bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
b49e97c9
TS
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
b15e6682
AO
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
13db6b44
RS
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
c224138d
RS
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
f4416af6
AO
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184};
185
d7206569 186/* Structure passed when merging bfds' gots. */
f4416af6
AO
187
188struct mips_elf_got_per_bfd_arg
189{
f4416af6
AO
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
ab361d49
RS
213/* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
f4416af6 215
ab361d49 216struct mips_elf_traverse_got_arg
f4416af6 217{
ab361d49 218 struct bfd_link_info *info;
f4416af6
AO
219 struct mips_got_info *g;
220 int value;
0f20cc35
DJ
221};
222
f0abc2a1
AM
223struct _mips_elf_section_data
224{
225 struct bfd_elf_section_data elf;
226 union
227 {
f0abc2a1
AM
228 bfd_byte *tdata;
229 } u;
230};
231
232#define mips_elf_section_data(sec) \
68bfbfcc 233 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 234
d5eaccd7
RS
235#define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
4dfe6ac6 238 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 239
634835ae
RS
240/* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257#define GGA_NORMAL 0
258#define GGA_RELOC_ONLY 1
259#define GGA_NONE 2
260
861fb55a
DJ
261/* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288};
289
290/* Macros for populating a mips_elf_la25_stub. */
291
292#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
295#define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297#define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299#define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 301
b49e97c9
TS
302/* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305struct mips_elf_hash_sort_data
306{
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
0f20cc35
DJ
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
b49e97c9 312 long min_got_dynindx;
f4416af6
AO
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 315 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 316 long max_unref_got_dynindx;
b49e97c9
TS
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320};
321
322/* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325struct mips_elf_link_hash_entry
326{
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
861fb55a
DJ
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
b49e97c9
TS
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
b49e97c9
TS
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
b49e97c9
TS
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
7c5fcef7 350
634835ae
RS
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
6ccf4795
RS
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
71782a75
RS
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
861fb55a
DJ
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
71782a75
RS
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
861fb55a
DJ
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
386};
387
388/* MIPS ELF linker hash table. */
389
390struct mips_elf_link_hash_table
391{
392 struct elf_link_hash_table root;
861fb55a 393
b49e97c9
TS
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
861fb55a 396
b49e97c9
TS
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
861fb55a 399
e6aea42d
MR
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 402 bfd_boolean use_rld_obj_head;
861fb55a 403
b4082c70
DD
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
861fb55a 406
b49e97c9 407 /* This is set if we see any mips16 stub sections. */
b34976b6 408 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
0a44bf69
RS
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
861fb55a 415
0e53d9da
AN
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
861fb55a 418
0a44bf69
RS
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
4e41d0d7 427 asection *sstubs;
a8028dd0 428 asection *sgot;
861fb55a 429
a8028dd0
RS
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
861fb55a 432
d222d210
RS
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
861fb55a 437 /* The size of the PLT header in bytes. */
0a44bf69 438 bfd_vma plt_header_size;
861fb55a
DJ
439
440 /* The size of a PLT entry in bytes. */
0a44bf69 441 bfd_vma plt_entry_size;
861fb55a 442
33bb52fb
RS
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
861fb55a 445
5108fc1b
RS
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
861fb55a
DJ
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
861fb55a
DJ
471};
472
4dfe6ac6
NC
473/* Get the MIPS ELF linker hash table from a link_info structure. */
474
475#define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
861fb55a 479/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
480struct mips_htab_traverse_info
481{
861fb55a
DJ
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
b49e97c9
TS
488};
489
6ae68ba3
MR
490/* MIPS ELF private object data. */
491
492struct mips_elf_obj_tdata
493{
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
ee227692
RS
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
698600e4
AM
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
6ae68ba3
MR
518};
519
520/* Get MIPS ELF private object data from BFD's tdata. */
521
522#define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
0f20cc35
DJ
525#define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 538 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 553
b49e97c9
TS
554/* Structure used to pass information to mips_elf_output_extsym. */
555
556struct extsym_info
557{
9e4aeb93
