2007-08-10 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3db64b00 3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
cd123cb7 16 the Free Software Foundation; either version 3 of the License, or
ae9a127f 17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
cd123cb7
NC
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
b49e97c9
TS
29
30/* This file handles functionality common to the different MIPS ABI's. */
31
b49e97c9 32#include "sysdep.h"
3db64b00 33#include "bfd.h"
b49e97c9 34#include "libbfd.h"
64543e1a 35#include "libiberty.h"
b49e97c9
TS
36#include "elf-bfd.h"
37#include "elfxx-mips.h"
38#include "elf/mips.h"
0a44bf69 39#include "elf-vxworks.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
ead49a57
RS
49/* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
b15e6682
AO
82struct mips_got_entry
83{
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
f4416af6
AO
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
0f20cc35
DJ
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
b15e6682 109 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
b15e6682
AO
113};
114
f0abc2a1 115/* This structure is used to hold .got information when linking. */
b49e97c9
TS
116
117struct mips_got_info
118{
119 /* The global symbol in the GOT with the lowest index in the dynamic
120 symbol table. */
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
0f20cc35
DJ
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
b49e97c9
TS
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
b15e6682
AO
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
f4416af6
AO
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
0f20cc35
DJ
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
f4416af6
AO
146};
147
148/* Map an input bfd to a got in a multi-got link. */
149
150struct mips_elf_bfd2got_hash {
151 bfd *bfd;
152 struct mips_got_info *g;
153};
154
155/* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
157
158struct mips_elf_got_per_bfd_arg
159{
160 /* A hashtable that maps bfds to gots. */
161 htab_t bfd2got;
162 /* The output bfd. */
163 bfd *obfd;
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
168 DT_MIPS_GOTSYM. */
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
171 gots. */
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
174 16-bit offset. */
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
0f20cc35
DJ
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
183 the "master" GOT. */
184 unsigned int global_count;
f4416af6
AO
185};
186
187/* Another structure used to pass arguments for got entries traversal. */
188
189struct mips_elf_set_global_got_offset_arg
190{
191 struct mips_got_info *g;
192 int value;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
b49e97c9
TS
195};
196
0f20cc35
DJ
197/* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
199
200struct mips_elf_count_tls_arg
201{
202 struct bfd_link_info *info;
203 unsigned int needed;
204};
205
f0abc2a1
AM
206struct _mips_elf_section_data
207{
208 struct bfd_elf_section_data elf;
209 union
210 {
211 struct mips_got_info *got_info;
212 bfd_byte *tdata;
213 } u;
214};
215
216#define mips_elf_section_data(sec) \
68bfbfcc 217 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 218
b49e97c9
TS
219/* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
221
222struct mips_elf_hash_sort_data
223{
224 /* The symbol in the global GOT with the lowest dynamic symbol table
225 index. */
226 struct elf_link_hash_entry *low;
0f20cc35
DJ
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
b49e97c9 229 long min_got_dynindx;
f4416af6
AO
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 232 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 233 long max_unref_got_dynindx;
b49e97c9
TS
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
237};
238
239/* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
241
242struct mips_elf_link_hash_entry
243{
244 struct elf_link_hash_entry root;
245
246 /* External symbol information. */
247 EXTR esym;
248
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
250 this symbol. */
251 unsigned int possibly_dynamic_relocs;
252
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
b34976b6 255 bfd_boolean readonly_reloc;
b49e97c9 256
b49e97c9
TS
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
260 p. 4-20. */
b34976b6 261 bfd_boolean no_fn_stub;
b49e97c9
TS
262
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
265 asection *fn_stub;
266
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
b34976b6 269 bfd_boolean need_fn_stub;
b49e97c9
TS
270
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
273 asection *call_stub;
274
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
7c5fcef7 278
a008ac03
DJ
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
b34976b6 281 bfd_boolean forced_local;
0f20cc35 282
0a44bf69
RS
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
285
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
288
0f20cc35
DJ
289#define GOT_NORMAL 0
290#define GOT_TLS_GD 1
291#define GOT_TLS_LDM 2
292#define GOT_TLS_IE 4
293#define GOT_TLS_OFFSET_DONE 0x40
294#define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
b49e97c9
TS
303};
304
305/* MIPS ELF linker hash table. */
306
307struct mips_elf_link_hash_table
308{
309 struct elf_link_hash_table root;
310#if 0
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
314#endif
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 320 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 321 bfd_boolean use_rld_obj_head;
b49e97c9
TS
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
323 bfd_vma rld_value;
324 /* This is set if we see any mips16 stub sections. */
b34976b6 325 bfd_boolean mips16_stubs_seen;
0a44bf69
RS
326 /* True if we're generating code for VxWorks. */
327 bfd_boolean is_vxworks;
0e53d9da
AN
328 /* True if we already reported the small-data section overflow. */
329 bfd_boolean small_data_overflow_reported;
0a44bf69
RS
330 /* Shortcuts to some dynamic sections, or NULL if they are not
331 being used. */
332 asection *srelbss;
333 asection *sdynbss;
334 asection *srelplt;
335 asection *srelplt2;
336 asection *sgotplt;
337 asection *splt;
338 /* The size of the PLT header in bytes (VxWorks only). */
339 bfd_vma plt_header_size;
340 /* The size of a PLT entry in bytes (VxWorks only). */
341 bfd_vma plt_entry_size;
5108fc1b
RS
342 /* The size of a function stub entry in bytes. */
343 bfd_vma function_stub_size;
b49e97c9
TS
344};
345
0f20cc35
DJ
346#define TLS_RELOC_P(r_type) \
347 (r_type == R_MIPS_TLS_DTPMOD32 \
348 || r_type == R_MIPS_TLS_DTPMOD64 \
349 || r_type == R_MIPS_TLS_DTPREL32 \
350 || r_type == R_MIPS_TLS_DTPREL64 \
351 || r_type == R_MIPS_TLS_GD \
352 || r_type == R_MIPS_TLS_LDM \
353 || r_type == R_MIPS_TLS_DTPREL_HI16 \
354 || r_type == R_MIPS_TLS_DTPREL_LO16 \
355 || r_type == R_MIPS_TLS_GOTTPREL \
356 || r_type == R_MIPS_TLS_TPREL32 \
357 || r_type == R_MIPS_TLS_TPREL64 \
358 || r_type == R_MIPS_TLS_TPREL_HI16 \
359 || r_type == R_MIPS_TLS_TPREL_LO16)
360
b49e97c9
TS
361/* Structure used to pass information to mips_elf_output_extsym. */
362
363struct extsym_info
364{
9e4aeb93
RS
365 bfd *abfd;
366 struct bfd_link_info *info;
b49e97c9
TS
367 struct ecoff_debug_info *debug;
368 const struct ecoff_debug_swap *swap;
b34976b6 369 bfd_boolean failed;
b49e97c9
TS
370};
371
8dc1a139 372/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
373
374static const char * const mips_elf_dynsym_rtproc_names[] =
375{
376 "_procedure_table",
377 "_procedure_string_table",
378 "_procedure_table_size",
379 NULL
380};
381
382/* These structures are used to generate the .compact_rel section on
8dc1a139 383 IRIX5. */
b49e97c9
TS
384
385typedef struct
386{
387 unsigned long id1; /* Always one? */
388 unsigned long num; /* Number of compact relocation entries. */
389 unsigned long id2; /* Always two? */
390 unsigned long offset; /* The file offset of the first relocation. */
391 unsigned long reserved0; /* Zero? */
392 unsigned long reserved1; /* Zero? */
393} Elf32_compact_rel;
394
395typedef struct
396{
397 bfd_byte id1[4];
398 bfd_byte num[4];
399 bfd_byte id2[4];
400 bfd_byte offset[4];
401 bfd_byte reserved0[4];
402 bfd_byte reserved1[4];
403} Elf32_External_compact_rel;
404
405typedef struct
406{
407 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
408 unsigned int rtype : 4; /* Relocation types. See below. */
409 unsigned int dist2to : 8;
410 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
411 unsigned long konst; /* KONST field. See below. */
412 unsigned long vaddr; /* VADDR to be relocated. */
413} Elf32_crinfo;
414
415typedef struct
416{
417 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
418 unsigned int rtype : 4; /* Relocation types. See below. */
419 unsigned int dist2to : 8;
420 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
421 unsigned long konst; /* KONST field. See below. */
422} Elf32_crinfo2;
423
424typedef struct
425{
426 bfd_byte info[4];
427 bfd_byte konst[4];
428 bfd_byte vaddr[4];
429} Elf32_External_crinfo;
430
431typedef struct
432{
433 bfd_byte info[4];
434 bfd_byte konst[4];
435} Elf32_External_crinfo2;
436
437/* These are the constants used to swap the bitfields in a crinfo. */
438
439#define CRINFO_CTYPE (0x1)
440#define CRINFO_CTYPE_SH (31)
441#define CRINFO_RTYPE (0xf)
442#define CRINFO_RTYPE_SH (27)
443#define CRINFO_DIST2TO (0xff)
444#define CRINFO_DIST2TO_SH (19)
445#define CRINFO_RELVADDR (0x7ffff)
446#define CRINFO_RELVADDR_SH (0)
447
448/* A compact relocation info has long (3 words) or short (2 words)
449 formats. A short format doesn't have VADDR field and relvaddr
450 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
451#define CRF_MIPS_LONG 1
452#define CRF_MIPS_SHORT 0
453
454/* There are 4 types of compact relocation at least. The value KONST
455 has different meaning for each type:
456
457 (type) (konst)
458 CT_MIPS_REL32 Address in data
459 CT_MIPS_WORD Address in word (XXX)
460 CT_MIPS_GPHI_LO GP - vaddr
461 CT_MIPS_JMPAD Address to jump
462 */
463
464#define CRT_MIPS_REL32 0xa
465#define CRT_MIPS_WORD 0xb
466#define CRT_MIPS_GPHI_LO 0xc
467#define CRT_MIPS_JMPAD 0xd
468
469#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
470#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
471#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
472#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
473\f
474/* The structure of the runtime procedure descriptor created by the
475 loader for use by the static exception system. */
476
477typedef struct runtime_pdr {
ae9a127f
NC
478 bfd_vma adr; /* Memory address of start of procedure. */
479 long regmask; /* Save register mask. */
480 long regoffset; /* Save register offset. */
481 long fregmask; /* Save floating point register mask. */
482 long fregoffset; /* Save floating point register offset. */
483 long frameoffset; /* Frame size. */
484 short framereg; /* Frame pointer register. */
485 short pcreg; /* Offset or reg of return pc. */
486 long irpss; /* Index into the runtime string table. */
b49e97c9 487 long reserved;
ae9a127f 488 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
489} RPDR, *pRPDR;
490#define cbRPDR sizeof (RPDR)
491#define rpdNil ((pRPDR) 0)
492\f
b15e6682 493static struct mips_got_entry *mips_elf_create_local_got_entry
0a44bf69 494 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
5c18022e 495 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
b34976b6 496static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 497 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
498static bfd_vma mips_elf_high
499 (bfd_vma);
b9d58d71 500static bfd_boolean mips16_stub_section_p
9719ad41 501 (bfd *, asection *);
b34976b6 502static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
503 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
504 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
505 bfd_vma *, asection *);
9719ad41
RS
506static hashval_t mips_elf_got_entry_hash
507 (const void *);
f4416af6 508static bfd_vma mips_elf_adjust_gp
9719ad41 509 (bfd *, struct mips_got_info *, bfd *);
f4416af6 510static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 511 (struct mips_got_info *, bfd *);
f4416af6 512
b49e97c9
TS
513/* This will be used when we sort the dynamic relocation records. */
514static bfd *reldyn_sorting_bfd;
515
516/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
517#define ABI_N32_P(abfd) \
518 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
519
4a14403c 520/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 521#define ABI_64_P(abfd) \
141ff970 522 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 523
4a14403c
TS
524/* Nonzero if ABFD is using NewABI conventions. */
525#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
526
527/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
528#define IRIX_COMPAT(abfd) \
529 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
530
b49e97c9
TS
531/* Whether we are trying to be compatible with IRIX at all. */
532#define SGI_COMPAT(abfd) \
533 (IRIX_COMPAT (abfd) != ict_none)
534
535/* The name of the options section. */
536#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 537 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 538
cc2e31b9
RS
539/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
540 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
541#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
542 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
543
943284cc
DJ
544/* Whether the section is readonly. */
545#define MIPS_ELF_READONLY_SECTION(sec) \
546 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
547 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
548
b49e97c9 549/* The name of the stub section. */
ca07892d 550#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
551
552/* The size of an external REL relocation. */
553#define MIPS_ELF_REL_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rel)
555
0a44bf69
RS
556/* The size of an external RELA relocation. */
557#define MIPS_ELF_RELA_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_rela)
559
b49e97c9
TS
560/* The size of an external dynamic table entry. */
561#define MIPS_ELF_DYN_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->sizeof_dyn)
563
564/* The size of a GOT entry. */
565#define MIPS_ELF_GOT_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->arch_size / 8)
567
568/* The size of a symbol-table entry. */
569#define MIPS_ELF_SYM_SIZE(abfd) \
570 (get_elf_backend_data (abfd)->s->sizeof_sym)
571
572/* The default alignment for sections, as a power of two. */
573#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 574 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
575
576/* Get word-sized data. */
577#define MIPS_ELF_GET_WORD(abfd, ptr) \
578 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
579
580/* Put out word-sized data. */
581#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
582 (ABI_64_P (abfd) \
583 ? bfd_put_64 (abfd, val, ptr) \
584 : bfd_put_32 (abfd, val, ptr))
585
586/* Add a dynamic symbol table-entry. */
9719ad41 587#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 588 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
589
590#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
591 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
592
4ffba85c
AO
593/* Determine whether the internal relocation of index REL_IDX is REL
594 (zero) or RELA (non-zero). The assumption is that, if there are
595 two relocation sections for this section, one of them is REL and
596 the other is RELA. If the index of the relocation we're testing is
597 in range for the first relocation section, check that the external
598 relocation size is that for RELA. It is also assumed that, if
599 rel_idx is not in range for the first section, and this first
600 section contains REL relocs, then the relocation is in the second
601 section, that is RELA. */
602#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
603 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
604 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
605 > (bfd_vma)(rel_idx)) \
606 == (elf_section_data (sec)->rel_hdr.sh_entsize \
607 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
608 : sizeof (Elf32_External_Rela))))
609
0a44bf69
RS
610/* The name of the dynamic relocation section. */
611#define MIPS_ELF_REL_DYN_NAME(INFO) \
612 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
613
b49e97c9
TS
614/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
615 from smaller values. Start with zero, widen, *then* decrement. */
616#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 617#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
618
619/* The number of local .got entries we reserve. */
0a44bf69
RS
620#define MIPS_RESERVED_GOTNO(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
b49e97c9 622
f4416af6 623/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
624#define ELF_MIPS_GP_OFFSET(INFO) \
625 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
626
627/* The maximum size of the GOT for it to be addressable using 16-bit
628 offsets from $gp. */
0a44bf69 629#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 630
6a691779 631/* Instructions which appear in a stub. */
3d6746ca
DD
632#define STUB_LW(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
635 : 0x8f998010)) /* lw t9,0x8010(gp) */
636#define STUB_MOVE(abfd) \
637 ((ABI_64_P (abfd) \
638 ? 0x03e0782d /* daddu t7,ra */ \
639 : 0x03e07821)) /* addu t7,ra */
640#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
641#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
642#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
643#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
644#define STUB_LI16S(abfd, VAL) \
645 ((ABI_64_P (abfd) \
646 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
647 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
648
5108fc1b
RS
649#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
650#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
651
652/* The name of the dynamic interpreter. This is put in the .interp
653 section. */
654
655#define ELF_DYNAMIC_INTERPRETER(abfd) \
656 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
657 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
658 : "/usr/lib/libc.so.1")
659
660#ifdef BFD64
ee6423ed
AO
661#define MNAME(bfd,pre,pos) \
662 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
663#define ELF_R_SYM(bfd, i) \
664 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
665#define ELF_R_TYPE(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
667#define ELF_R_INFO(bfd, s, t) \
668 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
669#else
ee6423ed 670#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
671#define ELF_R_SYM(bfd, i) \
672 (ELF32_R_SYM (i))
673#define ELF_R_TYPE(bfd, i) \
674 (ELF32_R_TYPE (i))
675#define ELF_R_INFO(bfd, s, t) \
676 (ELF32_R_INFO (s, t))
677#endif
678\f
679 /* The mips16 compiler uses a couple of special sections to handle
680 floating point arguments.
681
682 Section names that look like .mips16.fn.FNNAME contain stubs that
683 copy floating point arguments from the fp regs to the gp regs and
684 then jump to FNNAME. If any 32 bit function calls FNNAME, the
685 call should be redirected to the stub instead. If no 32 bit
686 function calls FNNAME, the stub should be discarded. We need to
687 consider any reference to the function, not just a call, because
688 if the address of the function is taken we will need the stub,
689 since the address might be passed to a 32 bit function.
690
691 Section names that look like .mips16.call.FNNAME contain stubs
692 that copy floating point arguments from the gp regs to the fp
693 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
694 then any 16 bit function that calls FNNAME should be redirected
695 to the stub instead. If FNNAME is not a 32 bit function, the
696 stub should be discarded.
697
698 .mips16.call.fp.FNNAME sections are similar, but contain stubs
699 which call FNNAME and then copy the return value from the fp regs
700 to the gp regs. These stubs store the return value in $18 while
701 calling FNNAME; any function which might call one of these stubs
702 must arrange to save $18 around the call. (This case is not
703 needed for 32 bit functions that call 16 bit functions, because
704 16 bit functions always return floating point values in both
705 $f0/$f1 and $2/$3.)
706
707 Note that in all cases FNNAME might be defined statically.
708 Therefore, FNNAME is not used literally. Instead, the relocation
709 information will indicate which symbol the section is for.
710
711 We record any stubs that we find in the symbol table. */
712
713#define FN_STUB ".mips16.fn."
714#define CALL_STUB ".mips16.call."
715#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
716
717#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
718#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
719#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 720\f
0a44bf69
RS
721/* The format of the first PLT entry in a VxWorks executable. */
722static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
723 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
724 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
725 0x8f390008, /* lw t9, 8(t9) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000 /* nop */
729};
730
731/* The format of subsequent PLT entries. */
732static const bfd_vma mips_vxworks_exec_plt_entry[] = {
733 0x10000000, /* b .PLT_resolver */
734 0x24180000, /* li t8, <pltindex> */
735 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
736 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
737 0x8f390000, /* lw t9, 0(t9) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000 /* nop */
741};
742
743/* The format of the first PLT entry in a VxWorks shared object. */
744static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
745 0x8f990008, /* lw t9, 8(gp) */
746 0x00000000, /* nop */
747 0x03200008, /* jr t9 */
748 0x00000000, /* nop */
749 0x00000000, /* nop */
750 0x00000000 /* nop */
751};
752
753/* The format of subsequent PLT entries. */
754static const bfd_vma mips_vxworks_shared_plt_entry[] = {
755 0x10000000, /* b .PLT_resolver */
756 0x24180000 /* li t8, <pltindex> */
757};
758\f
b49e97c9
TS
759/* Look up an entry in a MIPS ELF linker hash table. */
760
761#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
762 ((struct mips_elf_link_hash_entry *) \
763 elf_link_hash_lookup (&(table)->root, (string), (create), \
764 (copy), (follow)))
765
766/* Traverse a MIPS ELF linker hash table. */
767
768#define mips_elf_link_hash_traverse(table, func, info) \
769 (elf_link_hash_traverse \
770 (&(table)->root, \
9719ad41 771 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
772 (info)))
773
774/* Get the MIPS ELF linker hash table from a link_info structure. */
775
776#define mips_elf_hash_table(p) \
777 ((struct mips_elf_link_hash_table *) ((p)->hash))
778
0f20cc35
DJ
779/* Find the base offsets for thread-local storage in this object,
780 for GD/LD and IE/LE respectively. */
781
782#define TP_OFFSET 0x7000
783#define DTP_OFFSET 0x8000
784
785static bfd_vma
786dtprel_base (struct bfd_link_info *info)
787{
788 /* If tls_sec is NULL, we should have signalled an error already. */
789 if (elf_hash_table (info)->tls_sec == NULL)
790 return 0;
791 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
792}
793
794static bfd_vma
795tprel_base (struct bfd_link_info *info)
796{
797 /* If tls_sec is NULL, we should have signalled an error already. */
798 if (elf_hash_table (info)->tls_sec == NULL)
799 return 0;
800 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
801}
802
b49e97c9
TS
803/* Create an entry in a MIPS ELF linker hash table. */
804
805static struct bfd_hash_entry *
9719ad41
RS
806mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
808{
809 struct mips_elf_link_hash_entry *ret =
810 (struct mips_elf_link_hash_entry *) entry;
811
812 /* Allocate the structure if it has not already been allocated by a
813 subclass. */
9719ad41
RS
814 if (ret == NULL)
815 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
816 if (ret == NULL)
b49e97c9
TS
817 return (struct bfd_hash_entry *) ret;
818
819 /* Call the allocation method of the superclass. */
820 ret = ((struct mips_elf_link_hash_entry *)
821 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
822 table, string));
9719ad41 823 if (ret != NULL)
b49e97c9
TS
824 {
825 /* Set local fields. */
826 memset (&ret->esym, 0, sizeof (EXTR));
827 /* We use -2 as a marker to indicate that the information has
828 not been set. -1 means there is no associated ifd. */
829 ret->esym.ifd = -2;
830 ret->possibly_dynamic_relocs = 0;
b34976b6 831 ret->readonly_reloc = FALSE;
b34976b6 832 ret->no_fn_stub = FALSE;
b49e97c9 833 ret->fn_stub = NULL;
b34976b6 834 ret->need_fn_stub = FALSE;
b49e97c9
TS
835 ret->call_stub = NULL;
836 ret->call_fp_stub = NULL;
b34976b6 837 ret->forced_local = FALSE;
0a44bf69
RS
838 ret->is_branch_target = FALSE;
839 ret->is_relocation_target = FALSE;
0f20cc35 840 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
841 }
842
843 return (struct bfd_hash_entry *) ret;
844}
f0abc2a1
AM
845
846bfd_boolean
9719ad41 847_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 848{
f592407e
AM
849 if (!sec->used_by_bfd)
850 {
851 struct _mips_elf_section_data *sdata;
852 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 853
f592407e
AM
854 sdata = bfd_zalloc (abfd, amt);
855 if (sdata == NULL)
856 return FALSE;
857 sec->used_by_bfd = sdata;
858 }
f0abc2a1
AM
859
860 return _bfd_elf_new_section_hook (abfd, sec);
861}
b49e97c9
TS
862\f
863/* Read ECOFF debugging information from a .mdebug section into a
864 ecoff_debug_info structure. */
865
b34976b6 866bfd_boolean
9719ad41
RS
867_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
868 struct ecoff_debug_info *debug)
b49e97c9
TS
869{
870 HDRR *symhdr;
871 const struct ecoff_debug_swap *swap;
9719ad41 872 char *ext_hdr;
b49e97c9
TS
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875 memset (debug, 0, sizeof (*debug));
876
9719ad41 877 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
878 if (ext_hdr == NULL && swap->external_hdr_size != 0)
879 goto error_return;
880
9719ad41 881 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 882 swap->external_hdr_size))
b49e97c9
TS
883 goto error_return;
884
885 symhdr = &debug->symbolic_header;
886 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
887
888 /* The symbolic header contains absolute file offsets and sizes to
889 read. */
890#define READ(ptr, offset, count, size, type) \
891 if (symhdr->count == 0) \
892 debug->ptr = NULL; \
893 else \
894 { \
895 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 896 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
897 if (debug->ptr == NULL) \
898 goto error_return; \
9719ad41 899 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
900 || bfd_bread (debug->ptr, amt, abfd) != amt) \
901 goto error_return; \
902 }
903
904 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
905 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
906 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
907 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
908 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
909 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
910 union aux_ext *);
911 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
912 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
913 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
914 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
915 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
916#undef READ
917
918 debug->fdr = NULL;
b49e97c9 919
b34976b6 920 return TRUE;
b49e97c9
TS
921
922 error_return:
923 if (ext_hdr != NULL)
924 free (ext_hdr);
925 if (debug->line != NULL)
926 free (debug->line);
927 if (debug->external_dnr != NULL)
928 free (debug->external_dnr);
929 if (debug->external_pdr != NULL)
930 free (debug->external_pdr);
931 if (debug->external_sym != NULL)
932 free (debug->external_sym);
933 if (debug->external_opt != NULL)
934 free (debug->external_opt);
935 if (debug->external_aux != NULL)
936 free (debug->external_aux);
937 if (debug->ss != NULL)
938 free (debug->ss);
939 if (debug->ssext != NULL)
940 free (debug->ssext);
941 if (debug->external_fdr != NULL)
942 free (debug->external_fdr);
943 if (debug->external_rfd != NULL)
944 free (debug->external_rfd);
945 if (debug->external_ext != NULL)
946 free (debug->external_ext);
b34976b6 947 return FALSE;
b49e97c9
TS
948}
949\f
950/* Swap RPDR (runtime procedure table entry) for output. */
951
952static void
9719ad41 953ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
954{
955 H_PUT_S32 (abfd, in->adr, ex->p_adr);
956 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
957 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
958 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
959 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
960 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
961
962 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
963 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
964
965 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
966}
967
968/* Create a runtime procedure table from the .mdebug section. */
969
b34976b6 970static bfd_boolean
9719ad41
RS
971mips_elf_create_procedure_table (void *handle, bfd *abfd,
972 struct bfd_link_info *info, asection *s,
973 struct ecoff_debug_info *debug)
b49e97c9
TS
974{
975 const struct ecoff_debug_swap *swap;
976 HDRR *hdr = &debug->symbolic_header;
977 RPDR *rpdr, *rp;
978 struct rpdr_ext *erp;
9719ad41 979 void *rtproc;
b49e97c9
TS
980 struct pdr_ext *epdr;
981 struct sym_ext *esym;
982 char *ss, **sv;
983 char *str;
984 bfd_size_type size;
985 bfd_size_type count;
986 unsigned long sindex;
987 unsigned long i;
988 PDR pdr;
989 SYMR sym;
990 const char *no_name_func = _("static procedure (no name)");
991
992 epdr = NULL;
993 rpdr = NULL;
994 esym = NULL;
995 ss = NULL;
996 sv = NULL;
997
998 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
999
1000 sindex = strlen (no_name_func) + 1;
1001 count = hdr->ipdMax;
1002 if (count > 0)
1003 {
1004 size = swap->external_pdr_size;
1005
9719ad41 1006 epdr = bfd_malloc (size * count);
b49e97c9
TS
1007 if (epdr == NULL)
1008 goto error_return;
1009
9719ad41 1010 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1011 goto error_return;
1012
1013 size = sizeof (RPDR);
9719ad41 1014 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1015 if (rpdr == NULL)
1016 goto error_return;
1017
1018 size = sizeof (char *);
9719ad41 1019 sv = bfd_malloc (size * count);
b49e97c9
TS
1020 if (sv == NULL)
1021 goto error_return;
1022
1023 count = hdr->isymMax;
1024 size = swap->external_sym_size;
9719ad41 1025 esym = bfd_malloc (size * count);
b49e97c9
TS
1026 if (esym == NULL)
1027 goto error_return;
1028
9719ad41 1029 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1030 goto error_return;
1031
1032 count = hdr->issMax;
9719ad41 1033 ss = bfd_malloc (count);
b49e97c9
TS
1034 if (ss == NULL)
1035 goto error_return;
f075ee0c 1036 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1037 goto error_return;
1038
1039 count = hdr->ipdMax;
1040 for (i = 0; i < (unsigned long) count; i++, rp++)
1041 {
9719ad41
RS
1042 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1043 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1044 rp->adr = sym.value;
1045 rp->regmask = pdr.regmask;
1046 rp->regoffset = pdr.regoffset;
1047 rp->fregmask = pdr.fregmask;
1048 rp->fregoffset = pdr.fregoffset;
1049 rp->frameoffset = pdr.frameoffset;
1050 rp->framereg = pdr.framereg;
1051 rp->pcreg = pdr.pcreg;
1052 rp->irpss = sindex;
1053 sv[i] = ss + sym.iss;
1054 sindex += strlen (sv[i]) + 1;
1055 }
1056 }
1057
1058 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1059 size = BFD_ALIGN (size, 16);
9719ad41 1060 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1061 if (rtproc == NULL)
1062 {
1063 mips_elf_hash_table (info)->procedure_count = 0;
1064 goto error_return;
1065 }
1066
1067 mips_elf_hash_table (info)->procedure_count = count + 2;
1068
9719ad41 1069 erp = rtproc;
b49e97c9
TS
1070 memset (erp, 0, sizeof (struct rpdr_ext));
1071 erp++;
1072 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1073 strcpy (str, no_name_func);
1074 str += strlen (no_name_func) + 1;
1075 for (i = 0; i < count; i++)
1076 {
1077 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1078 strcpy (str, sv[i]);
1079 str += strlen (sv[i]) + 1;
1080 }
1081 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1082
1083 /* Set the size and contents of .rtproc section. */
eea6121a 1084 s->size = size;
9719ad41 1085 s->contents = rtproc;
b49e97c9
TS
1086
1087 /* Skip this section later on (I don't think this currently
1088 matters, but someday it might). */
8423293d 1089 s->map_head.link_order = NULL;
b49e97c9
TS
1090
1091 if (epdr != NULL)
1092 free (epdr);
1093 if (rpdr != NULL)
1094 free (rpdr);
1095 if (esym != NULL)
1096 free (esym);
1097 if (ss != NULL)
1098 free (ss);
1099 if (sv != NULL)
1100 free (sv);
1101
b34976b6 1102 return TRUE;
b49e97c9
TS
1103
1104 error_return:
1105 if (epdr != NULL)
1106 free (epdr);
1107 if (rpdr != NULL)
1108 free (rpdr);
1109 if (esym != NULL)
1110 free (esym);
1111 if (ss != NULL)
1112 free (ss);
1113 if (sv != NULL)
1114 free (sv);
b34976b6 1115 return FALSE;
b49e97c9
TS
1116}
1117
1118/* Check the mips16 stubs for a particular symbol, and see if we can
1119 discard them. */
1120
b34976b6 1121static bfd_boolean
9719ad41
RS
1122mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1123 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1124{
1125 if (h->root.root.type == bfd_link_hash_warning)
1126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1127
1128 if (h->fn_stub != NULL
1129 && ! h->need_fn_stub)
1130 {
1131 /* We don't need the fn_stub; the only references to this symbol
1132 are 16 bit calls. Clobber the size to 0 to prevent it from
1133 being included in the link. */
eea6121a 1134 h->fn_stub->size = 0;
b49e97c9
TS
1135 h->fn_stub->flags &= ~SEC_RELOC;
1136 h->fn_stub->reloc_count = 0;
1137 h->fn_stub->flags |= SEC_EXCLUDE;
1138 }
1139
1140 if (h->call_stub != NULL
1141 && h->root.other == STO_MIPS16)
1142 {
1143 /* We don't need the call_stub; this is a 16 bit function, so
1144 calls from other 16 bit functions are OK. Clobber the size
1145 to 0 to prevent it from being included in the link. */
eea6121a 1146 h->call_stub->size = 0;
b49e97c9
TS
1147 h->call_stub->flags &= ~SEC_RELOC;
1148 h->call_stub->reloc_count = 0;
1149 h->call_stub->flags |= SEC_EXCLUDE;
1150 }
1151
1152 if (h->call_fp_stub != NULL
1153 && h->root.other == STO_MIPS16)
1154 {
1155 /* We don't need the call_stub; this is a 16 bit function, so
1156 calls from other 16 bit functions are OK. Clobber the size
1157 to 0 to prevent it from being included in the link. */
eea6121a 1158 h->call_fp_stub->size = 0;
b49e97c9
TS
1159 h->call_fp_stub->flags &= ~SEC_RELOC;
1160 h->call_fp_stub->reloc_count = 0;
1161 h->call_fp_stub->flags |= SEC_EXCLUDE;
1162 }
1163
b34976b6 1164 return TRUE;
b49e97c9
TS
1165}
1166\f
d6f16593
MR
1167/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1168 Most mips16 instructions are 16 bits, but these instructions
1169 are 32 bits.
1170
1171 The format of these instructions is:
1172
1173 +--------------+--------------------------------+
1174 | JALX | X| Imm 20:16 | Imm 25:21 |
1175 +--------------+--------------------------------+
1176 | Immediate 15:0 |
1177 +-----------------------------------------------+
1178
1179 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1180 Note that the immediate value in the first word is swapped.
1181
1182 When producing a relocatable object file, R_MIPS16_26 is
1183 handled mostly like R_MIPS_26. In particular, the addend is
1184 stored as a straight 26-bit value in a 32-bit instruction.
1185 (gas makes life simpler for itself by never adjusting a
1186 R_MIPS16_26 reloc to be against a section, so the addend is
1187 always zero). However, the 32 bit instruction is stored as 2
1188 16-bit values, rather than a single 32-bit value. In a
1189 big-endian file, the result is the same; in a little-endian
1190 file, the two 16-bit halves of the 32 bit value are swapped.
1191 This is so that a disassembler can recognize the jal
1192 instruction.
1193
1194 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1195 instruction stored as two 16-bit values. The addend A is the
1196 contents of the targ26 field. The calculation is the same as
1197 R_MIPS_26. When storing the calculated value, reorder the
1198 immediate value as shown above, and don't forget to store the
1199 value as two 16-bit values.
1200
1201 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1202 defined as
1203
1204 big-endian:
1205 +--------+----------------------+
1206 | | |
1207 | | targ26-16 |
1208 |31 26|25 0|
1209 +--------+----------------------+
1210
1211 little-endian:
1212 +----------+------+-------------+
1213 | | | |
1214 | sub1 | | sub2 |
1215 |0 9|10 15|16 31|
1216 +----------+--------------------+
1217 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1218 ((sub1 << 16) | sub2)).
1219
1220 When producing a relocatable object file, the calculation is
1221 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1222 When producing a fully linked file, the calculation is
1223 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1225
1226 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1227 mode. A typical instruction will have a format like this:
1228
1229 +--------------+--------------------------------+
1230 | EXTEND | Imm 10:5 | Imm 15:11 |
1231 +--------------+--------------------------------+
1232 | Major | rx | ry | Imm 4:0 |
1233 +--------------+--------------------------------+
1234
1235 EXTEND is the five bit value 11110. Major is the instruction
1236 opcode.
1237
1238 This is handled exactly like R_MIPS_GPREL16, except that the
1239 addend is retrieved and stored as shown in this diagram; that
1240 is, the Imm fields above replace the V-rel16 field.
1241
1242 All we need to do here is shuffle the bits appropriately. As
1243 above, the two 16-bit halves must be swapped on a
1244 little-endian system.
1245
1246 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1247 access data when neither GP-relative nor PC-relative addressing
1248 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1249 except that the addend is retrieved and stored as shown above
1250 for R_MIPS16_GPREL.
1251 */
1252void
1253_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1254 bfd_boolean jal_shuffle, bfd_byte *data)
1255{
1256 bfd_vma extend, insn, val;
1257
1258 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1259 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1260 return;
1261
1262 /* Pick up the mips16 extend instruction and the real instruction. */
1263 extend = bfd_get_16 (abfd, data);
1264 insn = bfd_get_16 (abfd, data + 2);
1265 if (r_type == R_MIPS16_26)
1266 {
1267 if (jal_shuffle)
1268 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1269 | ((extend & 0x1f) << 21) | insn;
1270 else
1271 val = extend << 16 | insn;
1272 }
1273 else
1274 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1275 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1276 bfd_put_32 (abfd, val, data);
1277}
1278
1279void
1280_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1281 bfd_boolean jal_shuffle, bfd_byte *data)
1282{
1283 bfd_vma extend, insn, val;
1284
1285 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1286 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1287 return;
1288
1289 val = bfd_get_32 (abfd, data);
1290 if (r_type == R_MIPS16_26)
1291 {
1292 if (jal_shuffle)
1293 {
1294 insn = val & 0xffff;
1295 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1296 | ((val >> 21) & 0x1f);
1297 }
1298 else
1299 {
1300 insn = val & 0xffff;
1301 extend = val >> 16;
1302 }
1303 }
1304 else
1305 {
1306 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1307 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1308 }
1309 bfd_put_16 (abfd, insn, data + 2);
1310 bfd_put_16 (abfd, extend, data);
1311}
1312
b49e97c9 1313bfd_reloc_status_type
9719ad41
RS
1314_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1315 arelent *reloc_entry, asection *input_section,
1316 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1317{
1318 bfd_vma relocation;
a7ebbfdf 1319 bfd_signed_vma val;
30ac9238 1320 bfd_reloc_status_type status;
b49e97c9
TS
1321
1322 if (bfd_is_com_section (symbol->section))
1323 relocation = 0;
1324 else
1325 relocation = symbol->value;
1326
1327 relocation += symbol->section->output_section->vma;
1328 relocation += symbol->section->output_offset;
1329
07515404 1330 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1331 return bfd_reloc_outofrange;
1332
b49e97c9 1333 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1334 val = reloc_entry->addend;
1335
30ac9238 1336 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1337
b49e97c9 1338 /* Adjust val for the final section location and GP value. If we
1049f94e 1339 are producing relocatable output, we don't want to do this for
b49e97c9 1340 an external symbol. */
1049f94e 1341 if (! relocatable
b49e97c9
TS
1342 || (symbol->flags & BSF_SECTION_SYM) != 0)
1343 val += relocation - gp;
1344
a7ebbfdf
TS
1345 if (reloc_entry->howto->partial_inplace)
1346 {
30ac9238
RS
1347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1348 (bfd_byte *) data
1349 + reloc_entry->address);
1350 if (status != bfd_reloc_ok)
1351 return status;
a7ebbfdf
TS
1352 }
1353 else
1354 reloc_entry->addend = val;
b49e97c9 1355
1049f94e 1356 if (relocatable)
b49e97c9 1357 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1358
1359 return bfd_reloc_ok;
1360}
1361
1362/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1363 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1364 that contains the relocation field and DATA points to the start of
1365 INPUT_SECTION. */
1366
1367struct mips_hi16
1368{
1369 struct mips_hi16 *next;
1370 bfd_byte *data;
1371 asection *input_section;
1372 arelent rel;
1373};
1374
1375/* FIXME: This should not be a static variable. */
1376
1377static struct mips_hi16 *mips_hi16_list;
1378
1379/* A howto special_function for REL *HI16 relocations. We can only
1380 calculate the correct value once we've seen the partnering
1381 *LO16 relocation, so just save the information for later.
1382
1383 The ABI requires that the *LO16 immediately follow the *HI16.
1384 However, as a GNU extension, we permit an arbitrary number of
1385 *HI16s to be associated with a single *LO16. This significantly
1386 simplies the relocation handling in gcc. */
1387
1388bfd_reloc_status_type
1389_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1390 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1391 asection *input_section, bfd *output_bfd,
1392 char **error_message ATTRIBUTE_UNUSED)
1393{
1394 struct mips_hi16 *n;
1395
07515404 1396 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1397 return bfd_reloc_outofrange;
1398
1399 n = bfd_malloc (sizeof *n);
1400 if (n == NULL)
1401 return bfd_reloc_outofrange;
1402
1403 n->next = mips_hi16_list;
1404 n->data = data;
1405 n->input_section = input_section;
1406 n->rel = *reloc_entry;
1407 mips_hi16_list = n;
1408
1409 if (output_bfd != NULL)
1410 reloc_entry->address += input_section->output_offset;
1411
1412 return bfd_reloc_ok;
1413}
1414
1415/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1416 like any other 16-bit relocation when applied to global symbols, but is
1417 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1418
1419bfd_reloc_status_type
1420_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1421 void *data, asection *input_section,
1422 bfd *output_bfd, char **error_message)
1423{
1424 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1425 || bfd_is_und_section (bfd_get_section (symbol))
1426 || bfd_is_com_section (bfd_get_section (symbol)))
1427 /* The relocation is against a global symbol. */
1428 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd,
1430 error_message);
1431
1432 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1433 input_section, output_bfd, error_message);
1434}
1435
1436/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1437 is a straightforward 16 bit inplace relocation, but we must deal with
1438 any partnering high-part relocations as well. */
1439
1440bfd_reloc_status_type
1441_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1442 void *data, asection *input_section,
1443 bfd *output_bfd, char **error_message)
1444{
1445 bfd_vma vallo;
d6f16593 1446 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1447
07515404 1448 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1449 return bfd_reloc_outofrange;
1450
d6f16593
MR
1451 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1452 location);
1453 vallo = bfd_get_32 (abfd, location);
1454 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1455 location);
1456
30ac9238
RS
1457 while (mips_hi16_list != NULL)
1458 {
1459 bfd_reloc_status_type ret;
1460 struct mips_hi16 *hi;
1461
1462 hi = mips_hi16_list;
1463
1464 /* R_MIPS_GOT16 relocations are something of a special case. We
1465 want to install the addend in the same way as for a R_MIPS_HI16
1466 relocation (with a rightshift of 16). However, since GOT16
1467 relocations can also be used with global symbols, their howto
1468 has a rightshift of 0. */
1469 if (hi->rel.howto->type == R_MIPS_GOT16)
1470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1471
1472 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1473 carry or borrow will induce a change of +1 or -1 in the high part. */
1474 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1475
30ac9238
RS
1476 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1477 hi->input_section, output_bfd,
1478 error_message);
1479 if (ret != bfd_reloc_ok)
1480 return ret;
1481
1482 mips_hi16_list = hi->next;
1483 free (hi);
1484 }
1485
1486 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1487 input_section, output_bfd,
1488 error_message);
1489}
1490
1491/* A generic howto special_function. This calculates and installs the
1492 relocation itself, thus avoiding the oft-discussed problems in
1493 bfd_perform_relocation and bfd_install_relocation. */
1494
1495bfd_reloc_status_type
1496_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1497 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1498 asection *input_section, bfd *output_bfd,
1499 char **error_message ATTRIBUTE_UNUSED)
1500{
1501 bfd_signed_vma val;
1502 bfd_reloc_status_type status;
1503 bfd_boolean relocatable;
1504
1505 relocatable = (output_bfd != NULL);
1506
07515404 1507 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1508 return bfd_reloc_outofrange;
1509
1510 /* Build up the field adjustment in VAL. */
1511 val = 0;
1512 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1513 {
1514 /* Either we're calculating the final field value or we have a
1515 relocation against a section symbol. Add in the section's
1516 offset or address. */
1517 val += symbol->section->output_section->vma;
1518 val += symbol->section->output_offset;
1519 }
1520
1521 if (!relocatable)
1522 {
1523 /* We're calculating the final field value. Add in the symbol's value
1524 and, if pc-relative, subtract the address of the field itself. */
1525 val += symbol->value;
1526 if (reloc_entry->howto->pc_relative)
1527 {
1528 val -= input_section->output_section->vma;
1529 val -= input_section->output_offset;
1530 val -= reloc_entry->address;
1531 }
1532 }
1533
1534 /* VAL is now the final adjustment. If we're keeping this relocation
1535 in the output file, and if the relocation uses a separate addend,
1536 we just need to add VAL to that addend. Otherwise we need to add
1537 VAL to the relocation field itself. */
1538 if (relocatable && !reloc_entry->howto->partial_inplace)
1539 reloc_entry->addend += val;
1540 else
1541 {
d6f16593
MR
1542 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1543
30ac9238
RS
1544 /* Add in the separate addend, if any. */
1545 val += reloc_entry->addend;
1546
1547 /* Add VAL to the relocation field. */
d6f16593
MR
1548 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
30ac9238 1550 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1551 location);
1552 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1553 location);
1554
30ac9238
RS
1555 if (status != bfd_reloc_ok)
1556 return status;
1557 }
1558
1559 if (relocatable)
1560 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1561
1562 return bfd_reloc_ok;
1563}
1564\f
1565/* Swap an entry in a .gptab section. Note that these routines rely
1566 on the equivalence of the two elements of the union. */
1567
1568static void
9719ad41
RS
1569bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1570 Elf32_gptab *in)
b49e97c9
TS
1571{
1572 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1573 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1574}
1575
1576static void
9719ad41
RS
1577bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1578 Elf32_External_gptab *ex)
b49e97c9
TS
1579{
1580 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1581 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1582}
1583
1584static void
9719ad41
RS
1585bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1586 Elf32_External_compact_rel *ex)
b49e97c9
TS
1587{
1588 H_PUT_32 (abfd, in->id1, ex->id1);
1589 H_PUT_32 (abfd, in->num, ex->num);
1590 H_PUT_32 (abfd, in->id2, ex->id2);
1591 H_PUT_32 (abfd, in->offset, ex->offset);
1592 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1593 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1594}
1595
1596static void
9719ad41
RS
1597bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1598 Elf32_External_crinfo *ex)
b49e97c9
TS
1599{
1600 unsigned long l;
1601
1602 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1603 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1604 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1605 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1606 H_PUT_32 (abfd, l, ex->info);
1607 H_PUT_32 (abfd, in->konst, ex->konst);
1608 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1609}
b49e97c9
TS
1610\f
1611/* A .reginfo section holds a single Elf32_RegInfo structure. These
1612 routines swap this structure in and out. They are used outside of
1613 BFD, so they are globally visible. */
1614
1615void
9719ad41
RS
1616bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1617 Elf32_RegInfo *in)
b49e97c9
TS
1618{
1619 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1620 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1621 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1622 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1623 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1624 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1625}
1626
1627void
9719ad41
RS
1628bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1629 Elf32_External_RegInfo *ex)
b49e97c9
TS
1630{
1631 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1632 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1633 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1634 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1635 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1636 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1637}
1638
1639/* In the 64 bit ABI, the .MIPS.options section holds register
1640 information in an Elf64_Reginfo structure. These routines swap
1641 them in and out. They are globally visible because they are used
1642 outside of BFD. These routines are here so that gas can call them
1643 without worrying about whether the 64 bit ABI has been included. */
1644
1645void
9719ad41
RS
1646bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1647 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1648{
1649 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1650 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1651 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1652 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1653 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1654 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1655 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1656}
1657
1658void
9719ad41
RS
1659bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1660 Elf64_External_RegInfo *ex)
b49e97c9
TS
1661{
1662 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1663 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1664 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1665 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1666 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1667 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1668 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1669}
1670
1671/* Swap in an options header. */
1672
1673void
9719ad41
RS
1674bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1675 Elf_Internal_Options *in)
b49e97c9
TS
1676{
1677 in->kind = H_GET_8 (abfd, ex->kind);
1678 in->size = H_GET_8 (abfd, ex->size);
1679 in->section = H_GET_16 (abfd, ex->section);
1680 in->info = H_GET_32 (abfd, ex->info);
1681}
1682
1683/* Swap out an options header. */
1684
1685void
9719ad41
RS
1686bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1687 Elf_External_Options *ex)
b49e97c9
TS
1688{
1689 H_PUT_8 (abfd, in->kind, ex->kind);
1690 H_PUT_8 (abfd, in->size, ex->size);
1691 H_PUT_16 (abfd, in->section, ex->section);
1692 H_PUT_32 (abfd, in->info, ex->info);
1693}
1694\f
1695/* This function is called via qsort() to sort the dynamic relocation
1696 entries by increasing r_symndx value. */
1697
1698static int
9719ad41 1699sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1700{
947216bf
AM
1701 Elf_Internal_Rela int_reloc1;
1702 Elf_Internal_Rela int_reloc2;
6870500c 1703 int diff;
b49e97c9 1704
947216bf
AM
1705 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1706 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1707
6870500c
RS
1708 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1709 if (diff != 0)
1710 return diff;
1711
1712 if (int_reloc1.r_offset < int_reloc2.r_offset)
1713 return -1;
1714 if (int_reloc1.r_offset > int_reloc2.r_offset)
1715 return 1;
1716 return 0;
b49e97c9
TS
1717}
1718
f4416af6
AO
1719/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1720
1721static int
7e3102a7
AM
1722sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1723 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1724{
7e3102a7 1725#ifdef BFD64
f4416af6
AO
1726 Elf_Internal_Rela int_reloc1[3];
1727 Elf_Internal_Rela int_reloc2[3];
1728
1729 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1730 (reldyn_sorting_bfd, arg1, int_reloc1);
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg2, int_reloc2);
1733
6870500c
RS
1734 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1735 return -1;
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1737 return 1;
1738
1739 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1740 return -1;
1741 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1742 return 1;
1743 return 0;
7e3102a7
AM
1744#else
1745 abort ();
1746#endif
f4416af6
AO
1747}
1748
1749
b49e97c9
TS
1750/* This routine is used to write out ECOFF debugging external symbol
1751 information. It is called via mips_elf_link_hash_traverse. The
1752 ECOFF external symbol information must match the ELF external
1753 symbol information. Unfortunately, at this point we don't know
1754 whether a symbol is required by reloc information, so the two
1755 tables may wind up being different. We must sort out the external
1756 symbol information before we can set the final size of the .mdebug
1757 section, and we must set the size of the .mdebug section before we
1758 can relocate any sections, and we can't know which symbols are
1759 required by relocation until we relocate the sections.
