case R_MIPS16_TLS_LDM:
df58fc94
RS
5909 case R_MICROMIPS_TLS_GD:
5910 case R_MICROMIPS_TLS_GOTTPREL:
5911 case R_MICROMIPS_TLS_LDM:
b49e97c9 5912 /* Find the index into the GOT where this value is located. */
df58fc94 5913 if (tls_ldm_reloc_p (r_type))
0f20cc35 5914 {
0a44bf69 5915 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5916 0, 0, NULL, r_type);
0f20cc35
DJ
5917 if (g == MINUS_ONE)
5918 return bfd_reloc_outofrange;
5919 }
5920 else if (!local_p)
b49e97c9 5921 {
0a44bf69
RS
5922 /* On VxWorks, CALL relocations should refer to the .got.plt
5923 entry, which is initialized to point at the PLT stub. */
5924 if (htab->is_vxworks
df58fc94
RS
5925 && (call_hi16_reloc_p (r_type)
5926 || call_lo16_reloc_p (r_type)
738e5348 5927 || call16_reloc_p (r_type)))
0a44bf69
RS
5928 {
5929 BFD_ASSERT (addend == 0);
5930 BFD_ASSERT (h->root.needs_plt);
5931 g = mips_elf_gotplt_index (info, &h->root);
5932 }
5933 else
b49e97c9 5934 {
020d7251 5935 BFD_ASSERT (addend == 0);
13fbec83
RS
5936 g = mips_elf_global_got_index (abfd, info, input_bfd,
5937 &h->root, r_type);
e641e783 5938 if (!TLS_RELOC_P (r_type)
020d7251
RS
5939 && !elf_hash_table (info)->dynamic_sections_created)
5940 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5941 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5942 }
5943 }
0a44bf69 5944 else if (!htab->is_vxworks
738e5348 5945 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5946 /* The calculation below does not involve "g". */
b49e97c9
TS
5947 break;
5948 else
5949 {
5c18022e 5950 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5951 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5952 if (g == MINUS_ONE)
5953 return bfd_reloc_outofrange;
5954 }
5955
5956 /* Convert GOT indices to actual offsets. */
a8028dd0 5957 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5958 break;
b49e97c9
TS
5959 }
5960
0a44bf69
RS
5961 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5962 symbols are resolved by the loader. Add them to .rela.dyn. */
5963 if (h != NULL && is_gott_symbol (info, &h->root))
5964 {
5965 Elf_Internal_Rela outrel;
5966 bfd_byte *loc;
5967 asection *s;
5968
5969 s = mips_elf_rel_dyn_section (info, FALSE);
5970 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5971
5972 outrel.r_offset = (input_section->output_section->vma
5973 + input_section->output_offset
5974 + relocation->r_offset);
5975 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5976 outrel.r_addend = addend;
5977 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5978
5979 /* If we've written this relocation for a readonly section,
5980 we need to set DF_TEXTREL again, so that we do not delete the
5981 DT_TEXTREL tag. */
5982 if (MIPS_ELF_READONLY_SECTION (input_section))
5983 info->flags |= DF_TEXTREL;
5984
0a44bf69
RS
5985 *valuep = 0;
5986 return bfd_reloc_ok;
5987 }
5988
b49e97c9
TS
5989 /* Figure out what kind of relocation is being performed. */
5990 switch (r_type)
5991 {
5992 case R_MIPS_NONE:
5993 return bfd_reloc_continue;
5994
5995 case R_MIPS_16:
c3eb94b4
MF
5996 if (howto->partial_inplace)
5997 addend = _bfd_mips_elf_sign_extend (addend, 16);
5998 value = symbol + addend;
b49e97c9
TS
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS_32:
6003 case R_MIPS_REL32:
6004 case R_MIPS_64:
0e1862bb 6005 if ((bfd_link_pic (info)
861fb55a 6006 || (htab->root.dynamic_sections_created
b49e97c9 6007 && h != NULL
f5385ebf 6008 && h->root.def_dynamic
861fb55a
DJ
6009 && !h->root.def_regular
6010 && !h->has_static_relocs))
cf35638d 6011 && r_symndx != STN_UNDEF
9a59ad6b
DJ
6012 && (h == NULL
6013 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
6014 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6015 && !resolved_to_zero))
b49e97c9
TS
6016 && (input_section->flags & SEC_ALLOC) != 0)
6017 {
861fb55a 6018 /* If we're creating a shared library, then we can't know
b49e97c9
TS
6019 where the symbol will end up. So, we create a relocation
6020 record in the output, and leave the job up to the dynamic
861fb55a
DJ
6021 linker. We must do the same for executable references to
6022 shared library symbols, unless we've decided to use copy
6023 relocs or PLTs instead. */
b49e97c9
TS
6024 value = addend;
6025 if (!mips_elf_create_dynamic_relocation (abfd,
6026 info,
6027 relocation,
6028 h,
6029 sec,
6030 symbol,
6031 &value,
6032 input_section))
6033 return bfd_reloc_undefined;
6034 }
6035 else
6036 {
6037 if (r_type != R_MIPS_REL32)
6038 value = symbol + addend;
6039 else
6040 value = addend;
6041 }
6042 value &= howto->dst_mask;
092dcd75
CD
6043 break;
6044
6045 case R_MIPS_PC32:
6046 value = symbol + addend - p;
6047 value &= howto->dst_mask;
b49e97c9
TS
6048 break;
6049
b49e97c9
TS
6050 case R_MIPS16_26:
6051 /* The calculation for R_MIPS16_26 is just the same as for an
6052 R_MIPS_26. It's only the storage of the relocated field into
6053 the output file that's different. That's handled in
6054 mips_elf_perform_relocation. So, we just fall through to the
6055 R_MIPS_26 case here. */
6056 case R_MIPS_26:
df58fc94
RS
6057 case R_MICROMIPS_26_S1:
6058 {
6059 unsigned int shift;
6060
df58fc94
RS
6061 /* Shift is 2, unusually, for microMIPS JALX. */
6062 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6063
77434823 6064 if (howto->partial_inplace && !section_p)
df58fc94 6065 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6066 else
6067 value = addend;
bc27bb05
MR
6068 value += symbol;
6069
9d862524
MR
6070 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6071 be the correct ISA mode selector except for weak undefined
6072 symbols. */
6073 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6074 && (*cross_mode_jump_p
6075 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6076 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6077 return bfd_reloc_outofrange;
6078
6079 value >>= shift;
77434823 6080 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6081 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6082 value &= howto->dst_mask;
6083 }
b49e97c9
TS
6084 break;
6085
0f20cc35 6086 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6087 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6088 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6089 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6090 & howto->dst_mask);
6091 break;
6092
6093 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6094 case R_MIPS_TLS_DTPREL32:
6095 case R_MIPS_TLS_DTPREL64:
d0f13682 6096 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6097 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6098 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6099 break;
6100
6101 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6102 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6103 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6104 value = (mips_elf_high (addend + symbol - tprel_base (info))
6105 & howto->dst_mask);
6106 break;
6107
6108 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6109 case R_MIPS_TLS_TPREL32:
6110 case R_MIPS_TLS_TPREL64:
6111 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6112 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6113 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6114 break;
6115
b49e97c9 6116 case R_MIPS_HI16:
d6f16593 6117 case R_MIPS16_HI16:
df58fc94 6118 case R_MICROMIPS_HI16:
b49e97c9
TS
6119 if (!gp_disp_p)
6120 {
6121 value = mips_elf_high (addend + symbol);
6122 value &= howto->dst_mask;
6123 }
6124 else
6125 {
d6f16593 6126 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6127 0: li $v0,%hi(_gp_disp)
6128 4: addiupc $v1,%lo(_gp_disp)
6129 8: sll $v0,16
d6f16593
MR
6130 12: addu $v0,$v1
6131 14: move $gp,$v0
6132 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6133 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6134 ADDIUPC clears the low two bits of the instruction address,
6135 so the base is ($t9 + 4) & ~3. */
d6f16593 6136 if (r_type == R_MIPS16_HI16)
888b9c01 6137 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6138 /* The microMIPS .cpload sequence uses the same assembly
6139 instructions as the traditional psABI version, but the
6140 incoming $t9 has the low bit set. */
6141 else if (r_type == R_MICROMIPS_HI16)
6142 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6143 else
6144 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6145 }
6146 break;
6147
6148 case R_MIPS_LO16:
d6f16593 6149 case R_MIPS16_LO16:
df58fc94
RS
6150 case R_MICROMIPS_LO16:
6151 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6152 if (!gp_disp_p)
6153 value = (symbol + addend) & howto->dst_mask;
6154 else
6155 {
d6f16593
MR
6156 /* See the comment for R_MIPS16_HI16 above for the reason
6157 for this conditional. */
6158 if (r_type == R_MIPS16_LO16)
888b9c01 6159 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6160 else if (r_type == R_MICROMIPS_LO16
6161 || r_type == R_MICROMIPS_HI0_LO16)
6162 value = addend + gp - p + 3;
d6f16593
MR
6163 else
6164 value = addend + gp - p + 4;
b49e97c9 6165 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6166 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6167 _gp_disp are normally generated from the .cpload
6168 pseudo-op. It generates code that normally looks like
6169 this:
6170
6171 lui $gp,%hi(_gp_disp)
6172 addiu $gp,$gp,%lo(_gp_disp)
6173 addu $gp,$gp,$t9
6174
6175 Here $t9 holds the address of the function being called,
6176 as required by the MIPS ELF ABI. The R_MIPS_LO16
6177 relocation can easily overflow in this situation, but the
6178 R_MIPS_HI16 relocation will handle the overflow.
6179 Therefore, we consider this a bug in the MIPS ABI, and do
6180 not check for overflow here. */
6181 }
6182 break;
6183
6184 case R_MIPS_LITERAL:
df58fc94 6185 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6186 /* Because we don't merge literal sections, we can handle this
6187 just like R_MIPS_GPREL16. In the long run, we should merge
6188 shared literals, and then we will need to additional work
6189 here. */
6190
6191 /* Fall through. */
6192
6193 case R_MIPS16_GPREL:
6194 /* The R_MIPS16_GPREL performs the same calculation as
6195 R_MIPS_GPREL16, but stores the relocated bits in a different
6196 order. We don't need to do anything special here; the
6197 differences are handled in mips_elf_perform_relocation. */
6198 case R_MIPS_GPREL16:
df58fc94
RS
6199 case R_MICROMIPS_GPREL7_S2:
6200 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6201 /* Only sign-extend the addend if it was extracted from the
6202 instruction. If the addend was separate, leave it alone,
6203 otherwise we may lose significant bits. */
6204 if (howto->partial_inplace)
a7ebbfdf 6205 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6206 value = symbol + addend - gp;
6207 /* If the symbol was local, any earlier relocatable links will
6208 have adjusted its addend with the gp offset, so compensate
6209 for that now. Don't do it for symbols forced local in this
6210 link, though, since they won't have had the gp offset applied
6211 to them before. */
6212 if (was_local_p)
6213 value += gp0;
538baf8b
AB
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6216 break;
6217
738e5348
RS
6218 case R_MIPS16_GOT16:
6219 case R_MIPS16_CALL16:
b49e97c9
TS
6220 case R_MIPS_GOT16:
6221 case R_MIPS_CALL16:
df58fc94
RS
6222 case R_MICROMIPS_GOT16:
6223 case R_MICROMIPS_CALL16:
0a44bf69 6224 /* VxWorks does not have separate local and global semantics for
738e5348 6225 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6226 if (!htab->is_vxworks && local_p)
b49e97c9 6227 {
5c18022e 6228 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6229 symbol + addend, !was_local_p);
b49e97c9
TS
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
6232 value
a8028dd0 6233 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6234 overflowed_p = mips_elf_overflow_p (value, 16);
6235 break;
6236 }
6237
6238 /* Fall through. */
6239
0f20cc35
DJ
6240 case R_MIPS_TLS_GD:
6241 case R_MIPS_TLS_GOTTPREL:
6242 case R_MIPS_TLS_LDM:
b49e97c9 6243 case R_MIPS_GOT_DISP:
d0f13682
CLT
6244 case R_MIPS16_TLS_GD:
6245 case R_MIPS16_TLS_GOTTPREL:
6246 case R_MIPS16_TLS_LDM:
df58fc94
RS
6247 case R_MICROMIPS_TLS_GD:
6248 case R_MICROMIPS_TLS_GOTTPREL:
6249 case R_MICROMIPS_TLS_LDM:
6250 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6251 value = g;
6252 overflowed_p = mips_elf_overflow_p (value, 16);
6253 break;
6254
6255 case R_MIPS_GPREL32:
bce03d3d
AO
6256 value = (addend + symbol + gp0 - gp);
6257 if (!save_addend)
6258 value &= howto->dst_mask;
b49e97c9
TS
6259 break;
6260
6261 case R_MIPS_PC16:
bad36eac 6262 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6263 if (howto->partial_inplace)
6264 addend = _bfd_mips_elf_sign_extend (addend, 18);
6265
9d862524 6266 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6267 to 0 and never set `*cross_mode_jump_p', so this alignment check
6268 will never trigger for them. */
9d862524
MR
6269 if (*cross_mode_jump_p
6270 ? ((symbol + addend) & 3) != 1
6271 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6272 return bfd_reloc_outofrange;
6273
6274 value = symbol + addend - p;
538baf8b
AB
6275 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6276 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6277 value >>= howto->rightshift;
6278 value &= howto->dst_mask;
b49e97c9
TS
6279 break;
6280
c9775dde
MR
6281 case R_MIPS16_PC16_S1:
6282 if (howto->partial_inplace)
6283 addend = _bfd_mips_elf_sign_extend (addend, 17);
6284
6285 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6286 && (*cross_mode_jump_p
6287 ? ((symbol + addend) & 3) != 0
6288 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6289 return bfd_reloc_outofrange;
6290
6291 value = symbol + addend - p;
6292 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6293 overflowed_p = mips_elf_overflow_p (value, 17);
6294 value >>= howto->rightshift;
6295 value &= howto->dst_mask;
6296 break;
6297
7361da2c
AB
6298 case R_MIPS_PC21_S2:
6299 if (howto->partial_inplace)
6300 addend = _bfd_mips_elf_sign_extend (addend, 23);
6301
6302 if ((symbol + addend) & 3)
6303 return bfd_reloc_outofrange;
6304
6305 value = symbol + addend - p;
538baf8b
AB
6306 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6307 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6308 value >>= howto->rightshift;
6309 value &= howto->dst_mask;
6310 break;
6311
6312 case R_MIPS_PC26_S2:
6313 if (howto->partial_inplace)
6314 addend = _bfd_mips_elf_sign_extend (addend, 28);
6315
6316 if ((symbol + addend) & 3)
6317 return bfd_reloc_outofrange;
6318
6319 value = symbol + addend - p;
538baf8b
AB
6320 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6321 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6322 value >>= howto->rightshift;
6323 value &= howto->dst_mask;
6324 break;
6325
6326 case R_MIPS_PC18_S3:
6327 if (howto->partial_inplace)
6328 addend = _bfd_mips_elf_sign_extend (addend, 21);
6329
6330 if ((symbol + addend) & 7)
6331 return bfd_reloc_outofrange;
6332
6333 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6334 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6335 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6336 value >>= howto->rightshift;
6337 value &= howto->dst_mask;
6338 break;
6339
6340 case R_MIPS_PC19_S2:
6341 if (howto->partial_inplace)
6342 addend = _bfd_mips_elf_sign_extend (addend, 21);
6343
6344 if ((symbol + addend) & 3)
6345 return bfd_reloc_outofrange;
6346
6347 value = symbol + addend - p;
538baf8b
AB
6348 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6349 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6350 value >>= howto->rightshift;
6351 value &= howto->dst_mask;
6352 break;
6353
6354 case R_MIPS_PCHI16:
6355 value = mips_elf_high (symbol + addend - p);
7361da2c
AB
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_PCLO16:
6360 if (howto->partial_inplace)
6361 addend = _bfd_mips_elf_sign_extend (addend, 16);
6362 value = symbol + addend - p;
6363 value &= howto->dst_mask;
6364 break;
6365
df58fc94 6366 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6367 if (howto->partial_inplace)
6368 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6369
6370 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6371 && (*cross_mode_jump_p
6372 ? ((symbol + addend + 2) & 3) != 0
6373 : ((symbol + addend + 2) & 1) == 0))
6374 return bfd_reloc_outofrange;
6375
c3eb94b4 6376 value = symbol + addend - p;
538baf8b
AB
6377 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6379 value >>= howto->rightshift;
6380 value &= howto->dst_mask;
6381 break;
6382
6383 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6384 if (howto->partial_inplace)
6385 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6386
6387 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6388 && (*cross_mode_jump_p
6389 ? ((symbol + addend + 2) & 3) != 0
6390 : ((symbol + addend + 2) & 1) == 0))
6391 return bfd_reloc_outofrange;
6392
c3eb94b4 6393 value = symbol + addend - p;
538baf8b
AB
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6398 break;
6399
6400 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6401 if (howto->partial_inplace)
6402 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6403
6404 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6405 && (*cross_mode_jump_p
6406 ? ((symbol + addend) & 3) != 0
6407 : ((symbol + addend) & 1) == 0))
6408 return bfd_reloc_outofrange;
6409
c3eb94b4 6410 value = symbol + addend - p;
538baf8b
AB
6411 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6412 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6413 value >>= howto->rightshift;
6414 value &= howto->dst_mask;
6415 break;
6416
6417 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6418 if (howto->partial_inplace)
6419 addend = _bfd_mips_elf_sign_extend (addend, 25);
6420 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6421 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6422 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6423 value >>= howto->rightshift;
6424 value &= howto->dst_mask;
6425 break;
6426
b49e97c9
TS
6427 case R_MIPS_GOT_HI16:
6428 case R_MIPS_CALL_HI16:
df58fc94
RS
6429 case R_MICROMIPS_GOT_HI16:
6430 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6431 /* We're allowed to handle these two relocations identically.
6432 The dynamic linker is allowed to handle the CALL relocations
6433 differently by creating a lazy evaluation stub. */
6434 value = g;
6435 value = mips_elf_high (value);
6436 value &= howto->dst_mask;
6437 break;
6438
6439 case R_MIPS_GOT_LO16:
6440 case R_MIPS_CALL_LO16:
df58fc94
RS
6441 case R_MICROMIPS_GOT_LO16:
6442 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6443 value = g & howto->dst_mask;
6444 break;
6445
6446 case R_MIPS_GOT_PAGE:
df58fc94 6447 case R_MICROMIPS_GOT_PAGE:
5c18022e 6448 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6449 if (value == MINUS_ONE)
6450 return bfd_reloc_outofrange;
a8028dd0 6451 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6452 overflowed_p = mips_elf_overflow_p (value, 16);
6453 break;
6454
6455 case R_MIPS_GOT_OFST:
df58fc94 6456 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6457 if (local_p)
5c18022e 6458 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6459 else
6460 value = addend;
b49e97c9
TS
6461 overflowed_p = mips_elf_overflow_p (value, 16);
6462 break;
6463
6464 case R_MIPS_SUB:
df58fc94 6465 case R_MICROMIPS_SUB:
b49e97c9
TS
6466 value = symbol - addend;
6467 value &= howto->dst_mask;
6468 break;
6469
6470 case R_MIPS_HIGHER:
df58fc94 6471 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6472 value = mips_elf_higher (addend + symbol);
6473 value &= howto->dst_mask;
6474 break;
6475
6476 case R_MIPS_HIGHEST:
df58fc94 6477 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6478 value = mips_elf_highest (addend + symbol);
6479 value &= howto->dst_mask;
6480 break;
6481
6482 case R_MIPS_SCN_DISP:
df58fc94 6483 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6484 value = symbol + addend - sec->output_offset;
6485 value &= howto->dst_mask;
6486 break;
6487
b49e97c9 6488 case R_MIPS_JALR:
df58fc94 6489 case R_MICROMIPS_JALR:
1367d393
ILT
6490 /* This relocation is only a hint. In some cases, we optimize
6491 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6492 when the symbol does not resolve locally. */
6493 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6494 return bfd_reloc_continue;
c1556ecd
MR
6495 /* We can't optimize cross-mode jumps either. */
6496 if (*cross_mode_jump_p)
6497 return bfd_reloc_continue;
1367d393 6498 value = symbol + addend;
c1556ecd
MR
6499 /* Neither we can non-instruction-aligned targets. */
6500 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6501 return bfd_reloc_continue;
1367d393 6502 break;
b49e97c9 6503
1367d393 6504 case R_MIPS_PJUMP:
b49e97c9
TS
6505 case R_MIPS_GNU_VTINHERIT:
6506 case R_MIPS_GNU_VTENTRY:
6507 /* We don't do anything with these at present. */
6508 return bfd_reloc_continue;
6509
6510 default:
6511 /* An unrecognized relocation type. */
6512 return bfd_reloc_notsupported;
6513 }
6514
6515 /* Store the VALUE for our caller. */
6516 *valuep = value;
6517 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6518}
6519
b49e97c9
TS
6520/* It has been determined that the result of the RELOCATION is the
6521 VALUE. Use HOWTO to place VALUE into the output file at the
6522 appropriate position. The SECTION is the section to which the
68ffbac6 6523 relocation applies.
38a7df63 6524 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6525 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6526
b34976b6 6527 Returns FALSE if anything goes wrong. */
b49e97c9 6528
b34976b6 6529static bfd_boolean
9719ad41
RS
6530mips_elf_perform_relocation (struct bfd_link_info *info,
6531 reloc_howto_type *howto,
6532 const Elf_Internal_Rela *relocation,
6533 bfd_vma value, bfd *input_bfd,
6534 asection *input_section, bfd_byte *contents,
38a7df63 6535 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6536{
6537 bfd_vma x;
6538 bfd_byte *location;
6539 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6540
6541 /* Figure out where the relocation is occurring. */
6542 location = contents + relocation->r_offset;
6543
df58fc94 6544 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6545
b49e97c9
TS
6546 /* Obtain the current value. */
6547 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6548
6549 /* Clear the field we are setting. */
6550 x &= ~howto->dst_mask;
6551
b49e97c9
TS
6552 /* Set the field. */
6553 x |= (value & howto->dst_mask);
6554
a6ebf616 6555 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6556 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6557 {
6558 bfd_vma opcode = x >> 26;
6559
6560 if (r_type == R_MIPS16_26 ? opcode == 0x7
6561 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6562 : opcode == 0x1d)
6563 {
6564 info->callbacks->einfo
2c1c9679 6565 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6566 input_bfd, input_section, relocation->r_offset);
6567 return TRUE;
6568 }
6569 }
38a7df63 6570 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6571 {
b34976b6 6572 bfd_boolean ok;
b49e97c9
TS
6573 bfd_vma opcode = x >> 26;
6574 bfd_vma jalx_opcode;
6575
6576 /* Check to see if the opcode is already JAL or JALX. */
6577 if (r_type == R_MIPS16_26)
6578 {
6579 ok = ((opcode == 0x6) || (opcode == 0x7));
6580 jalx_opcode = 0x7;
6581 }
df58fc94
RS
6582 else if (r_type == R_MICROMIPS_26_S1)
6583 {
6584 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6585 jalx_opcode = 0x3c;
6586 }
b49e97c9
TS
6587 else
6588 {
6589 ok = ((opcode == 0x3) || (opcode == 0x1d));
6590 jalx_opcode = 0x1d;
6591 }
6592
3bdf9505 6593 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6594 convert J or JALS to JALX. */
b49e97c9
TS
6595 if (!ok)
6596 {
5f68df25 6597 info->callbacks->einfo
2c1c9679 6598 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6599 "consider recompiling with interlinking enabled\n"),
6600 input_bfd, input_section, relocation->r_offset);
6601 return TRUE;
b49e97c9
TS
6602 }
6603
6604 /* Make this the JALX opcode. */
6605 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6606 }
9d862524
MR
6607 else if (cross_mode_jump_p && b_reloc_p (r_type))
6608 {
a6ebf616
MR
6609 bfd_boolean ok = FALSE;
6610 bfd_vma opcode = x >> 16;
6611 bfd_vma jalx_opcode = 0;
70e65ca8 6612 bfd_vma sign_bit = 0;
a6ebf616
MR
6613 bfd_vma addr;
6614 bfd_vma dest;
6615
6616 if (r_type == R_MICROMIPS_PC16_S1)
6617 {
6618 ok = opcode == 0x4060;
6619 jalx_opcode = 0x3c;
70e65ca8 6620 sign_bit = 0x10000;
a6ebf616
MR
6621 value <<= 1;
6622 }
6623 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6624 {
6625 ok = opcode == 0x411;
6626 jalx_opcode = 0x1d;
70e65ca8 6627 sign_bit = 0x20000;
a6ebf616
MR
6628 value <<= 2;
6629 }
6630
8b10b0b3 6631 if (ok && !bfd_link_pic (info))
a6ebf616 6632 {
8b10b0b3
MR
6633 addr = (input_section->output_section->vma
6634 + input_section->output_offset
6635 + relocation->r_offset
6636 + 4);
70e65ca8
MR
6637 dest = (addr
6638 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6639
8b10b0b3
MR
6640 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6641 {
6642 info->callbacks->einfo
2c1c9679 6643 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6644 "to JALX: relocation out of range\n"),
6645 input_bfd, input_section, relocation->r_offset);
6646 return TRUE;
6647 }
a6ebf616 6648
8b10b0b3
MR
6649 /* Make this the JALX opcode. */
6650 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6651 }
6652 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6653 {
6654 info->callbacks->einfo
2c1c9679 6655 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6656 input_bfd, input_section, relocation->r_offset);
6657 return TRUE;
6658 }
9d862524 6659 }
b49e97c9 6660
38a7df63
CF
6661 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6662 range. */
0e1862bb 6663 if (!bfd_link_relocatable (info)
38a7df63 6664 && !cross_mode_jump_p
cd8d5a82
CF
6665 && ((JAL_TO_BAL_P (input_bfd)
6666 && r_type == R_MIPS_26
0e392101 6667 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6668 || (JALR_TO_BAL_P (input_bfd)
6669 && r_type == R_MIPS_JALR
0e392101 6670 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6671 || (JR_TO_B_P (input_bfd)
6672 && r_type == R_MIPS_JALR
0e392101 6673 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6674 {
6675 bfd_vma addr;
6676 bfd_vma dest;
6677 bfd_signed_vma off;
6678
6679 addr = (input_section->output_section->vma
6680 + input_section->output_offset
6681 + relocation->r_offset
6682 + 4);
6683 if (r_type == R_MIPS_26)
6684 dest = (value << 2) | ((addr >> 28) << 28);
6685 else
6686 dest = value;
6687 off = dest - addr;
6688 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6689 {
0e392101 6690 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6691 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6692 else
6693 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6694 }
1367d393
ILT
6695 }
6696
b49e97c9 6697 /* Put the value into the output. */
98e10ffa 6698 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6699
0e1862bb 6700 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6701 location);
d6f16593 6702
b34976b6 6703 return TRUE;
b49e97c9 6704}
b49e97c9 6705\f
b49e97c9
TS
6706/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6707 is the original relocation, which is now being transformed into a
6708 dynamic relocation. The ADDENDP is adjusted if necessary; the
6709 caller should store the result in place of the original addend. */
6710
b34976b6 6711static bfd_boolean
9719ad41
RS
6712mips_elf_create_dynamic_relocation (bfd *output_bfd,
6713 struct bfd_link_info *info,
6714 const Elf_Internal_Rela *rel,
6715 struct mips_elf_link_hash_entry *h,
6716 asection *sec, bfd_vma symbol,
6717 bfd_vma *addendp, asection *input_section)
b49e97c9 6718{
947216bf 6719 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6720 asection *sreloc;
6721 bfd *dynobj;
6722 int r_type;
5d41f0b6
RS
6723 long indx;
6724 bfd_boolean defined_p;
0a44bf69 6725 struct mips_elf_link_hash_table *htab;
b49e97c9 6726
0a44bf69 6727 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6728 BFD_ASSERT (htab != NULL);
6729
b49e97c9
TS
6730 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6731 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6732 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6733 BFD_ASSERT (sreloc != NULL);
6734 BFD_ASSERT (sreloc->contents != NULL);
6735 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6736 < sreloc->size);
b49e97c9 6737
b49e97c9
TS
6738 outrel[0].r_offset =
6739 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6740 if (ABI_64_P (output_bfd))
6741 {
6742 outrel[1].r_offset =
6743 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6744 outrel[2].r_offset =
6745 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6746 }
b49e97c9 6747
c5ae1840 6748 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6749 /* The relocation field has been deleted. */
5d41f0b6
RS
6750 return TRUE;
6751
6752 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6753 {
6754 /* The relocation field has been converted into a relative value of
6755 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6756 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6757 *addendp += symbol;
5d41f0b6 6758 return TRUE;
0d591ff7 6759 }
b49e97c9 6760
5d41f0b6
RS
6761 /* We must now calculate the dynamic symbol table index to use
6762 in the relocation. */
d4a77f3f 6763 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6764 {
020d7251 6765 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6766 indx = h->root.dynindx;
6767 if (SGI_COMPAT (output_bfd))
6768 defined_p = h->root.def_regular;
6769 else
6770 /* ??? glibc's ld.so just adds the final GOT entry to the
6771 relocation field. It therefore treats relocs against
6772 defined symbols in the same way as relocs against
6773 undefined symbols. */
6774 defined_p = FALSE;
6775 }
b49e97c9
TS
6776 else
6777 {
5d41f0b6
RS
6778 if (sec != NULL && bfd_is_abs_section (sec))
6779 indx = 0;
6780 else if (sec == NULL || sec->owner == NULL)
fdd07405 6781 {
5d41f0b6
RS
6782 bfd_set_error (bfd_error_bad_value);
6783 return FALSE;
b49e97c9
TS
6784 }
6785 else
6786 {
5d41f0b6 6787 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6788 if (indx == 0)
6789 {
6790 asection *osec = htab->root.text_index_section;
6791 indx = elf_section_data (osec)->dynindx;
6792 }
5d41f0b6
RS
6793 if (indx == 0)
6794 abort ();
b49e97c9
TS
6795 }
6796
5d41f0b6
RS
6797 /* Instead of generating a relocation using the section
6798 symbol, we may as well make it a fully relative
6799 relocation. We want to avoid generating relocations to
6800 local symbols because we used to generate them
6801 incorrectly, without adding the original symbol value,
6802 which is mandated by the ABI for section symbols. In
6803 order to give dynamic loaders and applications time to
6804 phase out the incorrect use, we refrain from emitting
6805 section-relative relocations. It's not like they're
6806 useful, after all. This should be a bit more efficient
6807 as well. */
6808 /* ??? Although this behavior is compatible with glibc's ld.so,
6809 the ABI says that relocations against STN_UNDEF should have
6810 a symbol value of 0. Irix rld honors this, so relocations
6811 against STN_UNDEF have no effect. */
6812 if (!SGI_COMPAT (output_bfd))
6813 indx = 0;
6814 defined_p = TRUE;
b49e97c9
TS
6815 }
6816
5d41f0b6
RS
6817 /* If the relocation was previously an absolute relocation and
6818 this symbol will not be referred to by the relocation, we must
6819 adjust it by the value we give it in the dynamic symbol table.
6820 Otherwise leave the job up to the dynamic linker. */
6821 if (defined_p && r_type != R_MIPS_REL32)
6822 *addendp += symbol;
6823
0a44bf69
RS
6824 if (htab->is_vxworks)
6825 /* VxWorks uses non-relative relocations for this. */
6826 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6827 else
6828 /* The relocation is always an REL32 relocation because we don't
6829 know where the shared library will wind up at load-time. */
6830 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6831 R_MIPS_REL32);
6832
5d41f0b6
RS
6833 /* For strict adherence to the ABI specification, we should
6834 generate a R_MIPS_64 relocation record by itself before the
6835 _REL32/_64 record as well, such that the addend is read in as
6836 a 64-bit value (REL32 is a 32-bit relocation, after all).
6837 However, since none of the existing ELF64 MIPS dynamic
6838 loaders seems to care, we don't waste space with these
6839 artificial relocations. If this turns out to not be true,
6840 mips_elf_allocate_dynamic_relocation() should be tweaked so
6841 as to make room for a pair of dynamic relocations per
6842 invocation if ABI_64_P, and here we should generate an
6843 additional relocation record with R_MIPS_64 by itself for a
6844 NULL symbol before this relocation record. */
6845 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6846 ABI_64_P (output_bfd)
6847 ? R_MIPS_64
6848 : R_MIPS_NONE);
6849 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6850
6851 /* Adjust the output offset of the relocation to reference the
6852 correct location in the output file. */
6853 outrel[0].r_offset += (input_section->output_section->vma
6854 + input_section->output_offset);
6855 outrel[1].r_offset += (input_section->output_section->vma
6856 + input_section->output_offset);
6857 outrel[2].r_offset += (input_section->output_section->vma
6858 + input_section->output_offset);
6859
b49e97c9
TS
6860 /* Put the relocation back out. We have to use the special
6861 relocation outputter in the 64-bit case since the 64-bit
6862 relocation format is non-standard. */
6863 if (ABI_64_P (output_bfd))
6864 {
6865 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6866 (output_bfd, &outrel[0],
6867 (sreloc->contents
6868 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6869 }
0a44bf69
RS
6870 else if (htab->is_vxworks)
6871 {
6872 /* VxWorks uses RELA rather than REL dynamic relocations. */
6873 outrel[0].r_addend = *addendp;
6874 bfd_elf32_swap_reloca_out
6875 (output_bfd, &outrel[0],
6876 (sreloc->contents
6877 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6878 }
b49e97c9 6879 else
947216bf
AM
6880 bfd_elf32_swap_reloc_out
6881 (output_bfd, &outrel[0],
6882 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6883
b49e97c9
TS
6884 /* We've now added another relocation. */
6885 ++sreloc->reloc_count;
6886
6887 /* Make sure the output section is writable. The dynamic linker
6888 will be writing to it. */
6889 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6890 |= SHF_WRITE;
6891
6892 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6893 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6894 {
3d4d4302 6895 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6896 bfd_byte *cr;
6897
6898 if (scpt)
6899 {
6900 Elf32_crinfo cptrel;
6901
6902 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6903 cptrel.vaddr = (rel->r_offset
6904 + input_section->output_section->vma
6905 + input_section->output_offset);
6906 if (r_type == R_MIPS_REL32)
6907 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6908 else
6909 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6910 mips_elf_set_cr_dist2to (cptrel, 0);
6911 cptrel.konst = *addendp;
6912
6913 cr = (scpt->contents
6914 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6915 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6916 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6917 ((Elf32_External_crinfo *) cr
6918 + scpt->reloc_count));
6919 ++scpt->reloc_count;
6920 }
6921 }
6922
943284cc
DJ
6923 /* If we've written this relocation for a readonly section,
6924 we need to set DF_TEXTREL again, so that we do not delete the
6925 DT_TEXTREL tag. */
6926 if (MIPS_ELF_READONLY_SECTION (input_section))
6927 info->flags |= DF_TEXTREL;
6928
b34976b6 6929 return TRUE;
b49e97c9
TS
6930}
6931\f
b49e97c9
TS
6932/* Return the MACH for a MIPS e_flags value. */
6933
6934unsigned long
9719ad41 6935_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6936{
6937 switch (flags & EF_MIPS_MACH)
6938 {
6939 case E_MIPS_MACH_3900:
6940 return bfd_mach_mips3900;
6941
6942 case E_MIPS_MACH_4010:
6943 return bfd_mach_mips4010;
6944
6945 case E_MIPS_MACH_4100:
6946 return bfd_mach_mips4100;
6947
6948 case E_MIPS_MACH_4111:
6949 return bfd_mach_mips4111;
6950
00707a0e
RS
6951 case E_MIPS_MACH_4120:
6952 return bfd_mach_mips4120;
6953
b49e97c9
TS
6954 case E_MIPS_MACH_4650:
6955 return bfd_mach_mips4650;
6956
00707a0e
RS
6957 case E_MIPS_MACH_5400:
6958 return bfd_mach_mips5400;
6959
6960 case E_MIPS_MACH_5500:
6961 return bfd_mach_mips5500;
6962
e407c74b
NC
6963 case E_MIPS_MACH_5900:
6964 return bfd_mach_mips5900;
6965
0d2e43ed
ILT
6966 case E_MIPS_MACH_9000:
6967 return bfd_mach_mips9000;
6968
b49e97c9
TS
6969 case E_MIPS_MACH_SB1:
6970 return bfd_mach_mips_sb1;
6971
350cc38d
MS
6972 case E_MIPS_MACH_LS2E:
6973 return bfd_mach_mips_loongson_2e;
6974
6975 case E_MIPS_MACH_LS2F:
6976 return bfd_mach_mips_loongson_2f;
6977
ac8cb70f
CX
6978 case E_MIPS_MACH_GS464:
6979 return bfd_mach_mips_gs464;
fd503541 6980
bd782c07
CX
6981 case E_MIPS_MACH_GS464E:
6982 return bfd_mach_mips_gs464e;
6983
9108bc33
CX
6984 case E_MIPS_MACH_GS264E:
6985 return bfd_mach_mips_gs264e;
6986
2c629856
N
6987 case E_MIPS_MACH_OCTEON3:
6988 return bfd_mach_mips_octeon3;
6989
432233b3
AP
6990 case E_MIPS_MACH_OCTEON2:
6991 return bfd_mach_mips_octeon2;
6992
6f179bd0
AN
6993 case E_MIPS_MACH_OCTEON:
6994 return bfd_mach_mips_octeon;
6995
52b6b6b9
JM
6996 case E_MIPS_MACH_XLR:
6997 return bfd_mach_mips_xlr;
6998
38bf472a
MR
6999 case E_MIPS_MACH_IAMR2:
7000 return bfd_mach_mips_interaptiv_mr2;
7001
b49e97c9
TS
7002 default:
7003 switch (flags & EF_MIPS_ARCH)
7004 {
7005 default:
7006 case E_MIPS_ARCH_1:
7007 return bfd_mach_mips3000;
b49e97c9
TS
7008
7009 case E_MIPS_ARCH_2:
7010 return bfd_mach_mips6000;
b49e97c9
TS
7011
7012 case E_MIPS_ARCH_3:
7013 return bfd_mach_mips4000;
b49e97c9
TS
7014
7015 case E_MIPS_ARCH_4:
7016 return bfd_mach_mips8000;
b49e97c9
TS
7017
7018 case E_MIPS_ARCH_5:
7019 return bfd_mach_mips5;
b49e97c9
TS
7020
7021 case E_MIPS_ARCH_32:
7022 return bfd_mach_mipsisa32;
b49e97c9
TS
7023
7024 case E_MIPS_ARCH_64:
7025 return bfd_mach_mipsisa64;
af7ee8bf
CD
7026
7027 case E_MIPS_ARCH_32R2:
7028 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7029
7030 case E_MIPS_ARCH_64R2:
7031 return bfd_mach_mipsisa64r2;
7361da2c
AB
7032
7033 case E_MIPS_ARCH_32R6:
7034 return bfd_mach_mipsisa32r6;
7035
7036 case E_MIPS_ARCH_64R6:
7037 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7038 }
7039 }
7040
7041 return 0;
7042}
7043
7044/* Return printable name for ABI. */
7045
7046static INLINE char *
9719ad41 7047elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7048{
7049 flagword flags;
7050
7051 flags = elf_elfheader (abfd)->e_flags;
7052 switch (flags & EF_MIPS_ABI)
7053 {
7054 case 0:
7055 if (ABI_N32_P (abfd))
7056 return "N32";
7057 else if (ABI_64_P (abfd))
7058 return "64";
7059 else
7060 return "none";
7061 case E_MIPS_ABI_O32:
7062 return "O32";
7063 case E_MIPS_ABI_O64:
7064 return "O64";
7065 case E_MIPS_ABI_EABI32:
7066 return "EABI32";
7067 case E_MIPS_ABI_EABI64:
7068 return "EABI64";
7069 default:
7070 return "unknown abi";
7071 }
7072}
7073\f
7074/* MIPS ELF uses two common sections. One is the usual one, and the
7075 other is for small objects. All the small objects are kept
7076 together, and then referenced via the gp pointer, which yields
7077 faster assembler code. This is what we use for the small common
7078 section. This approach is copied from ecoff.c. */
7079static asection mips_elf_scom_section;
7080static asymbol mips_elf_scom_symbol;
7081static asymbol *mips_elf_scom_symbol_ptr;
7082
7083/* MIPS ELF also uses an acommon section, which represents an
7084 allocated common symbol which may be overridden by a
7085 definition in a shared library. */
7086static asection mips_elf_acom_section;
7087static asymbol mips_elf_acom_symbol;
7088static asymbol *mips_elf_acom_symbol_ptr;
7089
738e5348 7090/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7091
7092void
9719ad41 7093_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7094{
7095 elf_symbol_type *elfsym;
7096
738e5348 7097 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7098 elfsym = (elf_symbol_type *) asym;
7099 switch (elfsym->internal_elf_sym.st_shndx)
7100 {
7101 case SHN_MIPS_ACOMMON:
7102 /* This section is used in a dynamically linked executable file.
7103 It is an allocated common section. The dynamic linker can
7104 either resolve these symbols to something in a shared
7105 library, or it can just leave them here. For our purposes,
7106 we can consider these symbols to be in a new section. */
7107 if (mips_elf_acom_section.name == NULL)
7108 {
7109 /* Initialize the acommon section. */
7110 mips_elf_acom_section.name = ".acommon";
7111 mips_elf_acom_section.flags = SEC_ALLOC;
7112 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7113 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7114 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7115 mips_elf_acom_symbol.name = ".acommon";
7116 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7117 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7118 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7119 }
7120 asym->section = &mips_elf_acom_section;
7121 break;
7122
7123 case SHN_COMMON:
7124 /* Common symbols less than the GP size are automatically
7125 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7126 if (asym->value > elf_gp_size (abfd)
b59eed79 7127 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7128 || IRIX_COMPAT (abfd) == ict_irix6)
7129 break;
7130 /* Fall through. */
7131 case SHN_MIPS_SCOMMON:
7132 if (mips_elf_scom_section.name == NULL)
7133 {
7134 /* Initialize the small common section. */
7135 mips_elf_scom_section.name = ".scommon";
7136 mips_elf_scom_section.flags = SEC_IS_COMMON;
7137 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7138 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7139 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7140 mips_elf_scom_symbol.name = ".scommon";
7141 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7142 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7143 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7144 }
7145 asym->section = &mips_elf_scom_section;
7146 asym->value = elfsym->internal_elf_sym.st_size;
7147 break;
7148
7149 case SHN_MIPS_SUNDEFINED:
7150 asym->section = bfd_und_section_ptr;
7151 break;
7152
b49e97c9 7153 case SHN_MIPS_TEXT:
00b4930b
TS
7154 {
7155 asection *section = bfd_get_section_by_name (abfd, ".text");
7156
00b4930b
TS
7157 if (section != NULL)
7158 {
7159 asym->section = section;
7160 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7161 to the base of the .text section. So subtract the section
00b4930b
TS
7162 base address to make it an offset. */
7163 asym->value -= section->vma;
7164 }
7165 }
b49e97c9
TS
7166 break;
7167
7168 case SHN_MIPS_DATA:
00b4930b
TS
7169 {
7170 asection *section = bfd_get_section_by_name (abfd, ".data");
7171
00b4930b
TS
7172 if (section != NULL)
7173 {
7174 asym->section = section;
7175 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7176 to the base of the .data section. So subtract the section
00b4930b
TS
7177 base address to make it an offset. */
7178 asym->value -= section->vma;
7179 }
7180 }
b49e97c9 7181 break;
b49e97c9 7182 }
738e5348 7183
df58fc94
RS
7184 /* If this is an odd-valued function symbol, assume it's a MIPS16
7185 or microMIPS one. */
738e5348
RS
7186 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7187 && (asym->value & 1) != 0)
7188 {
7189 asym->value--;
e8faf7d1 7190 if (MICROMIPS_P (abfd))
df58fc94
RS
7191 elfsym->internal_elf_sym.st_other
7192 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7193 else
7194 elfsym->internal_elf_sym.st_other
7195 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7196 }
b49e97c9
TS
7197}
7198\f
8c946ed5
RS
7199/* Implement elf_backend_eh_frame_address_size. This differs from
7200 the default in the way it handles EABI64.