RS
558 bfd *abfd;
559 struct bfd_link_info *info;
b49e97c9
TS
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
b34976b6 562 bfd_boolean failed;
b49e97c9
TS
563};
564
8dc1a139 565/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
566
567static const char * const mips_elf_dynsym_rtproc_names[] =
568{
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573};
574
575/* These structures are used to generate the .compact_rel section on
8dc1a139 576 IRIX5. */
b49e97c9
TS
577
578typedef struct
579{
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586} Elf32_compact_rel;
587
588typedef struct
589{
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596} Elf32_External_compact_rel;
597
598typedef struct
599{
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606} Elf32_crinfo;
607
608typedef struct
609{
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615} Elf32_crinfo2;
616
617typedef struct
618{
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622} Elf32_External_crinfo;
623
624typedef struct
625{
626 bfd_byte info[4];
627 bfd_byte konst[4];
628} Elf32_External_crinfo2;
629
630/* These are the constants used to swap the bitfields in a crinfo. */
631
632#define CRINFO_CTYPE (0x1)
633#define CRINFO_CTYPE_SH (31)
634#define CRINFO_RTYPE (0xf)
635#define CRINFO_RTYPE_SH (27)
636#define CRINFO_DIST2TO (0xff)
637#define CRINFO_DIST2TO_SH (19)
638#define CRINFO_RELVADDR (0x7ffff)
639#define CRINFO_RELVADDR_SH (0)
640
641/* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644#define CRF_MIPS_LONG 1
645#define CRF_MIPS_SHORT 0
646
647/* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657#define CRT_MIPS_REL32 0xa
658#define CRT_MIPS_WORD 0xb
659#define CRT_MIPS_GPHI_LO 0xc
660#define CRT_MIPS_JMPAD 0xd
661
662#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666\f
667/* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670typedef struct runtime_pdr {
ae9a127f
NC
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
b49e97c9 680 long reserved;
ae9a127f 681 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
682} RPDR, *pRPDR;
683#define cbRPDR sizeof (RPDR)
684#define rpdNil ((pRPDR) 0)
685\f
b15e6682 686static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
b34976b6 689static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 690 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
691static bfd_vma mips_elf_high
692 (bfd_vma);
b34976b6 693static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
f4416af6 697static bfd_vma mips_elf_adjust_gp
9719ad41 698 (bfd *, struct mips_got_info *, bfd *);
f4416af6 699
b49e97c9
TS
700/* This will be used when we sort the dynamic relocation records. */
701static bfd *reldyn_sorting_bfd;
702
6d30f5b2
NC
703/* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705#define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
cd8d5a82
CF
709/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712#define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718#define JALR_TO_BAL_P(abfd) 1
719
38a7df63
CF
720/* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723#define JR_TO_B_P(abfd) 1
724
861fb55a
DJ
725/* True if ABFD is a PIC object. */
726#define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
b49e97c9 729/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
730#define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
4a14403c 733/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 734#define ABI_64_P(abfd) \
141ff970 735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 736
4a14403c
TS
737/* Nonzero if ABFD is using NewABI conventions. */
738#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
e8faf7d1
MR
740/* Nonzero if ABFD has microMIPS code. */
741#define MICROMIPS_P(abfd) \
742 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
743
4a14403c 744/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
745#define IRIX_COMPAT(abfd) \
746 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
747
b49e97c9
TS
748/* Whether we are trying to be compatible with IRIX at all. */
749#define SGI_COMPAT(abfd) \
750 (IRIX_COMPAT (abfd) != ict_none)
751
752/* The name of the options section. */
753#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 754 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 755
cc2e31b9
RS
756/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
757 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
758#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
759 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
760
943284cc
DJ
761/* Whether the section is readonly. */
762#define MIPS_ELF_READONLY_SECTION(sec) \
763 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
764 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
765
b49e97c9 766/* The name of the stub section. */
ca07892d 767#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
768
769/* The size of an external REL relocation. */
770#define MIPS_ELF_REL_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rel)
772
0a44bf69
RS
773/* The size of an external RELA relocation. */
774#define MIPS_ELF_RELA_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_rela)
776
b49e97c9
TS
777/* The size of an external dynamic table entry. */
778#define MIPS_ELF_DYN_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->sizeof_dyn)
780
781/* The size of a GOT entry. */
782#define MIPS_ELF_GOT_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
b4082c70
DD
785/* The size of the .rld_map section. */
786#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->arch_size / 8)
788
b49e97c9
TS
789/* The size of a symbol-table entry. */
790#define MIPS_ELF_SYM_SIZE(abfd) \