1760 Fortunately, it is relatively unlikely that any symbol will be
1761 stripped but required by a reloc. In particular, it can not happen
1762 when generating a final executable. */
1763
b34976b6 1764static bfd_boolean
9719ad41 1765mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1766{
9719ad41 1767 struct extsym_info *einfo = data;
b34976b6 1768 bfd_boolean strip;
b49e97c9
TS
1769 asection *sec, *output_section;
1770
1771 if (h->root.root.type == bfd_link_hash_warning)
1772 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1773
1774 if (h->root.indx == -2)
b34976b6 1775 strip = FALSE;
f5385ebf 1776 else if ((h->root.def_dynamic
77cfaee6
AM
1777 || h->root.ref_dynamic
1778 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1779 && !h->root.def_regular
1780 && !h->root.ref_regular)
b34976b6 1781 strip = TRUE;
b49e97c9
TS
1782 else if (einfo->info->strip == strip_all
1783 || (einfo->info->strip == strip_some
1784 && bfd_hash_lookup (einfo->info->keep_hash,
1785 h->root.root.root.string,
b34976b6
AM
1786 FALSE, FALSE) == NULL))
1787 strip = TRUE;
b49e97c9 1788 else
b34976b6 1789 strip = FALSE;
b49e97c9
TS
1790
1791 if (strip)
b34976b6 1792 return TRUE;
b49e97c9
TS
1793
1794 if (h->esym.ifd == -2)
1795 {
1796 h->esym.jmptbl = 0;
1797 h->esym.cobol_main = 0;
1798 h->esym.weakext = 0;
1799 h->esym.reserved = 0;
1800 h->esym.ifd = ifdNil;
1801 h->esym.asym.value = 0;
1802 h->esym.asym.st = stGlobal;
1803
1804 if (h->root.root.type == bfd_link_hash_undefined
1805 || h->root.root.type == bfd_link_hash_undefweak)
1806 {
1807 const char *name;
1808
1809 /* Use undefined class. Also, set class and type for some
1810 special symbols. */
1811 name = h->root.root.root.string;
1812 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1813 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1814 {
1815 h->esym.asym.sc = scData;
1816 h->esym.asym.st = stLabel;
1817 h->esym.asym.value = 0;
1818 }
1819 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1820 {
1821 h->esym.asym.sc = scAbs;
1822 h->esym.asym.st = stLabel;
1823 h->esym.asym.value =
1824 mips_elf_hash_table (einfo->info)->procedure_count;
1825 }
4a14403c 1826 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1827 {
1828 h->esym.asym.sc = scAbs;
1829 h->esym.asym.st = stLabel;
1830 h->esym.asym.value = elf_gp (einfo->abfd);
1831 }
1832 else
1833 h->esym.asym.sc = scUndefined;
1834 }
1835 else if (h->root.root.type != bfd_link_hash_defined
1836 && h->root.root.type != bfd_link_hash_defweak)
1837 h->esym.asym.sc = scAbs;
1838 else
1839 {
1840 const char *name;
1841
1842 sec = h->root.root.u.def.section;
1843 output_section = sec->output_section;
1844
1845 /* When making a shared library and symbol h is the one from
1846 the another shared library, OUTPUT_SECTION may be null. */
1847 if (output_section == NULL)
1848 h->esym.asym.sc = scUndefined;
1849 else
1850 {
1851 name = bfd_section_name (output_section->owner, output_section);
1852
1853 if (strcmp (name, ".text") == 0)
1854 h->esym.asym.sc = scText;
1855 else if (strcmp (name, ".data") == 0)
1856 h->esym.asym.sc = scData;
1857 else if (strcmp (name, ".sdata") == 0)
1858 h->esym.asym.sc = scSData;
1859 else if (strcmp (name, ".rodata") == 0
1860 || strcmp (name, ".rdata") == 0)
1861 h->esym.asym.sc = scRData;
1862 else if (strcmp (name, ".bss") == 0)
1863 h->esym.asym.sc = scBss;
1864 else if (strcmp (name, ".sbss") == 0)
1865 h->esym.asym.sc = scSBss;
1866 else if (strcmp (name, ".init") == 0)
1867 h->esym.asym.sc = scInit;
1868 else if (strcmp (name, ".fini") == 0)
1869 h->esym.asym.sc = scFini;
1870 else
1871 h->esym.asym.sc = scAbs;
1872 }
1873 }
1874
1875 h->esym.asym.reserved = 0;
1876 h->esym.asym.index = indexNil;
1877 }
1878
1879 if (h->root.root.type == bfd_link_hash_common)
1880 h->esym.asym.value = h->root.root.u.c.size;
1881 else if (h->root.root.type == bfd_link_hash_defined
1882 || h->root.root.type == bfd_link_hash_defweak)
1883 {
1884 if (h->esym.asym.sc == scCommon)
1885 h->esym.asym.sc = scBss;
1886 else if (h->esym.asym.sc == scSCommon)
1887 h->esym.asym.sc = scSBss;
1888
1889 sec = h->root.root.u.def.section;
1890 output_section = sec->output_section;
1891 if (output_section != NULL)
1892 h->esym.asym.value = (h->root.root.u.def.value
1893 + sec->output_offset
1894 + output_section->vma);
1895 else
1896 h->esym.asym.value = 0;
1897 }
f5385ebf 1898 else if (h->root.needs_plt)
b49e97c9
TS
1899 {
1900 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1901 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1902
1903 while (hd->root.root.type == bfd_link_hash_indirect)
1904 {
1905 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1906 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1907 }
1908
1909 if (!no_fn_stub)
1910 {
1911 /* Set type and value for a symbol with a function stub. */
1912 h->esym.asym.st = stProc;
1913 sec = hd->root.root.u.def.section;
1914 if (sec == NULL)
1915 h->esym.asym.value = 0;
1916 else
1917 {
1918 output_section = sec->output_section;
1919 if (output_section != NULL)
1920 h->esym.asym.value = (hd->root.plt.offset
1921 + sec->output_offset
1922 + output_section->vma);
1923 else
1924 h->esym.asym.value = 0;
1925 }
b49e97c9
TS
1926 }
1927 }
1928
1929 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1930 h->root.root.root.string,
1931 &h->esym))
1932 {
b34976b6
AM
1933 einfo->failed = TRUE;
1934 return FALSE;
b49e97c9
TS
1935 }
1936
b34976b6 1937 return TRUE;
b49e97c9
TS
1938}
1939
1940/* A comparison routine used to sort .gptab entries. */
1941
1942static int
9719ad41 1943gptab_compare (const void *p1, const void *p2)
b49e97c9 1944{
9719ad41
RS
1945 const Elf32_gptab *a1 = p1;
1946 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1947
1948 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1949}
1950\f
b15e6682 1951/* Functions to manage the got entry hash table. */
f4416af6
AO
1952
1953/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1954 hash number. */
1955
1956static INLINE hashval_t
9719ad41 1957mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1958{
1959#ifdef BFD64
1960 return addr + (addr >> 32);
1961#else
1962 return addr;
1963#endif
1964}
1965
1966/* got_entries only match if they're identical, except for gotidx, so
1967 use all fields to compute the hash, and compare the appropriate
1968 union members. */
1969
b15e6682 1970static hashval_t
9719ad41 1971mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1972{
1973 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1974
38985a1c 1975 return entry->symndx
0f20cc35 1976 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1977 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1978 : entry->abfd->id
1979 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1980 : entry->d.h->root.root.root.hash));
b15e6682
AO
1981}
1982
1983static int
9719ad41 1984mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1985{
1986 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1987 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1988
0f20cc35
DJ
1989 /* An LDM entry can only match another LDM entry. */
1990 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1991 return 0;
1992
b15e6682 1993 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1994 && (! e1->abfd ? e1->d.address == e2->d.address
1995 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1996 : e1->d.h == e2->d.h);
1997}
1998
1999/* multi_got_entries are still a match in the case of global objects,
2000 even if the input bfd in which they're referenced differs, so the
2001 hash computation and compare functions are adjusted
2002 accordingly. */
2003
2004static hashval_t
9719ad41 2005mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
2006{
2007 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2008
2009 return entry->symndx
2010 + (! entry->abfd
2011 ? mips_elf_hash_bfd_vma (entry->d.address)
2012 : entry->symndx >= 0
0f20cc35
DJ
2013 ? ((entry->tls_type & GOT_TLS_LDM)
2014 ? (GOT_TLS_LDM << 17)
2015 : (entry->abfd->id
2016 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
2017 : entry->d.h->root.root.root.hash);
2018}
2019
2020static int
9719ad41 2021mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2022{
2023 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2024 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2025
0f20cc35
DJ
2026 /* Any two LDM entries match. */
2027 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2028 return 1;
2029
2030 /* Nothing else matches an LDM entry. */
2031 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2032 return 0;
2033
f4416af6
AO
2034 return e1->symndx == e2->symndx
2035 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2036 : e1->abfd == NULL || e2->abfd == NULL
2037 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2038 : e1->d.h == e2->d.h);
b15e6682
AO
2039}
2040\f
0a44bf69
RS
2041/* Return the dynamic relocation section. If it doesn't exist, try to
2042 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2043 if creation fails. */
f4416af6
AO
2044
2045static asection *
0a44bf69 2046mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2047{
0a44bf69 2048 const char *dname;
f4416af6 2049 asection *sreloc;
0a44bf69 2050 bfd *dynobj;
f4416af6 2051
0a44bf69
RS
2052 dname = MIPS_ELF_REL_DYN_NAME (info);
2053 dynobj = elf_hash_table (info)->dynobj;
f4416af6
AO
2054 sreloc = bfd_get_section_by_name (dynobj, dname);
2055 if (sreloc == NULL && create_p)
2056 {
3496cb2a
L
2057 sreloc = bfd_make_section_with_flags (dynobj, dname,
2058 (SEC_ALLOC
2059 | SEC_LOAD
2060 | SEC_HAS_CONTENTS
2061 | SEC_IN_MEMORY
2062 | SEC_LINKER_CREATED
2063 | SEC_READONLY));
f4416af6 2064 if (sreloc == NULL
f4416af6 2065 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2066 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2067 return NULL;
2068 }
2069 return sreloc;
2070}
2071
b49e97c9
TS
2072/* Returns the GOT section for ABFD. */
2073
2074static asection *
9719ad41 2075mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 2076{
f4416af6
AO
2077 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2078 if (sgot == NULL
2079 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2080 return NULL;
2081 return sgot;
b49e97c9
TS
2082}
2083
2084/* Returns the GOT information associated with the link indicated by
2085 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2086 section. */
2087
2088static struct mips_got_info *
9719ad41 2089mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
2090{
2091 asection *sgot;
2092 struct mips_got_info *g;
2093
f4416af6 2094 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 2095 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
2096 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2097 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
2098 BFD_ASSERT (g != NULL);
2099
2100 if (sgotp)
f4416af6
AO
2101 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2102
b49e97c9
TS
2103 return g;
2104}
2105
0f20cc35
DJ
2106/* Count the number of relocations needed for a TLS GOT entry, with
2107 access types from TLS_TYPE, and symbol H (or a local symbol if H
2108 is NULL). */
2109
2110static int
2111mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2112 struct elf_link_hash_entry *h)
2113{
2114 int indx = 0;
2115 int ret = 0;
2116 bfd_boolean need_relocs = FALSE;
2117 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2118
2119 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2120 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2121 indx = h->dynindx;
2122
2123 if ((info->shared || indx != 0)
2124 && (h == NULL
2125 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2126 || h->root.type != bfd_link_hash_undefweak))
2127 need_relocs = TRUE;
2128
2129 if (!need_relocs)
2130 return FALSE;
2131
2132 if (tls_type & GOT_TLS_GD)
2133 {
2134 ret++;
2135 if (indx != 0)
2136 ret++;
2137 }
2138
2139 if (tls_type & GOT_TLS_IE)
2140 ret++;
2141
2142 if ((tls_type & GOT_TLS_LDM) && info->shared)
2143 ret++;
2144
2145 return ret;
2146}
2147
2148/* Count the number of TLS relocations required for the GOT entry in
2149 ARG1, if it describes a local symbol. */
2150
2151static int
2152mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2153{
2154 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2155 struct mips_elf_count_tls_arg *arg = arg2;
2156
2157 if (entry->abfd != NULL && entry->symndx != -1)
2158 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2159
2160 return 1;
2161}
2162
2163/* Count the number of TLS GOT entries required for the global (or
2164 forced-local) symbol in ARG1. */
2165
2166static int
2167mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2168{
2169 struct mips_elf_link_hash_entry *hm
2170 = (struct mips_elf_link_hash_entry *) arg1;
2171 struct mips_elf_count_tls_arg *arg = arg2;
2172
2173 if (hm->tls_type & GOT_TLS_GD)
2174 arg->needed += 2;
2175 if (hm->tls_type & GOT_TLS_IE)
2176 arg->needed += 1;
2177
2178 return 1;
2179}
2180
2181/* Count the number of TLS relocations required for the global (or
2182 forced-local) symbol in ARG1. */
2183
2184static int
2185mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2186{
2187 struct mips_elf_link_hash_entry *hm
2188 = (struct mips_elf_link_hash_entry *) arg1;
2189 struct mips_elf_count_tls_arg *arg = arg2;
2190
2191 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2192
2193 return 1;
2194}
2195
2196/* Output a simple dynamic relocation into SRELOC. */
2197
2198static void
2199mips_elf_output_dynamic_relocation (bfd *output_bfd,
2200 asection *sreloc,
2201 unsigned long indx,
2202 int r_type,
2203 bfd_vma offset)
2204{
2205 Elf_Internal_Rela rel[3];
2206
2207 memset (rel, 0, sizeof (rel));
2208
2209 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2210 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2211
2212 if (ABI_64_P (output_bfd))
2213 {
2214 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2215 (output_bfd, &rel[0],
2216 (sreloc->contents
2217 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2218 }
2219 else
2220 bfd_elf32_swap_reloc_out
2221 (output_bfd, &rel[0],
2222 (sreloc->contents
2223 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2224 ++sreloc->reloc_count;
2225}
2226
2227/* Initialize a set of TLS GOT entries for one symbol. */
2228
2229static void
2230mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2231 unsigned char *tls_type_p,
2232 struct bfd_link_info *info,
2233 struct mips_elf_link_hash_entry *h,
2234 bfd_vma value)
2235{
2236 int indx;
2237 asection *sreloc, *sgot;
2238 bfd_vma offset, offset2;
2239 bfd *dynobj;
2240 bfd_boolean need_relocs = FALSE;
2241
2242 dynobj = elf_hash_table (info)->dynobj;
2243 sgot = mips_elf_got_section (dynobj, FALSE);
2244
2245 indx = 0;
2246 if (h != NULL)
2247 {
2248 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2249
2250 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2251 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2252 indx = h->root.dynindx;
2253 }
2254
2255 if (*tls_type_p & GOT_TLS_DONE)
2256 return;
2257
2258 if ((info->shared || indx != 0)
2259 && (h == NULL
2260 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2261 || h->root.type != bfd_link_hash_undefweak))
2262 need_relocs = TRUE;
2263
2264 /* MINUS_ONE means the symbol is not defined in this object. It may not
2265 be defined at all; assume that the value doesn't matter in that
2266 case. Otherwise complain if we would use the value. */
2267 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2268 || h->root.root.type == bfd_link_hash_undefweak);
2269
2270 /* Emit necessary relocations. */
0a44bf69 2271 sreloc = mips_elf_rel_dyn_section (info, FALSE);
0f20cc35
DJ
2272
2273 /* General Dynamic. */
2274 if (*tls_type_p & GOT_TLS_GD)
2275 {
2276 offset = got_offset;
2277 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2278
2279 if (need_relocs)
2280 {
2281 mips_elf_output_dynamic_relocation
2282 (abfd, sreloc, indx,
2283 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2284 sgot->output_offset + sgot->output_section->vma + offset);
2285
2286 if (indx)
2287 mips_elf_output_dynamic_relocation
2288 (abfd, sreloc, indx,
2289 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2290 sgot->output_offset + sgot->output_section->vma + offset2);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2293 sgot->contents + offset2);
2294 }
2295 else
2296 {
2297 MIPS_ELF_PUT_WORD (abfd, 1,
2298 sgot->contents + offset);
2299 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2300 sgot->contents + offset2);
2301 }
2302
2303 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2304 }
2305
2306 /* Initial Exec model. */
2307 if (*tls_type_p & GOT_TLS_IE)
2308 {
2309 offset = got_offset;
2310
2311 if (need_relocs)
2312 {
2313 if (indx == 0)
2314 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2315 sgot->contents + offset);
2316 else
2317 MIPS_ELF_PUT_WORD (abfd, 0,
2318 sgot->contents + offset);
2319
2320 mips_elf_output_dynamic_relocation
2321 (abfd, sreloc, indx,
2322 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2323 sgot->output_offset + sgot->output_section->vma + offset);
2324 }
2325 else
2326 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2327 sgot->contents + offset);
2328 }
2329
2330 if (*tls_type_p & GOT_TLS_LDM)
2331 {
2332 /* The initial offset is zero, and the LD offsets will include the
2333 bias by DTP_OFFSET. */
2334 MIPS_ELF_PUT_WORD (abfd, 0,
2335 sgot->contents + got_offset
2336 + MIPS_ELF_GOT_SIZE (abfd));
2337
2338 if (!info->shared)
2339 MIPS_ELF_PUT_WORD (abfd, 1,
2340 sgot->contents + got_offset);
2341 else
2342 mips_elf_output_dynamic_relocation
2343 (abfd, sreloc, indx,
2344 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2345 sgot->output_offset + sgot->output_section->vma + got_offset);
2346 }
2347
2348 *tls_type_p |= GOT_TLS_DONE;
2349}
2350
2351/* Return the GOT index to use for a relocation of type R_TYPE against
2352 a symbol accessed using TLS_TYPE models. The GOT entries for this
2353 symbol in this GOT start at GOT_INDEX. This function initializes the
2354 GOT entries and corresponding relocations. */
2355
2356static bfd_vma
2357mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2358 int r_type, struct bfd_link_info *info,
2359 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2360{
2361 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2362 || r_type == R_MIPS_TLS_LDM);
2363
2364 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2365
2366 if (r_type == R_MIPS_TLS_GOTTPREL)
2367 {
2368 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2369 if (*tls_type & GOT_TLS_GD)
2370 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2371 else
2372 return got_index;
2373 }
2374
2375 if (r_type == R_MIPS_TLS_GD)
2376 {
2377 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2378 return got_index;
2379 }
2380
2381 if (r_type == R_MIPS_TLS_LDM)
2382 {
2383 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2384 return got_index;
2385 }
2386
2387 return got_index;
2388}
2389
0a44bf69
RS
2390/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2391 for global symbol H. .got.plt comes before the GOT, so the offset
2392 will be negative. */
2393
2394static bfd_vma
2395mips_elf_gotplt_index (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2397{
2398 bfd_vma plt_index, got_address, got_value;
2399 struct mips_elf_link_hash_table *htab;
2400
2401 htab = mips_elf_hash_table (info);
2402 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2403
2404 /* Calculate the index of the symbol's PLT entry. */
2405 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2406
2407 /* Calculate the address of the associated .got.plt entry. */
2408 got_address = (htab->sgotplt->output_section->vma
2409 + htab->sgotplt->output_offset
2410 + plt_index * 4);
2411
2412 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2413 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2414 + htab->root.hgot->root.u.def.section->output_offset
2415 + htab->root.hgot->root.u.def.value);
2416
2417 return got_address - got_value;
2418}
2419
5c18022e 2420/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
2421 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2422 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2423 offset can be found. */
b49e97c9
TS
2424
2425static bfd_vma
9719ad41 2426mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2427 bfd_vma value, unsigned long r_symndx,
0f20cc35 2428 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2429{
2430 asection *sgot;
2431 struct mips_got_info *g;
b15e6682 2432 struct mips_got_entry *entry;
b49e97c9
TS
2433
2434 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2435
0a44bf69 2436 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2437 value, r_symndx, h, r_type);
0f20cc35 2438 if (!entry)
b15e6682 2439 return MINUS_ONE;
0f20cc35
DJ
2440
2441 if (TLS_RELOC_P (r_type))
ead49a57
RS
2442 {
2443 if (entry->symndx == -1 && g->next == NULL)
2444 /* A type (3) entry in the single-GOT case. We use the symbol's
2445 hash table entry to track the index. */
2446 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2447 r_type, info, h, value);
2448 else
2449 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2450 r_type, info, h, value);
2451 }
0f20cc35
DJ
2452 else
2453 return entry->gotidx;
b49e97c9
TS
2454}
2455
2456/* Returns the GOT index for the global symbol indicated by H. */
2457
2458static bfd_vma
0f20cc35
DJ
2459mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2460 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2461{
2462 bfd_vma index;
2463 asection *sgot;
f4416af6 2464 struct mips_got_info *g, *gg;
d0c7ff07 2465 long global_got_dynindx = 0;
b49e97c9 2466
f4416af6
AO
2467 gg = g = mips_elf_got_info (abfd, &sgot);
2468 if (g->bfd2got && ibfd)
2469 {
2470 struct mips_got_entry e, *p;
143d77c5 2471
f4416af6
AO
2472 BFD_ASSERT (h->dynindx >= 0);
2473
2474 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2475 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2476 {
2477 e.abfd = ibfd;
2478 e.symndx = -1;
2479 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2480 e.tls_type = 0;
f4416af6 2481
9719ad41 2482 p = htab_find (g->got_entries, &e);
f4416af6
AO
2483
2484 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2485
2486 if (TLS_RELOC_P (r_type))
2487 {
2488 bfd_vma value = MINUS_ONE;
2489 if ((h->root.type == bfd_link_hash_defined
2490 || h->root.type == bfd_link_hash_defweak)
2491 && h->root.u.def.section->output_section)
2492 value = (h->root.u.def.value
2493 + h->root.u.def.section->output_offset
2494 + h->root.u.def.section->output_section->vma);
2495
2496 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2497 info, e.d.h, value);
2498 }
2499 else
2500 return p->gotidx;
f4416af6
AO
2501 }
2502 }
2503
2504 if (gg->global_gotsym != NULL)
2505 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2506
0f20cc35
DJ
2507 if (TLS_RELOC_P (r_type))
2508 {
2509 struct mips_elf_link_hash_entry *hm
2510 = (struct mips_elf_link_hash_entry *) h;
2511 bfd_vma value = MINUS_ONE;
2512
2513 if ((h->root.type == bfd_link_hash_defined
2514 || h->root.type == bfd_link_hash_defweak)
2515 && h->root.u.def.section->output_section)
2516 value = (h->root.u.def.value
2517 + h->root.u.def.section->output_offset
2518 + h->root.u.def.section->output_section->vma);
2519
2520 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2521 r_type, info, hm, value);
2522 }
2523 else
2524 {
2525 /* Once we determine the global GOT entry with the lowest dynamic
2526 symbol table index, we must put all dynamic symbols with greater
2527 indices into the GOT. That makes it easy to calculate the GOT
2528 offset. */
2529 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2530 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2531 * MIPS_ELF_GOT_SIZE (abfd));
2532 }
eea6121a 2533 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2534
2535 return index;
2536}
2537
5c18022e
RS
2538/* Find a GOT page entry that points to within 32KB of VALUE. These
2539 entries are supposed to be placed at small offsets in the GOT, i.e.,
2540 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2541 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 2542 offset of the GOT entry from VALUE. */
b49e97c9
TS
2543
2544static bfd_vma
9719ad41 2545mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2546 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2547{
2548 asection *sgot;
2549 struct mips_got_info *g;
0a44bf69 2550 bfd_vma page, index;
b15e6682 2551 struct mips_got_entry *entry;
b49e97c9
TS
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
0a44bf69
RS
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2557 page, 0, NULL, R_MIPS_GOT_PAGE);
b49e97c9 2558
b15e6682
AO
2559 if (!entry)
2560 return MINUS_ONE;
143d77c5 2561
b15e6682 2562 index = entry->gotidx;
b49e97c9
TS
2563
2564 if (offsetp)
f4416af6 2565 *offsetp = value - entry->d.address;
b49e97c9
TS
2566
2567 return index;
2568}
2569
5c18022e 2570/* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
0a44bf69
RS
2571 EXTERNAL is true if the relocation was against a global symbol
2572 that has been forced local. */
b49e97c9
TS
2573
2574static bfd_vma
9719ad41 2575mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 2576 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2577{
2578 asection *sgot;
2579 struct mips_got_info *g;
b15e6682 2580 struct mips_got_entry *entry;
b49e97c9 2581
0a44bf69
RS
2582 /* GOT16 relocations against local symbols are followed by a LO16
2583 relocation; those against global symbols are not. Thus if the
2584 symbol was originally local, the GOT16 relocation should load the
2585 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 2586 if (! external)
0a44bf69 2587 value = mips_elf_high (value) << 16;
b49e97c9
TS
2588
2589 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2590
0a44bf69 2591 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
5c18022e 2592 value, 0, NULL, R_MIPS_GOT16);
b15e6682
AO
2593 if (entry)
2594 return entry->gotidx;
2595 else
2596 return MINUS_ONE;
b49e97c9
TS
2597}
2598
2599/* Returns the offset for the entry at the INDEXth position
2600 in the GOT. */
2601
2602static bfd_vma
9719ad41
RS
2603mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2604 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2605{
2606 asection *sgot;
2607 bfd_vma gp;
f4416af6 2608 struct mips_got_info *g;
b49e97c9 2609
f4416af6
AO
2610 g = mips_elf_got_info (dynobj, &sgot);
2611 gp = _bfd_get_gp_value (output_bfd)
2612 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2613
f4416af6 2614 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2615}
2616
0a44bf69
RS
2617/* Create and return a local GOT entry for VALUE, which was calculated
2618 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2619 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2620 instead. */
b49e97c9 2621
b15e6682 2622static struct mips_got_entry *
0a44bf69
RS
2623mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2624 bfd *ibfd, struct mips_got_info *gg,
5c18022e
RS
2625 asection *sgot, bfd_vma value,
2626 unsigned long r_symndx,
0f20cc35
DJ
2627 struct mips_elf_link_hash_entry *h,
2628 int r_type)
b49e97c9 2629{
b15e6682 2630 struct mips_got_entry entry, **loc;
f4416af6 2631 struct mips_got_info *g;
0a44bf69
RS
2632 struct mips_elf_link_hash_table *htab;
2633
2634 htab = mips_elf_hash_table (info);
b15e6682 2635
f4416af6
AO
2636 entry.abfd = NULL;
2637 entry.symndx = -1;
2638 entry.d.address = value;
0f20cc35 2639 entry.tls_type = 0;
f4416af6
AO
2640
2641 g = mips_elf_got_for_ibfd (gg, ibfd);
2642 if (g == NULL)
2643 {
2644 g = mips_elf_got_for_ibfd (gg, abfd);
2645 BFD_ASSERT (g != NULL);
2646 }
b15e6682 2647
0f20cc35
DJ
2648 /* We might have a symbol, H, if it has been forced local. Use the
2649 global entry then. It doesn't matter whether an entry is local
2650 or global for TLS, since the dynamic linker does not
2651 automatically relocate TLS GOT entries. */
a008ac03 2652 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2653 if (TLS_RELOC_P (r_type))
2654 {
2655 struct mips_got_entry *p;
2656
2657 entry.abfd = ibfd;
2658 if (r_type == R_MIPS_TLS_LDM)
2659 {
2660 entry.tls_type = GOT_TLS_LDM;
2661 entry.symndx = 0;
2662 entry.d.addend = 0;
2663 }
2664 else if (h == NULL)
2665 {
2666 entry.symndx = r_symndx;
2667 entry.d.addend = 0;
2668 }
2669 else
2670 entry.d.h = h;
2671
2672 p = (struct mips_got_entry *)
2673 htab_find (g->got_entries, &entry);
2674
2675 BFD_ASSERT (p);
2676 return p;
2677 }
2678
b15e6682
AO
2679 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2680 INSERT);
2681 if (*loc)
2682 return *loc;
143d77c5 2683
b15e6682 2684 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2685 entry.tls_type = 0;
b15e6682
AO
2686
2687 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2688
2689 if (! *loc)
2690 return NULL;
143d77c5 2691
b15e6682
AO
2692 memcpy (*loc, &entry, sizeof entry);
2693
b49e97c9
TS
2694 if (g->assigned_gotno >= g->local_gotno)
2695 {
f4416af6 2696 (*loc)->gotidx = -1;
b49e97c9
TS
2697 /* We didn't allocate enough space in the GOT. */
2698 (*_bfd_error_handler)
2699 (_("not enough GOT space for local GOT entries"));
2700 bfd_set_error (bfd_error_bad_value);
b15e6682 2701 return NULL;
b49e97c9
TS
2702 }
2703
2704 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2705 (sgot->contents + entry.gotidx));
2706
5c18022e 2707 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
2708 if (htab->is_vxworks)
2709 {
2710 Elf_Internal_Rela outrel;
5c18022e 2711 asection *s;
0a44bf69
RS
2712 bfd_byte *loc;
2713 bfd_vma got_address;
0a44bf69
RS
2714
2715 s = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69
RS
2716 got_address = (sgot->output_section->vma
2717 + sgot->output_offset
2718 + entry.gotidx);
2719
2720 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2721 outrel.r_offset = got_address;
5c18022e
RS
2722 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2723 outrel.r_addend = value;
0a44bf69
RS
2724 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2725 }
2726
b15e6682 2727 return *loc;
b49e97c9
TS
2728}
2729
2730/* Sort the dynamic symbol table so that symbols that need GOT entries
2731 appear towards the end. This reduces the amount of GOT space
2732 required. MAX_LOCAL is used to set the number of local symbols
2733 known to be in the dynamic symbol table. During
2734 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2735 section symbols are added and the count is higher. */
2736
b34976b6 2737static bfd_boolean
9719ad41 2738mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2739{
2740 struct mips_elf_hash_sort_data hsd;
2741 struct mips_got_info *g;
2742 bfd *dynobj;
2743
2744 dynobj = elf_hash_table (info)->dynobj;
2745
f4416af6
AO
2746 g = mips_elf_got_info (dynobj, NULL);
2747
b49e97c9 2748 hsd.low = NULL;
143d77c5 2749 hsd.max_unref_got_dynindx =
f4416af6
AO
2750 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2751 /* In the multi-got case, assigned_gotno of the master got_info
2752 indicate the number of entries that aren't referenced in the
2753 primary GOT, but that must have entries because there are
2754 dynamic relocations that reference it. Since they aren't
2755 referenced, we move them to the end of the GOT, so that they
2756 don't prevent other entries that are referenced from getting
2757 too large offsets. */
2758 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2759 hsd.max_non_got_dynindx = max_local;
2760 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2761 elf_hash_table (info)),
2762 mips_elf_sort_hash_table_f,
2763 &hsd);
2764
2765 /* There should have been enough room in the symbol table to
44c410de 2766 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2767 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2768 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2769 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2770
2771 /* Now we know which dynamic symbol has the lowest dynamic symbol
2772 table index in the GOT. */
b49e97c9
TS
2773 g->global_gotsym = hsd.low;
2774
b34976b6 2775 return TRUE;
b49e97c9
TS
2776}
2777
2778/* If H needs a GOT entry, assign it the highest available dynamic
2779 index. Otherwise, assign it the lowest available dynamic
2780 index. */
2781
b34976b6 2782static bfd_boolean
9719ad41 2783mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2784{
9719ad41 2785 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2786
2787 if (h->root.root.type == bfd_link_hash_warning)
2788 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2789
2790 /* Symbols without dynamic symbol table entries aren't interesting
2791 at all. */
2792 if (h->root.dynindx == -1)
b34976b6 2793 return TRUE;
b49e97c9 2794
f4416af6
AO
2795 /* Global symbols that need GOT entries that are not explicitly
2796 referenced are marked with got offset 2. Those that are
2797 referenced get a 1, and those that don't need GOT entries get
2798 -1. */
2799 if (h->root.got.offset == 2)
2800 {
0f20cc35
DJ
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
f4416af6
AO
2803 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 h->root.dynindx = hsd->max_unref_got_dynindx++;
2806 }
2807 else if (h->root.got.offset != 1)
b49e97c9
TS
2808 h->root.dynindx = hsd->max_non_got_dynindx++;
2809 else
2810 {
0f20cc35
DJ
2811 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2812
b49e97c9
TS
2813 h->root.dynindx = --hsd->min_got_dynindx;
2814 hsd->low = (struct elf_link_hash_entry *) h;
2815 }
2816
b34976b6 2817 return TRUE;
b49e97c9
TS
2818}
2819
2820/* If H is a symbol that needs a global GOT entry, but has a dynamic
2821 symbol table index lower than any we've seen to date, record it for
2822 posterity. */
2823
b34976b6 2824static bfd_boolean
9719ad41
RS
2825mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2826 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2827 struct mips_got_info *g,
2828 unsigned char tls_flag)
b49e97c9 2829{
f4416af6
AO
2830 struct mips_got_entry entry, **loc;
2831
b49e97c9
TS
2832 /* A global symbol in the GOT must also be in the dynamic symbol
2833 table. */
7c5fcef7
L
2834 if (h->dynindx == -1)
2835 {
2836 switch (ELF_ST_VISIBILITY (h->other))
2837 {
2838 case STV_INTERNAL:
2839 case STV_HIDDEN:
b34976b6 2840 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2841 break;
2842 }
c152c796 2843 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2844 return FALSE;
7c5fcef7 2845 }
b49e97c9 2846
86324f90
EC
2847 /* Make sure we have a GOT to put this entry into. */
2848 BFD_ASSERT (g != NULL);
2849
f4416af6
AO
2850 entry.abfd = abfd;
2851 entry.symndx = -1;
2852 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2853 entry.tls_type = 0;
f4416af6
AO
2854
2855 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2856 INSERT);
2857
b49e97c9
TS
2858 /* If we've already marked this entry as needing GOT space, we don't
2859 need to do it again. */
f4416af6 2860 if (*loc)
0f20cc35
DJ
2861 {
2862 (*loc)->tls_type |= tls_flag;
2863 return TRUE;
2864 }
f4416af6
AO
2865
2866 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2867
2868 if (! *loc)
2869 return FALSE;
143d77c5 2870
f4416af6 2871 entry.gotidx = -1;
0f20cc35
DJ
2872 entry.tls_type = tls_flag;
2873
f4416af6
AO
2874 memcpy (*loc, &entry, sizeof entry);
2875
b49e97c9 2876 if (h->got.offset != MINUS_ONE)
b34976b6 2877 return TRUE;
b49e97c9
TS
2878
2879 /* By setting this to a value other than -1, we are indicating that
2880 there needs to be a GOT entry for H. Avoid using zero, as the
2881 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2882 if (tls_flag == 0)
2883 h->got.offset = 1;
b49e97c9 2884
b34976b6 2885 return TRUE;
b49e97c9 2886}
f4416af6
AO
2887
2888/* Reserve space in G for a GOT entry containing the value of symbol
2889 SYMNDX in input bfd ABDF, plus ADDEND. */
2890
2891static bfd_boolean
9719ad41 2892mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2893 struct mips_got_info *g,
2894 unsigned char tls_flag)
f4416af6
AO
2895{
2896 struct mips_got_entry entry, **loc;
2897
2898 entry.abfd = abfd;
2899 entry.symndx = symndx;
2900 entry.d.addend = addend;
0f20cc35 2901 entry.tls_type = tls_flag;
f4416af6
AO
2902 loc = (struct mips_got_entry **)
2903 htab_find_slot (g->got_entries, &entry, INSERT);
2904
2905 if (*loc)
0f20cc35
DJ
2906 {
2907 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2908 {
2909 g->tls_gotno += 2;
2910 (*loc)->tls_type |= tls_flag;
2911 }
2912 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2913 {
2914 g->tls_gotno += 1;
2915 (*loc)->tls_type |= tls_flag;
2916 }
2917 return TRUE;
2918 }
f4416af6 2919
0f20cc35
DJ
2920 if (tls_flag != 0)
2921 {
2922 entry.gotidx = -1;
2923 entry.tls_type = tls_flag;
2924 if (tls_flag == GOT_TLS_IE)
2925 g->tls_gotno += 1;
2926 else if (tls_flag == GOT_TLS_GD)
2927 g->tls_gotno += 2;
2928 else if (g->tls_ldm_offset == MINUS_ONE)
2929 {
2930 g->tls_ldm_offset = MINUS_TWO;
2931 g->tls_gotno += 2;
2932 }
2933 }
2934 else
2935 {
2936 entry.gotidx = g->local_gotno++;
2937 entry.tls_type = 0;
2938 }
f4416af6
AO
2939
2940 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2941
2942 if (! *loc)
2943 return FALSE;
143d77c5 2944
f4416af6
AO
2945 memcpy (*loc, &entry, sizeof entry);
2946
2947 return TRUE;
2948}
2949\f
2950/* Compute the hash value of the bfd in a bfd2got hash entry. */
2951
2952static hashval_t
9719ad41 2953mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2954{
2955 const struct mips_elf_bfd2got_hash *entry
2956 = (struct mips_elf_bfd2got_hash *)entry_;
2957
2958 return entry->bfd->id;
2959}
2960
2961/* Check whether two hash entries have the same bfd. */
2962
2963static int
9719ad41 2964mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2965{
2966 const struct mips_elf_bfd2got_hash *e1
2967 = (const struct mips_elf_bfd2got_hash *)entry1;
2968 const struct mips_elf_bfd2got_hash *e2
2969 = (const struct mips_elf_bfd2got_hash *)entry2;
2970
2971 return e1->bfd == e2->bfd;
2972}
2973
bad36eac 2974/* In a multi-got link, determine the GOT to be used for IBFD. G must
f4416af6
AO
2975 be the master GOT data. */
2976
2977static struct mips_got_info *
9719ad41 2978mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2979{
2980 struct mips_elf_bfd2got_hash e, *p;
2981
2982 if (! g->bfd2got)
2983 return g;
2984
2985 e.bfd = ibfd;
9719ad41 2986 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2987 return p ? p->g : NULL;
2988}
2989
2990/* Create one separate got for each bfd that has entries in the global
2991 got, such that we can tell how many local and global entries each
2992 bfd requires. */
2993
2994static int
9719ad41 2995mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2996{
2997 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2998 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2999 htab_t bfd2got = arg->bfd2got;
3000 struct mips_got_info *g;
3001 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3002 void **bfdgotp;
143d77c5 3003
f4416af6
AO
3004 /* Find the got_info for this GOT entry's input bfd. Create one if
3005 none exists. */
3006 bfdgot_entry.bfd = entry->abfd;
3007 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3008 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3009
3010 if (bfdgot != NULL)
3011 g = bfdgot->g;
3012 else
3013 {
3014 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3015 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3016
3017 if (bfdgot == NULL)
3018 {
3019 arg->obfd = 0;
3020 return 0;
3021 }
3022
3023 *bfdgotp = bfdgot;
3024
3025 bfdgot->bfd = entry->abfd;
3026 bfdgot->g = g = (struct mips_got_info *)
3027 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3028 if (g == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 g->global_gotsym = NULL;
3035 g->global_gotno = 0;
3036 g->local_gotno = 0;
3037 g->assigned_gotno = -1;
0f20cc35
DJ
3038 g->tls_gotno = 0;
3039 g->tls_assigned_gotno = 0;
3040 g->tls_ldm_offset = MINUS_ONE;
f4416af6 3041 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 3042 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
3043 if (g->got_entries == NULL)
3044 {
3045 arg->obfd = 0;
3046 return 0;
3047 }
3048
3049 g->bfd2got = NULL;
3050 g->next = NULL;
3051 }
3052
3053 /* Insert the GOT entry in the bfd's got entry hash table. */
3054 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3055 if (*entryp != NULL)
3056 return 1;
143d77c5 3057
f4416af6
AO
3058 *entryp = entry;
3059
0f20cc35
DJ
3060 if (entry->tls_type)
3061 {
3062 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3063 g->tls_gotno += 2;
3064 if (entry->tls_type & GOT_TLS_IE)
3065 g->tls_gotno += 1;
3066 }
3067 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
3068 ++g->local_gotno;
3069 else
3070 ++g->global_gotno;
3071
3072 return 1;
3073}
3074
3075/* Attempt to merge gots of different input bfds. Try to use as much
3076 as possible of the primary got, since it doesn't require explicit
3077 dynamic relocations, but don't use bfds that would reference global
3078 symbols out of the addressable range. Failing the primary got,
3079 attempt to merge with the current got, or finish the current got
3080 and then make make the new got current. */
3081
3082static int
9719ad41 3083mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
3084{
3085 struct mips_elf_bfd2got_hash *bfd2got
3086 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3087 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3088 unsigned int lcount = bfd2got->g->local_gotno;
3089 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 3090 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 3091 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
3092 bfd_boolean too_many_for_tls = FALSE;
3093
3094 /* We place TLS GOT entries after both locals and globals. The globals
3095 for the primary GOT may overflow the normal GOT size limit, so be
3096 sure not to merge a GOT which requires TLS with the primary GOT in that
3097 case. This doesn't affect non-primary GOTs. */
3098 if (tcount > 0)
3099 {
3100 unsigned int primary_total = lcount + tcount + arg->global_count;
3110dbc9 3101 if (primary_total > maxcnt)
0f20cc35
DJ
3102 too_many_for_tls = TRUE;
3103 }
143d77c5 3104
f4416af6
AO
3105 /* If we don't have a primary GOT and this is not too big, use it as
3106 a starting point for the primary GOT. */
0f20cc35
DJ
3107 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3108 && ! too_many_for_tls)
f4416af6
AO
3109 {
3110 arg->primary = bfd2got->g;
3111 arg->primary_count = lcount + gcount;
3112 }
3113 /* If it looks like we can merge this bfd's entries with those of
3114 the primary, merge them. The heuristics is conservative, but we
3115 don't have to squeeze it too hard. */
0f20cc35
DJ
3116 else if (arg->primary && ! too_many_for_tls
3117 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
3118 {
3119 struct mips_got_info *g = bfd2got->g;
3120 int old_lcount = arg->primary->local_gotno;
3121 int old_gcount = arg->primary->global_gotno;
0f20cc35 3122 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
3123
3124 bfd2got->g = arg->primary;
3125
3126 htab_traverse (g->got_entries,
3127 mips_elf_make_got_per_bfd,
3128 arg);
3129 if (arg->obfd == NULL)
3130 return 0;
3131
3132 htab_delete (g->got_entries);
3133 /* We don't have to worry about releasing memory of the actual
3134 got entries, since they're all in the master got_entries hash
3135 table anyway. */
3136
caec41ff 3137 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 3138 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 3139 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
3140
3141 arg->primary_count = arg->primary->local_gotno
0f20cc35 3142 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
3143 }
3144 /* If we can merge with the last-created got, do it. */
3145 else if (arg->current
0f20cc35 3146 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
3147 {
3148 struct mips_got_info *g = bfd2got->g;
3149 int old_lcount = arg->current->local_gotno;
3150 int old_gcount = arg->current->global_gotno;
0f20cc35 3151 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
3152
3153 bfd2got->g = arg->current;
3154
3155 htab_traverse (g->got_entries,
3156 mips_elf_make_got_per_bfd,
3157 arg);
3158 if (arg->obfd == NULL)
3159 return 0;
3160
3161 htab_delete (g->got_entries);
3162
caec41ff 3163 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 3164 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 3165 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
3166
3167 arg->current_count = arg->current->local_gotno
0f20cc35 3168 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
3169 }
3170 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3171 fits; if it turns out that it doesn't, we'll get relocation
3172 overflows anyway. */
3173 else
3174 {
3175 bfd2got->g->next = arg->current;
3176 arg->current = bfd2got->g;
143d77c5 3177
0f20cc35
DJ
3178 arg->current_count = lcount + gcount + 2 * tcount;
3179 }
3180
3181 return 1;
3182}
3183
ead49a57
RS
3184/* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3185 is null iff there is just a single GOT. */
0f20cc35
DJ
3186
3187static int
3188mips_elf_initialize_tls_index (void **entryp, void *p)
3189{
3190 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3191 struct mips_got_info *g = p;
ead49a57 3192 bfd_vma next_index;
cbf2cba4 3193 unsigned char tls_type;
0f20cc35
DJ
3194
3195 /* We're only interested in TLS symbols. */
3196 if (entry->tls_type == 0)
3197 return 1;
3198
ead49a57
RS
3199 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3200
3201 if (entry->symndx == -1 && g->next == NULL)
0f20cc35 3202 {
ead49a57
RS
3203 /* A type (3) got entry in the single-GOT case. We use the symbol's
3204 hash table entry to track its index. */
3205 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3206 return 1;
3207 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3208 entry->d.h->tls_got_offset = next_index;
cbf2cba4 3209 tls_type = entry->d.h->tls_type;
ead49a57
RS
3210 }
3211 else
3212 {
3213 if (entry->tls_type & GOT_TLS_LDM)
0f20cc35 3214 {
ead49a57
RS
3215 /* There are separate mips_got_entry objects for each input bfd
3216 that requires an LDM entry. Make sure that all LDM entries in
3217 a GOT resolve to the same index. */
3218 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4005427f 3219 {
ead49a57 3220 entry->gotidx = g->tls_ldm_offset;
4005427f
RS
3221 return 1;
3222 }
ead49a57 3223 g->tls_ldm_offset = next_index;
0f20cc35 3224 }
ead49a57 3225 entry->gotidx = next_index;
cbf2cba4 3226 tls_type = entry->tls_type;
f4416af6
AO
3227 }
3228
ead49a57 3229 /* Account for the entries we've just allocated. */
cbf2cba4 3230 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
0f20cc35 3231 g->tls_assigned_gotno += 2;
cbf2cba4 3232 if (tls_type & GOT_TLS_IE)
0f20cc35
DJ
3233 g->tls_assigned_gotno += 1;
3234
f4416af6
AO
3235 return 1;
3236}
3237
3238/* If passed a NULL mips_got_info in the argument, set the marker used
3239 to tell whether a global symbol needs a got entry (in the primary
3240 got) to the given VALUE.