7201
7202 EABI64 was originally specified as an LP64 ABI, and that is what
7203 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7204 historically accepted the combination of -mabi=eabi and -mlong32,
7205 and this ILP32 variation has become semi-official over time.
7206 Both forms use elf32 and have pointer-sized FDE addresses.
7207
7208 If an EABI object was generated by GCC 4.0 or above, it will have
7209 an empty .gcc_compiled_longXX section, where XX is the size of longs
7210 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7211 have no special marking to distinguish them from LP64 objects.
7212
7213 We don't want users of the official LP64 ABI to be punished for the
7214 existence of the ILP32 variant, but at the same time, we don't want
7215 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7216 We therefore take the following approach:
7217
7218 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7219 determine the pointer size.
8c946ed5
RS
7220
7221 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7222 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7223
7224 - Otherwise punt.
7225
7226 The second check is enough to detect LP64 objects generated by pre-4.0
7227 compilers because, in the kind of output generated by those compilers,
7228 the first relocation will be associated with either a CIE personality
7229 routine or an FDE start address. Furthermore, the compilers never
7230 used a special (non-pointer) encoding for this ABI.
7231
7232 Checking the relocation type should also be safe because there is no
7233 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7234 did so. */
7235
7236unsigned int
76c20d54 7237_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7238{
7239 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7240 return 8;
7241 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7242 {
7243 bfd_boolean long32_p, long64_p;
7244
7245 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7246 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7247 if (long32_p && long64_p)
7248 return 0;
7249 if (long32_p)
7250 return 4;
7251 if (long64_p)
7252 return 8;
7253
7254 if (sec->reloc_count > 0
7255 && elf_section_data (sec)->relocs != NULL
7256 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7257 == R_MIPS_64))
7258 return 8;
7259
7260 return 0;
7261 }
7262 return 4;
7263}
7264\f
174fd7f9
RS
7265/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7266 relocations against two unnamed section symbols to resolve to the
7267 same address. For example, if we have code like:
7268
7269 lw $4,%got_disp(.data)($gp)
7270 lw $25,%got_disp(.text)($gp)
7271 jalr $25
7272
7273 then the linker will resolve both relocations to .data and the program
7274 will jump there rather than to .text.
7275
7276 We can work around this problem by giving names to local section symbols.
7277 This is also what the MIPSpro tools do. */
7278
7279bfd_boolean
7280_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7281{
7282 return SGI_COMPAT (abfd);
7283}
7284\f
b49e97c9
TS
7285/* Work over a section just before writing it out. This routine is
7286 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7287 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7288 a better way. */
7289
b34976b6 7290bfd_boolean
9719ad41 7291_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7292{
7293 if (hdr->sh_type == SHT_MIPS_REGINFO
7294 && hdr->sh_size > 0)
7295 {
7296 bfd_byte buf[4];
7297
b49e97c9
TS
7298 BFD_ASSERT (hdr->contents == NULL);
7299
2d6dda71
MR
7300 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7301 {
7302 _bfd_error_handler
2c1c9679 7303 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7304 "expected %" PRIu64 ", got %" PRIu64),
7305 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7306 (uint64_t) hdr->sh_size);
2d6dda71
MR
7307 bfd_set_error (bfd_error_bad_value);
7308 return FALSE;
7309 }
7310
b49e97c9
TS
7311 if (bfd_seek (abfd,
7312 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7313 SEEK_SET) != 0)
b34976b6 7314 return FALSE;
b49e97c9 7315 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7316 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7317 return FALSE;
b49e97c9
TS
7318 }
7319
7320 if (hdr->sh_type == SHT_MIPS_OPTIONS
7321 && hdr->bfd_section != NULL
f0abc2a1
AM
7322 && mips_elf_section_data (hdr->bfd_section) != NULL
7323 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7324 {
7325 bfd_byte *contents, *l, *lend;
7326
f0abc2a1
AM
7327 /* We stored the section contents in the tdata field in the
7328 set_section_contents routine. We save the section contents
7329 so that we don't have to read them again.
b49e97c9
TS
7330 At this point we know that elf_gp is set, so we can look
7331 through the section contents to see if there is an
7332 ODK_REGINFO structure. */
7333
f0abc2a1 7334 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7335 l = contents;
7336 lend = contents + hdr->sh_size;
7337 while (l + sizeof (Elf_External_Options) <= lend)
7338 {
7339 Elf_Internal_Options intopt;
7340
7341 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7342 &intopt);
1bc8074d
MR
7343 if (intopt.size < sizeof (Elf_External_Options))
7344 {
4eca0228 7345 _bfd_error_handler
695344c0 7346 /* xgettext:c-format */
2c1c9679 7347 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7348 " its header"),
1bc8074d
MR
7349 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7350 break;
7351 }
b49e97c9
TS
7352 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7353 {
7354 bfd_byte buf[8];
7355
7356 if (bfd_seek (abfd,
7357 (hdr->sh_offset
7358 + (l - contents)
7359 + sizeof (Elf_External_Options)
7360 + (sizeof (Elf64_External_RegInfo) - 8)),
7361 SEEK_SET) != 0)
b34976b6 7362 return FALSE;
b49e97c9 7363 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7364 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7365 return FALSE;
b49e97c9
TS
7366 }
7367 else if (intopt.kind == ODK_REGINFO)
7368 {
7369 bfd_byte buf[4];
7370
7371 if (bfd_seek (abfd,
7372 (hdr->sh_offset
7373 + (l - contents)
7374 + sizeof (Elf_External_Options)
7375 + (sizeof (Elf32_External_RegInfo) - 4)),
7376 SEEK_SET) != 0)
b34976b6 7377 return FALSE;
b49e97c9 7378 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7379 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7380 return FALSE;
b49e97c9
TS
7381 }
7382 l += intopt.size;
7383 }
7384 }
7385
7386 if (hdr->bfd_section != NULL)
7387 {
fd361982 7388 const char *name = bfd_section_name (hdr->bfd_section);
b49e97c9 7389
2d0f9ad9
JM
7390 /* .sbss is not handled specially here because the GNU/Linux
7391 prelinker can convert .sbss from NOBITS to PROGBITS and
7392 changing it back to NOBITS breaks the binary. The entry in
7393 _bfd_mips_elf_special_sections will ensure the correct flags
7394 are set on .sbss if BFD creates it without reading it from an
7395 input file, and without special handling here the flags set
7396 on it in an input file will be followed. */
b49e97c9
TS
7397 if (strcmp (name, ".sdata") == 0
7398 || strcmp (name, ".lit8") == 0
7399 || strcmp (name, ".lit4") == 0)
fd6f9d17 7400 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7401 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7402 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7403 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7404 hdr->sh_flags = 0;
b49e97c9
TS
7405 else if (strcmp (name, ".rtproc") == 0)
7406 {
7407 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7408 {
7409 unsigned int adjust;
7410
7411 adjust = hdr->sh_size % hdr->sh_addralign;
7412 if (adjust != 0)
7413 hdr->sh_size += hdr->sh_addralign - adjust;
7414 }
7415 }
7416 }
7417
b34976b6 7418 return TRUE;
b49e97c9
TS
7419}
7420
7421/* Handle a MIPS specific section when reading an object file. This
7422 is called when elfcode.h finds a section with an unknown type.
7423 This routine supports both the 32-bit and 64-bit ELF ABI.
7424
7425 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7426 how to. */
7427
b34976b6 7428bfd_boolean
6dc132d9
L
7429_bfd_mips_elf_section_from_shdr (bfd *abfd,
7430 Elf_Internal_Shdr *hdr,
7431 const char *name,
7432 int shindex)
b49e97c9
TS
7433{
7434 flagword flags = 0;
7435
7436 /* There ought to be a place to keep ELF backend specific flags, but
7437 at the moment there isn't one. We just keep track of the
7438 sections by their name, instead. Fortunately, the ABI gives
7439 suggested names for all the MIPS specific sections, so we will
7440 probably get away with this. */
7441 switch (hdr->sh_type)
7442 {
7443 case SHT_MIPS_LIBLIST:
7444 if (strcmp (name, ".liblist") != 0)
b34976b6 7445 return FALSE;
b49e97c9
TS
7446 break;
7447 case SHT_MIPS_MSYM:
7448 if (strcmp (name, ".msym") != 0)
b34976b6 7449 return FALSE;
b49e97c9
TS
7450 break;
7451 case SHT_MIPS_CONFLICT:
7452 if (strcmp (name, ".conflict") != 0)
b34976b6 7453 return FALSE;
b49e97c9
TS
7454 break;
7455 case SHT_MIPS_GPTAB:
0112cd26 7456 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7457 return FALSE;
b49e97c9
TS
7458 break;
7459 case SHT_MIPS_UCODE:
7460 if (strcmp (name, ".ucode") != 0)
b34976b6 7461 return FALSE;
b49e97c9
TS
7462 break;
7463 case SHT_MIPS_DEBUG:
7464 if (strcmp (name, ".mdebug") != 0)
b34976b6 7465 return FALSE;
b49e97c9
TS
7466 flags = SEC_DEBUGGING;
7467 break;
7468 case SHT_MIPS_REGINFO:
7469 if (strcmp (name, ".reginfo") != 0
7470 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7471 return FALSE;
b49e97c9
TS
7472 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7473 break;
7474 case SHT_MIPS_IFACE:
7475 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7476 return FALSE;
b49e97c9
TS
7477 break;
7478 case SHT_MIPS_CONTENT:
0112cd26 7479 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7480 return FALSE;
b49e97c9
TS
7481 break;
7482 case SHT_MIPS_OPTIONS:
cc2e31b9 7483 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7484 return FALSE;
b49e97c9 7485 break;
351cdf24
MF
7486 case SHT_MIPS_ABIFLAGS:
7487 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7488 return FALSE;
7489 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7490 break;
b49e97c9 7491 case SHT_MIPS_DWARF:
1b315056 7492 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7493 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7494 return FALSE;
b49e97c9
TS
7495 break;
7496 case SHT_MIPS_SYMBOL_LIB:
7497 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7498 return FALSE;
b49e97c9
TS
7499 break;
7500 case SHT_MIPS_EVENTS:
0112cd26
NC
7501 if (! CONST_STRNEQ (name, ".MIPS.events")
7502 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7503 return FALSE;
b49e97c9 7504 break;
f16a9783
MS
7505 case SHT_MIPS_XHASH:
7506 if (strcmp (name, ".MIPS.xhash") != 0)
7507 return FALSE;
b49e97c9 7508 default:
cc2e31b9 7509 break;
b49e97c9
TS
7510 }
7511
6dc132d9 7512 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7513 return FALSE;
b49e97c9
TS
7514
7515 if (flags)
7516 {
fd361982
AM
7517 if (!bfd_set_section_flags (hdr->bfd_section,
7518 (bfd_section_flags (hdr->bfd_section)
7519 | flags)))
b34976b6 7520 return FALSE;
b49e97c9
TS
7521 }
7522
351cdf24
MF
7523 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7524 {
7525 Elf_External_ABIFlags_v0 ext;
7526
7527 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7528 &ext, 0, sizeof ext))
7529 return FALSE;
7530 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7531 &mips_elf_tdata (abfd)->abiflags);
7532 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7533 return FALSE;
7534 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7535 }
7536
b49e97c9
TS
7537 /* FIXME: We should record sh_info for a .gptab section. */
7538
7539 /* For a .reginfo section, set the gp value in the tdata information
7540 from the contents of this section. We need the gp value while
7541 processing relocs, so we just get it now. The .reginfo section
7542 is not used in the 64-bit MIPS ELF ABI. */
7543 if (hdr->sh_type == SHT_MIPS_REGINFO)
7544 {
7545 Elf32_External_RegInfo ext;
7546 Elf32_RegInfo s;
7547
9719ad41
RS
7548 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7549 &ext, 0, sizeof ext))
b34976b6 7550 return FALSE;
b49e97c9
TS
7551 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7552 elf_gp (abfd) = s.ri_gp_value;
7553 }
7554
7555 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7556 set the gp value based on what we find. We may see both
7557 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7558 they should agree. */
7559 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7560 {
7561 bfd_byte *contents, *l, *lend;
7562
9719ad41 7563 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7564 if (contents == NULL)
b34976b6 7565 return FALSE;
b49e97c9 7566 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7567 0, hdr->sh_size))
b49e97c9
TS
7568 {
7569 free (contents);
b34976b6 7570 return FALSE;
b49e97c9
TS
7571 }
7572 l = contents;
7573 lend = contents + hdr->sh_size;
7574 while (l + sizeof (Elf_External_Options) <= lend)
7575 {
7576 Elf_Internal_Options intopt;
7577
7578 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7579 &intopt);
1bc8074d
MR
7580 if (intopt.size < sizeof (Elf_External_Options))
7581 {
4eca0228 7582 _bfd_error_handler
695344c0 7583 /* xgettext:c-format */
2c1c9679 7584 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7585 " its header"),
1bc8074d
MR
7586 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7587 break;
7588 }
b49e97c9
TS
7589 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7590 {
7591 Elf64_Internal_RegInfo intreg;
7592
7593 bfd_mips_elf64_swap_reginfo_in
7594 (abfd,
7595 ((Elf64_External_RegInfo *)
7596 (l + sizeof (Elf_External_Options))),
7597 &intreg);
7598 elf_gp (abfd) = intreg.ri_gp_value;
7599 }
7600 else if (intopt.kind == ODK_REGINFO)
7601 {
7602 Elf32_RegInfo intreg;
7603
7604 bfd_mips_elf32_swap_reginfo_in
7605 (abfd,
7606 ((Elf32_External_RegInfo *)
7607 (l + sizeof (Elf_External_Options))),
7608 &intreg);
7609 elf_gp (abfd) = intreg.ri_gp_value;
7610 }
7611 l += intopt.size;
7612 }
7613 free (contents);
7614 }
7615
b34976b6 7616 return TRUE;
b49e97c9
TS
7617}
7618
7619/* Set the correct type for a MIPS ELF section. We do this by the
7620 section name, which is a hack, but ought to work. This routine is
7621 used by both the 32-bit and the 64-bit ABI. */
7622
b34976b6 7623bfd_boolean
9719ad41 7624_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7625{
fd361982 7626 const char *name = bfd_section_name (sec);
b49e97c9
TS
7627
7628 if (strcmp (name, ".liblist") == 0)
7629 {
7630 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7631 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7632 /* The sh_link field is set in final_write_processing. */
7633 }
7634 else if (strcmp (name, ".conflict") == 0)
7635 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7636 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7637 {
7638 hdr->sh_type = SHT_MIPS_GPTAB;
7639 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7640 /* The sh_info field is set in final_write_processing. */
7641 }
7642 else if (strcmp (name, ".ucode") == 0)
7643 hdr->sh_type = SHT_MIPS_UCODE;
7644 else if (strcmp (name, ".mdebug") == 0)
7645 {
7646 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7647 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7648 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7649 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7650 hdr->sh_entsize = 0;
7651 else
7652 hdr->sh_entsize = 1;
7653 }
7654 else if (strcmp (name, ".reginfo") == 0)
7655 {
7656 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7657 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7658 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7659 if (SGI_COMPAT (abfd))
7660 {
7661 if ((abfd->flags & DYNAMIC) != 0)
7662 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7663 else
7664 hdr->sh_entsize = 1;
7665 }
7666 else
7667 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7668 }
7669 else if (SGI_COMPAT (abfd)
7670 && (strcmp (name, ".hash") == 0
7671 || strcmp (name, ".dynamic") == 0
7672 || strcmp (name, ".dynstr") == 0))
7673 {
7674 if (SGI_COMPAT (abfd))
7675 hdr->sh_entsize = 0;
7676#if 0
8dc1a139 7677 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7678 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7679#endif
7680 }
7681 else if (strcmp (name, ".got") == 0
7682 || strcmp (name, ".srdata") == 0
7683 || strcmp (name, ".sdata") == 0
7684 || strcmp (name, ".sbss") == 0
7685 || strcmp (name, ".lit4") == 0
7686 || strcmp (name, ".lit8") == 0)
7687 hdr->sh_flags |= SHF_MIPS_GPREL;
7688 else if (strcmp (name, ".MIPS.interfaces") == 0)
7689 {
7690 hdr->sh_type = SHT_MIPS_IFACE;
7691 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7692 }
0112cd26 7693 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7694 {
7695 hdr->sh_type = SHT_MIPS_CONTENT;
7696 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7697 /* The sh_info field is set in final_write_processing. */
7698 }
cc2e31b9 7699 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7700 {
7701 hdr->sh_type = SHT_MIPS_OPTIONS;
7702 hdr->sh_entsize = 1;
7703 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7704 }
351cdf24
MF
7705 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7706 {
7707 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7708 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7709 }
1b315056 7710 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7711 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7712 {
7713 hdr->sh_type = SHT_MIPS_DWARF;
7714
7715 /* Irix facilities such as libexc expect a single .debug_frame
7716 per executable, the system ones have NOSTRIP set and the linker
7717 doesn't merge sections with different flags so ... */
7718 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7719 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7720 }
b49e97c9
TS
7721 else if (strcmp (name, ".MIPS.symlib") == 0)
7722 {
7723 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7724 /* The sh_link and sh_info fields are set in
07d6d2b8 7725 final_write_processing. */
b49e97c9 7726 }
0112cd26
NC
7727 else if (CONST_STRNEQ (name, ".MIPS.events")
7728 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7729 {
7730 hdr->sh_type = SHT_MIPS_EVENTS;
7731 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7732 /* The sh_link field is set in final_write_processing. */
7733 }
7734 else if (strcmp (name, ".msym") == 0)
7735 {
7736 hdr->sh_type = SHT_MIPS_MSYM;
7737 hdr->sh_flags |= SHF_ALLOC;
7738 hdr->sh_entsize = 8;
7739 }
f16a9783
MS
7740 else if (strcmp (name, ".MIPS.xhash") == 0)
7741 {
7742 hdr->sh_type = SHT_MIPS_XHASH;
7743 hdr->sh_flags |= SHF_ALLOC;
7744 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7745 }
b49e97c9 7746
7a79a000
TS
7747 /* The generic elf_fake_sections will set up REL_HDR using the default
7748 kind of relocations. We used to set up a second header for the
7749 non-default kind of relocations here, but only NewABI would use
7750 these, and the IRIX ld doesn't like resulting empty RELA sections.
7751 Thus we create those header only on demand now. */
b49e97c9 7752
b34976b6 7753 return TRUE;
b49e97c9
TS
7754}
7755
7756/* Given a BFD section, try to locate the corresponding ELF section
7757 index. This is used by both the 32-bit and the 64-bit ABI.
7758 Actually, it's not clear to me that the 64-bit ABI supports these,
7759 but for non-PIC objects we will certainly want support for at least
7760 the .scommon section. */
7761
b34976b6 7762bfd_boolean
9719ad41
RS
7763_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7764 asection *sec, int *retval)
b49e97c9 7765{
fd361982 7766 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
b49e97c9
TS
7767 {
7768 *retval = SHN_MIPS_SCOMMON;
b34976b6 7769 return TRUE;
b49e97c9 7770 }
fd361982 7771 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
b49e97c9
TS
7772 {
7773 *retval = SHN_MIPS_ACOMMON;
b34976b6 7774 return TRUE;
b49e97c9 7775 }
b34976b6 7776 return FALSE;
b49e97c9
TS
7777}
7778\f
7779/* Hook called by the linker routine which adds symbols from an object
7780 file. We must handle the special MIPS section numbers here. */
7781
b34976b6 7782bfd_boolean
9719ad41 7783_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7784 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7785 flagword *flagsp ATTRIBUTE_UNUSED,
7786 asection **secp, bfd_vma *valp)
b49e97c9
TS
7787{
7788 if (SGI_COMPAT (abfd)
7789 && (abfd->flags & DYNAMIC) != 0
7790 && strcmp (*namep, "_rld_new_interface") == 0)
7791 {
8dc1a139 7792 /* Skip IRIX5 rld entry name. */
b49e97c9 7793 *namep = NULL;
b34976b6 7794 return TRUE;
b49e97c9
TS
7795 }
7796
eedecc07
DD
7797 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7798 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7799 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7800 a magic symbol resolved by the linker, we ignore this bogus definition
7801 of _gp_disp. New ABI objects do not suffer from this problem so this
7802 is not done for them. */
7803 if (!NEWABI_P(abfd)
7804 && (sym->st_shndx == SHN_ABS)
7805 && (strcmp (*namep, "_gp_disp") == 0))
7806 {
7807 *namep = NULL;
7808 return TRUE;
7809 }
7810
b49e97c9
TS
7811 switch (sym->st_shndx)
7812 {
7813 case SHN_COMMON:
7814 /* Common symbols less than the GP size are automatically
7815 treated as SHN_MIPS_SCOMMON symbols. */
7816 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7817 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7818 || IRIX_COMPAT (abfd) == ict_irix6)
7819 break;
7820 /* Fall through. */
7821 case SHN_MIPS_SCOMMON:
7822 *secp = bfd_make_section_old_way (abfd, ".scommon");
7823 (*secp)->flags |= SEC_IS_COMMON;
7824 *valp = sym->st_size;
7825 break;
7826
7827 case SHN_MIPS_TEXT:
7828 /* This section is used in a shared object. */
698600e4 7829 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7830 {
7831 asymbol *elf_text_symbol;
7832 asection *elf_text_section;
7833 bfd_size_type amt = sizeof (asection);
7834
7835 elf_text_section = bfd_zalloc (abfd, amt);
7836 if (elf_text_section == NULL)
b34976b6 7837 return FALSE;
b49e97c9
TS
7838
7839 amt = sizeof (asymbol);
7840 elf_text_symbol = bfd_zalloc (abfd, amt);
7841 if (elf_text_symbol == NULL)
b34976b6 7842 return FALSE;
b49e97c9
TS
7843
7844 /* Initialize the section. */
7845
698600e4
AM
7846 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7847 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7848
7849 elf_text_section->symbol = elf_text_symbol;
698600e4 7850 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7851
7852 elf_text_section->name = ".text";
7853 elf_text_section->flags = SEC_NO_FLAGS;
7854 elf_text_section->output_section = NULL;
7855 elf_text_section->owner = abfd;
7856 elf_text_symbol->name = ".text";
7857 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7858 elf_text_symbol->section = elf_text_section;
7859 }
7860 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7861 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7862 so I took it out. */
698600e4 7863 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7864 break;
7865
7866 case SHN_MIPS_ACOMMON:
7867 /* Fall through. XXX Can we treat this as allocated data? */
7868 case SHN_MIPS_DATA:
7869 /* This section is used in a shared object. */
698600e4 7870 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7871 {
7872 asymbol *elf_data_symbol;
7873 asection *elf_data_section;
7874 bfd_size_type amt = sizeof (asection);
7875
7876 elf_data_section = bfd_zalloc (abfd, amt);
7877 if (elf_data_section == NULL)
b34976b6 7878 return FALSE;
b49e97c9
TS
7879
7880 amt = sizeof (asymbol);
7881 elf_data_symbol = bfd_zalloc (abfd, amt);
7882 if (elf_data_symbol == NULL)
b34976b6 7883 return FALSE;
b49e97c9
TS
7884
7885 /* Initialize the section. */
7886
698600e4
AM
7887 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7888 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7889
7890 elf_data_section->symbol = elf_data_symbol;
698600e4 7891 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7892
7893 elf_data_section->name = ".data";
7894 elf_data_section->flags = SEC_NO_FLAGS;
7895 elf_data_section->output_section = NULL;
7896 elf_data_section->owner = abfd;
7897 elf_data_symbol->name = ".data";
7898 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7899 elf_data_symbol->section = elf_data_section;
7900 }
7901 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7902 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7903 so I took it out. */
698600e4 7904 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7905 break;
7906
7907 case SHN_MIPS_SUNDEFINED:
7908 *secp = bfd_und_section_ptr;
7909 break;
7910 }
7911
7912 if (SGI_COMPAT (abfd)
0e1862bb 7913 && ! bfd_link_pic (info)
f13a99db 7914 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7915 && strcmp (*namep, "__rld_obj_head") == 0)
7916 {
7917 struct elf_link_hash_entry *h;
14a793b2 7918 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7919
7920 /* Mark __rld_obj_head as dynamic. */
14a793b2 7921 bh = NULL;
b49e97c9 7922 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7923 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7924 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7925 return FALSE;
14a793b2
AM
7926
7927 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7928 h->non_elf = 0;
7929 h->def_regular = 1;
b49e97c9
TS
7930 h->type = STT_OBJECT;
7931
c152c796 7932 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7933 return FALSE;
b49e97c9 7934
b34976b6 7935 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7936 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7937 }
7938
7939 /* If this is a mips16 text symbol, add 1 to the value to make it
7940 odd. This will cause something like .word SYM to come up with
7941 the right value when it is loaded into the PC. */
df58fc94 7942 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7943 ++*valp;
7944
b34976b6 7945 return TRUE;
b49e97c9
TS
7946}
7947
7948/* This hook function is called before the linker writes out a global
7949 symbol. We mark symbols as small common if appropriate. This is
7950 also where we undo the increment of the value for a mips16 symbol. */
7951
6e0b88f1 7952int
9719ad41
RS
7953_bfd_mips_elf_link_output_symbol_hook
7954 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7955 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7956 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7957{
7958 /* If we see a common symbol, which implies a relocatable link, then
7959 if a symbol was small common in an input file, mark it as small
7960 common in the output file. */
7961 if (sym->st_shndx == SHN_COMMON
7962 && strcmp (input_sec->name, ".scommon") == 0)
7963 sym->st_shndx = SHN_MIPS_SCOMMON;
7964
df58fc94 7965 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7966 sym->st_value &= ~1;
b49e97c9 7967
6e0b88f1 7968 return 1;
b49e97c9
TS
7969}
7970\f
7971/* Functions for the dynamic linker. */
7972
7973/* Create dynamic sections when linking against a dynamic object. */
7974
b34976b6 7975bfd_boolean
9719ad41 7976_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7977{
7978 struct elf_link_hash_entry *h;
14a793b2 7979 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7980 flagword flags;
7981 register asection *s;
7982 const char * const *namep;
0a44bf69 7983 struct mips_elf_link_hash_table *htab;
b49e97c9 7984
0a44bf69 7985 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7986 BFD_ASSERT (htab != NULL);
7987
b49e97c9
TS
7988 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7989 | SEC_LINKER_CREATED | SEC_READONLY);
7990
0a44bf69
RS
7991 /* The psABI requires a read-only .dynamic section, but the VxWorks
7992 EABI doesn't. */
7993 if (!htab->is_vxworks)
b49e97c9 7994 {
3d4d4302 7995 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7996 if (s != NULL)
7997 {
fd361982 7998 if (!bfd_set_section_flags (s, flags))
0a44bf69
RS
7999 return FALSE;
8000 }
b49e97c9
TS
8001 }
8002
8003 /* We need to create .got section. */
23cc69b6 8004 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
8005 return FALSE;
8006
0a44bf69 8007 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 8008 return FALSE;
b49e97c9 8009
b49e97c9 8010 /* Create .stub section. */
3d4d4302
AM
8011 s = bfd_make_section_anyway_with_flags (abfd,
8012 MIPS_ELF_STUB_SECTION_NAME (abfd),
8013 flags | SEC_CODE);
4e41d0d7 8014 if (s == NULL
fd361982 8015 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4e41d0d7
RS
8016 return FALSE;
8017 htab->sstubs = s;
b49e97c9 8018
e6aea42d 8019 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 8020 && bfd_link_executable (info)
3d4d4302 8021 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 8022 {
3d4d4302
AM
8023 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8024 flags &~ (flagword) SEC_READONLY);
b49e97c9 8025 if (s == NULL
fd361982 8026 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 8027 return FALSE;
b49e97c9
TS
8028 }
8029
f16a9783
MS
8030 /* Create .MIPS.xhash section. */
8031 if (info->emit_gnu_hash)
8032 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8033 flags | SEC_READONLY);
8034
b49e97c9
TS
8035 /* On IRIX5, we adjust add some additional symbols and change the
8036 alignments of several sections. There is no ABI documentation
8037 indicating that this is necessary on IRIX6, nor any evidence that
8038 the linker takes such action. */
8039 if (IRIX_COMPAT (abfd) == ict_irix5)
8040 {
8041 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8042 {
14a793b2 8043 bh = NULL;
b49e97c9 8044 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8045 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8046 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8047 return FALSE;
14a793b2
AM
8048
8049 h = (struct elf_link_hash_entry *) bh;
12f09816 8050 h->mark = 1;
f5385ebf
AM
8051 h->non_elf = 0;
8052 h->def_regular = 1;
b49e97c9
TS
8053 h->type = STT_SECTION;
8054
c152c796 8055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8056 return FALSE;
b49e97c9
TS
8057 }
8058
8059 /* We need to create a .compact_rel section. */
8060 if (SGI_COMPAT (abfd))
8061 {
8062 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8063 return FALSE;
b49e97c9
TS
8064 }
8065
44c410de 8066 /* Change alignments of some sections. */
3d4d4302 8067 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8068 if (s != NULL)
fd361982 8069 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8070
3d4d4302 8071 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8072 if (s != NULL)
fd361982 8073 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8074
3d4d4302 8075 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8076 if (s != NULL)
fd361982 8077 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8078
3d4d4302 8079 /* ??? */
b49e97c9
TS
8080 s = bfd_get_section_by_name (abfd, ".reginfo");
8081 if (s != NULL)
fd361982 8082 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
a253d456 8083
3d4d4302 8084 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8085 if (s != NULL)
fd361982 8086 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8087 }
8088
0e1862bb 8089 if (bfd_link_executable (info))
b49e97c9 8090 {
14a793b2
AM
8091 const char *name;
8092
8093 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8094 bh = NULL;
8095 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8096 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8097 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8098 return FALSE;
14a793b2
AM
8099
8100 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8101 h->non_elf = 0;
8102 h->def_regular = 1;
b49e97c9
TS
8103 h->type = STT_SECTION;
8104
c152c796 8105 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8106 return FALSE;
b49e97c9
TS
8107
8108 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8109 {
8110 /* __rld_map is a four byte word located in the .data section
8111 and is filled in by the rtld to contain a pointer to
8112 the _r_debug structure. Its symbol value will be set in
8113 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8114 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8115 BFD_ASSERT (s != NULL);
14a793b2 8116
0abfb97a
L
8117 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8118 bh = NULL;
8119 if (!(_bfd_generic_link_add_one_symbol
8120 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8121 get_elf_backend_data (abfd)->collect, &bh)))
8122 return FALSE;
b49e97c9 8123
0abfb97a
L
8124 h = (struct elf_link_hash_entry *) bh;
8125 h->non_elf = 0;
8126 h->def_regular = 1;
8127 h->type = STT_OBJECT;
8128
8129 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8130 return FALSE;
b4082c70 8131 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8132 }
8133 }
8134
861fb55a 8135 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8136 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8137 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8138 return FALSE;
8139
1bbce132
MR
8140 /* Do the usual VxWorks handling. */
8141 if (htab->is_vxworks
8142 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8143 return FALSE;
0a44bf69 8144
b34976b6 8145 return TRUE;
b49e97c9
TS
8146}
8147\f
c224138d
RS
8148/* Return true if relocation REL against section SEC is a REL rather than
8149 RELA relocation. RELOCS is the first relocation in the section and
8150 ABFD is the bfd that contains SEC. */
8151
8152static bfd_boolean
8153mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8154 const Elf_Internal_Rela *relocs,
8155 const Elf_Internal_Rela *rel)
8156{
8157 Elf_Internal_Shdr *rel_hdr;
8158 const struct elf_backend_data *bed;
8159
d4730f92
BS
8160 /* To determine which flavor of relocation this is, we depend on the
8161 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8162 rel_hdr = elf_section_data (sec)->rel.hdr;
8163 if (rel_hdr == NULL)
8164 return FALSE;
c224138d 8165 bed = get_elf_backend_data (abfd);
d4730f92
BS
8166 return ((size_t) (rel - relocs)
8167 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8168}
8169
8170/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8171 HOWTO is the relocation's howto and CONTENTS points to the contents
8172 of the section that REL is against. */
8173
8174static bfd_vma
8175mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8176 reloc_howto_type *howto, bfd_byte *contents)
8177{
8178 bfd_byte *location;
8179 unsigned int r_type;
8180 bfd_vma addend;
17c6c9d9 8181 bfd_vma bytes;
c224138d
RS
8182
8183 r_type = ELF_R_TYPE (abfd, rel->r_info);
8184 location = contents + rel->r_offset;
8185
8186 /* Get the addend, which is stored in the input file. */
df58fc94 8187 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8188 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8189 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8190
17c6c9d9
MR
8191 addend = bytes & howto->src_mask;
8192
8193 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8194 accordingly. */
8195 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8196 addend <<= 1;
8197
8198 return addend;
c224138d
RS
8199}
8200
8201/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8202 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8203 and update *ADDEND with the final addend. Return true on success
8204 or false if the LO16 could not be found. RELEND is the exclusive
8205 upper bound on the relocations for REL's section. */
8206
8207static bfd_boolean
8208mips_elf_add_lo16_rel_addend (bfd *abfd,
8209 const Elf_Internal_Rela *rel,
8210 const Elf_Internal_Rela *relend,
8211 bfd_byte *contents, bfd_vma *addend)
8212{
8213 unsigned int r_type, lo16_type;
8214 const Elf_Internal_Rela *lo16_relocation;
8215 reloc_howto_type *lo16_howto;
8216 bfd_vma l;
8217
8218 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8219 if (mips16_reloc_p (r_type))
c224138d 8220 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8221 else if (micromips_reloc_p (r_type))
8222 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8223 else if (r_type == R_MIPS_PCHI16)
8224 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8225 else
8226 lo16_type = R_MIPS_LO16;
8227
8228 /* The combined value is the sum of the HI16 addend, left-shifted by
8229 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8230 code does a `lui' of the HI16 value, and then an `addiu' of the
8231 LO16 value.)
8232
8233 Scan ahead to find a matching LO16 relocation.
8234
8235 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8236 be immediately following. However, for the IRIX6 ABI, the next
8237 relocation may be a composed relocation consisting of several
8238 relocations for the same address. In that case, the R_MIPS_LO16
8239 relocation may occur as one of these. We permit a similar
8240 extension in general, as that is useful for GCC.
8241
8242 In some cases GCC dead code elimination removes the LO16 but keeps
8243 the corresponding HI16. This is strictly speaking a violation of
8244 the ABI but not immediately harmful. */
8245 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8246 if (lo16_relocation == NULL)
8247 return FALSE;
8248
8249 /* Obtain the addend kept there. */
8250 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8251 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8252
8253 l <<= lo16_howto->rightshift;
8254 l = _bfd_mips_elf_sign_extend (l, 16);
8255
8256 *addend <<= 16;
8257 *addend += l;
8258 return TRUE;
8259}
8260
8261/* Try to read the contents of section SEC in bfd ABFD. Return true and
8262 store the contents in *CONTENTS on success. Assume that *CONTENTS
8263 already holds the contents if it is nonull on entry. */
8264
8265static bfd_boolean
8266mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8267{
8268 if (*contents)
8269 return TRUE;
8270
8271 /* Get cached copy if it exists. */
8272 if (elf_section_data (sec)->this_hdr.contents != NULL)
8273 {
8274 *contents = elf_section_data (sec)->this_hdr.contents;
8275 return TRUE;
8276 }
8277
8278 return bfd_malloc_and_get_section (abfd, sec, contents);
8279}
8280
1bbce132
MR
8281/* Make a new PLT record to keep internal data. */
8282
8283static struct plt_entry *
8284mips_elf_make_plt_record (bfd *abfd)
8285{
8286 struct plt_entry *entry;
8287
8288 entry = bfd_zalloc (abfd, sizeof (*entry));
8289 if (entry == NULL)
8290 return NULL;
8291
8292 entry->stub_offset = MINUS_ONE;
8293 entry->mips_offset = MINUS_ONE;
8294 entry->comp_offset = MINUS_ONE;
8295 entry->gotplt_index = MINUS_ONE;
8296 return entry;
8297}
8298
47275900
MR
8299/* Define the special `__gnu_absolute_zero' symbol. We only need this
8300 for PIC code, as otherwise there is no load-time relocation involved
8301 and local GOT entries whose value is zero at static link time will
8302 retain their value at load time. */
8303
8304static bfd_boolean
8305mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8306 struct mips_elf_link_hash_table *htab,
8307 unsigned int r_type)
8308{
8309 union
8310 {
8311 struct elf_link_hash_entry *eh;
8312 struct bfd_link_hash_entry *bh;
8313 }
8314 hzero;
8315
8316 BFD_ASSERT (!htab->use_absolute_zero);
8317 BFD_ASSERT (bfd_link_pic (info));
8318
8319 hzero.bh = NULL;
8320 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8321 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8322 NULL, FALSE, FALSE, &hzero.bh))
8323 return FALSE;
8324
8325 BFD_ASSERT (hzero.bh != NULL);
8326 hzero.eh->size = 0;
8327 hzero.eh->type = STT_NOTYPE;
8328 hzero.eh->other = STV_PROTECTED;
8329 hzero.eh->def_regular = 1;
8330 hzero.eh->non_elf = 0;
8331
8332 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8333 return FALSE;
8334
8335 htab->use_absolute_zero = TRUE;
8336
8337 return TRUE;
8338}
8339
b49e97c9 8340/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8341 allocate space in the global offset table and record the need for
8342 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8343
b34976b6 8344bfd_boolean
9719ad41
RS
8345_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8346 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8347{
8348 const char *name;
8349 bfd *dynobj;
8350 Elf_Internal_Shdr *symtab_hdr;
8351 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8352 size_t extsymoff;
8353 const Elf_Internal_Rela *rel;
8354 const Elf_Internal_Rela *rel_end;
b49e97c9 8355 asection *sreloc;
9c5bfbb7 8356 const struct elf_backend_data *bed;
0a44bf69 8357 struct mips_elf_link_hash_table *htab;
c224138d
RS
8358 bfd_byte *contents;
8359 bfd_vma addend;
8360 reloc_howto_type *howto;
b49e97c9 8361
0e1862bb 8362 if (bfd_link_relocatable (info))
b34976b6 8363 return TRUE;
b49e97c9 8364
0a44bf69 8365 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8366 BFD_ASSERT (htab != NULL);
8367
b49e97c9
TS
8368 dynobj = elf_hash_table (info)->dynobj;
8369 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8370 sym_hashes = elf_sym_hashes (abfd);
8371 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8372
738e5348 8373 bed = get_elf_backend_data (abfd);
056bafd4 8374 rel_end = relocs + sec->reloc_count;
738e5348 8375
b49e97c9
TS
8376 /* Check for the mips16 stub sections. */
8377
fd361982 8378 name = bfd_section_name (sec);
b9d58d71 8379 if (FN_STUB_P (name))
b49e97c9
TS
8380 {
8381 unsigned long r_symndx;
8382
8383 /* Look at the relocation information to figure out which symbol
07d6d2b8 8384 this is for. */
b49e97c9 8385
cb4437b8 8386 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8387 if (r_symndx == 0)
8388 {
4eca0228 8389 _bfd_error_handler
695344c0 8390 /* xgettext:c-format */
2c1c9679 8391 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8392 " stub section `%s'"),
8393 abfd, name);
8394 bfd_set_error (bfd_error_bad_value);
8395 return FALSE;
8396 }
b49e97c9
TS
8397
8398 if (r_symndx < extsymoff
8399 || sym_hashes[r_symndx - extsymoff] == NULL)
8400 {
8401 asection *o;
8402
8403 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8404 needed if there is some relocation in this BFD, other
8405 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8406 for (o = abfd->sections; o != NULL; o = o->next)
8407 {
8408 Elf_Internal_Rela *sec_relocs;
8409 const Elf_Internal_Rela *r, *rend;
8410
8411 /* We can ignore stub sections when looking for relocs. */
8412 if ((o->flags & SEC_RELOC) == 0
8413 || o->reloc_count == 0
738e5348 8414 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8415 continue;
8416
45d6a902 8417 sec_relocs
9719ad41 8418 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8419 info->keep_memory);
b49e97c9 8420 if (sec_relocs == NULL)
b34976b6 8421 return FALSE;
b49e97c9
TS
8422
8423 rend = sec_relocs + o->reloc_count;
8424 for (r = sec_relocs; r < rend; r++)
8425 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8426 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8427 break;
8428
6cdc0ccc 8429 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8430 free (sec_relocs);
8431
8432 if (r < rend)
8433 break;
8434 }
8435
8436 if (o == NULL)
8437 {
8438 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8439 not need it. Since this function is called before
8440 the linker maps input sections to output sections, we
8441 can easily discard it by setting the SEC_EXCLUDE
8442 flag. */
b49e97c9 8443 sec->flags |= SEC_EXCLUDE;
b34976b6 8444 return TRUE;
b49e97c9
TS
8445 }
8446
8447 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8448 this BFD. */
698600e4 8449 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8450 {
8451 unsigned long symcount;
8452 asection **n;
8453 bfd_size_type amt;
8454
8455 if (elf_bad_symtab (abfd))
8456 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8457 else
8458 symcount = symtab_hdr->sh_info;
8459 amt = symcount * sizeof (asection *);
9719ad41 8460 n = bfd_zalloc (abfd, amt);
b49e97c9 8461 if (n == NULL)
b34976b6 8462 return FALSE;
698600e4 8463 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8464 }
8465
b9d58d71 8466 sec->flags |= SEC_KEEP;
698600e4 8467 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8468
8469 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8470 That flag is used to see whether we need to look through
8471 the global symbol table for stubs. We don't need to set
8472 it here, because we just have a local stub. */
b49e97c9
TS
8473 }
8474 else
8475 {
8476 struct mips_elf_link_hash_entry *h;
8477
8478 h = ((struct mips_elf_link_hash_entry *)
8479 sym_hashes[r_symndx - extsymoff]);
8480
973a3492
L
8481 while (h->root.root.type == bfd_link_hash_indirect
8482 || h->root.root.type == bfd_link_hash_warning)
8483 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8484
b49e97c9
TS
8485 /* H is the symbol this stub is for. */
8486
b9d58d71
TS
8487 /* If we already have an appropriate stub for this function, we
8488 don't need another one, so we can discard this one. Since
8489 this function is called before the linker maps input sections
8490 to output sections, we can easily discard it by setting the
8491 SEC_EXCLUDE flag. */
8492 if (h->fn_stub != NULL)
8493 {
8494 sec->flags |= SEC_EXCLUDE;
8495 return TRUE;
8496 }
8497
8498 sec->flags |= SEC_KEEP;
b49e97c9 8499 h->fn_stub = sec;
b34976b6 8500 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8501 }
8502 }
b9d58d71 8503 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8504 {
8505 unsigned long r_symndx;
8506 struct mips_elf_link_hash_entry *h;
8507 asection **loc;
8508
8509 /* Look at the relocation information to figure out which symbol
07d6d2b8 8510 this is for. */
b49e97c9 8511
cb4437b8 8512 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8513 if (r_symndx == 0)
8514 {
4eca0228 8515 _bfd_error_handler
695344c0 8516 /* xgettext:c-format */
2c1c9679 8517 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8518 " stub section `%s'"),
8519 abfd, name);
8520 bfd_set_error (bfd_error_bad_value);
8521 return FALSE;
8522 }
b49e97c9
TS
8523
8524 if (r_symndx < extsymoff
8525 || sym_hashes[r_symndx - extsymoff] == NULL)
8526 {
b9d58d71 8527 asection *o;
b49e97c9 8528
b9d58d71 8529 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8530 needed if there is some relocation (R_MIPS16_26) in this BFD
8531 that refers to this symbol. */
b9d58d71
TS
8532 for (o = abfd->sections; o != NULL; o = o->next)
8533 {
8534 Elf_Internal_Rela *sec_relocs;
8535 const Elf_Internal_Rela *r, *rend;
8536
8537 /* We can ignore stub sections when looking for relocs. */
8538 if ((o->flags & SEC_RELOC) == 0
8539 || o->reloc_count == 0
738e5348 8540 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8541 continue;
8542
8543 sec_relocs
8544 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8545 info->keep_memory);
8546 if (sec_relocs == NULL)
8547 return FALSE;
8548
8549 rend = sec_relocs + o->reloc_count;
8550 for (r = sec_relocs; r < rend; r++)
8551 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8552 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8553 break;
8554
8555 if (elf_section_data (o)->relocs != sec_relocs)
8556 free (sec_relocs);
8557
8558 if (r < rend)
8559 break;
8560 }
8561
8562 if (o == NULL)
8563 {
8564 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8565 not need it. Since this function is called before
8566 the linker maps input sections to output sections, we
8567 can easily discard it by setting the SEC_EXCLUDE
8568 flag. */
b9d58d71
TS
8569 sec->flags |= SEC_EXCLUDE;
8570 return TRUE;
8571 }
8572
8573 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8574 this BFD. */
698600e4 8575 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8576 {
8577 unsigned long symcount;
8578 asection **n;
8579 bfd_size_type amt;
8580
8581 if (elf_bad_symtab (abfd))
8582 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8583 else
8584 symcount = symtab_hdr->sh_info;
8585 amt = symcount * sizeof (asection *);
8586 n = bfd_zalloc (abfd, amt);
8587 if (n == NULL)
8588 return FALSE;
698600e4 8589 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8590 }
b49e97c9 8591
b9d58d71 8592 sec->flags |= SEC_KEEP;
698600e4 8593 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8594
b9d58d71 8595 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8596 That flag is used to see whether we need to look through
8597 the global symbol table for stubs. We don't need to set
8598 it here, because we just have a local stub. */
b9d58d71 8599 }
b49e97c9 8600 else
b49e97c9 8601 {
b9d58d71
TS
8602 h = ((struct mips_elf_link_hash_entry *)
8603 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8604
b9d58d71 8605 /* H is the symbol this stub is for. */
68ffbac6 8606
b9d58d71
TS
8607 if (CALL_FP_STUB_P (name))
8608 loc = &h->call_fp_stub;
8609 else
8610 loc = &h->call_stub;
68ffbac6 8611
b9d58d71
TS
8612 /* If we already have an appropriate stub for this function, we
8613 don't need another one, so we can discard this one. Since
8614 this function is called before the linker maps input sections
8615 to output sections, we can easily discard it by setting the
8616 SEC_EXCLUDE flag. */
8617 if (*loc != NULL)
8618 {
8619 sec->flags |= SEC_EXCLUDE;
8620 return TRUE;
8621 }
b49e97c9 8622
b9d58d71
TS
8623 sec->flags |= SEC_KEEP;
8624 *loc = sec;
8625 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8626 }
b49e97c9
TS
8627 }
8628
b49e97c9 8629 sreloc = NULL;
c224138d 8630 contents = NULL;
b49e97c9
TS
8631 for (rel = relocs; rel < rel_end; ++rel)
8632 {
8633 unsigned long r_symndx;
8634 unsigned int r_type;
8635 struct elf_link_hash_entry *h;
861fb55a 8636 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8637 bfd_boolean call_reloc_p;
8638 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8639
8640 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8641 r_type = ELF_R_TYPE (abfd, rel->r_info);
8642
8643 if (r_symndx < extsymoff)
8644 h = NULL;
8645 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8646 {
4eca0228 8647 _bfd_error_handler
695344c0 8648 /* xgettext:c-format */
2c1c9679 8649 (_("%pB: malformed reloc detected for section %s"),
d003868e 8650 abfd, name);
b49e97c9 8651 bfd_set_error (bfd_error_bad_value);
b34976b6 8652 return FALSE;
b49e97c9
TS
8653 }
8654 else
8655 {
8656 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8657 if (h != NULL)
8658 {
8659 while (h->root.type == bfd_link_hash_indirect
8660 || h->root.type == bfd_link_hash_warning)
8661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8662 }
861fb55a 8663 }
b49e97c9 8664
861fb55a
DJ
8665 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8666 relocation into a dynamic one. */
8667 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8668
8669 /* Set CALL_RELOC_P to true if the relocation is for a call,
8670 and if pointer equality therefore doesn't matter. */
8671 call_reloc_p = FALSE;
8672
8673 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8674 into account when deciding how to define the symbol.