791 (get_elf_backend_data (abfd)->s->sizeof_sym)
792
793/* The default alignment for sections, as a power of two. */
794#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 795 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
796
797/* Get word-sized data. */
798#define MIPS_ELF_GET_WORD(abfd, ptr) \
799 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
800
801/* Put out word-sized data. */
802#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
803 (ABI_64_P (abfd) \
804 ? bfd_put_64 (abfd, val, ptr) \
805 : bfd_put_32 (abfd, val, ptr))
806
861fb55a
DJ
807/* The opcode for word-sized loads (LW or LD). */
808#define MIPS_ELF_LOAD_WORD(abfd) \
809 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
810
b49e97c9 811/* Add a dynamic symbol table-entry. */
9719ad41 812#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 813 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
814
815#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
817
0a44bf69
RS
818/* The name of the dynamic relocation section. */
819#define MIPS_ELF_REL_DYN_NAME(INFO) \
820 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
821
b49e97c9
TS
822/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
823 from smaller values. Start with zero, widen, *then* decrement. */
824#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 825#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 826
51e38d68
RS
827/* The value to write into got[1] for SVR4 targets, to identify it is
828 a GNU object. The dynamic linker can then use got[1] to store the
829 module pointer. */
830#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
831 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
832
f4416af6 833/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
834#define ELF_MIPS_GP_OFFSET(INFO) \
835 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
836
837/* The maximum size of the GOT for it to be addressable using 16-bit
838 offsets from $gp. */
0a44bf69 839#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 840
6a691779 841/* Instructions which appear in a stub. */
3d6746ca
DD
842#define STUB_LW(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
845 : 0x8f998010)) /* lw t9,0x8010(gp) */
846#define STUB_MOVE(abfd) \
847 ((ABI_64_P (abfd) \
848 ? 0x03e0782d /* daddu t7,ra */ \
849 : 0x03e07821)) /* addu t7,ra */
850#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
851#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
852#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
853#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
854#define STUB_LI16S(abfd, VAL) \
855 ((ABI_64_P (abfd) \
856 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
857 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
858
5108fc1b
RS
859#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
860#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
861
862/* The name of the dynamic interpreter. This is put in the .interp
863 section. */
864
865#define ELF_DYNAMIC_INTERPRETER(abfd) \
866 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
867 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
868 : "/usr/lib/libc.so.1")
869
870#ifdef BFD64
ee6423ed
AO
871#define MNAME(bfd,pre,pos) \
872 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
873#define ELF_R_SYM(bfd, i) \
874 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
875#define ELF_R_TYPE(bfd, i) \
876 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
877#define ELF_R_INFO(bfd, s, t) \
878 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
879#else
ee6423ed 880#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
881#define ELF_R_SYM(bfd, i) \
882 (ELF32_R_SYM (i))
883#define ELF_R_TYPE(bfd, i) \
884 (ELF32_R_TYPE (i))
885#define ELF_R_INFO(bfd, s, t) \
886 (ELF32_R_INFO (s, t))
887#endif
888\f
889 /* The mips16 compiler uses a couple of special sections to handle
890 floating point arguments.
891
892 Section names that look like .mips16.fn.FNNAME contain stubs that
893 copy floating point arguments from the fp regs to the gp regs and
894 then jump to FNNAME. If any 32 bit function calls FNNAME, the
895 call should be redirected to the stub instead. If no 32 bit
896 function calls FNNAME, the stub should be discarded. We need to
897 consider any reference to the function, not just a call, because
898 if the address of the function is taken we will need the stub,
899 since the address might be passed to a 32 bit function.
900
901 Section names that look like .mips16.call.FNNAME contain stubs
902 that copy floating point arguments from the gp regs to the fp
903 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
904 then any 16 bit function that calls FNNAME should be redirected
905 to the stub instead. If FNNAME is not a 32 bit function, the
906 stub should be discarded.
907
908 .mips16.call.fp.FNNAME sections are similar, but contain stubs
909 which call FNNAME and then copy the return value from the fp regs
910 to the gp regs. These stubs store the return value in $18 while
911 calling FNNAME; any function which might call one of these stubs
912 must arrange to save $18 around the call. (This case is not
913 needed for 32 bit functions that call 16 bit functions, because
914 16 bit functions always return floating point values in both
915 $f0/$f1 and $2/$3.)
916
917 Note that in all cases FNNAME might be defined statically.
918 Therefore, FNNAME is not used literally. Instead, the relocation
919 information will indicate which symbol the section is for.
920
921 We record any stubs that we find in the symbol table. */
922
923#define FN_STUB ".mips16.fn."
924#define CALL_STUB ".mips16.call."