3241
3242 If passed a pointer G to a mips_got_info in the argument (it must
3243 not be the primary GOT), compute the offset from the beginning of
3244 the (primary) GOT section to the entry in G corresponding to the
3245 global symbol. G's assigned_gotno must contain the index of the
3246 first available global GOT entry in G. VALUE must contain the size
3247 of a GOT entry in bytes. For each global GOT entry that requires a
3248 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3249 marked as not eligible for lazy resolution through a function
f4416af6
AO
3250 stub. */
3251static int
9719ad41 3252mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3253{
3254 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3255 struct mips_elf_set_global_got_offset_arg *arg
3256 = (struct mips_elf_set_global_got_offset_arg *)p;
3257 struct mips_got_info *g = arg->g;
3258
0f20cc35
DJ
3259 if (g && entry->tls_type != GOT_NORMAL)
3260 arg->needed_relocs +=
3261 mips_tls_got_relocs (arg->info, entry->tls_type,
3262 entry->symndx == -1 ? &entry->d.h->root : NULL);
3263
f4416af6 3264 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3265 && entry->d.h->root.dynindx != -1
3266 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3267 {
3268 if (g)
3269 {
3270 BFD_ASSERT (g->global_gotsym == NULL);
3271
3272 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3273 if (arg->info->shared
3274 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3275 && entry->d.h->root.def_dynamic
3276 && !entry->d.h->root.def_regular))
f4416af6
AO
3277 ++arg->needed_relocs;
3278 }
3279 else
3280 entry->d.h->root.got.offset = arg->value;
3281 }
3282
3283 return 1;
3284}
3285
0626d451
RS
3286/* Mark any global symbols referenced in the GOT we are iterating over
3287 as inelligible for lazy resolution stubs. */
3288static int
9719ad41 3289mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3290{
3291 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3292
3293 if (entry->abfd != NULL
3294 && entry->symndx == -1
3295 && entry->d.h->root.dynindx != -1)
3296 entry->d.h->no_fn_stub = TRUE;
3297
3298 return 1;
3299}
3300
f4416af6
AO
3301/* Follow indirect and warning hash entries so that each got entry
3302 points to the final symbol definition. P must point to a pointer
3303 to the hash table we're traversing. Since this traversal may
3304 modify the hash table, we set this pointer to NULL to indicate
3305 we've made a potentially-destructive change to the hash table, so
3306 the traversal must be restarted. */
3307static int
9719ad41 3308mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3309{
3310 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3311 htab_t got_entries = *(htab_t *)p;
3312
3313 if (entry->abfd != NULL && entry->symndx == -1)
3314 {
3315 struct mips_elf_link_hash_entry *h = entry->d.h;
3316
3317 while (h->root.root.type == bfd_link_hash_indirect
3318 || h->root.root.type == bfd_link_hash_warning)
3319 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3320
3321 if (entry->d.h == h)
3322 return 1;
143d77c5 3323
f4416af6
AO
3324 entry->d.h = h;
3325
3326 /* If we can't find this entry with the new bfd hash, re-insert
3327 it, and get the traversal restarted. */
3328 if (! htab_find (got_entries, entry))
3329 {
3330 htab_clear_slot (got_entries, entryp);
3331 entryp = htab_find_slot (got_entries, entry, INSERT);
3332 if (! *entryp)
3333 *entryp = entry;
3334 /* Abort the traversal, since the whole table may have
3335 moved, and leave it up to the parent to restart the
3336 process. */
3337 *(htab_t *)p = NULL;
3338 return 0;
3339 }
3340 /* We might want to decrement the global_gotno count, but it's
3341 either too early or too late for that at this point. */
3342 }
143d77c5 3343
f4416af6
AO
3344 return 1;
3345}
3346
3347/* Turn indirect got entries in a got_entries table into their final
3348 locations. */
3349static void
9719ad41 3350mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3351{
3352 htab_t got_entries;
3353
3354 do
3355 {
3356 got_entries = g->got_entries;
3357
3358 htab_traverse (got_entries,
3359 mips_elf_resolve_final_got_entry,
3360 &got_entries);
3361 }
3362 while (got_entries == NULL);
3363}
3364
3365/* Return the offset of an input bfd IBFD's GOT from the beginning of
3366 the primary GOT. */
3367static bfd_vma
9719ad41 3368mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3369{
3370 if (g->bfd2got == NULL)
3371 return 0;
3372
3373 g = mips_elf_got_for_ibfd (g, ibfd);
3374 if (! g)
3375 return 0;
3376
3377 BFD_ASSERT (g->next);
3378
3379 g = g->next;
143d77c5 3380
0f20cc35
DJ
3381 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3382 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3383}
3384
3385/* Turn a single GOT that is too big for 16-bit addressing into
3386 a sequence of GOTs, each one 16-bit addressable. */
3387
3388static bfd_boolean
9719ad41
RS
3389mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3390 struct mips_got_info *g, asection *got,
3391 bfd_size_type pages)
f4416af6
AO
3392{
3393 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3394 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3395 struct mips_got_info *gg;
3396 unsigned int assign;
3397
3398 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3399 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3400 if (g->bfd2got == NULL)
3401 return FALSE;
3402
3403 got_per_bfd_arg.bfd2got = g->bfd2got;
3404 got_per_bfd_arg.obfd = abfd;
3405 got_per_bfd_arg.info = info;
3406
3407 /* Count how many GOT entries each input bfd requires, creating a
3408 map from bfd to got info while at that. */
f4416af6
AO
3409 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3410 if (got_per_bfd_arg.obfd == NULL)
3411 return FALSE;
3412
3413 got_per_bfd_arg.current = NULL;
3414 got_per_bfd_arg.primary = NULL;
3415 /* Taking out PAGES entries is a worst-case estimate. We could
3416 compute the maximum number of pages that each separate input bfd
3417 uses, but it's probably not worth it. */
0a44bf69 3418 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 3419 / MIPS_ELF_GOT_SIZE (abfd))
0a44bf69 3420 - MIPS_RESERVED_GOTNO (info) - pages);
0f20cc35
DJ
3421 /* The number of globals that will be included in the primary GOT.
3422 See the calls to mips_elf_set_global_got_offset below for more
3423 information. */
3424 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3425
3426 /* Try to merge the GOTs of input bfds together, as long as they
3427 don't seem to exceed the maximum GOT size, choosing one of them
3428 to be the primary GOT. */
3429 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3430 if (got_per_bfd_arg.obfd == NULL)
3431 return FALSE;
3432
0f20cc35 3433 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3434 if (got_per_bfd_arg.primary == NULL)
3435 {
3436 g->next = (struct mips_got_info *)
3437 bfd_alloc (abfd, sizeof (struct mips_got_info));
3438 if (g->next == NULL)
3439 return FALSE;
3440
3441 g->next->global_gotsym = NULL;
3442 g->next->global_gotno = 0;
3443 g->next->local_gotno = 0;
0f20cc35 3444 g->next->tls_gotno = 0;
f4416af6 3445 g->next->assigned_gotno = 0;
0f20cc35
DJ
3446 g->next->tls_assigned_gotno = 0;
3447 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3448 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3449 mips_elf_multi_got_entry_eq,
9719ad41 3450 NULL);
f4416af6
AO
3451 if (g->next->got_entries == NULL)
3452 return FALSE;
3453 g->next->bfd2got = NULL;
3454 }
3455 else
3456 g->next = got_per_bfd_arg.primary;
3457 g->next->next = got_per_bfd_arg.current;
3458
3459 /* GG is now the master GOT, and G is the primary GOT. */
3460 gg = g;
3461 g = g->next;
3462
3463 /* Map the output bfd to the primary got. That's what we're going
3464 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3465 didn't mark in check_relocs, and we want a quick way to find it.
3466 We can't just use gg->next because we're going to reverse the
3467 list. */
3468 {
3469 struct mips_elf_bfd2got_hash *bfdgot;
3470 void **bfdgotp;
143d77c5 3471
f4416af6
AO
3472 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3473 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3474
3475 if (bfdgot == NULL)
3476 return FALSE;
3477
3478 bfdgot->bfd = abfd;
3479 bfdgot->g = g;
3480 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3481
3482 BFD_ASSERT (*bfdgotp == NULL);
3483 *bfdgotp = bfdgot;
3484 }
3485
3486 /* The IRIX dynamic linker requires every symbol that is referenced
3487 in a dynamic relocation to be present in the primary GOT, so
3488 arrange for them to appear after those that are actually
3489 referenced.
3490
3491 GNU/Linux could very well do without it, but it would slow down
3492 the dynamic linker, since it would have to resolve every dynamic
3493 symbol referenced in other GOTs more than once, without help from
3494 the cache. Also, knowing that every external symbol has a GOT
3495 helps speed up the resolution of local symbols too, so GNU/Linux
3496 follows IRIX's practice.
143d77c5 3497
f4416af6
AO
3498 The number 2 is used by mips_elf_sort_hash_table_f to count
3499 global GOT symbols that are unreferenced in the primary GOT, with
3500 an initial dynamic index computed from gg->assigned_gotno, where
3501 the number of unreferenced global entries in the primary GOT is
3502 preserved. */
3503 if (1)
3504 {
3505 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3506 g->global_gotno = gg->global_gotno;
3507 set_got_offset_arg.value = 2;
3508 }
3509 else
3510 {
3511 /* This could be used for dynamic linkers that don't optimize
3512 symbol resolution while applying relocations so as to use
3513 primary GOT entries or assuming the symbol is locally-defined.
3514 With this code, we assign lower dynamic indices to global
3515 symbols that are not referenced in the primary GOT, so that
3516 their entries can be omitted. */
3517 gg->assigned_gotno = 0;
3518 set_got_offset_arg.value = -1;
3519 }
3520
3521 /* Reorder dynamic symbols as described above (which behavior
3522 depends on the setting of VALUE). */
3523 set_got_offset_arg.g = NULL;
3524 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3525 &set_got_offset_arg);
3526 set_got_offset_arg.value = 1;
3527 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3528 &set_got_offset_arg);
3529 if (! mips_elf_sort_hash_table (info, 1))
3530 return FALSE;
3531
3532 /* Now go through the GOTs assigning them offset ranges.
3533 [assigned_gotno, local_gotno[ will be set to the range of local
3534 entries in each GOT. We can then compute the end of a GOT by
3535 adding local_gotno to global_gotno. We reverse the list and make
3536 it circular since then we'll be able to quickly compute the
3537 beginning of a GOT, by computing the end of its predecessor. To
3538 avoid special cases for the primary GOT, while still preserving
3539 assertions that are valid for both single- and multi-got links,
3540 we arrange for the main got struct to have the right number of
3541 global entries, but set its local_gotno such that the initial
3542 offset of the primary GOT is zero. Remember that the primary GOT
3543 will become the last item in the circular linked list, so it
3544 points back to the master GOT. */
3545 gg->local_gotno = -g->global_gotno;
3546 gg->global_gotno = g->global_gotno;
0f20cc35 3547 gg->tls_gotno = 0;
f4416af6
AO
3548 assign = 0;
3549 gg->next = gg;
3550
3551 do
3552 {
3553 struct mips_got_info *gn;
3554
0a44bf69 3555 assign += MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3556 g->assigned_gotno = assign;
3557 g->local_gotno += assign + pages;
0f20cc35
DJ
3558 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3559
ead49a57
RS
3560 /* Take g out of the direct list, and push it onto the reversed
3561 list that gg points to. g->next is guaranteed to be nonnull after
3562 this operation, as required by mips_elf_initialize_tls_index. */
3563 gn = g->next;
3564 g->next = gg->next;
3565 gg->next = g;
3566
0f20cc35
DJ
3567 /* Set up any TLS entries. We always place the TLS entries after
3568 all non-TLS entries. */
3569 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3570 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6 3571
ead49a57 3572 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 3573 g = gn;
0626d451
RS
3574
3575 /* Mark global symbols in every non-primary GOT as ineligible for
3576 stubs. */
3577 if (g)
3578 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3579 }
3580 while (g);
3581
eea6121a 3582 got->size = (gg->next->local_gotno
0f20cc35
DJ
3583 + gg->next->global_gotno
3584 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3585
f4416af6
AO
3586 return TRUE;
3587}
143d77c5 3588
b49e97c9
TS
3589\f
3590/* Returns the first relocation of type r_type found, beginning with
3591 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3592
3593static const Elf_Internal_Rela *
9719ad41
RS
3594mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3595 const Elf_Internal_Rela *relocation,
3596 const Elf_Internal_Rela *relend)
b49e97c9 3597{
c000e262
TS
3598 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3599
b49e97c9
TS
3600 while (relocation < relend)
3601 {
c000e262
TS
3602 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3603 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
3604 return relocation;
3605
3606 ++relocation;
3607 }
3608
3609 /* We didn't find it. */
b49e97c9
TS
3610 return NULL;
3611}
3612
3613/* Return whether a relocation is against a local symbol. */
3614
b34976b6 3615static bfd_boolean
9719ad41
RS
3616mips_elf_local_relocation_p (bfd *input_bfd,
3617 const Elf_Internal_Rela *relocation,
3618 asection **local_sections,
3619 bfd_boolean check_forced)
b49e97c9
TS
3620{
3621 unsigned long r_symndx;
3622 Elf_Internal_Shdr *symtab_hdr;
3623 struct mips_elf_link_hash_entry *h;
3624 size_t extsymoff;
3625
3626 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3627 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3628 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3629
3630 if (r_symndx < extsymoff)
b34976b6 3631 return TRUE;
b49e97c9 3632 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3633 return TRUE;
b49e97c9
TS
3634
3635 if (check_forced)
3636 {
3637 /* Look up the hash table to check whether the symbol
3638 was forced local. */
3639 h = (struct mips_elf_link_hash_entry *)
3640 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3641 /* Find the real hash-table entry for this symbol. */
3642 while (h->root.root.type == bfd_link_hash_indirect
3643 || h->root.root.type == bfd_link_hash_warning)
3644 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3645 if (h->root.forced_local)
b34976b6 3646 return TRUE;
b49e97c9
TS
3647 }
3648
b34976b6 3649 return FALSE;
b49e97c9
TS
3650}
3651\f
3652/* Sign-extend VALUE, which has the indicated number of BITS. */
3653
a7ebbfdf 3654bfd_vma
9719ad41 3655_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3656{
3657 if (value & ((bfd_vma) 1 << (bits - 1)))
3658 /* VALUE is negative. */
3659 value |= ((bfd_vma) - 1) << bits;
3660
3661 return value;
3662}
3663
3664/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3665 range expressible by a signed number with the indicated number of
b49e97c9
TS
3666 BITS. */
3667
b34976b6 3668static bfd_boolean
9719ad41 3669mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3670{
3671 bfd_signed_vma svalue = (bfd_signed_vma) value;
3672
3673 if (svalue > (1 << (bits - 1)) - 1)
3674 /* The value is too big. */
b34976b6 3675 return TRUE;
b49e97c9
TS
3676 else if (svalue < -(1 << (bits - 1)))
3677 /* The value is too small. */
b34976b6 3678 return TRUE;
b49e97c9
TS
3679
3680 /* All is well. */
b34976b6 3681 return FALSE;
b49e97c9
TS
3682}
3683
3684/* Calculate the %high function. */
3685
3686static bfd_vma
9719ad41 3687mips_elf_high (bfd_vma value)
b49e97c9
TS
3688{
3689 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3690}
3691
3692/* Calculate the %higher function. */
3693
3694static bfd_vma
9719ad41 3695mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3696{
3697#ifdef BFD64
3698 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3699#else
3700 abort ();
c5ae1840 3701 return MINUS_ONE;
b49e97c9
TS
3702#endif
3703}
3704
3705/* Calculate the %highest function. */
3706
3707static bfd_vma
9719ad41 3708mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3709{
3710#ifdef BFD64
b15e6682 3711 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3712#else
3713 abort ();
c5ae1840 3714 return MINUS_ONE;
b49e97c9
TS
3715#endif
3716}
3717\f
3718/* Create the .compact_rel section. */
3719
b34976b6 3720static bfd_boolean
9719ad41
RS
3721mips_elf_create_compact_rel_section
3722 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3723{
3724 flagword flags;
3725 register asection *s;
3726
3727 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3728 {
3729 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3730 | SEC_READONLY);
3731
3496cb2a 3732 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3733 if (s == NULL
b49e97c9
TS
3734 || ! bfd_set_section_alignment (abfd, s,
3735 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3736 return FALSE;
b49e97c9 3737
eea6121a 3738 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3739 }
3740
b34976b6 3741 return TRUE;
b49e97c9
TS
3742}
3743
3744/* Create the .got section to hold the global offset table. */
3745
b34976b6 3746static bfd_boolean
9719ad41
RS
3747mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3748 bfd_boolean maybe_exclude)
b49e97c9
TS
3749{
3750 flagword flags;
3751 register asection *s;
3752 struct elf_link_hash_entry *h;
14a793b2 3753 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3754 struct mips_got_info *g;
3755 bfd_size_type amt;
0a44bf69
RS
3756 struct mips_elf_link_hash_table *htab;
3757
3758 htab = mips_elf_hash_table (info);
b49e97c9
TS
3759
3760 /* This function may be called more than once. */
f4416af6
AO
3761 s = mips_elf_got_section (abfd, TRUE);
3762 if (s)
3763 {
3764 if (! maybe_exclude)
3765 s->flags &= ~SEC_EXCLUDE;
3766 return TRUE;
3767 }
b49e97c9
TS
3768
3769 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3770 | SEC_LINKER_CREATED);
3771
f4416af6
AO
3772 if (maybe_exclude)
3773 flags |= SEC_EXCLUDE;
3774
72b4917c
TS
3775 /* We have to use an alignment of 2**4 here because this is hardcoded
3776 in the function stub generation and in the linker script. */
3496cb2a 3777 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3778 if (s == NULL
72b4917c 3779 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3780 return FALSE;
b49e97c9
TS
3781
3782 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3783 linker script because we don't want to define the symbol if we
3784 are not creating a global offset table. */
14a793b2 3785 bh = NULL;
b49e97c9
TS
3786 if (! (_bfd_generic_link_add_one_symbol
3787 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3788 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3789 return FALSE;
14a793b2
AM
3790
3791 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3792 h->non_elf = 0;
3793 h->def_regular = 1;
b49e97c9 3794 h->type = STT_OBJECT;
d329bcd1 3795 elf_hash_table (info)->hgot = h;
b49e97c9
TS
3796
3797 if (info->shared
c152c796 3798 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3799 return FALSE;
b49e97c9 3800
b49e97c9 3801 amt = sizeof (struct mips_got_info);
9719ad41 3802 g = bfd_alloc (abfd, amt);
b49e97c9 3803 if (g == NULL)
b34976b6 3804 return FALSE;
b49e97c9 3805 g->global_gotsym = NULL;
e3d54347 3806 g->global_gotno = 0;
0f20cc35 3807 g->tls_gotno = 0;
0a44bf69
RS
3808 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3809 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
f4416af6
AO
3810 g->bfd2got = NULL;
3811 g->next = NULL;
0f20cc35 3812 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3813 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3814 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3815 if (g->got_entries == NULL)
3816 return FALSE;
f0abc2a1
AM
3817 mips_elf_section_data (s)->u.got_info = g;
3818 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3819 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3820
0a44bf69
RS
3821 /* VxWorks also needs a .got.plt section. */
3822 if (htab->is_vxworks)
3823 {
3824 s = bfd_make_section_with_flags (abfd, ".got.plt",
3825 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3826 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3827 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3828 return FALSE;
3829
3830 htab->sgotplt = s;
3831 }
b34976b6 3832 return TRUE;
b49e97c9 3833}
b49e97c9 3834\f
0a44bf69
RS
3835/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3836 __GOTT_INDEX__ symbols. These symbols are only special for
3837 shared objects; they are not used in executables. */
3838
3839static bfd_boolean
3840is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3841{
3842 return (mips_elf_hash_table (info)->is_vxworks
3843 && info->shared
3844 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3845 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3846}
3847\f
b49e97c9
TS
3848/* Calculate the value produced by the RELOCATION (which comes from
3849 the INPUT_BFD). The ADDEND is the addend to use for this
3850 RELOCATION; RELOCATION->R_ADDEND is ignored.
3851
3852 The result of the relocation calculation is stored in VALUEP.
3853 REQUIRE_JALXP indicates whether or not the opcode used with this
3854 relocation must be JALX.
3855
3856 This function returns bfd_reloc_continue if the caller need take no
3857 further action regarding this relocation, bfd_reloc_notsupported if
3858 something goes dramatically wrong, bfd_reloc_overflow if an
3859 overflow occurs, and bfd_reloc_ok to indicate success. */
3860
3861static bfd_reloc_status_type
9719ad41
RS
3862mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3863 asection *input_section,
3864 struct bfd_link_info *info,
3865 const Elf_Internal_Rela *relocation,
3866 bfd_vma addend, reloc_howto_type *howto,
3867 Elf_Internal_Sym *local_syms,
3868 asection **local_sections, bfd_vma *valuep,
3869 const char **namep, bfd_boolean *require_jalxp,
3870 bfd_boolean save_addend)
b49e97c9
TS
3871{
3872 /* The eventual value we will return. */
3873 bfd_vma value;
3874 /* The address of the symbol against which the relocation is
3875 occurring. */
3876 bfd_vma symbol = 0;
3877 /* The final GP value to be used for the relocatable, executable, or
3878 shared object file being produced. */
3879 bfd_vma gp = MINUS_ONE;
3880 /* The place (section offset or address) of the storage unit being
3881 relocated. */
3882 bfd_vma p;
3883 /* The value of GP used to create the relocatable object. */
3884 bfd_vma gp0 = MINUS_ONE;
3885 /* The offset into the global offset table at which the address of
3886 the relocation entry symbol, adjusted by the addend, resides
3887 during execution. */
3888 bfd_vma g = MINUS_ONE;
3889 /* The section in which the symbol referenced by the relocation is
3890 located. */
3891 asection *sec = NULL;
3892 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3893 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3894 symbol. */
b34976b6
AM
3895 bfd_boolean local_p, was_local_p;
3896 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3897 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3898 /* TRUE if the symbol referred to by this relocation is
3899 "__gnu_local_gp". */
3900 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3901 Elf_Internal_Shdr *symtab_hdr;
3902 size_t extsymoff;
3903 unsigned long r_symndx;
3904 int r_type;
b34976b6 3905 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3906 relocation value. */
b34976b6
AM
3907 bfd_boolean overflowed_p;
3908 /* TRUE if this relocation refers to a MIPS16 function. */
3909 bfd_boolean target_is_16_bit_code_p = FALSE;
0a44bf69
RS
3910 struct mips_elf_link_hash_table *htab;
3911 bfd *dynobj;
3912
3913 dynobj = elf_hash_table (info)->dynobj;
3914 htab = mips_elf_hash_table (info);
b49e97c9
TS
3915
3916 /* Parse the relocation. */
3917 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3918 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3919 p = (input_section->output_section->vma
3920 + input_section->output_offset
3921 + relocation->r_offset);
3922
3923 /* Assume that there will be no overflow. */
b34976b6 3924 overflowed_p = FALSE;
b49e97c9
TS
3925
3926 /* Figure out whether or not the symbol is local, and get the offset
3927 used in the array of hash table entries. */
3928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3929 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3930 local_sections, FALSE);
bce03d3d 3931 was_local_p = local_p;
b49e97c9
TS
3932 if (! elf_bad_symtab (input_bfd))
3933 extsymoff = symtab_hdr->sh_info;
3934 else
3935 {
3936 /* The symbol table does not follow the rule that local symbols
3937 must come before globals. */
3938 extsymoff = 0;
3939 }
3940
3941 /* Figure out the value of the symbol. */
3942 if (local_p)
3943 {
3944 Elf_Internal_Sym *sym;
3945
3946 sym = local_syms + r_symndx;
3947 sec = local_sections[r_symndx];
3948
3949 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3950 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3951 || (sec->flags & SEC_MERGE))
b49e97c9 3952 symbol += sym->st_value;
d4df96e6
L
3953 if ((sec->flags & SEC_MERGE)
3954 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3955 {
3956 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3957 addend -= symbol;
3958 addend += sec->output_section->vma + sec->output_offset;
3959 }
b49e97c9
TS
3960
3961 /* MIPS16 text labels should be treated as odd. */
3962 if (sym->st_other == STO_MIPS16)
3963 ++symbol;
3964
3965 /* Record the name of this symbol, for our caller. */
3966 *namep = bfd_elf_string_from_elf_section (input_bfd,
3967 symtab_hdr->sh_link,
3968 sym->st_name);
3969 if (*namep == '\0')
3970 *namep = bfd_section_name (input_bfd, sec);
3971
3972 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3973 }
3974 else
3975 {
560e09e9
NC
3976 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3977
b49e97c9
TS
3978 /* For global symbols we look up the symbol in the hash-table. */
3979 h = ((struct mips_elf_link_hash_entry *)
3980 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3981 /* Find the real hash-table entry for this symbol. */
3982 while (h->root.root.type == bfd_link_hash_indirect
3983 || h->root.root.type == bfd_link_hash_warning)
3984 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3985
3986 /* Record the name of this symbol, for our caller. */
3987 *namep = h->root.root.root.string;
3988
3989 /* See if this is the special _gp_disp symbol. Note that such a
3990 symbol must always be a global symbol. */
560e09e9 3991 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3992 && ! NEWABI_P (input_bfd))
3993 {
3994 /* Relocations against _gp_disp are permitted only with
3995 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3996 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3997 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3998 return bfd_reloc_notsupported;
3999
b34976b6 4000 gp_disp_p = TRUE;
b49e97c9 4001 }
bbe506e8
TS
4002 /* See if this is the special _gp symbol. Note that such a
4003 symbol must always be a global symbol. */
4004 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4005 gnu_local_gp_p = TRUE;
4006
4007
b49e97c9
TS
4008 /* If this symbol is defined, calculate its address. Note that
4009 _gp_disp is a magic symbol, always implicitly defined by the
4010 linker, so it's inappropriate to check to see whether or not
4011 its defined. */
4012 else if ((h->root.root.type == bfd_link_hash_defined
4013 || h->root.root.type == bfd_link_hash_defweak)
4014 && h->root.root.u.def.section)
4015 {
4016 sec = h->root.root.u.def.section;
4017 if (sec->output_section)
4018 symbol = (h->root.root.u.def.value
4019 + sec->output_section->vma
4020 + sec->output_offset);
4021 else
4022 symbol = h->root.root.u.def.value;
4023 }
4024 else if (h->root.root.type == bfd_link_hash_undefweak)
4025 /* We allow relocations against undefined weak symbols, giving
4026 it the value zero, so that you can undefined weak functions
4027 and check to see if they exist by looking at their
4028 addresses. */
4029 symbol = 0;
59c2e50f 4030 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
4031 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4032 symbol = 0;
a4d0f181
TS
4033 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4034 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
4035 {
4036 /* If this is a dynamic link, we should have created a
4037 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4038 in in _bfd_mips_elf_create_dynamic_sections.
4039 Otherwise, we should define the symbol with a value of 0.
4040 FIXME: It should probably get into the symbol table
4041 somehow as well. */
4042 BFD_ASSERT (! info->shared);
4043 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4044 symbol = 0;
4045 }
5e2b0d47
NC
4046 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4047 {
4048 /* This is an optional symbol - an Irix specific extension to the
4049 ELF spec. Ignore it for now.
4050 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4051 than simply ignoring them, but we do not handle this for now.
4052 For information see the "64-bit ELF Object File Specification"
4053 which is available from here:
4054 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4055 symbol = 0;
4056 }
b49e97c9
TS
4057 else
4058 {
4059 if (! ((*info->callbacks->undefined_symbol)
4060 (info, h->root.root.root.string, input_bfd,
4061 input_section, relocation->r_offset,
59c2e50f
L
4062 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4063 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
4064 return bfd_reloc_undefined;
4065 symbol = 0;
4066 }
4067
4068 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4069 }
4070
4071 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4072 need to redirect the call to the stub, unless we're already *in*
4073 a stub. */
1049f94e 4074 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9 4075 && ((h != NULL && h->fn_stub != NULL)
b9d58d71
TS
4076 || (local_p
4077 && elf_tdata (input_bfd)->local_stubs != NULL
b49e97c9 4078 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
b9d58d71 4079 && !mips16_stub_section_p (input_bfd, input_section))
b49e97c9
TS
4080 {
4081 /* This is a 32- or 64-bit call to a 16-bit function. We should
4082 have already noticed that we were going to need the
4083 stub. */
4084 if (local_p)
4085 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4086 else
4087 {
4088 BFD_ASSERT (h->need_fn_stub);
4089 sec = h->fn_stub;
4090 }
4091
4092 symbol = sec->output_section->vma + sec->output_offset;
f38c2df5
TS
4093 /* The target is 16-bit, but the stub isn't. */
4094 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
4095 }
4096 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4097 need to redirect the call to the stub. */
1049f94e 4098 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 4099 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71
TS
4100 || (local_p
4101 && elf_tdata (input_bfd)->local_call_stubs != NULL
4102 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
4103 && !target_is_16_bit_code_p)
4104 {
b9d58d71
TS
4105 if (local_p)
4106 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4107 else
b49e97c9 4108 {
b9d58d71
TS
4109 /* If both call_stub and call_fp_stub are defined, we can figure
4110 out which one to use by checking which one appears in the input
4111 file. */
4112 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 4113 {
b9d58d71
TS
4114 asection *o;
4115
4116 sec = NULL;
4117 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 4118 {
b9d58d71
TS
4119 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4120 {
4121 sec = h->call_fp_stub;
4122 break;
4123 }
b49e97c9 4124 }
b9d58d71
TS
4125 if (sec == NULL)
4126 sec = h->call_stub;
b49e97c9 4127 }
b9d58d71 4128 else if (h->call_stub != NULL)
b49e97c9 4129 sec = h->call_stub;
b9d58d71
TS
4130 else
4131 sec = h->call_fp_stub;
4132 }
b49e97c9 4133
eea6121a 4134 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
4135 symbol = sec->output_section->vma + sec->output_offset;
4136 }
4137
4138 /* Calls from 16-bit code to 32-bit code and vice versa require the
4139 special jalx instruction. */
1049f94e 4140 *require_jalxp = (!info->relocatable
b49e97c9
TS
4141 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4142 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4143
4144 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4145 local_sections, TRUE);
b49e97c9
TS
4146
4147 /* If we haven't already determined the GOT offset, or the GP value,
4148 and we're going to need it, get it now. */
4149 switch (r_type)
4150 {
0fdc1bf1 4151 case R_MIPS_GOT_PAGE:
93a2b7ae 4152 case R_MIPS_GOT_OFST:
d25aed71
RS
4153 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4154 bind locally. */
4155 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 4156 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
4157 break;
4158 /* Fall through. */
4159
b49e97c9
TS
4160 case R_MIPS_CALL16:
4161 case R_MIPS_GOT16:
4162 case R_MIPS_GOT_DISP:
4163 case R_MIPS_GOT_HI16:
4164 case R_MIPS_CALL_HI16:
4165 case R_MIPS_GOT_LO16:
4166 case R_MIPS_CALL_LO16:
0f20cc35
DJ
4167 case R_MIPS_TLS_GD:
4168 case R_MIPS_TLS_GOTTPREL:
4169 case R_MIPS_TLS_LDM:
b49e97c9 4170 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
4171 if (r_type == R_MIPS_TLS_LDM)
4172 {
0a44bf69 4173 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 4174 0, 0, NULL, r_type);
0f20cc35
DJ
4175 if (g == MINUS_ONE)
4176 return bfd_reloc_outofrange;
4177 }
4178 else if (!local_p)
b49e97c9 4179 {
0a44bf69
RS
4180 /* On VxWorks, CALL relocations should refer to the .got.plt
4181 entry, which is initialized to point at the PLT stub. */
4182 if (htab->is_vxworks
4183 && (r_type == R_MIPS_CALL_HI16
4184 || r_type == R_MIPS_CALL_LO16
4185 || r_type == R_MIPS_CALL16))
4186 {
4187 BFD_ASSERT (addend == 0);
4188 BFD_ASSERT (h->root.needs_plt);
4189 g = mips_elf_gotplt_index (info, &h->root);
4190 }
4191 else
b49e97c9 4192 {
0a44bf69
RS
4193 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4194 GOT_PAGE relocation that decays to GOT_DISP because the
4195 symbol turns out to be global. The addend is then added
4196 as GOT_OFST. */
4197 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4198 g = mips_elf_global_got_index (dynobj, input_bfd,
4199 &h->root, r_type, info);
4200 if (h->tls_type == GOT_NORMAL
4201 && (! elf_hash_table(info)->dynamic_sections_created
4202 || (info->shared
4203 && (info->symbolic || h->root.forced_local)
4204 && h->root.def_regular)))
4205 {
4206 /* This is a static link or a -Bsymbolic link. The
4207 symbol is defined locally, or was forced to be local.
4208 We must initialize this entry in the GOT. */
4209 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4210 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4211 }
b49e97c9
TS
4212 }
4213 }
0a44bf69
RS
4214 else if (!htab->is_vxworks
4215 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4216 /* The calculation below does not involve "g". */
b49e97c9
TS
4217 break;
4218 else
4219 {
5c18022e 4220 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 4221 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
4222 if (g == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 }
4225
4226 /* Convert GOT indices to actual offsets. */
0a44bf69 4227 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
b49e97c9
TS
4228 break;
4229
4230 case R_MIPS_HI16:
4231 case R_MIPS_LO16:
b49e97c9
TS
4232 case R_MIPS_GPREL16:
4233 case R_MIPS_GPREL32:
4234 case R_MIPS_LITERAL:
d6f16593
MR
4235 case R_MIPS16_HI16:
4236 case R_MIPS16_LO16:
4237 case R_MIPS16_GPREL:
b49e97c9
TS
4238 gp0 = _bfd_get_gp_value (input_bfd);
4239 gp = _bfd_get_gp_value (abfd);
0a44bf69
RS
4240 if (dynobj)
4241 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
f4416af6 4242 input_bfd);
b49e97c9
TS
4243 break;
4244
4245 default:
4246 break;
4247 }
4248
bbe506e8
TS
4249 if (gnu_local_gp_p)
4250 symbol = gp;
86324f90 4251
0a44bf69
RS
4252 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4253 symbols are resolved by the loader. Add them to .rela.dyn. */
4254 if (h != NULL && is_gott_symbol (info, &h->root))
4255 {
4256 Elf_Internal_Rela outrel;
4257 bfd_byte *loc;
4258 asection *s;
4259
4260 s = mips_elf_rel_dyn_section (info, FALSE);
4261 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4262
4263 outrel.r_offset = (input_section->output_section->vma
4264 + input_section->output_offset
4265 + relocation->r_offset);
4266 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4267 outrel.r_addend = addend;
4268 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
4269
4270 /* If we've written this relocation for a readonly section,
4271 we need to set DF_TEXTREL again, so that we do not delete the
4272 DT_TEXTREL tag. */
4273 if (MIPS_ELF_READONLY_SECTION (input_section))
4274 info->flags |= DF_TEXTREL;
4275
0a44bf69
RS
4276 *valuep = 0;
4277 return bfd_reloc_ok;
4278 }
4279
b49e97c9
TS
4280 /* Figure out what kind of relocation is being performed. */
4281 switch (r_type)
4282 {
4283 case R_MIPS_NONE:
4284 return bfd_reloc_continue;
4285
4286 case R_MIPS_16:
a7ebbfdf 4287 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
4288 overflowed_p = mips_elf_overflow_p (value, 16);
4289 break;
4290
4291 case R_MIPS_32:
4292 case R_MIPS_REL32:
4293 case R_MIPS_64:
4294 if ((info->shared
0a44bf69
RS
4295 || (!htab->is_vxworks
4296 && htab->root.dynamic_sections_created
b49e97c9 4297 && h != NULL
f5385ebf
AM
4298 && h->root.def_dynamic
4299 && !h->root.def_regular))
b49e97c9
TS
4300 && r_symndx != 0
4301 && (input_section->flags & SEC_ALLOC) != 0)
4302 {
4303 /* If we're creating a shared library, or this relocation is
4304 against a symbol in a shared library, then we can't know
4305 where the symbol will end up. So, we create a relocation
4306 record in the output, and leave the job up to the dynamic
0a44bf69
RS
4307 linker.
4308
4309 In VxWorks executables, references to external symbols
4310 are handled using copy relocs or PLT stubs, so there's
4311 no need to add a dynamic relocation here. */
b49e97c9
TS
4312 value = addend;
4313 if (!mips_elf_create_dynamic_relocation (abfd,
4314 info,
4315 relocation,
4316 h,
4317 sec,
4318 symbol,
4319 &value,
4320 input_section))
4321 return bfd_reloc_undefined;
4322 }
4323 else
4324 {
4325 if (r_type != R_MIPS_REL32)
4326 value = symbol + addend;
4327 else
4328 value = addend;
4329 }
4330 value &= howto->dst_mask;
092dcd75
CD
4331 break;
4332
4333 case R_MIPS_PC32:
4334 value = symbol + addend - p;
4335 value &= howto->dst_mask;
b49e97c9
TS
4336 break;
4337
b49e97c9
TS
4338 case R_MIPS16_26:
4339 /* The calculation for R_MIPS16_26 is just the same as for an
4340 R_MIPS_26. It's only the storage of the relocated field into
4341 the output file that's different. That's handled in
4342 mips_elf_perform_relocation. So, we just fall through to the
4343 R_MIPS_26 case here. */
4344 case R_MIPS_26:
4345 if (local_p)
30ac9238 4346 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4347 else
728b2f21
ILT
4348 {
4349 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4350 if (h->root.root.type != bfd_link_hash_undefweak)
4351 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4352 }
b49e97c9
TS
4353 value &= howto->dst_mask;
4354 break;
4355
0f20cc35
DJ
4356 case R_MIPS_TLS_DTPREL_HI16:
4357 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4358 & howto->dst_mask);
4359 break;
4360
4361 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
4362 case R_MIPS_TLS_DTPREL32:
4363 case R_MIPS_TLS_DTPREL64:
0f20cc35
DJ
4364 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4365 break;
4366
4367 case R_MIPS_TLS_TPREL_HI16:
4368 value = (mips_elf_high (addend + symbol - tprel_base (info))
4369 & howto->dst_mask);
4370 break;
4371
4372 case R_MIPS_TLS_TPREL_LO16:
4373 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4374 break;
4375
b49e97c9 4376 case R_MIPS_HI16:
d6f16593 4377 case R_MIPS16_HI16:
b49e97c9
TS
4378 if (!gp_disp_p)
4379 {
4380 value = mips_elf_high (addend + symbol);
4381 value &= howto->dst_mask;
4382 }
4383 else
4384 {
d6f16593
MR
4385 /* For MIPS16 ABI code we generate this sequence
4386 0: li $v0,%hi(_gp_disp)
4387 4: addiupc $v1,%lo(_gp_disp)
4388 8: sll $v0,16
4389 12: addu $v0,$v1
4390 14: move $gp,$v0
4391 So the offsets of hi and lo relocs are the same, but the
4392 $pc is four higher than $t9 would be, so reduce
4393 both reloc addends by 4. */
4394 if (r_type == R_MIPS16_HI16)
4395 value = mips_elf_high (addend + gp - p - 4);
4396 else
4397 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4398 overflowed_p = mips_elf_overflow_p (value, 16);
4399 }
4400 break;
4401
4402 case R_MIPS_LO16:
d6f16593 4403 case R_MIPS16_LO16:
b49e97c9
TS
4404 if (!gp_disp_p)
4405 value = (symbol + addend) & howto->dst_mask;
4406 else
4407 {
d6f16593
MR
4408 /* See the comment for R_MIPS16_HI16 above for the reason
4409 for this conditional. */
4410 if (r_type == R_MIPS16_LO16)
4411 value = addend + gp - p;
4412 else
4413 value = addend + gp - p + 4;
b49e97c9 4414 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4415 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4416 _gp_disp are normally generated from the .cpload
4417 pseudo-op. It generates code that normally looks like
4418 this:
4419
4420 lui $gp,%hi(_gp_disp)
4421 addiu $gp,$gp,%lo(_gp_disp)
4422 addu $gp,$gp,$t9
4423
4424 Here $t9 holds the address of the function being called,
4425 as required by the MIPS ELF ABI. The R_MIPS_LO16
4426 relocation can easily overflow in this situation, but the
4427 R_MIPS_HI16 relocation will handle the overflow.
4428 Therefore, we consider this a bug in the MIPS ABI, and do
4429 not check for overflow here. */
4430 }
4431 break;
4432
4433 case R_MIPS_LITERAL:
4434 /* Because we don't merge literal sections, we can handle this
4435 just like R_MIPS_GPREL16. In the long run, we should merge
4436 shared literals, and then we will need to additional work
4437 here. */
4438
4439 /* Fall through. */
4440
4441 case R_MIPS16_GPREL:
4442 /* The R_MIPS16_GPREL performs the same calculation as
4443 R_MIPS_GPREL16, but stores the relocated bits in a different
4444 order. We don't need to do anything special here; the
4445 differences are handled in mips_elf_perform_relocation. */
4446 case R_MIPS_GPREL16:
bce03d3d
AO
4447 /* Only sign-extend the addend if it was extracted from the
4448 instruction. If the addend was separate, leave it alone,
4449 otherwise we may lose significant bits. */
4450 if (howto->partial_inplace)
a7ebbfdf 4451 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4452 value = symbol + addend - gp;
4453 /* If the symbol was local, any earlier relocatable links will
4454 have adjusted its addend with the gp offset, so compensate
4455 for that now. Don't do it for symbols forced local in this
4456 link, though, since they won't have had the gp offset applied
4457 to them before. */
4458 if (was_local_p)
4459 value += gp0;
b49e97c9
TS
4460 overflowed_p = mips_elf_overflow_p (value, 16);
4461 break;
4462
4463 case R_MIPS_GOT16:
4464 case R_MIPS_CALL16:
0a44bf69
RS
4465 /* VxWorks does not have separate local and global semantics for
4466 R_MIPS_GOT16; every relocation evaluates to "G". */
4467 if (!htab->is_vxworks && local_p)
b49e97c9 4468 {
b34976b6 4469 bfd_boolean forced;
b49e97c9 4470
b49e97c9 4471 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4472 local_sections, FALSE);
5c18022e 4473 value = mips_elf_got16_entry (abfd, input_bfd, info,
f4416af6 4474 symbol + addend, forced);
b49e97c9
TS
4475 if (value == MINUS_ONE)
4476 return bfd_reloc_outofrange;
4477 value
0a44bf69 4478 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4479 overflowed_p = mips_elf_overflow_p (value, 16);
4480 break;
4481 }
4482
4483 /* Fall through. */
4484
0f20cc35
DJ
4485 case R_MIPS_TLS_GD:
4486 case R_MIPS_TLS_GOTTPREL:
4487 case R_MIPS_TLS_LDM:
b49e97c9 4488 case R_MIPS_GOT_DISP:
0fdc1bf1 4489 got_disp:
b49e97c9
TS
4490 value = g;
4491 overflowed_p = mips_elf_overflow_p (value, 16);
4492 break;
4493
4494 case R_MIPS_GPREL32:
bce03d3d
AO
4495 value = (addend + symbol + gp0 - gp);
4496 if (!save_addend)
4497 value &= howto->dst_mask;
b49e97c9
TS
4498 break;
4499
4500 case R_MIPS_PC16:
bad36eac
DJ
4501 case R_MIPS_GNU_REL16_S2:
4502 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4503 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
4504 value >>= howto->rightshift;
4505 value &= howto->dst_mask;
b49e97c9
TS
4506 break;
4507
4508 case R_MIPS_GOT_HI16:
4509 case R_MIPS_CALL_HI16:
4510 /* We're allowed to handle these two relocations identically.