8675 Relocations in nonallocatable sections such as .pdr and
8676 .debug* should have no effect. */
8677 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8678
861fb55a
DJ
8679 switch (r_type)
8680 {
861fb55a
DJ
8681 case R_MIPS_CALL16:
8682 case R_MIPS_CALL_HI16:
8683 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8684 case R_MIPS16_CALL16:
8685 case R_MICROMIPS_CALL16:
8686 case R_MICROMIPS_CALL_HI16:
8687 case R_MICROMIPS_CALL_LO16:
8688 call_reloc_p = TRUE;
8689 /* Fall through. */
8690
8691 case R_MIPS_GOT16:
861fb55a
DJ
8692 case R_MIPS_GOT_LO16:
8693 case R_MIPS_GOT_PAGE:
861fb55a 8694 case R_MIPS_GOT_DISP:
47275900
MR
8695 case R_MIPS16_GOT16:
8696 case R_MICROMIPS_GOT16:
8697 case R_MICROMIPS_GOT_LO16:
8698 case R_MICROMIPS_GOT_PAGE:
8699 case R_MICROMIPS_GOT_DISP:
8700 /* If we have a symbol that will resolve to zero at static link
8701 time and it is used by a GOT relocation applied to code we
8702 cannot relax to an immediate zero load, then we will be using
8703 the special `__gnu_absolute_zero' symbol whose value is zero
8704 at dynamic load time. We ignore HI16-type GOT relocations at
8705 this stage, because their handling will depend entirely on
8706 the corresponding LO16-type GOT relocation. */
8707 if (!call_hi16_reloc_p (r_type)
8708 && h != NULL
8709 && bfd_link_pic (info)
8710 && !htab->use_absolute_zero
8711 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8712 {
8713 bfd_boolean rel_reloc;
8714
8715 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8716 return FALSE;
8717
8718 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8719 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8720
8721 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8722 FALSE))
8723 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8724 return FALSE;
8725 }
8726
8727 /* Fall through. */
8728 case R_MIPS_GOT_HI16:
8729 case R_MIPS_GOT_OFST:
861fb55a
DJ
8730 case R_MIPS_TLS_GOTTPREL:
8731 case R_MIPS_TLS_GD:
8732 case R_MIPS_TLS_LDM:
d0f13682
CLT
8733 case R_MIPS16_TLS_GOTTPREL:
8734 case R_MIPS16_TLS_GD:
8735 case R_MIPS16_TLS_LDM:
df58fc94 8736 case R_MICROMIPS_GOT_HI16:
df58fc94 8737 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8738 case R_MICROMIPS_TLS_GOTTPREL:
8739 case R_MICROMIPS_TLS_GD:
8740 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8741 if (dynobj == NULL)
8742 elf_hash_table (info)->dynobj = dynobj = abfd;
8743 if (!mips_elf_create_got_section (dynobj, info))
8744 return FALSE;
0e1862bb 8745 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8746 {
4eca0228 8747 _bfd_error_handler
695344c0 8748 /* xgettext:c-format */
2dcf00ce
AM
8749 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8750 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8751 bfd_set_error (bfd_error_bad_value);
8752 return FALSE;
b49e97c9 8753 }
c5d6fa44 8754 can_make_dynamic_p = TRUE;
861fb55a 8755 break;
b49e97c9 8756
c5d6fa44 8757 case R_MIPS_NONE:
99da6b5f 8758 case R_MIPS_JALR:
df58fc94 8759 case R_MICROMIPS_JALR:
c5d6fa44
RS
8760 /* These relocations have empty fields and are purely there to
8761 provide link information. The symbol value doesn't matter. */
8762 constrain_symbol_p = FALSE;
8763 break;
8764
8765 case R_MIPS_GPREL16:
8766 case R_MIPS_GPREL32:
8767 case R_MIPS16_GPREL:
8768 case R_MICROMIPS_GPREL16:
8769 /* GP-relative relocations always resolve to a definition in a
8770 regular input file, ignoring the one-definition rule. This is
8771 important for the GP setup sequence in NewABI code, which
8772 always resolves to a local function even if other relocations
8773 against the symbol wouldn't. */
8774 constrain_symbol_p = FALSE;
99da6b5f
AN
8775 break;
8776
861fb55a
DJ
8777 case R_MIPS_32:
8778 case R_MIPS_REL32:
8779 case R_MIPS_64:
8780 /* In VxWorks executables, references to external symbols
8781 must be handled using copy relocs or PLT entries; it is not
8782 possible to convert this relocation into a dynamic one.
8783
8784 For executables that use PLTs and copy-relocs, we have a
8785 choice between converting the relocation into a dynamic
8786 one or using copy relocations or PLT entries. It is
8787 usually better to do the former, unless the relocation is
8788 against a read-only section. */
0e1862bb 8789 if ((bfd_link_pic (info)
861fb55a
DJ
8790 || (h != NULL
8791 && !htab->is_vxworks
8792 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8793 && !(!info->nocopyreloc
8794 && !PIC_OBJECT_P (abfd)
8795 && MIPS_ELF_READONLY_SECTION (sec))))
8796 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8797 {
861fb55a 8798 can_make_dynamic_p = TRUE;
b49e97c9
TS
8799 if (dynobj == NULL)
8800 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8801 }
c5d6fa44 8802 break;
b49e97c9 8803
861fb55a
DJ
8804 case R_MIPS_26:
8805 case R_MIPS_PC16:
7361da2c
AB
8806 case R_MIPS_PC21_S2:
8807 case R_MIPS_PC26_S2:
861fb55a 8808 case R_MIPS16_26:
c9775dde 8809 case R_MIPS16_PC16_S1:
df58fc94
RS
8810 case R_MICROMIPS_26_S1:
8811 case R_MICROMIPS_PC7_S1:
8812 case R_MICROMIPS_PC10_S1:
8813 case R_MICROMIPS_PC16_S1:
8814 case R_MICROMIPS_PC23_S2:
c5d6fa44 8815 call_reloc_p = TRUE;
861fb55a 8816 break;
b49e97c9
TS
8817 }
8818
0a44bf69
RS
8819 if (h)
8820 {
c5d6fa44
RS
8821 if (constrain_symbol_p)
8822 {
8823 if (!can_make_dynamic_p)
8824 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8825
8826 if (!call_reloc_p)
8827 h->pointer_equality_needed = 1;
8828
8829 /* We must not create a stub for a symbol that has
8830 relocations related to taking the function's address.
8831 This doesn't apply to VxWorks, where CALL relocs refer
8832 to a .got.plt entry instead of a normal .got entry. */
8833 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8834 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8835 }
8836
0a44bf69
RS
8837 /* Relocations against the special VxWorks __GOTT_BASE__ and
8838 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8839 room for them in .rela.dyn. */
8840 if (is_gott_symbol (info, h))
8841 {
8842 if (sreloc == NULL)
8843 {
8844 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8845 if (sreloc == NULL)
8846 return FALSE;
8847 }
8848 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8849 if (MIPS_ELF_READONLY_SECTION (sec))
8850 /* We tell the dynamic linker that there are
8851 relocations against the text segment. */
8852 info->flags |= DF_TEXTREL;
0a44bf69
RS
8853 }
8854 }
df58fc94
RS
8855 else if (call_lo16_reloc_p (r_type)
8856 || got_lo16_reloc_p (r_type)
8857 || got_disp_reloc_p (r_type)
738e5348 8858 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8859 {
8860 /* We may need a local GOT entry for this relocation. We
8861 don't count R_MIPS_GOT_PAGE because we can estimate the
8862 maximum number of pages needed by looking at the size of
738e5348
RS
8863 the segment. Similar comments apply to R_MIPS*_GOT16 and
8864 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8865 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8866 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8867 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8868 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8869 rel->r_addend, info, r_type))
f4416af6 8870 return FALSE;
b49e97c9
TS
8871 }
8872
8f0c309a
CLT
8873 if (h != NULL
8874 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8875 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8876 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8877
b49e97c9
TS
8878 switch (r_type)
8879 {
8880 case R_MIPS_CALL16:
738e5348 8881 case R_MIPS16_CALL16:
df58fc94 8882 case R_MICROMIPS_CALL16:
b49e97c9
TS
8883 if (h == NULL)
8884 {
4eca0228 8885 _bfd_error_handler
695344c0 8886 /* xgettext:c-format */
2dcf00ce
AM
8887 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8888 abfd, (uint64_t) rel->r_offset);
b49e97c9 8889 bfd_set_error (bfd_error_bad_value);
b34976b6 8890 return FALSE;
b49e97c9
TS
8891 }
8892 /* Fall through. */
8893
8894 case R_MIPS_CALL_HI16:
8895 case R_MIPS_CALL_LO16:
df58fc94
RS
8896 case R_MICROMIPS_CALL_HI16:
8897 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8898 if (h != NULL)
8899 {
6ccf4795
RS
8900 /* Make sure there is room in the regular GOT to hold the
8901 function's address. We may eliminate it in favour of
8902 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8903 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8904 r_type))
b34976b6 8905 return FALSE;
b49e97c9
TS
8906
8907 /* We need a stub, not a plt entry for the undefined
8908 function. But we record it as if it needs plt. See
c152c796 8909 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8910 h->needs_plt = 1;
b49e97c9
TS
8911 h->type = STT_FUNC;
8912 }
8913 break;
8914
0fdc1bf1 8915 case R_MIPS_GOT_PAGE:
df58fc94 8916 case R_MICROMIPS_GOT_PAGE:
738e5348 8917 case R_MIPS16_GOT16:
b49e97c9
TS
8918 case R_MIPS_GOT16:
8919 case R_MIPS_GOT_HI16:
8920 case R_MIPS_GOT_LO16:
df58fc94
RS
8921 case R_MICROMIPS_GOT16:
8922 case R_MICROMIPS_GOT_HI16:
8923 case R_MICROMIPS_GOT_LO16:
8924 if (!h || got_page_reloc_p (r_type))
c224138d 8925 {
3a3b6725
DJ
8926 /* This relocation needs (or may need, if h != NULL) a
8927 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8928 know for sure until we know whether the symbol is
8929 preemptible. */
c224138d
RS
8930 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8931 {
8932 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8933 return FALSE;
8934 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8935 addend = mips_elf_read_rel_addend (abfd, rel,
8936 howto, contents);
9684f078 8937 if (got16_reloc_p (r_type))
c224138d
RS
8938 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8939 contents, &addend);
8940 else
8941 addend <<= howto->rightshift;
8942 }
8943 else
8944 addend = rel->r_addend;
13db6b44
RS
8945 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8946 h, addend))
c224138d 8947 return FALSE;
13db6b44
RS
8948
8949 if (h)
8950 {
8951 struct mips_elf_link_hash_entry *hmips =
8952 (struct mips_elf_link_hash_entry *) h;
8953
8954 /* This symbol is definitely not overridable. */
8955 if (hmips->root.def_regular
0e1862bb 8956 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8957 && ! hmips->root.forced_local))
8958 h = NULL;
8959 }
c224138d 8960 }
13db6b44
RS
8961 /* If this is a global, overridable symbol, GOT_PAGE will
8962 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8963 /* Fall through. */
8964
b49e97c9 8965 case R_MIPS_GOT_DISP:
df58fc94 8966 case R_MICROMIPS_GOT_DISP:
6ccf4795 8967 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8968 FALSE, r_type))
b34976b6 8969 return FALSE;
b49e97c9
TS
8970 break;
8971
0f20cc35 8972 case R_MIPS_TLS_GOTTPREL:
d0f13682 8973 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8974 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8975 if (bfd_link_pic (info))
0f20cc35
DJ
8976 info->flags |= DF_STATIC_TLS;
8977 /* Fall through */
8978
8979 case R_MIPS_TLS_LDM:
d0f13682 8980 case R_MIPS16_TLS_LDM:
df58fc94
RS
8981 case R_MICROMIPS_TLS_LDM:
8982 if (tls_ldm_reloc_p (r_type))
0f20cc35 8983 {
cf35638d 8984 r_symndx = STN_UNDEF;
0f20cc35
DJ
8985 h = NULL;
8986 }
8987 /* Fall through */
8988
8989 case R_MIPS_TLS_GD:
d0f13682 8990 case R_MIPS16_TLS_GD:
df58fc94 8991 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8992 /* This symbol requires a global offset table entry, or two
8993 for TLS GD relocations. */
e641e783
RS
8994 if (h != NULL)
8995 {
8996 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8997 FALSE, r_type))
8998 return FALSE;
8999 }
9000 else
9001 {
9002 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9003 rel->r_addend,
9004 info, r_type))
9005 return FALSE;
9006 }
0f20cc35
DJ
9007 break;
9008
b49e97c9
TS
9009 case R_MIPS_32:
9010 case R_MIPS_REL32:
9011 case R_MIPS_64:
0a44bf69
RS
9012 /* In VxWorks executables, references to external symbols
9013 are handled using copy relocs or PLT stubs, so there's
9014 no need to add a .rela.dyn entry for this relocation. */
861fb55a 9015 if (can_make_dynamic_p)
b49e97c9
TS
9016 {
9017 if (sreloc == NULL)
9018 {
0a44bf69 9019 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 9020 if (sreloc == NULL)
f4416af6 9021 return FALSE;
b49e97c9 9022 }
0e1862bb 9023 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
9024 {
9025 /* When creating a shared object, we must copy these
9026 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
9027 relocs. Make room for this reloc in .rel(a).dyn. */
9028 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 9029 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9030 /* We tell the dynamic linker that there are
9031 relocations against the text segment. */
9032 info->flags |= DF_TEXTREL;
9033 }
b49e97c9
TS
9034 else
9035 {
9036 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 9037
9a59ad6b
DJ
9038 /* For a shared object, we must copy this relocation
9039 unless the symbol turns out to be undefined and
9040 weak with non-default visibility, in which case
9041 it will be left as zero.
9042
9043 We could elide R_MIPS_REL32 for locally binding symbols
9044 in shared libraries, but do not yet do so.
9045
9046 For an executable, we only need to copy this
9047 reloc if the symbol is defined in a dynamic
9048 object. */
b49e97c9
TS
9049 hmips = (struct mips_elf_link_hash_entry *) h;
9050 ++hmips->possibly_dynamic_relocs;
943284cc 9051 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9052 /* We need it to tell the dynamic linker if there
9053 are relocations against the text segment. */
9054 hmips->readonly_reloc = TRUE;
b49e97c9 9055 }
b49e97c9
TS
9056 }
9057
9058 if (SGI_COMPAT (abfd))
9059 mips_elf_hash_table (info)->compact_rel_size +=
9060 sizeof (Elf32_External_crinfo);
9061 break;
9062
9063 case R_MIPS_26:
9064 case R_MIPS_GPREL16:
9065 case R_MIPS_LITERAL:
9066 case R_MIPS_GPREL32:
df58fc94
RS
9067 case R_MICROMIPS_26_S1:
9068 case R_MICROMIPS_GPREL16:
9069 case R_MICROMIPS_LITERAL:
9070 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9071 if (SGI_COMPAT (abfd))
9072 mips_elf_hash_table (info)->compact_rel_size +=
9073 sizeof (Elf32_External_crinfo);
9074 break;
9075
9076 /* This relocation describes the C++ object vtable hierarchy.
9077 Reconstruct it for later use during GC. */
9078 case R_MIPS_GNU_VTINHERIT:
c152c796 9079 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9080 return FALSE;
b49e97c9
TS
9081 break;
9082
9083 /* This relocation describes which C++ vtable entries are actually
9084 used. Record for later use during GC. */
9085 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9086 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9087 return FALSE;
b49e97c9
TS
9088 break;
9089
9090 default:
9091 break;
9092 }
9093
1bbce132 9094 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9095 yet if we are going to create a PLT in the first place, but
9096 we only record whether the relocation requires a standard MIPS
9097 or a compressed code entry anyway. If we don't make a PLT after
9098 all, then we'll just ignore these arrangements. Likewise if
9099 a PLT entry is not created because the symbol is satisfied
9100 locally. */
1bbce132 9101 if (h != NULL
54806ffa
MR
9102 && (branch_reloc_p (r_type)
9103 || mips16_branch_reloc_p (r_type)
9104 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9105 && !SYMBOL_CALLS_LOCAL (info, h))
9106 {
9107 if (h->plt.plist == NULL)
9108 h->plt.plist = mips_elf_make_plt_record (abfd);
9109 if (h->plt.plist == NULL)
9110 return FALSE;
9111
54806ffa 9112 if (branch_reloc_p (r_type))
1bbce132
MR
9113 h->plt.plist->need_mips = TRUE;
9114 else
9115 h->plt.plist->need_comp = TRUE;
9116 }
9117
738e5348
RS
9118 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9119 if there is one. We only need to handle global symbols here;
9120 we decide whether to keep or delete stubs for local symbols
9121 when processing the stub's relocations. */
b49e97c9 9122 if (h != NULL
738e5348
RS
9123 && !mips16_call_reloc_p (r_type)
9124 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9125 {
9126 struct mips_elf_link_hash_entry *mh;
9127
9128 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9129 mh->need_fn_stub = TRUE;
b49e97c9 9130 }
861fb55a
DJ
9131
9132 /* Refuse some position-dependent relocations when creating a
9133 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9134 not PIC, but we can create dynamic relocations and the result
9135 will be fine. Also do not refuse R_MIPS_LO16, which can be
9136 combined with R_MIPS_GOT16. */
0e1862bb 9137 if (bfd_link_pic (info))
861fb55a
DJ
9138 {
9139 switch (r_type)
9140 {
b474a202
FS
9141 case R_MIPS_TLS_TPREL_HI16:
9142 case R_MIPS16_TLS_TPREL_HI16:
9143 case R_MICROMIPS_TLS_TPREL_HI16:
9144 case R_MIPS_TLS_TPREL_LO16:
9145 case R_MIPS16_TLS_TPREL_LO16:
9146 case R_MICROMIPS_TLS_TPREL_LO16:
9147 /* These are okay in PIE, but not in a shared library. */
9148 if (bfd_link_executable (info))
9149 break;
9150
9151 /* FALLTHROUGH */
9152
861fb55a
DJ
9153 case R_MIPS16_HI16:
9154 case R_MIPS_HI16:
9155 case R_MIPS_HIGHER:
9156 case R_MIPS_HIGHEST:
df58fc94
RS
9157 case R_MICROMIPS_HI16:
9158 case R_MICROMIPS_HIGHER:
9159 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9160 /* Don't refuse a high part relocation if it's against
9161 no symbol (e.g. part of a compound relocation). */
cf35638d 9162 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9163 break;
9164
3c7687b9 9165 /* Likewise an absolute symbol. */
304f09d0 9166 if (h != NULL && bfd_is_abs_symbol (&h->root))
3c7687b9
MR
9167 break;
9168
861fb55a
DJ
9169 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9170 and has a special meaning. */
9171 if (!NEWABI_P (abfd) && h != NULL
9172 && strcmp (h->root.root.string, "_gp_disp") == 0)
9173 break;
9174
0fc1eb3c
RS
9175 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9176 if (is_gott_symbol (info, h))
9177 break;
9178
861fb55a
DJ
9179 /* FALLTHROUGH */
9180
9181 case R_MIPS16_26:
9182 case R_MIPS_26:
df58fc94 9183 case R_MICROMIPS_26_S1:
304f09d0
FS
9184 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9185 /* An error for unsupported relocations is raised as part
9186 of the above search, so we can skip the following. */
9187 if (howto != NULL)
9188 info->callbacks->einfo
9189 /* xgettext:c-format */
9190 (_("%X%H: relocation %s against `%s' cannot be used"
9191 " when making a shared object; recompile with -fPIC\n"),
9192 abfd, sec, rel->r_offset, howto->name,
9193 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9194 break;
861fb55a
DJ
9195 default:
9196 break;
9197 }
9198 }
b49e97c9
TS
9199 }
9200
b34976b6 9201 return TRUE;
b49e97c9
TS
9202}
9203\f
9a59ad6b
DJ
9204/* Allocate space for global sym dynamic relocs. */
9205
9206static bfd_boolean
9207allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9208{
9209 struct bfd_link_info *info = inf;
9210 bfd *dynobj;
9211 struct mips_elf_link_hash_entry *hmips;
9212 struct mips_elf_link_hash_table *htab;
9213
9214 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9215 BFD_ASSERT (htab != NULL);
9216
9a59ad6b
DJ
9217 dynobj = elf_hash_table (info)->dynobj;
9218 hmips = (struct mips_elf_link_hash_entry *) h;
9219
9220 /* VxWorks executables are handled elsewhere; we only need to
9221 allocate relocations in shared objects. */
0e1862bb 9222 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9223 return TRUE;
9224
7686d77d
AM
9225 /* Ignore indirect symbols. All relocations against such symbols
9226 will be redirected to the target symbol. */
9227 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9228 return TRUE;
9229
9a59ad6b
DJ
9230 /* If this symbol is defined in a dynamic object, or we are creating
9231 a shared library, we will need to copy any R_MIPS_32 or
9232 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9233 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9234 && hmips->possibly_dynamic_relocs != 0
9235 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9236 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9237 || bfd_link_pic (info)))
9a59ad6b
DJ
9238 {
9239 bfd_boolean do_copy = TRUE;
9240
9241 if (h->root.type == bfd_link_hash_undefweak)
9242 {
262e07d0
MR
9243 /* Do not copy relocations for undefined weak symbols that
9244 we are not going to export. */
9245 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9246 do_copy = FALSE;
9247
9248 /* Make sure undefined weak symbols are output as a dynamic
9249 symbol in PIEs. */
9250 else if (h->dynindx == -1 && !h->forced_local)
9251 {
9252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9253 return FALSE;
9254 }
9255 }
9256
9257 if (do_copy)
9258 {
aff469fa 9259 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9260 the SVR4 psABI requires it to have a dynamic symbol table
9261 index greater that DT_MIPS_GOTSYM if there are dynamic
9262 relocations against it.
9263
9264 VxWorks does not enforce the same mapping between the GOT
9265 and the symbol table, so the same requirement does not
9266 apply there. */
6ccf4795
RS
9267 if (!htab->is_vxworks)
9268 {
9269 if (hmips->global_got_area > GGA_RELOC_ONLY)
9270 hmips->global_got_area = GGA_RELOC_ONLY;
9271 hmips->got_only_for_calls = FALSE;
9272 }
aff469fa 9273
9a59ad6b
DJ
9274 mips_elf_allocate_dynamic_relocations
9275 (dynobj, info, hmips->possibly_dynamic_relocs);
9276 if (hmips->readonly_reloc)
9277 /* We tell the dynamic linker that there are relocations
9278 against the text segment. */
9279 info->flags |= DF_TEXTREL;
9280 }
9281 }
9282
9283 return TRUE;
9284}
9285
b49e97c9
TS
9286/* Adjust a symbol defined by a dynamic object and referenced by a
9287 regular object. The current definition is in some section of the
9288 dynamic object, but we're not including those sections. We have to
9289 change the definition to something the rest of the link can
9290 understand. */
9291
b34976b6 9292bfd_boolean
9719ad41
RS
9293_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9294 struct elf_link_hash_entry *h)
b49e97c9
TS
9295{
9296 bfd *dynobj;
9297 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9298 struct mips_elf_link_hash_table *htab;
5474d94f 9299 asection *s, *srel;
b49e97c9 9300
5108fc1b 9301 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9302 BFD_ASSERT (htab != NULL);
9303
b49e97c9 9304 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9305 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9306
9307 /* Make sure we know what is going on here. */
9308 BFD_ASSERT (dynobj != NULL
f5385ebf 9309 && (h->needs_plt
60d67dc8 9310 || h->is_weakalias
f5385ebf
AM
9311 || (h->def_dynamic
9312 && h->ref_regular
9313 && !h->def_regular)));
b49e97c9 9314
b49e97c9 9315 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9316
861fb55a
DJ
9317 /* If there are call relocations against an externally-defined symbol,
9318 see whether we can create a MIPS lazy-binding stub for it. We can
9319 only do this if all references to the function are through call
9320 relocations, and in that case, the traditional lazy-binding stubs
9321 are much more efficient than PLT entries.
9322
9323 Traditional stubs are only available on SVR4 psABI-based systems;
9324 VxWorks always uses PLTs instead. */
9325 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9326 {
9327 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9328 return TRUE;
b49e97c9
TS
9329
9330 /* If this symbol is not defined in a regular file, then set
9331 the symbol to the stub location. This is required to make
9332 function pointers compare as equal between the normal
9333 executable and the shared library. */
4b8377e7
MR
9334 if (!h->def_regular
9335 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9336 {
33bb52fb
RS
9337 hmips->needs_lazy_stub = TRUE;
9338 htab->lazy_stub_count++;
b34976b6 9339 return TRUE;
b49e97c9
TS
9340 }
9341 }
861fb55a
DJ
9342 /* As above, VxWorks requires PLT entries for externally-defined
9343 functions that are only accessed through call relocations.
b49e97c9 9344
861fb55a
DJ
9345 Both VxWorks and non-VxWorks targets also need PLT entries if there
9346 are static-only relocations against an externally-defined function.
9347 This can technically occur for shared libraries if there are
9348 branches to the symbol, although it is unlikely that this will be
9349 used in practice due to the short ranges involved. It can occur
9350 for any relative or absolute relocation in executables; in that
9351 case, the PLT entry becomes the function's canonical address. */
9352 else if (((h->needs_plt && !hmips->no_fn_stub)
9353 || (h->type == STT_FUNC && hmips->has_static_relocs))
9354 && htab->use_plts_and_copy_relocs
9355 && !SYMBOL_CALLS_LOCAL (info, h)
9356 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9357 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9358 {
1bbce132
MR
9359 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9360 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9361
9362 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9363 basic setup. Also work out PLT entry sizes. We'll need them
9364 for PLT offset calculations. */
1bbce132 9365 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9366 {
ce558b89 9367 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9368 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9369
861fb55a
DJ
9370 /* If we're using the PLT additions to the psABI, each PLT
9371 entry is 16 bytes and the PLT0 entry is 32 bytes.
9372 Encourage better cache usage by aligning. We do this
9373 lazily to avoid pessimizing traditional objects. */
9374 if (!htab->is_vxworks
fd361982 9375 && !bfd_set_section_alignment (htab->root.splt, 5))
861fb55a 9376 return FALSE;
0a44bf69 9377
861fb55a
DJ
9378 /* Make sure that .got.plt is word-aligned. We do this lazily
9379 for the same reason as above. */
fd361982 9380 if (!bfd_set_section_alignment (htab->root.sgotplt,
861fb55a
DJ
9381 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9382 return FALSE;
0a44bf69 9383
861fb55a
DJ
9384 /* On non-VxWorks targets, the first two entries in .got.plt
9385 are reserved. */
9386 if (!htab->is_vxworks)
1bbce132
MR
9387 htab->plt_got_index
9388 += (get_elf_backend_data (dynobj)->got_header_size
9389 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9390
861fb55a
DJ
9391 /* On VxWorks, also allocate room for the header's
9392 .rela.plt.unloaded entries. */
0e1862bb 9393 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9394 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9395
9396 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9397 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9398 htab->plt_mips_entry_size
9399 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9400 else if (htab->is_vxworks)
9401 htab->plt_mips_entry_size
9402 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9403 else if (newabi_p)
9404 htab->plt_mips_entry_size
9405 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9406 else if (!micromips_p)
1bbce132
MR
9407 {
9408 htab->plt_mips_entry_size
9409 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9410 htab->plt_comp_entry_size
833794fc
MR
9411 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9412 }
9413 else if (htab->insn32)
9414 {
9415 htab->plt_mips_entry_size
9416 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9417 htab->plt_comp_entry_size
9418 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9419 }
9420 else
9421 {
9422 htab->plt_mips_entry_size
9423 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9424 htab->plt_comp_entry_size
833794fc 9425 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9426 }
0a44bf69
RS
9427 }
9428
1bbce132
MR
9429 if (h->plt.plist == NULL)
9430 h->plt.plist = mips_elf_make_plt_record (dynobj);
9431 if (h->plt.plist == NULL)
9432 return FALSE;
9433
9434 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9435 n32 or n64, so always use a standard entry there.
1bbce132 9436
07d6d2b8
AM
9437 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9438 all MIPS16 calls will go via that stub, and there is no benefit
9439 to having a MIPS16 entry. And in the case of call_stub a
9440 standard entry actually has to be used as the stub ends with a J
9441 instruction. */
1bbce132
MR
9442 if (newabi_p
9443 || htab->is_vxworks
9444 || hmips->call_stub
9445 || hmips->call_fp_stub)
9446 {
9447 h->plt.plist->need_mips = TRUE;
9448 h->plt.plist->need_comp = FALSE;
9449 }
9450
9451 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9452 have a free choice of whether to use standard or compressed
9453 entries. Prefer microMIPS entries if the object is known to
9454 contain microMIPS code, so that it becomes possible to create
9455 pure microMIPS binaries. Prefer standard entries otherwise,
9456 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9457 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9458 {
9459 if (micromips_p)
9460 h->plt.plist->need_comp = TRUE;
9461 else
9462 h->plt.plist->need_mips = TRUE;
9463 }
9464
9465 if (h->plt.plist->need_mips)
9466 {
9467 h->plt.plist->mips_offset = htab->plt_mips_offset;
9468 htab->plt_mips_offset += htab->plt_mips_entry_size;
9469 }
9470 if (h->plt.plist->need_comp)
9471 {
9472 h->plt.plist->comp_offset = htab->plt_comp_offset;
9473 htab->plt_comp_offset += htab->plt_comp_entry_size;
9474 }
9475
9476 /* Reserve the corresponding .got.plt entry now too. */
9477 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9478
9479 /* If the output file has no definition of the symbol, set the
861fb55a 9480 symbol's value to the address of the stub. */
0e1862bb 9481 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9482 hmips->use_plt_entry = TRUE;
0a44bf69 9483
1bbce132 9484 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9485 htab->root.srelplt->size += (htab->is_vxworks
9486 ? MIPS_ELF_RELA_SIZE (dynobj)
9487 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9488
9489 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9490 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9491 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9492
861fb55a
DJ
9493 /* All relocations against this symbol that could have been made
9494 dynamic will now refer to the PLT entry instead. */
9495 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9496
0a44bf69
RS
9497 return TRUE;
9498 }
9499
9500 /* If this is a weak symbol, and there is a real definition, the
9501 processor independent code will have arranged for us to see the
9502 real definition first, and we can just use the same value. */
60d67dc8 9503 if (h->is_weakalias)
0a44bf69 9504 {
60d67dc8
AM
9505 struct elf_link_hash_entry *def = weakdef (h);
9506 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9507 h->root.u.def.section = def->root.u.def.section;
9508 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9509 return TRUE;
9510 }
9511
861fb55a
DJ
9512 /* Otherwise, there is nothing further to do for symbols defined
9513 in regular objects. */
9514 if (h->def_regular)
0a44bf69
RS
9515 return TRUE;
9516
861fb55a
DJ
9517 /* There's also nothing more to do if we'll convert all relocations
9518 against this symbol into dynamic relocations. */
9519 if (!hmips->has_static_relocs)
9520 return TRUE;
9521
9522 /* We're now relying on copy relocations. Complain if we have
9523 some that we can't convert. */
0e1862bb 9524 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9525 {
4eca0228
AM
9526 _bfd_error_handler (_("non-dynamic relocations refer to "
9527 "dynamic symbol %s"),
9528 h->root.root.string);
861fb55a
DJ
9529 bfd_set_error (bfd_error_bad_value);
9530 return FALSE;
9531 }
9532
0a44bf69
RS
9533 /* We must allocate the symbol in our .dynbss section, which will
9534 become part of the .bss section of the executable. There will be
9535 an entry for this symbol in the .dynsym section. The dynamic
9536 object will contain position independent code, so all references
9537 from the dynamic object to this symbol will go through the global
9538 offset table. The dynamic linker will use the .dynsym entry to
9539 determine the address it must put in the global offset table, so
9540 both the dynamic object and the regular object will refer to the
9541 same memory location for the variable. */
9542
5474d94f
AM
9543 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9544 {
9545 s = htab->root.sdynrelro;
9546 srel = htab->root.sreldynrelro;
9547 }
9548 else
9549 {
9550 s = htab->root.sdynbss;
9551 srel = htab->root.srelbss;
9552 }
0a44bf69
RS
9553 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9554 {
861fb55a 9555 if (htab->is_vxworks)
5474d94f 9556 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9557 else
9558 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9559 h->needs_copy = 1;
9560 }
9561
861fb55a
DJ
9562 /* All relocations against this symbol that could have been made
9563 dynamic will now refer to the local copy instead. */
9564 hmips->possibly_dynamic_relocs = 0;
9565
5474d94f 9566 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9567}
b49e97c9
TS
9568\f
9569/* This function is called after all the input files have been read,
9570 and the input sections have been assigned to output sections. We
9571 check for any mips16 stub sections that we can discard. */
9572
b34976b6 9573bfd_boolean
9719ad41
RS
9574_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9575 struct bfd_link_info *info)
b49e97c9 9576{
351cdf24 9577 asection *sect;
0a44bf69 9578 struct mips_elf_link_hash_table *htab;
861fb55a 9579 struct mips_htab_traverse_info hti;
0a44bf69
RS
9580
9581 htab = mips_elf_hash_table (info);
4dfe6ac6 9582 BFD_ASSERT (htab != NULL);
f4416af6 9583
b49e97c9 9584 /* The .reginfo section has a fixed size. */
351cdf24
MF
9585 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9586 if (sect != NULL)
6798f8bf 9587 {
fd361982 9588 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
6798f8bf
MR
9589 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9590 }
351cdf24
MF
9591
9592 /* The .MIPS.abiflags section has a fixed size. */
9593 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9594 if (sect != NULL)
6798f8bf 9595 {
fd361982 9596 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
6798f8bf
MR
9597 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9598 }
b49e97c9 9599
861fb55a
DJ
9600 hti.info = info;
9601 hti.output_bfd = output_bfd;
9602 hti.error = FALSE;
9603 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9604 mips_elf_check_symbols, &hti);
9605 if (hti.error)
9606 return FALSE;
f4416af6 9607
33bb52fb
RS
9608 return TRUE;
9609}
9610
9611/* If the link uses a GOT, lay it out and work out its size. */
9612
9613static bfd_boolean
9614mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9615{
9616 bfd *dynobj;
9617 asection *s;
9618 struct mips_got_info *g;
33bb52fb
RS
9619 bfd_size_type loadable_size = 0;
9620 bfd_size_type page_gotno;
d7206569 9621 bfd *ibfd;
ab361d49 9622 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9623 struct mips_elf_link_hash_table *htab;
9624
9625 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9626 BFD_ASSERT (htab != NULL);
9627
ce558b89 9628 s = htab->root.sgot;
f4416af6 9629 if (s == NULL)
b34976b6 9630 return TRUE;
b49e97c9 9631
33bb52fb 9632 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9633 g = htab->got_info;
9634
861fb55a
DJ
9635 /* Allocate room for the reserved entries. VxWorks always reserves
9636 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9637 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9638 if (htab->is_vxworks)
9639 htab->reserved_gotno = 3;
9640 else
9641 htab->reserved_gotno = 2;
9642 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9643 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9644
6c42ddb9
RS
9645 /* Decide which symbols need to go in the global part of the GOT and
9646 count the number of reloc-only GOT symbols. */
020d7251 9647 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9648
13db6b44
RS
9649 if (!mips_elf_resolve_final_got_entries (info, g))
9650 return FALSE;
9651
33bb52fb
RS
9652 /* Calculate the total loadable size of the output. That
9653 will give us the maximum number of GOT_PAGE entries
9654 required. */
c72f2fb2 9655 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9656 {
9657 asection *subsection;
5108fc1b 9658
d7206569 9659 for (subsection = ibfd->sections;
33bb52fb
RS
9660 subsection;
9661 subsection = subsection->next)
9662 {
9663 if ((subsection->flags & SEC_ALLOC) == 0)
9664 continue;
9665 loadable_size += ((subsection->size + 0xf)
9666 &~ (bfd_size_type) 0xf);
9667 }
9668 }
f4416af6 9669
0a44bf69 9670 if (htab->is_vxworks)
738e5348 9671 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9672 relocations against local symbols evaluate to "G", and the EABI does
9673 not include R_MIPS_GOT_PAGE. */
c224138d 9674 page_gotno = 0;
0a44bf69
RS
9675 else
9676 /* Assume there are two loadable segments consisting of contiguous
9677 sections. Is 5 enough? */
c224138d
RS
9678 page_gotno = (loadable_size >> 16) + 5;
9679
13db6b44 9680 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9681 conservative. */
9682 if (page_gotno > g->page_gotno)
9683 page_gotno = g->page_gotno;
f4416af6 9684
c224138d 9685 g->local_gotno += page_gotno;
cb22ccf4 9686 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9687
ab361d49
RS
9688 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9689 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9690 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9691
0a44bf69
RS
9692 /* VxWorks does not support multiple GOTs. It initializes $gp to
9693 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9694 dynamic loader. */
57093f5e 9695 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9696 {
a8028dd0 9697 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9698 return FALSE;
9699 }
9700 else
9701 {
d7206569
RS
9702 /* Record that all bfds use G. This also has the effect of freeing
9703 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9704 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9705 if (mips_elf_bfd_got (ibfd, FALSE))
9706 mips_elf_replace_bfd_got (ibfd, g);
9707 mips_elf_replace_bfd_got (output_bfd, g);
9708
33bb52fb 9709 /* Set up TLS entries. */
0f20cc35 9710 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9711 tga.info = info;
9712 tga.g = g;
9713 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9714 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9715 if (!tga.g)
9716 return FALSE;
1fd20d70
RS
9717 BFD_ASSERT (g->tls_assigned_gotno
9718 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9719
57093f5e 9720 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9721 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9722 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9723
33bb52fb 9724 /* Allocate room for the TLS relocations. */
ab361d49
RS
9725 if (g->relocs)
9726 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9727 }
b49e97c9 9728
b34976b6 9729 return TRUE;
b49e97c9
TS
9730}
9731
33bb52fb
RS
9732/* Estimate the size of the .MIPS.stubs section. */
9733
9734static void
9735mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9736{
9737 struct mips_elf_link_hash_table *htab;
9738 bfd_size_type dynsymcount;
9739
9740 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9741 BFD_ASSERT (htab != NULL);
9742
33bb52fb
RS
9743 if (htab->lazy_stub_count == 0)
9744 return;
9745
9746 /* IRIX rld assumes that a function stub isn't at the end of the .text
9747 section, so add a dummy entry to the end. */
9748 htab->lazy_stub_count++;
9749
9750 /* Get a worst-case estimate of the number of dynamic symbols needed.