925#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
926
927#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
928#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
929#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 930\f
861fb55a 931/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
932static const bfd_vma mips_o32_exec_plt0_entry[] =
933{
861fb55a
DJ
934 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
935 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
936 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
937 0x031cc023, /* subu $24, $24, $28 */
81f5d455 938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942};
943
944/* The format of the first PLT entry in an N32 executable. Different
945 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
946static const bfd_vma mips_n32_exec_plt0_entry[] =
947{
861fb55a
DJ
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
81f5d455 952 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
953 0x0018c082, /* srl $24, $24, 2 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956};
957
958/* The format of the first PLT entry in an N64 executable. Different
959 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
960static const bfd_vma mips_n64_exec_plt0_entry[] =
961{
861fb55a
DJ
962 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
963 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
964 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
965 0x030ec023, /* subu $24, $24, $14 */
81f5d455 966 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
967 0x0018c0c2, /* srl $24, $24, 3 */
968 0x0320f809, /* jalr $25 */
969 0x2718fffe /* subu $24, $24, 2 */
970};
971
972/* The format of subsequent PLT entries. */
6d30f5b2
NC
973static const bfd_vma mips_exec_plt_entry[] =
974{
861fb55a
DJ
975 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
976 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
977 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
978 0x03200008 /* jr $25 */
979};
980
0a44bf69 981/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
982static const bfd_vma mips_vxworks_exec_plt0_entry[] =
983{
0a44bf69
RS
984 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
985 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
986 0x8f390008, /* lw t9, 8(t9) */
987 0x00000000, /* nop */
988 0x03200008, /* jr t9 */
989 0x00000000 /* nop */
990};
991
992/* The format of subsequent PLT entries. */
6d30f5b2
NC
993static const bfd_vma mips_vxworks_exec_plt_entry[] =
994{
0a44bf69
RS
995 0x10000000, /* b .PLT_resolver */
996 0x24180000, /* li t8, <pltindex> */
997 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
998 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
999 0x8f390000, /* lw t9, 0(t9) */
1000 0x00000000, /* nop */
1001 0x03200008, /* jr t9 */
1002 0x00000000 /* nop */
1003};
1004
1005/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1006static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1007{
0a44bf69
RS
1008 0x8f990008, /* lw t9, 8(gp) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000, /* nop */
1012 0x00000000, /* nop */
1013 0x00000000 /* nop */
1014};
1015
1016/* The format of subsequent PLT entries. */
6d30f5b2
NC
1017static const bfd_vma mips_vxworks_shared_plt_entry[] =
1018{
0a44bf69
RS
1019 0x10000000, /* b .PLT_resolver */
1020 0x24180000 /* li t8, <pltindex> */
1021};
1022\f
d21911ea
MR
1023/* microMIPS 32-bit opcode helper installer. */
1024
1025static void
1026bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1027{
1028 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1029 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1030}
1031
1032/* microMIPS 32-bit opcode helper retriever. */
1033
1034static bfd_vma
1035bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1036{
1037 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1038}
1039\f
b49e97c9
TS
1040/* Look up an entry in a MIPS ELF linker hash table. */
1041
1042#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1043 ((struct mips_elf_link_hash_entry *) \
1044 elf_link_hash_lookup (&(table)->root, (string), (create), \
1045 (copy), (follow)))
1046
1047/* Traverse a MIPS ELF linker hash table. */
1048
1049#define mips_elf_link_hash_traverse(table, func, info) \
1050 (elf_link_hash_traverse \
1051 (&(table)->root, \
9719ad41 1052 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1053 (info)))
1054
0f20cc35
DJ
1055/* Find the base offsets for thread-local storage in this object,
1056 for GD/LD and IE/LE respectively. */
1057
1058#define TP_OFFSET 0x7000
1059#define DTP_OFFSET 0x8000
1060
1061static bfd_vma
1062dtprel_base (struct bfd_link_info *info)
1063{
1064 /* If tls_sec is NULL, we should have signalled an error already. */
1065 if (elf_hash_table (info)->tls_sec == NULL)
1066 return 0;
1067 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1068}
1069
1070static bfd_vma
1071tprel_base (struct bfd_link_info *info)
1072{
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1077}
1078
b49e97c9
TS
1079/* Create an entry in a MIPS ELF linker hash table. */
1080
1081static struct bfd_hash_entry *
9719ad41
RS
1082mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1083 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1084{
1085 struct mips_elf_link_hash_entry *ret =
1086 (struct mips_elf_link_hash_entry *) entry;
1087
1088 /* Allocate the structure if it has not already been allocated by a
1089 subclass. */
9719ad41
RS
1090 if (ret == NULL)
1091 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1092 if (ret == NULL)
b49e97c9
TS
1093 return (struct bfd_hash_entry *) ret;
1094