4511 The dynamic linker is allowed to handle the CALL relocations
4512 differently by creating a lazy evaluation stub. */
4513 value = g;
4514 value = mips_elf_high (value);
4515 value &= howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_GOT_LO16:
4519 case R_MIPS_CALL_LO16:
4520 value = g & howto->dst_mask;
4521 break;
4522
4523 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4524 /* GOT_PAGE relocations that reference non-local symbols decay
4525 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4526 0. */
93a2b7ae 4527 if (! local_p)
0fdc1bf1 4528 goto got_disp;
5c18022e 4529 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4530 if (value == MINUS_ONE)
4531 return bfd_reloc_outofrange;
0a44bf69 4532 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
b49e97c9
TS
4533 overflowed_p = mips_elf_overflow_p (value, 16);
4534 break;
4535
4536 case R_MIPS_GOT_OFST:
93a2b7ae 4537 if (local_p)
5c18022e 4538 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
4539 else
4540 value = addend;
b49e97c9
TS
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_SUB:
4545 value = symbol - addend;
4546 value &= howto->dst_mask;
4547 break;
4548
4549 case R_MIPS_HIGHER:
4550 value = mips_elf_higher (addend + symbol);
4551 value &= howto->dst_mask;
4552 break;
4553
4554 case R_MIPS_HIGHEST:
4555 value = mips_elf_highest (addend + symbol);
4556 value &= howto->dst_mask;
4557 break;
4558
4559 case R_MIPS_SCN_DISP:
4560 value = symbol + addend - sec->output_offset;
4561 value &= howto->dst_mask;
4562 break;
4563
b49e97c9 4564 case R_MIPS_JALR:
1367d393
ILT
4565 /* This relocation is only a hint. In some cases, we optimize
4566 it into a bal instruction. But we don't try to optimize
4567 branches to the PLT; that will wind up wasting time. */
4568 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4569 return bfd_reloc_continue;
4570 value = symbol + addend;
4571 break;
b49e97c9 4572
1367d393 4573 case R_MIPS_PJUMP:
b49e97c9
TS
4574 case R_MIPS_GNU_VTINHERIT:
4575 case R_MIPS_GNU_VTENTRY:
4576 /* We don't do anything with these at present. */
4577 return bfd_reloc_continue;
4578
4579 default:
4580 /* An unrecognized relocation type. */
4581 return bfd_reloc_notsupported;
4582 }
4583
4584 /* Store the VALUE for our caller. */
4585 *valuep = value;
4586 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4587}
4588
4589/* Obtain the field relocated by RELOCATION. */
4590
4591static bfd_vma
9719ad41
RS
4592mips_elf_obtain_contents (reloc_howto_type *howto,
4593 const Elf_Internal_Rela *relocation,
4594 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4595{
4596 bfd_vma x;
4597 bfd_byte *location = contents + relocation->r_offset;
4598
4599 /* Obtain the bytes. */
4600 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4601
b49e97c9
TS
4602 return x;
4603}
4604
4605/* It has been determined that the result of the RELOCATION is the
4606 VALUE. Use HOWTO to place VALUE into the output file at the
4607 appropriate position. The SECTION is the section to which the
b34976b6 4608 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4609 for the relocation must be either JAL or JALX, and it is
4610 unconditionally converted to JALX.
4611
b34976b6 4612 Returns FALSE if anything goes wrong. */
b49e97c9 4613
b34976b6 4614static bfd_boolean
9719ad41
RS
4615mips_elf_perform_relocation (struct bfd_link_info *info,
4616 reloc_howto_type *howto,
4617 const Elf_Internal_Rela *relocation,
4618 bfd_vma value, bfd *input_bfd,
4619 asection *input_section, bfd_byte *contents,
4620 bfd_boolean require_jalx)
b49e97c9
TS
4621{
4622 bfd_vma x;
4623 bfd_byte *location;
4624 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4625
4626 /* Figure out where the relocation is occurring. */
4627 location = contents + relocation->r_offset;
4628
d6f16593
MR
4629 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4630
b49e97c9
TS
4631 /* Obtain the current value. */
4632 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4633
4634 /* Clear the field we are setting. */
4635 x &= ~howto->dst_mask;
4636
b49e97c9
TS
4637 /* Set the field. */
4638 x |= (value & howto->dst_mask);
4639
4640 /* If required, turn JAL into JALX. */
4641 if (require_jalx)
4642 {
b34976b6 4643 bfd_boolean ok;
b49e97c9
TS
4644 bfd_vma opcode = x >> 26;
4645 bfd_vma jalx_opcode;
4646
4647 /* Check to see if the opcode is already JAL or JALX. */
4648 if (r_type == R_MIPS16_26)
4649 {
4650 ok = ((opcode == 0x6) || (opcode == 0x7));
4651 jalx_opcode = 0x7;
4652 }
4653 else
4654 {
4655 ok = ((opcode == 0x3) || (opcode == 0x1d));
4656 jalx_opcode = 0x1d;
4657 }
4658
4659 /* If the opcode is not JAL or JALX, there's a problem. */
4660 if (!ok)
4661 {
4662 (*_bfd_error_handler)
d003868e
AM
4663 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4664 input_bfd,
4665 input_section,
b49e97c9
TS
4666 (unsigned long) relocation->r_offset);
4667 bfd_set_error (bfd_error_bad_value);
b34976b6 4668 return FALSE;
b49e97c9
TS
4669 }
4670
4671 /* Make this the JALX opcode. */
4672 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4673 }
4674
1367d393
ILT
4675 /* On the RM9000, bal is faster than jal, because bal uses branch
4676 prediction hardware. If we are linking for the RM9000, and we
4677 see jal, and bal fits, use it instead. Note that this
4678 transformation should be safe for all architectures. */
4679 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4680 && !info->relocatable
4681 && !require_jalx
4682 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4683 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4684 {
4685 bfd_vma addr;
4686 bfd_vma dest;
4687 bfd_signed_vma off;
4688
4689 addr = (input_section->output_section->vma
4690 + input_section->output_offset
4691 + relocation->r_offset
4692 + 4);
4693 if (r_type == R_MIPS_26)
4694 dest = (value << 2) | ((addr >> 28) << 28);
4695 else
4696 dest = value;
4697 off = dest - addr;
4698 if (off <= 0x1ffff && off >= -0x20000)
4699 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4700 }
4701
b49e97c9
TS
4702 /* Put the value into the output. */
4703 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4704
4705 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4706 location);
4707
b34976b6 4708 return TRUE;
b49e97c9
TS
4709}
4710
b34976b6 4711/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4712
b34976b6 4713static bfd_boolean
b9d58d71 4714mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4715{
4716 const char *name = bfd_get_section_name (abfd, section);
4717
b9d58d71 4718 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
b49e97c9
TS
4719}
4720\f
0a44bf69 4721/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
b49e97c9
TS
4722
4723static void
0a44bf69
RS
4724mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4725 unsigned int n)
b49e97c9
TS
4726{
4727 asection *s;
0a44bf69 4728 struct mips_elf_link_hash_table *htab;
b49e97c9 4729
0a44bf69
RS
4730 htab = mips_elf_hash_table (info);
4731 s = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4732 BFD_ASSERT (s != NULL);
4733
0a44bf69
RS
4734 if (htab->is_vxworks)
4735 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4736 else
b49e97c9 4737 {
0a44bf69
RS
4738 if (s->size == 0)
4739 {
4740 /* Make room for a null element. */
4741 s->size += MIPS_ELF_REL_SIZE (abfd);
4742 ++s->reloc_count;
4743 }
4744 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9 4745 }
b49e97c9
TS
4746}
4747
4748/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4749 is the original relocation, which is now being transformed into a
4750 dynamic relocation. The ADDENDP is adjusted if necessary; the
4751 caller should store the result in place of the original addend. */
4752
b34976b6 4753static bfd_boolean
9719ad41
RS
4754mips_elf_create_dynamic_relocation (bfd *output_bfd,
4755 struct bfd_link_info *info,
4756 const Elf_Internal_Rela *rel,
4757 struct mips_elf_link_hash_entry *h,
4758 asection *sec, bfd_vma symbol,
4759 bfd_vma *addendp, asection *input_section)
b49e97c9 4760{
947216bf 4761 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4762 asection *sreloc;
4763 bfd *dynobj;
4764 int r_type;
5d41f0b6
RS
4765 long indx;
4766 bfd_boolean defined_p;
0a44bf69 4767 struct mips_elf_link_hash_table *htab;
b49e97c9 4768
0a44bf69 4769 htab = mips_elf_hash_table (info);
b49e97c9
TS
4770 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4771 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 4772 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
4773 BFD_ASSERT (sreloc != NULL);
4774 BFD_ASSERT (sreloc->contents != NULL);
4775 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4776 < sreloc->size);
b49e97c9 4777
b49e97c9
TS
4778 outrel[0].r_offset =
4779 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
4780 if (ABI_64_P (output_bfd))
4781 {
4782 outrel[1].r_offset =
4783 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4784 outrel[2].r_offset =
4785 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4786 }
b49e97c9 4787
c5ae1840 4788 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4789 /* The relocation field has been deleted. */
5d41f0b6
RS
4790 return TRUE;
4791
4792 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4793 {
4794 /* The relocation field has been converted into a relative value of
4795 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4796 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4797 *addendp += symbol;
5d41f0b6 4798 return TRUE;
0d591ff7 4799 }
b49e97c9 4800
5d41f0b6
RS
4801 /* We must now calculate the dynamic symbol table index to use
4802 in the relocation. */
4803 if (h != NULL
6ece8836
TS
4804 && (!h->root.def_regular
4805 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4806 {
4807 indx = h->root.dynindx;
4808 if (SGI_COMPAT (output_bfd))
4809 defined_p = h->root.def_regular;
4810 else
4811 /* ??? glibc's ld.so just adds the final GOT entry to the
4812 relocation field. It therefore treats relocs against
4813 defined symbols in the same way as relocs against
4814 undefined symbols. */
4815 defined_p = FALSE;
4816 }
b49e97c9
TS
4817 else
4818 {
5d41f0b6
RS
4819 if (sec != NULL && bfd_is_abs_section (sec))
4820 indx = 0;
4821 else if (sec == NULL || sec->owner == NULL)
fdd07405 4822 {
5d41f0b6
RS
4823 bfd_set_error (bfd_error_bad_value);
4824 return FALSE;
b49e97c9
TS
4825 }
4826 else
4827 {
5d41f0b6 4828 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
4829 if (indx == 0)
4830 {
4831 asection *osec = htab->root.text_index_section;
4832 indx = elf_section_data (osec)->dynindx;
4833 }
5d41f0b6
RS
4834 if (indx == 0)
4835 abort ();
b49e97c9
TS
4836 }
4837
5d41f0b6
RS
4838 /* Instead of generating a relocation using the section
4839 symbol, we may as well make it a fully relative
4840 relocation. We want to avoid generating relocations to
4841 local symbols because we used to generate them
4842 incorrectly, without adding the original symbol value,
4843 which is mandated by the ABI for section symbols. In
4844 order to give dynamic loaders and applications time to
4845 phase out the incorrect use, we refrain from emitting
4846 section-relative relocations. It's not like they're
4847 useful, after all. This should be a bit more efficient
4848 as well. */
4849 /* ??? Although this behavior is compatible with glibc's ld.so,
4850 the ABI says that relocations against STN_UNDEF should have
4851 a symbol value of 0. Irix rld honors this, so relocations
4852 against STN_UNDEF have no effect. */
4853 if (!SGI_COMPAT (output_bfd))
4854 indx = 0;
4855 defined_p = TRUE;
b49e97c9
TS
4856 }
4857
5d41f0b6
RS
4858 /* If the relocation was previously an absolute relocation and
4859 this symbol will not be referred to by the relocation, we must
4860 adjust it by the value we give it in the dynamic symbol table.
4861 Otherwise leave the job up to the dynamic linker. */
4862 if (defined_p && r_type != R_MIPS_REL32)
4863 *addendp += symbol;
4864
0a44bf69
RS
4865 if (htab->is_vxworks)
4866 /* VxWorks uses non-relative relocations for this. */
4867 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4868 else
4869 /* The relocation is always an REL32 relocation because we don't
4870 know where the shared library will wind up at load-time. */
4871 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4872 R_MIPS_REL32);
4873
5d41f0b6
RS
4874 /* For strict adherence to the ABI specification, we should
4875 generate a R_MIPS_64 relocation record by itself before the
4876 _REL32/_64 record as well, such that the addend is read in as
4877 a 64-bit value (REL32 is a 32-bit relocation, after all).
4878 However, since none of the existing ELF64 MIPS dynamic
4879 loaders seems to care, we don't waste space with these
4880 artificial relocations. If this turns out to not be true,
4881 mips_elf_allocate_dynamic_relocation() should be tweaked so
4882 as to make room for a pair of dynamic relocations per
4883 invocation if ABI_64_P, and here we should generate an
4884 additional relocation record with R_MIPS_64 by itself for a
4885 NULL symbol before this relocation record. */
4886 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4887 ABI_64_P (output_bfd)
4888 ? R_MIPS_64
4889 : R_MIPS_NONE);
4890 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4891
4892 /* Adjust the output offset of the relocation to reference the
4893 correct location in the output file. */
4894 outrel[0].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896 outrel[1].r_offset += (input_section->output_section->vma
4897 + input_section->output_offset);
4898 outrel[2].r_offset += (input_section->output_section->vma
4899 + input_section->output_offset);
4900
b49e97c9
TS
4901 /* Put the relocation back out. We have to use the special
4902 relocation outputter in the 64-bit case since the 64-bit
4903 relocation format is non-standard. */
4904 if (ABI_64_P (output_bfd))
4905 {
4906 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4907 (output_bfd, &outrel[0],
4908 (sreloc->contents
4909 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4910 }
0a44bf69
RS
4911 else if (htab->is_vxworks)
4912 {
4913 /* VxWorks uses RELA rather than REL dynamic relocations. */
4914 outrel[0].r_addend = *addendp;
4915 bfd_elf32_swap_reloca_out
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4919 }
b49e97c9 4920 else
947216bf
AM
4921 bfd_elf32_swap_reloc_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4924
b49e97c9
TS
4925 /* We've now added another relocation. */
4926 ++sreloc->reloc_count;
4927
4928 /* Make sure the output section is writable. The dynamic linker
4929 will be writing to it. */
4930 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4931 |= SHF_WRITE;
4932
4933 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4934 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4935 {
4936 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4937 bfd_byte *cr;
4938
4939 if (scpt)
4940 {
4941 Elf32_crinfo cptrel;
4942
4943 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4944 cptrel.vaddr = (rel->r_offset
4945 + input_section->output_section->vma
4946 + input_section->output_offset);
4947 if (r_type == R_MIPS_REL32)
4948 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4949 else
4950 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4951 mips_elf_set_cr_dist2to (cptrel, 0);
4952 cptrel.konst = *addendp;
4953
4954 cr = (scpt->contents
4955 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4956 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4957 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4958 ((Elf32_External_crinfo *) cr
4959 + scpt->reloc_count));
4960 ++scpt->reloc_count;
4961 }
4962 }
4963
943284cc
DJ
4964 /* If we've written this relocation for a readonly section,
4965 we need to set DF_TEXTREL again, so that we do not delete the
4966 DT_TEXTREL tag. */
4967 if (MIPS_ELF_READONLY_SECTION (input_section))
4968 info->flags |= DF_TEXTREL;
4969
b34976b6 4970 return TRUE;
b49e97c9
TS
4971}
4972\f
b49e97c9
TS
4973/* Return the MACH for a MIPS e_flags value. */
4974
4975unsigned long
9719ad41 4976_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4977{
4978 switch (flags & EF_MIPS_MACH)
4979 {
4980 case E_MIPS_MACH_3900:
4981 return bfd_mach_mips3900;
4982
4983 case E_MIPS_MACH_4010:
4984 return bfd_mach_mips4010;
4985
4986 case E_MIPS_MACH_4100:
4987 return bfd_mach_mips4100;
4988
4989 case E_MIPS_MACH_4111:
4990 return bfd_mach_mips4111;
4991
00707a0e
RS
4992 case E_MIPS_MACH_4120:
4993 return bfd_mach_mips4120;
4994
b49e97c9
TS
4995 case E_MIPS_MACH_4650:
4996 return bfd_mach_mips4650;
4997
00707a0e
RS
4998 case E_MIPS_MACH_5400:
4999 return bfd_mach_mips5400;
5000
5001 case E_MIPS_MACH_5500:
5002 return bfd_mach_mips5500;
5003
0d2e43ed
ILT
5004 case E_MIPS_MACH_9000:
5005 return bfd_mach_mips9000;
5006
b49e97c9
TS
5007 case E_MIPS_MACH_SB1:
5008 return bfd_mach_mips_sb1;
5009
5010 default:
5011 switch (flags & EF_MIPS_ARCH)
5012 {
5013 default:
5014 case E_MIPS_ARCH_1:
5015 return bfd_mach_mips3000;
b49e97c9
TS
5016
5017 case E_MIPS_ARCH_2:
5018 return bfd_mach_mips6000;
b49e97c9
TS
5019
5020 case E_MIPS_ARCH_3:
5021 return bfd_mach_mips4000;
b49e97c9
TS
5022
5023 case E_MIPS_ARCH_4:
5024 return bfd_mach_mips8000;
b49e97c9
TS
5025
5026 case E_MIPS_ARCH_5:
5027 return bfd_mach_mips5;
b49e97c9
TS
5028
5029 case E_MIPS_ARCH_32:
5030 return bfd_mach_mipsisa32;
b49e97c9
TS
5031
5032 case E_MIPS_ARCH_64:
5033 return bfd_mach_mipsisa64;
af7ee8bf
CD
5034
5035 case E_MIPS_ARCH_32R2:
5036 return bfd_mach_mipsisa32r2;
5f74bc13
CD
5037
5038 case E_MIPS_ARCH_64R2:
5039 return bfd_mach_mipsisa64r2;
b49e97c9
TS
5040 }
5041 }
5042
5043 return 0;
5044}
5045
5046/* Return printable name for ABI. */
5047
5048static INLINE char *
9719ad41 5049elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
5050{
5051 flagword flags;
5052
5053 flags = elf_elfheader (abfd)->e_flags;
5054 switch (flags & EF_MIPS_ABI)
5055 {
5056 case 0:
5057 if (ABI_N32_P (abfd))
5058 return "N32";
5059 else if (ABI_64_P (abfd))
5060 return "64";
5061 else
5062 return "none";
5063 case E_MIPS_ABI_O32:
5064 return "O32";
5065 case E_MIPS_ABI_O64:
5066 return "O64";
5067 case E_MIPS_ABI_EABI32:
5068 return "EABI32";
5069 case E_MIPS_ABI_EABI64:
5070 return "EABI64";
5071 default:
5072 return "unknown abi";
5073 }
5074}
5075\f
5076/* MIPS ELF uses two common sections. One is the usual one, and the
5077 other is for small objects. All the small objects are kept
5078 together, and then referenced via the gp pointer, which yields
5079 faster assembler code. This is what we use for the small common
5080 section. This approach is copied from ecoff.c. */
5081static asection mips_elf_scom_section;
5082static asymbol mips_elf_scom_symbol;
5083static asymbol *mips_elf_scom_symbol_ptr;
5084
5085/* MIPS ELF also uses an acommon section, which represents an
5086 allocated common symbol which may be overridden by a
5087 definition in a shared library. */
5088static asection mips_elf_acom_section;
5089static asymbol mips_elf_acom_symbol;
5090static asymbol *mips_elf_acom_symbol_ptr;
5091
5092/* Handle the special MIPS section numbers that a symbol may use.
5093 This is used for both the 32-bit and the 64-bit ABI. */
5094
5095void
9719ad41 5096_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
5097{
5098 elf_symbol_type *elfsym;
5099
5100 elfsym = (elf_symbol_type *) asym;
5101 switch (elfsym->internal_elf_sym.st_shndx)
5102 {
5103 case SHN_MIPS_ACOMMON:
5104 /* This section is used in a dynamically linked executable file.
5105 It is an allocated common section. The dynamic linker can
5106 either resolve these symbols to something in a shared
5107 library, or it can just leave them here. For our purposes,
5108 we can consider these symbols to be in a new section. */
5109 if (mips_elf_acom_section.name == NULL)
5110 {
5111 /* Initialize the acommon section. */
5112 mips_elf_acom_section.name = ".acommon";
5113 mips_elf_acom_section.flags = SEC_ALLOC;
5114 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5115 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5116 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5117 mips_elf_acom_symbol.name = ".acommon";
5118 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5119 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5120 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5121 }
5122 asym->section = &mips_elf_acom_section;
5123 break;
5124
5125 case SHN_COMMON:
5126 /* Common symbols less than the GP size are automatically
5127 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5128 if (asym->value > elf_gp_size (abfd)
b59eed79 5129 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
5130 || IRIX_COMPAT (abfd) == ict_irix6)
5131 break;
5132 /* Fall through. */
5133 case SHN_MIPS_SCOMMON:
5134 if (mips_elf_scom_section.name == NULL)
5135 {
5136 /* Initialize the small common section. */
5137 mips_elf_scom_section.name = ".scommon";
5138 mips_elf_scom_section.flags = SEC_IS_COMMON;
5139 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5140 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5141 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5142 mips_elf_scom_symbol.name = ".scommon";
5143 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5144 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5145 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5146 }
5147 asym->section = &mips_elf_scom_section;
5148 asym->value = elfsym->internal_elf_sym.st_size;
5149 break;
5150
5151 case SHN_MIPS_SUNDEFINED:
5152 asym->section = bfd_und_section_ptr;
5153 break;
5154
b49e97c9 5155 case SHN_MIPS_TEXT:
00b4930b
TS
5156 {
5157 asection *section = bfd_get_section_by_name (abfd, ".text");
5158
5159 BFD_ASSERT (SGI_COMPAT (abfd));
5160 if (section != NULL)
5161 {
5162 asym->section = section;
5163 /* MIPS_TEXT is a bit special, the address is not an offset
5164 to the base of the .text section. So substract the section
5165 base address to make it an offset. */
5166 asym->value -= section->vma;
5167 }
5168 }
b49e97c9
TS
5169 break;
5170
5171 case SHN_MIPS_DATA:
00b4930b
TS
5172 {
5173 asection *section = bfd_get_section_by_name (abfd, ".data");
5174
5175 BFD_ASSERT (SGI_COMPAT (abfd));
5176 if (section != NULL)
5177 {
5178 asym->section = section;
5179 /* MIPS_DATA is a bit special, the address is not an offset
5180 to the base of the .data section. So substract the section
5181 base address to make it an offset. */
5182 asym->value -= section->vma;
5183 }
5184 }
b49e97c9 5185 break;
b49e97c9
TS
5186 }
5187}
5188\f
8c946ed5
RS
5189/* Implement elf_backend_eh_frame_address_size. This differs from
5190 the default in the way it handles EABI64.
5191
5192 EABI64 was originally specified as an LP64 ABI, and that is what
5193 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5194 historically accepted the combination of -mabi=eabi and -mlong32,
5195 and this ILP32 variation has become semi-official over time.
5196 Both forms use elf32 and have pointer-sized FDE addresses.
5197
5198 If an EABI object was generated by GCC 4.0 or above, it will have
5199 an empty .gcc_compiled_longXX section, where XX is the size of longs
5200 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5201 have no special marking to distinguish them from LP64 objects.
5202
5203 We don't want users of the official LP64 ABI to be punished for the
5204 existence of the ILP32 variant, but at the same time, we don't want
5205 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5206 We therefore take the following approach:
5207
5208 - If ABFD contains a .gcc_compiled_longXX section, use it to
5209 determine the pointer size.
5210
5211 - Otherwise check the type of the first relocation. Assume that
5212 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5213
5214 - Otherwise punt.
5215
5216 The second check is enough to detect LP64 objects generated by pre-4.0
5217 compilers because, in the kind of output generated by those compilers,
5218 the first relocation will be associated with either a CIE personality
5219 routine or an FDE start address. Furthermore, the compilers never
5220 used a special (non-pointer) encoding for this ABI.
5221
5222 Checking the relocation type should also be safe because there is no
5223 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5224 did so. */
5225
5226unsigned int
5227_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5228{
5229 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5230 return 8;
5231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5232 {
5233 bfd_boolean long32_p, long64_p;
5234
5235 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5236 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5237 if (long32_p && long64_p)
5238 return 0;
5239 if (long32_p)
5240 return 4;
5241 if (long64_p)
5242 return 8;
5243
5244 if (sec->reloc_count > 0
5245 && elf_section_data (sec)->relocs != NULL
5246 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5247 == R_MIPS_64))
5248 return 8;
5249
5250 return 0;
5251 }
5252 return 4;
5253}
5254\f
174fd7f9
RS
5255/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5256 relocations against two unnamed section symbols to resolve to the
5257 same address. For example, if we have code like:
5258
5259 lw $4,%got_disp(.data)($gp)
5260 lw $25,%got_disp(.text)($gp)
5261 jalr $25
5262
5263 then the linker will resolve both relocations to .data and the program
5264 will jump there rather than to .text.
5265
5266 We can work around this problem by giving names to local section symbols.
5267 This is also what the MIPSpro tools do. */
5268
5269bfd_boolean
5270_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5271{
5272 return SGI_COMPAT (abfd);
5273}
5274\f
b49e97c9
TS
5275/* Work over a section just before writing it out. This routine is
5276 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5277 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5278 a better way. */
5279
b34976b6 5280bfd_boolean
9719ad41 5281_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
5282{
5283 if (hdr->sh_type == SHT_MIPS_REGINFO
5284 && hdr->sh_size > 0)
5285 {
5286 bfd_byte buf[4];
5287
5288 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5289 BFD_ASSERT (hdr->contents == NULL);
5290
5291 if (bfd_seek (abfd,
5292 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5293 SEEK_SET) != 0)
b34976b6 5294 return FALSE;
b49e97c9 5295 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5296 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5297 return FALSE;
b49e97c9
TS
5298 }
5299
5300 if (hdr->sh_type == SHT_MIPS_OPTIONS
5301 && hdr->bfd_section != NULL
f0abc2a1
AM
5302 && mips_elf_section_data (hdr->bfd_section) != NULL
5303 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
5304 {
5305 bfd_byte *contents, *l, *lend;
5306
f0abc2a1
AM
5307 /* We stored the section contents in the tdata field in the
5308 set_section_contents routine. We save the section contents
5309 so that we don't have to read them again.
b49e97c9
TS
5310 At this point we know that elf_gp is set, so we can look
5311 through the section contents to see if there is an
5312 ODK_REGINFO structure. */
5313
f0abc2a1 5314 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
5315 l = contents;
5316 lend = contents + hdr->sh_size;
5317 while (l + sizeof (Elf_External_Options) <= lend)
5318 {
5319 Elf_Internal_Options intopt;
5320
5321 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5322 &intopt);
1bc8074d
MR
5323 if (intopt.size < sizeof (Elf_External_Options))
5324 {
5325 (*_bfd_error_handler)
5326 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5327 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5328 break;
5329 }
b49e97c9
TS
5330 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5331 {
5332 bfd_byte buf[8];
5333
5334 if (bfd_seek (abfd,
5335 (hdr->sh_offset
5336 + (l - contents)
5337 + sizeof (Elf_External_Options)
5338 + (sizeof (Elf64_External_RegInfo) - 8)),
5339 SEEK_SET) != 0)
b34976b6 5340 return FALSE;
b49e97c9 5341 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5342 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5343 return FALSE;
b49e97c9
TS
5344 }
5345 else if (intopt.kind == ODK_REGINFO)
5346 {
5347 bfd_byte buf[4];
5348
5349 if (bfd_seek (abfd,
5350 (hdr->sh_offset
5351 + (l - contents)
5352 + sizeof (Elf_External_Options)
5353 + (sizeof (Elf32_External_RegInfo) - 4)),
5354 SEEK_SET) != 0)
b34976b6 5355 return FALSE;
b49e97c9 5356 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5357 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5358 return FALSE;
b49e97c9
TS
5359 }
5360 l += intopt.size;
5361 }
5362 }
5363
5364 if (hdr->bfd_section != NULL)
5365 {
5366 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5367
5368 if (strcmp (name, ".sdata") == 0
5369 || strcmp (name, ".lit8") == 0
5370 || strcmp (name, ".lit4") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_PROGBITS;
5374 }
5375 else if (strcmp (name, ".sbss") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_NOBITS;
5379 }
5380 else if (strcmp (name, ".srdata") == 0)
5381 {
5382 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".compact_rel") == 0)
5386 {
5387 hdr->sh_flags = 0;
5388 hdr->sh_type = SHT_PROGBITS;
5389 }
5390 else if (strcmp (name, ".rtproc") == 0)
5391 {
5392 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5393 {
5394 unsigned int adjust;
5395
5396 adjust = hdr->sh_size % hdr->sh_addralign;
5397 if (adjust != 0)
5398 hdr->sh_size += hdr->sh_addralign - adjust;
5399 }
5400 }
5401 }
5402
b34976b6 5403 return TRUE;
b49e97c9
TS
5404}
5405
5406/* Handle a MIPS specific section when reading an object file. This
5407 is called when elfcode.h finds a section with an unknown type.
5408 This routine supports both the 32-bit and 64-bit ELF ABI.
5409
5410 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5411 how to. */
5412
b34976b6 5413bfd_boolean
6dc132d9
L
5414_bfd_mips_elf_section_from_shdr (bfd *abfd,
5415 Elf_Internal_Shdr *hdr,
5416 const char *name,
5417 int shindex)
b49e97c9
TS
5418{
5419 flagword flags = 0;
5420
5421 /* There ought to be a place to keep ELF backend specific flags, but
5422 at the moment there isn't one. We just keep track of the
5423 sections by their name, instead. Fortunately, the ABI gives
5424 suggested names for all the MIPS specific sections, so we will
5425 probably get away with this. */
5426 switch (hdr->sh_type)
5427 {
5428 case SHT_MIPS_LIBLIST:
5429 if (strcmp (name, ".liblist") != 0)
b34976b6 5430 return FALSE;
b49e97c9
TS
5431 break;
5432 case SHT_MIPS_MSYM:
5433 if (strcmp (name, ".msym") != 0)
b34976b6 5434 return FALSE;
b49e97c9
TS
5435 break;
5436 case SHT_MIPS_CONFLICT:
5437 if (strcmp (name, ".conflict") != 0)
b34976b6 5438 return FALSE;
b49e97c9
TS
5439 break;
5440 case SHT_MIPS_GPTAB:
0112cd26 5441 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 5442 return FALSE;
b49e97c9
TS
5443 break;
5444 case SHT_MIPS_UCODE:
5445 if (strcmp (name, ".ucode") != 0)
b34976b6 5446 return FALSE;
b49e97c9
TS
5447 break;
5448 case SHT_MIPS_DEBUG:
5449 if (strcmp (name, ".mdebug") != 0)
b34976b6 5450 return FALSE;
b49e97c9
TS
5451 flags = SEC_DEBUGGING;
5452 break;
5453 case SHT_MIPS_REGINFO:
5454 if (strcmp (name, ".reginfo") != 0
5455 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5456 return FALSE;
b49e97c9
TS
5457 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5458 break;
5459 case SHT_MIPS_IFACE:
5460 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5461 return FALSE;
b49e97c9
TS
5462 break;
5463 case SHT_MIPS_CONTENT:
0112cd26 5464 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 5465 return FALSE;
b49e97c9
TS
5466 break;
5467 case SHT_MIPS_OPTIONS:
cc2e31b9 5468 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5469 return FALSE;
b49e97c9
TS
5470 break;
5471 case SHT_MIPS_DWARF:
0112cd26 5472 if (! CONST_STRNEQ (name, ".debug_"))
b34976b6 5473 return FALSE;
b49e97c9
TS
5474 break;
5475 case SHT_MIPS_SYMBOL_LIB:
5476 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5477 return FALSE;
b49e97c9
TS
5478 break;
5479 case SHT_MIPS_EVENTS:
0112cd26
NC
5480 if (! CONST_STRNEQ (name, ".MIPS.events")
5481 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 5482 return FALSE;
b49e97c9
TS
5483 break;
5484 default:
cc2e31b9 5485 break;
b49e97c9
TS
5486 }
5487
6dc132d9 5488 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5489 return FALSE;
b49e97c9
TS
5490
5491 if (flags)
5492 {
5493 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5494 (bfd_get_section_flags (abfd,
5495 hdr->bfd_section)
5496 | flags)))
b34976b6 5497 return FALSE;
b49e97c9
TS
5498 }
5499
5500 /* FIXME: We should record sh_info for a .gptab section. */
5501
5502 /* For a .reginfo section, set the gp value in the tdata information
5503 from the contents of this section. We need the gp value while
5504 processing relocs, so we just get it now. The .reginfo section
5505 is not used in the 64-bit MIPS ELF ABI. */
5506 if (hdr->sh_type == SHT_MIPS_REGINFO)
5507 {
5508 Elf32_External_RegInfo ext;
5509 Elf32_RegInfo s;
5510
9719ad41
RS
5511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5512 &ext, 0, sizeof ext))
b34976b6 5513 return FALSE;
b49e97c9
TS
5514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5515 elf_gp (abfd) = s.ri_gp_value;
5516 }
5517
5518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5519 set the gp value based on what we find. We may see both
5520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5521 they should agree. */
5522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5523 {
5524 bfd_byte *contents, *l, *lend;
5525
9719ad41 5526 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5527 if (contents == NULL)
b34976b6 5528 return FALSE;
b49e97c9 5529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5530 0, hdr->sh_size))
b49e97c9
TS
5531 {
5532 free (contents);
b34976b6 5533 return FALSE;
b49e97c9
TS
5534 }
5535 l = contents;
5536 lend = contents + hdr->sh_size;
5537 while (l + sizeof (Elf_External_Options) <= lend)
5538 {
5539 Elf_Internal_Options intopt;
5540
5541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5542 &intopt);
1bc8074d
MR
5543 if (intopt.size < sizeof (Elf_External_Options))
5544 {
5545 (*_bfd_error_handler)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5548 break;
5549 }
b49e97c9
TS
5550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5551 {
5552 Elf64_Internal_RegInfo intreg;
5553
5554 bfd_mips_elf64_swap_reginfo_in
5555 (abfd,
5556 ((Elf64_External_RegInfo *)
5557 (l + sizeof (Elf_External_Options))),
5558 &intreg);
5559 elf_gp (abfd) = intreg.ri_gp_value;
5560 }
5561 else if (intopt.kind == ODK_REGINFO)
5562 {
5563 Elf32_RegInfo intreg;
5564
5565 bfd_mips_elf32_swap_reginfo_in
5566 (abfd,
5567 ((Elf32_External_RegInfo *)
5568 (l + sizeof (Elf_External_Options))),
5569 &intreg);
5570 elf_gp (abfd) = intreg.ri_gp_value;
5571 }
5572 l += intopt.size;
5573 }
5574 free (contents);
5575 }
5576
b34976b6 5577 return TRUE;
b49e97c9
TS
5578}
5579
5580/* Set the correct type for a MIPS ELF section. We do this by the
5581 section name, which is a hack, but ought to work. This routine is
5582 used by both the 32-bit and the 64-bit ABI. */
5583
b34976b6 5584bfd_boolean
9719ad41 5585_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 5586{
0414f35b 5587 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
5588
5589 if (strcmp (name, ".liblist") == 0)
5590 {
5591 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5592 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5593 /* The sh_link field is set in final_write_processing. */
5594 }
5595 else if (strcmp (name, ".conflict") == 0)
5596 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 5597 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
5598 {
5599 hdr->sh_type = SHT_MIPS_GPTAB;
5600 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5601 /* The sh_info field is set in final_write_processing. */
5602 }
5603 else if (strcmp (name, ".ucode") == 0)
5604 hdr->sh_type = SHT_MIPS_UCODE;
5605 else if (strcmp (name, ".mdebug") == 0)
5606 {
5607 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5608 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5609 entsize of 0. FIXME: Does this matter? */
5610 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5611 hdr->sh_entsize = 0;
5612 else
5613 hdr->sh_entsize = 1;
5614 }
5615 else if (strcmp (name, ".reginfo") == 0)
5616 {
5617 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5618 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5619 entsize of 0x18. FIXME: Does this matter? */
5620 if (SGI_COMPAT (abfd))
5621 {
5622 if ((abfd->flags & DYNAMIC) != 0)
5623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5624 else
5625 hdr->sh_entsize = 1;
5626 }
5627 else
5628 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5629 }
5630 else if (SGI_COMPAT (abfd)
5631 && (strcmp (name, ".hash") == 0
5632 || strcmp (name, ".dynamic") == 0
5633 || strcmp (name, ".dynstr") == 0))
5634 {
5635 if (SGI_COMPAT (abfd))
5636 hdr->sh_entsize = 0;
5637#if 0
8dc1a139 5638 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5639 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5640#endif
5641 }
5642 else if (strcmp (name, ".got") == 0
5643 || strcmp (name, ".srdata") == 0
5644 || strcmp (name, ".sdata") == 0
5645 || strcmp (name, ".sbss") == 0
5646 || strcmp (name, ".lit4") == 0
5647 || strcmp (name, ".lit8") == 0)
5648 hdr->sh_flags |= SHF_MIPS_GPREL;
5649 else if (strcmp (name, ".MIPS.interfaces") == 0)
5650 {
5651 hdr->sh_type = SHT_MIPS_IFACE;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 }
0112cd26 5654 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
5655 {
5656 hdr->sh_type = SHT_MIPS_CONTENT;
5657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5658 /* The sh_info field is set in final_write_processing. */
5659 }
cc2e31b9 5660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5661 {
5662 hdr->sh_type = SHT_MIPS_OPTIONS;
5663 hdr->sh_entsize = 1;
5664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5665 }
0112cd26 5666 else if (CONST_STRNEQ (name, ".debug_"))
b49e97c9
TS
5667 hdr->sh_type = SHT_MIPS_DWARF;
5668 else if (strcmp (name, ".MIPS.symlib") == 0)
5669 {
5670 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5671 /* The sh_link and sh_info fields are set in
5672 final_write_processing. */
5673 }
0112cd26
NC
5674 else if (CONST_STRNEQ (name, ".MIPS.events")
5675 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
5676 {
5677 hdr->sh_type = SHT_MIPS_EVENTS;
5678 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5679 /* The sh_link field is set in final_write_processing. */
5680 }
5681 else if (strcmp (name, ".msym") == 0)
5682 {
5683 hdr->sh_type = SHT_MIPS_MSYM;
5684 hdr->sh_flags |= SHF_ALLOC;
5685 hdr->sh_entsize = 8;
5686 }
5687
7a79a000
TS
5688 /* The generic elf_fake_sections will set up REL_HDR using the default
5689 kind of relocations. We used to set up a second header for the
5690 non-default kind of relocations here, but only NewABI would use
5691 these, and the IRIX ld doesn't like resulting empty RELA sections.
5692 Thus we create those header only on demand now. */
b49e97c9 5693
b34976b6 5694 return TRUE;
b49e97c9
TS
5695}
5696
5697/* Given a BFD section, try to locate the corresponding ELF section
5698 index. This is used by both the 32-bit and the 64-bit ABI.