9751 At this point, dynsymcount does not account for section symbols
9752 and count_section_dynsyms may overestimate the number that will
9753 be needed. */
9754 dynsymcount = (elf_hash_table (info)->dynsymcount
9755 + count_section_dynsyms (output_bfd, info));
9756
1bbce132
MR
9757 /* Determine the size of one stub entry. There's no disadvantage
9758 from using microMIPS code here, so for the sake of pure-microMIPS
9759 binaries we prefer it whenever there's any microMIPS code in
9760 output produced at all. This has a benefit of stubs being
833794fc
MR
9761 shorter by 4 bytes each too, unless in the insn32 mode. */
9762 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9763 htab->function_stub_size = (dynsymcount > 0x10000
9764 ? MIPS_FUNCTION_STUB_BIG_SIZE
9765 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9766 else if (htab->insn32)
9767 htab->function_stub_size = (dynsymcount > 0x10000
9768 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9769 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9770 else
9771 htab->function_stub_size = (dynsymcount > 0x10000
9772 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9773 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9774
9775 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9776}
9777
1bbce132
MR
9778/* A mips_elf_link_hash_traverse callback for which DATA points to a
9779 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9780 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9781
9782static bfd_boolean
af924177 9783mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9784{
1bbce132 9785 struct mips_htab_traverse_info *hti = data;
33bb52fb 9786 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9787 struct bfd_link_info *info;
9788 bfd *output_bfd;
9789
9790 info = hti->info;
9791 output_bfd = hti->output_bfd;
9792 htab = mips_elf_hash_table (info);
9793 BFD_ASSERT (htab != NULL);
33bb52fb 9794
33bb52fb
RS
9795 if (h->needs_lazy_stub)
9796 {
1bbce132
MR
9797 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9798 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9799 bfd_vma isa_bit = micromips_p;
9800
9801 BFD_ASSERT (htab->root.dynobj != NULL);
9802 if (h->root.plt.plist == NULL)
9803 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9804 if (h->root.plt.plist == NULL)
9805 {
9806 hti->error = TRUE;
9807 return FALSE;
9808 }
33bb52fb 9809 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9810 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9811 h->root.plt.plist->stub_offset = htab->sstubs->size;
9812 h->root.other = other;
33bb52fb
RS
9813 htab->sstubs->size += htab->function_stub_size;
9814 }
9815 return TRUE;
9816}
9817
9818/* Allocate offsets in the stubs section to each symbol that needs one.
9819 Set the final size of the .MIPS.stub section. */
9820
1bbce132 9821static bfd_boolean
33bb52fb
RS
9822mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9823{
1bbce132
MR
9824 bfd *output_bfd = info->output_bfd;
9825 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9826 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9827 bfd_vma isa_bit = micromips_p;
33bb52fb 9828 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9829 struct mips_htab_traverse_info hti;
9830 struct elf_link_hash_entry *h;
9831 bfd *dynobj;
33bb52fb
RS
9832
9833 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9834 BFD_ASSERT (htab != NULL);
9835
33bb52fb 9836 if (htab->lazy_stub_count == 0)
1bbce132 9837 return TRUE;
33bb52fb
RS
9838
9839 htab->sstubs->size = 0;
1bbce132
MR
9840 hti.info = info;
9841 hti.output_bfd = output_bfd;
9842 hti.error = FALSE;
9843 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9844 if (hti.error)
9845 return FALSE;
33bb52fb
RS
9846 htab->sstubs->size += htab->function_stub_size;
9847 BFD_ASSERT (htab->sstubs->size
9848 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9849
9850 dynobj = elf_hash_table (info)->dynobj;
9851 BFD_ASSERT (dynobj != NULL);
9852 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9853 if (h == NULL)
9854 return FALSE;
9855 h->root.u.def.value = isa_bit;
9856 h->other = other;
9857 h->type = STT_FUNC;
9858
9859 return TRUE;
9860}
9861
9862/* A mips_elf_link_hash_traverse callback for which DATA points to a
9863 bfd_link_info. If H uses the address of a PLT entry as the value
9864 of the symbol, then set the entry in the symbol table now. Prefer
9865 a standard MIPS PLT entry. */
9866
9867static bfd_boolean
9868mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9869{
9870 struct bfd_link_info *info = data;
9871 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9872 struct mips_elf_link_hash_table *htab;
9873 unsigned int other;
9874 bfd_vma isa_bit;
9875 bfd_vma val;
9876
9877 htab = mips_elf_hash_table (info);
9878 BFD_ASSERT (htab != NULL);
9879
9880 if (h->use_plt_entry)
9881 {
9882 BFD_ASSERT (h->root.plt.plist != NULL);
9883 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9884 || h->root.plt.plist->comp_offset != MINUS_ONE);
9885
9886 val = htab->plt_header_size;
9887 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9888 {
9889 isa_bit = 0;
9890 val += h->root.plt.plist->mips_offset;
9891 other = 0;
9892 }
9893 else
9894 {
9895 isa_bit = 1;
9896 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9897 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9898 }
9899 val += isa_bit;
9900 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9901 resolution stub; this stub will become the canonical function
9902 address. */
1bbce132
MR
9903 if (htab->is_vxworks)
9904 val += 8;
9905
ce558b89 9906 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9907 h->root.root.u.def.value = val;
9908 h->root.other = other;
9909 }
9910
9911 return TRUE;
33bb52fb
RS
9912}
9913
b49e97c9
TS
9914/* Set the sizes of the dynamic sections. */
9915
b34976b6 9916bfd_boolean
9719ad41
RS
9917_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9918 struct bfd_link_info *info)
b49e97c9
TS
9919{
9920 bfd *dynobj;
861fb55a 9921 asection *s, *sreldyn;
b34976b6 9922 bfd_boolean reltext;
0a44bf69 9923 struct mips_elf_link_hash_table *htab;
b49e97c9 9924
0a44bf69 9925 htab = mips_elf_hash_table (info);
4dfe6ac6 9926 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9927 dynobj = elf_hash_table (info)->dynobj;
9928 BFD_ASSERT (dynobj != NULL);
9929
9930 if (elf_hash_table (info)->dynamic_sections_created)
9931 {
9932 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9933 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9934 {
3d4d4302 9935 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9936 BFD_ASSERT (s != NULL);
eea6121a 9937 s->size
b49e97c9
TS
9938 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9939 s->contents
9940 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9941 }
861fb55a 9942
1bbce132 9943 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9944 are using it. For the sake of cache alignment always use
9945 a standard header whenever any standard entries are present
9946 even if microMIPS entries are present as well. This also
9947 lets the microMIPS header rely on the value of $v0 only set
9948 by microMIPS entries, for a small size reduction.
1bbce132 9949
07d6d2b8
AM
9950 Set symbol table entry values for symbols that use the
9951 address of their PLT entry now that we can calculate it.
1bbce132 9952
07d6d2b8
AM
9953 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9954 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9955 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9956 {
1bbce132
MR
9957 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9958 && !htab->plt_mips_offset);
9959 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9960 bfd_vma isa_bit = micromips_p;
861fb55a 9961 struct elf_link_hash_entry *h;
1bbce132 9962 bfd_vma size;
861fb55a
DJ
9963
9964 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9965 BFD_ASSERT (htab->root.sgotplt->size == 0);
9966 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9967
0e1862bb 9968 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9969 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9970 else if (htab->is_vxworks)
9971 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9972 else if (ABI_64_P (output_bfd))
9973 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9974 else if (ABI_N32_P (output_bfd))
9975 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9976 else if (!micromips_p)
9977 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9978 else if (htab->insn32)
9979 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9980 else
9981 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9982
1bbce132
MR
9983 htab->plt_header_is_comp = micromips_p;
9984 htab->plt_header_size = size;
ce558b89
AM
9985 htab->root.splt->size = (size
9986 + htab->plt_mips_offset
9987 + htab->plt_comp_offset);
9988 htab->root.sgotplt->size = (htab->plt_got_index
9989 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9990
9991 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9992
9993 if (htab->root.hplt == NULL)
9994 {
ce558b89 9995 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9996 "_PROCEDURE_LINKAGE_TABLE_");
9997 htab->root.hplt = h;
9998 if (h == NULL)
9999 return FALSE;
10000 }
10001
10002 h = htab->root.hplt;
10003 h->root.u.def.value = isa_bit;
10004 h->other = other;
861fb55a
DJ
10005 h->type = STT_FUNC;
10006 }
10007 }
4e41d0d7 10008
9a59ad6b 10009 /* Allocate space for global sym dynamic relocs. */
2c3fc389 10010 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 10011
33bb52fb
RS
10012 mips_elf_estimate_stub_size (output_bfd, info);
10013
10014 if (!mips_elf_lay_out_got (output_bfd, info))
10015 return FALSE;
10016
10017 mips_elf_lay_out_lazy_stubs (info);
10018
b49e97c9
TS
10019 /* The check_relocs and adjust_dynamic_symbol entry points have
10020 determined the sizes of the various dynamic sections. Allocate
10021 memory for them. */
b34976b6 10022 reltext = FALSE;
b49e97c9
TS
10023 for (s = dynobj->sections; s != NULL; s = s->next)
10024 {
10025 const char *name;
b49e97c9
TS
10026
10027 /* It's OK to base decisions on the section name, because none
10028 of the dynobj section names depend upon the input files. */
fd361982 10029 name = bfd_section_name (s);
b49e97c9
TS
10030
10031 if ((s->flags & SEC_LINKER_CREATED) == 0)
10032 continue;
10033
0112cd26 10034 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 10035 {
c456f082 10036 if (s->size != 0)
b49e97c9
TS
10037 {
10038 const char *outname;
10039 asection *target;
10040
10041 /* If this relocation section applies to a read only
07d6d2b8
AM
10042 section, then we probably need a DT_TEXTREL entry.
10043 If the relocation section is .rel(a).dyn, we always
10044 assert a DT_TEXTREL entry rather than testing whether
10045 there exists a relocation to a read only section or
10046 not. */
fd361982 10047 outname = bfd_section_name (s->output_section);
b49e97c9
TS
10048 target = bfd_get_section_by_name (output_bfd, outname + 4);
10049 if ((target != NULL
10050 && (target->flags & SEC_READONLY) != 0
10051 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10052 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10053 reltext = TRUE;
b49e97c9
TS
10054
10055 /* We use the reloc_count field as a counter if we need
10056 to copy relocs into the output file. */
0a44bf69 10057 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10058 s->reloc_count = 0;
f4416af6
AO
10059
10060 /* If combreloc is enabled, elf_link_sort_relocs() will
10061 sort relocations, but in a different way than we do,
10062 and before we're done creating relocations. Also, it
10063 will move them around between input sections'
10064 relocation's contents, so our sorting would be
10065 broken, so don't let it run. */
10066 info->combreloc = 0;
b49e97c9
TS
10067 }
10068 }
0e1862bb 10069 else if (bfd_link_executable (info)
b49e97c9 10070 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10071 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10072 {
5108fc1b 10073 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10074 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10075 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10076 }
10077 else if (SGI_COMPAT (output_bfd)
0112cd26 10078 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10079 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10080 else if (s == htab->root.splt)
861fb55a
DJ
10081 {
10082 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10083 room for an extra nop to fill the delay slot. This is
10084 for CPUs without load interlocking. */
10085 if (! LOAD_INTERLOCKS_P (output_bfd)
10086 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
10087 s->size += 4;
10088 }
0112cd26 10089 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10090 && s != htab->root.sgot
10091 && s != htab->root.sgotplt
861fb55a 10092 && s != htab->sstubs
5474d94f
AM
10093 && s != htab->root.sdynbss
10094 && s != htab->root.sdynrelro)
b49e97c9
TS
10095 {
10096 /* It's not one of our sections, so don't allocate space. */
10097 continue;
10098 }
10099
c456f082 10100 if (s->size == 0)
b49e97c9 10101 {
8423293d 10102 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10103 continue;
10104 }
10105
c456f082
AM
10106 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10107 continue;
10108
b49e97c9 10109 /* Allocate memory for the section contents. */
eea6121a 10110 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10111 if (s->contents == NULL)
b49e97c9
TS
10112 {
10113 bfd_set_error (bfd_error_no_memory);
b34976b6 10114 return FALSE;
b49e97c9
TS
10115 }
10116 }
10117
10118 if (elf_hash_table (info)->dynamic_sections_created)
10119 {
10120 /* Add some entries to the .dynamic section. We fill in the
10121 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10122 must add the entries now so that we get the correct size for
5750dcec 10123 the .dynamic section. */
af5978fb
RS
10124
10125 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10126 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10127 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10128 may only look at the first one they see. */
0e1862bb 10129 if (!bfd_link_pic (info)
af5978fb
RS
10130 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10131 return FALSE;
b49e97c9 10132
0e1862bb 10133 if (bfd_link_executable (info)
a5499fa4
MF
10134 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10135 return FALSE;
10136
5750dcec
DJ
10137 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10138 used by the debugger. */
0e1862bb 10139 if (bfd_link_executable (info)
5750dcec
DJ
10140 && !SGI_COMPAT (output_bfd)
10141 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10142 return FALSE;
10143
0a44bf69 10144 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
10145 info->flags |= DF_TEXTREL;
10146
10147 if ((info->flags & DF_TEXTREL) != 0)
10148 {
10149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10150 return FALSE;
943284cc
DJ
10151
10152 /* Clear the DF_TEXTREL flag. It will be set again if we
10153 write out an actual text relocation; we may not, because
10154 at this point we do not know whether e.g. any .eh_frame
10155 absolute relocations have been converted to PC-relative. */
10156 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10157 }
10158
10159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10160 return FALSE;
b49e97c9 10161
861fb55a 10162 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10163 if (htab->is_vxworks)
b49e97c9 10164 {
0a44bf69
RS
10165 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10166 use any of the DT_MIPS_* tags. */
861fb55a 10167 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10168 {
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10170 return FALSE;
b49e97c9 10171
0a44bf69
RS
10172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10173 return FALSE;
b49e97c9 10174
0a44bf69
RS
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10176 return FALSE;
10177 }
b49e97c9 10178 }
0a44bf69
RS
10179 else
10180 {
db841b6f
MR
10181 if (sreldyn && sreldyn->size > 0
10182 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10183 {
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10185 return FALSE;
b49e97c9 10186
0a44bf69
RS
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10188 return FALSE;
b49e97c9 10189
0a44bf69
RS
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10191 return FALSE;
10192 }
b49e97c9 10193
0a44bf69
RS
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10195 return FALSE;
b49e97c9 10196
0a44bf69
RS
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10198 return FALSE;
b49e97c9 10199
0a44bf69
RS
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10201 return FALSE;
b49e97c9 10202
0a44bf69
RS
10203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10204 return FALSE;
b49e97c9 10205
0a44bf69
RS
10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10207 return FALSE;
b49e97c9 10208
0a44bf69
RS
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10210 return FALSE;
b49e97c9 10211
0a44bf69
RS
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10213 return FALSE;
10214
f16a9783
MS
10215 if (info->emit_gnu_hash
10216 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10217 return FALSE;
10218
0a44bf69
RS
10219 if (IRIX_COMPAT (dynobj) == ict_irix5
10220 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10221 return FALSE;
10222
10223 if (IRIX_COMPAT (dynobj) == ict_irix6
10224 && (bfd_get_section_by_name
af0edeb8 10225 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10227 return FALSE;
10228 }
ce558b89 10229 if (htab->root.splt->size > 0)
861fb55a
DJ
10230 {
10231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10232 return FALSE;
10233
10234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10235 return FALSE;
10236
10237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10238 return FALSE;
10239
10240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10241 return FALSE;
10242 }
7a2b07ff
NS
10243 if (htab->is_vxworks
10244 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10245 return FALSE;
b49e97c9
TS
10246 }
10247
b34976b6 10248 return TRUE;
b49e97c9
TS
10249}
10250\f
81d43bff
RS
10251/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10252 Adjust its R_ADDEND field so that it is correct for the output file.
10253 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10254 and sections respectively; both use symbol indexes. */
10255
10256static void
10257mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10258 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10259 asection **local_sections, Elf_Internal_Rela *rel)
10260{
10261 unsigned int r_type, r_symndx;
10262 Elf_Internal_Sym *sym;
10263 asection *sec;
10264
020d7251 10265 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10266 {
10267 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10268 if (gprel16_reloc_p (r_type)
81d43bff 10269 || r_type == R_MIPS_GPREL32
df58fc94 10270 || literal_reloc_p (r_type))
81d43bff
RS
10271 {
10272 rel->r_addend += _bfd_get_gp_value (input_bfd);
10273 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10274 }
10275
10276 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10277 sym = local_syms + r_symndx;
10278
10279 /* Adjust REL's addend to account for section merging. */
0e1862bb 10280 if (!bfd_link_relocatable (info))
81d43bff
RS
10281 {
10282 sec = local_sections[r_symndx];
10283 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10284 }
10285
10286 /* This would normally be done by the rela_normal code in elflink.c. */
10287 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10288 rel->r_addend += local_sections[r_symndx]->output_offset;
10289 }
10290}
10291
545fd46b
MR
10292/* Handle relocations against symbols from removed linkonce sections,
10293 or sections discarded by a linker script. We use this wrapper around
10294 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10295 on 64-bit ELF targets. In this case for any relocation handled, which
10296 always be the first in a triplet, the remaining two have to be processed
10297 together with the first, even if they are R_MIPS_NONE. It is the symbol
10298 index referred by the first reloc that applies to all the three and the
10299 remaining two never refer to an object symbol. And it is the final
10300 relocation (the last non-null one) that determines the output field of
10301 the whole relocation so retrieve the corresponding howto structure for
10302 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10303
10304 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10305 and therefore requires to be pasted in a loop. It also defines a block
10306 and does not protect any of its arguments, hence the extra brackets. */
10307
10308static void
10309mips_reloc_against_discarded_section (bfd *output_bfd,
10310 struct bfd_link_info *info,
10311 bfd *input_bfd, asection *input_section,
10312 Elf_Internal_Rela **rel,
10313 const Elf_Internal_Rela **relend,
10314 bfd_boolean rel_reloc,
10315 reloc_howto_type *howto,
10316 bfd_byte *contents)
10317{
10318 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10319 int count = bed->s->int_rels_per_ext_rel;
10320 unsigned int r_type;
10321 int i;
10322
10323 for (i = count - 1; i > 0; i--)
10324 {
10325 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10326 if (r_type != R_MIPS_NONE)
10327 {
10328 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10329 break;
10330 }
10331 }
10332 do
10333 {
10334 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10335 (*rel), count, (*relend),
10336 howto, i, contents);
10337 }
10338 while (0);
10339}
10340
b49e97c9
TS
10341/* Relocate a MIPS ELF section. */
10342
b34976b6 10343bfd_boolean
9719ad41
RS
10344_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10345 bfd *input_bfd, asection *input_section,
10346 bfd_byte *contents, Elf_Internal_Rela *relocs,
10347 Elf_Internal_Sym *local_syms,
10348 asection **local_sections)
b49e97c9
TS
10349{
10350 Elf_Internal_Rela *rel;
10351 const Elf_Internal_Rela *relend;
10352 bfd_vma addend = 0;
b34976b6 10353 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10354
056bafd4 10355 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10356 for (rel = relocs; rel < relend; ++rel)
10357 {
10358 const char *name;
c9adbffe 10359 bfd_vma value = 0;
b49e97c9 10360 reloc_howto_type *howto;
ad3d9127 10361 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10362 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10363 REL relocation. */
b34976b6 10364 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10365 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10366 const char *msg;
ab96bf03
AM
10367 unsigned long r_symndx;
10368 asection *sec;
749b8d9d
L
10369 Elf_Internal_Shdr *symtab_hdr;
10370 struct elf_link_hash_entry *h;
d4730f92 10371 bfd_boolean rel_reloc;
b49e97c9 10372
d4730f92
BS
10373 rel_reloc = (NEWABI_P (input_bfd)
10374 && mips_elf_rel_relocation_p (input_bfd, input_section,
10375 relocs, rel));
b49e97c9 10376 /* Find the relocation howto for this relocation. */
d4730f92 10377 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10378
10379 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10380 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10381 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10382 {
10383 sec = local_sections[r_symndx];
10384 h = NULL;
10385 }
ab96bf03
AM
10386 else
10387 {
ab96bf03 10388 unsigned long extsymoff;
ab96bf03 10389
ab96bf03
AM
10390 extsymoff = 0;
10391 if (!elf_bad_symtab (input_bfd))
10392 extsymoff = symtab_hdr->sh_info;
10393 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10394 while (h->root.type == bfd_link_hash_indirect
10395 || h->root.type == bfd_link_hash_warning)
10396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10397
10398 sec = NULL;
10399 if (h->root.type == bfd_link_hash_defined
10400 || h->root.type == bfd_link_hash_defweak)
10401 sec = h->root.u.def.section;
10402 }
10403
dbaa2011 10404 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10405 {
10406 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10407 input_section, &rel, &relend,
10408 rel_reloc, howto, contents);
10409 continue;
10410 }
ab96bf03 10411
4a14403c 10412 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10413 {
10414 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10415 64-bit code, but make sure all their addresses are in the
10416 lowermost or uppermost 32-bit section of the 64-bit address
10417 space. Thus, when they use an R_MIPS_64 they mean what is
10418 usually meant by R_MIPS_32, with the exception that the
10419 stored value is sign-extended to 64 bits. */
b34976b6 10420 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10421
10422 /* On big-endian systems, we need to lie about the position
10423 of the reloc. */
10424 if (bfd_big_endian (input_bfd))
10425 rel->r_offset += 4;
10426 }
b49e97c9
TS
10427
10428 if (!use_saved_addend_p)
10429 {
b49e97c9
TS
10430 /* If these relocations were originally of the REL variety,
10431 we must pull the addend out of the field that will be
10432 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10433 RELA relocation. */
10434 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10435 relocs, rel))
b49e97c9 10436 {
b34976b6 10437 rela_relocation_p = FALSE;
c224138d
RS
10438 addend = mips_elf_read_rel_addend (input_bfd, rel,
10439 howto, contents);
738e5348
RS
10440 if (hi16_reloc_p (r_type)
10441 || (got16_reloc_p (r_type)
b49e97c9 10442 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10443 local_sections)))
b49e97c9 10444 {
c224138d
RS
10445 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10446 contents, &addend))
749b8d9d 10447 {
749b8d9d
L
10448 if (h)
10449 name = h->root.root.string;
10450 else
10451 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10452 local_syms + r_symndx,
10453 sec);
4eca0228 10454 _bfd_error_handler
695344c0 10455 /* xgettext:c-format */
2c1c9679 10456 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10457 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10458 input_bfd, name,
2dcf00ce 10459 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10460 }
b49e97c9 10461 }
30ac9238
RS
10462 else
10463 addend <<= howto->rightshift;
b49e97c9
TS
10464 }
10465 else
10466 addend = rel->r_addend;
81d43bff
RS
10467 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10468 local_syms, local_sections, rel);
b49e97c9
TS
10469 }
10470
0e1862bb 10471 if (bfd_link_relocatable (info))
b49e97c9 10472 {
4a14403c 10473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10474 && bfd_big_endian (input_bfd))
10475 rel->r_offset -= 4;
10476
81d43bff 10477 if (!rela_relocation_p && rel->r_addend)
5a659663 10478 {
81d43bff 10479 addend += rel->r_addend;
738e5348 10480 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10481 addend = mips_elf_high (addend);
10482 else if (r_type == R_MIPS_HIGHER)
10483 addend = mips_elf_higher (addend);
10484 else if (r_type == R_MIPS_HIGHEST)
10485 addend = mips_elf_highest (addend);
30ac9238
RS
10486 else
10487 addend >>= howto->rightshift;
b49e97c9 10488
30ac9238
RS
10489 /* We use the source mask, rather than the destination
10490 mask because the place to which we are writing will be
10491 source of the addend in the final link. */
b49e97c9
TS
10492 addend &= howto->src_mask;
10493
5a659663 10494 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10495 /* See the comment above about using R_MIPS_64 in the 32-bit
10496 ABI. Here, we need to update the addend. It would be
10497 possible to get away with just using the R_MIPS_32 reloc
10498 but for endianness. */
10499 {
10500 bfd_vma sign_bits;
10501 bfd_vma low_bits;
10502 bfd_vma high_bits;
10503
10504 if (addend & ((bfd_vma) 1 << 31))
10505#ifdef BFD64
10506 sign_bits = ((bfd_vma) 1 << 32) - 1;
10507#else
10508 sign_bits = -1;
10509#endif
10510 else
10511 sign_bits = 0;
10512
10513 /* If we don't know that we have a 64-bit type,
10514 do two separate stores. */
10515 if (bfd_big_endian (input_bfd))
10516 {
10517 /* Store the sign-bits (which are most significant)
10518 first. */
10519 low_bits = sign_bits;
10520 high_bits = addend;
10521 }
10522 else
10523 {
10524 low_bits = addend;
10525 high_bits = sign_bits;
10526 }
10527 bfd_put_32 (input_bfd, low_bits,
10528 contents + rel->r_offset);
10529 bfd_put_32 (input_bfd, high_bits,
10530 contents + rel->r_offset + 4);
10531 continue;
10532 }
10533
10534 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10535 input_bfd, input_section,
b34976b6
AM
10536 contents, FALSE))
10537 return FALSE;
b49e97c9
TS
10538 }
10539
10540 /* Go on to the next relocation. */
10541 continue;
10542 }
10543
10544 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10545 relocations for the same offset. In that case we are
10546 supposed to treat the output of each relocation as the addend
10547 for the next. */
10548 if (rel + 1 < relend
10549 && rel->r_offset == rel[1].r_offset
10550 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10551 use_saved_addend_p = TRUE;
b49e97c9 10552 else
b34976b6 10553 use_saved_addend_p = FALSE;
b49e97c9
TS
10554
10555 /* Figure out what value we are supposed to relocate. */
10556 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10557 input_section, contents,
10558 info, rel, addend, howto,
10559 local_syms, local_sections,
10560 &value, &name, &cross_mode_jump_p,
bce03d3d 10561 use_saved_addend_p))
b49e97c9
TS
10562 {
10563 case bfd_reloc_continue:
10564 /* There's nothing to do. */
10565 continue;
10566
10567 case bfd_reloc_undefined:
10568 /* mips_elf_calculate_relocation already called the
10569 undefined_symbol callback. There's no real point in
10570 trying to perform the relocation at this point, so we
10571 just skip ahead to the next relocation. */
10572 continue;
10573
10574 case bfd_reloc_notsupported:
10575 msg = _("internal error: unsupported relocation error");
10576 info->callbacks->warning
10577 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10578 return FALSE;
b49e97c9
TS
10579
10580 case bfd_reloc_overflow:
10581 if (use_saved_addend_p)
10582 /* Ignore overflow until we reach the last relocation for
10583 a given location. */
10584 ;
10585 else
10586 {
0e53d9da
AN
10587 struct mips_elf_link_hash_table *htab;
10588
10589 htab = mips_elf_hash_table (info);
4dfe6ac6 10590 BFD_ASSERT (htab != NULL);
b49e97c9 10591 BFD_ASSERT (name != NULL);
0e53d9da 10592 if (!htab->small_data_overflow_reported
9684f078 10593 && (gprel16_reloc_p (howto->type)
df58fc94 10594 || literal_reloc_p (howto->type)))
0e53d9da 10595 {
91d6fa6a
NC
10596 msg = _("small-data section exceeds 64KB;"
10597 " lower small-data size limit (see option -G)");
0e53d9da
AN
10598
10599 htab->small_data_overflow_reported = TRUE;
10600 (*info->callbacks->einfo) ("%P: %s\n", msg);
10601 }
1a72702b
AM
10602 (*info->callbacks->reloc_overflow)
10603 (info, NULL, name, howto->name, (bfd_vma) 0,
10604 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10605 }
10606 break;
10607
10608 case bfd_reloc_ok:
10609 break;
10610
df58fc94 10611 case bfd_reloc_outofrange:
7db9a74e 10612 msg = NULL;
df58fc94 10613 if (jal_reloc_p (howto->type))
9d862524 10614 msg = (cross_mode_jump_p
2c1c9679 10615 ? _("cannot convert a jump to JALX "
9d862524
MR
10616 "for a non-word-aligned address")
10617 : (howto->type == R_MIPS16_26
2c1c9679
AM
10618 ? _("jump to a non-word-aligned address")
10619 : _("jump to a non-instruction-aligned address")));
99aefae6 10620 else if (b_reloc_p (howto->type))
a6ebf616 10621 msg = (cross_mode_jump_p
2c1c9679 10622 ? _("cannot convert a branch to JALX "
a6ebf616 10623 "for a non-word-aligned address")
2c1c9679 10624 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10625 else if (aligned_pcrel_reloc_p (howto->type))
10626 msg = _("PC-relative load from unaligned address");
10627 if (msg)
df58fc94 10628 {
de341542 10629 info->callbacks->einfo
ed53407e
MR
10630 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10631 break;
7361da2c 10632 }
df58fc94
RS
10633 /* Fall through. */
10634
b49e97c9
TS
10635 default:
10636 abort ();
10637 break;
10638 }
10639
10640 /* If we've got another relocation for the address, keep going
10641 until we reach the last one. */
10642 if (use_saved_addend_p)
10643 {
10644 addend = value;
10645 continue;
10646 }
10647
4a14403c 10648 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10649 /* See the comment above about using R_MIPS_64 in the 32-bit
10650 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10651 that calculated the right value. Now, however, we
10652 sign-extend the 32-bit result to 64-bits, and store it as a
10653 64-bit value. We are especially generous here in that we
10654 go to extreme lengths to support this usage on systems with
10655 only a 32-bit VMA. */
10656 {
10657 bfd_vma sign_bits;
10658 bfd_vma low_bits;
10659 bfd_vma high_bits;
10660
10661 if (value & ((bfd_vma) 1 << 31))
10662#ifdef BFD64
10663 sign_bits = ((bfd_vma) 1 << 32) - 1;
10664#else
10665 sign_bits = -1;
10666#endif
10667 else
10668 sign_bits = 0;
10669
10670 /* If we don't know that we have a 64-bit type,
10671 do two separate stores. */
10672 if (bfd_big_endian (input_bfd))
10673 {
10674 /* Undo what we did above. */
10675 rel->r_offset -= 4;
10676 /* Store the sign-bits (which are most significant)
10677 first. */
10678 low_bits = sign_bits;
10679 high_bits = value;
10680 }
10681 else
10682 {
10683 low_bits = value;
10684 high_bits = sign_bits;
10685 }
10686 bfd_put_32 (input_bfd, low_bits,
10687 contents + rel->r_offset);
10688 bfd_put_32 (input_bfd, high_bits,
10689 contents + rel->r_offset + 4);
10690 continue;
10691 }
10692
10693 /* Actually perform the relocation. */
10694 if (! mips_elf_perform_relocation (info, howto, rel, value,
10695 input_bfd, input_section,
38a7df63 10696 contents, cross_mode_jump_p))
b34976b6 10697 return FALSE;
b49e97c9
TS
10698 }
10699
b34976b6 10700 return TRUE;
b49e97c9
TS
10701}
10702\f
861fb55a
DJ
10703/* A function that iterates over each entry in la25_stubs and fills
10704 in the code for each one. DATA points to a mips_htab_traverse_info. */
10705
10706static int
10707mips_elf_create_la25_stub (void **slot, void *data)
10708{
10709 struct mips_htab_traverse_info *hti;
10710 struct mips_elf_link_hash_table *htab;
10711 struct mips_elf_la25_stub *stub;
10712 asection *s;
10713 bfd_byte *loc;
10714 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10715 bfd_vma branch_pc;
10716 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10717
10718 stub = (struct mips_elf_la25_stub *) *slot;
10719 hti = (struct mips_htab_traverse_info *) data;
10720 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10721 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10722
10723 /* Create the section contents, if we haven't already. */
10724 s = stub->stub_section;
10725 loc = s->contents;
10726 if (loc == NULL)
10727 {
10728 loc = bfd_malloc (s->size);
10729 if (loc == NULL)
10730 {
10731 hti->error = TRUE;
10732 return FALSE;
10733 }
10734 s->contents = loc;
10735 }
10736
10737 /* Work out where in the section this stub should go. */
10738 offset = stub->offset;
10739
3734320d
MF
10740 /* We add 8 here to account for the LUI/ADDIU instructions
10741 before the branch instruction. This cannot be moved down to
10742 where pcrel_offset is calculated as 's' is updated in
10743 mips_elf_get_la25_target. */
10744 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10745
861fb55a 10746 /* Work out the target address. */
8f0c309a
CLT
10747 target = mips_elf_get_la25_target (stub, &s);
10748 target += s->output_section->vma + s->output_offset;
10749
861fb55a
DJ
10750 target_high = ((target + 0x8000) >> 16) & 0xffff;
10751 target_low = (target & 0xffff);
10752
3734320d
MF
10753 /* Calculate the PC of the compact branch instruction (for the case where
10754 compact branches are used for either microMIPSR6 or MIPSR6 with
10755 compact branches. Add 4-bytes to account for BC using the PC of the
10756 next instruction as the base. */
10757 pcrel_offset = target - (branch_pc + 4);
10758
861fb55a
DJ
10759 if (stub->stub_section != htab->strampoline)
10760 {
df58fc94 10761 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10762 of the section and write the two instructions at the end. */
10763 memset (loc, 0, offset);
10764 loc += offset;
df58fc94
RS
10765 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10766 {
d21911ea
MR
10767 bfd_put_micromips_32 (hti->output_bfd,
10768 LA25_LUI_MICROMIPS (target_high),
10769 loc);
10770 bfd_put_micromips_32 (hti->output_bfd,
10771 LA25_ADDIU_MICROMIPS (target_low),
10772 loc + 4);
df58fc94
RS
10773 }
10774 else
10775 {
10776 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10777 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10778 }
861fb55a
DJ
10779 }
10780 else
10781 {
10782 /* This is trampoline. */
10783 loc += offset;
df58fc94
RS
10784 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10785 {
d21911ea
MR
10786 bfd_put_micromips_32 (hti->output_bfd,
10787 LA25_LUI_MICROMIPS (target_high), loc);
10788 bfd_put_micromips_32 (hti->output_bfd,
10789 LA25_J_MICROMIPS (target), loc + 4);
10790 bfd_put_micromips_32 (hti->output_bfd,
10791 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10792 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10793 }
10794 else
10795 {
10796 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10797 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10798 {
10799 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10800 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10801 }
10802 else
10803 {
10804 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10805 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10806 }
df58fc94
RS
10807 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10808 }
861fb55a
DJ
10809 }
10810 return TRUE;
10811}
10812
b49e97c9
TS
10813/* If NAME is one of the special IRIX6 symbols defined by the linker,
10814 adjust it appropriately now. */
10815
10816static void
9719ad41
RS
10817mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10818 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10819{
10820 /* The linker script takes care of providing names and values for
10821 these, but we must place them into the right sections. */
10822 static const char* const text_section_symbols[] = {
10823 "_ftext",
10824 "_etext",
10825 "__dso_displacement",
10826 "__elf_header",
10827 "__program_header_table",
10828 NULL
10829 };
10830
10831 static const char* const data_section_symbols[] = {
10832 "_fdata",
10833 "_edata",
10834 "_end",
10835 "_fbss",
10836 NULL
10837 };
10838
10839 const char* const *p;
10840 int i;
10841
10842 for (i = 0; i < 2; ++i)
10843 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10844 *p;
10845 ++p)
10846 if (strcmp (*p, name) == 0)
10847 {
10848 /* All of these symbols are given type STT_SECTION by the
10849 IRIX6 linker. */
10850 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10851 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10852
10853 /* The IRIX linker puts these symbols in special sections. */
10854 if (i == 0)
10855 sym->st_shndx = SHN_MIPS_TEXT;
10856 else
10857 sym->st_shndx = SHN_MIPS_DATA;
10858
10859 break;
10860 }
10861}
10862
10863/* Finish up dynamic symbol handling. We set the contents of various
10864 dynamic sections here. */
10865
b34976b6 10866bfd_boolean
9719ad41
RS
10867_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10868 struct bfd_link_info *info,
10869 struct elf_link_hash_entry *h,
10870 Elf_Internal_Sym *sym)
b49e97c9
TS
10871{
10872 bfd *dynobj;
b49e97c9 10873 asection *sgot;
f4416af6 10874 struct mips_got_info *g, *gg;
b49e97c9 10875 const char *name;
3d6746ca 10876 int idx;
5108fc1b 10877 struct mips_elf_link_hash_table *htab;
738e5348 10878 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10879
5108fc1b 10880 htab = mips_elf_hash_table (info);
4dfe6ac6 10881 BFD_ASSERT (htab != NULL);
b49e97c9 10882 dynobj = elf_hash_table (info)->dynobj;
738e5348 10883 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10884
861fb55a
DJ
10885 BFD_ASSERT (!htab->is_vxworks);
10886
1bbce132
MR
10887 if (h->plt.plist != NULL
10888 && (h->plt.plist->mips_offset != MINUS_ONE
10889 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10890 {
10891 /* We've decided to create a PLT entry for this symbol. */
10892 bfd_byte *loc;
1bbce132 10893 bfd_vma header_address, got_address;
861fb55a 10894 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10895 bfd_vma got_index;
10896 bfd_vma isa_bit;
10897
10898 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10899
10900 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10901 BFD_ASSERT (h->dynindx != -1);
ce558b89 10902 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10903 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10904 BFD_ASSERT (!h->def_regular);
10905
10906 /* Calculate the address of the PLT header. */
1bbce132 10907 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10908 header_address = (htab->root.splt->output_section->vma
10909 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10910
10911 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10912 got_address = (htab->root.sgotplt->output_section->vma
10913 + htab->root.sgotplt->output_offset
1bbce132
MR
10914 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10915
861fb55a
DJ
10916 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10917 got_address_low = got_address & 0xffff;
10918
789ff5b6
MR
10919 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10920 cannot be loaded in two instructions. */
10921 if (ABI_64_P (output_bfd)
10922 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10923 {
10924 _bfd_error_handler
10925 /* xgettext:c-format */
10926 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10927 "supported; consider using `-Ttext-segment=...'"),
10928 output_bfd,
10929 htab->root.sgotplt->output_section,
10930 (int64_t) got_address);
10931 bfd_set_error (bfd_error_no_error);
10932 return FALSE;
10933 }
10934
861fb55a 10935 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10936 loc = (htab->root.sgotplt->contents
10937 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10938 if (ABI_64_P (output_bfd))
10939 bfd_put_64 (output_bfd, header_address, loc);
10940 else
10941 bfd_put_32 (output_bfd, header_address, loc);
10942
1bbce132 10943 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10944 does not matter, we just have to pick one). */
1bbce132
MR
10945 if (h->plt.plist->mips_offset != MINUS_ONE)
10946 {
10947 const bfd_vma *plt_entry;
10948 bfd_vma plt_offset;
861fb55a 10949
1bbce132 10950 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10951
ce558b89 10952 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10953
1bbce132 10954 /* Find out where the .plt entry should go. */
ce558b89 10955 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10956
10957 /* Pick the load opcode. */
10958 load = MIPS_ELF_LOAD_WORD (output_bfd);
10959
10960 /* Fill in the PLT entry itself. */
7361da2c
AB
10961
10962 if (MIPSR6_P (output_bfd))
3734320d
MF
10963 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10964 : mipsr6_exec_plt_entry;
7361da2c
AB
10965 else
10966 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10967 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10968 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10969 loc + 4);
10970
3734320d
MF
10971 if (! LOAD_INTERLOCKS_P (output_bfd)
10972 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10973 {
10974 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10975 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10976 }
10977 else
10978 {
10979 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10980 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10981 loc + 12);
10982 }
6d30f5b2 10983 }
1bbce132
MR
10984
10985 /* Now the compressed entry. They come after any standard ones. */
10986 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10987 {
1bbce132
MR
10988 bfd_vma plt_offset;
10989
10990 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10991 + h->plt.plist->comp_offset);
10992
ce558b89 10993 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10994
10995 /* Find out where the .plt entry should go. */
ce558b89 10996 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10997
10998 /* Fill in the PLT entry itself. */
833794fc
MR
10999 if (!MICROMIPS_P (output_bfd))
11000 {
11001 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11002
11003 bfd_put_16 (output_bfd, plt_entry[0], loc);
11004 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11005 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11006 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11007 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11008 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11009 bfd_put_32 (output_bfd, got_address, loc + 12);
11010 }
11011 else if (htab->insn32)
11012 {
11013 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11014
11015 bfd_put_16 (output_bfd, plt_entry[0], loc);
11016 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11017 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11018 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11019 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11020 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11021 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11022 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11023 }
11024 else
1bbce132
MR
11025 {
11026 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11027 bfd_signed_vma gotpc_offset;
11028 bfd_vma loc_address;
11029
11030 BFD_ASSERT (got_address % 4 == 0);
11031
ce558b89
AM
11032 loc_address = (htab->root.splt->output_section->vma
11033 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
11034 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11035
11036 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11037 if (gotpc_offset + 0x1000000 >= 0x2000000)
11038 {
4eca0228 11039 _bfd_error_handler
695344c0 11040 /* xgettext:c-format */
2dcf00ce 11041 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
11042 "beyond the range of ADDIUPC"),
11043 output_bfd,
ce558b89 11044 htab->root.sgotplt->output_section,
2dcf00ce 11045 (int64_t) gotpc_offset,
c08bb8dd 11046 htab->root.splt->output_section);
1bbce132
MR
11047 bfd_set_error (bfd_error_no_error);
11048 return FALSE;
11049 }
11050 bfd_put_16 (output_bfd,
11051 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11052 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11053 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11054 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11055 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11056 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11057 }
6d30f5b2 11058 }
861fb55a
DJ
11059
11060 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11061 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11062 got_index - 2, h->dynindx,
861fb55a
DJ
11063 R_MIPS_JUMP_SLOT, got_address);
11064
11065 /* We distinguish between PLT entries and lazy-binding stubs by
11066 giving the former an st_other value of STO_MIPS_PLT. Set the
11067 flag and leave the value if there are any relocations in the
11068 binary where pointer equality matters. */
11069 sym->st_shndx = SHN_UNDEF;
11070 if (h->pointer_equality_needed)
1bbce132 11071 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11072 else
1bbce132
MR
11073 {
11074 sym->st_value = 0;
11075 sym->st_other = 0;
11076 }
861fb55a 11077 }
1bbce132
MR
11078
11079 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11080 {
861fb55a 11081 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11082 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11083 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11084 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11085 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11086 bfd_vma isa_bit = micromips_p;
11087 bfd_vma stub_big_size;
11088
833794fc 11089 if (!micromips_p)
1bbce132 11090 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11091 else if (htab->insn32)
11092 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11093 else
11094 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11095
11096 /* This symbol has a stub. Set it up. */
11097
11098 BFD_ASSERT (h->dynindx != -1);
11099
1bbce132 11100 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11101
11102 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11103 sign extension at runtime in the stub, resulting in a negative
11104 index value. */
11105 if (h->dynindx & ~0x7fffffff)
b34976b6 11106 return FALSE;
b49e97c9
TS
11107
11108 /* Fill the stub. */
1bbce132
MR
11109 if (micromips_p)
11110 {
11111 idx = 0;
11112 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11113 stub + idx);
11114 idx += 4;
833794fc
MR
11115 if (htab->insn32)
11116 {
11117 bfd_put_micromips_32 (output_bfd,
40fc1451 11118 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11119 idx += 4;
11120 }
11121 else
11122 {
11123 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11124 idx += 2;
11125 }
1bbce132
MR
11126 if (stub_size == stub_big_size)
11127 {
11128 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11129
11130 bfd_put_micromips_32 (output_bfd,
11131 STUB_LUI_MICROMIPS (dynindx_hi),
11132 stub + idx);
11133 idx += 4;
11134 }
833794fc
MR
11135 if (htab->insn32)
11136 {
11137 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11138 stub + idx);
11139 idx += 4;
11140 }
11141 else
11142 {
11143 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11144 idx += 2;
11145 }
1bbce132
MR
11146
11147 /* If a large stub is not required and sign extension is not a
11148 problem, then use legacy code in the stub. */
11149 if (stub_size == stub_big_size)
11150 bfd_put_micromips_32 (output_bfd,
11151 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11152 stub + idx);
11153 else if (h->dynindx & ~0x7fff)
11154 bfd_put_micromips_32 (output_bfd,
11155 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11156 stub + idx);
11157 else
11158 bfd_put_micromips_32 (output_bfd,
11159 STUB_LI16S_MICROMIPS (output_bfd,
11160 h->dynindx),
11161 stub + idx);
11162 }
3d6746ca 11163 else
1bbce132
MR
11164 {
11165 idx = 0;
11166 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11167 idx += 4;
40fc1451 11168 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11169 idx += 4;
11170 if (stub_size == stub_big_size)
11171 {
11172 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11173 stub + idx);
11174 idx += 4;
11175 }
3734320d
MF
11176
11177 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11178 {
11179 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11180 idx += 4;
11181 }
1bbce132
MR
11182
11183 /* If a large stub is not required and sign extension is not a
11184 problem, then use legacy code in the stub. */
11185 if (stub_size == stub_big_size)
11186 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11187 stub + idx);
11188 else if (h->dynindx & ~0x7fff)
11189 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11190 stub + idx);
11191 else
11192 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11193 stub + idx);
3734320d
MF
11194 idx += 4;
11195
11196 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11197 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11198 }
5108fc1b 11199
1bbce132
MR
11200 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11201 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11202 stub, stub_size);
b49e97c9 11203
1bbce132 11204 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11205 only for the referenced symbol. */
11206 sym->st_shndx = SHN_UNDEF;
11207
11208 /* The run-time linker uses the st_value field of the symbol
11209 to reset the global offset table entry for this external
11210 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11211 sym->st_value = (htab->sstubs->output_section->vma
11212 + htab->sstubs->output_offset
1bbce132