1095 /* Call the allocation method of the superclass. */
1096 ret = ((struct mips_elf_link_hash_entry *)
1097 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1098 table, string));
9719ad41 1099 if (ret != NULL)
b49e97c9
TS
1100 {
1101 /* Set local fields. */
1102 memset (&ret->esym, 0, sizeof (EXTR));
1103 /* We use -2 as a marker to indicate that the information has
1104 not been set. -1 means there is no associated ifd. */
1105 ret->esym.ifd = -2;
861fb55a 1106 ret->la25_stub = 0;
b49e97c9 1107 ret->possibly_dynamic_relocs = 0;
b49e97c9 1108 ret->fn_stub = NULL;
b49e97c9
TS
1109 ret->call_stub = NULL;
1110 ret->call_fp_stub = NULL;
634835ae 1111 ret->global_got_area = GGA_NONE;
6ccf4795 1112 ret->got_only_for_calls = TRUE;
71782a75 1113 ret->readonly_reloc = FALSE;
861fb55a 1114 ret->has_static_relocs = FALSE;
71782a75
RS
1115 ret->no_fn_stub = FALSE;
1116 ret->need_fn_stub = FALSE;
861fb55a 1117 ret->has_nonpic_branches = FALSE;
33bb52fb 1118 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1119 }
1120
1121 return (struct bfd_hash_entry *) ret;
1122}
f0abc2a1 1123
6ae68ba3
MR
1124/* Allocate MIPS ELF private object data. */
1125
1126bfd_boolean
1127_bfd_mips_elf_mkobject (bfd *abfd)
1128{
1129 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1130 MIPS_ELF_DATA);
1131}
1132
f0abc2a1 1133bfd_boolean
9719ad41 1134_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1135{
f592407e
AM
1136 if (!sec->used_by_bfd)
1137 {
1138 struct _mips_elf_section_data *sdata;
1139 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1140
f592407e
AM
1141 sdata = bfd_zalloc (abfd, amt);
1142 if (sdata == NULL)
1143 return FALSE;
1144 sec->used_by_bfd = sdata;
1145 }
f0abc2a1
AM
1146
1147 return _bfd_elf_new_section_hook (abfd, sec);
1148}
b49e97c9
TS
1149\f
1150/* Read ECOFF debugging information from a .mdebug section into a
1151 ecoff_debug_info structure. */
1152
b34976b6 1153bfd_boolean
9719ad41
RS
1154_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1155 struct ecoff_debug_info *debug)
b49e97c9
TS
1156{
1157 HDRR *symhdr;
1158 const struct ecoff_debug_swap *swap;
9719ad41 1159 char *ext_hdr;
b49e97c9
TS
1160
1161 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1162 memset (debug, 0, sizeof (*debug));
1163
9719ad41 1164 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1165 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1166 goto error_return;
1167
9719ad41 1168 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1169 swap->external_hdr_size))
b49e97c9
TS
1170 goto error_return;
1171
1172 symhdr = &debug->symbolic_header;
1173 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1174
1175 /* The symbolic header contains absolute file offsets and sizes to
1176 read. */
1177#define READ(ptr, offset, count, size, type) \
1178 if (symhdr->count == 0) \
1179 debug->ptr = NULL; \
1180 else \
1181 { \
1182 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1183 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1184 if (debug->ptr == NULL) \
1185 goto error_return; \
9719ad41 1186 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1187 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1188 goto error_return; \
1189 }
1190
1191 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1192 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1193 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1194 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1195 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1196 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1197 union aux_ext *);
1198 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1199 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1200 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1201 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1202 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1203#undef READ
1204
1205 debug->fdr = NULL;
b49e97c9 1206
b34976b6 1207 return TRUE;
b49e97c9
TS
1208
1209 error_return:
1210 if (ext_hdr != NULL)
1211 free (ext_hdr);
1212 if (debug->line != NULL)
1213 free (debug->line);
1214 if (debug->external_dnr != NULL)
1215 free (debug->external_dnr);
1216 if (debug->external_pdr != NULL)
1217 free (debug->external_pdr);
1218 if (debug->external_sym != NULL)
1219 free (debug->external_sym);
1220 if (debug->external_opt != NULL)
1221 free (debug->external_opt);
1222 if (debug->external_aux != NULL)
1223 free (debug->external_aux);
1224 if (debug->ss != NULL)
1225 free (debug->ss);
1226 if (debug->ssext != NULL)
1227 free (debug->ssext);
1228 if (debug->external_fdr != NULL)
1229 free (debug->external_fdr);
1230 if (debug->external_rfd != NULL)
1231 free (debug->external_rfd);
1232 if (debug->external_ext != NULL)
1233 free (debug->external_ext);
b34976b6 1234 return FALSE;
b49e97c9
TS
1235}
1236\f
1237/* Swap RPDR (runtime procedure table entry) for output. */
1238
1239static void
9719ad41 1240ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1241{
1242 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1243 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1244 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1245 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1246 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1247 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1248
1249 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1250 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1251
1252 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1253}
1254
1255/* Create a runtime procedure table from the .mdebug section. */
1256
b34976b6 1257static bfd_boolean
9719ad41
RS