5699 Actually, it's not clear to me that the 64-bit ABI supports these,
5700 but for non-PIC objects we will certainly want support for at least
5701 the .scommon section. */
5702
b34976b6 5703bfd_boolean
9719ad41
RS
5704_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5705 asection *sec, int *retval)
b49e97c9
TS
5706{
5707 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5708 {
5709 *retval = SHN_MIPS_SCOMMON;
b34976b6 5710 return TRUE;
b49e97c9
TS
5711 }
5712 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5713 {
5714 *retval = SHN_MIPS_ACOMMON;
b34976b6 5715 return TRUE;
b49e97c9 5716 }
b34976b6 5717 return FALSE;
b49e97c9
TS
5718}
5719\f
5720/* Hook called by the linker routine which adds symbols from an object
5721 file. We must handle the special MIPS section numbers here. */
5722
b34976b6 5723bfd_boolean
9719ad41 5724_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5725 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5726 flagword *flagsp ATTRIBUTE_UNUSED,
5727 asection **secp, bfd_vma *valp)
b49e97c9
TS
5728{
5729 if (SGI_COMPAT (abfd)
5730 && (abfd->flags & DYNAMIC) != 0
5731 && strcmp (*namep, "_rld_new_interface") == 0)
5732 {
8dc1a139 5733 /* Skip IRIX5 rld entry name. */
b49e97c9 5734 *namep = NULL;
b34976b6 5735 return TRUE;
b49e97c9
TS
5736 }
5737
eedecc07
DD
5738 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5739 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5740 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5741 a magic symbol resolved by the linker, we ignore this bogus definition
5742 of _gp_disp. New ABI objects do not suffer from this problem so this
5743 is not done for them. */
5744 if (!NEWABI_P(abfd)
5745 && (sym->st_shndx == SHN_ABS)
5746 && (strcmp (*namep, "_gp_disp") == 0))
5747 {
5748 *namep = NULL;
5749 return TRUE;
5750 }
5751
b49e97c9
TS
5752 switch (sym->st_shndx)
5753 {
5754 case SHN_COMMON:
5755 /* Common symbols less than the GP size are automatically
5756 treated as SHN_MIPS_SCOMMON symbols. */
5757 if (sym->st_size > elf_gp_size (abfd)
b59eed79 5758 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
5759 || IRIX_COMPAT (abfd) == ict_irix6)
5760 break;
5761 /* Fall through. */
5762 case SHN_MIPS_SCOMMON:
5763 *secp = bfd_make_section_old_way (abfd, ".scommon");
5764 (*secp)->flags |= SEC_IS_COMMON;
5765 *valp = sym->st_size;
5766 break;
5767
5768 case SHN_MIPS_TEXT:
5769 /* This section is used in a shared object. */
5770 if (elf_tdata (abfd)->elf_text_section == NULL)
5771 {
5772 asymbol *elf_text_symbol;
5773 asection *elf_text_section;
5774 bfd_size_type amt = sizeof (asection);
5775
5776 elf_text_section = bfd_zalloc (abfd, amt);
5777 if (elf_text_section == NULL)
b34976b6 5778 return FALSE;
b49e97c9
TS
5779
5780 amt = sizeof (asymbol);
5781 elf_text_symbol = bfd_zalloc (abfd, amt);
5782 if (elf_text_symbol == NULL)
b34976b6 5783 return FALSE;
b49e97c9
TS
5784
5785 /* Initialize the section. */
5786
5787 elf_tdata (abfd)->elf_text_section = elf_text_section;
5788 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5789
5790 elf_text_section->symbol = elf_text_symbol;
5791 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5792
5793 elf_text_section->name = ".text";
5794 elf_text_section->flags = SEC_NO_FLAGS;
5795 elf_text_section->output_section = NULL;
5796 elf_text_section->owner = abfd;
5797 elf_text_symbol->name = ".text";
5798 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5799 elf_text_symbol->section = elf_text_section;
5800 }
5801 /* This code used to do *secp = bfd_und_section_ptr if
5802 info->shared. I don't know why, and that doesn't make sense,
5803 so I took it out. */
5804 *secp = elf_tdata (abfd)->elf_text_section;
5805 break;
5806
5807 case SHN_MIPS_ACOMMON:
5808 /* Fall through. XXX Can we treat this as allocated data? */
5809 case SHN_MIPS_DATA:
5810 /* This section is used in a shared object. */
5811 if (elf_tdata (abfd)->elf_data_section == NULL)
5812 {
5813 asymbol *elf_data_symbol;
5814 asection *elf_data_section;
5815 bfd_size_type amt = sizeof (asection);
5816
5817 elf_data_section = bfd_zalloc (abfd, amt);
5818 if (elf_data_section == NULL)
b34976b6 5819 return FALSE;
b49e97c9
TS
5820
5821 amt = sizeof (asymbol);
5822 elf_data_symbol = bfd_zalloc (abfd, amt);
5823 if (elf_data_symbol == NULL)
b34976b6 5824 return FALSE;
b49e97c9
TS
5825
5826 /* Initialize the section. */
5827
5828 elf_tdata (abfd)->elf_data_section = elf_data_section;
5829 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5830
5831 elf_data_section->symbol = elf_data_symbol;
5832 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5833
5834 elf_data_section->name = ".data";
5835 elf_data_section->flags = SEC_NO_FLAGS;
5836 elf_data_section->output_section = NULL;
5837 elf_data_section->owner = abfd;
5838 elf_data_symbol->name = ".data";
5839 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5840 elf_data_symbol->section = elf_data_section;
5841 }
5842 /* This code used to do *secp = bfd_und_section_ptr if
5843 info->shared. I don't know why, and that doesn't make sense,
5844 so I took it out. */
5845 *secp = elf_tdata (abfd)->elf_data_section;
5846 break;
5847
5848 case SHN_MIPS_SUNDEFINED:
5849 *secp = bfd_und_section_ptr;
5850 break;
5851 }
5852
5853 if (SGI_COMPAT (abfd)
5854 && ! info->shared
5855 && info->hash->creator == abfd->xvec
5856 && strcmp (*namep, "__rld_obj_head") == 0)
5857 {
5858 struct elf_link_hash_entry *h;
14a793b2 5859 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5860
5861 /* Mark __rld_obj_head as dynamic. */
14a793b2 5862 bh = NULL;
b49e97c9 5863 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5864 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5865 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5866 return FALSE;
14a793b2
AM
5867
5868 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5869 h->non_elf = 0;
5870 h->def_regular = 1;
b49e97c9
TS
5871 h->type = STT_OBJECT;
5872
c152c796 5873 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5874 return FALSE;
b49e97c9 5875
b34976b6 5876 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5877 }
5878
5879 /* If this is a mips16 text symbol, add 1 to the value to make it
5880 odd. This will cause something like .word SYM to come up with
5881 the right value when it is loaded into the PC. */
5882 if (sym->st_other == STO_MIPS16)
5883 ++*valp;
5884
b34976b6 5885 return TRUE;
b49e97c9
TS
5886}
5887
5888/* This hook function is called before the linker writes out a global
5889 symbol. We mark symbols as small common if appropriate. This is
5890 also where we undo the increment of the value for a mips16 symbol. */
5891
b34976b6 5892bfd_boolean
9719ad41
RS
5893_bfd_mips_elf_link_output_symbol_hook
5894 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5895 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5896 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5897{
5898 /* If we see a common symbol, which implies a relocatable link, then
5899 if a symbol was small common in an input file, mark it as small
5900 common in the output file. */
5901 if (sym->st_shndx == SHN_COMMON
5902 && strcmp (input_sec->name, ".scommon") == 0)
5903 sym->st_shndx = SHN_MIPS_SCOMMON;
5904
79cda7cf
FF
5905 if (sym->st_other == STO_MIPS16)
5906 sym->st_value &= ~1;
b49e97c9 5907
b34976b6 5908 return TRUE;
b49e97c9
TS
5909}
5910\f
5911/* Functions for the dynamic linker. */
5912
5913/* Create dynamic sections when linking against a dynamic object. */
5914
b34976b6 5915bfd_boolean
9719ad41 5916_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5917{
5918 struct elf_link_hash_entry *h;
14a793b2 5919 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5920 flagword flags;
5921 register asection *s;
5922 const char * const *namep;
0a44bf69 5923 struct mips_elf_link_hash_table *htab;
b49e97c9 5924
0a44bf69 5925 htab = mips_elf_hash_table (info);
b49e97c9
TS
5926 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5927 | SEC_LINKER_CREATED | SEC_READONLY);
5928
0a44bf69
RS
5929 /* The psABI requires a read-only .dynamic section, but the VxWorks
5930 EABI doesn't. */
5931 if (!htab->is_vxworks)
b49e97c9 5932 {
0a44bf69
RS
5933 s = bfd_get_section_by_name (abfd, ".dynamic");
5934 if (s != NULL)
5935 {
5936 if (! bfd_set_section_flags (abfd, s, flags))
5937 return FALSE;
5938 }
b49e97c9
TS
5939 }
5940
5941 /* We need to create .got section. */
f4416af6
AO
5942 if (! mips_elf_create_got_section (abfd, info, FALSE))
5943 return FALSE;
5944
0a44bf69 5945 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 5946 return FALSE;
b49e97c9 5947
b49e97c9
TS
5948 /* Create .stub section. */
5949 if (bfd_get_section_by_name (abfd,
5950 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5951 {
3496cb2a
L
5952 s = bfd_make_section_with_flags (abfd,
5953 MIPS_ELF_STUB_SECTION_NAME (abfd),
5954 flags | SEC_CODE);
b49e97c9 5955 if (s == NULL
b49e97c9
TS
5956 || ! bfd_set_section_alignment (abfd, s,
5957 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5958 return FALSE;
b49e97c9
TS
5959 }
5960
5961 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5962 && !info->shared
5963 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5964 {
3496cb2a
L
5965 s = bfd_make_section_with_flags (abfd, ".rld_map",
5966 flags &~ (flagword) SEC_READONLY);
b49e97c9 5967 if (s == NULL
b49e97c9
TS
5968 || ! bfd_set_section_alignment (abfd, s,
5969 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5970 return FALSE;
b49e97c9
TS
5971 }
5972
5973 /* On IRIX5, we adjust add some additional symbols and change the
5974 alignments of several sections. There is no ABI documentation
5975 indicating that this is necessary on IRIX6, nor any evidence that
5976 the linker takes such action. */
5977 if (IRIX_COMPAT (abfd) == ict_irix5)
5978 {
5979 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5980 {
14a793b2 5981 bh = NULL;
b49e97c9 5982 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5983 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5984 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5985 return FALSE;
14a793b2
AM
5986
5987 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5988 h->non_elf = 0;
5989 h->def_regular = 1;
b49e97c9
TS
5990 h->type = STT_SECTION;
5991
c152c796 5992 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5993 return FALSE;
b49e97c9
TS
5994 }
5995
5996 /* We need to create a .compact_rel section. */
5997 if (SGI_COMPAT (abfd))
5998 {
5999 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 6000 return FALSE;
b49e97c9
TS
6001 }
6002
44c410de 6003 /* Change alignments of some sections. */
b49e97c9
TS
6004 s = bfd_get_section_by_name (abfd, ".hash");
6005 if (s != NULL)
d80dcc6a 6006 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6007 s = bfd_get_section_by_name (abfd, ".dynsym");
6008 if (s != NULL)
d80dcc6a 6009 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6010 s = bfd_get_section_by_name (abfd, ".dynstr");
6011 if (s != NULL)
d80dcc6a 6012 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6013 s = bfd_get_section_by_name (abfd, ".reginfo");
6014 if (s != NULL)
d80dcc6a 6015 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6016 s = bfd_get_section_by_name (abfd, ".dynamic");
6017 if (s != NULL)
d80dcc6a 6018 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
6019 }
6020
6021 if (!info->shared)
6022 {
14a793b2
AM
6023 const char *name;
6024
6025 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6026 bh = NULL;
6027 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
6028 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6029 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6030 return FALSE;
14a793b2
AM
6031
6032 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6033 h->non_elf = 0;
6034 h->def_regular = 1;
b49e97c9
TS
6035 h->type = STT_SECTION;
6036
c152c796 6037 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6038 return FALSE;
b49e97c9
TS
6039
6040 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6041 {
6042 /* __rld_map is a four byte word located in the .data section
6043 and is filled in by the rtld to contain a pointer to
6044 the _r_debug structure. Its symbol value will be set in
6045 _bfd_mips_elf_finish_dynamic_symbol. */
6046 s = bfd_get_section_by_name (abfd, ".rld_map");
6047 BFD_ASSERT (s != NULL);
6048
14a793b2
AM
6049 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6050 bh = NULL;
6051 if (!(_bfd_generic_link_add_one_symbol
9719ad41 6052 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 6053 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 6054 return FALSE;
14a793b2
AM
6055
6056 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
6057 h->non_elf = 0;
6058 h->def_regular = 1;
b49e97c9
TS
6059 h->type = STT_OBJECT;
6060
c152c796 6061 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 6062 return FALSE;
b49e97c9
TS
6063 }
6064 }
6065
0a44bf69
RS
6066 if (htab->is_vxworks)
6067 {
6068 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6069 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6070 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6071 return FALSE;
6072
6073 /* Cache the sections created above. */
6074 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6075 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6076 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6077 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6078 if (!htab->sdynbss
6079 || (!htab->srelbss && !info->shared)
6080 || !htab->srelplt
6081 || !htab->splt)
6082 abort ();
6083
6084 /* Do the usual VxWorks handling. */
6085 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6086 return FALSE;
6087
6088 /* Work out the PLT sizes. */
6089 if (info->shared)
6090 {
6091 htab->plt_header_size
6092 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6093 htab->plt_entry_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6095 }
6096 else
6097 {
6098 htab->plt_header_size
6099 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6100 htab->plt_entry_size
6101 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6102 }
6103 }
6104
b34976b6 6105 return TRUE;
b49e97c9
TS
6106}
6107\f
6108/* Look through the relocs for a section during the first phase, and
6109 allocate space in the global offset table. */
6110
b34976b6 6111bfd_boolean
9719ad41
RS
6112_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6113 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
6114{
6115 const char *name;
6116 bfd *dynobj;
6117 Elf_Internal_Shdr *symtab_hdr;
6118 struct elf_link_hash_entry **sym_hashes;
6119 struct mips_got_info *g;
6120 size_t extsymoff;
6121 const Elf_Internal_Rela *rel;
6122 const Elf_Internal_Rela *rel_end;
6123 asection *sgot;
6124 asection *sreloc;
9c5bfbb7 6125 const struct elf_backend_data *bed;
0a44bf69 6126 struct mips_elf_link_hash_table *htab;
b49e97c9 6127
1049f94e 6128 if (info->relocatable)
b34976b6 6129 return TRUE;
b49e97c9 6130
0a44bf69 6131 htab = mips_elf_hash_table (info);
b49e97c9
TS
6132 dynobj = elf_hash_table (info)->dynobj;
6133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6134 sym_hashes = elf_sym_hashes (abfd);
6135 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6136
6137 /* Check for the mips16 stub sections. */
6138
6139 name = bfd_get_section_name (abfd, sec);
b9d58d71 6140 if (FN_STUB_P (name))
b49e97c9
TS
6141 {
6142 unsigned long r_symndx;
6143
6144 /* Look at the relocation information to figure out which symbol
6145 this is for. */
6146
6147 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6148
6149 if (r_symndx < extsymoff
6150 || sym_hashes[r_symndx - extsymoff] == NULL)
6151 {
6152 asection *o;
6153
6154 /* This stub is for a local symbol. This stub will only be
6155 needed if there is some relocation in this BFD, other
6156 than a 16 bit function call, which refers to this symbol. */
6157 for (o = abfd->sections; o != NULL; o = o->next)
6158 {
6159 Elf_Internal_Rela *sec_relocs;
6160 const Elf_Internal_Rela *r, *rend;
6161
6162 /* We can ignore stub sections when looking for relocs. */
6163 if ((o->flags & SEC_RELOC) == 0
6164 || o->reloc_count == 0
b9d58d71 6165 || mips16_stub_section_p (abfd, o))
b49e97c9
TS
6166 continue;
6167
45d6a902 6168 sec_relocs
9719ad41 6169 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 6170 info->keep_memory);
b49e97c9 6171 if (sec_relocs == NULL)
b34976b6 6172 return FALSE;
b49e97c9
TS
6173
6174 rend = sec_relocs + o->reloc_count;
6175 for (r = sec_relocs; r < rend; r++)
6176 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6177 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6178 break;
6179
6cdc0ccc 6180 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
6181 free (sec_relocs);
6182
6183 if (r < rend)
6184 break;
6185 }
6186
6187 if (o == NULL)
6188 {
6189 /* There is no non-call reloc for this stub, so we do
6190 not need it. Since this function is called before
6191 the linker maps input sections to output sections, we
6192 can easily discard it by setting the SEC_EXCLUDE
6193 flag. */
6194 sec->flags |= SEC_EXCLUDE;
b34976b6 6195 return TRUE;
b49e97c9
TS
6196 }
6197
6198 /* Record this stub in an array of local symbol stubs for
6199 this BFD. */
6200 if (elf_tdata (abfd)->local_stubs == NULL)
6201 {
6202 unsigned long symcount;
6203 asection **n;
6204 bfd_size_type amt;
6205
6206 if (elf_bad_symtab (abfd))
6207 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6208 else
6209 symcount = symtab_hdr->sh_info;
6210 amt = symcount * sizeof (asection *);
9719ad41 6211 n = bfd_zalloc (abfd, amt);
b49e97c9 6212 if (n == NULL)
b34976b6 6213 return FALSE;
b49e97c9
TS
6214 elf_tdata (abfd)->local_stubs = n;
6215 }
6216
b9d58d71 6217 sec->flags |= SEC_KEEP;
b49e97c9
TS
6218 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6219
6220 /* We don't need to set mips16_stubs_seen in this case.
6221 That flag is used to see whether we need to look through
6222 the global symbol table for stubs. We don't need to set
6223 it here, because we just have a local stub. */
6224 }
6225 else
6226 {
6227 struct mips_elf_link_hash_entry *h;
6228
6229 h = ((struct mips_elf_link_hash_entry *)
6230 sym_hashes[r_symndx - extsymoff]);
6231
973a3492
L
6232 while (h->root.root.type == bfd_link_hash_indirect
6233 || h->root.root.type == bfd_link_hash_warning)
6234 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6235
b49e97c9
TS
6236 /* H is the symbol this stub is for. */
6237
b9d58d71
TS
6238 /* If we already have an appropriate stub for this function, we
6239 don't need another one, so we can discard this one. Since
6240 this function is called before the linker maps input sections
6241 to output sections, we can easily discard it by setting the
6242 SEC_EXCLUDE flag. */
6243 if (h->fn_stub != NULL)
6244 {
6245 sec->flags |= SEC_EXCLUDE;
6246 return TRUE;
6247 }
6248
6249 sec->flags |= SEC_KEEP;
b49e97c9 6250 h->fn_stub = sec;
b34976b6 6251 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
6252 }
6253 }
b9d58d71 6254 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
6255 {
6256 unsigned long r_symndx;
6257 struct mips_elf_link_hash_entry *h;
6258 asection **loc;
6259
6260 /* Look at the relocation information to figure out which symbol
6261 this is for. */
6262
6263 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6264
6265 if (r_symndx < extsymoff
6266 || sym_hashes[r_symndx - extsymoff] == NULL)
6267 {
b9d58d71 6268 asection *o;
b49e97c9 6269
b9d58d71
TS
6270 /* This stub is for a local symbol. This stub will only be
6271 needed if there is some relocation (R_MIPS16_26) in this BFD
6272 that refers to this symbol. */
6273 for (o = abfd->sections; o != NULL; o = o->next)
6274 {
6275 Elf_Internal_Rela *sec_relocs;
6276 const Elf_Internal_Rela *r, *rend;
6277
6278 /* We can ignore stub sections when looking for relocs. */
6279 if ((o->flags & SEC_RELOC) == 0
6280 || o->reloc_count == 0
6281 || mips16_stub_section_p (abfd, o))
6282 continue;
6283
6284 sec_relocs
6285 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6286 info->keep_memory);
6287 if (sec_relocs == NULL)
6288 return FALSE;
6289
6290 rend = sec_relocs + o->reloc_count;
6291 for (r = sec_relocs; r < rend; r++)
6292 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6293 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6294 break;
6295
6296 if (elf_section_data (o)->relocs != sec_relocs)
6297 free (sec_relocs);
6298
6299 if (r < rend)
6300 break;
6301 }
6302
6303 if (o == NULL)
6304 {
6305 /* There is no non-call reloc for this stub, so we do
6306 not need it. Since this function is called before
6307 the linker maps input sections to output sections, we
6308 can easily discard it by setting the SEC_EXCLUDE
6309 flag. */
6310 sec->flags |= SEC_EXCLUDE;
6311 return TRUE;
6312 }
6313
6314 /* Record this stub in an array of local symbol call_stubs for
6315 this BFD. */
6316 if (elf_tdata (abfd)->local_call_stubs == NULL)
6317 {
6318 unsigned long symcount;
6319 asection **n;
6320 bfd_size_type amt;
6321
6322 if (elf_bad_symtab (abfd))
6323 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6324 else
6325 symcount = symtab_hdr->sh_info;
6326 amt = symcount * sizeof (asection *);
6327 n = bfd_zalloc (abfd, amt);
6328 if (n == NULL)
6329 return FALSE;
6330 elf_tdata (abfd)->local_call_stubs = n;
6331 }
b49e97c9 6332
b9d58d71
TS
6333 sec->flags |= SEC_KEEP;
6334 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 6335
b9d58d71
TS
6336 /* We don't need to set mips16_stubs_seen in this case.
6337 That flag is used to see whether we need to look through
6338 the global symbol table for stubs. We don't need to set
6339 it here, because we just have a local stub. */
6340 }
b49e97c9 6341 else
b49e97c9 6342 {
b9d58d71
TS
6343 h = ((struct mips_elf_link_hash_entry *)
6344 sym_hashes[r_symndx - extsymoff]);
6345
6346 /* H is the symbol this stub is for. */
6347
6348 if (CALL_FP_STUB_P (name))
6349 loc = &h->call_fp_stub;
6350 else
6351 loc = &h->call_stub;
6352
6353 /* If we already have an appropriate stub for this function, we
6354 don't need another one, so we can discard this one. Since
6355 this function is called before the linker maps input sections
6356 to output sections, we can easily discard it by setting the
6357 SEC_EXCLUDE flag. */
6358 if (*loc != NULL)
6359 {
6360 sec->flags |= SEC_EXCLUDE;
6361 return TRUE;
6362 }
b49e97c9 6363
b9d58d71
TS
6364 sec->flags |= SEC_KEEP;
6365 *loc = sec;
6366 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6367 }
b49e97c9
TS
6368 }
6369
6370 if (dynobj == NULL)
6371 {
6372 sgot = NULL;
6373 g = NULL;
6374 }
6375 else
6376 {
f4416af6 6377 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
6378 if (sgot == NULL)
6379 g = NULL;
6380 else
6381 {
f0abc2a1
AM
6382 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6383 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
6384 BFD_ASSERT (g != NULL);
6385 }
6386 }
6387
6388 sreloc = NULL;
6389 bed = get_elf_backend_data (abfd);
6390 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6391 for (rel = relocs; rel < rel_end; ++rel)
6392 {
6393 unsigned long r_symndx;
6394 unsigned int r_type;
6395 struct elf_link_hash_entry *h;
6396
6397 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6398 r_type = ELF_R_TYPE (abfd, rel->r_info);
6399
6400 if (r_symndx < extsymoff)
6401 h = NULL;
6402 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6403 {
6404 (*_bfd_error_handler)
d003868e
AM
6405 (_("%B: Malformed reloc detected for section %s"),
6406 abfd, name);
b49e97c9 6407 bfd_set_error (bfd_error_bad_value);
b34976b6 6408 return FALSE;
b49e97c9
TS
6409 }
6410 else
6411 {
6412 h = sym_hashes[r_symndx - extsymoff];
6413
6414 /* This may be an indirect symbol created because of a version. */
6415 if (h != NULL)
6416 {
6417 while (h->root.type == bfd_link_hash_indirect)
6418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6419 }
6420 }
6421
6422 /* Some relocs require a global offset table. */
6423 if (dynobj == NULL || sgot == NULL)
6424 {
6425 switch (r_type)
6426 {
6427 case R_MIPS_GOT16:
6428 case R_MIPS_CALL16:
6429 case R_MIPS_CALL_HI16:
6430 case R_MIPS_CALL_LO16:
6431 case R_MIPS_GOT_HI16:
6432 case R_MIPS_GOT_LO16:
6433 case R_MIPS_GOT_PAGE:
6434 case R_MIPS_GOT_OFST:
6435 case R_MIPS_GOT_DISP:
86324f90 6436 case R_MIPS_TLS_GOTTPREL:
0f20cc35
DJ
6437 case R_MIPS_TLS_GD:
6438 case R_MIPS_TLS_LDM:
b49e97c9
TS
6439 if (dynobj == NULL)
6440 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6441 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6442 return FALSE;
b49e97c9 6443 g = mips_elf_got_info (dynobj, &sgot);
0a44bf69
RS
6444 if (htab->is_vxworks && !info->shared)
6445 {
6446 (*_bfd_error_handler)
6447 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6448 abfd, (unsigned long) rel->r_offset);
6449 bfd_set_error (bfd_error_bad_value);
6450 return FALSE;
6451 }
b49e97c9
TS
6452 break;
6453
6454 case R_MIPS_32:
6455 case R_MIPS_REL32:
6456 case R_MIPS_64:
0a44bf69
RS
6457 /* In VxWorks executables, references to external symbols
6458 are handled using copy relocs or PLT stubs, so there's
6459 no need to add a dynamic relocation here. */
b49e97c9 6460 if (dynobj == NULL
0a44bf69 6461 && (info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6462 && (sec->flags & SEC_ALLOC) != 0)
6463 elf_hash_table (info)->dynobj = dynobj = abfd;
6464 break;
6465
6466 default:
6467 break;
6468 }
6469 }
6470
0a44bf69
RS
6471 if (h)
6472 {
6473 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6474
6475 /* Relocations against the special VxWorks __GOTT_BASE__ and
6476 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6477 room for them in .rela.dyn. */
6478 if (is_gott_symbol (info, h))
6479 {
6480 if (sreloc == NULL)
6481 {
6482 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6483 if (sreloc == NULL)
6484 return FALSE;
6485 }
6486 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
6487 if (MIPS_ELF_READONLY_SECTION (sec))
6488 /* We tell the dynamic linker that there are
6489 relocations against the text segment. */
6490 info->flags |= DF_TEXTREL;
0a44bf69
RS
6491 }
6492 }
6493 else if (r_type == R_MIPS_CALL_LO16
6494 || r_type == R_MIPS_GOT_LO16
6495 || r_type == R_MIPS_GOT_DISP
6496 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
b49e97c9
TS
6497 {
6498 /* We may need a local GOT entry for this relocation. We
6499 don't count R_MIPS_GOT_PAGE because we can estimate the
6500 maximum number of pages needed by looking at the size of
6501 the segment. Similar comments apply to R_MIPS_GOT16 and
0a44bf69
RS
6502 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6503 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 6504 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6505 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6506 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6507 rel->r_addend, g, 0))
f4416af6 6508 return FALSE;
b49e97c9
TS
6509 }
6510
6511 switch (r_type)
6512 {
6513 case R_MIPS_CALL16:
6514 if (h == NULL)
6515 {
6516 (*_bfd_error_handler)
d003868e
AM
6517 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6518 abfd, (unsigned long) rel->r_offset);
b49e97c9 6519 bfd_set_error (bfd_error_bad_value);
b34976b6 6520 return FALSE;
b49e97c9
TS
6521 }
6522 /* Fall through. */
6523
6524 case R_MIPS_CALL_HI16:
6525 case R_MIPS_CALL_LO16:
6526 if (h != NULL)
6527 {
0a44bf69
RS
6528 /* VxWorks call relocations point the function's .got.plt
6529 entry, which will be allocated by adjust_dynamic_symbol.
6530 Otherwise, this symbol requires a global GOT entry. */
6531 if (!htab->is_vxworks
6532 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6533 return FALSE;
b49e97c9
TS
6534
6535 /* We need a stub, not a plt entry for the undefined
6536 function. But we record it as if it needs plt. See
c152c796 6537 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6538 h->needs_plt = 1;
b49e97c9
TS
6539 h->type = STT_FUNC;
6540 }
6541 break;
6542
0fdc1bf1
AO
6543 case R_MIPS_GOT_PAGE:
6544 /* If this is a global, overridable symbol, GOT_PAGE will
6545 decay to GOT_DISP, so we'll need a GOT entry for it. */
6546 if (h == NULL)
6547 break;
6548 else
6549 {
6550 struct mips_elf_link_hash_entry *hmips =
6551 (struct mips_elf_link_hash_entry *) h;
143d77c5 6552
0fdc1bf1
AO
6553 while (hmips->root.root.type == bfd_link_hash_indirect
6554 || hmips->root.root.type == bfd_link_hash_warning)
6555 hmips = (struct mips_elf_link_hash_entry *)
6556 hmips->root.root.u.i.link;
143d77c5 6557
f5385ebf 6558 if (hmips->root.def_regular
0fdc1bf1 6559 && ! (info->shared && ! info->symbolic
f5385ebf 6560 && ! hmips->root.forced_local))
0fdc1bf1
AO
6561 break;
6562 }
6563 /* Fall through. */
6564
b49e97c9
TS
6565 case R_MIPS_GOT16:
6566 case R_MIPS_GOT_HI16:
6567 case R_MIPS_GOT_LO16:
6568 case R_MIPS_GOT_DISP:
0f20cc35 6569 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6570 return FALSE;
b49e97c9
TS
6571 break;
6572
0f20cc35
DJ
6573 case R_MIPS_TLS_GOTTPREL:
6574 if (info->shared)
6575 info->flags |= DF_STATIC_TLS;
6576 /* Fall through */
6577
6578 case R_MIPS_TLS_LDM:
6579 if (r_type == R_MIPS_TLS_LDM)
6580 {
6581 r_symndx = 0;
6582 h = NULL;
6583 }
6584 /* Fall through */
6585
6586 case R_MIPS_TLS_GD:
6587 /* This symbol requires a global offset table entry, or two
6588 for TLS GD relocations. */
6589 {
6590 unsigned char flag = (r_type == R_MIPS_TLS_GD
6591 ? GOT_TLS_GD
6592 : r_type == R_MIPS_TLS_LDM
6593 ? GOT_TLS_LDM
6594 : GOT_TLS_IE);
6595 if (h != NULL)
6596 {
6597 struct mips_elf_link_hash_entry *hmips =
6598 (struct mips_elf_link_hash_entry *) h;
6599 hmips->tls_type |= flag;
6600
6601 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6602 return FALSE;
6603 }
6604 else
6605 {
6606 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6607
6608 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6609 rel->r_addend, g, flag))
6610 return FALSE;
6611 }
6612 }
6613 break;
6614
b49e97c9
TS
6615 case R_MIPS_32:
6616 case R_MIPS_REL32:
6617 case R_MIPS_64:
0a44bf69
RS
6618 /* In VxWorks executables, references to external symbols
6619 are handled using copy relocs or PLT stubs, so there's
6620 no need to add a .rela.dyn entry for this relocation. */
6621 if ((info->shared || (h != NULL && !htab->is_vxworks))
b49e97c9
TS
6622 && (sec->flags & SEC_ALLOC) != 0)
6623 {
6624 if (sreloc == NULL)
6625 {
0a44bf69 6626 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 6627 if (sreloc == NULL)
f4416af6 6628 return FALSE;
b49e97c9 6629 }
b49e97c9 6630 if (info->shared)
82f0cfbd
EC
6631 {
6632 /* When creating a shared object, we must copy these
6633 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
6634 relocs. Make room for this reloc in .rel(a).dyn. */
6635 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 6636 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6637 /* We tell the dynamic linker that there are
6638 relocations against the text segment. */
6639 info->flags |= DF_TEXTREL;
6640 }
b49e97c9
TS
6641 else
6642 {
6643 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6644
b49e97c9
TS
6645 /* We only need to copy this reloc if the symbol is
6646 defined in a dynamic object. */
6647 hmips = (struct mips_elf_link_hash_entry *) h;
6648 ++hmips->possibly_dynamic_relocs;
943284cc 6649 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
6650 /* We need it to tell the dynamic linker if there
6651 are relocations against the text segment. */
6652 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6653 }
6654
6655 /* Even though we don't directly need a GOT entry for
6656 this symbol, a symbol must have a dynamic symbol
6657 table index greater that DT_MIPS_GOTSYM if there are
0a44bf69
RS
6658 dynamic relocations against it. This does not apply
6659 to VxWorks, which does not have the usual coupling
6660 between global GOT entries and .dynsym entries. */
6661 if (h != NULL && !htab->is_vxworks)
f4416af6
AO
6662 {
6663 if (dynobj == NULL)
6664 elf_hash_table (info)->dynobj = dynobj = abfd;
6665 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6666 return FALSE;
6667 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6668 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6669 return FALSE;
6670 }
b49e97c9
TS
6671 }
6672
6673 if (SGI_COMPAT (abfd))
6674 mips_elf_hash_table (info)->compact_rel_size +=
6675 sizeof (Elf32_External_crinfo);
6676 break;
6677
0a44bf69
RS
6678 case R_MIPS_PC16:
6679 if (h)
6680 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6681 break;
6682
b49e97c9 6683 case R_MIPS_26:
0a44bf69
RS
6684 if (h)
6685 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6686 /* Fall through. */
6687
b49e97c9
TS
6688 case R_MIPS_GPREL16:
6689 case R_MIPS_LITERAL:
6690 case R_MIPS_GPREL32:
6691 if (SGI_COMPAT (abfd))
6692 mips_elf_hash_table (info)->compact_rel_size +=
6693 sizeof (Elf32_External_crinfo);
6694 break;
6695
6696 /* This relocation describes the C++ object vtable hierarchy.
6697 Reconstruct it for later use during GC. */
6698 case R_MIPS_GNU_VTINHERIT:
c152c796 6699 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6700 return FALSE;
b49e97c9
TS
6701 break;
6702
6703 /* This relocation describes which C++ vtable entries are actually
6704 used. Record for later use during GC. */
6705 case R_MIPS_GNU_VTENTRY:
c152c796 6706 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6707 return FALSE;
b49e97c9
TS
6708 break;
6709
6710 default:
6711 break;
6712 }
6713
6714 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
6715 related to taking the function's address. This doesn't apply to
6716 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6717 a normal .got entry. */
6718 if (!htab->is_vxworks && h != NULL)
6719 switch (r_type)
6720 {
6721 default:
6722 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6723 break;
6724 case R_MIPS_CALL16:
6725 case R_MIPS_CALL_HI16:
6726 case R_MIPS_CALL_LO16:
6727 case R_MIPS_JALR:
6728 break;
6729 }
b49e97c9
TS
6730
6731 /* If this reloc is not a 16 bit call, and it has a global
6732 symbol, then we will need the fn_stub if there is one.
6733 References from a stub section do not count. */
6734 if (h != NULL
6735 && r_type != R_MIPS16_26
b9d58d71 6736 && !mips16_stub_section_p (abfd, sec))
b49e97c9
TS
6737 {
6738 struct mips_elf_link_hash_entry *mh;
6739
6740 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6741 mh->need_fn_stub = TRUE;
b49e97c9
TS
6742 }
6743 }
6744
b34976b6 6745 return TRUE;
b49e97c9
TS
6746}
6747\f
d0647110 6748bfd_boolean
9719ad41
RS
6749_bfd_mips_relax_section (bfd *abfd, asection *sec,
6750 struct bfd_link_info *link_info,
6751 bfd_boolean *again)
d0647110
AO
6752{
6753 Elf_Internal_Rela *internal_relocs;
6754 Elf_Internal_Rela *irel, *irelend;
6755 Elf_Internal_Shdr *symtab_hdr;
6756 bfd_byte *contents = NULL;
d0647110
AO
6757 size_t extsymoff;
6758 bfd_boolean changed_contents = FALSE;
6759 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6760 Elf_Internal_Sym *isymbuf = NULL;
6761
6762 /* We are not currently changing any sizes, so only one pass. */
6763 *again = FALSE;
6764
1049f94e 6765 if (link_info->relocatable)
d0647110
AO
6766 return TRUE;
6767
9719ad41 6768 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6769 link_info->keep_memory);
d0647110
AO
6770 if (internal_relocs == NULL)
6771 return TRUE;
6772
6773 irelend = internal_relocs + sec->reloc_count
6774 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6775 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6776 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6777
6778 for (irel = internal_relocs; irel < irelend; irel++)
6779 {
6780 bfd_vma symval;
6781 bfd_signed_vma sym_offset;
6782 unsigned int r_type;
6783 unsigned long r_symndx;
6784 asection *sym_sec;
6785 unsigned long instruction;
6786
6787 /* Turn jalr into bgezal, and jr into beq, if they're marked
6788 with a JALR relocation, that indicate where they jump to.
6789 This saves some pipeline bubbles. */
6790 r_type = ELF_R_TYPE (abfd, irel->r_info);
6791 if (r_type != R_MIPS_JALR)
6792 continue;
6793
6794 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6795 /* Compute the address of the jump target. */
6796 if (r_symndx >= extsymoff)
6797 {
6798 struct mips_elf_link_hash_entry *h
6799 = ((struct mips_elf_link_hash_entry *)
6800 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6801
6802 while (h->root.root.type == bfd_link_hash_indirect
6803 || h->root.root.type == bfd_link_hash_warning)
6804 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6805
d0647110
AO
6806 /* If a symbol is undefined, or if it may be overridden,
6807 skip it. */
6808 if (! ((h->root.root.type == bfd_link_hash_defined
6809 || h->root.root.type == bfd_link_hash_defweak)
6810 && h->root.root.u.def.section)
6811 || (link_info->shared && ! link_info->symbolic
f5385ebf 6812 && !h->root.forced_local))
d0647110
AO
6813 continue;
6814
6815 sym_sec = h->root.root.u.def.section;
6816 if (sym_sec->output_section)
6817 symval = (h->root.root.u.def.value
6818 + sym_sec->output_section->vma
6819 + sym_sec->output_offset);
6820 else
6821 symval = h->root.root.u.def.value;
6822 }
6823 else
6824 {
6825 Elf_Internal_Sym *isym;
6826
6827 /* Read this BFD's symbols if we haven't done so already. */
6828 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6829 {
6830 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6831 if (isymbuf == NULL)
6832 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6833 symtab_hdr->sh_info, 0,
6834 NULL, NULL, NULL);
6835 if (isymbuf == NULL)
6836 goto relax_return;
6837 }
6838
6839 isym = isymbuf + r_symndx;
6840 if (isym->st_shndx == SHN_UNDEF)
6841 continue;
6842 else if (isym->st_shndx == SHN_ABS)
6843 sym_sec = bfd_abs_section_ptr;
6844 else if (isym->st_shndx == SHN_COMMON)
6845 sym_sec = bfd_com_section_ptr;
6846 else
6847 sym_sec
6848 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6849 symval = isym->st_value
6850 + sym_sec->output_section->vma
6851 + sym_sec->output_offset;
6852 }
6853
6854 /* Compute branch offset, from delay slot of the jump to the
6855 branch target. */
6856 sym_offset = (symval + irel->r_addend)
6857 - (sec_start + irel->r_offset + 4);
6858
6859 /* Branch offset must be properly aligned. */
6860 if ((sym_offset & 3) != 0)
6861 continue;
6862
6863 sym_offset >>= 2;
6864
6865 /* Check that it's in range. */
6866 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6867 continue;
143d77c5 6868
d0647110
AO
6869 /* Get the section contents if we haven't done so already. */
6870 if (contents == NULL)
6871 {
6872 /* Get cached copy if it exists. */
6873 if (elf_section_data (sec)->this_hdr.contents != NULL)
6874 contents = elf_section_data (sec)->this_hdr.contents;
6875 else
6876 {
eea6121a 6877 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6878 goto relax_return;
6879 }
6880 }
6881
6882 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6883
6884 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6885 if ((instruction & 0xfc1fffff) == 0x0000f809)
6886 instruction = 0x04110000;
6887 /* If it was jr <reg>, turn it into b <target>. */
6888 else if ((instruction & 0xfc1fffff) == 0x00000008)
6889 instruction = 0x10000000;
6890 else
6891 continue;
6892
6893 instruction |= (sym_offset & 0xffff);
6894 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6895 changed_contents = TRUE;
6896 }
6897
6898 if (contents != NULL
6899 && elf_section_data (sec)->this_hdr.contents != contents)
6900 {
6901 if (!changed_contents && !link_info->keep_memory)
6902 free (contents);
6903 else
6904 {
6905 /* Cache the section contents for elf_link_input_bfd. */
6906 elf_section_data (sec)->this_hdr.contents = contents;
6907 }
6908 }
6909 return TRUE;
6910
143d77c5 6911 relax_return:
eea6121a
AM
6912 if (contents != NULL
6913 && elf_section_data (sec)->this_hdr.contents != contents)
6914 free (contents);
d0647110
AO
6915 return FALSE;
6916}
6917\f
b49e97c9
TS
6918/* Adjust a symbol defined by a dynamic object and referenced by a
6919 regular object. The current definition is in some section of the
6920 dynamic object, but we're not including those sections. We have to
6921 change the definition to something the rest of the link can
6922 understand. */
6923
b34976b6 6924bfd_boolean
9719ad41
RS
6925_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6926 struct elf_link_hash_entry *h)
b49e97c9
TS
6927{
6928 bfd *dynobj;
6929 struct mips_elf_link_hash_entry *hmips;
6930 asection *s;
5108fc1b 6931 struct mips_elf_link_hash_table *htab;
b49e97c9 6932
5108fc1b 6933 htab = mips_elf_hash_table (info);
b49e97c9
TS
6934 dynobj = elf_hash_table (info)->dynobj;
6935
6936 /* Make sure we know what is going on here. */
6937 BFD_ASSERT (dynobj != NULL
f5385ebf 6938 && (h->needs_plt
f6e332e6 6939 || h->u.weakdef != NULL
f5385ebf
AM
6940 || (h->def_dynamic
6941 && h->ref_regular
6942 && !h->def_regular)));
b49e97c9
TS
6943
6944 /* If this symbol is defined in a dynamic object, we need to copy
6945 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6946 file. */
6947 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6948 if (! info->relocatable
b49e97c9
TS
6949 && hmips->possibly_dynamic_relocs != 0
6950 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6951 || !h->def_regular))
b49e97c9 6952 {
0a44bf69
RS
6953 mips_elf_allocate_dynamic_relocations
6954 (dynobj, info, hmips->possibly_dynamic_relocs);
82f0cfbd 6955 if (hmips->readonly_reloc)
b49e97c9
TS
6956 /* We tell the dynamic linker that there are relocations
6957 against the text segment. */
6958 info->flags |= DF_TEXTREL;
6959 }
6960
6961 /* For a function, create a stub, if allowed. */
6962 if (! hmips->no_fn_stub
f5385ebf 6963 && h->needs_plt)
b49e97c9
TS
6964 {
6965 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6966 return TRUE;
b49e97c9
TS
6967
6968 /* If this symbol is not defined in a regular file, then set
6969 the symbol to the stub location. This is required to make
6970 function pointers compare as equal between the normal
6971 executable and the shared library. */
f5385ebf 6972 if (!h->def_regular)
b49e97c9
TS
6973 {
6974 /* We need .stub section. */
6975 s = bfd_get_section_by_name (dynobj,
6976 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6977 BFD_ASSERT (s != NULL);
6978
6979 h->root.u.def.section = s;
eea6121a 6980 h->root.u.def.value = s->size;
b49e97c9
TS
6981
6982 /* XXX Write this stub address somewhere. */
eea6121a 6983 h->plt.offset = s->size;
b49e97c9
TS
6984
6985 /* Make room for this stub code. */
5108fc1b 6986 s->size += htab->function_stub_size;
b49e97c9
TS
6987
6988 /* The last half word of the stub will be filled with the index
6989 of this symbol in .dynsym section. */
b34976b6 6990 return TRUE;
b49e97c9
TS
6991 }
6992 }
6993 else if ((h->type == STT_FUNC)
f5385ebf 6994 && !h->needs_plt)
b49e97c9
TS
6995 {
6996 /* This will set the entry for this symbol in the GOT to 0, and
6997 the dynamic linker will take care of this. */
6998 h->root.u.def.value = 0;
b34976b6 6999 return TRUE;
b49e97c9
TS
7000 }
7001
7002 /* If this is a weak symbol, and there is a real definition, the
7003 processor independent code will have arranged for us to see the
7004 real definition first, and we can just use the same value. */
f6e332e6 7005 if (h->u.weakdef != NULL)
b49e97c9 7006 {
f6e332e6
AM
7007 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7008 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7009 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7010 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 7011 return TRUE;
b49e97c9
TS
7012 }
7013
7014 /* This is a reference to a symbol defined by a dynamic object which
7015 is not a function. */
7016
b34976b6 7017 return TRUE;
b49e97c9 7018}
0a44bf69
RS
7019
7020/* Likewise, for VxWorks. */
7021
7022bfd_boolean
7023_bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7024 struct elf_link_hash_entry *h)
7025{
7026 bfd *dynobj;
7027 struct mips_elf_link_hash_entry *hmips;
7028 struct mips_elf_link_hash_table *htab;
0a44bf69
RS
7029
7030 htab = mips_elf_hash_table (info);
7031 dynobj = elf_hash_table (info)->dynobj;
7032 hmips = (struct mips_elf_link_hash_entry *) h;
7033
7034 /* Make sure we know what is going on here. */
7035 BFD_ASSERT (dynobj != NULL
7036 && (h->needs_plt
7037 || h->needs_copy
7038 || h->u.weakdef != NULL
7039 || (h->def_dynamic
7040 && h->ref_regular
7041 && !h->def_regular)));
7042
7043 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7044 either (a) we want to branch to the symbol or (b) we're linking an
7045 executable that needs a canonical function address. In the latter
7046 case, the canonical address will be the address of the executable's
7047 load stub. */
7048 if ((hmips->is_branch_target
7049 || (!info->shared
7050 && h->type == STT_FUNC
7051 && hmips->is_relocation_target))
7052 && h->def_dynamic
7053 && h->ref_regular
7054 && !h->def_regular
7055 && !h->forced_local)
7056 h->needs_plt = 1;
7057
7058 /* Locally-binding symbols do not need a PLT stub; we can refer to
7059 the functions directly. */
7060 else if (h->needs_plt
7061 && (SYMBOL_CALLS_LOCAL (info, h)
7062 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7063 && h->root.type == bfd_link_hash_undefweak)))
7064 {
7065 h->needs_plt = 0;
7066 return TRUE;
7067 }
7068
7069 if (h->needs_plt)
7070 {
7071 /* If this is the first symbol to need a PLT entry, allocate room
7072 for the header, and for the header's .rela.plt.unloaded entries. */
7073 if (htab->splt->size == 0)
7074 {
7075 htab->splt->size += htab->plt_header_size;
7076 if (!info->shared)
7077 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7078 }
7079
7080 /* Assign the next .plt entry to this symbol. */
7081 h->plt.offset = htab->splt->size;
7082 htab->splt->size += htab->plt_entry_size;
7083
7084 /* If the output file has no definition of the symbol, set the
7085 symbol's value to the address of the stub. For executables,
7086 point at the PLT load stub rather than the lazy resolution stub;
7087 this stub will become the canonical function address. */
7088 if (!h->def_regular)
7089 {
7090 h->root.u.def.section = htab->splt;
7091 h->root.u.def.value = h->plt.offset;
7092 if (!info->shared)
7093 h->root.u.def.value += 8;
7094 }
7095
7096 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7097 htab->sgotplt->size += 4;
7098 htab->srelplt->size += sizeof (Elf32_External_Rela);
7099
7100 /* Make room for the .rela.plt.unloaded relocations. */
7101 if (!info->shared)
7102 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7103
7104 return TRUE;
7105 }
7106
7107 /* If a function symbol is defined by a dynamic object, and we do not
7108 need a PLT stub for it, the symbol's value should be zero. */
7109 if (h->type == STT_FUNC
7110 && h->def_dynamic
7111 && h->ref_regular
7112 && !h->def_regular)
7113 {
7114 h->root.u.def.value = 0;
7115 return TRUE;
7116 }
7117
7118 /* If this is a weak symbol, and there is a real definition, the
7119 processor independent code will have arranged for us to see the
7120 real definition first, and we can just use the same value. */
7121 if (h->u.weakdef != NULL)
7122 {
7123 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7124 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7125 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7126 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7127 return TRUE;
7128 }
7129
7130 /* This is a reference to a symbol defined by a dynamic object which
7131 is not a function. */
7132 if (info->shared)
7133 return TRUE;
7134
7135 /* We must allocate the symbol in our .dynbss section, which will
7136 become part of the .bss section of the executable. There will be
7137 an entry for this symbol in the .dynsym section. The dynamic
7138 object will contain position independent code, so all references
7139 from the dynamic object to this symbol will go through the global
7140 offset table. The dynamic linker will use the .dynsym entry to
7141 determine the address it must put in the global offset table, so
7142 both the dynamic object and the regular object will refer to the
7143 same memory location for the variable. */
7144
7145 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7146 {
7147 htab->srelbss->size += sizeof (Elf32_External_Rela);
7148 h->needs_copy = 1;
7149 }
7150
027297b7 7151 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 7152}
b49e97c9 7153\f
5108fc1b
RS
7154/* Return the number of dynamic section symbols required by OUTPUT_BFD.