MR
11213 + h->plt.plist->stub_offset
11214 + isa_bit);
11215 sym->st_other = other;
b49e97c9
TS
11216 }
11217
738e5348
RS
11218 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11219 refer to the stub, since only the stub uses the standard calling
11220 conventions. */
11221 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11222 {
11223 BFD_ASSERT (hmips->need_fn_stub);
11224 sym->st_value = (hmips->fn_stub->output_section->vma
11225 + hmips->fn_stub->output_offset);
11226 sym->st_size = hmips->fn_stub->size;
11227 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11228 }
11229
b49e97c9 11230 BFD_ASSERT (h->dynindx != -1
f5385ebf 11231 || h->forced_local);
b49e97c9 11232
ce558b89 11233 sgot = htab->root.sgot;
a8028dd0 11234 g = htab->got_info;
b49e97c9
TS
11235 BFD_ASSERT (g != NULL);
11236
11237 /* Run through the global symbol table, creating GOT entries for all
11238 the symbols that need them. */
020d7251 11239 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11240 {
11241 bfd_vma offset;
11242 bfd_vma value;
11243
6eaa6adc 11244 value = sym->st_value;
13fbec83 11245 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11246 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11247 }
11248
e641e783 11249 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11250 {
11251 struct mips_got_entry e, *p;
0626d451 11252 bfd_vma entry;
f4416af6 11253 bfd_vma offset;
f4416af6
AO
11254
11255 gg = g;
11256
11257 e.abfd = output_bfd;
11258 e.symndx = -1;
738e5348 11259 e.d.h = hmips;
9ab066b4 11260 e.tls_type = GOT_TLS_NONE;
143d77c5 11261
f4416af6
AO
11262 for (g = g->next; g->next != gg; g = g->next)
11263 {
11264 if (g->got_entries
11265 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11266 &e)))
11267 {
11268 offset = p->gotidx;
ce558b89 11269 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11270 if (bfd_link_pic (info)
0626d451
RS
11271 || (elf_hash_table (info)->dynamic_sections_created
11272 && p->d.h != NULL
f5385ebf
AM
11273 && p->d.h->root.def_dynamic
11274 && !p->d.h->root.def_regular))
0626d451
RS
11275 {
11276 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11277 the various compatibility problems, it's easier to mock
11278 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11279 mips_elf_create_dynamic_relocation to calculate the
11280 appropriate addend. */
11281 Elf_Internal_Rela rel[3];
11282
11283 memset (rel, 0, sizeof (rel));
11284 if (ABI_64_P (output_bfd))
11285 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11286 else
11287 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11288 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11289
11290 entry = 0;
11291 if (! (mips_elf_create_dynamic_relocation
11292 (output_bfd, info, rel,
11293 e.d.h, NULL, sym->st_value, &entry, sgot)))
11294 return FALSE;
11295 }
11296 else
11297 entry = sym->st_value;
11298 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11299 }
11300 }
11301 }
11302
b49e97c9
TS
11303 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11304 name = h->root.root.string;
9637f6ef 11305 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11306 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11307 sym->st_shndx = SHN_ABS;
11308 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11309 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11310 {
11311 sym->st_shndx = SHN_ABS;
11312 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11313 sym->st_value = 1;
11314 }
b49e97c9
TS
11315 else if (SGI_COMPAT (output_bfd))
11316 {
11317 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11318 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11319 {
11320 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11321 sym->st_other = STO_PROTECTED;
11322 sym->st_value = 0;
11323 sym->st_shndx = SHN_MIPS_DATA;
11324 }
11325 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11326 {
11327 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11328 sym->st_other = STO_PROTECTED;
11329 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11330 sym->st_shndx = SHN_ABS;
11331 }
11332 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11333 {
11334 if (h->type == STT_FUNC)
11335 sym->st_shndx = SHN_MIPS_TEXT;
11336 else if (h->type == STT_OBJECT)
11337 sym->st_shndx = SHN_MIPS_DATA;
11338 }
11339 }
11340
861fb55a
DJ
11341 /* Emit a copy reloc, if needed. */
11342 if (h->needs_copy)
11343 {
11344 asection *s;
11345 bfd_vma symval;
11346
11347 BFD_ASSERT (h->dynindx != -1);
11348 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11349
11350 s = mips_elf_rel_dyn_section (info, FALSE);
11351 symval = (h->root.u.def.section->output_section->vma
11352 + h->root.u.def.section->output_offset
11353 + h->root.u.def.value);
11354 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11355 h->dynindx, R_MIPS_COPY, symval);
11356 }
11357
b49e97c9
TS
11358 /* Handle the IRIX6-specific symbols. */
11359 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11360 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11361
cbf8d970
MR
11362 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11363 to treat compressed symbols like any other. */
30c09090 11364 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11365 {
11366 BFD_ASSERT (sym->st_value & 1);
11367 sym->st_other -= STO_MIPS16;
11368 }
cbf8d970
MR
11369 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11370 {
11371 BFD_ASSERT (sym->st_value & 1);
11372 sym->st_other -= STO_MICROMIPS;
11373 }
b49e97c9 11374
b34976b6 11375 return TRUE;
b49e97c9
TS
11376}
11377
0a44bf69
RS
11378/* Likewise, for VxWorks. */
11379
11380bfd_boolean
11381_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11382 struct bfd_link_info *info,
11383 struct elf_link_hash_entry *h,
11384 Elf_Internal_Sym *sym)
11385{
11386 bfd *dynobj;
11387 asection *sgot;
11388 struct mips_got_info *g;
11389 struct mips_elf_link_hash_table *htab;
020d7251 11390 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11391
11392 htab = mips_elf_hash_table (info);
4dfe6ac6 11393 BFD_ASSERT (htab != NULL);
0a44bf69 11394 dynobj = elf_hash_table (info)->dynobj;
020d7251 11395 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11396
1bbce132 11397 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11398 {
6d79d2ed 11399 bfd_byte *loc;
1bbce132 11400 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11401 Elf_Internal_Rela rel;
11402 static const bfd_vma *plt_entry;
1bbce132
MR
11403 bfd_vma gotplt_index;
11404 bfd_vma plt_offset;
11405
11406 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11407 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11408
11409 BFD_ASSERT (h->dynindx != -1);
ce558b89 11410 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11411 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11412 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11413
11414 /* Calculate the address of the .plt entry. */
ce558b89
AM
11415 plt_address = (htab->root.splt->output_section->vma
11416 + htab->root.splt->output_offset
1bbce132 11417 + plt_offset);
0a44bf69
RS
11418
11419 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11420 got_address = (htab->root.sgotplt->output_section->vma
11421 + htab->root.sgotplt->output_offset
1bbce132 11422 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11423
11424 /* Calculate the offset of the .got.plt entry from
11425 _GLOBAL_OFFSET_TABLE_. */
11426 got_offset = mips_elf_gotplt_index (info, h);
11427
11428 /* Calculate the offset for the branch at the start of the PLT
11429 entry. The branch jumps to the beginning of .plt. */
1bbce132 11430 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11431
11432 /* Fill in the initial value of the .got.plt entry. */
11433 bfd_put_32 (output_bfd, plt_address,
ce558b89 11434 (htab->root.sgotplt->contents
1bbce132 11435 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11436
11437 /* Find out where the .plt entry should go. */
ce558b89 11438 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11439
0e1862bb 11440 if (bfd_link_pic (info))
0a44bf69
RS
11441 {
11442 plt_entry = mips_vxworks_shared_plt_entry;
11443 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11444 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11445 }
11446 else
11447 {
11448 bfd_vma got_address_high, got_address_low;
11449
11450 plt_entry = mips_vxworks_exec_plt_entry;
11451 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11452 got_address_low = got_address & 0xffff;
11453
11454 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11455 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11456 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11457 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11458 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11459 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11460 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11461 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11462
11463 loc = (htab->srelplt2->contents
1bbce132 11464 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11465
11466 /* Emit a relocation for the .got.plt entry. */
11467 rel.r_offset = got_address;
11468 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11469 rel.r_addend = plt_offset;
0a44bf69
RS
11470 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11471
11472 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11473 loc += sizeof (Elf32_External_Rela);
11474 rel.r_offset = plt_address + 8;
11475 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11476 rel.r_addend = got_offset;
11477 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11478
11479 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11480 loc += sizeof (Elf32_External_Rela);
11481 rel.r_offset += 4;
11482 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11483 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11484 }
11485
11486 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11487 loc = (htab->root.srelplt->contents
1bbce132 11488 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11489 rel.r_offset = got_address;
11490 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11491 rel.r_addend = 0;
11492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11493
11494 if (!h->def_regular)
11495 sym->st_shndx = SHN_UNDEF;
11496 }
11497
11498 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11499
ce558b89 11500 sgot = htab->root.sgot;
a8028dd0 11501 g = htab->got_info;
0a44bf69
RS
11502 BFD_ASSERT (g != NULL);
11503
11504 /* See if this symbol has an entry in the GOT. */
020d7251 11505 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11506 {
11507 bfd_vma offset;
11508 Elf_Internal_Rela outrel;
11509 bfd_byte *loc;
11510 asection *s;
11511
11512 /* Install the symbol value in the GOT. */
13fbec83 11513 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11514 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11515
11516 /* Add a dynamic relocation for it. */
11517 s = mips_elf_rel_dyn_section (info, FALSE);
11518 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11519 outrel.r_offset = (sgot->output_section->vma
11520 + sgot->output_offset
11521 + offset);
11522 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11523 outrel.r_addend = 0;
11524 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11525 }
11526
11527 /* Emit a copy reloc, if needed. */
11528 if (h->needs_copy)
11529 {
11530 Elf_Internal_Rela rel;
5474d94f
AM
11531 asection *srel;
11532 bfd_byte *loc;
0a44bf69
RS
11533
11534 BFD_ASSERT (h->dynindx != -1);
11535
11536 rel.r_offset = (h->root.u.def.section->output_section->vma
11537 + h->root.u.def.section->output_offset
11538 + h->root.u.def.value);
11539 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11540 rel.r_addend = 0;
afbf7e8e 11541 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11542 srel = htab->root.sreldynrelro;
11543 else
11544 srel = htab->root.srelbss;
11545 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11546 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11547 ++srel->reloc_count;
0a44bf69
RS
11548 }
11549
df58fc94
RS
11550 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11551 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11552 sym->st_value &= ~1;
11553
11554 return TRUE;
11555}
11556
861fb55a
DJ
11557/* Write out a plt0 entry to the beginning of .plt. */
11558
1bbce132 11559static bfd_boolean
861fb55a
DJ
11560mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11561{
11562 bfd_byte *loc;
11563 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11564 static const bfd_vma *plt_entry;
11565 struct mips_elf_link_hash_table *htab;
11566
11567 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11568 BFD_ASSERT (htab != NULL);
11569
861fb55a 11570 if (ABI_64_P (output_bfd))
3734320d
MF
11571 plt_entry = (htab->compact_branches
11572 ? mipsr6_n64_exec_plt0_entry_compact
11573 : mips_n64_exec_plt0_entry);
861fb55a 11574 else if (ABI_N32_P (output_bfd))
3734320d
MF
11575 plt_entry = (htab->compact_branches
11576 ? mipsr6_n32_exec_plt0_entry_compact
11577 : mips_n32_exec_plt0_entry);
833794fc 11578 else if (!htab->plt_header_is_comp)
3734320d
MF
11579 plt_entry = (htab->compact_branches
11580 ? mipsr6_o32_exec_plt0_entry_compact
11581 : mips_o32_exec_plt0_entry);
833794fc
MR
11582 else if (htab->insn32)
11583 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11584 else
11585 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11586
11587 /* Calculate the value of .got.plt. */
ce558b89
AM
11588 gotplt_value = (htab->root.sgotplt->output_section->vma
11589 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11590 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11591 gotplt_value_low = gotplt_value & 0xffff;
11592
11593 /* The PLT sequence is not safe for N64 if .got.plt's address can
11594 not be loaded in two instructions. */
789ff5b6
MR
11595 if (ABI_64_P (output_bfd)
11596 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11597 {
11598 _bfd_error_handler
11599 /* xgettext:c-format */
11600 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11601 "supported; consider using `-Ttext-segment=...'"),
11602 output_bfd,
11603 htab->root.sgotplt->output_section,
11604 (int64_t) gotplt_value);
11605 bfd_set_error (bfd_error_no_error);
11606 return FALSE;
11607 }
861fb55a
DJ
11608
11609 /* Install the PLT header. */
ce558b89 11610 loc = htab->root.splt->contents;
1bbce132
MR
11611 if (plt_entry == micromips_o32_exec_plt0_entry)
11612 {
11613 bfd_vma gotpc_offset;
11614 bfd_vma loc_address;
11615 size_t i;
11616
11617 BFD_ASSERT (gotplt_value % 4 == 0);
11618
ce558b89
AM
11619 loc_address = (htab->root.splt->output_section->vma
11620 + htab->root.splt->output_offset);
1bbce132
MR
11621 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11622
11623 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11624 if (gotpc_offset + 0x1000000 >= 0x2000000)
11625 {
4eca0228 11626 _bfd_error_handler
695344c0 11627 /* xgettext:c-format */
2dcf00ce
AM
11628 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11629 "beyond the range of ADDIUPC"),
1bbce132 11630 output_bfd,
ce558b89 11631 htab->root.sgotplt->output_section,
2dcf00ce 11632 (int64_t) gotpc_offset,
c08bb8dd 11633 htab->root.splt->output_section);
1bbce132
MR
11634 bfd_set_error (bfd_error_no_error);
11635 return FALSE;
11636 }
11637 bfd_put_16 (output_bfd,
11638 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11639 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11640 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11641 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11642 }
833794fc
MR
11643 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11644 {
11645 size_t i;
11646
11647 bfd_put_16 (output_bfd, plt_entry[0], loc);
11648 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11649 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11650 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11651 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11652 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11653 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11654 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11655 }
1bbce132
MR
11656 else
11657 {
11658 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11659 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11660 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11661 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11662 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11663 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11664 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11665 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11666 }
11667
11668 return TRUE;
861fb55a
DJ
11669}
11670
0a44bf69
RS
11671/* Install the PLT header for a VxWorks executable and finalize the
11672 contents of .rela.plt.unloaded. */
11673
11674static void
11675mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11676{
11677 Elf_Internal_Rela rela;
11678 bfd_byte *loc;
11679 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11680 static const bfd_vma *plt_entry;
11681 struct mips_elf_link_hash_table *htab;
11682
11683 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11684 BFD_ASSERT (htab != NULL);
11685
0a44bf69
RS
11686 plt_entry = mips_vxworks_exec_plt0_entry;
11687
11688 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11689 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11690 + htab->root.hgot->root.u.def.section->output_offset
11691 + htab->root.hgot->root.u.def.value);
11692
11693 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11694 got_value_low = got_value & 0xffff;
11695
11696 /* Calculate the address of the PLT header. */
ce558b89
AM
11697 plt_address = (htab->root.splt->output_section->vma
11698 + htab->root.splt->output_offset);
0a44bf69
RS
11699
11700 /* Install the PLT header. */
ce558b89 11701 loc = htab->root.splt->contents;
0a44bf69
RS
11702 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11703 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11704 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11705 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11706 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11707 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11708
11709 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11710 loc = htab->srelplt2->contents;
11711 rela.r_offset = plt_address;
11712 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11713 rela.r_addend = 0;
11714 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11715 loc += sizeof (Elf32_External_Rela);
11716
11717 /* Output the relocation for the following addiu of
11718 %lo(_GLOBAL_OFFSET_TABLE_). */
11719 rela.r_offset += 4;
11720 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11721 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11722 loc += sizeof (Elf32_External_Rela);
11723
11724 /* Fix up the remaining relocations. They may have the wrong
11725 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11726 in which symbols were output. */
11727 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11728 {
11729 Elf_Internal_Rela rel;
11730
11731 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11732 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11733 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11734 loc += sizeof (Elf32_External_Rela);
11735
11736 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11737 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11738 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11739 loc += sizeof (Elf32_External_Rela);
11740
11741 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11742 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11743 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11744 loc += sizeof (Elf32_External_Rela);
11745 }
11746}
11747
11748/* Install the PLT header for a VxWorks shared library. */
11749
11750static void
11751mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11752{
11753 unsigned int i;
11754 struct mips_elf_link_hash_table *htab;
11755
11756 htab = mips_elf_hash_table (info);
4dfe6ac6 11757 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11758
11759 /* We just need to copy the entry byte-by-byte. */
11760 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11761 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11762 htab->root.splt->contents + i * 4);
0a44bf69
RS
11763}
11764
b49e97c9
TS
11765/* Finish up the dynamic sections. */
11766
b34976b6 11767bfd_boolean
9719ad41
RS
11768_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11769 struct bfd_link_info *info)
b49e97c9
TS
11770{
11771 bfd *dynobj;
11772 asection *sdyn;
11773 asection *sgot;
f4416af6 11774 struct mips_got_info *gg, *g;
0a44bf69 11775 struct mips_elf_link_hash_table *htab;
b49e97c9 11776
0a44bf69 11777 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11778 BFD_ASSERT (htab != NULL);
11779
b49e97c9
TS
11780 dynobj = elf_hash_table (info)->dynobj;
11781
3d4d4302 11782 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11783
ce558b89 11784 sgot = htab->root.sgot;
23cc69b6 11785 gg = htab->got_info;
b49e97c9
TS
11786
11787 if (elf_hash_table (info)->dynamic_sections_created)
11788 {
11789 bfd_byte *b;
943284cc 11790 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11791
11792 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11793 BFD_ASSERT (gg != NULL);
11794
d7206569 11795 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11796 BFD_ASSERT (g != NULL);
11797
11798 for (b = sdyn->contents;
eea6121a 11799 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11800 b += MIPS_ELF_DYN_SIZE (dynobj))
11801 {
11802 Elf_Internal_Dyn dyn;
11803 const char *name;
11804 size_t elemsize;
11805 asection *s;
b34976b6 11806 bfd_boolean swap_out_p;
b49e97c9
TS
11807
11808 /* Read in the current dynamic entry. */
11809 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11810
11811 /* Assume that we're going to modify it and write it out. */
b34976b6 11812 swap_out_p = TRUE;
b49e97c9
TS
11813
11814 switch (dyn.d_tag)
11815 {
11816 case DT_RELENT:
b49e97c9
TS
11817 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11818 break;
11819
0a44bf69
RS
11820 case DT_RELAENT:
11821 BFD_ASSERT (htab->is_vxworks);
11822 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11823 break;
11824
b49e97c9
TS
11825 case DT_STRSZ:
11826 /* Rewrite DT_STRSZ. */
11827 dyn.d_un.d_val =
11828 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11829 break;
11830
11831 case DT_PLTGOT:
ce558b89 11832 s = htab->root.sgot;
861fb55a
DJ
11833 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11834 break;
11835
11836 case DT_MIPS_PLTGOT:
ce558b89 11837 s = htab->root.sgotplt;
861fb55a 11838 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11839 break;
11840
11841 case DT_MIPS_RLD_VERSION:
11842 dyn.d_un.d_val = 1; /* XXX */
11843 break;
11844
11845 case DT_MIPS_FLAGS:
11846 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11847 break;
11848
b49e97c9 11849 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11850 {
11851 time_t t;
11852 time (&t);
11853 dyn.d_un.d_val = t;
11854 }
b49e97c9
TS
11855 break;
11856
11857 case DT_MIPS_ICHECKSUM:
11858 /* XXX FIXME: */
b34976b6 11859 swap_out_p = FALSE;
b49e97c9
TS
11860 break;
11861
11862 case DT_MIPS_IVERSION:
11863 /* XXX FIXME: */
b34976b6 11864 swap_out_p = FALSE;
b49e97c9
TS
11865 break;
11866
11867 case DT_MIPS_BASE_ADDRESS:
11868 s = output_bfd->sections;
11869 BFD_ASSERT (s != NULL);
11870 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11871 break;
11872
11873 case DT_MIPS_LOCAL_GOTNO:
11874 dyn.d_un.d_val = g->local_gotno;
11875 break;
11876
11877 case DT_MIPS_UNREFEXTNO:
11878 /* The index into the dynamic symbol table which is the
11879 entry of the first external symbol that is not
11880 referenced within the same object. */
11881 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11882 break;
11883
11884 case DT_MIPS_GOTSYM:
d222d210 11885 if (htab->global_gotsym)
b49e97c9 11886 {
d222d210 11887 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11888 break;
11889 }
11890 /* In case if we don't have global got symbols we default
11891 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11892 DT_MIPS_SYMTABNO. */
11893 /* Fall through. */
b49e97c9
TS
11894
11895 case DT_MIPS_SYMTABNO:
11896 name = ".dynsym";
11897 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11898 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11899
131e2f8e
MF
11900 if (s != NULL)
11901 dyn.d_un.d_val = s->size / elemsize;
11902 else
11903 dyn.d_un.d_val = 0;
b49e97c9
TS
11904 break;
11905
11906 case DT_MIPS_HIPAGENO:
861fb55a 11907 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11908 break;
11909
11910 case DT_MIPS_RLD_MAP:
b4082c70
DD
11911 {
11912 struct elf_link_hash_entry *h;
11913 h = mips_elf_hash_table (info)->rld_symbol;
11914 if (!h)
11915 {
11916 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11917 swap_out_p = FALSE;
11918 break;
11919 }
11920 s = h->root.u.def.section;
a5499fa4
MF
11921
11922 /* The MIPS_RLD_MAP tag stores the absolute address of the
11923 debug pointer. */
b4082c70
DD
11924 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11925 + h->root.u.def.value);
11926 }
b49e97c9
TS
11927 break;
11928
a5499fa4
MF
11929 case DT_MIPS_RLD_MAP_REL:
11930 {
11931 struct elf_link_hash_entry *h;
11932 bfd_vma dt_addr, rld_addr;
11933 h = mips_elf_hash_table (info)->rld_symbol;
11934 if (!h)
11935 {
11936 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11937 swap_out_p = FALSE;
11938 break;
11939 }
11940 s = h->root.u.def.section;
11941
11942 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11943 pointer, relative to the address of the tag. */
11944 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11945 + (b - sdyn->contents));
a5499fa4
MF
11946 rld_addr = (s->output_section->vma + s->output_offset
11947 + h->root.u.def.value);
11948 dyn.d_un.d_ptr = rld_addr - dt_addr;
11949 }
11950 break;
11951
b49e97c9
TS
11952 case DT_MIPS_OPTIONS:
11953 s = (bfd_get_section_by_name
11954 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11955 dyn.d_un.d_ptr = s->vma;
11956 break;
11957
0a44bf69 11958 case DT_PLTREL:
861fb55a
DJ
11959 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11960 if (htab->is_vxworks)
11961 dyn.d_un.d_val = DT_RELA;
11962 else
11963 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11964 break;
11965
11966 case DT_PLTRELSZ:
861fb55a 11967 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11968 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11969 break;
11970
11971 case DT_JMPREL:
861fb55a 11972 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11973 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11974 + htab->root.srelplt->output_offset);
0a44bf69
RS
11975 break;
11976
943284cc
DJ
11977 case DT_TEXTREL:
11978 /* If we didn't need any text relocations after all, delete
11979 the dynamic tag. */
11980 if (!(info->flags & DF_TEXTREL))
11981 {
11982 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11983 swap_out_p = FALSE;
11984 }
11985 break;
11986
11987 case DT_FLAGS:
11988 /* If we didn't need any text relocations after all, clear
11989 DF_TEXTREL from DT_FLAGS. */
11990 if (!(info->flags & DF_TEXTREL))
11991 dyn.d_un.d_val &= ~DF_TEXTREL;
11992 else
11993 swap_out_p = FALSE;
11994 break;
11995
f16a9783
MS
11996 case DT_MIPS_XHASH:
11997 name = ".MIPS.xhash";
11998 s = bfd_get_linker_section (dynobj, name);
11999 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12000 break;
12001
b49e97c9 12002 default:
b34976b6 12003 swap_out_p = FALSE;
7a2b07ff
NS
12004 if (htab->is_vxworks
12005 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12006 swap_out_p = TRUE;
b49e97c9
TS
12007 break;
12008 }
12009
943284cc 12010 if (swap_out_p || dyn_skipped)
b49e97c9 12011 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
12012 (dynobj, &dyn, b - dyn_skipped);
12013
12014 if (dyn_to_skip)
12015 {
12016 dyn_skipped += dyn_to_skip;
12017 dyn_to_skip = 0;
12018 }
b49e97c9 12019 }
943284cc
DJ
12020
12021 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12022 if (dyn_skipped > 0)
12023 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
12024 }
12025
b55fd4d4
DJ
12026 if (sgot != NULL && sgot->size > 0
12027 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 12028 {
0a44bf69
RS
12029 if (htab->is_vxworks)
12030 {
12031 /* The first entry of the global offset table points to the
12032 ".dynamic" section. The second is initialized by the
12033 loader and contains the shared library identifier.
12034 The third is also initialized by the loader and points
12035 to the lazy resolution stub. */
12036 MIPS_ELF_PUT_WORD (output_bfd,
12037 sdyn->output_offset + sdyn->output_section->vma,
12038 sgot->contents);
12039 MIPS_ELF_PUT_WORD (output_bfd, 0,
12040 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12041 MIPS_ELF_PUT_WORD (output_bfd, 0,
12042 sgot->contents
12043 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12044 }
12045 else
12046 {
12047 /* The first entry of the global offset table will be filled at
12048 runtime. The second entry will be used by some runtime loaders.
12049 This isn't the case of IRIX rld. */
12050 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 12051 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
12052 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12053 }
b49e97c9 12054
54938e2a
TS
12055 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12056 = MIPS_ELF_GOT_SIZE (output_bfd);
12057 }
b49e97c9 12058
f4416af6
AO
12059 /* Generate dynamic relocations for the non-primary gots. */
12060 if (gg != NULL && gg->next)
12061 {
12062 Elf_Internal_Rela rel[3];
12063 bfd_vma addend = 0;
12064
12065 memset (rel, 0, sizeof (rel));
12066 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12067
12068 for (g = gg->next; g->next != gg; g = g->next)
12069 {
91d6fa6a 12070 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12071 + g->next->tls_gotno;
f4416af6 12072
9719ad41 12073 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12074 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12075 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12076 sgot->contents
91d6fa6a 12077 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12078
0e1862bb 12079 if (! bfd_link_pic (info))
f4416af6
AO
12080 continue;
12081
cb22ccf4 12082 for (; got_index < g->local_gotno; got_index++)
f4416af6 12083 {
cb22ccf4
KCY
12084 if (got_index >= g->assigned_low_gotno
12085 && got_index <= g->assigned_high_gotno)
12086 continue;
12087
f4416af6 12088 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12089 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12090 if (!(mips_elf_create_dynamic_relocation
12091 (output_bfd, info, rel, NULL,
12092 bfd_abs_section_ptr,
12093 0, &addend, sgot)))
12094 return FALSE;
12095 BFD_ASSERT (addend == 0);
12096 }
12097 }
12098 }
12099
3133ddbf
DJ
12100 /* The generation of dynamic relocations for the non-primary gots
12101 adds more dynamic relocations. We cannot count them until
12102 here. */
12103
12104 if (elf_hash_table (info)->dynamic_sections_created)
12105 {
12106 bfd_byte *b;
12107 bfd_boolean swap_out_p;
12108
12109 BFD_ASSERT (sdyn != NULL);
12110
12111 for (b = sdyn->contents;
12112 b < sdyn->contents + sdyn->size;
12113 b += MIPS_ELF_DYN_SIZE (dynobj))
12114 {
12115 Elf_Internal_Dyn dyn;
12116 asection *s;
12117
12118 /* Read in the current dynamic entry. */
12119 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12120
12121 /* Assume that we're going to modify it and write it out. */
12122 swap_out_p = TRUE;
12123
12124 switch (dyn.d_tag)
12125 {
12126 case DT_RELSZ:
12127 /* Reduce DT_RELSZ to account for any relocations we
12128 decided not to make. This is for the n64 irix rld,
12129 which doesn't seem to apply any relocations if there
12130 are trailing null entries. */
0a44bf69 12131 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12132 dyn.d_un.d_val = (s->reloc_count
12133 * (ABI_64_P (output_bfd)
12134 ? sizeof (Elf64_Mips_External_Rel)
12135 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12136 /* Adjust the section size too. Tools like the prelinker
12137 can reasonably expect the values to the same. */
db841b6f 12138 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12139 elf_section_data (s->output_section)->this_hdr.sh_size
12140 = dyn.d_un.d_val;
3133ddbf
DJ
12141 break;
12142
12143 default:
12144 swap_out_p = FALSE;
12145 break;
12146 }
12147
12148 if (swap_out_p)
12149 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12150 (dynobj, &dyn, b);
12151 }
12152 }
12153
b49e97c9 12154 {
b49e97c9
TS
12155 asection *s;
12156 Elf32_compact_rel cpt;
12157
b49e97c9
TS
12158 if (SGI_COMPAT (output_bfd))
12159 {
12160 /* Write .compact_rel section out. */
3d4d4302 12161 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12162 if (s != NULL)
12163 {
12164 cpt.id1 = 1;
12165 cpt.num = s->reloc_count;
12166 cpt.id2 = 2;
12167 cpt.offset = (s->output_section->filepos
12168 + sizeof (Elf32_External_compact_rel));
12169 cpt.reserved0 = 0;
12170 cpt.reserved1 = 0;
12171 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12172 ((Elf32_External_compact_rel *)
12173 s->contents));
12174
12175 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 12176 if (htab->sstubs != NULL)
b49e97c9
TS
12177 {
12178 file_ptr dummy_offset;
12179
4e41d0d7
RS
12180 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12181 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12182 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12183 htab->function_stub_size);
b49e97c9
TS
12184 }
12185 }
12186 }
12187
0a44bf69
RS
12188 /* The psABI says that the dynamic relocations must be sorted in
12189 increasing order of r_symndx. The VxWorks EABI doesn't require
12190 this, and because the code below handles REL rather than RELA
12191 relocations, using it for VxWorks would be outright harmful. */
12192 if (!htab->is_vxworks)
b49e97c9 12193 {
0a44bf69
RS
12194 s = mips_elf_rel_dyn_section (info, FALSE);
12195 if (s != NULL
12196 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12197 {
12198 reldyn_sorting_bfd = output_bfd;
b49e97c9 12199
0a44bf69
RS
12200 if (ABI_64_P (output_bfd))
12201 qsort ((Elf64_External_Rel *) s->contents + 1,
12202 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12203 sort_dynamic_relocs_64);
12204 else
12205 qsort ((Elf32_External_Rel *) s->contents + 1,
12206 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12207 sort_dynamic_relocs);
12208 }
b49e97c9 12209 }
b49e97c9
TS
12210 }
12211
ce558b89 12212 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12213 {
861fb55a
DJ
12214 if (htab->is_vxworks)
12215 {
0e1862bb 12216 if (bfd_link_pic (info))
861fb55a
DJ
12217 mips_vxworks_finish_shared_plt (output_bfd, info);
12218 else
12219 mips_vxworks_finish_exec_plt (output_bfd, info);
12220 }
0a44bf69 12221 else
861fb55a 12222 {
0e1862bb 12223 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12224 if (!mips_finish_exec_plt (output_bfd, info))
12225 return FALSE;
861fb55a 12226 }
0a44bf69 12227 }
b34976b6 12228 return TRUE;
b49e97c9
TS
12229}
12230
b49e97c9 12231
64543e1a
RS
12232/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12233
12234static void
9719ad41 12235mips_set_isa_flags (bfd *abfd)
b49e97c9 12236{
64543e1a 12237 flagword val;
b49e97c9
TS
12238
12239 switch (bfd_get_mach (abfd))
12240 {
12241 default:
c7c860d2
YS
12242 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12243 val = E_MIPS_ARCH_3;
12244 else
12245 val = E_MIPS_ARCH_1;
12246 break;
12247
b49e97c9
TS
12248 case bfd_mach_mips3000:
12249 val = E_MIPS_ARCH_1;
12250 break;
12251
12252 case bfd_mach_mips3900:
12253 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12254 break;
12255
12256 case bfd_mach_mips6000:
12257 val = E_MIPS_ARCH_2;
12258 break;
12259
b417536f
MR
12260 case bfd_mach_mips4010:
12261 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12262 break;
12263
b49e97c9
TS
12264 case bfd_mach_mips4000:
12265 case bfd_mach_mips4300:
12266 case bfd_mach_mips4400:
12267 case bfd_mach_mips4600:
12268 val = E_MIPS_ARCH_3;
12269 break;
12270
b49e97c9
TS
12271 case bfd_mach_mips4100:
12272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12273 break;
12274
12275 case bfd_mach_mips4111:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12277 break;
12278
00707a0e
RS
12279 case bfd_mach_mips4120:
12280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12281 break;
12282
b49e97c9
TS
12283 case bfd_mach_mips4650:
12284 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12285 break;
12286
00707a0e
RS
12287 case bfd_mach_mips5400:
12288 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12289 break;
12290
12291 case bfd_mach_mips5500:
12292 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12293 break;
12294
e407c74b
NC
12295 case bfd_mach_mips5900:
12296 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12297 break;
12298
0d2e43ed
ILT
12299 case bfd_mach_mips9000:
12300 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12301 break;
12302
b49e97c9 12303 case bfd_mach_mips5000:
5a7ea749 12304 case bfd_mach_mips7000:
b49e97c9
TS
12305 case bfd_mach_mips8000:
12306 case bfd_mach_mips10000:
12307 case bfd_mach_mips12000:
3aa3176b
TS
12308 case bfd_mach_mips14000:
12309 case bfd_mach_mips16000:
b49e97c9
TS
12310 val = E_MIPS_ARCH_4;
12311 break;
12312
12313 case bfd_mach_mips5:
12314 val = E_MIPS_ARCH_5;
12315 break;
12316
350cc38d
MS
12317 case bfd_mach_mips_loongson_2e:
12318 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12319 break;
12320
12321 case bfd_mach_mips_loongson_2f:
12322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12323 break;
12324
b49e97c9
TS
12325 case bfd_mach_mips_sb1:
12326 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12327 break;
12328
ac8cb70f
CX
12329 case bfd_mach_mips_gs464:
12330 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12331 break;
12332
bd782c07
CX
12333 case bfd_mach_mips_gs464e:
12334 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12335 break;
12336
9108bc33
CX
12337 case bfd_mach_mips_gs264e:
12338 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12339 break;
12340
6f179bd0 12341 case bfd_mach_mips_octeon:
dd6a37e7 12342 case bfd_mach_mips_octeonp:
6f179bd0
AN
12343 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12344 break;
12345
2c629856
N
12346 case bfd_mach_mips_octeon3:
12347 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12348 break;
12349
52b6b6b9
JM
12350 case bfd_mach_mips_xlr:
12351 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12352 break;
12353
432233b3
AP
12354 case bfd_mach_mips_octeon2:
12355 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12356 break;
12357
b49e97c9
TS
12358 case bfd_mach_mipsisa32:
12359 val = E_MIPS_ARCH_32;
12360 break;
12361
12362 case bfd_mach_mipsisa64:
12363 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12364 break;
12365
12366 case bfd_mach_mipsisa32r2:
ae52f483
AB
12367 case bfd_mach_mipsisa32r3:
12368 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12369 val = E_MIPS_ARCH_32R2;
12370 break;
5f74bc13 12371
38bf472a
MR
12372 case bfd_mach_mips_interaptiv_mr2:
12373 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12374 break;
12375
5f74bc13 12376 case bfd_mach_mipsisa64r2:
ae52f483
AB
12377 case bfd_mach_mipsisa64r3:
12378 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12379 val = E_MIPS_ARCH_64R2;
12380 break;
7361da2c
AB
12381
12382 case bfd_mach_mipsisa32r6:
12383 val = E_MIPS_ARCH_32R6;
12384 break;
12385
12386 case bfd_mach_mipsisa64r6:
12387 val = E_MIPS_ARCH_64R6;
12388 break;
b49e97c9 12389 }
b49e97c9
TS
12390 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12391 elf_elfheader (abfd)->e_flags |= val;
12392
64543e1a
RS
12393}
12394
12395
28dbcedc
AM
12396/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397 Don't do so for code sections. We want to keep ordering of HI16/LO16
12398 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12399 relocs to be sorted. */
12400
12401bfd_boolean
12402_bfd_mips_elf_sort_relocs_p (asection *sec)
12403{
12404 return (sec->flags & SEC_CODE) == 0;
12405}
12406
12407
64543e1a
RS
12408/* The final processing done just before writing out a MIPS ELF object
12409 file. This gets the MIPS architecture right based on the machine
12410 number. This is used by both the 32-bit and the 64-bit ABI. */
12411
12412void
cc364be6 12413_bfd_mips_final_write_processing (bfd *abfd)
64543e1a
RS
12414{
12415 unsigned int i;
12416 Elf_Internal_Shdr **hdrpp;
12417 const char *name;
12418 asection *sec;
12419
12420 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421 is nonzero. This is for compatibility with old objects, which used
12422 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12423 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12424 mips_set_isa_flags (abfd);
12425
b49e97c9
TS
12426 /* Set the sh_info field for .gptab sections and other appropriate
12427 info for each special section. */
12428 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12429 i < elf_numsections (abfd);
12430 i++, hdrpp++)
12431 {
12432 switch ((*hdrpp)->sh_type)
12433 {
12434 case SHT_MIPS_MSYM:
12435 case SHT_MIPS_LIBLIST:
12436 sec = bfd_get_section_by_name (abfd, ".dynstr");
12437 if (sec != NULL)
12438 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12439 break;
12440
12441 case SHT_MIPS_GPTAB:
12442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12443 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12444 BFD_ASSERT (name != NULL
0112cd26 12445 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12446 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12447 BFD_ASSERT (sec != NULL);
12448 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_CONTENT:
12452 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12453 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12454 BFD_ASSERT (name != NULL
0112cd26 12455 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12456 sec = bfd_get_section_by_name (abfd,
12457 name + sizeof ".MIPS.content" - 1);
12458 BFD_ASSERT (sec != NULL);
12459 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12460 break;
12461
12462 case SHT_MIPS_SYMBOL_LIB:
12463 sec = bfd_get_section_by_name (abfd, ".dynsym");
12464 if (sec != NULL)
12465 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12466 sec = bfd_get_section_by_name (abfd, ".liblist");
12467 if (sec != NULL)
12468 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12469 break;
12470
12471 case SHT_MIPS_EVENTS:
12472 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
fd361982 12473 name = bfd_section_name ((*hdrpp)->bfd_section);
b49e97c9 12474 BFD_ASSERT (name != NULL);
0112cd26 12475 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12476 sec = bfd_get_section_by_name (abfd,
12477 name + sizeof ".MIPS.events" - 1);
12478 else
12479 {
0112cd26 12480 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12481 sec = bfd_get_section_by_name (abfd,
12482 (name
12483 + sizeof ".MIPS.post_rel" - 1));
12484 }
12485 BFD_ASSERT (sec != NULL);
12486 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12487 break;
12488
f16a9783
MS
12489 case SHT_MIPS_XHASH:
12490 sec = bfd_get_section_by_name (abfd, ".dynsym");
12491 if (sec != NULL)
12492 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
b49e97c9
TS
12493 }
12494 }
12495}
06f44071 12496
cc364be6
AM
12497bfd_boolean
12498_bfd_mips_elf_final_write_processing (bfd *abfd)
06f44071 12499{
cc364be6
AM
12500 _bfd_mips_final_write_processing (abfd);
12501 return _bfd_elf_final_write_processing (abfd);
06f44071 12502}
b49e97c9 12503\f
8dc1a139 12504/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12505 segments. */
12506
12507int
a6b96beb
AM
12508_bfd_mips_elf_additional_program_headers (bfd *abfd,
12509 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12510{
12511 asection *s;
12512 int ret = 0;
12513
12514 /* See if we need a PT_MIPS_REGINFO segment. */
12515 s = bfd_get_section_by_name (abfd, ".reginfo");
12516 if (s && (s->flags & SEC_LOAD))
12517 ++ret;
12518
351cdf24
MF
12519 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12520 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12521 ++ret;
12522
b49e97c9
TS
12523 /* See if we need a PT_MIPS_OPTIONS segment. */
12524 if (IRIX_COMPAT (abfd) == ict_irix6
12525 && bfd_get_section_by_name (abfd,
12526 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12527 ++ret;
12528
12529 /* See if we need a PT_MIPS_RTPROC segment. */
12530 if (IRIX_COMPAT (abfd) == ict_irix5
12531 && bfd_get_section_by_name (abfd, ".dynamic")
12532 && bfd_get_section_by_name (abfd, ".mdebug"))
12533 ++ret;
12534
98c904a8
RS
12535 /* Allocate a PT_NULL header in dynamic objects. See
12536 _bfd_mips_elf_modify_segment_map for details. */
12537 if (!SGI_COMPAT (abfd)
12538 && bfd_get_section_by_name (abfd, ".dynamic"))
12539 ++ret;
12540
b49e97c9
TS
12541 return ret;
12542}
12543
8dc1a139 12544/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12545
b34976b6 12546bfd_boolean
9719ad41 12547_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12548 struct bfd_link_info *info)
b49e97c9
TS
12549{
12550 asection *s;
12551 struct elf_segment_map *m, **pm;
12552 bfd_size_type amt;
12553
12554 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12555 segment. */
12556 s = bfd_get_section_by_name (abfd, ".reginfo");
12557 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12558 {
12bd6957 12559 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12560 if (m->p_type == PT_MIPS_REGINFO)
12561 break;
12562 if (m == NULL)
12563 {
12564 amt = sizeof *m;
9719ad41 12565 m = bfd_zalloc (abfd, amt);
b49e97c9 12566 if (m == NULL)
b34976b6 12567 return FALSE;
b49e97c9
TS
12568
12569 m->p_type = PT_MIPS_REGINFO;
12570 m->count = 1;
12571 m->sections[0] = s;
12572
12573 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12574 pm = &elf_seg_map (abfd);
b49e97c9
TS
12575 while (*pm != NULL
12576 && ((*pm)->p_type == PT_PHDR
12577 || (*pm)->p_type == PT_INTERP))
12578 pm = &(*pm)->next;
12579
12580 m->next = *pm;
12581 *pm = m;
12582 }
12583 }
12584
351cdf24
MF
12585 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12586 segment. */
12587 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12588 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12589 {
12590 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12591 if (m->p_type == PT_MIPS_ABIFLAGS)
12592 break;
12593 if (m == NULL)
12594 {
12595 amt = sizeof *m;
12596 m = bfd_zalloc (abfd, amt);
12597 if (m == NULL)
12598 return FALSE;
12599
12600 m->p_type = PT_MIPS_ABIFLAGS;
12601 m->count = 1;
12602 m->sections[0] = s;
12603
12604 /* We want to put it after the PHDR and INTERP segments. */
12605 pm = &elf_seg_map (abfd);
12606 while (*pm != NULL
12607 && ((*pm)->p_type == PT_PHDR
12608 || (*pm)->p_type == PT_INTERP))
12609 pm = &(*pm)->next;
12610
12611 m->next = *pm;
12612 *pm = m;
12613 }
12614 }
12615
b49e97c9
TS
12616 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12618 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12619 table. */
c1fd6598
AO
12620 if (NEWABI_P (abfd)
12621 /* On non-IRIX6 new abi, we'll have already created a segment
12622 for this section, so don't create another. I'm not sure this
12623 is not also the case for IRIX 6, but I can't test it right
12624 now. */
12625 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12626 {
12627 for (s = abfd->sections; s; s = s->next)
12628 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12629 break;
12630
12631 if (s)
12632 {
12633 struct elf_segment_map *options_segment;
12634
12bd6957 12635 pm = &elf_seg_map (abfd);
98a8deaf
RS
12636 while (*pm != NULL
12637 && ((*pm)->p_type == PT_PHDR
12638 || (*pm)->p_type == PT_INTERP))
12639 pm = &(*pm)->next;
b49e97c9 12640
8ded5a0f
AM
12641 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12642 {
12643 amt = sizeof (struct elf_segment_map);
12644 options_segment = bfd_zalloc (abfd, amt);
12645 options_segment->next = *pm;
12646 options_segment->p_type = PT_MIPS_OPTIONS;
12647 options_segment->p_flags = PF_R;
12648 options_segment->p_flags_valid = TRUE;
12649 options_segment->count = 1;
12650 options_segment->sections[0] = s;
12651 *pm = options_segment;
12652 }
b49e97c9
TS
12653 }
12654 }
12655 else
12656 {
12657 if (IRIX_COMPAT (abfd) == ict_irix5)
12658 {
12659 /* If there are .dynamic and .mdebug sections, we make a room
12660 for the RTPROC header. FIXME: Rewrite without section names. */
12661 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12662 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12663 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12664 {
12bd6957 12665 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12666 if (m->p_type == PT_MIPS_RTPROC)
12667 break;
12668 if (m == NULL)
12669 {
12670 amt = sizeof *m;
9719ad41 12671 m = bfd_zalloc (abfd, amt);
b49e97c9 12672 if (m == NULL)
b34976b6 12673 return FALSE;
b49e97c9
TS
12674
12675 m->p_type = PT_MIPS_RTPROC;
12676
12677 s = bfd_get_section_by_name (abfd, ".rtproc");
12678 if (s == NULL)
12679 {
12680 m->count = 0;
12681 m->p_flags = 0;
12682 m->p_flags_valid = 1;
12683 }
12684 else
12685 {
12686 m->count = 1;
12687 m->sections[0] = s;
12688 }
12689
12690 /* We want to put it after the DYNAMIC segment. */
12bd6957 12691 pm = &elf_seg_map (abfd);
b49e97c9
TS
12692 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12693 pm = &(*pm)->next;
12694 if (*pm != NULL)
12695 pm = &(*pm)->next;
12696
12697 m->next = *pm;
12698 *pm = m;
12699 }
12700 }
12701 }
8dc1a139 12702 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12703 .dynstr, .dynsym, and .hash sections, and everything in
12704 between. */
12bd6957 12705 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12706 pm = &(*pm)->next)
12707 if ((*pm)->p_type == PT_DYNAMIC)
12708 break;
12709 m = *pm;
f6f62d6f
RS
12710 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 glibc's dynamic linker has traditionally derived the number of
12712 tags from the p_filesz field, and sometimes allocates stack
12713 arrays of that size. An overly-big PT_DYNAMIC segment can
12714 be actively harmful in such cases. Making PT_DYNAMIC contain
12715 other sections can also make life hard for the prelinker,
12716 which might move one of the other sections to a different
12717 PT_LOAD segment. */
12718 if (SGI_COMPAT (abfd)
12719 && m != NULL
12720 && m->count == 1
12721 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12722 {
12723 static const char *sec_names[] =
12724 {
12725 ".dynamic", ".dynstr", ".dynsym", ".hash"
12726 };
12727 bfd_vma low, high;
12728 unsigned int i, c;
12729 struct elf_segment_map *n;
12730
792b4a53 12731 low = ~(bfd_vma) 0;
b49e97c9
TS
12732 high = 0;
12733 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12734 {
12735 s = bfd_get_section_by_name (abfd, sec_names[i]);
12736 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12737 {
12738 bfd_size_type sz;
12739
12740 if (low > s->vma)
12741 low = s->vma;
eea6121a 12742 sz = s->size;
b49e97c9
TS
12743 if (high < s->vma + sz)
12744 high = s->vma + sz;
12745 }
12746 }
12747
12748 c = 0;
12749 for (s = abfd->sections; s != NULL; s = s->next)
12750 if ((s->flags & SEC_LOAD) != 0
12751 && s->vma >= low
eea6121a 12752 && s->vma + s->size <= high)
b49e97c9
TS
12753 ++c;
12754
12755 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12756 n = bfd_zalloc (abfd, amt);
b49e97c9 12757 if (n == NULL)
b34976b6 12758 return FALSE;
b49e97c9
TS
12759 *n = *m;
12760 n->count = c;
12761
12762 i = 0;
12763 for (s = abfd->sections; s != NULL; s = s->next)
12764 {
12765 if ((s->flags & SEC_LOAD) != 0
12766 && s->vma >= low
eea6121a 12767 && s->vma + s->size <= high)
b49e97c9
TS
12768 {
12769 n->sections[i] = s;
12770 ++i;
12771 }
12772 }
12773
12774 *pm = n;
12775 }
12776 }
12777
98c904a8
RS
12778 /* Allocate a spare program header in dynamic objects so that tools
12779 like the prelinker can add an extra PT_LOAD entry.