1258mips_elf_create_procedure_table (void *handle, bfd *abfd,
1259 struct bfd_link_info *info, asection *s,
1260 struct ecoff_debug_info *debug)
b49e97c9
TS
1261{
1262 const struct ecoff_debug_swap *swap;
1263 HDRR *hdr = &debug->symbolic_header;
1264 RPDR *rpdr, *rp;
1265 struct rpdr_ext *erp;
9719ad41 1266 void *rtproc;
b49e97c9
TS
1267 struct pdr_ext *epdr;
1268 struct sym_ext *esym;
1269 char *ss, **sv;
1270 char *str;
1271 bfd_size_type size;
1272 bfd_size_type count;
1273 unsigned long sindex;
1274 unsigned long i;
1275 PDR pdr;
1276 SYMR sym;
1277 const char *no_name_func = _("static procedure (no name)");
1278
1279 epdr = NULL;
1280 rpdr = NULL;
1281 esym = NULL;
1282 ss = NULL;
1283 sv = NULL;
1284
1285 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1286
1287 sindex = strlen (no_name_func) + 1;
1288 count = hdr->ipdMax;
1289 if (count > 0)
1290 {
1291 size = swap->external_pdr_size;
1292
9719ad41 1293 epdr = bfd_malloc (size * count);
b49e97c9
TS
1294 if (epdr == NULL)
1295 goto error_return;
1296
9719ad41 1297 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1298 goto error_return;
1299
1300 size = sizeof (RPDR);
9719ad41 1301 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1302 if (rpdr == NULL)
1303 goto error_return;
1304
1305 size = sizeof (char *);
9719ad41 1306 sv = bfd_malloc (size * count);
b49e97c9
TS
1307 if (sv == NULL)
1308 goto error_return;
1309
1310 count = hdr->isymMax;
1311 size = swap->external_sym_size;
9719ad41 1312 esym = bfd_malloc (size * count);
b49e97c9
TS
1313 if (esym == NULL)
1314 goto error_return;
1315
9719ad41 1316 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1317 goto error_return;
1318
1319 count = hdr->issMax;
9719ad41 1320 ss = bfd_malloc (count);
b49e97c9
TS
1321 if (ss == NULL)
1322 goto error_return;
f075ee0c 1323 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1324 goto error_return;
1325
1326 count = hdr->ipdMax;
1327 for (i = 0; i < (unsigned long) count; i++, rp++)
1328 {
9719ad41
RS
1329 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1330 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1331 rp->adr = sym.value;
1332 rp->regmask = pdr.regmask;
1333 rp->regoffset = pdr.regoffset;
1334 rp->fregmask = pdr.fregmask;
1335 rp->fregoffset = pdr.fregoffset;
1336 rp->frameoffset = pdr.frameoffset;
1337 rp->framereg = pdr.framereg;
1338 rp->pcreg = pdr.pcreg;
1339 rp->irpss = sindex;
1340 sv[i] = ss + sym.iss;
1341 sindex += strlen (sv[i]) + 1;
1342 }
1343 }
1344
1345 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1346 size = BFD_ALIGN (size, 16);
9719ad41 1347 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1348 if (rtproc == NULL)
1349 {
1350 mips_elf_hash_table (info)->procedure_count = 0;
1351 goto error_return;
1352 }
1353
1354 mips_elf_hash_table (info)->procedure_count = count + 2;
1355
9719ad41 1356 erp = rtproc;
b49e97c9
TS
1357 memset (erp, 0, sizeof (struct rpdr_ext));
1358 erp++;
1359 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1360 strcpy (str, no_name_func);
1361 str += strlen (no_name_func) + 1;
1362 for (i = 0; i < count; i++)
1363 {
1364 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1365 strcpy (str, sv[i]);
1366 str += strlen (sv[i]) + 1;
1367 }
1368 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1369
1370 /* Set the size and contents of .rtproc section. */
eea6121a 1371 s->size = size;
9719ad41 1372 s->contents = rtproc;
b49e97c9
TS
1373
1374 /* Skip this section later on (I don't think this currently
1375 matters, but someday it might). */
8423293d 1376 s->map_head.link_order = NULL;
b49e97c9
TS
1377
1378 if (epdr != NULL)
1379 free (epdr);
1380 if (rpdr != NULL)
1381 free (rpdr);
1382 if (esym != NULL)
1383 free (esym);
1384 if (ss != NULL)
1385 free (ss);
1386 if (sv != NULL)
1387 free (sv);
1388
b34976b6 1389 return TRUE;
b49e97c9
TS
1390
1391 error_return:
1392 if (epdr != NULL)
1393 free (epdr);
1394 if (rpdr != NULL)
1395 free (rpdr);
1396 if (esym != NULL)
1397 free (esym);
1398 if (ss != NULL)
1399 free (ss);
1400 if (sv != NULL)
1401 free (sv);
b34976b6 1402 return FALSE;
b49e97c9 1403}
738e5348 1404\f
861fb55a
DJ
1405/* We're going to create a stub for H. Create a symbol for the stub's
1406 value and size, to help make the disassembly easier to read. */
1407
1408static bfd_boolean
1409mips_elf_create_stub_symbol (struct bfd_link_info *info,
1410 struct mips_elf_link_hash_entry *h,
1411 const char *prefix, asection *s, bfd_vma value,
1412 bfd_vma size)
1413{
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417
df58fc94
RS
1418 if (ELF_ST_IS_MICROMIPS (h->root.other))
1419 value |= 1;
1420
861fb55a
DJ
1421 /* Create a new symbol. */
1422 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1423 bh = NULL;
1424 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1425 BSF_LOCAL, s, value, NULL,
1426 TRUE, FALSE, &bh))
1427 return FALSE;
1428
1429 /* Make it a local function. */
1430 elfh = (struct elf_link_hash_entry *) bh;
1431 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1432 elfh->size = size;
1433 elfh->forced_local = 1;
1434 return TRUE;
1435}
1436
738e5348
RS
1437/* We're about to redefine H. Create a symbol to represent H's
1438 current value and size, to help make the disassembly easier
1439 to read. */
1440
1441static bfd_boolean
1442mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1443 struct mips_elf_link_hash_entry *h,
1444 const char *prefix)
1445{
1446 struct bfd_link_hash_entry *bh;
1447 struct elf_link_hash_entry *elfh;
1448 const char *name;
1449 asection *s;
1450 bfd_vma value;
1451
1452 /* Read the symbol's value. */
1453 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1454 || h->root.root.type == bfd_link_hash_defweak);