7155 The number might be exact or a worst-case estimate, depending on how
7156 much information is available to elf_backend_omit_section_dynsym at
7157 the current linking stage. */
7158
7159static bfd_size_type
7160count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7161{
7162 bfd_size_type count;
7163
7164 count = 0;
7165 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7166 {
7167 asection *p;
7168 const struct elf_backend_data *bed;
7169
7170 bed = get_elf_backend_data (output_bfd);
7171 for (p = output_bfd->sections; p ; p = p->next)
7172 if ((p->flags & SEC_EXCLUDE) == 0
7173 && (p->flags & SEC_ALLOC) != 0
7174 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7175 ++count;
7176 }
7177 return count;
7178}
7179
b49e97c9
TS
7180/* This function is called after all the input files have been read,
7181 and the input sections have been assigned to output sections. We
7182 check for any mips16 stub sections that we can discard. */
7183
b34976b6 7184bfd_boolean
9719ad41
RS
7185_bfd_mips_elf_always_size_sections (bfd *output_bfd,
7186 struct bfd_link_info *info)
b49e97c9
TS
7187{
7188 asection *ri;
7189
f4416af6
AO
7190 bfd *dynobj;
7191 asection *s;
7192 struct mips_got_info *g;
7193 int i;
7194 bfd_size_type loadable_size = 0;
7195 bfd_size_type local_gotno;
5108fc1b 7196 bfd_size_type dynsymcount;
f4416af6 7197 bfd *sub;
0f20cc35 7198 struct mips_elf_count_tls_arg count_tls_arg;
0a44bf69
RS
7199 struct mips_elf_link_hash_table *htab;
7200
7201 htab = mips_elf_hash_table (info);
f4416af6 7202
b49e97c9
TS
7203 /* The .reginfo section has a fixed size. */
7204 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7205 if (ri != NULL)
9719ad41 7206 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 7207
1049f94e 7208 if (! (info->relocatable
f4416af6
AO
7209 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7210 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 7211 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
7212
7213 dynobj = elf_hash_table (info)->dynobj;
7214 if (dynobj == NULL)
7215 /* Relocatable links don't have it. */
7216 return TRUE;
143d77c5 7217
f4416af6
AO
7218 g = mips_elf_got_info (dynobj, &s);
7219 if (s == NULL)
b34976b6 7220 return TRUE;
b49e97c9 7221
f4416af6
AO
7222 /* Calculate the total loadable size of the output. That
7223 will give us the maximum number of GOT_PAGE entries
7224 required. */
7225 for (sub = info->input_bfds; sub; sub = sub->link_next)
7226 {
7227 asection *subsection;
7228
7229 for (subsection = sub->sections;
7230 subsection;
7231 subsection = subsection->next)
7232 {
7233 if ((subsection->flags & SEC_ALLOC) == 0)
7234 continue;
eea6121a 7235 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
7236 &~ (bfd_size_type) 0xf);
7237 }
7238 }
7239
7240 /* There has to be a global GOT entry for every symbol with
7241 a dynamic symbol table index of DT_MIPS_GOTSYM or
7242 higher. Therefore, it make sense to put those symbols
7243 that need GOT entries at the end of the symbol table. We
7244 do that here. */
7245 if (! mips_elf_sort_hash_table (info, 1))
7246 return FALSE;
7247
7248 if (g->global_gotsym != NULL)
7249 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7250 else
7251 /* If there are no global symbols, or none requiring
7252 relocations, then GLOBAL_GOTSYM will be NULL. */
7253 i = 0;
7254
5108fc1b
RS
7255 /* Get a worst-case estimate of the number of dynamic symbols needed.
7256 At this point, dynsymcount does not account for section symbols
7257 and count_section_dynsyms may overestimate the number that will
7258 be needed. */
7259 dynsymcount = (elf_hash_table (info)->dynsymcount
7260 + count_section_dynsyms (output_bfd, info));
7261
7262 /* Determine the size of one stub entry. */
7263 htab->function_stub_size = (dynsymcount > 0x10000
7264 ? MIPS_FUNCTION_STUB_BIG_SIZE
7265 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7266
f4416af6
AO
7267 /* In the worst case, we'll get one stub per dynamic symbol, plus
7268 one to account for the dummy entry at the end required by IRIX
7269 rld. */
5108fc1b 7270 loadable_size += htab->function_stub_size * (i + 1);
f4416af6 7271
0a44bf69
RS
7272 if (htab->is_vxworks)
7273 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7274 relocations against local symbols evaluate to "G", and the EABI does
7275 not include R_MIPS_GOT_PAGE. */
7276 local_gotno = 0;
7277 else
7278 /* Assume there are two loadable segments consisting of contiguous
7279 sections. Is 5 enough? */
7280 local_gotno = (loadable_size >> 16) + 5;
f4416af6
AO
7281
7282 g->local_gotno += local_gotno;
eea6121a 7283 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
7284
7285 g->global_gotno = i;
eea6121a 7286 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 7287
0f20cc35
DJ
7288 /* We need to calculate tls_gotno for global symbols at this point
7289 instead of building it up earlier, to avoid doublecounting
7290 entries for one global symbol from multiple input files. */
7291 count_tls_arg.info = info;
7292 count_tls_arg.needed = 0;
7293 elf_link_hash_traverse (elf_hash_table (info),
7294 mips_elf_count_global_tls_entries,
7295 &count_tls_arg);
7296 g->tls_gotno += count_tls_arg.needed;
7297 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7298
7299 mips_elf_resolve_final_got_entries (g);
7300
0a44bf69
RS
7301 /* VxWorks does not support multiple GOTs. It initializes $gp to
7302 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7303 dynamic loader. */
7304 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35
DJ
7305 {
7306 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7307 return FALSE;
7308 }
7309 else
7310 {
7311 /* Set up TLS entries for the first GOT. */
7312 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7313 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7314 }
b49e97c9 7315
b34976b6 7316 return TRUE;
b49e97c9
TS
7317}
7318
7319/* Set the sizes of the dynamic sections. */
7320
b34976b6 7321bfd_boolean
9719ad41
RS
7322_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7323 struct bfd_link_info *info)
b49e97c9
TS
7324{
7325 bfd *dynobj;
0a44bf69 7326 asection *s, *sreldyn;
b34976b6 7327 bfd_boolean reltext;
0a44bf69 7328 struct mips_elf_link_hash_table *htab;
b49e97c9 7329
0a44bf69 7330 htab = mips_elf_hash_table (info);
b49e97c9
TS
7331 dynobj = elf_hash_table (info)->dynobj;
7332 BFD_ASSERT (dynobj != NULL);
7333
7334 if (elf_hash_table (info)->dynamic_sections_created)
7335 {
7336 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 7337 if (info->executable)
b49e97c9
TS
7338 {
7339 s = bfd_get_section_by_name (dynobj, ".interp");
7340 BFD_ASSERT (s != NULL);
eea6121a 7341 s->size
b49e97c9
TS
7342 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7343 s->contents
7344 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7345 }
7346 }
7347
7348 /* The check_relocs and adjust_dynamic_symbol entry points have
7349 determined the sizes of the various dynamic sections. Allocate
7350 memory for them. */
b34976b6 7351 reltext = FALSE;
0a44bf69 7352 sreldyn = NULL;
b49e97c9
TS
7353 for (s = dynobj->sections; s != NULL; s = s->next)
7354 {
7355 const char *name;
b49e97c9
TS
7356
7357 /* It's OK to base decisions on the section name, because none
7358 of the dynobj section names depend upon the input files. */
7359 name = bfd_get_section_name (dynobj, s);
7360
7361 if ((s->flags & SEC_LINKER_CREATED) == 0)
7362 continue;
7363
0112cd26 7364 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 7365 {
c456f082 7366 if (s->size != 0)
b49e97c9
TS
7367 {
7368 const char *outname;
7369 asection *target;
7370
7371 /* If this relocation section applies to a read only
7372 section, then we probably need a DT_TEXTREL entry.
0a44bf69 7373 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
7374 assert a DT_TEXTREL entry rather than testing whether
7375 there exists a relocation to a read only section or
7376 not. */
7377 outname = bfd_get_section_name (output_bfd,
7378 s->output_section);
7379 target = bfd_get_section_by_name (output_bfd, outname + 4);
7380 if ((target != NULL
7381 && (target->flags & SEC_READONLY) != 0
7382 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 7383 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 7384 reltext = TRUE;
b49e97c9
TS
7385
7386 /* We use the reloc_count field as a counter if we need
7387 to copy relocs into the output file. */
0a44bf69 7388 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 7389 s->reloc_count = 0;
f4416af6
AO
7390
7391 /* If combreloc is enabled, elf_link_sort_relocs() will
7392 sort relocations, but in a different way than we do,
7393 and before we're done creating relocations. Also, it
7394 will move them around between input sections'
7395 relocation's contents, so our sorting would be
7396 broken, so don't let it run. */
7397 info->combreloc = 0;
b49e97c9
TS
7398 }
7399 }
0a44bf69
RS
7400 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7401 {
7402 /* Executables do not need a GOT. */
7403 if (info->shared)
7404 {
7405 /* Allocate relocations for all but the reserved entries. */
7406 struct mips_got_info *g;
7407 unsigned int count;
7408
7409 g = mips_elf_got_info (dynobj, NULL);
7410 count = (g->global_gotno
7411 + g->local_gotno
7412 - MIPS_RESERVED_GOTNO (info));
7413 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7414 }
7415 }
0112cd26 7416 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
b49e97c9 7417 {
f4416af6
AO
7418 /* _bfd_mips_elf_always_size_sections() has already done
7419 most of the work, but some symbols may have been mapped
7420 to versions that we must now resolve in the got_entries
7421 hash tables. */
7422 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7423 struct mips_got_info *g = gg;
7424 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7425 unsigned int needed_relocs = 0;
143d77c5 7426
f4416af6 7427 if (gg->next)
b49e97c9 7428 {
f4416af6
AO
7429 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7430 set_got_offset_arg.info = info;
b49e97c9 7431
0f20cc35
DJ
7432 /* NOTE 2005-02-03: How can this call, or the next, ever
7433 find any indirect entries to resolve? They were all
7434 resolved in mips_elf_multi_got. */
f4416af6
AO
7435 mips_elf_resolve_final_got_entries (gg);
7436 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 7437 {
f4416af6
AO
7438 unsigned int save_assign;
7439
7440 mips_elf_resolve_final_got_entries (g);
7441
7442 /* Assign offsets to global GOT entries. */
7443 save_assign = g->assigned_gotno;
7444 g->assigned_gotno = g->local_gotno;
7445 set_got_offset_arg.g = g;
7446 set_got_offset_arg.needed_relocs = 0;
7447 htab_traverse (g->got_entries,
7448 mips_elf_set_global_got_offset,
7449 &set_got_offset_arg);
7450 needed_relocs += set_got_offset_arg.needed_relocs;
7451 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7452 <= g->global_gotno);
7453
7454 g->assigned_gotno = save_assign;
7455 if (info->shared)
7456 {
7457 needed_relocs += g->local_gotno - g->assigned_gotno;
7458 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7459 + g->next->global_gotno
0f20cc35 7460 + g->next->tls_gotno
0a44bf69 7461 + MIPS_RESERVED_GOTNO (info));
f4416af6 7462 }
b49e97c9 7463 }
0f20cc35
DJ
7464 }
7465 else
7466 {
7467 struct mips_elf_count_tls_arg arg;
7468 arg.info = info;
7469 arg.needed = 0;
b49e97c9 7470
0f20cc35
DJ
7471 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7472 &arg);
7473 elf_link_hash_traverse (elf_hash_table (info),
7474 mips_elf_count_global_tls_relocs,
7475 &arg);
7476
7477 needed_relocs += arg.needed;
f4416af6 7478 }
0f20cc35
DJ
7479
7480 if (needed_relocs)
0a44bf69
RS
7481 mips_elf_allocate_dynamic_relocations (dynobj, info,
7482 needed_relocs);
b49e97c9
TS
7483 }
7484 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7485 {
8dc1a139 7486 /* IRIX rld assumes that the function stub isn't at the end
5108fc1b
RS
7487 of .text section. So put a dummy. XXX */
7488 s->size += htab->function_stub_size;
b49e97c9
TS
7489 }
7490 else if (! info->shared
7491 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 7492 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 7493 {
5108fc1b 7494 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 7495 rtld to contain a pointer to the _r_debug structure. */
eea6121a 7496 s->size += 4;
b49e97c9
TS
7497 }
7498 else if (SGI_COMPAT (output_bfd)
0112cd26 7499 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 7500 s->size += mips_elf_hash_table (info)->compact_rel_size;
0112cd26 7501 else if (! CONST_STRNEQ (name, ".init")
0a44bf69
RS
7502 && s != htab->sgotplt
7503 && s != htab->splt)
b49e97c9
TS
7504 {
7505 /* It's not one of our sections, so don't allocate space. */
7506 continue;
7507 }
7508
c456f082 7509 if (s->size == 0)
b49e97c9 7510 {
8423293d 7511 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
7512 continue;
7513 }
7514
c456f082
AM
7515 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7516 continue;
7517
0a44bf69
RS
7518 /* Allocate memory for this section last, since we may increase its
7519 size above. */
7520 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7521 {
7522 sreldyn = s;
7523 continue;
7524 }
7525
b49e97c9 7526 /* Allocate memory for the section contents. */
eea6121a 7527 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 7528 if (s->contents == NULL)
b49e97c9
TS
7529 {
7530 bfd_set_error (bfd_error_no_memory);
b34976b6 7531 return FALSE;
b49e97c9
TS
7532 }
7533 }
7534
0a44bf69
RS
7535 /* Allocate memory for the .rel(a).dyn section. */
7536 if (sreldyn != NULL)
7537 {
7538 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7539 if (sreldyn->contents == NULL)
7540 {
7541 bfd_set_error (bfd_error_no_memory);
7542 return FALSE;
7543 }
7544 }
7545
b49e97c9
TS
7546 if (elf_hash_table (info)->dynamic_sections_created)
7547 {
7548 /* Add some entries to the .dynamic section. We fill in the
7549 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7550 must add the entries now so that we get the correct size for
5750dcec 7551 the .dynamic section. */
af5978fb
RS
7552
7553 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec
DJ
7554 DT_MIPS_RLD_MAP entry. This must come first because glibc
7555 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7556 looks at the first one it sees. */
af5978fb
RS
7557 if (!info->shared
7558 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7559 return FALSE;
b49e97c9 7560
5750dcec
DJ
7561 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7562 used by the debugger. */
7563 if (info->executable
7564 && !SGI_COMPAT (output_bfd)
7565 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7566 return FALSE;
7567
0a44bf69 7568 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
7569 info->flags |= DF_TEXTREL;
7570
7571 if ((info->flags & DF_TEXTREL) != 0)
7572 {
7573 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 7574 return FALSE;
943284cc
DJ
7575
7576 /* Clear the DF_TEXTREL flag. It will be set again if we
7577 write out an actual text relocation; we may not, because
7578 at this point we do not know whether e.g. any .eh_frame
7579 absolute relocations have been converted to PC-relative. */
7580 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
7581 }
7582
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 7584 return FALSE;
b49e97c9 7585
0a44bf69 7586 if (htab->is_vxworks)
b49e97c9 7587 {
0a44bf69
RS
7588 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7589 use any of the DT_MIPS_* tags. */
7590 if (mips_elf_rel_dyn_section (info, FALSE))
7591 {
7592 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7593 return FALSE;
b49e97c9 7594
0a44bf69
RS
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7596 return FALSE;
b49e97c9 7597
0a44bf69
RS
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7599 return FALSE;
7600 }
7601 if (htab->splt->size > 0)
7602 {
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7604 return FALSE;
7605
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7607 return FALSE;
7608
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7610 return FALSE;
7611 }
b49e97c9 7612 }
0a44bf69
RS
7613 else
7614 {
7615 if (mips_elf_rel_dyn_section (info, FALSE))
7616 {
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7618 return FALSE;
b49e97c9 7619
0a44bf69
RS
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7621 return FALSE;
b49e97c9 7622
0a44bf69
RS
7623 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7624 return FALSE;
7625 }
b49e97c9 7626
0a44bf69
RS
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7628 return FALSE;
b49e97c9 7629
0a44bf69
RS
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7631 return FALSE;
b49e97c9 7632
0a44bf69
RS
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7634 return FALSE;
b49e97c9 7635
0a44bf69
RS
7636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7637 return FALSE;
b49e97c9 7638
0a44bf69
RS
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7640 return FALSE;
b49e97c9 7641
0a44bf69
RS
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7643 return FALSE;
b49e97c9 7644
0a44bf69
RS
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7646 return FALSE;
7647
7648 if (IRIX_COMPAT (dynobj) == ict_irix5
7649 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7650 return FALSE;
7651
7652 if (IRIX_COMPAT (dynobj) == ict_irix6
7653 && (bfd_get_section_by_name
7654 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7655 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7656 return FALSE;
7657 }
b49e97c9
TS
7658 }
7659
b34976b6 7660 return TRUE;
b49e97c9
TS
7661}
7662\f
81d43bff
RS
7663/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7664 Adjust its R_ADDEND field so that it is correct for the output file.
7665 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7666 and sections respectively; both use symbol indexes. */
7667
7668static void
7669mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7670 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7671 asection **local_sections, Elf_Internal_Rela *rel)
7672{
7673 unsigned int r_type, r_symndx;
7674 Elf_Internal_Sym *sym;
7675 asection *sec;
7676
7677 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7678 {
7679 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7680 if (r_type == R_MIPS16_GPREL
7681 || r_type == R_MIPS_GPREL16
7682 || r_type == R_MIPS_GPREL32
7683 || r_type == R_MIPS_LITERAL)
7684 {
7685 rel->r_addend += _bfd_get_gp_value (input_bfd);
7686 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7687 }
7688
7689 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7690 sym = local_syms + r_symndx;
7691
7692 /* Adjust REL's addend to account for section merging. */
7693 if (!info->relocatable)
7694 {
7695 sec = local_sections[r_symndx];
7696 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7697 }
7698
7699 /* This would normally be done by the rela_normal code in elflink.c. */
7700 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7701 rel->r_addend += local_sections[r_symndx]->output_offset;
7702 }
7703}
7704
b49e97c9
TS
7705/* Relocate a MIPS ELF section. */
7706
b34976b6 7707bfd_boolean
9719ad41
RS
7708_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7709 bfd *input_bfd, asection *input_section,
7710 bfd_byte *contents, Elf_Internal_Rela *relocs,
7711 Elf_Internal_Sym *local_syms,
7712 asection **local_sections)
b49e97c9
TS
7713{
7714 Elf_Internal_Rela *rel;
7715 const Elf_Internal_Rela *relend;
7716 bfd_vma addend = 0;
b34976b6 7717 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 7718 const struct elf_backend_data *bed;
b49e97c9
TS
7719
7720 bed = get_elf_backend_data (output_bfd);
7721 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7722 for (rel = relocs; rel < relend; ++rel)
7723 {
7724 const char *name;
c9adbffe 7725 bfd_vma value = 0;
b49e97c9 7726 reloc_howto_type *howto;
b34976b6
AM
7727 bfd_boolean require_jalx;
7728 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 7729 REL relocation. */
b34976b6 7730 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 7731 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 7732 const char *msg;
ab96bf03
AM
7733 unsigned long r_symndx;
7734 asection *sec;
749b8d9d
L
7735 Elf_Internal_Shdr *symtab_hdr;
7736 struct elf_link_hash_entry *h;
b49e97c9
TS
7737
7738 /* Find the relocation howto for this relocation. */
ab96bf03
AM
7739 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7740 NEWABI_P (input_bfd)
7741 && (MIPS_RELOC_RELA_P
7742 (input_bfd, input_section,
7743 rel - relocs)));
7744
7745 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 7746 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
ab96bf03 7747 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
749b8d9d
L
7748 {
7749 sec = local_sections[r_symndx];
7750 h = NULL;
7751 }
ab96bf03
AM
7752 else
7753 {
ab96bf03 7754 unsigned long extsymoff;
ab96bf03 7755
ab96bf03
AM
7756 extsymoff = 0;
7757 if (!elf_bad_symtab (input_bfd))
7758 extsymoff = symtab_hdr->sh_info;
7759 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7760 while (h->root.type == bfd_link_hash_indirect
7761 || h->root.type == bfd_link_hash_warning)
7762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7763
7764 sec = NULL;
7765 if (h->root.type == bfd_link_hash_defined
7766 || h->root.type == bfd_link_hash_defweak)
7767 sec = h->root.u.def.section;
7768 }
7769
7770 if (sec != NULL && elf_discarded_section (sec))
7771 {
7772 /* For relocs against symbols from removed linkonce sections,
7773 or sections discarded by a linker script, we just want the
7774 section contents zeroed. Avoid any special processing. */
7775 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7776 rel->r_info = 0;
7777 rel->r_addend = 0;
7778 continue;
7779 }
7780
4a14403c 7781 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
7782 {
7783 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7784 64-bit code, but make sure all their addresses are in the
7785 lowermost or uppermost 32-bit section of the 64-bit address
7786 space. Thus, when they use an R_MIPS_64 they mean what is
7787 usually meant by R_MIPS_32, with the exception that the
7788 stored value is sign-extended to 64 bits. */
b34976b6 7789 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
7790
7791 /* On big-endian systems, we need to lie about the position
7792 of the reloc. */
7793 if (bfd_big_endian (input_bfd))
7794 rel->r_offset += 4;
7795 }
b49e97c9
TS
7796
7797 if (!use_saved_addend_p)
7798 {
7799 Elf_Internal_Shdr *rel_hdr;
7800
7801 /* If these relocations were originally of the REL variety,
7802 we must pull the addend out of the field that will be
7803 relocated. Otherwise, we simply use the contents of the
7804 RELA relocation. To determine which flavor or relocation
7805 this is, we depend on the fact that the INPUT_SECTION's
7806 REL_HDR is read before its REL_HDR2. */
7807 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7808 if ((size_t) (rel - relocs)
7809 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7810 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7811 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7812 {
d6f16593
MR
7813 bfd_byte *location = contents + rel->r_offset;
7814
b49e97c9 7815 /* Note that this is a REL relocation. */
b34976b6 7816 rela_relocation_p = FALSE;
b49e97c9
TS
7817
7818 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7819 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7820 location);
b49e97c9
TS
7821 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7822 contents);
d6f16593
MR
7823 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7824 location);
7825
b49e97c9
TS
7826 addend &= howto->src_mask;
7827
7828 /* For some kinds of relocations, the ADDEND is a
7829 combination of the addend stored in two different
7830 relocations. */
d6f16593 7831 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7832 || (r_type == R_MIPS_GOT16
7833 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7834 local_sections, FALSE)))
b49e97c9 7835 {
b49e97c9
TS
7836 const Elf_Internal_Rela *lo16_relocation;
7837 reloc_howto_type *lo16_howto;
d6f16593
MR
7838 int lo16_type;
7839
7840 if (r_type == R_MIPS16_HI16)
7841 lo16_type = R_MIPS16_LO16;
7842 else
7843 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7844
7845 /* The combined value is the sum of the HI16 addend,
7846 left-shifted by sixteen bits, and the LO16
7847 addend, sign extended. (Usually, the code does
7848 a `lui' of the HI16 value, and then an `addiu' of
7849 the LO16 value.)
7850
4030e8f6
CD
7851 Scan ahead to find a matching LO16 relocation.
7852
7853 According to the MIPS ELF ABI, the R_MIPS_LO16
7854 relocation must be immediately following.
7855 However, for the IRIX6 ABI, the next relocation
7856 may be a composed relocation consisting of
7857 several relocations for the same address. In
7858 that case, the R_MIPS_LO16 relocation may occur
7859 as one of these. We permit a similar extension
2d82d84d
TS
7860 in general, as that is useful for GCC.
7861
7862 In some cases GCC dead code elimination removes
7863 the LO16 but keeps the corresponding HI16. This
7864 is strictly speaking a violation of the ABI but
7865 not immediately harmful. */
4030e8f6 7866 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7867 lo16_type,
b49e97c9
TS
7868 rel, relend);
7869 if (lo16_relocation == NULL)
749b8d9d
L
7870 {
7871 const char *name;
7872
7873 if (h)
7874 name = h->root.root.string;
7875 else
7876 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7877 local_syms + r_symndx,
7878 sec);
7879 (*_bfd_error_handler)
7880 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7881 input_bfd, input_section, name, howto->name,
7882 rel->r_offset);
749b8d9d 7883 }
2d82d84d
TS
7884 else
7885 {
7886 bfd_byte *lo16_location;
7887 bfd_vma l;
7888
7889 lo16_location = contents + lo16_relocation->r_offset;
7890
7891 /* Obtain the addend kept there. */
7892 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7893 lo16_type, FALSE);
7894 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7895 FALSE, lo16_location);
7896 l = mips_elf_obtain_contents (lo16_howto,
7897 lo16_relocation,
7898 input_bfd, contents);
7899 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7900 FALSE, lo16_location);
7901 l &= lo16_howto->src_mask;
7902 l <<= lo16_howto->rightshift;
7903 l = _bfd_mips_elf_sign_extend (l, 16);
7904
7905 addend <<= 16;
7906
7907 /* Compute the combined addend. */
7908 addend += l;
7909 }
b49e97c9 7910 }
30ac9238
RS
7911 else
7912 addend <<= howto->rightshift;
b49e97c9
TS
7913 }
7914 else
7915 addend = rel->r_addend;
81d43bff
RS
7916 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7917 local_syms, local_sections, rel);
b49e97c9
TS
7918 }
7919
1049f94e 7920 if (info->relocatable)
b49e97c9 7921 {
4a14403c 7922 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7923 && bfd_big_endian (input_bfd))
7924 rel->r_offset -= 4;
7925
81d43bff 7926 if (!rela_relocation_p && rel->r_addend)
5a659663 7927 {
81d43bff 7928 addend += rel->r_addend;
30ac9238 7929 if (r_type == R_MIPS_HI16
4030e8f6 7930 || r_type == R_MIPS_GOT16)
5a659663
TS
7931 addend = mips_elf_high (addend);
7932 else if (r_type == R_MIPS_HIGHER)
7933 addend = mips_elf_higher (addend);
7934 else if (r_type == R_MIPS_HIGHEST)
7935 addend = mips_elf_highest (addend);
30ac9238
RS
7936 else
7937 addend >>= howto->rightshift;
b49e97c9 7938
30ac9238
RS
7939 /* We use the source mask, rather than the destination
7940 mask because the place to which we are writing will be
7941 source of the addend in the final link. */
b49e97c9
TS
7942 addend &= howto->src_mask;
7943
5a659663 7944 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7945 /* See the comment above about using R_MIPS_64 in the 32-bit
7946 ABI. Here, we need to update the addend. It would be
7947 possible to get away with just using the R_MIPS_32 reloc
7948 but for endianness. */
7949 {
7950 bfd_vma sign_bits;
7951 bfd_vma low_bits;
7952 bfd_vma high_bits;
7953
7954 if (addend & ((bfd_vma) 1 << 31))
7955#ifdef BFD64
7956 sign_bits = ((bfd_vma) 1 << 32) - 1;
7957#else
7958 sign_bits = -1;
7959#endif
7960 else
7961 sign_bits = 0;
7962
7963 /* If we don't know that we have a 64-bit type,
7964 do two separate stores. */
7965 if (bfd_big_endian (input_bfd))
7966 {
7967 /* Store the sign-bits (which are most significant)
7968 first. */
7969 low_bits = sign_bits;
7970 high_bits = addend;
7971 }
7972 else
7973 {
7974 low_bits = addend;
7975 high_bits = sign_bits;
7976 }
7977 bfd_put_32 (input_bfd, low_bits,
7978 contents + rel->r_offset);
7979 bfd_put_32 (input_bfd, high_bits,
7980 contents + rel->r_offset + 4);
7981 continue;
7982 }
7983
7984 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7985 input_bfd, input_section,
b34976b6
AM
7986 contents, FALSE))
7987 return FALSE;
b49e97c9
TS
7988 }
7989
7990 /* Go on to the next relocation. */
7991 continue;
7992 }
7993
7994 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7995 relocations for the same offset. In that case we are
7996 supposed to treat the output of each relocation as the addend
7997 for the next. */
7998 if (rel + 1 < relend
7999 && rel->r_offset == rel[1].r_offset
8000 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 8001 use_saved_addend_p = TRUE;
b49e97c9 8002 else
b34976b6 8003 use_saved_addend_p = FALSE;
b49e97c9
TS
8004
8005 /* Figure out what value we are supposed to relocate. */
8006 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8007 input_section, info, rel,
8008 addend, howto, local_syms,
8009 local_sections, &value,
bce03d3d
AO
8010 &name, &require_jalx,
8011 use_saved_addend_p))
b49e97c9
TS
8012 {
8013 case bfd_reloc_continue:
8014 /* There's nothing to do. */
8015 continue;
8016
8017 case bfd_reloc_undefined:
8018 /* mips_elf_calculate_relocation already called the
8019 undefined_symbol callback. There's no real point in
8020 trying to perform the relocation at this point, so we
8021 just skip ahead to the next relocation. */
8022 continue;
8023
8024 case bfd_reloc_notsupported:
8025 msg = _("internal error: unsupported relocation error");
8026 info->callbacks->warning
8027 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 8028 return FALSE;
b49e97c9
TS
8029
8030 case bfd_reloc_overflow:
8031 if (use_saved_addend_p)
8032 /* Ignore overflow until we reach the last relocation for
8033 a given location. */
8034 ;
8035 else
8036 {
0e53d9da
AN
8037 struct mips_elf_link_hash_table *htab;
8038
8039 htab = mips_elf_hash_table (info);
b49e97c9 8040 BFD_ASSERT (name != NULL);
0e53d9da
AN
8041 if (!htab->small_data_overflow_reported
8042 && (howto->type == R_MIPS_GPREL16
8043 || howto->type == R_MIPS_LITERAL))
8044 {
8045 const char *msg =
8046 _("small-data section exceeds 64KB;"
8047 " lower small-data size limit (see option -G)");
8048
8049 htab->small_data_overflow_reported = TRUE;
8050 (*info->callbacks->einfo) ("%P: %s\n", msg);
8051 }
b49e97c9 8052 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 8053 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 8054 input_bfd, input_section, rel->r_offset)))
b34976b6 8055 return FALSE;
b49e97c9
TS
8056 }
8057 break;
8058
8059 case bfd_reloc_ok:
8060 break;
8061
8062 default:
8063 abort ();
8064 break;
8065 }
8066
8067 /* If we've got another relocation for the address, keep going
8068 until we reach the last one. */
8069 if (use_saved_addend_p)
8070 {
8071 addend = value;
8072 continue;
8073 }
8074
4a14403c 8075 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8076 /* See the comment above about using R_MIPS_64 in the 32-bit
8077 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8078 that calculated the right value. Now, however, we
8079 sign-extend the 32-bit result to 64-bits, and store it as a
8080 64-bit value. We are especially generous here in that we
8081 go to extreme lengths to support this usage on systems with
8082 only a 32-bit VMA. */
8083 {
8084 bfd_vma sign_bits;
8085 bfd_vma low_bits;
8086 bfd_vma high_bits;
8087
8088 if (value & ((bfd_vma) 1 << 31))
8089#ifdef BFD64
8090 sign_bits = ((bfd_vma) 1 << 32) - 1;
8091#else
8092 sign_bits = -1;
8093#endif
8094 else
8095 sign_bits = 0;
8096
8097 /* If we don't know that we have a 64-bit type,
8098 do two separate stores. */
8099 if (bfd_big_endian (input_bfd))
8100 {
8101 /* Undo what we did above. */
8102 rel->r_offset -= 4;
8103 /* Store the sign-bits (which are most significant)
8104 first. */
8105 low_bits = sign_bits;
8106 high_bits = value;
8107 }
8108 else
8109 {
8110 low_bits = value;
8111 high_bits = sign_bits;
8112 }
8113 bfd_put_32 (input_bfd, low_bits,
8114 contents + rel->r_offset);
8115 bfd_put_32 (input_bfd, high_bits,
8116 contents + rel->r_offset + 4);
8117 continue;
8118 }
8119
8120 /* Actually perform the relocation. */
8121 if (! mips_elf_perform_relocation (info, howto, rel, value,
8122 input_bfd, input_section,
8123 contents, require_jalx))
b34976b6 8124 return FALSE;
b49e97c9
TS
8125 }
8126
b34976b6 8127 return TRUE;
b49e97c9
TS
8128}
8129\f
8130/* If NAME is one of the special IRIX6 symbols defined by the linker,
8131 adjust it appropriately now. */
8132
8133static void
9719ad41
RS
8134mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8135 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
8136{
8137 /* The linker script takes care of providing names and values for
8138 these, but we must place them into the right sections. */
8139 static const char* const text_section_symbols[] = {
8140 "_ftext",
8141 "_etext",
8142 "__dso_displacement",
8143 "__elf_header",
8144 "__program_header_table",
8145 NULL
8146 };
8147
8148 static const char* const data_section_symbols[] = {
8149 "_fdata",
8150 "_edata",
8151 "_end",
8152 "_fbss",
8153 NULL
8154 };
8155
8156 const char* const *p;
8157 int i;
8158
8159 for (i = 0; i < 2; ++i)
8160 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8161 *p;
8162 ++p)
8163 if (strcmp (*p, name) == 0)
8164 {
8165 /* All of these symbols are given type STT_SECTION by the
8166 IRIX6 linker. */
8167 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 8168 sym->st_other = STO_PROTECTED;
b49e97c9
TS
8169
8170 /* The IRIX linker puts these symbols in special sections. */
8171 if (i == 0)
8172 sym->st_shndx = SHN_MIPS_TEXT;
8173 else
8174 sym->st_shndx = SHN_MIPS_DATA;
8175
8176 break;
8177 }
8178}
8179
8180/* Finish up dynamic symbol handling. We set the contents of various
8181 dynamic sections here. */
8182
b34976b6 8183bfd_boolean
9719ad41
RS
8184_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8185 struct bfd_link_info *info,
8186 struct elf_link_hash_entry *h,
8187 Elf_Internal_Sym *sym)
b49e97c9
TS
8188{
8189 bfd *dynobj;
b49e97c9 8190 asection *sgot;
f4416af6 8191 struct mips_got_info *g, *gg;
b49e97c9 8192 const char *name;
3d6746ca 8193 int idx;
5108fc1b 8194 struct mips_elf_link_hash_table *htab;
b49e97c9 8195
5108fc1b 8196 htab = mips_elf_hash_table (info);
b49e97c9 8197 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 8198
c5ae1840 8199 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
8200 {
8201 asection *s;
5108fc1b 8202 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
8203
8204 /* This symbol has a stub. Set it up. */
8205
8206 BFD_ASSERT (h->dynindx != -1);
8207
8208 s = bfd_get_section_by_name (dynobj,
8209 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8210 BFD_ASSERT (s != NULL);
8211
5108fc1b
RS
8212 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8213 || (h->dynindx <= 0xffff));
3d6746ca
DD
8214
8215 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
8216 sign extension at runtime in the stub, resulting in a negative
8217 index value. */
8218 if (h->dynindx & ~0x7fffffff)
b34976b6 8219 return FALSE;
b49e97c9
TS
8220
8221 /* Fill the stub. */
3d6746ca
DD
8222 idx = 0;
8223 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8224 idx += 4;
8225 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8226 idx += 4;
5108fc1b 8227 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 8228 {
5108fc1b 8229 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
8230 stub + idx);
8231 idx += 4;
8232 }
8233 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8234 idx += 4;
b49e97c9 8235
3d6746ca
DD
8236 /* If a large stub is not required and sign extension is not a
8237 problem, then use legacy code in the stub. */
5108fc1b
RS
8238 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8239 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8240 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
8241 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8242 else
5108fc1b
RS
8243 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8244 stub + idx);
8245
eea6121a 8246 BFD_ASSERT (h->plt.offset <= s->size);
5108fc1b 8247 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
b49e97c9
TS
8248
8249 /* Mark the symbol as undefined. plt.offset != -1 occurs
8250 only for the referenced symbol. */
8251 sym->st_shndx = SHN_UNDEF;
8252
8253 /* The run-time linker uses the st_value field of the symbol
8254 to reset the global offset table entry for this external
8255 to its stub address when unlinking a shared object. */
c5ae1840
TS
8256 sym->st_value = (s->output_section->vma + s->output_offset
8257 + h->plt.offset);
b49e97c9
TS
8258 }
8259
8260 BFD_ASSERT (h->dynindx != -1
f5385ebf 8261 || h->forced_local);
b49e97c9 8262
f4416af6 8263 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8264 BFD_ASSERT (sgot != NULL);
f4416af6 8265 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 8266 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
8267 BFD_ASSERT (g != NULL);
8268
8269 /* Run through the global symbol table, creating GOT entries for all
8270 the symbols that need them. */
8271 if (g->global_gotsym != NULL
8272 && h->dynindx >= g->global_gotsym->dynindx)
8273 {
8274 bfd_vma offset;
8275 bfd_vma value;
8276
6eaa6adc 8277 value = sym->st_value;
0f20cc35 8278 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
8279 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8280 }
8281
0f20cc35 8282 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
8283 {
8284 struct mips_got_entry e, *p;
0626d451 8285 bfd_vma entry;
f4416af6 8286 bfd_vma offset;
f4416af6
AO
8287
8288 gg = g;
8289
8290 e.abfd = output_bfd;
8291 e.symndx = -1;
8292 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 8293 e.tls_type = 0;
143d77c5 8294
f4416af6
AO
8295 for (g = g->next; g->next != gg; g = g->next)
8296 {
8297 if (g->got_entries
8298 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8299 &e)))
8300 {
8301 offset = p->gotidx;
0626d451
RS
8302 if (info->shared
8303 || (elf_hash_table (info)->dynamic_sections_created
8304 && p->d.h != NULL
f5385ebf
AM
8305 && p->d.h->root.def_dynamic
8306 && !p->d.h->root.def_regular))
0626d451
RS
8307 {
8308 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8309 the various compatibility problems, it's easier to mock
8310 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8311 mips_elf_create_dynamic_relocation to calculate the
8312 appropriate addend. */
8313 Elf_Internal_Rela rel[3];
8314
8315 memset (rel, 0, sizeof (rel));
8316 if (ABI_64_P (output_bfd))
8317 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8318 else
8319 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8320 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8321
8322 entry = 0;
8323 if (! (mips_elf_create_dynamic_relocation
8324 (output_bfd, info, rel,
8325 e.d.h, NULL, sym->st_value, &entry, sgot)))
8326 return FALSE;
8327 }
8328 else
8329 entry = sym->st_value;
8330 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
8331 }
8332 }
8333 }
8334
b49e97c9
TS
8335 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8336 name = h->root.root.string;
8337 if (strcmp (name, "_DYNAMIC") == 0
22edb2f1 8338 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
8339 sym->st_shndx = SHN_ABS;
8340 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8341 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8342 {
8343 sym->st_shndx = SHN_ABS;
8344 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8345 sym->st_value = 1;
8346 }
4a14403c 8347 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
8348 {
8349 sym->st_shndx = SHN_ABS;
8350 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8351 sym->st_value = elf_gp (output_bfd);
8352 }
8353 else if (SGI_COMPAT (output_bfd))
8354 {
8355 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8356 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8357 {
8358 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8359 sym->st_other = STO_PROTECTED;
8360 sym->st_value = 0;
8361 sym->st_shndx = SHN_MIPS_DATA;
8362 }
8363 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8364 {
8365 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8366 sym->st_other = STO_PROTECTED;
8367 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8368 sym->st_shndx = SHN_ABS;
8369 }
8370 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8371 {
8372 if (h->type == STT_FUNC)
8373 sym->st_shndx = SHN_MIPS_TEXT;
8374 else if (h->type == STT_OBJECT)
8375 sym->st_shndx = SHN_MIPS_DATA;
8376 }
8377 }
8378
8379 /* Handle the IRIX6-specific symbols. */
8380 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8381 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8382
8383 if (! info->shared)
8384 {
8385 if (! mips_elf_hash_table (info)->use_rld_obj_head
8386 && (strcmp (name, "__rld_map") == 0
8387 || strcmp (name, "__RLD_MAP") == 0))
8388 {
8389 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8390 BFD_ASSERT (s != NULL);
8391 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 8392 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
8393 if (mips_elf_hash_table (info)->rld_value == 0)
8394 mips_elf_hash_table (info)->rld_value = sym->st_value;
8395 }
8396 else if (mips_elf_hash_table (info)->use_rld_obj_head
8397 && strcmp (name, "__rld_obj_head") == 0)
8398 {
8399 /* IRIX6 does not use a .rld_map section. */
8400 if (IRIX_COMPAT (output_bfd) == ict_irix5
8401 || IRIX_COMPAT (output_bfd) == ict_none)
8402 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8403 != NULL);
8404 mips_elf_hash_table (info)->rld_value = sym->st_value;
8405 }
8406 }
8407
8408 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
8409 if (sym->st_other == STO_MIPS16)
8410 sym->st_value &= ~1;
b49e97c9 8411
b34976b6 8412 return TRUE;
b49e97c9
TS
8413}
8414
0a44bf69
RS
8415/* Likewise, for VxWorks. */
8416
8417bfd_boolean
8418_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8419 struct bfd_link_info *info,
8420 struct elf_link_hash_entry *h,
8421 Elf_Internal_Sym *sym)
8422{
8423 bfd *dynobj;
8424 asection *sgot;
8425 struct mips_got_info *g;
8426 struct mips_elf_link_hash_table *htab;
8427
8428 htab = mips_elf_hash_table (info);
8429 dynobj = elf_hash_table (info)->dynobj;
8430
8431 if (h->plt.offset != (bfd_vma) -1)
8432 {
6d79d2ed 8433 bfd_byte *loc;
0a44bf69
RS
8434 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8435 Elf_Internal_Rela rel;
8436 static const bfd_vma *plt_entry;
8437
8438 BFD_ASSERT (h->dynindx != -1);
8439 BFD_ASSERT (htab->splt != NULL);
8440 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8441
8442 /* Calculate the address of the .plt entry. */
8443 plt_address = (htab->splt->output_section->vma
8444 + htab->splt->output_offset
8445 + h->plt.offset);
8446
8447 /* Calculate the index of the entry. */
8448 plt_index = ((h->plt.offset - htab->plt_header_size)
8449 / htab->plt_entry_size);
8450
8451 /* Calculate the address of the .got.plt entry. */
8452 got_address = (htab->sgotplt->output_section->vma
8453 + htab->sgotplt->output_offset
8454 + plt_index * 4);
8455
8456 /* Calculate the offset of the .got.plt entry from
8457 _GLOBAL_OFFSET_TABLE_. */
8458 got_offset = mips_elf_gotplt_index (info, h);
8459
8460 /* Calculate the offset for the branch at the start of the PLT
8461 entry. The branch jumps to the beginning of .plt. */
8462 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8463
8464 /* Fill in the initial value of the .got.plt entry. */
8465 bfd_put_32 (output_bfd, plt_address,
8466 htab->sgotplt->contents + plt_index * 4);
8467
8468 /* Find out where the .plt entry should go. */
8469 loc = htab->splt->contents + h->plt.offset;
8470
8471 if (info->shared)
8472 {
8473 plt_entry = mips_vxworks_shared_plt_entry;
8474 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8475 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8476 }
8477 else
8478 {
8479 bfd_vma got_address_high, got_address_low;
8480
8481 plt_entry = mips_vxworks_exec_plt_entry;
8482 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8483 got_address_low = got_address & 0xffff;
8484
8485 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8486 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8487 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8488 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8489 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8490 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8491 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8492 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8493
8494 loc = (htab->srelplt2->contents
8495 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8496
8497 /* Emit a relocation for the .got.plt entry. */
8498 rel.r_offset = got_address;
8499 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8500 rel.r_addend = h->plt.offset;
8501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8502
8503 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8504 loc += sizeof (Elf32_External_Rela);
8505 rel.r_offset = plt_address + 8;
8506 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8507 rel.r_addend = got_offset;
8508 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8509
8510 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8511 loc += sizeof (Elf32_External_Rela);
8512 rel.r_offset += 4;
8513 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8514 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8515 }
8516
8517 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8518 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8519 rel.r_offset = got_address;
8520 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8521 rel.r_addend = 0;
8522 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8523
8524 if (!h->def_regular)
8525 sym->st_shndx = SHN_UNDEF;
8526 }
8527
8528 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8529
8530 sgot = mips_elf_got_section (dynobj, FALSE);
8531 BFD_ASSERT (sgot != NULL);
8532 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8533 g = mips_elf_section_data (sgot)->u.got_info;
8534 BFD_ASSERT (g != NULL);
8535
8536 /* See if this symbol has an entry in the GOT. */
8537 if (g->global_gotsym != NULL
8538 && h->dynindx >= g->global_gotsym->dynindx)
8539 {
8540 bfd_vma offset;
8541 Elf_Internal_Rela outrel;
8542 bfd_byte *loc;
8543 asection *s;
8544
8545 /* Install the symbol value in the GOT. */
8546 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8547 R_MIPS_GOT16, info);
8548 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8549
8550 /* Add a dynamic relocation for it. */
8551 s = mips_elf_rel_dyn_section (info, FALSE);
8552 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8553 outrel.r_offset = (sgot->output_section->vma
8554 + sgot->output_offset
8555 + offset);
8556 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8557 outrel.r_addend = 0;
8558 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8559 }
8560
8561 /* Emit a copy reloc, if needed. */
8562 if (h->needs_copy)
8563 {
8564 Elf_Internal_Rela rel;
8565
8566 BFD_ASSERT (h->dynindx != -1);
8567
8568 rel.r_offset = (h->root.u.def.section->output_section->vma
8569 + h->root.u.def.section->output_offset
8570 + h->root.u.def.value);
8571 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8572 rel.r_addend = 0;
8573 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8574 htab->srelbss->contents
8575 + (htab->srelbss->reloc_count
8576 * sizeof (Elf32_External_Rela)));
8577 ++htab->srelbss->reloc_count;
8578 }
8579
8580 /* If this is a mips16 symbol, force the value to be even. */
8581 if (sym->st_other == STO_MIPS16)
8582 sym->st_value &= ~1;
8583
8584 return TRUE;
8585}
8586
8587/* Install the PLT header for a VxWorks executable and finalize the
8588 contents of .rela.plt.unloaded. */
8589
8590static void
8591mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8592{
8593 Elf_Internal_Rela rela;
8594 bfd_byte *loc;
8595 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8596 static const bfd_vma *plt_entry;
8597 struct mips_elf_link_hash_table *htab;
8598
8599 htab = mips_elf_hash_table (info);
8600 plt_entry = mips_vxworks_exec_plt0_entry;
8601
8602 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8603 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8604 + htab->root.hgot->root.u.def.section->output_offset
8605 + htab->root.hgot->root.u.def.value);
8606
8607 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8608 got_value_low = got_value & 0xffff;
8609
8610 /* Calculate the address of the PLT header. */
8611 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8612
8613 /* Install the PLT header. */
8614 loc = htab->splt->contents;
8615 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8616 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8617 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8618 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8619 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8620 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8621
8622 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8623 loc = htab->srelplt2->contents;
8624 rela.r_offset = plt_address;
8625 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8626 rela.r_addend = 0;
8627 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8628 loc += sizeof (Elf32_External_Rela);
8629
8630 /* Output the relocation for the following addiu of
8631 %lo(_GLOBAL_OFFSET_TABLE_). */
8632 rela.r_offset += 4;
8633 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8634 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8635 loc += sizeof (Elf32_External_Rela);
8636
8637 /* Fix up the remaining relocations. They may have the wrong
8638 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8639 in which symbols were output. */
8640 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8641 {
8642 Elf_Internal_Rela rel;
8643
8644 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8645 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8646 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8647 loc += sizeof (Elf32_External_Rela);
8648
8649 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8650 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8651 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8652 loc += sizeof (Elf32_External_Rela);
8653
8654 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8655 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8656 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8657 loc += sizeof (Elf32_External_Rela);
8658 }
8659}
8660
8661/* Install the PLT header for a VxWorks shared library. */
8662
8663static void
8664mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8665{
8666 unsigned int i;
8667 struct mips_elf_link_hash_table *htab;
8668
8669 htab = mips_elf_hash_table (info);
8670
8671 /* We just need to copy the entry byte-by-byte. */
8672 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8673 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8674 htab->splt->contents + i * 4);
8675}
8676
b49e97c9
TS
8677/* Finish up the dynamic sections. */
8678
b34976b6 8679bfd_boolean
9719ad41
RS
8680_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8681 struct bfd_link_info *info)
b49e97c9
TS
8682{
8683 bfd *dynobj;
8684 asection *sdyn;
8685 asection *sgot;
f4416af6 8686 struct mips_got_info *gg, *g;
0a44bf69 8687 struct mips_elf_link_hash_table *htab;
b49e97c9 8688
0a44bf69 8689 htab = mips_elf_hash_table (info);
b49e97c9
TS
8690 dynobj = elf_hash_table (info)->dynobj;
8691
8692 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8693
f4416af6 8694 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 8695 if (sgot == NULL)
f4416af6 8696 gg = g = NULL;
b49e97c9
TS
8697 else
8698 {
f4416af6
AO
8699 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8700 gg = mips_elf_section_data (sgot)->u.got_info;
8701 BFD_ASSERT (gg != NULL);
8702 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
8703 BFD_ASSERT (g != NULL);
8704 }
8705
8706 if (elf_hash_table (info)->dynamic_sections_created)
8707 {
8708 bfd_byte *b;
943284cc 8709 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
8710
8711 BFD_ASSERT (sdyn != NULL);
8712 BFD_ASSERT (g != NULL);
8713
8714 for (b = sdyn->contents;
eea6121a 8715 b < sdyn->contents + sdyn->size;
b49e97c9
TS
8716 b += MIPS_ELF_DYN_SIZE (dynobj))
8717 {
8718 Elf_Internal_Dyn dyn;
8719 const char *name;
8720 size_t elemsize;
8721 asection *s;
b34976b6 8722 bfd_boolean swap_out_p;
b49e97c9
TS
8723
8724 /* Read in the current dynamic entry. */
8725 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8726
8727 /* Assume that we're going to modify it and write it out. */
b34976b6 8728 swap_out_p = TRUE;
b49e97c9
TS
8729
8730 switch (dyn.d_tag)
8731 {
8732 case DT_RELENT:
b49e97c9
TS
8733 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8734 break;
8735
0a44bf69
RS
8736 case DT_RELAENT:
8737 BFD_ASSERT (htab->is_vxworks);
8738 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8739 break;
8740
b49e97c9
TS
8741 case DT_STRSZ:
8742 /* Rewrite DT_STRSZ. */
8743 dyn.d_un.d_val =
8744 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8745 break;
8746
8747 case DT_PLTGOT:
8748 name = ".got";
0a44bf69
RS
8749 if (htab->is_vxworks)
8750 {
8751 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8752 of the ".got" section in DYNOBJ. */
8753 s = bfd_get_section_by_name (dynobj, name);
8754 BFD_ASSERT (s != NULL);
8755 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8756 }
8757 else
8758 {
8759 s = bfd_get_section_by_name (output_bfd, name);
8760 BFD_ASSERT (s != NULL);
8761 dyn.d_un.d_ptr = s->vma;
8762 }
b49e97c9
TS
8763 break;
8764
8765 case DT_MIPS_RLD_VERSION:
8766 dyn.d_un.d_val = 1; /* XXX */
8767 break;
8768
8769 case DT_MIPS_FLAGS:
8770 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8771 break;
8772
b49e97c9 8773 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
8774 {
8775 time_t t;
8776 time (&t);
8777 dyn.d_un.d_val = t;
8778 }
b49e97c9
TS
8779 break;
8780
8781 case DT_MIPS_ICHECKSUM:
8782 /* XXX FIXME: */
b34976b6 8783 swap_out_p = FALSE;
b49e97c9
TS
8784 break;
8785
8786 case DT_MIPS_IVERSION:
8787 /* XXX FIXME: */
b34976b6 8788 swap_out_p = FALSE;
b49e97c9
TS
8789 break;
8790
8791 case DT_MIPS_BASE_ADDRESS:
8792 s = output_bfd->sections;
8793 BFD_ASSERT (s != NULL);
8794 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8795 break;
8796
8797 case DT_MIPS_LOCAL_GOTNO:
8798 dyn.d_un.d_val = g->local_gotno;
8799 break;
8800
8801 case DT_MIPS_UNREFEXTNO:
8802 /* The index into the dynamic symbol table which is the
8803 entry of the first external symbol that is not
8804 referenced within the same object. */
8805 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8806 break;
8807
8808 case DT_MIPS_GOTSYM:
f4416af6 8809 if (gg->global_gotsym)
b49e97c9 8810 {
f4416af6 8811 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
8812 break;
8813 }
8814 /* In case if we don't have global got symbols we default
8815 to setting DT_MIPS_GOTSYM to the same value as
8816 DT_MIPS_SYMTABNO, so we just fall through. */
8817
8818 case DT_MIPS_SYMTABNO:
8819 name = ".dynsym";
8820 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8821 s = bfd_get_section_by_name (output_bfd, name);
8822 BFD_ASSERT (s != NULL);
8823
eea6121a 8824 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
8825 break;
8826
8827 case DT_MIPS_HIPAGENO:
0a44bf69 8828 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
b49e97c9
TS
8829 break;
8830
8831 case DT_MIPS_RLD_MAP:
8832 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8833 break;
8834
8835 case DT_MIPS_OPTIONS:
8836 s = (bfd_get_section_by_name
8837 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8838 dyn.d_un.d_ptr = s->vma;
8839 break;
8840
0a44bf69
RS
8841 case DT_RELASZ:
8842 BFD_ASSERT (htab->is_vxworks);
8843 /* The count does not include the JUMP_SLOT relocations. */
8844 if (htab->srelplt)
8845 dyn.d_un.d_val -= htab->srelplt->size;
8846 break;
8847
8848 case DT_PLTREL:
8849 BFD_ASSERT (htab->is_vxworks);
8850 dyn.d_un.d_val = DT_RELA;
8851 break;
8852
8853 case DT_PLTRELSZ:
8854 BFD_ASSERT (htab->is_vxworks);
8855 dyn.d_un.d_val = htab->srelplt->size;
8856 break;
8857
8858 case DT_JMPREL:
8859 BFD_ASSERT (htab->is_vxworks);
8860 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8861 + htab->srelplt->output_offset);
8862 break;
8863
943284cc
DJ
8864 case DT_TEXTREL:
8865 /* If we didn't need any text relocations after all, delete
8866 the dynamic tag. */
8867 if (!(info->flags & DF_TEXTREL))
8868 {
8869 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8870 swap_out_p = FALSE;
8871 }
8872 break;
8873
8874 case DT_FLAGS:
8875 /* If we didn't need any text relocations after all, clear
8876 DF_TEXTREL from DT_FLAGS. */
8877 if (!(info->flags & DF_TEXTREL))
8878 dyn.d_un.d_val &= ~DF_TEXTREL;
8879 else
8880 swap_out_p = FALSE;
8881 break;
8882
b49e97c9 8883 default:
b34976b6 8884 swap_out_p = FALSE;
b49e97c9
TS
8885 break;
8886 }
8887
943284cc 8888 if (swap_out_p || dyn_skipped)
b49e97c9 8889 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
8890 (dynobj, &dyn, b - dyn_skipped);
8891
8892 if (dyn_to_skip)
8893 {
8894 dyn_skipped += dyn_to_skip;
8895 dyn_to_skip = 0;
8896 }
b49e97c9 8897 }
943284cc
DJ
8898
8899 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8900 if (dyn_skipped > 0)
8901 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
8902 }
8903
eea6121a 8904 if (sgot != NULL && sgot->size > 0)
b49e97c9 8905 {
0a44bf69
RS
8906 if (htab->is_vxworks)
8907 {
8908 /* The first entry of the global offset table points to the
8909 ".dynamic" section. The second is initialized by the
8910 loader and contains the shared library identifier.