12780
12781 If the prelinker needs to make room for a new PT_LOAD entry, its
12782 standard procedure is to move the first (read-only) sections into
12783 the new (writable) segment. However, the MIPS ABI requires
12784 .dynamic to be in a read-only segment, and the section will often
12785 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12786
12787 Although the prelinker could in principle move .dynamic to a
12788 writable segment, it seems better to allocate a spare program
12789 header instead, and avoid the need to move any sections.
12790 There is a long tradition of allocating spare dynamic tags,
12791 so allocating a spare program header seems like a natural
7c8b76cc
JM
12792 extension.
12793
12794 If INFO is NULL, we may be copying an already prelinked binary
12795 with objcopy or strip, so do not add this header. */
12796 if (info != NULL
12797 && !SGI_COMPAT (abfd)
98c904a8
RS
12798 && bfd_get_section_by_name (abfd, ".dynamic"))
12799 {
12bd6957 12800 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12801 if ((*pm)->p_type == PT_NULL)
12802 break;
12803 if (*pm == NULL)
12804 {
12805 m = bfd_zalloc (abfd, sizeof (*m));
12806 if (m == NULL)
12807 return FALSE;
12808
12809 m->p_type = PT_NULL;
12810 *pm = m;
12811 }
12812 }
12813
b34976b6 12814 return TRUE;
b49e97c9
TS
12815}
12816\f
12817/* Return the section that should be marked against GC for a given
12818 relocation. */
12819
12820asection *
9719ad41 12821_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12822 struct bfd_link_info *info,
9719ad41
RS
12823 Elf_Internal_Rela *rel,
12824 struct elf_link_hash_entry *h,
12825 Elf_Internal_Sym *sym)
b49e97c9
TS
12826{
12827 /* ??? Do mips16 stub sections need to be handled special? */
12828
12829 if (h != NULL)
07adf181
AM
12830 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12831 {
12832 case R_MIPS_GNU_VTINHERIT:
12833 case R_MIPS_GNU_VTENTRY:
12834 return NULL;
12835 }
b49e97c9 12836
07adf181 12837 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12838}
12839
351cdf24
MF
12840/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12841
12842bfd_boolean
12843_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12844 elf_gc_mark_hook_fn gc_mark_hook)
12845{
12846 bfd *sub;
12847
12848 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12849
12850 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12851 {
12852 asection *o;
12853
12854 if (! is_mips_elf (sub))
12855 continue;
12856
12857 for (o = sub->sections; o != NULL; o = o->next)
12858 if (!o->gc_mark
fd361982 12859 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
351cdf24
MF
12860 {
12861 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12862 return FALSE;
12863 }
12864 }
12865
12866 return TRUE;
12867}
b49e97c9
TS
12868\f
12869/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870 hiding the old indirect symbol. Process additional relocation
12871 information. Also called for weakdefs, in which case we just let
12872 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12873
12874void
fcfa13d2 12875_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12876 struct elf_link_hash_entry *dir,
12877 struct elf_link_hash_entry *ind)
b49e97c9
TS
12878{
12879 struct mips_elf_link_hash_entry *dirmips, *indmips;
12880
fcfa13d2 12881 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12882
861fb55a
DJ
12883 dirmips = (struct mips_elf_link_hash_entry *) dir;
12884 indmips = (struct mips_elf_link_hash_entry *) ind;
12885 /* Any absolute non-dynamic relocations against an indirect or weak
12886 definition will be against the target symbol. */
12887 if (indmips->has_static_relocs)
12888 dirmips->has_static_relocs = TRUE;
12889
b49e97c9
TS
12890 if (ind->root.type != bfd_link_hash_indirect)
12891 return;
12892
b49e97c9
TS
12893 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12894 if (indmips->readonly_reloc)
b34976b6 12895 dirmips->readonly_reloc = TRUE;
b49e97c9 12896 if (indmips->no_fn_stub)
b34976b6 12897 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12898 if (indmips->fn_stub)
12899 {
12900 dirmips->fn_stub = indmips->fn_stub;
12901 indmips->fn_stub = NULL;
12902 }
12903 if (indmips->need_fn_stub)
12904 {
12905 dirmips->need_fn_stub = TRUE;
12906 indmips->need_fn_stub = FALSE;
12907 }
12908 if (indmips->call_stub)
12909 {
12910 dirmips->call_stub = indmips->call_stub;
12911 indmips->call_stub = NULL;
12912 }
12913 if (indmips->call_fp_stub)
12914 {
12915 dirmips->call_fp_stub = indmips->call_fp_stub;
12916 indmips->call_fp_stub = NULL;
12917 }
634835ae
RS
12918 if (indmips->global_got_area < dirmips->global_got_area)
12919 dirmips->global_got_area = indmips->global_got_area;
12920 if (indmips->global_got_area < GGA_NONE)
12921 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12922 if (indmips->has_nonpic_branches)
12923 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12924}
47275900
MR
12925
12926/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927 to hide it. It has to remain global (it will also be protected) so as to
12928 be assigned a global GOT entry, which will then remain unchanged at load
12929 time. */
12930
12931void
12932_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12933 struct elf_link_hash_entry *entry,
12934 bfd_boolean force_local)
12935{
12936 struct mips_elf_link_hash_table *htab;
12937
12938 htab = mips_elf_hash_table (info);
12939 BFD_ASSERT (htab != NULL);
12940 if (htab->use_absolute_zero
12941 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12942 return;
12943
12944 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12945}
b49e97c9 12946\f
d01414a5
TS
12947#define PDR_SIZE 32
12948
b34976b6 12949bfd_boolean
9719ad41
RS
12950_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12951 struct bfd_link_info *info)
d01414a5
TS
12952{
12953 asection *o;
b34976b6 12954 bfd_boolean ret = FALSE;
d01414a5
TS
12955 unsigned char *tdata;
12956 size_t i, skip;
12957
12958 o = bfd_get_section_by_name (abfd, ".pdr");
12959 if (! o)
b34976b6 12960 return FALSE;
eea6121a 12961 if (o->size == 0)
b34976b6 12962 return FALSE;
eea6121a 12963 if (o->size % PDR_SIZE != 0)
b34976b6 12964 return FALSE;
d01414a5
TS
12965 if (o->output_section != NULL
12966 && bfd_is_abs_section (o->output_section))
b34976b6 12967 return FALSE;
d01414a5 12968
eea6121a 12969 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12970 if (! tdata)
b34976b6 12971 return FALSE;
d01414a5 12972
9719ad41 12973 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12974 info->keep_memory);
d01414a5
TS
12975 if (!cookie->rels)
12976 {
12977 free (tdata);
b34976b6 12978 return FALSE;
d01414a5
TS
12979 }
12980
12981 cookie->rel = cookie->rels;
12982 cookie->relend = cookie->rels + o->reloc_count;
12983
eea6121a 12984 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12985 {
c152c796 12986 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12987 {
12988 tdata[i] = 1;
12989 skip ++;
12990 }
12991 }
12992
12993 if (skip != 0)
12994 {
f0abc2a1 12995 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12996 if (o->rawsize == 0)
12997 o->rawsize = o->size;
eea6121a 12998 o->size -= skip * PDR_SIZE;
b34976b6 12999 ret = TRUE;
d01414a5
TS
13000 }
13001 else
13002 free (tdata);
13003
13004 if (! info->keep_memory)
13005 free (cookie->rels);
13006
13007 return ret;
13008}
13009
b34976b6 13010bfd_boolean
9719ad41 13011_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
13012{
13013 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
13014 return TRUE;
13015 return FALSE;
53bfd6b4 13016}
d01414a5 13017
b34976b6 13018bfd_boolean
c7b8f16e
JB
13019_bfd_mips_elf_write_section (bfd *output_bfd,
13020 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 13021 asection *sec, bfd_byte *contents)
d01414a5
TS
13022{
13023 bfd_byte *to, *from, *end;
13024 int i;
13025
13026 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 13027 return FALSE;
d01414a5 13028
f0abc2a1 13029 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 13030 return FALSE;
d01414a5
TS
13031
13032 to = contents;
eea6121a 13033 end = contents + sec->size;
d01414a5
TS
13034 for (from = contents, i = 0;
13035 from < end;
13036 from += PDR_SIZE, i++)
13037 {
f0abc2a1 13038 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
13039 continue;
13040 if (to != from)
13041 memcpy (to, from, PDR_SIZE);
13042 to += PDR_SIZE;
13043 }
13044 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 13045 sec->output_offset, sec->size);
b34976b6 13046 return TRUE;
d01414a5 13047}
53bfd6b4 13048\f
df58fc94
RS
13049/* microMIPS code retains local labels for linker relaxation. Omit them
13050 from output by default for clarity. */
13051
13052bfd_boolean
13053_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13054{
13055 return _bfd_elf_is_local_label_name (abfd, sym->name);
13056}
13057
b49e97c9
TS
13058/* MIPS ELF uses a special find_nearest_line routine in order the
13059 handle the ECOFF debugging information. */
13060
13061struct mips_elf_find_line
13062{
13063 struct ecoff_debug_info d;
13064 struct ecoff_find_line i;
13065};
13066
b34976b6 13067bfd_boolean
fb167eb2
AM
13068_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13069 asection *section, bfd_vma offset,
9719ad41
RS
13070 const char **filename_ptr,
13071 const char **functionname_ptr,
fb167eb2
AM
13072 unsigned int *line_ptr,
13073 unsigned int *discriminator_ptr)
b49e97c9
TS
13074{
13075 asection *msec;
13076
fb167eb2 13077 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13078 filename_ptr, functionname_ptr,
fb167eb2
AM
13079 line_ptr, discriminator_ptr,
13080 dwarf_debug_sections,
e7679060
AM
13081 &elf_tdata (abfd)->dwarf2_find_line_info))
13082 return TRUE;
46d09186 13083
e7679060
AM
13084 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13085 filename_ptr, functionname_ptr,
13086 line_ptr))
13087 {
13088 if (!*functionname_ptr)
13089 _bfd_elf_find_function (abfd, symbols, section, offset,
13090 *filename_ptr ? NULL : filename_ptr,
13091 functionname_ptr);
46d09186
NC
13092 return TRUE;
13093 }
b49e97c9
TS
13094
13095 msec = bfd_get_section_by_name (abfd, ".mdebug");
13096 if (msec != NULL)
13097 {
13098 flagword origflags;
13099 struct mips_elf_find_line *fi;
13100 const struct ecoff_debug_swap * const swap =
13101 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13102
13103 /* If we are called during a link, mips_elf_final_link may have
13104 cleared the SEC_HAS_CONTENTS field. We force it back on here
13105 if appropriate (which it normally will be). */
13106 origflags = msec->flags;
13107 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13108 msec->flags |= SEC_HAS_CONTENTS;
13109
698600e4 13110 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13111 if (fi == NULL)
13112 {
13113 bfd_size_type external_fdr_size;
13114 char *fraw_src;
13115 char *fraw_end;
13116 struct fdr *fdr_ptr;
13117 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13118
9719ad41 13119 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13120 if (fi == NULL)
13121 {
13122 msec->flags = origflags;
b34976b6 13123 return FALSE;
b49e97c9
TS
13124 }
13125
13126 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13127 {
13128 msec->flags = origflags;
b34976b6 13129 return FALSE;
b49e97c9
TS
13130 }
13131
13132 /* Swap in the FDR information. */
13133 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13134 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13135 if (fi->d.fdr == NULL)
13136 {
13137 msec->flags = origflags;
b34976b6 13138 return FALSE;
b49e97c9
TS
13139 }
13140 external_fdr_size = swap->external_fdr_size;
13141 fdr_ptr = fi->d.fdr;
13142 fraw_src = (char *) fi->d.external_fdr;
13143 fraw_end = (fraw_src
13144 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13145 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13146 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13147
698600e4 13148 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13149
13150 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13151 find_nearest_line is either called all the time, as in
13152 objdump -l, so the information should be saved, or it is
13153 rarely called, as in ld error messages, so the memory
13154 wasted is unimportant. Still, it would probably be a
13155 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13156 }
13157
13158 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13159 &fi->i, filename_ptr, functionname_ptr,
13160 line_ptr))
13161 {
13162 msec->flags = origflags;
b34976b6 13163 return TRUE;
b49e97c9
TS
13164 }
13165
13166 msec->flags = origflags;
13167 }
13168
13169 /* Fall back on the generic ELF find_nearest_line routine. */
13170
fb167eb2 13171 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13172 filename_ptr, functionname_ptr,
fb167eb2 13173 line_ptr, discriminator_ptr);
b49e97c9 13174}
4ab527b0
FF
13175
13176bfd_boolean
13177_bfd_mips_elf_find_inliner_info (bfd *abfd,
13178 const char **filename_ptr,
13179 const char **functionname_ptr,
13180 unsigned int *line_ptr)
13181{
13182 bfd_boolean found;
13183 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13184 functionname_ptr, line_ptr,
13185 & elf_tdata (abfd)->dwarf2_find_line_info);
13186 return found;
13187}
13188
b49e97c9
TS
13189\f
13190/* When are writing out the .options or .MIPS.options section,
13191 remember the bytes we are writing out, so that we can install the
13192 GP value in the section_processing routine. */
13193
b34976b6 13194bfd_boolean
9719ad41
RS
13195_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13196 const void *location,
13197 file_ptr offset, bfd_size_type count)
b49e97c9 13198{
cc2e31b9 13199 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13200 {
13201 bfd_byte *c;
13202
13203 if (elf_section_data (section) == NULL)
13204 {
13205 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 13206 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13207 if (elf_section_data (section) == NULL)
b34976b6 13208 return FALSE;
b49e97c9 13209 }
f0abc2a1 13210 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13211 if (c == NULL)
13212 {
eea6121a 13213 c = bfd_zalloc (abfd, section->size);
b49e97c9 13214 if (c == NULL)
b34976b6 13215 return FALSE;
f0abc2a1 13216 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13217 }
13218
9719ad41 13219 memcpy (c + offset, location, count);
b49e97c9
TS
13220 }
13221
13222 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13223 count);
13224}
13225
13226/* This is almost identical to bfd_generic_get_... except that some
13227 MIPS relocations need to be handled specially. Sigh. */
13228
13229bfd_byte *
9719ad41
RS
13230_bfd_elf_mips_get_relocated_section_contents
13231 (bfd *abfd,
13232 struct bfd_link_info *link_info,
13233 struct bfd_link_order *link_order,
13234 bfd_byte *data,
13235 bfd_boolean relocatable,
13236 asymbol **symbols)
b49e97c9
TS
13237{
13238 /* Get enough memory to hold the stuff */
13239 bfd *input_bfd = link_order->u.indirect.section->owner;
13240 asection *input_section = link_order->u.indirect.section;
eea6121a 13241 bfd_size_type sz;
b49e97c9
TS
13242
13243 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13244 arelent **reloc_vector = NULL;
13245 long reloc_count;
13246
13247 if (reloc_size < 0)
13248 goto error_return;
13249
9719ad41 13250 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13251 if (reloc_vector == NULL && reloc_size != 0)
13252 goto error_return;
13253
13254 /* read in the section */
eea6121a
AM
13255 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13256 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13257 goto error_return;
13258
b49e97c9
TS
13259 reloc_count = bfd_canonicalize_reloc (input_bfd,
13260 input_section,
13261 reloc_vector,
13262 symbols);
13263 if (reloc_count < 0)
13264 goto error_return;
13265
13266 if (reloc_count > 0)
13267 {
13268 arelent **parent;
13269 /* for mips */
13270 int gp_found;
13271 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13272
13273 {
13274 struct bfd_hash_entry *h;
13275 struct bfd_link_hash_entry *lh;
13276 /* Skip all this stuff if we aren't mixing formats. */
13277 if (abfd && input_bfd
13278 && abfd->xvec == input_bfd->xvec)
13279 lh = 0;
13280 else
13281 {
b34976b6 13282 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13283 lh = (struct bfd_link_hash_entry *) h;
13284 }
13285 lookup:
13286 if (lh)
13287 {
13288 switch (lh->type)
13289 {
13290 case bfd_link_hash_undefined:
13291 case bfd_link_hash_undefweak:
13292 case bfd_link_hash_common:
13293 gp_found = 0;
13294 break;
13295 case bfd_link_hash_defined:
13296 case bfd_link_hash_defweak:
13297 gp_found = 1;
13298 gp = lh->u.def.value;
13299 break;
13300 case bfd_link_hash_indirect:
13301 case bfd_link_hash_warning:
13302 lh = lh->u.i.link;
13303 /* @@FIXME ignoring warning for now */
13304 goto lookup;
13305 case bfd_link_hash_new:
13306 default:
13307 abort ();
13308 }
13309 }
13310 else
13311 gp_found = 0;
13312 }
13313 /* end mips */
9719ad41 13314 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13315 {
9719ad41 13316 char *error_message = NULL;
b49e97c9
TS
13317 bfd_reloc_status_type r;
13318
13319 /* Specific to MIPS: Deal with relocation types that require
13320 knowing the gp of the output bfd. */
13321 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13322
8236346f
EC
13323 /* If we've managed to find the gp and have a special
13324 function for the relocation then go ahead, else default
13325 to the generic handling. */
13326 if (gp_found
13327 && (*parent)->howto->special_function
13328 == _bfd_mips_elf32_gprel16_reloc)
13329 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13330 input_section, relocatable,
13331 data, gp);
13332 else
86324f90 13333 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13334 input_section,
13335 relocatable ? abfd : NULL,
13336 &error_message);
b49e97c9 13337
1049f94e 13338 if (relocatable)
b49e97c9
TS
13339 {
13340 asection *os = input_section->output_section;
13341
13342 /* A partial link, so keep the relocs */
13343 os->orelocation[os->reloc_count] = *parent;
13344 os->reloc_count++;
13345 }
13346
13347 if (r != bfd_reloc_ok)
13348 {
13349 switch (r)
13350 {
13351 case bfd_reloc_undefined:
1a72702b
AM
13352 (*link_info->callbacks->undefined_symbol)
13353 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13354 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13355 break;
13356 case bfd_reloc_dangerous:
9719ad41 13357 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13358 (*link_info->callbacks->reloc_dangerous)
13359 (link_info, error_message,
13360 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13361 break;
13362 case bfd_reloc_overflow:
1a72702b
AM
13363 (*link_info->callbacks->reloc_overflow)
13364 (link_info, NULL,
13365 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13366 (*parent)->howto->name, (*parent)->addend,
13367 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13368 break;
13369 case bfd_reloc_outofrange:
13370 default:
13371 abort ();
13372 break;
13373 }
13374
13375 }
13376 }
13377 }
13378 if (reloc_vector != NULL)
13379 free (reloc_vector);
13380 return data;
13381
13382error_return:
13383 if (reloc_vector != NULL)
13384 free (reloc_vector);
13385 return NULL;
13386}
13387\f
df58fc94
RS
13388static bfd_boolean
13389mips_elf_relax_delete_bytes (bfd *abfd,
13390 asection *sec, bfd_vma addr, int count)
13391{
13392 Elf_Internal_Shdr *symtab_hdr;
13393 unsigned int sec_shndx;
13394 bfd_byte *contents;
13395 Elf_Internal_Rela *irel, *irelend;
13396 Elf_Internal_Sym *isym;
13397 Elf_Internal_Sym *isymend;
13398 struct elf_link_hash_entry **sym_hashes;
13399 struct elf_link_hash_entry **end_hashes;
13400 struct elf_link_hash_entry **start_hashes;
13401 unsigned int symcount;
13402
13403 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13404 contents = elf_section_data (sec)->this_hdr.contents;
13405
13406 irel = elf_section_data (sec)->relocs;
13407 irelend = irel + sec->reloc_count;
13408
13409 /* Actually delete the bytes. */
13410 memmove (contents + addr, contents + addr + count,
13411 (size_t) (sec->size - addr - count));
13412 sec->size -= count;
13413
13414 /* Adjust all the relocs. */
13415 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13416 {
13417 /* Get the new reloc address. */
13418 if (irel->r_offset > addr)
13419 irel->r_offset -= count;
13420 }
13421
13422 BFD_ASSERT (addr % 2 == 0);
13423 BFD_ASSERT (count % 2 == 0);
13424
13425 /* Adjust the local symbols defined in this section. */
13426 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13427 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13428 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13429 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13430 isym->st_value -= count;
13431
13432 /* Now adjust the global symbols defined in this section. */
13433 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13434 - symtab_hdr->sh_info);
13435 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13436 end_hashes = sym_hashes + symcount;
13437
13438 for (; sym_hashes < end_hashes; sym_hashes++)
13439 {
13440 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13441
13442 if ((sym_hash->root.type == bfd_link_hash_defined
13443 || sym_hash->root.type == bfd_link_hash_defweak)
13444 && sym_hash->root.u.def.section == sec)
13445 {
2309ddf2 13446 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13447
df58fc94
RS
13448 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13449 value &= MINUS_TWO;
13450 if (value > addr)
13451 sym_hash->root.u.def.value -= count;
13452 }
13453 }
13454
13455 return TRUE;
13456}
13457
13458
13459/* Opcodes needed for microMIPS relaxation as found in
13460 opcodes/micromips-opc.c. */
13461
13462struct opcode_descriptor {
13463 unsigned long match;
13464 unsigned long mask;
13465};
13466
13467/* The $ra register aka $31. */
13468
13469#define RA 31
13470
13471/* 32-bit instruction format register fields. */
13472
13473#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13474#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13475
13476/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13477
13478#define OP16_VALID_REG(r) \
13479 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13480
13481
13482/* 32-bit and 16-bit branches. */
13483
13484static const struct opcode_descriptor b_insns_32[] = {
13485 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13486 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13487 { 0, 0 } /* End marker for find_match(). */
13488};
13489
13490static const struct opcode_descriptor bc_insn_32 =
13491 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13492
13493static const struct opcode_descriptor bz_insn_32 =
13494 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13495
13496static const struct opcode_descriptor bzal_insn_32 =
13497 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13498
13499static const struct opcode_descriptor beq_insn_32 =
13500 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13501
13502static const struct opcode_descriptor b_insn_16 =
13503 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13504
13505static const struct opcode_descriptor bz_insn_16 =
c088dedf 13506 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13507
13508
13509/* 32-bit and 16-bit branch EQ and NE zero. */
13510
13511/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13512 eq and second the ne. This convention is used when replacing a
13513 32-bit BEQ/BNE with the 16-bit version. */
13514
13515#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13516
13517static const struct opcode_descriptor bz_rs_insns_32[] = {
13518 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13519 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13520 { 0, 0 } /* End marker for find_match(). */
13521};
13522
13523static const struct opcode_descriptor bz_rt_insns_32[] = {
13524 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13525 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13526 { 0, 0 } /* End marker for find_match(). */
13527};
13528
13529static const struct opcode_descriptor bzc_insns_32[] = {
13530 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13531 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13532 { 0, 0 } /* End marker for find_match(). */
13533};
13534
13535static const struct opcode_descriptor bz_insns_16[] = {
13536 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13537 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13538 { 0, 0 } /* End marker for find_match(). */
13539};
13540
13541/* Switch between a 5-bit register index and its 3-bit shorthand. */
13542
e67f83e5 13543#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13544#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13545
13546
13547/* 32-bit instructions with a delay slot. */
13548
13549static const struct opcode_descriptor jal_insn_32_bd16 =
13550 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13551
13552static const struct opcode_descriptor jal_insn_32_bd32 =
13553 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13554
13555static const struct opcode_descriptor jal_x_insn_32_bd32 =
13556 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13557
13558static const struct opcode_descriptor j_insn_32 =
13559 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13560
13561static const struct opcode_descriptor jalr_insn_32 =
13562 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13563
13564/* This table can be compacted, because no opcode replacement is made. */
13565
13566static const struct opcode_descriptor ds_insns_32_bd16[] = {
13567 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13568
13569 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13570 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13571
13572 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13573 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13574 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13575 { 0, 0 } /* End marker for find_match(). */
13576};
13577
13578/* This table can be compacted, because no opcode replacement is made. */
13579
13580static const struct opcode_descriptor ds_insns_32_bd32[] = {
13581 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13582
13583 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13584 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13585 { 0, 0 } /* End marker for find_match(). */
13586};
13587
13588
13589/* 16-bit instructions with a delay slot. */
13590
13591static const struct opcode_descriptor jalr_insn_16_bd16 =
13592 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13593
13594static const struct opcode_descriptor jalr_insn_16_bd32 =
13595 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13596
13597static const struct opcode_descriptor jr_insn_16 =
13598 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13599
13600#define JR16_REG(opcode) ((opcode) & 0x1f)
13601
13602/* This table can be compacted, because no opcode replacement is made. */
13603
13604static const struct opcode_descriptor ds_insns_16_bd16[] = {
13605 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13606
13607 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13608 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13609 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13610 { 0, 0 } /* End marker for find_match(). */
13611};
13612
13613
13614/* LUI instruction. */
13615
13616static const struct opcode_descriptor lui_insn =
13617 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13618
13619
13620/* ADDIU instruction. */
13621
13622static const struct opcode_descriptor addiu_insn =
13623 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13624
13625static const struct opcode_descriptor addiupc_insn =
13626 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13627
13628#define ADDIUPC_REG_FIELD(r) \
13629 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13630
13631
13632/* Relaxable instructions in a JAL delay slot: MOVE. */
13633
13634/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13635 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13636#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13637#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13638
13639#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13640#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13641
13642static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13643 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13644 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13645 { 0, 0 } /* End marker for find_match(). */
13646};
13647
13648static const struct opcode_descriptor move_insn_16 =
13649 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13650
13651
13652/* NOP instructions. */
13653
13654static const struct opcode_descriptor nop_insn_32 =
13655 { /* "nop", "", */ 0x00000000, 0xffffffff };
13656
13657static const struct opcode_descriptor nop_insn_16 =
13658 { /* "nop", "", */ 0x0c00, 0xffff };
13659
13660
13661/* Instruction match support. */
13662
13663#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13664
13665static int
13666find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13667{
13668 unsigned long indx;
13669
13670 for (indx = 0; insn[indx].mask != 0; indx++)
13671 if (MATCH (opcode, insn[indx]))
13672 return indx;
13673
13674 return -1;
13675}
13676
13677
13678/* Branch and delay slot decoding support. */
13679
13680/* If PTR points to what *might* be a 16-bit branch or jump, then
13681 return the minimum length of its delay slot, otherwise return 0.
13682 Non-zero results are not definitive as we might be checking against
13683 the second half of another instruction. */
13684
13685static int
13686check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13687{
13688 unsigned long opcode;
13689 int bdsize;
13690
13691 opcode = bfd_get_16 (abfd, ptr);
13692 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13693 /* 16-bit branch/jump with a 32-bit delay slot. */
13694 bdsize = 4;
13695 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13696 || find_match (opcode, ds_insns_16_bd16) >= 0)
13697 /* 16-bit branch/jump with a 16-bit delay slot. */
13698 bdsize = 2;
13699 else
13700 /* No delay slot. */
13701 bdsize = 0;
13702
13703 return bdsize;
13704}
13705
13706/* If PTR points to what *might* be a 32-bit branch or jump, then
13707 return the minimum length of its delay slot, otherwise return 0.
13708 Non-zero results are not definitive as we might be checking against
13709 the second half of another instruction. */
13710
13711static int
13712check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13713{
13714 unsigned long opcode;
13715 int bdsize;
13716
d21911ea 13717 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13718 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13719 /* 32-bit branch/jump with a 32-bit delay slot. */
13720 bdsize = 4;
13721 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13722 /* 32-bit branch/jump with a 16-bit delay slot. */
13723 bdsize = 2;
13724 else
13725 /* No delay slot. */
13726 bdsize = 0;
13727
13728 return bdsize;
13729}
13730
13731/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13732 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13733
13734static bfd_boolean
13735check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13736{
13737 unsigned long opcode;
13738
13739 opcode = bfd_get_16 (abfd, ptr);
13740 if (MATCH (opcode, b_insn_16)
13741 /* B16 */
13742 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13743 /* JR16 */
13744 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13745 /* BEQZ16, BNEZ16 */
13746 || (MATCH (opcode, jalr_insn_16_bd32)
13747 /* JALR16 */
13748 && reg != JR16_REG (opcode) && reg != RA))
13749 return TRUE;
13750
13751 return FALSE;
13752}
13753
13754/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13755 then return TRUE, otherwise FALSE. */
13756
f41e5fcc 13757static bfd_boolean
df58fc94
RS
13758check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13759{
13760 unsigned long opcode;
13761
d21911ea 13762 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13763 if (MATCH (opcode, j_insn_32)
13764 /* J */
13765 || MATCH (opcode, bc_insn_32)
13766 /* BC1F, BC1T, BC2F, BC2T */
13767 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13768 /* JAL, JALX */
13769 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13770 /* BGEZ, BGTZ, BLEZ, BLTZ */
13771 || (MATCH (opcode, bzal_insn_32)
13772 /* BGEZAL, BLTZAL */
13773 && reg != OP32_SREG (opcode) && reg != RA)
13774 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13775 /* JALR, JALR.HB, BEQ, BNE */
13776 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13777 return TRUE;
13778
13779 return FALSE;
13780}
13781
80cab405
MR
13782/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13783 IRELEND) at OFFSET indicate that there must be a compact branch there,
13784 then return TRUE, otherwise FALSE. */
df58fc94
RS
13785
13786static bfd_boolean
80cab405
MR
13787check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13788 const Elf_Internal_Rela *internal_relocs,
13789 const Elf_Internal_Rela *irelend)
df58fc94 13790{
80cab405
MR
13791 const Elf_Internal_Rela *irel;
13792 unsigned long opcode;
13793
d21911ea 13794 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13795 if (find_match (opcode, bzc_insns_32) < 0)
13796 return FALSE;
df58fc94
RS
13797
13798 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13799 if (irel->r_offset == offset
13800 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13801 return TRUE;
13802
df58fc94
RS
13803 return FALSE;
13804}
80cab405
MR
13805
13806/* Bitsize checking. */
13807#define IS_BITSIZE(val, N) \
13808 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13809 - (1ULL << ((N) - 1))) == (val))
13810
df58fc94
RS
13811\f
13812bfd_boolean
13813_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13814 struct bfd_link_info *link_info,
13815 bfd_boolean *again)
13816{
833794fc 13817 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13818 Elf_Internal_Shdr *symtab_hdr;
13819 Elf_Internal_Rela *internal_relocs;
13820 Elf_Internal_Rela *irel, *irelend;
13821 bfd_byte *contents = NULL;
13822 Elf_Internal_Sym *isymbuf = NULL;
13823
13824 /* Assume nothing changes. */
13825 *again = FALSE;
13826
13827 /* We don't have to do anything for a relocatable link, if
13828 this section does not have relocs, or if this is not a
13829 code section. */
13830
0e1862bb 13831 if (bfd_link_relocatable (link_info)
df58fc94
RS
13832 || (sec->flags & SEC_RELOC) == 0
13833 || sec->reloc_count == 0
13834 || (sec->flags & SEC_CODE) == 0)
13835 return TRUE;
13836
13837 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13838
13839 /* Get a copy of the native relocations. */
13840 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13841 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13842 link_info->keep_memory));
13843 if (internal_relocs == NULL)
13844 goto error_return;
13845
13846 /* Walk through them looking for relaxing opportunities. */
13847 irelend = internal_relocs + sec->reloc_count;
13848 for (irel = internal_relocs; irel < irelend; irel++)
13849 {
13850 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13851 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13852 bfd_boolean target_is_micromips_code_p;
13853 unsigned long opcode;
13854 bfd_vma symval;
13855 bfd_vma pcrval;
2309ddf2 13856 bfd_byte *ptr;
df58fc94
RS
13857 int fndopc;
13858
13859 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13860 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13861 int delcnt = 0;
13862 int deloff = 0;
13863
13864 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13865 this reloc. */
df58fc94
RS
13866 if (r_type != R_MICROMIPS_HI16
13867 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13868 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13869 continue;
13870
13871 /* Get the section contents if we haven't done so already. */
13872 if (contents == NULL)
13873 {
13874 /* Get cached copy if it exists. */
13875 if (elf_section_data (sec)->this_hdr.contents != NULL)
13876 contents = elf_section_data (sec)->this_hdr.contents;
13877 /* Go get them off disk. */
13878 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13879 goto error_return;
13880 }
2309ddf2 13881 ptr = contents + irel->r_offset;
df58fc94
RS
13882
13883 /* Read this BFD's local symbols if we haven't done so already. */
13884 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13885 {
13886 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13887 if (isymbuf == NULL)
13888 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13889 symtab_hdr->sh_info, 0,
13890 NULL, NULL, NULL);
13891 if (isymbuf == NULL)
13892 goto error_return;
13893 }
13894
13895 /* Get the value of the symbol referred to by the reloc. */
13896 if (r_symndx < symtab_hdr->sh_info)
13897 {
13898 /* A local symbol. */
13899 Elf_Internal_Sym *isym;
13900 asection *sym_sec;
13901
13902 isym = isymbuf + r_symndx;
13903 if (isym->st_shndx == SHN_UNDEF)
13904 sym_sec = bfd_und_section_ptr;
13905 else if (isym->st_shndx == SHN_ABS)
13906 sym_sec = bfd_abs_section_ptr;
13907 else if (isym->st_shndx == SHN_COMMON)
13908 sym_sec = bfd_com_section_ptr;
13909 else
13910 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13911 symval = (isym->st_value
13912 + sym_sec->output_section->vma
13913 + sym_sec->output_offset);
13914 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13915 }
13916 else
13917 {
13918 unsigned long indx;
13919 struct elf_link_hash_entry *h;
13920
13921 /* An external symbol. */
13922 indx = r_symndx - symtab_hdr->sh_info;
13923 h = elf_sym_hashes (abfd)[indx];
13924 BFD_ASSERT (h != NULL);
13925
13926 if (h->root.type != bfd_link_hash_defined
13927 && h->root.type != bfd_link_hash_defweak)
13928 /* This appears to be a reference to an undefined
13929 symbol. Just ignore it -- it will be caught by the
13930 regular reloc processing. */
13931 continue;
13932
13933 symval = (h->root.u.def.value
13934 + h->root.u.def.section->output_section->vma
13935 + h->root.u.def.section->output_offset);
13936 target_is_micromips_code_p = (!h->needs_plt
13937 && ELF_ST_IS_MICROMIPS (h->other));
13938 }
13939
13940
13941 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13942 section contents, the section relocs, and the BFD symbol
13943 table. We must tell the rest of the code not to free up this
13944 information. It would be possible to instead create a table
13945 of changes which have to be made, as is done in coff-mips.c;
13946 that would be more work, but would require less memory when
13947 the linker is run. */
df58fc94
RS
13948
13949 /* Only 32-bit instructions relaxed. */
13950 if (irel->r_offset + 4 > sec->size)
13951 continue;
13952
d21911ea 13953 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13954
13955 /* This is the pc-relative distance from the instruction the
07d6d2b8 13956 relocation is applied to, to the symbol referred. */
df58fc94
RS
13957 pcrval = (symval
13958 - (sec->output_section->vma + sec->output_offset)
13959 - irel->r_offset);
13960
13961 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13962 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13963 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13964
07d6d2b8 13965 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13966
07d6d2b8
AM
13967 where pcrval has first to be adjusted to apply against the LO16
13968 location (we make the adjustment later on, when we have figured
13969 out the offset). */
df58fc94
RS
13970 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13971 {
80cab405 13972 bfd_boolean bzc = FALSE;
df58fc94
RS
13973 unsigned long nextopc;
13974 unsigned long reg;
13975 bfd_vma offset;
13976
13977 /* Give up if the previous reloc was a HI16 against this symbol
13978 too. */
13979 if (irel > internal_relocs
13980 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13981 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13982 continue;
13983
13984 /* Or if the next reloc is not a LO16 against this symbol. */
13985 if (irel + 1 >= irelend
13986 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13987 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13988 continue;
13989
13990 /* Or if the second next reloc is a LO16 against this symbol too. */
13991 if (irel + 2 >= irelend
13992 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13993 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13994 continue;
13995
80cab405
MR
13996 /* See if the LUI instruction *might* be in a branch delay slot.