1455 s = h->root.root.u.def.section;
1456 value = h->root.root.u.def.value;
1457
1458 /* Create a new symbol. */
1459 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1460 bh = NULL;
1461 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1462 BSF_LOCAL, s, value, NULL,
1463 TRUE, FALSE, &bh))
1464 return FALSE;
1465
1466 /* Make it local and copy the other attributes from H. */
1467 elfh = (struct elf_link_hash_entry *) bh;
1468 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1469 elfh->other = h->root.other;
1470 elfh->size = h->root.size;
1471 elfh->forced_local = 1;
1472 return TRUE;
1473}
1474
1475/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1476 function rather than to a hard-float stub. */
1477
1478static bfd_boolean
1479section_allows_mips16_refs_p (asection *section)
1480{
1481 const char *name;
1482
1483 name = bfd_get_section_name (section->owner, section);
1484 return (FN_STUB_P (name)
1485 || CALL_STUB_P (name)
1486 || CALL_FP_STUB_P (name)
1487 || strcmp (name, ".pdr") == 0);
1488}
1489
1490/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1491 stub section of some kind. Return the R_SYMNDX of the target
1492 function, or 0 if we can't decide which function that is. */
1493
1494static unsigned long
cb4437b8
MR
1495mips16_stub_symndx (const struct elf_backend_data *bed,
1496 asection *sec ATTRIBUTE_UNUSED,
502e814e 1497 const Elf_Internal_Rela *relocs,
738e5348
RS
1498 const Elf_Internal_Rela *relend)
1499{
cb4437b8 1500 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1501 const Elf_Internal_Rela *rel;
1502
cb4437b8
MR
1503 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1504 one in a compound relocation. */
1505 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1506 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1507 return ELF_R_SYM (sec->owner, rel->r_info);
1508
1509 /* Otherwise trust the first relocation, whatever its kind. This is
1510 the traditional behavior. */
1511 if (relocs < relend)
1512 return ELF_R_SYM (sec->owner, relocs->r_info);
1513
1514 return 0;
1515}
b49e97c9
TS
1516
1517/* Check the mips16 stubs for a particular symbol, and see if we can
1518 discard them. */
1519
861fb55a
DJ
1520static void
1521mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1522 struct mips_elf_link_hash_entry *h)
b49e97c9 1523{
738e5348
RS
1524 /* Dynamic symbols must use the standard call interface, in case other
1525 objects try to call them. */
1526 if (h->fn_stub != NULL
1527 && h->root.dynindx != -1)
1528 {
1529 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1530 h->need_fn_stub = TRUE;
1531 }
1532
b49e97c9
TS
1533 if (h->fn_stub != NULL
1534 && ! h->need_fn_stub)
1535 {
1536 /* We don't need the fn_stub; the only references to this symbol
1537 are 16 bit calls. Clobber the size to 0 to prevent it from
1538 being included in the link. */
eea6121a 1539 h->fn_stub->size = 0;
b49e97c9
TS
1540 h->fn_stub->flags &= ~SEC_RELOC;
1541 h->fn_stub->reloc_count = 0;
1542 h->fn_stub->flags |= SEC_EXCLUDE;
1543 }
1544
1545 if (h->call_stub != NULL
30c09090 1546 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1547 {
1548 /* We don't need the call_stub; this is a 16 bit function, so
1549 calls from other 16 bit functions are OK. Clobber the size
1550 to 0 to prevent it from being included in the link. */
eea6121a 1551 h->call_stub->size = 0;
b49e97c9
TS
1552 h->call_stub->flags &= ~SEC_RELOC;
1553 h->call_stub->reloc_count = 0;
1554 h->call_stub->flags |= SEC_EXCLUDE;
1555 }
1556
1557 if (h->call_fp_stub != NULL
30c09090 1558 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1559 {
1560 /* We don't need the call_stub; this is a 16 bit function, so
1561 calls from other 16 bit functions are OK. Clobber the size
1562 to 0 to prevent it from being included in the link. */
eea6121a 1563 h->call_fp_stub->size = 0;
b49e97c9
TS
1564 h->call_fp_stub->flags &= ~SEC_RELOC;
1565 h->call_fp_stub->reloc_count = 0;
1566 h->call_fp_stub->flags |= SEC_EXCLUDE;
1567 }
861fb55a
DJ
1568}
1569
1570/* Hashtable callbacks for mips_elf_la25_stubs. */
1571
1572static hashval_t
1573mips_elf_la25_stub_hash (const void *entry_)
1574{
1575 const struct mips_elf_la25_stub *entry;
1576
1577 entry = (struct mips_elf_la25_stub *) entry_;
1578 return entry->h->root.root.u.def.section->id
1579 + entry->h->root.root.u.def.value;
1580}
1581
1582static int
1583mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1584{
1585 const struct mips_elf_la25_stub *entry1, *entry2;
1586
1587 entry1 = (struct mips_elf_la25_stub *) entry1_;
1588 entry2 = (struct mips_elf_la25_stub *) entry2_;
1589 return ((entry1->h->root.root.u.def.section
1590 == entry2->h->root.root.u.def.section)
1591 && (entry1->h->root.root.u.def.value
1592 == entry2->h->root.root.u.def.value));
1593}
1594
1595/* Called by the linker to set up the la25 stub-creation code. FN is
1596 the linker's implementation of add_stub_function. Return true on
1597 success. */
1598
1599bfd_boolean
1600_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1601 asection *(*fn) (const char *, asection *,
1602 asection *))
1603{
1604 struct mips_elf_link_hash_table *htab;
1605
1606 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1607 if (htab == NULL)
1608 return FALSE;
1609
861fb55a
DJ
1610 htab->add_stub_section = fn;
1611 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1612 mips_elf_la25_stub_eq, NULL);
1613 if (htab->la25_stubs == NULL)
1614 return FALSE;
1615
1616 return TRUE;
1617}
1618
1619/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1620 that it or its fn_stub might need $25 to be valid on entry.