8911 The third is also initialized by the loader and points
8912 to the lazy resolution stub. */
8913 MIPS_ELF_PUT_WORD (output_bfd,
8914 sdyn->output_offset + sdyn->output_section->vma,
8915 sgot->contents);
8916 MIPS_ELF_PUT_WORD (output_bfd, 0,
8917 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8918 MIPS_ELF_PUT_WORD (output_bfd, 0,
8919 sgot->contents
8920 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8921 }
8922 else
8923 {
8924 /* The first entry of the global offset table will be filled at
8925 runtime. The second entry will be used by some runtime loaders.
8926 This isn't the case of IRIX rld. */
8927 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8928 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8930 }
b49e97c9 8931
54938e2a
TS
8932 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8933 = MIPS_ELF_GOT_SIZE (output_bfd);
8934 }
b49e97c9 8935
f4416af6
AO
8936 /* Generate dynamic relocations for the non-primary gots. */
8937 if (gg != NULL && gg->next)
8938 {
8939 Elf_Internal_Rela rel[3];
8940 bfd_vma addend = 0;
8941
8942 memset (rel, 0, sizeof (rel));
8943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8944
8945 for (g = gg->next; g->next != gg; g = g->next)
8946 {
0f20cc35
DJ
8947 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8948 + g->next->tls_gotno;
f4416af6 8949
9719ad41 8950 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 8951 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 8952 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
8953 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8954
8955 if (! info->shared)
8956 continue;
8957
8958 while (index < g->assigned_gotno)
8959 {
8960 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8961 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8962 if (!(mips_elf_create_dynamic_relocation
8963 (output_bfd, info, rel, NULL,
8964 bfd_abs_section_ptr,
8965 0, &addend, sgot)))
8966 return FALSE;
8967 BFD_ASSERT (addend == 0);
8968 }
8969 }
8970 }
8971
3133ddbf
DJ
8972 /* The generation of dynamic relocations for the non-primary gots
8973 adds more dynamic relocations. We cannot count them until
8974 here. */
8975
8976 if (elf_hash_table (info)->dynamic_sections_created)
8977 {
8978 bfd_byte *b;
8979 bfd_boolean swap_out_p;
8980
8981 BFD_ASSERT (sdyn != NULL);
8982
8983 for (b = sdyn->contents;
8984 b < sdyn->contents + sdyn->size;
8985 b += MIPS_ELF_DYN_SIZE (dynobj))
8986 {
8987 Elf_Internal_Dyn dyn;
8988 asection *s;
8989
8990 /* Read in the current dynamic entry. */
8991 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8992
8993 /* Assume that we're going to modify it and write it out. */
8994 swap_out_p = TRUE;
8995
8996 switch (dyn.d_tag)
8997 {
8998 case DT_RELSZ:
8999 /* Reduce DT_RELSZ to account for any relocations we
9000 decided not to make. This is for the n64 irix rld,
9001 which doesn't seem to apply any relocations if there
9002 are trailing null entries. */
0a44bf69 9003 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
9004 dyn.d_un.d_val = (s->reloc_count
9005 * (ABI_64_P (output_bfd)
9006 ? sizeof (Elf64_Mips_External_Rel)
9007 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
9008 /* Adjust the section size too. Tools like the prelinker
9009 can reasonably expect the values to the same. */
9010 elf_section_data (s->output_section)->this_hdr.sh_size
9011 = dyn.d_un.d_val;
3133ddbf
DJ
9012 break;
9013
9014 default:
9015 swap_out_p = FALSE;
9016 break;
9017 }
9018
9019 if (swap_out_p)
9020 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9021 (dynobj, &dyn, b);
9022 }
9023 }
9024
b49e97c9 9025 {
b49e97c9
TS
9026 asection *s;
9027 Elf32_compact_rel cpt;
9028
b49e97c9
TS
9029 if (SGI_COMPAT (output_bfd))
9030 {
9031 /* Write .compact_rel section out. */
9032 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9033 if (s != NULL)
9034 {
9035 cpt.id1 = 1;
9036 cpt.num = s->reloc_count;
9037 cpt.id2 = 2;
9038 cpt.offset = (s->output_section->filepos
9039 + sizeof (Elf32_External_compact_rel));
9040 cpt.reserved0 = 0;
9041 cpt.reserved1 = 0;
9042 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9043 ((Elf32_External_compact_rel *)
9044 s->contents));
9045
9046 /* Clean up a dummy stub function entry in .text. */
9047 s = bfd_get_section_by_name (dynobj,
9048 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9049 if (s != NULL)
9050 {
9051 file_ptr dummy_offset;
9052
5108fc1b
RS
9053 BFD_ASSERT (s->size >= htab->function_stub_size);
9054 dummy_offset = s->size - htab->function_stub_size;
b49e97c9 9055 memset (s->contents + dummy_offset, 0,
5108fc1b 9056 htab->function_stub_size);
b49e97c9
TS
9057 }
9058 }
9059 }
9060
0a44bf69
RS
9061 /* The psABI says that the dynamic relocations must be sorted in
9062 increasing order of r_symndx. The VxWorks EABI doesn't require
9063 this, and because the code below handles REL rather than RELA
9064 relocations, using it for VxWorks would be outright harmful. */
9065 if (!htab->is_vxworks)
b49e97c9 9066 {
0a44bf69
RS
9067 s = mips_elf_rel_dyn_section (info, FALSE);
9068 if (s != NULL
9069 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9070 {
9071 reldyn_sorting_bfd = output_bfd;
b49e97c9 9072
0a44bf69
RS
9073 if (ABI_64_P (output_bfd))
9074 qsort ((Elf64_External_Rel *) s->contents + 1,
9075 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9076 sort_dynamic_relocs_64);
9077 else
9078 qsort ((Elf32_External_Rel *) s->contents + 1,
9079 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9080 sort_dynamic_relocs);
9081 }
b49e97c9 9082 }
b49e97c9
TS
9083 }
9084
0a44bf69
RS
9085 if (htab->is_vxworks && htab->splt->size > 0)
9086 {
9087 if (info->shared)
9088 mips_vxworks_finish_shared_plt (output_bfd, info);
9089 else
9090 mips_vxworks_finish_exec_plt (output_bfd, info);
9091 }
b34976b6 9092 return TRUE;
b49e97c9
TS
9093}
9094
b49e97c9 9095
64543e1a
RS
9096/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9097
9098static void
9719ad41 9099mips_set_isa_flags (bfd *abfd)
b49e97c9 9100{
64543e1a 9101 flagword val;
b49e97c9
TS
9102
9103 switch (bfd_get_mach (abfd))
9104 {
9105 default:
9106 case bfd_mach_mips3000:
9107 val = E_MIPS_ARCH_1;
9108 break;
9109
9110 case bfd_mach_mips3900:
9111 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9112 break;
9113
9114 case bfd_mach_mips6000:
9115 val = E_MIPS_ARCH_2;
9116 break;
9117
9118 case bfd_mach_mips4000:
9119 case bfd_mach_mips4300:
9120 case bfd_mach_mips4400:
9121 case bfd_mach_mips4600:
9122 val = E_MIPS_ARCH_3;
9123 break;
9124
9125 case bfd_mach_mips4010:
9126 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9127 break;
9128
9129 case bfd_mach_mips4100:
9130 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9131 break;
9132
9133 case bfd_mach_mips4111:
9134 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9135 break;
9136
00707a0e
RS
9137 case bfd_mach_mips4120:
9138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9139 break;
9140
b49e97c9
TS
9141 case bfd_mach_mips4650:
9142 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9143 break;
9144
00707a0e
RS
9145 case bfd_mach_mips5400:
9146 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9147 break;
9148
9149 case bfd_mach_mips5500:
9150 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9151 break;
9152
0d2e43ed
ILT
9153 case bfd_mach_mips9000:
9154 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9155 break;
9156
b49e97c9 9157 case bfd_mach_mips5000:
5a7ea749 9158 case bfd_mach_mips7000:
b49e97c9
TS
9159 case bfd_mach_mips8000:
9160 case bfd_mach_mips10000:
9161 case bfd_mach_mips12000:
9162 val = E_MIPS_ARCH_4;
9163 break;
9164
9165 case bfd_mach_mips5:
9166 val = E_MIPS_ARCH_5;
9167 break;
9168
9169 case bfd_mach_mips_sb1:
9170 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9171 break;
9172
9173 case bfd_mach_mipsisa32:
9174 val = E_MIPS_ARCH_32;
9175 break;
9176
9177 case bfd_mach_mipsisa64:
9178 val = E_MIPS_ARCH_64;
af7ee8bf
CD
9179 break;
9180
9181 case bfd_mach_mipsisa32r2:
9182 val = E_MIPS_ARCH_32R2;
9183 break;
5f74bc13
CD
9184
9185 case bfd_mach_mipsisa64r2:
9186 val = E_MIPS_ARCH_64R2;
9187 break;
b49e97c9 9188 }
b49e97c9
TS
9189 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9190 elf_elfheader (abfd)->e_flags |= val;
9191
64543e1a
RS
9192}
9193
9194
9195/* The final processing done just before writing out a MIPS ELF object
9196 file. This gets the MIPS architecture right based on the machine
9197 number. This is used by both the 32-bit and the 64-bit ABI. */
9198
9199void
9719ad41
RS
9200_bfd_mips_elf_final_write_processing (bfd *abfd,
9201 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
9202{
9203 unsigned int i;
9204 Elf_Internal_Shdr **hdrpp;
9205 const char *name;
9206 asection *sec;
9207
9208 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9209 is nonzero. This is for compatibility with old objects, which used
9210 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9211 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9212 mips_set_isa_flags (abfd);
9213
b49e97c9
TS
9214 /* Set the sh_info field for .gptab sections and other appropriate
9215 info for each special section. */
9216 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9217 i < elf_numsections (abfd);
9218 i++, hdrpp++)
9219 {
9220 switch ((*hdrpp)->sh_type)
9221 {
9222 case SHT_MIPS_MSYM:
9223 case SHT_MIPS_LIBLIST:
9224 sec = bfd_get_section_by_name (abfd, ".dynstr");
9225 if (sec != NULL)
9226 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9227 break;
9228
9229 case SHT_MIPS_GPTAB:
9230 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9231 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9232 BFD_ASSERT (name != NULL
0112cd26 9233 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
9234 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9235 BFD_ASSERT (sec != NULL);
9236 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9237 break;
9238
9239 case SHT_MIPS_CONTENT:
9240 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9241 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9242 BFD_ASSERT (name != NULL
0112cd26 9243 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
9244 sec = bfd_get_section_by_name (abfd,
9245 name + sizeof ".MIPS.content" - 1);
9246 BFD_ASSERT (sec != NULL);
9247 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9248 break;
9249
9250 case SHT_MIPS_SYMBOL_LIB:
9251 sec = bfd_get_section_by_name (abfd, ".dynsym");
9252 if (sec != NULL)
9253 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9254 sec = bfd_get_section_by_name (abfd, ".liblist");
9255 if (sec != NULL)
9256 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9257 break;
9258
9259 case SHT_MIPS_EVENTS:
9260 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9261 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9262 BFD_ASSERT (name != NULL);
0112cd26 9263 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
9264 sec = bfd_get_section_by_name (abfd,
9265 name + sizeof ".MIPS.events" - 1);
9266 else
9267 {
0112cd26 9268 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
9269 sec = bfd_get_section_by_name (abfd,
9270 (name
9271 + sizeof ".MIPS.post_rel" - 1));
9272 }
9273 BFD_ASSERT (sec != NULL);
9274 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9275 break;
9276
9277 }
9278 }
9279}
9280\f
8dc1a139 9281/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
9282 segments. */
9283
9284int
a6b96beb
AM
9285_bfd_mips_elf_additional_program_headers (bfd *abfd,
9286 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9287{
9288 asection *s;
9289 int ret = 0;
9290
9291 /* See if we need a PT_MIPS_REGINFO segment. */
9292 s = bfd_get_section_by_name (abfd, ".reginfo");
9293 if (s && (s->flags & SEC_LOAD))
9294 ++ret;
9295
9296 /* See if we need a PT_MIPS_OPTIONS segment. */
9297 if (IRIX_COMPAT (abfd) == ict_irix6
9298 && bfd_get_section_by_name (abfd,
9299 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9300 ++ret;
9301
9302 /* See if we need a PT_MIPS_RTPROC segment. */
9303 if (IRIX_COMPAT (abfd) == ict_irix5
9304 && bfd_get_section_by_name (abfd, ".dynamic")
9305 && bfd_get_section_by_name (abfd, ".mdebug"))
9306 ++ret;
9307
98c904a8
RS
9308 /* Allocate a PT_NULL header in dynamic objects. See
9309 _bfd_mips_elf_modify_segment_map for details. */
9310 if (!SGI_COMPAT (abfd)
9311 && bfd_get_section_by_name (abfd, ".dynamic"))
9312 ++ret;
9313
b49e97c9
TS
9314 return ret;
9315}
9316
8dc1a139 9317/* Modify the segment map for an IRIX5 executable. */
b49e97c9 9318
b34976b6 9319bfd_boolean
9719ad41
RS
9320_bfd_mips_elf_modify_segment_map (bfd *abfd,
9321 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
9322{
9323 asection *s;
9324 struct elf_segment_map *m, **pm;
9325 bfd_size_type amt;
9326
9327 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9328 segment. */
9329 s = bfd_get_section_by_name (abfd, ".reginfo");
9330 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9331 {
9332 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9333 if (m->p_type == PT_MIPS_REGINFO)
9334 break;
9335 if (m == NULL)
9336 {
9337 amt = sizeof *m;
9719ad41 9338 m = bfd_zalloc (abfd, amt);
b49e97c9 9339 if (m == NULL)
b34976b6 9340 return FALSE;
b49e97c9
TS
9341
9342 m->p_type = PT_MIPS_REGINFO;
9343 m->count = 1;
9344 m->sections[0] = s;
9345
9346 /* We want to put it after the PHDR and INTERP segments. */
9347 pm = &elf_tdata (abfd)->segment_map;
9348 while (*pm != NULL
9349 && ((*pm)->p_type == PT_PHDR
9350 || (*pm)->p_type == PT_INTERP))
9351 pm = &(*pm)->next;
9352
9353 m->next = *pm;
9354 *pm = m;
9355 }
9356 }
9357
9358 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9359 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 9360 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 9361 table. */
c1fd6598
AO
9362 if (NEWABI_P (abfd)
9363 /* On non-IRIX6 new abi, we'll have already created a segment
9364 for this section, so don't create another. I'm not sure this
9365 is not also the case for IRIX 6, but I can't test it right
9366 now. */
9367 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
9368 {
9369 for (s = abfd->sections; s; s = s->next)
9370 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9371 break;
9372
9373 if (s)
9374 {
9375 struct elf_segment_map *options_segment;
9376
98a8deaf
RS
9377 pm = &elf_tdata (abfd)->segment_map;
9378 while (*pm != NULL
9379 && ((*pm)->p_type == PT_PHDR
9380 || (*pm)->p_type == PT_INTERP))
9381 pm = &(*pm)->next;
b49e97c9 9382
8ded5a0f
AM
9383 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9384 {
9385 amt = sizeof (struct elf_segment_map);
9386 options_segment = bfd_zalloc (abfd, amt);
9387 options_segment->next = *pm;
9388 options_segment->p_type = PT_MIPS_OPTIONS;
9389 options_segment->p_flags = PF_R;
9390 options_segment->p_flags_valid = TRUE;
9391 options_segment->count = 1;
9392 options_segment->sections[0] = s;
9393 *pm = options_segment;
9394 }
b49e97c9
TS
9395 }
9396 }
9397 else
9398 {
9399 if (IRIX_COMPAT (abfd) == ict_irix5)
9400 {
9401 /* If there are .dynamic and .mdebug sections, we make a room
9402 for the RTPROC header. FIXME: Rewrite without section names. */
9403 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9404 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9405 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9406 {
9407 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9408 if (m->p_type == PT_MIPS_RTPROC)
9409 break;
9410 if (m == NULL)
9411 {
9412 amt = sizeof *m;
9719ad41 9413 m = bfd_zalloc (abfd, amt);
b49e97c9 9414 if (m == NULL)
b34976b6 9415 return FALSE;
b49e97c9
TS
9416
9417 m->p_type = PT_MIPS_RTPROC;
9418
9419 s = bfd_get_section_by_name (abfd, ".rtproc");
9420 if (s == NULL)
9421 {
9422 m->count = 0;
9423 m->p_flags = 0;
9424 m->p_flags_valid = 1;
9425 }
9426 else
9427 {
9428 m->count = 1;
9429 m->sections[0] = s;
9430 }
9431
9432 /* We want to put it after the DYNAMIC segment. */
9433 pm = &elf_tdata (abfd)->segment_map;
9434 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9435 pm = &(*pm)->next;
9436 if (*pm != NULL)
9437 pm = &(*pm)->next;
9438
9439 m->next = *pm;
9440 *pm = m;
9441 }
9442 }
9443 }
8dc1a139 9444 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
9445 .dynstr, .dynsym, and .hash sections, and everything in
9446 between. */
9447 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9448 pm = &(*pm)->next)
9449 if ((*pm)->p_type == PT_DYNAMIC)
9450 break;
9451 m = *pm;
9452 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9453 {
9454 /* For a normal mips executable the permissions for the PT_DYNAMIC
9455 segment are read, write and execute. We do that here since
9456 the code in elf.c sets only the read permission. This matters
9457 sometimes for the dynamic linker. */
9458 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9459 {
9460 m->p_flags = PF_R | PF_W | PF_X;
9461 m->p_flags_valid = 1;
9462 }
9463 }
f6f62d6f
RS
9464 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9465 glibc's dynamic linker has traditionally derived the number of
9466 tags from the p_filesz field, and sometimes allocates stack
9467 arrays of that size. An overly-big PT_DYNAMIC segment can
9468 be actively harmful in such cases. Making PT_DYNAMIC contain
9469 other sections can also make life hard for the prelinker,
9470 which might move one of the other sections to a different
9471 PT_LOAD segment. */
9472 if (SGI_COMPAT (abfd)
9473 && m != NULL
9474 && m->count == 1
9475 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
9476 {
9477 static const char *sec_names[] =
9478 {
9479 ".dynamic", ".dynstr", ".dynsym", ".hash"
9480 };
9481 bfd_vma low, high;
9482 unsigned int i, c;
9483 struct elf_segment_map *n;
9484
792b4a53 9485 low = ~(bfd_vma) 0;
b49e97c9
TS
9486 high = 0;
9487 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9488 {
9489 s = bfd_get_section_by_name (abfd, sec_names[i]);
9490 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9491 {
9492 bfd_size_type sz;
9493
9494 if (low > s->vma)
9495 low = s->vma;
eea6121a 9496 sz = s->size;
b49e97c9
TS
9497 if (high < s->vma + sz)
9498 high = s->vma + sz;
9499 }
9500 }
9501
9502 c = 0;
9503 for (s = abfd->sections; s != NULL; s = s->next)
9504 if ((s->flags & SEC_LOAD) != 0
9505 && s->vma >= low
eea6121a 9506 && s->vma + s->size <= high)
b49e97c9
TS
9507 ++c;
9508
9509 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 9510 n = bfd_zalloc (abfd, amt);
b49e97c9 9511 if (n == NULL)
b34976b6 9512 return FALSE;
b49e97c9
TS
9513 *n = *m;
9514 n->count = c;
9515
9516 i = 0;
9517 for (s = abfd->sections; s != NULL; s = s->next)
9518 {
9519 if ((s->flags & SEC_LOAD) != 0
9520 && s->vma >= low
eea6121a 9521 && s->vma + s->size <= high)
b49e97c9
TS
9522 {
9523 n->sections[i] = s;
9524 ++i;
9525 }
9526 }
9527
9528 *pm = n;
9529 }
9530 }
9531
98c904a8
RS
9532 /* Allocate a spare program header in dynamic objects so that tools
9533 like the prelinker can add an extra PT_LOAD entry.
9534
9535 If the prelinker needs to make room for a new PT_LOAD entry, its
9536 standard procedure is to move the first (read-only) sections into
9537 the new (writable) segment. However, the MIPS ABI requires
9538 .dynamic to be in a read-only segment, and the section will often
9539 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9540
9541 Although the prelinker could in principle move .dynamic to a
9542 writable segment, it seems better to allocate a spare program
9543 header instead, and avoid the need to move any sections.
9544 There is a long tradition of allocating spare dynamic tags,
9545 so allocating a spare program header seems like a natural
9546 extension. */
9547 if (!SGI_COMPAT (abfd)
9548 && bfd_get_section_by_name (abfd, ".dynamic"))
9549 {
9550 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9551 if ((*pm)->p_type == PT_NULL)
9552 break;
9553 if (*pm == NULL)
9554 {
9555 m = bfd_zalloc (abfd, sizeof (*m));
9556 if (m == NULL)
9557 return FALSE;
9558
9559 m->p_type = PT_NULL;
9560 *pm = m;
9561 }
9562 }
9563
b34976b6 9564 return TRUE;
b49e97c9
TS
9565}
9566\f
9567/* Return the section that should be marked against GC for a given
9568 relocation. */
9569
9570asection *
9719ad41 9571_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 9572 struct bfd_link_info *info,
9719ad41
RS
9573 Elf_Internal_Rela *rel,
9574 struct elf_link_hash_entry *h,
9575 Elf_Internal_Sym *sym)
b49e97c9
TS
9576{
9577 /* ??? Do mips16 stub sections need to be handled special? */
9578
9579 if (h != NULL)
07adf181
AM
9580 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9581 {
9582 case R_MIPS_GNU_VTINHERIT:
9583 case R_MIPS_GNU_VTENTRY:
9584 return NULL;
9585 }
b49e97c9 9586
07adf181 9587 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
9588}
9589
9590/* Update the got entry reference counts for the section being removed. */
9591
b34976b6 9592bfd_boolean
9719ad41
RS
9593_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9594 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9595 asection *sec ATTRIBUTE_UNUSED,
9596 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
9597{
9598#if 0
9599 Elf_Internal_Shdr *symtab_hdr;
9600 struct elf_link_hash_entry **sym_hashes;
9601 bfd_signed_vma *local_got_refcounts;
9602 const Elf_Internal_Rela *rel, *relend;
9603 unsigned long r_symndx;
9604 struct elf_link_hash_entry *h;
9605
9606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9607 sym_hashes = elf_sym_hashes (abfd);
9608 local_got_refcounts = elf_local_got_refcounts (abfd);
9609
9610 relend = relocs + sec->reloc_count;
9611 for (rel = relocs; rel < relend; rel++)
9612 switch (ELF_R_TYPE (abfd, rel->r_info))
9613 {
9614 case R_MIPS_GOT16:
9615 case R_MIPS_CALL16:
9616 case R_MIPS_CALL_HI16:
9617 case R_MIPS_CALL_LO16:
9618 case R_MIPS_GOT_HI16:
9619 case R_MIPS_GOT_LO16:
4a14403c
TS
9620 case R_MIPS_GOT_DISP:
9621 case R_MIPS_GOT_PAGE:
9622 case R_MIPS_GOT_OFST:
b49e97c9
TS
9623 /* ??? It would seem that the existing MIPS code does no sort
9624 of reference counting or whatnot on its GOT and PLT entries,
9625 so it is not possible to garbage collect them at this time. */
9626 break;
9627
9628 default:
9629 break;
9630 }
9631#endif
9632
b34976b6 9633 return TRUE;
b49e97c9
TS
9634}
9635\f
9636/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9637 hiding the old indirect symbol. Process additional relocation
9638 information. Also called for weakdefs, in which case we just let
9639 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9640
9641void
fcfa13d2 9642_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
9643 struct elf_link_hash_entry *dir,
9644 struct elf_link_hash_entry *ind)
b49e97c9
TS
9645{
9646 struct mips_elf_link_hash_entry *dirmips, *indmips;
9647
fcfa13d2 9648 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
9649
9650 if (ind->root.type != bfd_link_hash_indirect)
9651 return;
9652
9653 dirmips = (struct mips_elf_link_hash_entry *) dir;
9654 indmips = (struct mips_elf_link_hash_entry *) ind;
9655 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9656 if (indmips->readonly_reloc)
b34976b6 9657 dirmips->readonly_reloc = TRUE;
b49e97c9 9658 if (indmips->no_fn_stub)
b34976b6 9659 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
9660
9661 if (dirmips->tls_type == 0)
9662 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
9663}
9664
9665void
9719ad41
RS
9666_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9667 struct elf_link_hash_entry *entry,
9668 bfd_boolean force_local)
b49e97c9
TS
9669{
9670 bfd *dynobj;
9671 asection *got;
9672 struct mips_got_info *g;
9673 struct mips_elf_link_hash_entry *h;
7c5fcef7 9674
b49e97c9 9675 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
9676 if (h->forced_local)
9677 return;
4b555070 9678 h->forced_local = force_local;
7c5fcef7 9679
b49e97c9 9680 dynobj = elf_hash_table (info)->dynobj;
8d1d654f 9681 if (dynobj != NULL && force_local && h->root.type != STT_TLS
003b8e1d 9682 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
8d1d654f 9683 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 9684 {
c45a316a
AM
9685 if (g->next)
9686 {
9687 struct mips_got_entry e;
9688 struct mips_got_info *gg = g;
9689
9690 /* Since we're turning what used to be a global symbol into a
9691 local one, bump up the number of local entries of each GOT
9692 that had an entry for it. This will automatically decrease
9693 the number of global entries, since global_gotno is actually
9694 the upper limit of global entries. */
9695 e.abfd = dynobj;
9696 e.symndx = -1;
9697 e.d.h = h;
0f20cc35 9698 e.tls_type = 0;
c45a316a
AM
9699
9700 for (g = g->next; g != gg; g = g->next)
9701 if (htab_find (g->got_entries, &e))
9702 {
9703 BFD_ASSERT (g->global_gotno > 0);
9704 g->local_gotno++;
9705 g->global_gotno--;
9706 }
b49e97c9 9707
c45a316a
AM
9708 /* If this was a global symbol forced into the primary GOT, we
9709 no longer need an entry for it. We can't release the entry
9710 at this point, but we must at least stop counting it as one
9711 of the symbols that required a forced got entry. */
9712 if (h->root.got.offset == 2)
9713 {
9714 BFD_ASSERT (gg->assigned_gotno > 0);
9715 gg->assigned_gotno--;
9716 }
9717 }
9718 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9719 /* If we haven't got through GOT allocation yet, just bump up the
9720 number of local entries, as this symbol won't be counted as
9721 global. */
9722 g->local_gotno++;
9723 else if (h->root.got.offset == 1)
f4416af6 9724 {
c45a316a
AM
9725 /* If we're past non-multi-GOT allocation and this symbol had
9726 been marked for a global got entry, give it a local entry
9727 instead. */
9728 BFD_ASSERT (g->global_gotno > 0);
9729 g->local_gotno++;
9730 g->global_gotno--;
f4416af6
AO
9731 }
9732 }
f4416af6
AO
9733
9734 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
9735}
9736\f
d01414a5
TS
9737#define PDR_SIZE 32
9738
b34976b6 9739bfd_boolean
9719ad41
RS
9740_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9741 struct bfd_link_info *info)
d01414a5
TS
9742{
9743 asection *o;
b34976b6 9744 bfd_boolean ret = FALSE;
d01414a5
TS
9745 unsigned char *tdata;
9746 size_t i, skip;
9747
9748 o = bfd_get_section_by_name (abfd, ".pdr");
9749 if (! o)
b34976b6 9750 return FALSE;
eea6121a 9751 if (o->size == 0)
b34976b6 9752 return FALSE;
eea6121a 9753 if (o->size % PDR_SIZE != 0)
b34976b6 9754 return FALSE;
d01414a5
TS
9755 if (o->output_section != NULL
9756 && bfd_is_abs_section (o->output_section))
b34976b6 9757 return FALSE;
d01414a5 9758
eea6121a 9759 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 9760 if (! tdata)
b34976b6 9761 return FALSE;
d01414a5 9762
9719ad41 9763 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 9764 info->keep_memory);
d01414a5
TS
9765 if (!cookie->rels)
9766 {
9767 free (tdata);
b34976b6 9768 return FALSE;
d01414a5
TS
9769 }
9770
9771 cookie->rel = cookie->rels;
9772 cookie->relend = cookie->rels + o->reloc_count;
9773
eea6121a 9774 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 9775 {
c152c796 9776 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
9777 {
9778 tdata[i] = 1;
9779 skip ++;
9780 }
9781 }
9782
9783 if (skip != 0)
9784 {
f0abc2a1 9785 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 9786 o->size -= skip * PDR_SIZE;
b34976b6 9787 ret = TRUE;
d01414a5
TS
9788 }
9789 else
9790 free (tdata);
9791
9792 if (! info->keep_memory)
9793 free (cookie->rels);
9794
9795 return ret;
9796}
9797
b34976b6 9798bfd_boolean
9719ad41 9799_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
9800{
9801 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
9802 return TRUE;
9803 return FALSE;
53bfd6b4 9804}
d01414a5 9805
b34976b6 9806bfd_boolean
c7b8f16e
JB
9807_bfd_mips_elf_write_section (bfd *output_bfd,
9808 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9809 asection *sec, bfd_byte *contents)
d01414a5
TS
9810{
9811 bfd_byte *to, *from, *end;
9812 int i;
9813
9814 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 9815 return FALSE;
d01414a5 9816
f0abc2a1 9817 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 9818 return FALSE;
d01414a5
TS
9819
9820 to = contents;
eea6121a 9821 end = contents + sec->size;
d01414a5
TS
9822 for (from = contents, i = 0;
9823 from < end;
9824 from += PDR_SIZE, i++)
9825 {
f0abc2a1 9826 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
9827 continue;
9828 if (to != from)
9829 memcpy (to, from, PDR_SIZE);
9830 to += PDR_SIZE;
9831 }
9832 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 9833 sec->output_offset, sec->size);
b34976b6 9834 return TRUE;
d01414a5 9835}
53bfd6b4 9836\f
b49e97c9
TS
9837/* MIPS ELF uses a special find_nearest_line routine in order the
9838 handle the ECOFF debugging information. */
9839
9840struct mips_elf_find_line
9841{
9842 struct ecoff_debug_info d;
9843 struct ecoff_find_line i;
9844};
9845
b34976b6 9846bfd_boolean
9719ad41
RS
9847_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9848 asymbol **symbols, bfd_vma offset,
9849 const char **filename_ptr,
9850 const char **functionname_ptr,
9851 unsigned int *line_ptr)
b49e97c9
TS
9852{
9853 asection *msec;
9854
9855 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9856 filename_ptr, functionname_ptr,
9857 line_ptr))
b34976b6 9858 return TRUE;
b49e97c9
TS
9859
9860 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9861 filename_ptr, functionname_ptr,
9719ad41 9862 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 9863 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 9864 return TRUE;
b49e97c9
TS
9865
9866 msec = bfd_get_section_by_name (abfd, ".mdebug");
9867 if (msec != NULL)
9868 {
9869 flagword origflags;
9870 struct mips_elf_find_line *fi;
9871 const struct ecoff_debug_swap * const swap =
9872 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9873
9874 /* If we are called during a link, mips_elf_final_link may have
9875 cleared the SEC_HAS_CONTENTS field. We force it back on here
9876 if appropriate (which it normally will be). */
9877 origflags = msec->flags;
9878 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9879 msec->flags |= SEC_HAS_CONTENTS;
9880
9881 fi = elf_tdata (abfd)->find_line_info;
9882 if (fi == NULL)
9883 {
9884 bfd_size_type external_fdr_size;
9885 char *fraw_src;
9886 char *fraw_end;
9887 struct fdr *fdr_ptr;
9888 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9889
9719ad41 9890 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
9891 if (fi == NULL)
9892 {
9893 msec->flags = origflags;
b34976b6 9894 return FALSE;
b49e97c9
TS
9895 }
9896
9897 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9898 {
9899 msec->flags = origflags;
b34976b6 9900 return FALSE;
b49e97c9
TS
9901 }
9902
9903 /* Swap in the FDR information. */
9904 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 9905 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
9906 if (fi->d.fdr == NULL)
9907 {
9908 msec->flags = origflags;
b34976b6 9909 return FALSE;
b49e97c9
TS
9910 }
9911 external_fdr_size = swap->external_fdr_size;
9912 fdr_ptr = fi->d.fdr;
9913 fraw_src = (char *) fi->d.external_fdr;
9914 fraw_end = (fraw_src
9915 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9916 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 9917 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
9918
9919 elf_tdata (abfd)->find_line_info = fi;
9920
9921 /* Note that we don't bother to ever free this information.