13997 We check whether what looks like a 16-bit branch or jump is
13998 actually an immediate argument to a compact branch, and let
13999 it through if so. */
df58fc94 14000 if (irel->r_offset >= 2
2309ddf2 14001 && check_br16_dslot (abfd, ptr - 2)
df58fc94 14002 && !(irel->r_offset >= 4
80cab405
MR
14003 && (bzc = check_relocated_bzc (abfd,
14004 ptr - 4, irel->r_offset - 4,
14005 internal_relocs, irelend))))
df58fc94
RS
14006 continue;
14007 if (irel->r_offset >= 4
80cab405 14008 && !bzc
2309ddf2 14009 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
14010 continue;
14011
14012 reg = OP32_SREG (opcode);
14013
14014 /* We only relax adjacent instructions or ones separated with
14015 a branch or jump that has a delay slot. The branch or jump
14016 must not fiddle with the register used to hold the address.
14017 Subtract 4 for the LUI itself. */
14018 offset = irel[1].r_offset - irel[0].r_offset;
14019 switch (offset - 4)
14020 {
14021 case 0:
14022 break;
14023 case 2:
2309ddf2 14024 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
14025 break;
14026 continue;
14027 case 4:
2309ddf2 14028 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
14029 break;
14030 continue;
14031 default:
14032 continue;
14033 }
14034
d21911ea 14035 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
14036
14037 /* Give up unless the same register is used with both
14038 relocations. */
14039 if (OP32_SREG (nextopc) != reg)
14040 continue;
14041
14042 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14043 and rounding up to take masking of the two LSBs into account. */
14044 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14045
14046 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14047 if (IS_BITSIZE (symval, 16))
14048 {
14049 /* Fix the relocation's type. */
14050 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14051
14052 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
14053 source register in bits 20:16. This register becomes $0
14054 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
14055 nextopc &= ~0x001f0000;
14056 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14057 contents + irel[1].r_offset);
14058 }
14059
14060 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14061 We add 4 to take LUI deletion into account while checking
14062 the PC-relative distance. */
14063 else if (symval % 4 == 0
14064 && IS_BITSIZE (pcrval + 4, 25)
14065 && MATCH (nextopc, addiu_insn)
14066 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14067 && OP16_VALID_REG (OP32_TREG (nextopc)))
14068 {
14069 /* Fix the relocation's type. */
14070 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14071
14072 /* Replace ADDIU with the ADDIUPC version. */
14073 nextopc = (addiupc_insn.match
14074 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14075
d21911ea
MR
14076 bfd_put_micromips_32 (abfd, nextopc,
14077 contents + irel[1].r_offset);
df58fc94
RS
14078 }
14079
14080 /* Can't do anything, give up, sigh... */
14081 else
14082 continue;
14083
14084 /* Fix the relocation's type. */
14085 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14086
14087 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14088 delcnt = 4;
14089 deloff = 0;
14090 }
14091
14092 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14093 employed by the compiler/assembler, compact branches are not
14094 always generated. Obviously, this can/will be fixed elsewhere,
14095 but there is no drawback in double checking it here. */
df58fc94
RS
14096 else if (r_type == R_MICROMIPS_PC16_S1
14097 && irel->r_offset + 5 < sec->size
14098 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14099 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14100 && ((!insn32
14101 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14102 nop_insn_16) ? 2 : 0))
14103 || (irel->r_offset + 7 < sec->size
14104 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14105 ptr + 4),
14106 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14107 {
14108 unsigned long reg;
14109
14110 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14111
14112 /* Replace BEQZ/BNEZ with the compact version. */
14113 opcode = (bzc_insns_32[fndopc].match
14114 | BZC32_REG_FIELD (reg)
14115 | (opcode & 0xffff)); /* Addend value. */
14116
d21911ea 14117 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14118
833794fc
MR
14119 /* Delete the delay slot NOP: two or four bytes from
14120 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14121 deloff = 4;
14122 }
14123
14124 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14125 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14126 else if (!insn32
14127 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14128 && IS_BITSIZE (pcrval - 2, 11)
14129 && find_match (opcode, b_insns_32) >= 0)
14130 {
14131 /* Fix the relocation's type. */
14132 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14133
a8685210 14134 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14135 bfd_put_16 (abfd,
14136 (b_insn_16.match
14137 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14138 ptr);
df58fc94
RS
14139
14140 /* Delete 2 bytes from irel->r_offset + 2. */
14141 delcnt = 2;
14142 deloff = 2;
14143 }
14144
14145 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14146 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14147 else if (!insn32
14148 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14149 && IS_BITSIZE (pcrval - 2, 8)
14150 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14151 && OP16_VALID_REG (OP32_SREG (opcode)))
14152 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14153 && OP16_VALID_REG (OP32_TREG (opcode)))))
14154 {
14155 unsigned long reg;
14156
14157 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14158
14159 /* Fix the relocation's type. */
14160 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14161
a8685210 14162 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14163 bfd_put_16 (abfd,
14164 (bz_insns_16[fndopc].match
14165 | BZ16_REG_FIELD (reg)
14166 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14167 ptr);
df58fc94
RS
14168
14169 /* Delete 2 bytes from irel->r_offset + 2. */
14170 delcnt = 2;
14171 deloff = 2;
14172 }
14173
14174 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14175 else if (!insn32
14176 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14177 && target_is_micromips_code_p
14178 && irel->r_offset + 7 < sec->size
14179 && MATCH (opcode, jal_insn_32_bd32))
14180 {
14181 unsigned long n32opc;
14182 bfd_boolean relaxed = FALSE;
14183
d21911ea 14184 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14185
14186 if (MATCH (n32opc, nop_insn_32))
14187 {
14188 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14189 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14190
14191 relaxed = TRUE;
14192 }
14193 else if (find_match (n32opc, move_insns_32) >= 0)
14194 {
14195 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14196 bfd_put_16 (abfd,
14197 (move_insn_16.match
14198 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14199 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14200 ptr + 4);
df58fc94
RS
14201
14202 relaxed = TRUE;
14203 }
14204 /* Other 32-bit instructions relaxable to 16-bit
14205 instructions will be handled here later. */
14206
14207 if (relaxed)
14208 {
14209 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14210 with 16-bit delay slot. */
d21911ea 14211 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14212
14213 /* Delete 2 bytes from irel->r_offset + 6. */
14214 delcnt = 2;
14215 deloff = 6;
14216 }
14217 }
14218
14219 if (delcnt != 0)
14220 {
14221 /* Note that we've changed the relocs, section contents, etc. */
14222 elf_section_data (sec)->relocs = internal_relocs;
14223 elf_section_data (sec)->this_hdr.contents = contents;
14224 symtab_hdr->contents = (unsigned char *) isymbuf;
14225
14226 /* Delete bytes depending on the delcnt and deloff. */
14227 if (!mips_elf_relax_delete_bytes (abfd, sec,
14228 irel->r_offset + deloff, delcnt))
14229 goto error_return;
14230
14231 /* That will change things, so we should relax again.
14232 Note that this is not required, and it may be slow. */
14233 *again = TRUE;
14234 }
14235 }
14236
14237 if (isymbuf != NULL
14238 && symtab_hdr->contents != (unsigned char *) isymbuf)
14239 {
14240 if (! link_info->keep_memory)
14241 free (isymbuf);
14242 else
14243 {
14244 /* Cache the symbols for elf_link_input_bfd. */
14245 symtab_hdr->contents = (unsigned char *) isymbuf;
14246 }
14247 }
14248
14249 if (contents != NULL
14250 && elf_section_data (sec)->this_hdr.contents != contents)
14251 {
14252 if (! link_info->keep_memory)
14253 free (contents);
14254 else
14255 {
14256 /* Cache the section contents for elf_link_input_bfd. */
14257 elf_section_data (sec)->this_hdr.contents = contents;
14258 }
14259 }
14260
14261 if (internal_relocs != NULL
14262 && elf_section_data (sec)->relocs != internal_relocs)
14263 free (internal_relocs);
14264
14265 return TRUE;
14266
14267 error_return:
14268 if (isymbuf != NULL
14269 && symtab_hdr->contents != (unsigned char *) isymbuf)
14270 free (isymbuf);
14271 if (contents != NULL
14272 && elf_section_data (sec)->this_hdr.contents != contents)
14273 free (contents);
14274 if (internal_relocs != NULL
14275 && elf_section_data (sec)->relocs != internal_relocs)
14276 free (internal_relocs);
14277
14278 return FALSE;
14279}
14280\f
b49e97c9
TS
14281/* Create a MIPS ELF linker hash table. */
14282
14283struct bfd_link_hash_table *
9719ad41 14284_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14285{
14286 struct mips_elf_link_hash_table *ret;
14287 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14288
7bf52ea2 14289 ret = bfd_zmalloc (amt);
9719ad41 14290 if (ret == NULL)
b49e97c9
TS
14291 return NULL;
14292
66eb6687
AM
14293 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14294 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14295 sizeof (struct mips_elf_link_hash_entry),
14296 MIPS_ELF_DATA))
b49e97c9 14297 {
e2d34d7d 14298 free (ret);
b49e97c9
TS
14299 return NULL;
14300 }
1bbce132
MR
14301 ret->root.init_plt_refcount.plist = NULL;
14302 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14303
b49e97c9
TS
14304 return &ret->root.root;
14305}
0a44bf69
RS
14306
14307/* Likewise, but indicate that the target is VxWorks. */
14308
14309struct bfd_link_hash_table *
14310_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14311{
14312 struct bfd_link_hash_table *ret;
14313
14314 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14315 if (ret)
14316 {
14317 struct mips_elf_link_hash_table *htab;
14318
14319 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14320 htab->use_plts_and_copy_relocs = TRUE;
14321 htab->is_vxworks = TRUE;
0a44bf69
RS
14322 }
14323 return ret;
14324}
861fb55a
DJ
14325
14326/* A function that the linker calls if we are allowed to use PLTs
14327 and copy relocs. */
14328
14329void
14330_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14331{
14332 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14333}
833794fc
MR
14334
14335/* A function that the linker calls to select between all or only
8b10b0b3 14336 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14337 branch relocation checks for invalid transitions between ISA modes.
14338 Also record whether we have been configured for a GNU target. */
833794fc
MR
14339
14340void
8b10b0b3 14341_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14342 bfd_boolean ignore_branch_isa,
14343 bfd_boolean gnu_target)
833794fc 14344{
8b10b0b3
MR
14345 mips_elf_hash_table (info)->insn32 = insn32;
14346 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14347 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14348}
3734320d
MF
14349
14350/* A function that the linker calls to enable use of compact branches in
14351 linker generated code for MIPSR6. */
14352
14353void
14354_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14355{
14356 mips_elf_hash_table (info)->compact_branches = on;
14357}
14358
b49e97c9 14359\f
c97c330b
MF
14360/* Structure for saying that BFD machine EXTENSION extends BASE. */
14361
14362struct mips_mach_extension
14363{
14364 unsigned long extension, base;
14365};
14366
14367
14368/* An array describing how BFD machines relate to one another. The entries
14369 are ordered topologically with MIPS I extensions listed last. */
14370
14371static const struct mips_mach_extension mips_mach_extensions[] =
14372{
14373 /* MIPS64r2 extensions. */
14374 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14375 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14376 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14377 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14378 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14379 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14380 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14381
14382 /* MIPS64 extensions. */
14383 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14384 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14385 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14386
14387 /* MIPS V extensions. */
14388 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14389
14390 /* R10000 extensions. */
14391 { bfd_mach_mips12000, bfd_mach_mips10000 },
14392 { bfd_mach_mips14000, bfd_mach_mips10000 },
14393 { bfd_mach_mips16000, bfd_mach_mips10000 },
14394
14395 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14396 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14397 better to allow vr5400 and vr5500 code to be merged anyway, since
14398 many libraries will just use the core ISA. Perhaps we could add
14399 some sort of ASE flag if this ever proves a problem. */
14400 { bfd_mach_mips5500, bfd_mach_mips5400 },
14401 { bfd_mach_mips5400, bfd_mach_mips5000 },
14402
14403 /* MIPS IV extensions. */
14404 { bfd_mach_mips5, bfd_mach_mips8000 },
14405 { bfd_mach_mips10000, bfd_mach_mips8000 },
14406 { bfd_mach_mips5000, bfd_mach_mips8000 },
14407 { bfd_mach_mips7000, bfd_mach_mips8000 },
14408 { bfd_mach_mips9000, bfd_mach_mips8000 },
14409
14410 /* VR4100 extensions. */
14411 { bfd_mach_mips4120, bfd_mach_mips4100 },
14412 { bfd_mach_mips4111, bfd_mach_mips4100 },
14413
14414 /* MIPS III extensions. */
14415 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14416 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14417 { bfd_mach_mips8000, bfd_mach_mips4000 },
14418 { bfd_mach_mips4650, bfd_mach_mips4000 },
14419 { bfd_mach_mips4600, bfd_mach_mips4000 },
14420 { bfd_mach_mips4400, bfd_mach_mips4000 },
14421 { bfd_mach_mips4300, bfd_mach_mips4000 },
14422 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14423 { bfd_mach_mips5900, bfd_mach_mips4000 },
14424
38bf472a
MR
14425 /* MIPS32r3 extensions. */
14426 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14427
14428 /* MIPS32r2 extensions. */
14429 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14430
c97c330b
MF
14431 /* MIPS32 extensions. */
14432 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14433
14434 /* MIPS II extensions. */
14435 { bfd_mach_mips4000, bfd_mach_mips6000 },
14436 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14437 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14438
14439 /* MIPS I extensions. */
14440 { bfd_mach_mips6000, bfd_mach_mips3000 },
14441 { bfd_mach_mips3900, bfd_mach_mips3000 }
14442};
14443
14444/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14445
14446static bfd_boolean
14447mips_mach_extends_p (unsigned long base, unsigned long extension)
14448{
14449 size_t i;
14450
14451 if (extension == base)
14452 return TRUE;
14453
14454 if (base == bfd_mach_mipsisa32
14455 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14456 return TRUE;
14457
14458 if (base == bfd_mach_mipsisa32r2
14459 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14460 return TRUE;
14461
14462 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14463 if (extension == mips_mach_extensions[i].extension)
14464 {
14465 extension = mips_mach_extensions[i].base;
14466 if (extension == base)
14467 return TRUE;
14468 }
14469
14470 return FALSE;
14471}
14472
14473/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14474
14475static unsigned long
14476bfd_mips_isa_ext_mach (unsigned int isa_ext)
14477{
14478 switch (isa_ext)
14479 {
07d6d2b8
AM
14480 case AFL_EXT_3900: return bfd_mach_mips3900;
14481 case AFL_EXT_4010: return bfd_mach_mips4010;
14482 case AFL_EXT_4100: return bfd_mach_mips4100;
14483 case AFL_EXT_4111: return bfd_mach_mips4111;
14484 case AFL_EXT_4120: return bfd_mach_mips4120;
14485 case AFL_EXT_4650: return bfd_mach_mips4650;
14486 case AFL_EXT_5400: return bfd_mach_mips5400;
14487 case AFL_EXT_5500: return bfd_mach_mips5500;
14488 case AFL_EXT_5900: return bfd_mach_mips5900;
14489 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14490 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14491 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14492 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14493 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14494 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14495 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14496 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14497 default: return bfd_mach_mips3000;
c97c330b
MF
14498 }
14499}
14500
351cdf24
MF
14501/* Return the .MIPS.abiflags value representing each ISA Extension. */
14502
14503unsigned int
14504bfd_mips_isa_ext (bfd *abfd)
14505{
14506 switch (bfd_get_mach (abfd))
14507 {
07d6d2b8
AM
14508 case bfd_mach_mips3900: return AFL_EXT_3900;
14509 case bfd_mach_mips4010: return AFL_EXT_4010;
14510 case bfd_mach_mips4100: return AFL_EXT_4100;
14511 case bfd_mach_mips4111: return AFL_EXT_4111;
14512 case bfd_mach_mips4120: return AFL_EXT_4120;
14513 case bfd_mach_mips4650: return AFL_EXT_4650;
14514 case bfd_mach_mips5400: return AFL_EXT_5400;
14515 case bfd_mach_mips5500: return AFL_EXT_5500;
14516 case bfd_mach_mips5900: return AFL_EXT_5900;
14517 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14518 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14519 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14520 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14521 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14522 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14523 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14524 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14525 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14526 case bfd_mach_mips_interaptiv_mr2:
14527 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14528 default: return 0;
c97c330b
MF
14529 }
14530}
14531
14532/* Encode ISA level and revision as a single value. */
14533#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14534
14535/* Decode a single value into level and revision. */
14536#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14537#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14538
14539/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14540
14541static void
14542update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14543{
c97c330b 14544 int new_isa = 0;
351cdf24
MF
14545 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14546 {
c97c330b
MF
14547 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14548 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14549 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14550 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14551 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14552 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14553 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14554 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14555 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14556 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14557 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14558 default:
4eca0228 14559 _bfd_error_handler
695344c0 14560 /* xgettext:c-format */
2c1c9679 14561 (_("%pB: unknown architecture %s"),
351cdf24
MF
14562 abfd, bfd_printable_name (abfd));
14563 }
14564
c97c330b
MF
14565 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14566 {
14567 abiflags->isa_level = ISA_LEVEL (new_isa);
14568 abiflags->isa_rev = ISA_REV (new_isa);
14569 }
14570
14571 /* Update the isa_ext if ABFD describes a further extension. */
14572 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14573 bfd_get_mach (abfd)))
14574 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14575}
14576
14577/* Return true if the given ELF header flags describe a 32-bit binary. */
14578
14579static bfd_boolean
14580mips_32bit_flags_p (flagword flags)
14581{
14582 return ((flags & EF_MIPS_32BITMODE) != 0
14583 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14584 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14585 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14586 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14587 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14588 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14589 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14590}
14591
14592/* Infer the content of the ABI flags based on the elf header. */
14593
14594static void
14595infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14596{
14597 obj_attribute *in_attr;
14598
14599 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14600 update_mips_abiflags_isa (abfd, abiflags);
14601
14602 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14603 abiflags->gpr_size = AFL_REG_32;
14604 else
14605 abiflags->gpr_size = AFL_REG_64;
14606
14607 abiflags->cpr1_size = AFL_REG_NONE;
14608
14609 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14610 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14611
14612 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14613 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14614 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14615 && abiflags->gpr_size == AFL_REG_32))
14616 abiflags->cpr1_size = AFL_REG_32;
14617 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14618 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14619 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14620 abiflags->cpr1_size = AFL_REG_64;
14621
14622 abiflags->cpr2_size = AFL_REG_NONE;
14623
14624 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14625 abiflags->ases |= AFL_ASE_MDMX;
14626 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14627 abiflags->ases |= AFL_ASE_MIPS16;
14628 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14629 abiflags->ases |= AFL_ASE_MICROMIPS;
14630
14631 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14632 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14633 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14634 && abiflags->isa_level >= 32
bdc6c06e 14635 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14636 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14637}
14638
b49e97c9
TS
14639/* We need to use a special link routine to handle the .reginfo and
14640 the .mdebug sections. We need to merge all instances of these
14641 sections together, not write them all out sequentially. */
14642
b34976b6 14643bfd_boolean
9719ad41 14644_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14645{
b49e97c9
TS
14646 asection *o;
14647 struct bfd_link_order *p;
14648 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14649 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14650 Elf32_RegInfo reginfo;
14651 struct ecoff_debug_info debug;
861fb55a 14652 struct mips_htab_traverse_info hti;
7a2a6943
NC
14653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14654 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14655 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14656 void *mdebug_handle = NULL;
b49e97c9
TS
14657 asection *s;
14658 EXTR esym;
14659 unsigned int i;
14660 bfd_size_type amt;
0a44bf69 14661 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14662
14663 static const char * const secname[] =
14664 {
14665 ".text", ".init", ".fini", ".data",
14666 ".rodata", ".sdata", ".sbss", ".bss"
14667 };
14668 static const int sc[] =
14669 {
14670 scText, scInit, scFini, scData,
14671 scRData, scSData, scSBss, scBss
14672 };
14673
0a44bf69 14674 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14675 BFD_ASSERT (htab != NULL);
14676
64575f78
MR
14677 /* Sort the dynamic symbols so that those with GOT entries come after
14678 those without. */
d4596a51
RS
14679 if (!mips_elf_sort_hash_table (abfd, info))
14680 return FALSE;
b49e97c9 14681
861fb55a
DJ
14682 /* Create any scheduled LA25 stubs. */
14683 hti.info = info;
14684 hti.output_bfd = abfd;
14685 hti.error = FALSE;
14686 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14687 if (hti.error)
14688 return FALSE;
14689
b49e97c9
TS
14690 /* Get a value for the GP register. */
14691 if (elf_gp (abfd) == 0)
14692 {
14693 struct bfd_link_hash_entry *h;
14694
b34976b6 14695 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14696 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14697 elf_gp (abfd) = (h->u.def.value
14698 + h->u.def.section->output_section->vma
14699 + h->u.def.section->output_offset);
0a44bf69
RS
14700 else if (htab->is_vxworks
14701 && (h = bfd_link_hash_lookup (info->hash,
14702 "_GLOBAL_OFFSET_TABLE_",
14703 FALSE, FALSE, TRUE))
14704 && h->type == bfd_link_hash_defined)
14705 elf_gp (abfd) = (h->u.def.section->output_section->vma
14706 + h->u.def.section->output_offset
14707 + h->u.def.value);
0e1862bb 14708 else if (bfd_link_relocatable (info))
b49e97c9
TS
14709 {
14710 bfd_vma lo = MINUS_ONE;
14711
14712 /* Find the GP-relative section with the lowest offset. */
9719ad41 14713 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14714 if (o->vma < lo
14715 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14716 lo = o->vma;
14717
14718 /* And calculate GP relative to that. */
0a44bf69 14719 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14720 }
14721 else
14722 {
14723 /* If the relocate_section function needs to do a reloc
14724 involving the GP value, it should make a reloc_dangerous
14725 callback to warn that GP is not defined. */
14726 }
14727 }
14728
14729 /* Go through the sections and collect the .reginfo and .mdebug
14730 information. */
351cdf24 14731 abiflags_sec = NULL;
b49e97c9
TS
14732 reginfo_sec = NULL;
14733 mdebug_sec = NULL;
14734 gptab_data_sec = NULL;
14735 gptab_bss_sec = NULL;
9719ad41 14736 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14737 {
351cdf24
MF
14738 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14739 {
14740 /* We have found the .MIPS.abiflags section in the output file.
14741 Look through all the link_orders comprising it and remove them.
14742 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14743 for (p = o->map_head.link_order; p != NULL; p = p->next)
14744 {
14745 asection *input_section;
14746
14747 if (p->type != bfd_indirect_link_order)
14748 {
14749 if (p->type == bfd_data_link_order)
14750 continue;
14751 abort ();
14752 }
14753
14754 input_section = p->u.indirect.section;
14755
14756 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14757 elf_link_input_bfd ignores this section. */
14758 input_section->flags &= ~SEC_HAS_CONTENTS;
14759 }
14760
14761 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14762 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14763
14764 /* Skip this section later on (I don't think this currently
14765 matters, but someday it might). */
14766 o->map_head.link_order = NULL;
14767
14768 abiflags_sec = o;
14769 }
14770
b49e97c9
TS
14771 if (strcmp (o->name, ".reginfo") == 0)
14772 {
14773 memset (&reginfo, 0, sizeof reginfo);
14774
14775 /* We have found the .reginfo section in the output file.
14776 Look through all the link_orders comprising it and merge
14777 the information together. */
8423293d 14778 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14779 {
14780 asection *input_section;
14781 bfd *input_bfd;
14782 Elf32_External_RegInfo ext;
14783 Elf32_RegInfo sub;
6798f8bf 14784 bfd_size_type sz;
b49e97c9
TS
14785
14786 if (p->type != bfd_indirect_link_order)
14787 {
14788 if (p->type == bfd_data_link_order)
14789 continue;
14790 abort ();
14791 }
14792
14793 input_section = p->u.indirect.section;
14794 input_bfd = input_section->owner;
14795
6798f8bf
MR
14796 sz = (input_section->size < sizeof (ext)
14797 ? input_section->size : sizeof (ext));
14798 memset (&ext, 0, sizeof (ext));
b49e97c9 14799 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14800 &ext, 0, sz))
b34976b6 14801 return FALSE;
b49e97c9
TS
14802
14803 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14804
14805 reginfo.ri_gprmask |= sub.ri_gprmask;
14806 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14807 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14808 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14809 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14810
14811 /* ri_gp_value is set by the function
1c5e4ee9 14812 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14813 finally written out. */
14814
14815 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14816 elf_link_input_bfd ignores this section. */
14817 input_section->flags &= ~SEC_HAS_CONTENTS;
14818 }
14819
14820 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14821 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14822
14823 /* Skip this section later on (I don't think this currently
14824 matters, but someday it might). */
8423293d 14825 o->map_head.link_order = NULL;
b49e97c9
TS
14826
14827 reginfo_sec = o;
14828 }
14829
14830 if (strcmp (o->name, ".mdebug") == 0)
14831 {
14832 struct extsym_info einfo;
14833 bfd_vma last;
14834
14835 /* We have found the .mdebug section in the output file.
14836 Look through all the link_orders comprising it and merge
14837 the information together. */
14838 symhdr->magic = swap->sym_magic;
14839 /* FIXME: What should the version stamp be? */
14840 symhdr->vstamp = 0;
14841 symhdr->ilineMax = 0;
14842 symhdr->cbLine = 0;
14843 symhdr->idnMax = 0;
14844 symhdr->ipdMax = 0;
14845 symhdr->isymMax = 0;
14846 symhdr->ioptMax = 0;
14847 symhdr->iauxMax = 0;
14848 symhdr->issMax = 0;
14849 symhdr->issExtMax = 0;
14850 symhdr->ifdMax = 0;
14851 symhdr->crfd = 0;
14852 symhdr->iextMax = 0;
14853
14854 /* We accumulate the debugging information itself in the
14855 debug_info structure. */
14856 debug.line = NULL;
14857 debug.external_dnr = NULL;
14858 debug.external_pdr = NULL;
14859 debug.external_sym = NULL;
14860 debug.external_opt = NULL;
14861 debug.external_aux = NULL;
14862 debug.ss = NULL;
14863 debug.ssext = debug.ssext_end = NULL;
14864 debug.external_fdr = NULL;
14865 debug.external_rfd = NULL;
14866 debug.external_ext = debug.external_ext_end = NULL;
14867
14868 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14869 if (mdebug_handle == NULL)
b34976b6 14870 return FALSE;
b49e97c9
TS
14871
14872 esym.jmptbl = 0;
14873 esym.cobol_main = 0;
14874 esym.weakext = 0;
14875 esym.reserved = 0;
14876 esym.ifd = ifdNil;
14877 esym.asym.iss = issNil;
14878 esym.asym.st = stLocal;
14879 esym.asym.reserved = 0;
14880 esym.asym.index = indexNil;
14881 last = 0;
14882 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14883 {
14884 esym.asym.sc = sc[i];
14885 s = bfd_get_section_by_name (abfd, secname[i]);
14886 if (s != NULL)
14887 {
14888 esym.asym.value = s->vma;
eea6121a 14889 last = s->vma + s->size;
b49e97c9
TS
14890 }
14891 else
14892 esym.asym.value = last;
14893 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14894 secname[i], &esym))
b34976b6 14895 return FALSE;
b49e97c9
TS
14896 }
14897
8423293d 14898 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14899 {
14900 asection *input_section;
14901 bfd *input_bfd;
14902 const struct ecoff_debug_swap *input_swap;
14903 struct ecoff_debug_info input_debug;
14904 char *eraw_src;
14905 char *eraw_end;
14906
14907 if (p->type != bfd_indirect_link_order)
14908 {
14909 if (p->type == bfd_data_link_order)
14910 continue;
14911 abort ();
14912 }
14913
14914 input_section = p->u.indirect.section;
14915 input_bfd = input_section->owner;
14916
d5eaccd7 14917 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14918 {
14919 /* I don't know what a non MIPS ELF bfd would be
14920 doing with a .mdebug section, but I don't really
14921 want to deal with it. */
14922 continue;
14923 }
14924
14925 input_swap = (get_elf_backend_data (input_bfd)
14926 ->elf_backend_ecoff_debug_swap);
14927
eea6121a 14928 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14929
14930 /* The ECOFF linking code expects that we have already
14931 read in the debugging information and set up an
14932 ecoff_debug_info structure, so we do that now. */
14933 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14934 &input_debug))
b34976b6 14935 return FALSE;
b49e97c9
TS
14936
14937 if (! (bfd_ecoff_debug_accumulate
14938 (mdebug_handle, abfd, &debug, swap, input_bfd,
14939 &input_debug, input_swap, info)))
b34976b6 14940 return FALSE;
b49e97c9
TS
14941
14942 /* Loop through the external symbols. For each one with
14943 interesting information, try to find the symbol in
14944 the linker global hash table and save the information
14945 for the output external symbols. */
14946 eraw_src = input_debug.external_ext;
14947 eraw_end = (eraw_src
14948 + (input_debug.symbolic_header.iextMax
14949 * input_swap->external_ext_size));
14950 for (;
14951 eraw_src < eraw_end;
14952 eraw_src += input_swap->external_ext_size)
14953 {
14954 EXTR ext;
14955 const char *name;
14956 struct mips_elf_link_hash_entry *h;
14957
9719ad41 14958 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14959 if (ext.asym.sc == scNil
14960 || ext.asym.sc == scUndefined
14961 || ext.asym.sc == scSUndefined)
14962 continue;
14963
14964 name = input_debug.ssext + ext.asym.iss;
14965 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14966 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14967 if (h == NULL || h->esym.ifd != -2)
14968 continue;
14969
14970 if (ext.ifd != -1)
14971 {
14972 BFD_ASSERT (ext.ifd
14973 < input_debug.symbolic_header.ifdMax);
14974 ext.ifd = input_debug.ifdmap[ext.ifd];
14975 }
14976
14977 h->esym = ext;
14978 }
14979
14980 /* Free up the information we just read. */
14981 free (input_debug.line);
14982 free (input_debug.external_dnr);
14983 free (input_debug.external_pdr);
14984 free (input_debug.external_sym);
14985 free (input_debug.external_opt);
14986 free (input_debug.external_aux);
14987 free (input_debug.ss);
14988 free (input_debug.ssext);
14989 free (input_debug.external_fdr);
14990 free (input_debug.external_rfd);
14991 free (input_debug.external_ext);
14992
14993 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14994 elf_link_input_bfd ignores this section. */
14995 input_section->flags &= ~SEC_HAS_CONTENTS;
14996 }
14997
0e1862bb 14998 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14999 {
15000 /* Create .rtproc section. */
87e0a731 15001 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
15002 if (rtproc_sec == NULL)
15003 {
15004 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15005 | SEC_LINKER_CREATED | SEC_READONLY);
15006
87e0a731
AM
15007 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15008 ".rtproc",
15009 flags);
b49e97c9 15010 if (rtproc_sec == NULL
fd361982 15011 || !bfd_set_section_alignment (rtproc_sec, 4))
b34976b6 15012 return FALSE;
b49e97c9
TS
15013 }
15014
15015 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15016 info, rtproc_sec,
15017 &debug))
b34976b6 15018 return FALSE;
b49e97c9
TS
15019 }
15020
15021 /* Build the external symbol information. */
15022 einfo.abfd = abfd;
15023 einfo.info = info;
15024 einfo.debug = &debug;
15025 einfo.swap = swap;
b34976b6 15026 einfo.failed = FALSE;
b49e97c9 15027 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 15028 mips_elf_output_extsym, &einfo);
b49e97c9 15029 if (einfo.failed)
b34976b6 15030 return FALSE;
b49e97c9
TS
15031
15032 /* Set the size of the .mdebug section. */
eea6121a 15033 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
15034
15035 /* Skip this section later on (I don't think this currently
15036 matters, but someday it might). */
8423293d 15037 o->map_head.link_order = NULL;
b49e97c9
TS
15038
15039 mdebug_sec = o;
15040 }
15041
0112cd26 15042 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
15043 {
15044 const char *subname;
15045 unsigned int c;
15046 Elf32_gptab *tab;
15047 Elf32_External_gptab *ext_tab;
15048 unsigned int j;
15049
15050 /* The .gptab.sdata and .gptab.sbss sections hold
15051 information describing how the small data area would
15052 change depending upon the -G switch. These sections
15053 not used in executables files. */
0e1862bb 15054 if (! bfd_link_relocatable (info))
b49e97c9 15055 {
8423293d 15056 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15057 {
15058 asection *input_section;
15059
15060 if (p->type != bfd_indirect_link_order)
15061 {
15062 if (p->type == bfd_data_link_order)
15063 continue;
15064 abort ();
15065 }
15066
15067 input_section = p->u.indirect.section;
15068
15069 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15070 elf_link_input_bfd ignores this section. */
15071 input_section->flags &= ~SEC_HAS_CONTENTS;
15072 }
15073
15074 /* Skip this section later on (I don't think this
15075 currently matters, but someday it might). */
8423293d 15076 o->map_head.link_order = NULL;
b49e97c9
TS
15077
15078 /* Really remove the section. */
5daa8fe7 15079 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15080 --abfd->section_count;
15081
15082 continue;
15083 }
15084
15085 /* There is one gptab for initialized data, and one for
15086 uninitialized data. */
15087 if (strcmp (o->name, ".gptab.sdata") == 0)
15088 gptab_data_sec = o;
15089 else if (strcmp (o->name, ".gptab.sbss") == 0)
15090 gptab_bss_sec = o;
15091 else
15092 {
4eca0228 15093 _bfd_error_handler
695344c0 15094 /* xgettext:c-format */
871b3ab2 15095 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15096 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15097 return FALSE;
b49e97c9
TS
15098 }
15099
15100 /* The linker script always combines .gptab.data and
15101 .gptab.sdata into .gptab.sdata, and likewise for
15102 .gptab.bss and .gptab.sbss. It is possible that there is
15103 no .sdata or .sbss section in the output file, in which
15104 case we must change the name of the output section. */
15105 subname = o->name + sizeof ".gptab" - 1;
15106 if (bfd_get_section_by_name (abfd, subname) == NULL)
15107 {
15108 if (o == gptab_data_sec)
15109 o->name = ".gptab.data";
15110 else
15111 o->name = ".gptab.bss";
15112 subname = o->name + sizeof ".gptab" - 1;
15113 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15114 }
15115
15116 /* Set up the first entry. */
15117 c = 1;
15118 amt = c * sizeof (Elf32_gptab);
9719ad41 15119 tab = bfd_malloc (amt);
b49e97c9 15120 if (tab == NULL)
b34976b6 15121 return FALSE;
b49e97c9
TS
15122 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15123 tab[0].gt_header.gt_unused = 0;
15124
15125 /* Combine the input sections. */
8423293d 15126 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15127 {
15128 asection *input_section;
15129 bfd *input_bfd;
15130 bfd_size_type size;
15131 unsigned long last;
15132 bfd_size_type gpentry;
15133
15134 if (p->type != bfd_indirect_link_order)
15135 {
15136 if (p->type == bfd_data_link_order)
15137 continue;
15138 abort ();
15139 }
15140
15141 input_section = p->u.indirect.section;
15142 input_bfd = input_section->owner;
15143
15144 /* Combine the gptab entries for this input section one
15145 by one. We know that the input gptab entries are
15146 sorted by ascending -G value. */
eea6121a 15147 size = input_section->size;
b49e97c9
TS
15148 last = 0;
15149 for (gpentry = sizeof (Elf32_External_gptab);
15150 gpentry < size;
15151 gpentry += sizeof (Elf32_External_gptab))
15152 {
15153 Elf32_External_gptab ext_gptab;
15154 Elf32_gptab int_gptab;
15155 unsigned long val;
15156 unsigned long add;
b34976b6 15157 bfd_boolean exact;
b49e97c9
TS
15158 unsigned int look;
15159
15160 if (! (bfd_get_section_contents
9719ad41
RS
15161 (input_bfd, input_section, &ext_gptab, gpentry,
15162 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15163 {
15164 free (tab);
b34976b6 15165 return FALSE;
b49e97c9
TS
15166 }
15167
15168 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15169 &int_gptab);
15170 val = int_gptab.gt_entry.gt_g_value;
15171 add = int_gptab.gt_entry.gt_bytes - last;
15172
b34976b6 15173 exact = FALSE;
b49e97c9
TS
15174 for (look = 1; look < c; look++)
15175 {
15176 if (tab[look].gt_entry.gt_g_value >= val)
15177 tab[look].gt_entry.gt_bytes += add;
15178
15179 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15180 exact = TRUE;
b49e97c9
TS
15181 }
15182
15183 if (! exact)
15184 {
15185 Elf32_gptab *new_tab;
15186 unsigned int max;
15187
15188 /* We need a new table entry. */
15189 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15190 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15191 if (new_tab == NULL)
15192 {
15193 free (tab);
b34976b6 15194 return FALSE;
b49e97c9
TS
15195 }
15196 tab = new_tab;
15197 tab[c].gt_entry.gt_g_value = val;
15198 tab[c].gt_entry.gt_bytes = add;
15199
15200 /* Merge in the size for the next smallest -G
15201 value, since that will be implied by this new
15202 value. */
15203 max = 0;
15204 for (look = 1; look < c; look++)
15205 {
15206 if (tab[look].gt_entry.gt_g_value < val
15207 && (max == 0
15208 || (tab[look].gt_entry.gt_g_value
15209 > tab[max].gt_entry.gt_g_value)))
15210 max = look;
15211 }
15212 if (max != 0)
15213 tab[c].gt_entry.gt_bytes +=
15214 tab[max].gt_entry.gt_bytes;
15215
15216 ++c;
15217 }
15218
15219 last = int_gptab.gt_entry.gt_bytes;
15220 }
15221
15222 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15223 elf_link_input_bfd ignores this section. */
15224 input_section->flags &= ~SEC_HAS_CONTENTS;
15225 }
15226
15227 /* The table must be sorted by -G value. */
15228 if (c > 2)
15229 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15230
15231 /* Swap out the table. */
15232 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15233 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15234 if (ext_tab == NULL)
15235 {
15236 free (tab);
b34976b6 15237 return FALSE;
b49e97c9
TS
15238 }
15239
15240 for (j = 0; j < c; j++)
15241 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15242 free (tab);
15243
eea6121a 15244 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15245 o->contents = (bfd_byte *) ext_tab;
15246
15247 /* Skip this section later on (I don't think this currently
15248 matters, but someday it might). */
8423293d 15249 o->map_head.link_order = NULL;
b49e97c9
TS
15250 }
15251 }
15252
15253 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15254 if (!bfd_elf_final_link (abfd, info))
b34976b6 15255 return FALSE;
b49e97c9
TS
15256
15257 /* Now write out the computed sections. */
15258
351cdf24
MF
15259 if (abiflags_sec != NULL)
15260 {
15261 Elf_External_ABIFlags_v0 ext;
15262 Elf_Internal_ABIFlags_v0 *abiflags;
15263
15264 abiflags = &mips_elf_tdata (abfd)->abiflags;
15265
15266 /* Set up the abiflags if no valid input sections were found. */
15267 if (!mips_elf_tdata (abfd)->abiflags_valid)
15268 {
15269 infer_mips_abiflags (abfd, abiflags);
15270 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15271 }
15272 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15273 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15274 return FALSE;
15275 }
15276
9719ad41 15277 if (reginfo_sec != NULL)
b49e97c9
TS
15278 {
15279 Elf32_External_RegInfo ext;
15280
15281 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15282 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15283 return FALSE;
b49e97c9
TS
15284 }
15285
9719ad41 15286 if (mdebug_sec != NULL)
b49e97c9
TS
15287 {
15288 BFD_ASSERT (abfd->output_has_begun);
15289 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15290 swap, info,
15291 mdebug_sec->filepos))
b34976b6 15292 return FALSE;
b49e97c9
TS
15293
15294 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15295 }
15296
9719ad41 15297 if (gptab_data_sec != NULL)
b49e97c9
TS
15298 {
15299 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15300 gptab_data_sec->contents,
eea6121a 15301 0, gptab_data_sec->size))
b34976b6 15302 return FALSE;
b49e97c9
TS
15303 }
15304
9719ad41 15305 if (gptab_bss_sec != NULL)
b49e97c9
TS
15306 {
15307 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15308 gptab_bss_sec->contents,
eea6121a 15309 0, gptab_bss_sec->size))
b34976b6 15310 return FALSE;
b49e97c9
TS
15311 }
15312
15313 if (SGI_COMPAT (abfd))
15314 {
15315 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15316 if (rtproc_sec != NULL)
15317 {
15318 if (! bfd_set_section_contents (abfd, rtproc_sec,
15319 rtproc_sec->contents,
eea6121a 15320 0, rtproc_sec->size))
b34976b6 15321 return FALSE;
b49e97c9
TS
15322 }
15323 }
15324
b34976b6 15325 return TRUE;
b49e97c9
TS
15326}
15327\f
b2e9744f
MR
15328/* Merge object file header flags from IBFD into OBFD. Raise an error
15329 if there are conflicting settings. */
15330
15331static bfd_boolean
50e03d47 15332mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15333{
50e03d47 15334 bfd *obfd = info->output_bfd;
b2e9744f
MR
15335 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15336 flagword old_flags;
15337 flagword new_flags;
15338 bfd_boolean ok;
15339
15340 new_flags = elf_elfheader (ibfd)->e_flags;
15341 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15342 old_flags = elf_elfheader (obfd)->e_flags;
15343
15344 /* Check flag compatibility. */
15345
15346 new_flags &= ~EF_MIPS_NOREORDER;
15347 old_flags &= ~EF_MIPS_NOREORDER;
15348
15349 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15350 doesn't seem to matter. */
15351 new_flags &= ~EF_MIPS_XGOT;
15352 old_flags &= ~EF_MIPS_XGOT;
15353
15354 /* MIPSpro generates ucode info in n64 objects. Again, we should
15355 just be able to ignore this. */
15356 new_flags &= ~EF_MIPS_UCODE;
15357 old_flags &= ~EF_MIPS_UCODE;
15358
15359 /* DSOs should only be linked with CPIC code. */
15360 if ((ibfd->flags & DYNAMIC) != 0)
15361 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15362
15363 if (new_flags == old_flags)
15364 return TRUE;
15365
15366 ok = TRUE;
15367
15368 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15369 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15370 {