9922 find_nearest_line is either called all the time, as in
9923 objdump -l, so the information should be saved, or it is
9924 rarely called, as in ld error messages, so the memory
9925 wasted is unimportant. Still, it would probably be a
9926 good idea for free_cached_info to throw it away. */
9927 }
9928
9929 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9930 &fi->i, filename_ptr, functionname_ptr,
9931 line_ptr))
9932 {
9933 msec->flags = origflags;
b34976b6 9934 return TRUE;
b49e97c9
TS
9935 }
9936
9937 msec->flags = origflags;
9938 }
9939
9940 /* Fall back on the generic ELF find_nearest_line routine. */
9941
9942 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9943 filename_ptr, functionname_ptr,
9944 line_ptr);
9945}
4ab527b0
FF
9946
9947bfd_boolean
9948_bfd_mips_elf_find_inliner_info (bfd *abfd,
9949 const char **filename_ptr,
9950 const char **functionname_ptr,
9951 unsigned int *line_ptr)
9952{
9953 bfd_boolean found;
9954 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9955 functionname_ptr, line_ptr,
9956 & elf_tdata (abfd)->dwarf2_find_line_info);
9957 return found;
9958}
9959
b49e97c9
TS
9960\f
9961/* When are writing out the .options or .MIPS.options section,
9962 remember the bytes we are writing out, so that we can install the
9963 GP value in the section_processing routine. */
9964
b34976b6 9965bfd_boolean
9719ad41
RS
9966_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9967 const void *location,
9968 file_ptr offset, bfd_size_type count)
b49e97c9 9969{
cc2e31b9 9970 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
9971 {
9972 bfd_byte *c;
9973
9974 if (elf_section_data (section) == NULL)
9975 {
9976 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 9977 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 9978 if (elf_section_data (section) == NULL)
b34976b6 9979 return FALSE;
b49e97c9 9980 }
f0abc2a1 9981 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
9982 if (c == NULL)
9983 {
eea6121a 9984 c = bfd_zalloc (abfd, section->size);
b49e97c9 9985 if (c == NULL)
b34976b6 9986 return FALSE;
f0abc2a1 9987 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
9988 }
9989
9719ad41 9990 memcpy (c + offset, location, count);
b49e97c9
TS
9991 }
9992
9993 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9994 count);
9995}
9996
9997/* This is almost identical to bfd_generic_get_... except that some
9998 MIPS relocations need to be handled specially. Sigh. */
9999
10000bfd_byte *
9719ad41
RS
10001_bfd_elf_mips_get_relocated_section_contents
10002 (bfd *abfd,
10003 struct bfd_link_info *link_info,
10004 struct bfd_link_order *link_order,
10005 bfd_byte *data,
10006 bfd_boolean relocatable,
10007 asymbol **symbols)
b49e97c9
TS
10008{
10009 /* Get enough memory to hold the stuff */
10010 bfd *input_bfd = link_order->u.indirect.section->owner;
10011 asection *input_section = link_order->u.indirect.section;
eea6121a 10012 bfd_size_type sz;
b49e97c9
TS
10013
10014 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10015 arelent **reloc_vector = NULL;
10016 long reloc_count;
10017
10018 if (reloc_size < 0)
10019 goto error_return;
10020
9719ad41 10021 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
10022 if (reloc_vector == NULL && reloc_size != 0)
10023 goto error_return;
10024
10025 /* read in the section */
eea6121a
AM
10026 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10027 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
10028 goto error_return;
10029
b49e97c9
TS
10030 reloc_count = bfd_canonicalize_reloc (input_bfd,
10031 input_section,
10032 reloc_vector,
10033 symbols);
10034 if (reloc_count < 0)
10035 goto error_return;
10036
10037 if (reloc_count > 0)
10038 {
10039 arelent **parent;
10040 /* for mips */
10041 int gp_found;
10042 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10043
10044 {
10045 struct bfd_hash_entry *h;
10046 struct bfd_link_hash_entry *lh;
10047 /* Skip all this stuff if we aren't mixing formats. */
10048 if (abfd && input_bfd
10049 && abfd->xvec == input_bfd->xvec)
10050 lh = 0;
10051 else
10052 {
b34976b6 10053 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
10054 lh = (struct bfd_link_hash_entry *) h;
10055 }
10056 lookup:
10057 if (lh)
10058 {
10059 switch (lh->type)
10060 {
10061 case bfd_link_hash_undefined:
10062 case bfd_link_hash_undefweak:
10063 case bfd_link_hash_common:
10064 gp_found = 0;
10065 break;
10066 case bfd_link_hash_defined:
10067 case bfd_link_hash_defweak:
10068 gp_found = 1;
10069 gp = lh->u.def.value;
10070 break;
10071 case bfd_link_hash_indirect:
10072 case bfd_link_hash_warning:
10073 lh = lh->u.i.link;
10074 /* @@FIXME ignoring warning for now */
10075 goto lookup;
10076 case bfd_link_hash_new:
10077 default:
10078 abort ();
10079 }
10080 }
10081 else
10082 gp_found = 0;
10083 }
10084 /* end mips */
9719ad41 10085 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 10086 {
9719ad41 10087 char *error_message = NULL;
b49e97c9
TS
10088 bfd_reloc_status_type r;
10089
10090 /* Specific to MIPS: Deal with relocation types that require
10091 knowing the gp of the output bfd. */
10092 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 10093
8236346f
EC
10094 /* If we've managed to find the gp and have a special
10095 function for the relocation then go ahead, else default
10096 to the generic handling. */
10097 if (gp_found
10098 && (*parent)->howto->special_function
10099 == _bfd_mips_elf32_gprel16_reloc)
10100 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10101 input_section, relocatable,
10102 data, gp);
10103 else
86324f90 10104 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
10105 input_section,
10106 relocatable ? abfd : NULL,
10107 &error_message);
b49e97c9 10108
1049f94e 10109 if (relocatable)
b49e97c9
TS
10110 {
10111 asection *os = input_section->output_section;
10112
10113 /* A partial link, so keep the relocs */
10114 os->orelocation[os->reloc_count] = *parent;
10115 os->reloc_count++;
10116 }
10117
10118 if (r != bfd_reloc_ok)
10119 {
10120 switch (r)
10121 {
10122 case bfd_reloc_undefined:
10123 if (!((*link_info->callbacks->undefined_symbol)
10124 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 10125 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
10126 goto error_return;
10127 break;
10128 case bfd_reloc_dangerous:
9719ad41 10129 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
10130 if (!((*link_info->callbacks->reloc_dangerous)
10131 (link_info, error_message, input_bfd, input_section,
10132 (*parent)->address)))
10133 goto error_return;
10134 break;
10135 case bfd_reloc_overflow:
10136 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
10137 (link_info, NULL,
10138 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
10139 (*parent)->howto->name, (*parent)->addend,
10140 input_bfd, input_section, (*parent)->address)))
10141 goto error_return;
10142 break;
10143 case bfd_reloc_outofrange:
10144 default:
10145 abort ();
10146 break;
10147 }
10148
10149 }
10150 }
10151 }
10152 if (reloc_vector != NULL)
10153 free (reloc_vector);
10154 return data;
10155
10156error_return:
10157 if (reloc_vector != NULL)
10158 free (reloc_vector);
10159 return NULL;
10160}
10161\f
10162/* Create a MIPS ELF linker hash table. */
10163
10164struct bfd_link_hash_table *
9719ad41 10165_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
10166{
10167 struct mips_elf_link_hash_table *ret;
10168 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10169
9719ad41
RS
10170 ret = bfd_malloc (amt);
10171 if (ret == NULL)
b49e97c9
TS
10172 return NULL;
10173
66eb6687
AM
10174 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10175 mips_elf_link_hash_newfunc,
10176 sizeof (struct mips_elf_link_hash_entry)))
b49e97c9 10177 {
e2d34d7d 10178 free (ret);
b49e97c9
TS
10179 return NULL;
10180 }
10181
10182#if 0
10183 /* We no longer use this. */
10184 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10185 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10186#endif
10187 ret->procedure_count = 0;
10188 ret->compact_rel_size = 0;
b34976b6 10189 ret->use_rld_obj_head = FALSE;
b49e97c9 10190 ret->rld_value = 0;
b34976b6 10191 ret->mips16_stubs_seen = FALSE;
0a44bf69 10192 ret->is_vxworks = FALSE;
0e53d9da 10193 ret->small_data_overflow_reported = FALSE;
0a44bf69
RS
10194 ret->srelbss = NULL;
10195 ret->sdynbss = NULL;
10196 ret->srelplt = NULL;
10197 ret->srelplt2 = NULL;
10198 ret->sgotplt = NULL;
10199 ret->splt = NULL;
10200 ret->plt_header_size = 0;
10201 ret->plt_entry_size = 0;
5108fc1b 10202 ret->function_stub_size = 0;
b49e97c9
TS
10203
10204 return &ret->root.root;
10205}
0a44bf69
RS
10206
10207/* Likewise, but indicate that the target is VxWorks. */
10208
10209struct bfd_link_hash_table *
10210_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10211{
10212 struct bfd_link_hash_table *ret;
10213
10214 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10215 if (ret)
10216 {
10217 struct mips_elf_link_hash_table *htab;
10218
10219 htab = (struct mips_elf_link_hash_table *) ret;
10220 htab->is_vxworks = 1;
10221 }
10222 return ret;
10223}
b49e97c9
TS
10224\f
10225/* We need to use a special link routine to handle the .reginfo and
10226 the .mdebug sections. We need to merge all instances of these
10227 sections together, not write them all out sequentially. */
10228
b34976b6 10229bfd_boolean
9719ad41 10230_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 10231{
b49e97c9
TS
10232 asection *o;
10233 struct bfd_link_order *p;
10234 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10235 asection *rtproc_sec;
10236 Elf32_RegInfo reginfo;
10237 struct ecoff_debug_info debug;
7a2a6943
NC
10238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10239 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 10240 HDRR *symhdr = &debug.symbolic_header;
9719ad41 10241 void *mdebug_handle = NULL;
b49e97c9
TS
10242 asection *s;
10243 EXTR esym;
10244 unsigned int i;
10245 bfd_size_type amt;
0a44bf69 10246 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
10247
10248 static const char * const secname[] =
10249 {
10250 ".text", ".init", ".fini", ".data",
10251 ".rodata", ".sdata", ".sbss", ".bss"
10252 };
10253 static const int sc[] =
10254 {
10255 scText, scInit, scFini, scData,
10256 scRData, scSData, scSBss, scBss
10257 };
10258
b49e97c9
TS
10259 /* We'd carefully arranged the dynamic symbol indices, and then the
10260 generic size_dynamic_sections renumbered them out from under us.
10261 Rather than trying somehow to prevent the renumbering, just do
10262 the sort again. */
0a44bf69 10263 htab = mips_elf_hash_table (info);
b49e97c9
TS
10264 if (elf_hash_table (info)->dynamic_sections_created)
10265 {
10266 bfd *dynobj;
10267 asection *got;
10268 struct mips_got_info *g;
7a2a6943 10269 bfd_size_type dynsecsymcount;
b49e97c9
TS
10270
10271 /* When we resort, we must tell mips_elf_sort_hash_table what
10272 the lowest index it may use is. That's the number of section
10273 symbols we're going to add. The generic ELF linker only
10274 adds these symbols when building a shared object. Note that
10275 we count the sections after (possibly) removing the .options
10276 section above. */
7a2a6943 10277
5108fc1b 10278 dynsecsymcount = count_section_dynsyms (abfd, info);
7a2a6943 10279 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 10280 return FALSE;
b49e97c9
TS
10281
10282 /* Make sure we didn't grow the global .got region. */
10283 dynobj = elf_hash_table (info)->dynobj;
f4416af6 10284 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 10285 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
10286
10287 if (g->global_gotsym != NULL)
10288 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10289 - g->global_gotsym->dynindx)
10290 <= g->global_gotno);
10291 }
10292
b49e97c9
TS
10293 /* Get a value for the GP register. */
10294 if (elf_gp (abfd) == 0)
10295 {
10296 struct bfd_link_hash_entry *h;
10297
b34976b6 10298 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 10299 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
10300 elf_gp (abfd) = (h->u.def.value
10301 + h->u.def.section->output_section->vma
10302 + h->u.def.section->output_offset);
0a44bf69
RS
10303 else if (htab->is_vxworks
10304 && (h = bfd_link_hash_lookup (info->hash,
10305 "_GLOBAL_OFFSET_TABLE_",
10306 FALSE, FALSE, TRUE))
10307 && h->type == bfd_link_hash_defined)
10308 elf_gp (abfd) = (h->u.def.section->output_section->vma
10309 + h->u.def.section->output_offset
10310 + h->u.def.value);
1049f94e 10311 else if (info->relocatable)
b49e97c9
TS
10312 {
10313 bfd_vma lo = MINUS_ONE;
10314
10315 /* Find the GP-relative section with the lowest offset. */
9719ad41 10316 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10317 if (o->vma < lo
10318 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10319 lo = o->vma;
10320
10321 /* And calculate GP relative to that. */
0a44bf69 10322 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
10323 }
10324 else
10325 {
10326 /* If the relocate_section function needs to do a reloc
10327 involving the GP value, it should make a reloc_dangerous
10328 callback to warn that GP is not defined. */
10329 }
10330 }
10331
10332 /* Go through the sections and collect the .reginfo and .mdebug
10333 information. */
10334 reginfo_sec = NULL;
10335 mdebug_sec = NULL;
10336 gptab_data_sec = NULL;
10337 gptab_bss_sec = NULL;
9719ad41 10338 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
10339 {
10340 if (strcmp (o->name, ".reginfo") == 0)
10341 {
10342 memset (&reginfo, 0, sizeof reginfo);
10343
10344 /* We have found the .reginfo section in the output file.
10345 Look through all the link_orders comprising it and merge
10346 the information together. */
8423293d 10347 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10348 {
10349 asection *input_section;
10350 bfd *input_bfd;
10351 Elf32_External_RegInfo ext;
10352 Elf32_RegInfo sub;
10353
10354 if (p->type != bfd_indirect_link_order)
10355 {
10356 if (p->type == bfd_data_link_order)
10357 continue;
10358 abort ();
10359 }
10360
10361 input_section = p->u.indirect.section;
10362 input_bfd = input_section->owner;
10363
b49e97c9 10364 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 10365 &ext, 0, sizeof ext))
b34976b6 10366 return FALSE;
b49e97c9
TS
10367
10368 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10369
10370 reginfo.ri_gprmask |= sub.ri_gprmask;
10371 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10372 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10373 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10374 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10375
10376 /* ri_gp_value is set by the function
10377 mips_elf32_section_processing when the section is
10378 finally written out. */
10379
10380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10381 elf_link_input_bfd ignores this section. */
10382 input_section->flags &= ~SEC_HAS_CONTENTS;
10383 }
10384
10385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 10386 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
10387
10388 /* Skip this section later on (I don't think this currently
10389 matters, but someday it might). */
8423293d 10390 o->map_head.link_order = NULL;
b49e97c9
TS
10391
10392 reginfo_sec = o;
10393 }
10394
10395 if (strcmp (o->name, ".mdebug") == 0)
10396 {
10397 struct extsym_info einfo;
10398 bfd_vma last;
10399
10400 /* We have found the .mdebug section in the output file.
10401 Look through all the link_orders comprising it and merge
10402 the information together. */
10403 symhdr->magic = swap->sym_magic;
10404 /* FIXME: What should the version stamp be? */
10405 symhdr->vstamp = 0;
10406 symhdr->ilineMax = 0;
10407 symhdr->cbLine = 0;
10408 symhdr->idnMax = 0;
10409 symhdr->ipdMax = 0;
10410 symhdr->isymMax = 0;
10411 symhdr->ioptMax = 0;
10412 symhdr->iauxMax = 0;
10413 symhdr->issMax = 0;
10414 symhdr->issExtMax = 0;
10415 symhdr->ifdMax = 0;
10416 symhdr->crfd = 0;
10417 symhdr->iextMax = 0;
10418
10419 /* We accumulate the debugging information itself in the
10420 debug_info structure. */
10421 debug.line = NULL;
10422 debug.external_dnr = NULL;
10423 debug.external_pdr = NULL;
10424 debug.external_sym = NULL;
10425 debug.external_opt = NULL;
10426 debug.external_aux = NULL;
10427 debug.ss = NULL;
10428 debug.ssext = debug.ssext_end = NULL;
10429 debug.external_fdr = NULL;
10430 debug.external_rfd = NULL;
10431 debug.external_ext = debug.external_ext_end = NULL;
10432
10433 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 10434 if (mdebug_handle == NULL)
b34976b6 10435 return FALSE;
b49e97c9
TS
10436
10437 esym.jmptbl = 0;
10438 esym.cobol_main = 0;
10439 esym.weakext = 0;
10440 esym.reserved = 0;
10441 esym.ifd = ifdNil;
10442 esym.asym.iss = issNil;
10443 esym.asym.st = stLocal;
10444 esym.asym.reserved = 0;
10445 esym.asym.index = indexNil;
10446 last = 0;
10447 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10448 {
10449 esym.asym.sc = sc[i];
10450 s = bfd_get_section_by_name (abfd, secname[i]);
10451 if (s != NULL)
10452 {
10453 esym.asym.value = s->vma;
eea6121a 10454 last = s->vma + s->size;
b49e97c9
TS
10455 }
10456 else
10457 esym.asym.value = last;
10458 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10459 secname[i], &esym))
b34976b6 10460 return FALSE;
b49e97c9
TS
10461 }
10462
8423293d 10463 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10464 {
10465 asection *input_section;
10466 bfd *input_bfd;
10467 const struct ecoff_debug_swap *input_swap;
10468 struct ecoff_debug_info input_debug;
10469 char *eraw_src;
10470 char *eraw_end;
10471
10472 if (p->type != bfd_indirect_link_order)
10473 {
10474 if (p->type == bfd_data_link_order)
10475 continue;
10476 abort ();
10477 }
10478
10479 input_section = p->u.indirect.section;
10480 input_bfd = input_section->owner;
10481
10482 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10483 || (get_elf_backend_data (input_bfd)
10484 ->elf_backend_ecoff_debug_swap) == NULL)
10485 {
10486 /* I don't know what a non MIPS ELF bfd would be
10487 doing with a .mdebug section, but I don't really
10488 want to deal with it. */
10489 continue;
10490 }
10491
10492 input_swap = (get_elf_backend_data (input_bfd)
10493 ->elf_backend_ecoff_debug_swap);
10494
eea6121a 10495 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
10496
10497 /* The ECOFF linking code expects that we have already
10498 read in the debugging information and set up an
10499 ecoff_debug_info structure, so we do that now. */
10500 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10501 &input_debug))
b34976b6 10502 return FALSE;
b49e97c9
TS
10503
10504 if (! (bfd_ecoff_debug_accumulate
10505 (mdebug_handle, abfd, &debug, swap, input_bfd,
10506 &input_debug, input_swap, info)))
b34976b6 10507 return FALSE;
b49e97c9
TS
10508
10509 /* Loop through the external symbols. For each one with
10510 interesting information, try to find the symbol in
10511 the linker global hash table and save the information
10512 for the output external symbols. */
10513 eraw_src = input_debug.external_ext;
10514 eraw_end = (eraw_src
10515 + (input_debug.symbolic_header.iextMax
10516 * input_swap->external_ext_size));
10517 for (;
10518 eraw_src < eraw_end;
10519 eraw_src += input_swap->external_ext_size)
10520 {
10521 EXTR ext;
10522 const char *name;
10523 struct mips_elf_link_hash_entry *h;
10524
9719ad41 10525 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
10526 if (ext.asym.sc == scNil
10527 || ext.asym.sc == scUndefined
10528 || ext.asym.sc == scSUndefined)
10529 continue;
10530
10531 name = input_debug.ssext + ext.asym.iss;
10532 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 10533 name, FALSE, FALSE, TRUE);
b49e97c9
TS
10534 if (h == NULL || h->esym.ifd != -2)
10535 continue;
10536
10537 if (ext.ifd != -1)
10538 {
10539 BFD_ASSERT (ext.ifd
10540 < input_debug.symbolic_header.ifdMax);
10541 ext.ifd = input_debug.ifdmap[ext.ifd];
10542 }
10543
10544 h->esym = ext;
10545 }
10546
10547 /* Free up the information we just read. */
10548 free (input_debug.line);
10549 free (input_debug.external_dnr);
10550 free (input_debug.external_pdr);
10551 free (input_debug.external_sym);
10552 free (input_debug.external_opt);
10553 free (input_debug.external_aux);
10554 free (input_debug.ss);
10555 free (input_debug.ssext);
10556 free (input_debug.external_fdr);
10557 free (input_debug.external_rfd);
10558 free (input_debug.external_ext);
10559
10560 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10561 elf_link_input_bfd ignores this section. */
10562 input_section->flags &= ~SEC_HAS_CONTENTS;
10563 }
10564
10565 if (SGI_COMPAT (abfd) && info->shared)
10566 {
10567 /* Create .rtproc section. */
10568 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10569 if (rtproc_sec == NULL)
10570 {
10571 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10572 | SEC_LINKER_CREATED | SEC_READONLY);
10573
3496cb2a
L
10574 rtproc_sec = bfd_make_section_with_flags (abfd,
10575 ".rtproc",
10576 flags);
b49e97c9 10577 if (rtproc_sec == NULL
b49e97c9 10578 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 10579 return FALSE;
b49e97c9
TS
10580 }
10581
10582 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10583 info, rtproc_sec,
10584 &debug))
b34976b6 10585 return FALSE;
b49e97c9
TS
10586 }
10587
10588 /* Build the external symbol information. */
10589 einfo.abfd = abfd;
10590 einfo.info = info;
10591 einfo.debug = &debug;
10592 einfo.swap = swap;
b34976b6 10593 einfo.failed = FALSE;
b49e97c9 10594 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 10595 mips_elf_output_extsym, &einfo);
b49e97c9 10596 if (einfo.failed)
b34976b6 10597 return FALSE;
b49e97c9
TS
10598
10599 /* Set the size of the .mdebug section. */
eea6121a 10600 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
10601
10602 /* Skip this section later on (I don't think this currently
10603 matters, but someday it might). */
8423293d 10604 o->map_head.link_order = NULL;
b49e97c9
TS
10605
10606 mdebug_sec = o;
10607 }
10608
0112cd26 10609 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
10610 {
10611 const char *subname;
10612 unsigned int c;
10613 Elf32_gptab *tab;
10614 Elf32_External_gptab *ext_tab;
10615 unsigned int j;
10616
10617 /* The .gptab.sdata and .gptab.sbss sections hold
10618 information describing how the small data area would
10619 change depending upon the -G switch. These sections
10620 not used in executables files. */
1049f94e 10621 if (! info->relocatable)
b49e97c9 10622 {
8423293d 10623 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10624 {
10625 asection *input_section;
10626
10627 if (p->type != bfd_indirect_link_order)
10628 {
10629 if (p->type == bfd_data_link_order)
10630 continue;
10631 abort ();
10632 }
10633
10634 input_section = p->u.indirect.section;
10635
10636 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10637 elf_link_input_bfd ignores this section. */
10638 input_section->flags &= ~SEC_HAS_CONTENTS;
10639 }
10640
10641 /* Skip this section later on (I don't think this
10642 currently matters, but someday it might). */
8423293d 10643 o->map_head.link_order = NULL;
b49e97c9
TS
10644
10645 /* Really remove the section. */
5daa8fe7 10646 bfd_section_list_remove (abfd, o);
b49e97c9
TS
10647 --abfd->section_count;
10648
10649 continue;
10650 }
10651
10652 /* There is one gptab for initialized data, and one for
10653 uninitialized data. */
10654 if (strcmp (o->name, ".gptab.sdata") == 0)
10655 gptab_data_sec = o;
10656 else if (strcmp (o->name, ".gptab.sbss") == 0)
10657 gptab_bss_sec = o;
10658 else
10659 {
10660 (*_bfd_error_handler)
10661 (_("%s: illegal section name `%s'"),
10662 bfd_get_filename (abfd), o->name);
10663 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 10664 return FALSE;
b49e97c9
TS
10665 }
10666
10667 /* The linker script always combines .gptab.data and
10668 .gptab.sdata into .gptab.sdata, and likewise for
10669 .gptab.bss and .gptab.sbss. It is possible that there is
10670 no .sdata or .sbss section in the output file, in which
10671 case we must change the name of the output section. */
10672 subname = o->name + sizeof ".gptab" - 1;
10673 if (bfd_get_section_by_name (abfd, subname) == NULL)
10674 {
10675 if (o == gptab_data_sec)
10676 o->name = ".gptab.data";
10677 else
10678 o->name = ".gptab.bss";
10679 subname = o->name + sizeof ".gptab" - 1;
10680 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10681 }
10682
10683 /* Set up the first entry. */
10684 c = 1;
10685 amt = c * sizeof (Elf32_gptab);
9719ad41 10686 tab = bfd_malloc (amt);
b49e97c9 10687 if (tab == NULL)
b34976b6 10688 return FALSE;
b49e97c9
TS
10689 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10690 tab[0].gt_header.gt_unused = 0;
10691
10692 /* Combine the input sections. */
8423293d 10693 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
10694 {
10695 asection *input_section;
10696 bfd *input_bfd;
10697 bfd_size_type size;
10698 unsigned long last;
10699 bfd_size_type gpentry;
10700
10701 if (p->type != bfd_indirect_link_order)
10702 {
10703 if (p->type == bfd_data_link_order)
10704 continue;
10705 abort ();
10706 }
10707
10708 input_section = p->u.indirect.section;
10709 input_bfd = input_section->owner;
10710
10711 /* Combine the gptab entries for this input section one
10712 by one. We know that the input gptab entries are
10713 sorted by ascending -G value. */
eea6121a 10714 size = input_section->size;
b49e97c9
TS
10715 last = 0;
10716 for (gpentry = sizeof (Elf32_External_gptab);
10717 gpentry < size;
10718 gpentry += sizeof (Elf32_External_gptab))
10719 {
10720 Elf32_External_gptab ext_gptab;
10721 Elf32_gptab int_gptab;
10722 unsigned long val;
10723 unsigned long add;
b34976b6 10724 bfd_boolean exact;
b49e97c9
TS
10725 unsigned int look;
10726
10727 if (! (bfd_get_section_contents
9719ad41
RS
10728 (input_bfd, input_section, &ext_gptab, gpentry,
10729 sizeof (Elf32_External_gptab))))
b49e97c9
TS
10730 {
10731 free (tab);
b34976b6 10732 return FALSE;
b49e97c9
TS
10733 }
10734
10735 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10736 &int_gptab);
10737 val = int_gptab.gt_entry.gt_g_value;
10738 add = int_gptab.gt_entry.gt_bytes - last;
10739
b34976b6 10740 exact = FALSE;
b49e97c9
TS
10741 for (look = 1; look < c; look++)
10742 {
10743 if (tab[look].gt_entry.gt_g_value >= val)
10744 tab[look].gt_entry.gt_bytes += add;
10745
10746 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 10747 exact = TRUE;
b49e97c9
TS
10748 }
10749
10750 if (! exact)
10751 {
10752 Elf32_gptab *new_tab;
10753 unsigned int max;
10754
10755 /* We need a new table entry. */
10756 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 10757 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
10758 if (new_tab == NULL)
10759 {
10760 free (tab);
b34976b6 10761 return FALSE;
b49e97c9
TS
10762 }
10763 tab = new_tab;
10764 tab[c].gt_entry.gt_g_value = val;
10765 tab[c].gt_entry.gt_bytes = add;
10766
10767 /* Merge in the size for the next smallest -G
10768 value, since that will be implied by this new
10769 value. */
10770 max = 0;
10771 for (look = 1; look < c; look++)
10772 {
10773 if (tab[look].gt_entry.gt_g_value < val
10774 && (max == 0
10775 || (tab[look].gt_entry.gt_g_value
10776 > tab[max].gt_entry.gt_g_value)))
10777 max = look;
10778 }
10779 if (max != 0)
10780 tab[c].gt_entry.gt_bytes +=
10781 tab[max].gt_entry.gt_bytes;
10782
10783 ++c;
10784 }
10785
10786 last = int_gptab.gt_entry.gt_bytes;
10787 }
10788
10789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10790 elf_link_input_bfd ignores this section. */
10791 input_section->flags &= ~SEC_HAS_CONTENTS;
10792 }
10793
10794 /* The table must be sorted by -G value. */
10795 if (c > 2)
10796 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10797
10798 /* Swap out the table. */
10799 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 10800 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
10801 if (ext_tab == NULL)
10802 {
10803 free (tab);
b34976b6 10804 return FALSE;
b49e97c9
TS
10805 }
10806
10807 for (j = 0; j < c; j++)
10808 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10809 free (tab);
10810
eea6121a 10811 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
10812 o->contents = (bfd_byte *) ext_tab;
10813
10814 /* Skip this section later on (I don't think this currently
10815 matters, but someday it might). */
8423293d 10816 o->map_head.link_order = NULL;
b49e97c9
TS
10817 }
10818 }
10819
10820 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 10821 if (!bfd_elf_final_link (abfd, info))
b34976b6 10822 return FALSE;
b49e97c9
TS
10823
10824 /* Now write out the computed sections. */
10825
9719ad41 10826 if (reginfo_sec != NULL)
b49e97c9
TS
10827 {
10828 Elf32_External_RegInfo ext;
10829
10830 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 10831 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 10832 return FALSE;
b49e97c9
TS
10833 }
10834
9719ad41 10835 if (mdebug_sec != NULL)
b49e97c9
TS
10836 {
10837 BFD_ASSERT (abfd->output_has_begun);
10838 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10839 swap, info,
10840 mdebug_sec->filepos))
b34976b6 10841 return FALSE;
b49e97c9
TS
10842
10843 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10844 }
10845
9719ad41 10846 if (gptab_data_sec != NULL)
b49e97c9
TS
10847 {
10848 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10849 gptab_data_sec->contents,
eea6121a 10850 0, gptab_data_sec->size))
b34976b6 10851 return FALSE;
b49e97c9
TS
10852 }
10853
9719ad41 10854 if (gptab_bss_sec != NULL)
b49e97c9
TS
10855 {
10856 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10857 gptab_bss_sec->contents,
eea6121a 10858 0, gptab_bss_sec->size))
b34976b6 10859 return FALSE;
b49e97c9
TS
10860 }
10861
10862 if (SGI_COMPAT (abfd))
10863 {
10864 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10865 if (rtproc_sec != NULL)
10866 {
10867 if (! bfd_set_section_contents (abfd, rtproc_sec,
10868 rtproc_sec->contents,
eea6121a 10869 0, rtproc_sec->size))
b34976b6 10870 return FALSE;
b49e97c9
TS
10871 }
10872 }
10873
b34976b6 10874 return TRUE;
b49e97c9
TS
10875}
10876\f
64543e1a
RS
10877/* Structure for saying that BFD machine EXTENSION extends BASE. */
10878
10879struct mips_mach_extension {
10880 unsigned long extension, base;
10881};
10882
10883
10884/* An array describing how BFD machines relate to one another. The entries
10885 are ordered topologically with MIPS I extensions listed last. */
10886
10887static const struct mips_mach_extension mips_mach_extensions[] = {
10888 /* MIPS64 extensions. */
5f74bc13 10889 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
10890 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10891
10892 /* MIPS V extensions. */
10893 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10894
10895 /* R10000 extensions. */
10896 { bfd_mach_mips12000, bfd_mach_mips10000 },
10897
10898 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10899 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10900 better to allow vr5400 and vr5500 code to be merged anyway, since
10901 many libraries will just use the core ISA. Perhaps we could add
10902 some sort of ASE flag if this ever proves a problem. */
10903 { bfd_mach_mips5500, bfd_mach_mips5400 },
10904 { bfd_mach_mips5400, bfd_mach_mips5000 },
10905
10906 /* MIPS IV extensions. */
10907 { bfd_mach_mips5, bfd_mach_mips8000 },
10908 { bfd_mach_mips10000, bfd_mach_mips8000 },
10909 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 10910 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 10911 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
10912
10913 /* VR4100 extensions. */
10914 { bfd_mach_mips4120, bfd_mach_mips4100 },
10915 { bfd_mach_mips4111, bfd_mach_mips4100 },
10916
10917 /* MIPS III extensions. */
10918 { bfd_mach_mips8000, bfd_mach_mips4000 },
10919 { bfd_mach_mips4650, bfd_mach_mips4000 },
10920 { bfd_mach_mips4600, bfd_mach_mips4000 },
10921 { bfd_mach_mips4400, bfd_mach_mips4000 },
10922 { bfd_mach_mips4300, bfd_mach_mips4000 },
10923 { bfd_mach_mips4100, bfd_mach_mips4000 },
10924 { bfd_mach_mips4010, bfd_mach_mips4000 },
10925
10926 /* MIPS32 extensions. */
10927 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10928
10929 /* MIPS II extensions. */
10930 { bfd_mach_mips4000, bfd_mach_mips6000 },
10931 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10932
10933 /* MIPS I extensions. */
10934 { bfd_mach_mips6000, bfd_mach_mips3000 },
10935 { bfd_mach_mips3900, bfd_mach_mips3000 }
10936};
10937
10938
10939/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10940
10941static bfd_boolean
9719ad41 10942mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
10943{
10944 size_t i;
10945
c5211a54
RS
10946 if (extension == base)
10947 return TRUE;
10948
10949 if (base == bfd_mach_mipsisa32
10950 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10951 return TRUE;
10952
10953 if (base == bfd_mach_mipsisa32r2
10954 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10955 return TRUE;
10956
10957 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 10958 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
10959 {
10960 extension = mips_mach_extensions[i].base;
10961 if (extension == base)
10962 return TRUE;
10963 }
64543e1a 10964
c5211a54 10965 return FALSE;
64543e1a
RS
10966}
10967
10968
10969/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 10970
b34976b6 10971static bfd_boolean
9719ad41 10972mips_32bit_flags_p (flagword flags)
00707a0e 10973{
64543e1a
RS
10974 return ((flags & EF_MIPS_32BITMODE) != 0
10975 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10976 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10977 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10978 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10979 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10980 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
10981}
10982
64543e1a 10983
2cf19d5c
JM
10984/* Merge object attributes from IBFD into OBFD. Raise an error if
10985 there are conflicting attributes. */
10986static bfd_boolean
10987mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
10988{
10989 obj_attribute *in_attr;
10990 obj_attribute *out_attr;
10991
10992 if (!elf_known_obj_attributes_proc (obfd)[0].i)
10993 {
10994 /* This is the first object. Copy the attributes. */
10995 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10996
10997 /* Use the Tag_null value to indicate the attributes have been
10998 initialized. */
10999 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11000
11001 return TRUE;
11002 }
11003
11004 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11005 non-conflicting ones. */
11006 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11007 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11008 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11009 {
11010 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11011 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11012 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11013 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11014 ;
11015 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11016 _bfd_error_handler
11017 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11018 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11019 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11020 _bfd_error_handler
11021 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11022 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11023 else
11024 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11025 {
11026 case 1:
11027 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11028 {
11029 case 2:
11030 _bfd_error_handler
11031 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11032 obfd, ibfd);
11033
11034 case 3:
11035 _bfd_error_handler
11036 (_("Warning: %B uses hard float, %B uses soft float"),
11037 obfd, ibfd);
11038 break;
11039
11040 default:
11041 abort ();
11042 }
11043 break;
11044
11045 case 2:
11046 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11047 {
11048 case 1:
11049 _bfd_error_handler
11050 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11051 ibfd, obfd);
11052
11053 case 3:
11054 _bfd_error_handler
11055 (_("Warning: %B uses hard float, %B uses soft float"),
11056 obfd, ibfd);
11057 break;
11058
11059 default:
11060 abort ();
11061 }
11062 break;
11063
11064 case 3:
11065 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11066 {
11067 case 1:
11068 case 2:
11069 _bfd_error_handler
11070 (_("Warning: %B uses hard float, %B uses soft float"),
11071 ibfd, obfd);
11072 break;
11073
11074 default:
11075 abort ();
11076 }
11077 break;
11078
11079 default:
11080 abort ();
11081 }
11082 }
11083
11084 /* Merge Tag_compatibility attributes and any common GNU ones. */
11085 _bfd_elf_merge_object_attributes (ibfd, obfd);
11086
11087 return TRUE;
11088}
11089
b49e97c9
TS
11090/* Merge backend specific data from an object file to the output
11091 object file when linking. */
11092
b34976b6 11093bfd_boolean
9719ad41 11094_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
11095{
11096 flagword old_flags;
11097 flagword new_flags;
b34976b6
AM
11098 bfd_boolean ok;
11099 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
11100 asection *sec;
11101
11102 /* Check if we have the same endianess */
82e51918 11103 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
11104 {
11105 (*_bfd_error_handler)
d003868e
AM
11106 (_("%B: endianness incompatible with that of the selected emulation"),
11107 ibfd);
aa701218
AO
11108 return FALSE;
11109 }
b49e97c9
TS
11110
11111 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11112 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 11113 return TRUE;
b49e97c9 11114
aa701218
AO
11115 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11116 {
11117 (*_bfd_error_handler)
d003868e
AM
11118 (_("%B: ABI is incompatible with that of the selected emulation"),
11119 ibfd);
aa701218
AO
11120 return FALSE;
11121 }
11122
2cf19d5c
JM
11123 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11124 return FALSE;
11125
b49e97c9
TS
11126 new_flags = elf_elfheader (ibfd)->e_flags;
11127 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11128 old_flags = elf_elfheader (obfd)->e_flags;
11129
11130 if (! elf_flags_init (obfd))
11131 {
b34976b6 11132 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
11133 elf_elfheader (obfd)->e_flags = new_flags;
11134 elf_elfheader (obfd)->e_ident[EI_CLASS]
11135 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11136
11137 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861
TS
11138 && (bfd_get_arch_info (obfd)->the_default
11139 || mips_mach_extends_p (bfd_get_mach (obfd),
11140 bfd_get_mach (ibfd))))
b49e97c9
TS
11141 {
11142 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11143 bfd_get_mach (ibfd)))
b34976b6 11144 return FALSE;
b49e97c9
TS
11145 }
11146
b34976b6 11147 return TRUE;
b49e97c9
TS
11148 }
11149
11150 /* Check flag compatibility. */
11151
11152 new_flags &= ~EF_MIPS_NOREORDER;
11153 old_flags &= ~EF_MIPS_NOREORDER;
11154
f4416af6
AO
11155 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11156 doesn't seem to matter. */
11157 new_flags &= ~EF_MIPS_XGOT;
11158 old_flags &= ~EF_MIPS_XGOT;
11159
98a8deaf
RS
11160 /* MIPSpro generates ucode info in n64 objects. Again, we should
11161 just be able to ignore this. */
11162 new_flags &= ~EF_MIPS_UCODE;
11163 old_flags &= ~EF_MIPS_UCODE;
11164
0a44bf69
RS
11165 /* Don't care about the PIC flags from dynamic objects; they are
11166 PIC by design. */
11167 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11168 && (ibfd->flags & DYNAMIC) != 0)
11169 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11170
b49e97c9 11171 if (new_flags == old_flags)
b34976b6 11172 return TRUE;
b49e97c9
TS
11173
11174 /* Check to see if the input BFD actually contains any sections.
11175 If not, its flags may not have been initialised either, but it cannot
11176 actually cause any incompatibility. */
11177 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11178 {
11179 /* Ignore synthetic sections and empty .text, .data and .bss sections
11180 which are automatically generated by gas. */
11181 if (strcmp (sec->name, ".reginfo")
11182 && strcmp (sec->name, ".mdebug")
eea6121a 11183 && (sec->size != 0
d13d89fa
NS
11184 || (strcmp (sec->name, ".text")
11185 && strcmp (sec->name, ".data")
11186 && strcmp (sec->name, ".bss"))))
b49e97c9 11187 {
b34976b6 11188 null_input_bfd = FALSE;
b49e97c9
TS
11189 break;
11190 }
11191 }
11192 if (null_input_bfd)
b34976b6 11193 return TRUE;
b49e97c9 11194
b34976b6 11195 ok = TRUE;
b49e97c9 11196
143d77c5
EC
11197 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11198 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 11199 {
b49e97c9 11200 (*_bfd_error_handler)
d003868e
AM
11201 (_("%B: warning: linking PIC files with non-PIC files"),
11202 ibfd);
143d77c5 11203 ok = TRUE;
b49e97c9
TS
11204 }
11205
143d77c5
EC
11206 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11207 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11208 if (! (new_flags & EF_MIPS_PIC))
11209 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11210
11211 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11212 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 11213
64543e1a
RS
11214 /* Compare the ISAs. */
11215 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 11216 {
64543e1a 11217 (*_bfd_error_handler)
d003868e
AM
11218 (_("%B: linking 32-bit code with 64-bit code"),
11219 ibfd);
64543e1a
RS
11220 ok = FALSE;
11221 }
11222 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11223 {
11224 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11225 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 11226 {
64543e1a
RS
11227 /* Copy the architecture info from IBFD to OBFD. Also copy
11228 the 32-bit flag (if set) so that we continue to recognise
11229 OBFD as a 32-bit binary. */
11230 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11231 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11232 elf_elfheader (obfd)->e_flags
11233 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11234
11235 /* Copy across the ABI flags if OBFD doesn't use them
11236 and if that was what caused us to treat IBFD as 32-bit. */
11237 if ((old_flags & EF_MIPS_ABI) == 0
11238 && mips_32bit_flags_p (new_flags)
11239 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11240 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
11241 }
11242 else
11243 {
64543e1a 11244 /* The ISAs aren't compatible. */
b49e97c9 11245 (*_bfd_error_handler)
d003868e
AM
11246 (_("%B: linking %s module with previous %s modules"),
11247 ibfd,
64543e1a
RS
11248 bfd_printable_name (ibfd),
11249 bfd_printable_name (obfd));
b34976b6 11250 ok = FALSE;
b49e97c9 11251 }
b49e97c9
TS
11252 }
11253
64543e1a
RS
11254 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11255 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11256
11257 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
11258 does set EI_CLASS differently from any 32-bit ABI. */
11259 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11260 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11261 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11262 {
11263 /* Only error if both are set (to different values). */
11264 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11265 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11266 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11267 {
11268 (*_bfd_error_handler)
d003868e
AM
11269 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11270 ibfd,
b49e97c9
TS
11271 elf_mips_abi_name (ibfd),
11272 elf_mips_abi_name (obfd));
b34976b6 11273 ok = FALSE;
b49e97c9
TS
11274 }
11275 new_flags &= ~EF_MIPS_ABI;
11276 old_flags &= ~EF_MIPS_ABI;
11277 }
11278
fb39dac1
RS
11279 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11280 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11281 {
11282 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11283
11284 new_flags &= ~ EF_MIPS_ARCH_ASE;
11285 old_flags &= ~ EF_MIPS_ARCH_ASE;
11286 }
11287
b49e97c9
TS
11288 /* Warn about any other mismatches */
11289 if (new_flags != old_flags)
11290 {
11291 (*_bfd_error_handler)
d003868e
AM
11292 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11293 ibfd, (unsigned long) new_flags,
b49e97c9 11294 (unsigned long) old_flags);
b34976b6 11295 ok = FALSE;
b49e97c9
TS
11296 }
11297
11298 if (! ok)
11299 {
11300 bfd_set_error (bfd_error_bad_value);
b34976b6 11301 return FALSE;
b49e97c9
TS
11302 }
11303
b34976b6 11304 return TRUE;
b49e97c9
TS
11305}
11306
11307/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11308
b34976b6 11309bfd_boolean
9719ad41 11310_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
11311{
11312 BFD_ASSERT (!elf_flags_init (abfd)
11313 || elf_elfheader (abfd)->e_flags == flags);
11314
11315 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
11316 elf_flags_init (abfd) = TRUE;
11317 return TRUE;
b49e97c9
TS
11318}
11319
b34976b6 11320bfd_boolean
9719ad41 11321_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 11322{
9719ad41 11323 FILE *file = ptr;
b49e97c9
TS
11324
11325 BFD_ASSERT (abfd != NULL && ptr != NULL);
11326
11327 /* Print normal ELF private data. */
11328 _bfd_elf_print_private_bfd_data (abfd, ptr);
11329
11330 /* xgettext:c-format */
11331 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11332
11333 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11334 fprintf (file, _(" [abi=O32]"));
11335 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11336 fprintf (file, _(" [abi=O64]"));
11337 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11338 fprintf (file, _(" [abi=EABI32]"));
11339 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11340 fprintf (file, _(" [abi=EABI64]"));
11341 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11342 fprintf (file, _(" [abi unknown]"));
11343 else if (ABI_N32_P (abfd))
11344 fprintf (file, _(" [abi=N32]"));
11345 else if (ABI_64_P (abfd))
11346 fprintf (file, _(" [abi=64]"));
11347 else
11348 fprintf (file, _(" [no abi set]"));
11349
11350 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 11351 fprintf (file, " [mips1]");
b49e97c9 11352 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 11353 fprintf (file, " [mips2]");
b49e97c9 11354 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 11355 fprintf (file, " [mips3]");
b49e97c9 11356 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 11357 fprintf (file, " [mips4]");
b49e97c9 11358 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 11359 fprintf (file, " [mips5]");
b49e97c9 11360 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 11361 fprintf (file, " [mips32]");
b49e97c9 11362 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 11363 fprintf (file, " [mips64]");
af7ee8bf 11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 11365 fprintf (file, " [mips32r2]");
5f74bc13 11366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 11367 fprintf (file, " [mips64r2]");
b49e97c9
TS
11368 else
11369 fprintf (file, _(" [unknown ISA]"));
11370
40d32fc6 11371 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 11372 fprintf (file, " [mdmx]");
40d32fc6
CD
11373
11374 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 11375 fprintf (file, " [mips16]");
40d32fc6 11376
b49e97c9 11377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 11378 fprintf (file, " [32bitmode]");
b49e97c9
TS
11379 else
11380 fprintf (file, _(" [not 32bitmode]"));
11381
c0e3f241 11382 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 11383 fprintf (file, " [noreorder]");
c0e3f241
CD
11384
11385 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 11386 fprintf (file, " [PIC]");
c0e3f241
CD
11387
11388 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 11389 fprintf (file, " [CPIC]");
c0e3f241
CD
11390
11391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 11392 fprintf (file, " [XGOT]");
c0e3f241
CD
11393
11394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 11395 fprintf (file, " [UCODE]");
c0e3f241 11396
b49e97c9
TS
11397 fputc ('\n', file);
11398
b34976b6 11399 return TRUE;
b49e97c9 11400}
2f89ff8d 11401
b35d266b 11402const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 11403{
0112cd26
NC
11404 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11405 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11406 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11407 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11408 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11409 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11410 { NULL, 0, 0, 0, 0 }
2f89ff8d 11411};
5e2b0d47 11412
8992f0d7
TS
11413/* Merge non visibility st_other attributes. Ensure that the
11414 STO_OPTIONAL flag is copied into h->other, even if this is not a
11415 definiton of the symbol. */
5e2b0d47
NC
11416void
11417_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11418 const Elf_Internal_Sym *isym,
11419 bfd_boolean definition,
11420 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11421{
8992f0d7
TS
11422 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11423 {
11424 unsigned char other;
11425
11426 other = (definition ? isym->st_other : h->other);
11427 other &= ~ELF_ST_VISIBILITY (-1);
11428 h->other = other | ELF_ST_VISIBILITY (h->other);
11429 }
11430
11431 if (!definition
5e2b0d47
NC
11432 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11433 h->other |= STO_OPTIONAL;
11434}
12ac1cf5
NC
11435
11436/* Decide whether an undefined symbol is special and can be ignored.
11437 This is the case for OPTIONAL symbols on IRIX. */
11438bfd_boolean
11439_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11440{
11441 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11442}
e0764319
NC
11443
11444bfd_boolean
11445_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11446{
11447 return (sym->st_shndx == SHN_COMMON
11448 || sym->st_shndx == SHN_MIPS_ACOMMON
11449 || sym->st_shndx == SHN_MIPS_SCOMMON);
11450}
This page took 0.998542 seconds and 4 git commands to generate.