4eca0228 15371 _bfd_error_handler
871b3ab2 15372 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15373 ibfd);
15374 ok = TRUE;
15375 }
15376
15377 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15378 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15379 if (! (new_flags & EF_MIPS_PIC))
15380 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15381
15382 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15383 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15384
15385 /* Compare the ISAs. */
15386 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15387 {
4eca0228 15388 _bfd_error_handler
871b3ab2 15389 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15390 ibfd);
15391 ok = FALSE;
15392 }
15393 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15394 {
15395 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15396 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15397 {
15398 /* Copy the architecture info from IBFD to OBFD. Also copy
15399 the 32-bit flag (if set) so that we continue to recognise
15400 OBFD as a 32-bit binary. */
15401 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15402 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15403 elf_elfheader (obfd)->e_flags
15404 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15405
15406 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15407 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15408
15409 /* Copy across the ABI flags if OBFD doesn't use them
15410 and if that was what caused us to treat IBFD as 32-bit. */
15411 if ((old_flags & EF_MIPS_ABI) == 0
15412 && mips_32bit_flags_p (new_flags)
15413 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15414 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15415 }
15416 else
15417 {
15418 /* The ISAs aren't compatible. */
4eca0228 15419 _bfd_error_handler
695344c0 15420 /* xgettext:c-format */
871b3ab2 15421 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15422 ibfd,
15423 bfd_printable_name (ibfd),
15424 bfd_printable_name (obfd));
15425 ok = FALSE;
15426 }
15427 }
15428
15429 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15430 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15431
15432 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15433 does set EI_CLASS differently from any 32-bit ABI. */
15434 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15435 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15436 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15437 {
15438 /* Only error if both are set (to different values). */
15439 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15440 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15441 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15442 {
4eca0228 15443 _bfd_error_handler
695344c0 15444 /* xgettext:c-format */
871b3ab2 15445 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15446 ibfd,
15447 elf_mips_abi_name (ibfd),
15448 elf_mips_abi_name (obfd));
15449 ok = FALSE;
15450 }
15451 new_flags &= ~EF_MIPS_ABI;
15452 old_flags &= ~EF_MIPS_ABI;
15453 }
15454
15455 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15456 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15457 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15458 {
15459 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15460 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15461 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15462 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15463 int micro_mis = old_m16 && new_micro;
15464 int m16_mis = old_micro && new_m16;
15465
15466 if (m16_mis || micro_mis)
15467 {
4eca0228 15468 _bfd_error_handler
695344c0 15469 /* xgettext:c-format */
871b3ab2 15470 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15471 ibfd,
15472 m16_mis ? "MIPS16" : "microMIPS",
15473 m16_mis ? "microMIPS" : "MIPS16");
15474 ok = FALSE;
15475 }
15476
15477 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15478
15479 new_flags &= ~ EF_MIPS_ARCH_ASE;
15480 old_flags &= ~ EF_MIPS_ARCH_ASE;
15481 }
15482
15483 /* Compare NaN encodings. */
15484 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15485 {
695344c0 15486 /* xgettext:c-format */
871b3ab2 15487 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15488 ibfd,
15489 (new_flags & EF_MIPS_NAN2008
15490 ? "-mnan=2008" : "-mnan=legacy"),
15491 (old_flags & EF_MIPS_NAN2008
15492 ? "-mnan=2008" : "-mnan=legacy"));
15493 ok = FALSE;
15494 new_flags &= ~EF_MIPS_NAN2008;
15495 old_flags &= ~EF_MIPS_NAN2008;
15496 }
15497
15498 /* Compare FP64 state. */
15499 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15500 {
695344c0 15501 /* xgettext:c-format */
871b3ab2 15502 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15503 ibfd,
15504 (new_flags & EF_MIPS_FP64
15505 ? "-mfp64" : "-mfp32"),
15506 (old_flags & EF_MIPS_FP64
15507 ? "-mfp64" : "-mfp32"));
15508 ok = FALSE;
15509 new_flags &= ~EF_MIPS_FP64;
15510 old_flags &= ~EF_MIPS_FP64;
15511 }
15512
15513 /* Warn about any other mismatches */
15514 if (new_flags != old_flags)
15515 {
695344c0 15516 /* xgettext:c-format */
4eca0228 15517 _bfd_error_handler
871b3ab2 15518 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15519 "(%#x)"),
15520 ibfd, new_flags, old_flags);
b2e9744f
MR
15521 ok = FALSE;
15522 }
15523
15524 return ok;
15525}
15526
2cf19d5c
JM
15527/* Merge object attributes from IBFD into OBFD. Raise an error if
15528 there are conflicting attributes. */
15529static bfd_boolean
50e03d47 15530mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15531{
50e03d47 15532 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15533 obj_attribute *in_attr;
15534 obj_attribute *out_attr;
6ae68ba3 15535 bfd *abi_fp_bfd;
b60bf9be 15536 bfd *abi_msa_bfd;
6ae68ba3
MR
15537
15538 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15539 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15540 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15541 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15542
b60bf9be
CF
15543 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15544 if (!abi_msa_bfd
15545 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15546 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15547
2cf19d5c
JM
15548 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15549 {
15550 /* This is the first object. Copy the attributes. */
15551 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15552
15553 /* Use the Tag_null value to indicate the attributes have been
15554 initialized. */
15555 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15556
15557 return TRUE;
15558 }
15559
15560 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15561 non-conflicting ones. */
2cf19d5c
JM
15562 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15563 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15564 {
757a636f 15565 int out_fp, in_fp;
6ae68ba3 15566
757a636f
RS
15567 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15568 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15569 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15570 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15571 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15572 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15573 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15574 || in_fp == Val_GNU_MIPS_ABI_FP_64
15575 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15576 {
15577 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15578 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15579 }
15580 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15581 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15582 || out_fp == Val_GNU_MIPS_ABI_FP_64
15583 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15584 /* Keep the current setting. */;
15585 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15586 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15587 {
15588 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15589 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15590 }
15591 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15592 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15593 /* Keep the current setting. */;
757a636f
RS
15594 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15595 {
15596 const char *out_string, *in_string;
6ae68ba3 15597
757a636f
RS
15598 out_string = _bfd_mips_fp_abi_string (out_fp);
15599 in_string = _bfd_mips_fp_abi_string (in_fp);
15600 /* First warn about cases involving unrecognised ABIs. */
15601 if (!out_string && !in_string)
695344c0 15602 /* xgettext:c-format */
757a636f 15603 _bfd_error_handler
2c1c9679 15604 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15605 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15606 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15607 else if (!out_string)
15608 _bfd_error_handler
695344c0 15609 /* xgettext:c-format */
2c1c9679 15610 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15611 "(set by %pB), %pB uses %s"),
c08bb8dd 15612 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15613 else if (!in_string)
15614 _bfd_error_handler
695344c0 15615 /* xgettext:c-format */
2c1c9679 15616 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15617 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15618 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15619 else
15620 {
15621 /* If one of the bfds is soft-float, the other must be
15622 hard-float. The exact choice of hard-float ABI isn't
15623 really relevant to the error message. */
15624 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15625 out_string = "-mhard-float";
15626 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15627 in_string = "-mhard-float";
15628 _bfd_error_handler
695344c0 15629 /* xgettext:c-format */
2c1c9679 15630 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15631 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15632 }
15633 }
2cf19d5c
JM
15634 }
15635
b60bf9be
CF
15636 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15637 non-conflicting ones. */
15638 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15639 {
15640 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15641 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15642 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15643 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15644 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15645 {
15646 case Val_GNU_MIPS_ABI_MSA_128:
15647 _bfd_error_handler
695344c0 15648 /* xgettext:c-format */
2c1c9679 15649 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15650 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15651 obfd, "-mmsa", abi_msa_bfd,
15652 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15653 break;
15654
15655 default:
15656 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15657 {
15658 case Val_GNU_MIPS_ABI_MSA_128:
15659 _bfd_error_handler
695344c0 15660 /* xgettext:c-format */
2c1c9679 15661 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15662 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15663 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15664 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15665 break;
15666
15667 default:
15668 _bfd_error_handler
695344c0 15669 /* xgettext:c-format */
2c1c9679 15670 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15671 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15672 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15673 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15674 break;
15675 }
15676 }
15677 }
15678
2cf19d5c 15679 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15680 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15681}
15682
a3dc0a7f
MR
15683/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15684 there are conflicting settings. */
15685
15686static bfd_boolean
15687mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15688{
15689 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15690 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15691 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15692
15693 /* Update the output abiflags fp_abi using the computed fp_abi. */
15694 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15695
15696#define max(a, b) ((a) > (b) ? (a) : (b))
15697 /* Merge abiflags. */
15698 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15699 in_tdata->abiflags.isa_level);
15700 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15701 in_tdata->abiflags.isa_rev);
15702 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15703 in_tdata->abiflags.gpr_size);
15704 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15705 in_tdata->abiflags.cpr1_size);
15706 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15707 in_tdata->abiflags.cpr2_size);
15708#undef max
15709 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15710 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15711
15712 return TRUE;
15713}
15714
b49e97c9
TS
15715/* Merge backend specific data from an object file to the output
15716 object file when linking. */
15717
b34976b6 15718bfd_boolean
50e03d47 15719_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15720{
50e03d47 15721 bfd *obfd = info->output_bfd;
cf8502c1
MR
15722 struct mips_elf_obj_tdata *out_tdata;
15723 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15724 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15725 asection *sec;
d537eeb5 15726 bfd_boolean ok;
b49e97c9 15727
58238693 15728 /* Check if we have the same endianness. */
50e03d47 15729 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15730 {
4eca0228 15731 _bfd_error_handler
871b3ab2 15732 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15733 ibfd);
aa701218
AO
15734 return FALSE;
15735 }
b49e97c9 15736
d5eaccd7 15737 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15738 return TRUE;
b49e97c9 15739
cf8502c1
MR
15740 in_tdata = mips_elf_tdata (ibfd);
15741 out_tdata = mips_elf_tdata (obfd);
15742
aa701218
AO
15743 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15744 {
4eca0228 15745 _bfd_error_handler
871b3ab2 15746 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15747 ibfd);
aa701218
AO
15748 return FALSE;
15749 }
15750
23ba6f18
MR
15751 /* Check to see if the input BFD actually contains any sections. If not,
15752 then it has no attributes, and its flags may not have been initialized
15753 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15754 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15755 {
15756 /* Ignore synthetic sections and empty .text, .data and .bss sections
15757 which are automatically generated by gas. Also ignore fake
15758 (s)common sections, since merely defining a common symbol does
15759 not affect compatibility. */
15760 if ((sec->flags & SEC_IS_COMMON) == 0
15761 && strcmp (sec->name, ".reginfo")
15762 && strcmp (sec->name, ".mdebug")
15763 && (sec->size != 0
15764 || (strcmp (sec->name, ".text")
15765 && strcmp (sec->name, ".data")
15766 && strcmp (sec->name, ".bss"))))
15767 {
15768 null_input_bfd = FALSE;
15769 break;
15770 }
15771 }
15772 if (null_input_bfd)
15773 return TRUE;
15774
28d45e28 15775 /* Populate abiflags using existing information. */
23ba6f18
MR
15776 if (in_tdata->abiflags_valid)
15777 {
15778 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15779 Elf_Internal_ABIFlags_v0 in_abiflags;
15780 Elf_Internal_ABIFlags_v0 abiflags;
15781
15782 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15783 set. */
23ba6f18 15784 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15785 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15786
351cdf24 15787 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15788 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15789
15790 /* It is not possible to infer the correct ISA revision
07d6d2b8 15791 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15792 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15793 in_abiflags.isa_rev = 2;
15794
c97c330b
MF
15795 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15796 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15797 _bfd_error_handler
2c1c9679 15798 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15799 ".MIPS.abiflags"), ibfd);
15800 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15801 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15802 _bfd_error_handler
2c1c9679 15803 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15804 ".MIPS.abiflags"), ibfd);
15805 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15806 _bfd_error_handler
2c1c9679 15807 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15808 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15809 /* The isa_ext is allowed to be an extension of what can be inferred
15810 from e_flags. */
15811 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15812 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15813 _bfd_error_handler
2c1c9679 15814 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15815 ".MIPS.abiflags"), ibfd);
15816 if (in_abiflags.flags2 != 0)
4eca0228 15817 _bfd_error_handler
2c1c9679 15818 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15819 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15820 in_abiflags.flags2);
351cdf24 15821 }
28d45e28
MR
15822 else
15823 {
15824 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15825 in_tdata->abiflags_valid = TRUE;
15826 }
15827
cf8502c1 15828 if (!out_tdata->abiflags_valid)
351cdf24
MF
15829 {
15830 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15831 out_tdata->abiflags = in_tdata->abiflags;
15832 out_tdata->abiflags_valid = TRUE;
351cdf24 15833 }
b49e97c9
TS
15834
15835 if (! elf_flags_init (obfd))
15836 {
b34976b6 15837 elf_flags_init (obfd) = TRUE;
351cdf24 15838 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15839 elf_elfheader (obfd)->e_ident[EI_CLASS]
15840 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15841
15842 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15843 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15844 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15845 bfd_get_mach (ibfd))))
b49e97c9
TS
15846 {
15847 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15848 bfd_get_mach (ibfd)))
b34976b6 15849 return FALSE;
351cdf24
MF
15850
15851 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15852 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15853 }
15854
d537eeb5 15855 ok = TRUE;
b49e97c9 15856 }
d537eeb5 15857 else
50e03d47 15858 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15859
50e03d47 15860 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15861
a3dc0a7f 15862 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15863
d537eeb5 15864 if (!ok)
b49e97c9
TS
15865 {
15866 bfd_set_error (bfd_error_bad_value);
b34976b6 15867 return FALSE;
b49e97c9
TS
15868 }
15869
b34976b6 15870 return TRUE;
b49e97c9
TS
15871}
15872
15873/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15874
b34976b6 15875bfd_boolean
9719ad41 15876_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15877{
15878 BFD_ASSERT (!elf_flags_init (abfd)
15879 || elf_elfheader (abfd)->e_flags == flags);
15880
15881 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15882 elf_flags_init (abfd) = TRUE;
15883 return TRUE;
b49e97c9
TS
15884}
15885
ad9563d6
CM
15886char *
15887_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15888{
15889 switch (dtag)
15890 {
15891 default: return "";
15892 case DT_MIPS_RLD_VERSION:
15893 return "MIPS_RLD_VERSION";
15894 case DT_MIPS_TIME_STAMP:
15895 return "MIPS_TIME_STAMP";
15896 case DT_MIPS_ICHECKSUM:
15897 return "MIPS_ICHECKSUM";
15898 case DT_MIPS_IVERSION:
15899 return "MIPS_IVERSION";
15900 case DT_MIPS_FLAGS:
15901 return "MIPS_FLAGS";
15902 case DT_MIPS_BASE_ADDRESS:
15903 return "MIPS_BASE_ADDRESS";
15904 case DT_MIPS_MSYM:
15905 return "MIPS_MSYM";
15906 case DT_MIPS_CONFLICT:
15907 return "MIPS_CONFLICT";
15908 case DT_MIPS_LIBLIST:
15909 return "MIPS_LIBLIST";
15910 case DT_MIPS_LOCAL_GOTNO:
15911 return "MIPS_LOCAL_GOTNO";
15912 case DT_MIPS_CONFLICTNO:
15913 return "MIPS_CONFLICTNO";
15914 case DT_MIPS_LIBLISTNO:
15915 return "MIPS_LIBLISTNO";
15916 case DT_MIPS_SYMTABNO:
15917 return "MIPS_SYMTABNO";
15918 case DT_MIPS_UNREFEXTNO:
15919 return "MIPS_UNREFEXTNO";
15920 case DT_MIPS_GOTSYM:
15921 return "MIPS_GOTSYM";
15922 case DT_MIPS_HIPAGENO:
15923 return "MIPS_HIPAGENO";
15924 case DT_MIPS_RLD_MAP:
15925 return "MIPS_RLD_MAP";
a5499fa4
MF
15926 case DT_MIPS_RLD_MAP_REL:
15927 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15928 case DT_MIPS_DELTA_CLASS:
15929 return "MIPS_DELTA_CLASS";
15930 case DT_MIPS_DELTA_CLASS_NO:
15931 return "MIPS_DELTA_CLASS_NO";
15932 case DT_MIPS_DELTA_INSTANCE:
15933 return "MIPS_DELTA_INSTANCE";
15934 case DT_MIPS_DELTA_INSTANCE_NO:
15935 return "MIPS_DELTA_INSTANCE_NO";
15936 case DT_MIPS_DELTA_RELOC:
15937 return "MIPS_DELTA_RELOC";
15938 case DT_MIPS_DELTA_RELOC_NO:
15939 return "MIPS_DELTA_RELOC_NO";
15940 case DT_MIPS_DELTA_SYM:
15941 return "MIPS_DELTA_SYM";
15942 case DT_MIPS_DELTA_SYM_NO:
15943 return "MIPS_DELTA_SYM_NO";
15944 case DT_MIPS_DELTA_CLASSSYM:
15945 return "MIPS_DELTA_CLASSSYM";
15946 case DT_MIPS_DELTA_CLASSSYM_NO:
15947 return "MIPS_DELTA_CLASSSYM_NO";
15948 case DT_MIPS_CXX_FLAGS:
15949 return "MIPS_CXX_FLAGS";
15950 case DT_MIPS_PIXIE_INIT:
15951 return "MIPS_PIXIE_INIT";
15952 case DT_MIPS_SYMBOL_LIB:
15953 return "MIPS_SYMBOL_LIB";
15954 case DT_MIPS_LOCALPAGE_GOTIDX:
15955 return "MIPS_LOCALPAGE_GOTIDX";
15956 case DT_MIPS_LOCAL_GOTIDX:
15957 return "MIPS_LOCAL_GOTIDX";
15958 case DT_MIPS_HIDDEN_GOTIDX:
15959 return "MIPS_HIDDEN_GOTIDX";
15960 case DT_MIPS_PROTECTED_GOTIDX:
15961 return "MIPS_PROTECTED_GOT_IDX";
15962 case DT_MIPS_OPTIONS:
15963 return "MIPS_OPTIONS";
15964 case DT_MIPS_INTERFACE:
15965 return "MIPS_INTERFACE";
15966 case DT_MIPS_DYNSTR_ALIGN:
15967 return "DT_MIPS_DYNSTR_ALIGN";
15968 case DT_MIPS_INTERFACE_SIZE:
15969 return "DT_MIPS_INTERFACE_SIZE";
15970 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15971 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15972 case DT_MIPS_PERF_SUFFIX:
15973 return "DT_MIPS_PERF_SUFFIX";
15974 case DT_MIPS_COMPACT_SIZE:
15975 return "DT_MIPS_COMPACT_SIZE";
15976 case DT_MIPS_GP_VALUE:
15977 return "DT_MIPS_GP_VALUE";
15978 case DT_MIPS_AUX_DYNAMIC:
15979 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15980 case DT_MIPS_PLTGOT:
15981 return "DT_MIPS_PLTGOT";
15982 case DT_MIPS_RWPLT:
15983 return "DT_MIPS_RWPLT";
f16a9783
MS
15984 case DT_MIPS_XHASH:
15985 return "DT_MIPS_XHASH";
ad9563d6
CM
15986 }
15987}
15988
757a636f
RS
15989/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15990 not known. */
15991
15992const char *
15993_bfd_mips_fp_abi_string (int fp)
15994{
15995 switch (fp)
15996 {
15997 /* These strings aren't translated because they're simply
15998 option lists. */
15999 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16000 return "-mdouble-float";
16001
16002 case Val_GNU_MIPS_ABI_FP_SINGLE:
16003 return "-msingle-float";
16004
16005 case Val_GNU_MIPS_ABI_FP_SOFT:
16006 return "-msoft-float";
16007
351cdf24
MF
16008 case Val_GNU_MIPS_ABI_FP_OLD_64:
16009 return _("-mips32r2 -mfp64 (12 callee-saved)");
16010
16011 case Val_GNU_MIPS_ABI_FP_XX:
16012 return "-mfpxx";
16013
757a636f 16014 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
16015 return "-mgp32 -mfp64";
16016
16017 case Val_GNU_MIPS_ABI_FP_64A:
16018 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
16019
16020 default:
16021 return 0;
16022 }
16023}
16024
351cdf24
MF
16025static void
16026print_mips_ases (FILE *file, unsigned int mask)
16027{
16028 if (mask & AFL_ASE_DSP)
16029 fputs ("\n\tDSP ASE", file);
16030 if (mask & AFL_ASE_DSPR2)
16031 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
16032 if (mask & AFL_ASE_DSPR3)
16033 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
16034 if (mask & AFL_ASE_EVA)
16035 fputs ("\n\tEnhanced VA Scheme", file);
16036 if (mask & AFL_ASE_MCU)
16037 fputs ("\n\tMCU (MicroController) ASE", file);
16038 if (mask & AFL_ASE_MDMX)
16039 fputs ("\n\tMDMX ASE", file);
16040 if (mask & AFL_ASE_MIPS3D)
16041 fputs ("\n\tMIPS-3D ASE", file);
16042 if (mask & AFL_ASE_MT)
16043 fputs ("\n\tMT ASE", file);
16044 if (mask & AFL_ASE_SMARTMIPS)
16045 fputs ("\n\tSmartMIPS ASE", file);
16046 if (mask & AFL_ASE_VIRT)
16047 fputs ("\n\tVZ ASE", file);
16048 if (mask & AFL_ASE_MSA)
16049 fputs ("\n\tMSA ASE", file);
16050 if (mask & AFL_ASE_MIPS16)
16051 fputs ("\n\tMIPS16 ASE", file);
16052 if (mask & AFL_ASE_MICROMIPS)
16053 fputs ("\n\tMICROMIPS ASE", file);
16054 if (mask & AFL_ASE_XPA)
16055 fputs ("\n\tXPA ASE", file);
25499ac7
MR
16056 if (mask & AFL_ASE_MIPS16E2)
16057 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
16058 if (mask & AFL_ASE_CRC)
16059 fputs ("\n\tCRC ASE", file);
6f20c942
FS
16060 if (mask & AFL_ASE_GINV)
16061 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
16062 if (mask & AFL_ASE_LOONGSON_MMI)
16063 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
16064 if (mask & AFL_ASE_LOONGSON_CAM)
16065 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16066 if (mask & AFL_ASE_LOONGSON_EXT)
16067 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16068 if (mask & AFL_ASE_LOONGSON_EXT2)
16069 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16070 if (mask == 0)
16071 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16072 else if ((mask & ~AFL_ASE_MASK) != 0)
16073 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16074}
16075
16076static void
16077print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16078{
16079 switch (isa_ext)
16080 {
16081 case 0:
16082 fputs (_("None"), file);
16083 break;
16084 case AFL_EXT_XLR:
16085 fputs ("RMI XLR", file);
16086 break;
2c629856
N
16087 case AFL_EXT_OCTEON3:
16088 fputs ("Cavium Networks Octeon3", file);
16089 break;
351cdf24
MF
16090 case AFL_EXT_OCTEON2:
16091 fputs ("Cavium Networks Octeon2", file);
16092 break;
16093 case AFL_EXT_OCTEONP:
16094 fputs ("Cavium Networks OcteonP", file);
16095 break;
351cdf24
MF
16096 case AFL_EXT_OCTEON:
16097 fputs ("Cavium Networks Octeon", file);
16098 break;
16099 case AFL_EXT_5900:
16100 fputs ("Toshiba R5900", file);
16101 break;
16102 case AFL_EXT_4650:
16103 fputs ("MIPS R4650", file);
16104 break;
16105 case AFL_EXT_4010:
16106 fputs ("LSI R4010", file);
16107 break;
16108 case AFL_EXT_4100:
16109 fputs ("NEC VR4100", file);
16110 break;
16111 case AFL_EXT_3900:
16112 fputs ("Toshiba R3900", file);
16113 break;
16114 case AFL_EXT_10000:
16115 fputs ("MIPS R10000", file);
16116 break;
16117 case AFL_EXT_SB1:
16118 fputs ("Broadcom SB-1", file);
16119 break;
16120 case AFL_EXT_4111:
16121 fputs ("NEC VR4111/VR4181", file);
16122 break;
16123 case AFL_EXT_4120:
16124 fputs ("NEC VR4120", file);
16125 break;
16126 case AFL_EXT_5400:
16127 fputs ("NEC VR5400", file);
16128 break;
16129 case AFL_EXT_5500:
16130 fputs ("NEC VR5500", file);
16131 break;
16132 case AFL_EXT_LOONGSON_2E:
16133 fputs ("ST Microelectronics Loongson 2E", file);
16134 break;
16135 case AFL_EXT_LOONGSON_2F:
16136 fputs ("ST Microelectronics Loongson 2F", file);
16137 break;
38bf472a
MR
16138 case AFL_EXT_INTERAPTIV_MR2:
16139 fputs ("Imagination interAptiv MR2", file);
16140 break;
351cdf24 16141 default:
00ac7aa0 16142 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16143 break;
16144 }
16145}
16146
16147static void
16148print_mips_fp_abi_value (FILE *file, int val)
16149{
16150 switch (val)
16151 {
16152 case Val_GNU_MIPS_ABI_FP_ANY:
16153 fprintf (file, _("Hard or soft float\n"));
16154 break;
16155 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16156 fprintf (file, _("Hard float (double precision)\n"));
16157 break;
16158 case Val_GNU_MIPS_ABI_FP_SINGLE:
16159 fprintf (file, _("Hard float (single precision)\n"));
16160 break;
16161 case Val_GNU_MIPS_ABI_FP_SOFT:
16162 fprintf (file, _("Soft float\n"));
16163 break;
16164 case Val_GNU_MIPS_ABI_FP_OLD_64:
16165 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16166 break;
16167 case Val_GNU_MIPS_ABI_FP_XX:
16168 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16169 break;
16170 case Val_GNU_MIPS_ABI_FP_64:
16171 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16172 break;
16173 case Val_GNU_MIPS_ABI_FP_64A:
16174 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16175 break;
16176 default:
16177 fprintf (file, "??? (%d)\n", val);
16178 break;
16179 }
16180}
16181
16182static int
16183get_mips_reg_size (int reg_size)
16184{
16185 return (reg_size == AFL_REG_NONE) ? 0
16186 : (reg_size == AFL_REG_32) ? 32
16187 : (reg_size == AFL_REG_64) ? 64
16188 : (reg_size == AFL_REG_128) ? 128
16189 : -1;
16190}
16191
b34976b6 16192bfd_boolean
9719ad41 16193_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16194{
9719ad41 16195 FILE *file = ptr;
b49e97c9
TS
16196
16197 BFD_ASSERT (abfd != NULL && ptr != NULL);
16198
16199 /* Print normal ELF private data. */
16200 _bfd_elf_print_private_bfd_data (abfd, ptr);
16201
16202 /* xgettext:c-format */
16203 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16204
16205 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16206 fprintf (file, _(" [abi=O32]"));
16207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16208 fprintf (file, _(" [abi=O64]"));
16209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16210 fprintf (file, _(" [abi=EABI32]"));
16211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16212 fprintf (file, _(" [abi=EABI64]"));
16213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16214 fprintf (file, _(" [abi unknown]"));
16215 else if (ABI_N32_P (abfd))
16216 fprintf (file, _(" [abi=N32]"));
16217 else if (ABI_64_P (abfd))
16218 fprintf (file, _(" [abi=64]"));
16219 else
16220 fprintf (file, _(" [no abi set]"));
16221
16222 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16223 fprintf (file, " [mips1]");
b49e97c9 16224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16225 fprintf (file, " [mips2]");
b49e97c9 16226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16227 fprintf (file, " [mips3]");
b49e97c9 16228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16229 fprintf (file, " [mips4]");
b49e97c9 16230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16231 fprintf (file, " [mips5]");
b49e97c9 16232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16233 fprintf (file, " [mips32]");
b49e97c9 16234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16235 fprintf (file, " [mips64]");
af7ee8bf 16236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16237 fprintf (file, " [mips32r2]");
5f74bc13 16238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16239 fprintf (file, " [mips64r2]");
7361da2c
AB
16240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16241 fprintf (file, " [mips32r6]");
16242 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16243 fprintf (file, " [mips64r6]");
b49e97c9
TS
16244 else
16245 fprintf (file, _(" [unknown ISA]"));
16246
40d32fc6 16247 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16248 fprintf (file, " [mdmx]");
40d32fc6
CD
16249
16250 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16251 fprintf (file, " [mips16]");
40d32fc6 16252
df58fc94
RS
16253 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16254 fprintf (file, " [micromips]");
16255
ba92f887
MR
16256 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16257 fprintf (file, " [nan2008]");
16258
5baf5e34 16259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16260 fprintf (file, " [old fp64]");
5baf5e34 16261
b49e97c9 16262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16263 fprintf (file, " [32bitmode]");
b49e97c9
TS
16264 else
16265 fprintf (file, _(" [not 32bitmode]"));
16266
c0e3f241 16267 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16268 fprintf (file, " [noreorder]");
c0e3f241
CD
16269
16270 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16271 fprintf (file, " [PIC]");
c0e3f241
CD
16272
16273 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16274 fprintf (file, " [CPIC]");
c0e3f241
CD
16275
16276 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16277 fprintf (file, " [XGOT]");
c0e3f241
CD
16278
16279 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16280 fprintf (file, " [UCODE]");
c0e3f241 16281
b49e97c9
TS
16282 fputc ('\n', file);
16283
351cdf24
MF
16284 if (mips_elf_tdata (abfd)->abiflags_valid)
16285 {
16286 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16287 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16288 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16289 if (abiflags->isa_rev > 1)
16290 fprintf (file, "r%d", abiflags->isa_rev);
16291 fprintf (file, "\nGPR size: %d",
16292 get_mips_reg_size (abiflags->gpr_size));
16293 fprintf (file, "\nCPR1 size: %d",
16294 get_mips_reg_size (abiflags->cpr1_size));
16295 fprintf (file, "\nCPR2 size: %d",
16296 get_mips_reg_size (abiflags->cpr2_size));
16297 fputs ("\nFP ABI: ", file);
16298 print_mips_fp_abi_value (file, abiflags->fp_abi);
16299 fputs ("ISA Extension: ", file);
16300 print_mips_isa_ext (file, abiflags->isa_ext);
16301 fputs ("\nASEs:", file);
16302 print_mips_ases (file, abiflags->ases);
16303 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16304 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16305 fputc ('\n', file);
16306 }
16307
b34976b6 16308 return TRUE;
b49e97c9 16309}
2f89ff8d 16310
b35d266b 16311const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16312{
07d6d2b8
AM
16313 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16314 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16315 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16316 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16317 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16318 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
f16a9783 16319 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
07d6d2b8 16320 { NULL, 0, 0, 0, 0 }
2f89ff8d 16321};
5e2b0d47 16322
8992f0d7
TS
16323/* Merge non visibility st_other attributes. Ensure that the
16324 STO_OPTIONAL flag is copied into h->other, even if this is not a
16325 definiton of the symbol. */
5e2b0d47
NC
16326void
16327_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16328 const Elf_Internal_Sym *isym,
16329 bfd_boolean definition,
16330 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16331{
8992f0d7
TS
16332 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16333 {
16334 unsigned char other;
16335
16336 other = (definition ? isym->st_other : h->other);
16337 other &= ~ELF_ST_VISIBILITY (-1);
16338 h->other = other | ELF_ST_VISIBILITY (h->other);
16339 }
16340
16341 if (!definition
5e2b0d47
NC
16342 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16343 h->other |= STO_OPTIONAL;
16344}
12ac1cf5
NC
16345
16346/* Decide whether an undefined symbol is special and can be ignored.
16347 This is the case for OPTIONAL symbols on IRIX. */
16348bfd_boolean
16349_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16350{
16351 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16352}
e0764319
NC
16353
16354bfd_boolean
16355_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16356{
16357 return (sym->st_shndx == SHN_COMMON
16358 || sym->st_shndx == SHN_MIPS_ACOMMON
16359 || sym->st_shndx == SHN_MIPS_SCOMMON);
16360}
861fb55a
DJ
16361
16362/* Return address for Ith PLT stub in section PLT, for relocation REL
16363 or (bfd_vma) -1 if it should not be included. */
16364
16365bfd_vma
16366_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16367 const arelent *rel ATTRIBUTE_UNUSED)
16368{
16369 return (plt->vma
16370 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16371 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16372}
16373
1bbce132
MR
16374/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16375 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16376 and .got.plt and also the slots may be of a different size each we walk
16377 the PLT manually fetching instructions and matching them against known
16378 patterns. To make things easier standard MIPS slots, if any, always come
16379 first. As we don't create proper ELF symbols we use the UDATA.I member
16380 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16381 with the ST_OTHER member of the ELF symbol. */
16382
16383long
16384_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16385 long symcount ATTRIBUTE_UNUSED,
16386 asymbol **syms ATTRIBUTE_UNUSED,
16387 long dynsymcount, asymbol **dynsyms,
16388 asymbol **ret)
16389{
16390 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16391 static const char microsuffix[] = "@micromipsplt";
16392 static const char m16suffix[] = "@mips16plt";
16393 static const char mipssuffix[] = "@plt";
16394
16395 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16397 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16398 Elf_Internal_Shdr *hdr;
16399 bfd_byte *plt_data;
16400 bfd_vma plt_offset;
16401 unsigned int other;
16402 bfd_vma entry_size;
16403 bfd_vma plt0_size;
16404 asection *relplt;
16405 bfd_vma opcode;
16406 asection *plt;
16407 asymbol *send;
16408 size_t size;
16409 char *names;
16410 long counti;
16411 arelent *p;
16412 asymbol *s;
16413 char *nend;
16414 long count;
16415 long pi;
16416 long i;
16417 long n;
16418
16419 *ret = NULL;
16420
16421 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16422 return 0;
16423
16424 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16425 if (relplt == NULL)
16426 return 0;
16427
16428 hdr = &elf_section_data (relplt)->this_hdr;
16429 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16430 return 0;
16431
16432 plt = bfd_get_section_by_name (abfd, ".plt");
16433 if (plt == NULL)
16434 return 0;
16435
16436 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16437 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16438 return -1;
16439 p = relplt->relocation;
16440
16441 /* Calculating the exact amount of space required for symbols would
16442 require two passes over the PLT, so just pessimise assuming two
16443 PLT slots per relocation. */
16444 count = relplt->size / hdr->sh_entsize;
16445 counti = count * bed->s->int_rels_per_ext_rel;
16446 size = 2 * count * sizeof (asymbol);
16447 size += count * (sizeof (mipssuffix) +
16448 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16449 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16450 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16451
16452 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16453 size += sizeof (asymbol) + sizeof (pltname);
16454
16455 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16456 return -1;
16457
16458 if (plt->size < 16)
16459 return -1;
16460
16461 s = *ret = bfd_malloc (size);
16462 if (s == NULL)
16463 return -1;
16464 send = s + 2 * count + 1;
16465
16466 names = (char *) send;
16467 nend = (char *) s + size;
16468 n = 0;
16469
16470 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16471 if (opcode == 0x3302fffe)
16472 {
16473 if (!micromips_p)
16474 return -1;
16475 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16476 other = STO_MICROMIPS;
16477 }
833794fc
MR
16478 else if (opcode == 0x0398c1d0)
16479 {
16480 if (!micromips_p)
16481 return -1;
16482 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16483 other = STO_MICROMIPS;
16484 }
1bbce132
MR
16485 else
16486 {
16487 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16488 other = 0;
16489 }
16490
16491 s->the_bfd = abfd;
16492 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16493 s->section = plt;
16494 s->value = 0;
16495 s->name = names;
16496 s->udata.i = other;
16497 memcpy (names, pltname, sizeof (pltname));
16498 names += sizeof (pltname);
16499 ++s, ++n;
16500
16501 pi = 0;
16502 for (plt_offset = plt0_size;
16503 plt_offset + 8 <= plt->size && s < send;
16504 plt_offset += entry_size)
16505 {
16506 bfd_vma gotplt_addr;
16507 const char *suffix;
16508 bfd_vma gotplt_hi;
16509 bfd_vma gotplt_lo;
16510 size_t suffixlen;
16511
16512 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16513
16514 /* Check if the second word matches the expected MIPS16 instruction. */
16515 if (opcode == 0x651aeb00)
16516 {
16517 if (micromips_p)
16518 return -1;
16519 /* Truncated table??? */
16520 if (plt_offset + 16 > plt->size)
16521 break;
16522 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16523 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16524 suffixlen = sizeof (m16suffix);
16525 suffix = m16suffix;
16526 other = STO_MIPS16;
16527 }
833794fc 16528 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16529 else if (opcode == 0xff220000)
16530 {
16531 if (!micromips_p)
16532 return -1;
16533 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16534 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16535 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16536 gotplt_lo <<= 2;
16537 gotplt_addr = gotplt_hi + gotplt_lo;
16538 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16539 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16540 suffixlen = sizeof (microsuffix);
16541 suffix = microsuffix;
16542 other = STO_MICROMIPS;
16543 }
833794fc
MR
16544 /* Likewise the expected microMIPS instruction (insn32 mode). */
16545 else if ((opcode & 0xffff0000) == 0xff2f0000)
16546 {
16547 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16548 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16549 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16550 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16551 gotplt_addr = gotplt_hi + gotplt_lo;
16552 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16553 suffixlen = sizeof (microsuffix);
16554 suffix = microsuffix;
16555 other = STO_MICROMIPS;
16556 }
1bbce132
MR
16557 /* Otherwise assume standard MIPS code. */
16558 else
16559 {
16560 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16561 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16562 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16563 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16564 gotplt_addr = gotplt_hi + gotplt_lo;
16565 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16566 suffixlen = sizeof (mipssuffix);
16567 suffix = mipssuffix;
16568 other = 0;
16569 }
16570 /* Truncated table??? */
16571 if (plt_offset + entry_size > plt->size)
16572 break;
16573
16574 for (i = 0;
16575 i < count && p[pi].address != gotplt_addr;
16576 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16577
16578 if (i < count)
16579 {
16580 size_t namelen;
16581 size_t len;
16582
16583 *s = **p[pi].sym_ptr_ptr;
16584 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16585 we are defining a symbol, ensure one of them is set. */
16586 if ((s->flags & BSF_LOCAL) == 0)
16587 s->flags |= BSF_GLOBAL;
16588 s->flags |= BSF_SYNTHETIC;
16589 s->section = plt;
16590 s->value = plt_offset;
16591 s->name = names;
16592 s->udata.i = other;
16593
16594 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16595 namelen = len + suffixlen;
16596 if (names + namelen > nend)
16597 break;
16598
16599 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16600 names += len;
16601 memcpy (names, suffix, suffixlen);
16602 names += suffixlen;
16603
16604 ++s, ++n;
16605 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16606 }
16607 }
16608
16609 free (plt_data);
16610
16611 return n;
16612}
16613
5e7fc731
MR
16614/* Return the ABI flags associated with ABFD if available. */
16615
16616Elf_Internal_ABIFlags_v0 *
16617bfd_mips_elf_get_abiflags (bfd *abfd)
16618{
16619 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16620
16621 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16622}
16623
bb29b84d
MR
16624/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16625 field. Taken from `libc-abis.h' generated at GNU libc build time.
16626 Using a MIPS_ prefix as other libc targets use different values. */
16627enum
16628{
16629 MIPS_LIBC_ABI_DEFAULT = 0,
16630 MIPS_LIBC_ABI_MIPS_PLT,
16631 MIPS_LIBC_ABI_UNIQUE,
16632 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16633 MIPS_LIBC_ABI_ABSOLUTE,
f16a9783 16634 MIPS_LIBC_ABI_XHASH,
bb29b84d
MR
16635 MIPS_LIBC_ABI_MAX
16636};
16637
ed7e9d0b
AM
16638bfd_boolean
16639_bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
861fb55a 16640{
47275900 16641 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16642 Elf_Internal_Ehdr *i_ehdrp;
16643
ed7e9d0b
AM
16644 if (!_bfd_elf_init_file_header (abfd, link_info))
16645 return FALSE;
16646
861fb55a
DJ
16647 i_ehdrp = elf_elfheader (abfd);
16648 if (link_info)
16649 {
16650 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16651 BFD_ASSERT (htab != NULL);
861fb55a 16652 }
0af03126 16653
47275900
MR
16654 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16655 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16656
351cdf24
MF
16657 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16658 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16659 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16660
47275900
MR
16661 /* Mark that we need support for absolute symbols in the dynamic loader. */
16662 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16663 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16664
f16a9783
MS
16665 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16666 if it is the only hash section that will be created. */
16667 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16668 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
ed7e9d0b 16669 return TRUE;
861fb55a 16670}
2f0c68f2
CM
16671
16672int
1ced1a5f
MR
16673_bfd_mips_elf_compact_eh_encoding
16674 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16675{
16676 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16677}
16678
16679/* Return the opcode for can't unwind. */
16680
16681int
1ced1a5f
MR
16682_bfd_mips_elf_cant_unwind_opcode
16683 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16684{
16685 return COMPACT_EH_CANT_UNWIND_OPCODE;
16686}
f16a9783
MS
16687
16688/* Record a position XLAT_LOC in the xlat translation table, associated with
16689 the hash entry H. The entry in the translation table will later be
16690 populated with the real symbol dynindx. */
16691
16692void
16693_bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16694 bfd_vma xlat_loc)
16695{
16696 struct mips_elf_link_hash_entry *hmips;
16697
16698 hmips = (struct mips_elf_link_hash_entry *) h;
16699 hmips->mipsxhash_loc = xlat_loc;
16700}
This page took 3.162431 seconds and 4 git commands to generate.