1621 Note that MIPS16 functions set up $gp using PC-relative instructions,
1622 so they themselves never need $25 to be valid. Only non-MIPS16
1623 entry points are of interest here. */
861fb55a
DJ
1624
1625static bfd_boolean
1626mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1627{
1628 return ((h->root.root.type == bfd_link_hash_defined
1629 || h->root.root.type == bfd_link_hash_defweak)
1630 && h->root.def_regular
1631 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1632 && (!ELF_ST_IS_MIPS16 (h->root.other)
1633 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1634 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1635 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1636}
1637
8f0c309a
CLT
1638/* Set *SEC to the input section that contains the target of STUB.
1639 Return the offset of the target from the start of that section. */
1640
1641static bfd_vma
1642mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1643 asection **sec)
1644{
1645 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1646 {
1647 BFD_ASSERT (stub->h->need_fn_stub);
1648 *sec = stub->h->fn_stub;
1649 return 0;
1650 }
1651 else
1652 {
1653 *sec = stub->h->root.root.u.def.section;
1654 return stub->h->root.root.u.def.value;
1655 }
1656}
1657
861fb55a
DJ
1658/* STUB describes an la25 stub that we have decided to implement
1659 by inserting an LUI/ADDIU pair before the target function.
1660 Create the section and redirect the function symbol to it. */
1661
1662static bfd_boolean
1663mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1664 struct bfd_link_info *info)
1665{
1666 struct mips_elf_link_hash_table *htab;
1667 char *name;
1668 asection *s, *input_section;
1669 unsigned int align;
1670
1671 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1672 if (htab == NULL)
1673 return FALSE;
861fb55a
DJ
1674
1675 /* Create a unique name for the new section. */
1676 name = bfd_malloc (11 + sizeof (".text.stub."));
1677 if (name == NULL)
1678 return FALSE;
1679 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1680
1681 /* Create the section. */
8f0c309a 1682 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1683 s = htab->add_stub_section (name, input_section,
1684 input_section->output_section);
1685 if (s == NULL)
1686 return FALSE;
1687
1688 /* Make sure that any padding goes before the stub. */
1689 align = input_section->alignment_power;
1690 if (!bfd_set_section_alignment (s->owner, s, align))
1691 return FALSE;
1692 if (align > 3)
1693 s->size = (1 << align) - 8;
1694
1695 /* Create a symbol for the stub. */
1696 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1697 stub->stub_section = s;
1698 stub->offset = s->size;
1699
1700 /* Allocate room for it. */
1701 s->size += 8;
1702 return TRUE;
1703}
1704
1705/* STUB describes an la25 stub that we have decided to implement
1706 with a separate trampoline. Allocate room for it and redirect
1707 the function symbol to it. */
1708
1709static bfd_boolean
1710mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1711 struct bfd_link_info *info)
1712{
1713 struct mips_elf_link_hash_table *htab;
1714 asection *s;
1715
1716 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1717 if (htab == NULL)
1718 return FALSE;
861fb55a
DJ
1719
1720 /* Create a trampoline section, if we haven't already. */
1721 s = htab->strampoline;
1722 if (s == NULL)
1723 {
1724 asection *input_section = stub->h->root.root.u.def.section;
1725 s = htab->add_stub_section (".text", NULL,
1726 input_section->output_section);
1727 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1728 return FALSE;
1729 htab->strampoline = s;
1730 }
1731
1732 /* Create a symbol for the stub. */
1733 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1734 stub->stub_section = s;
1735 stub->offset = s->size;
1736
1737 /* Allocate room for it. */
1738 s->size += 16;
1739 return TRUE;
1740}
1741
1742/* H describes a symbol that needs an la25 stub. Make sure that an
1743 appropriate stub exists and point H at it. */
1744
1745static bfd_boolean
1746mips_elf_add_la25_stub (struct bfd_link_info *info,
1747 struct mips_elf_link_hash_entry *h)
1748{
1749 struct mips_elf_link_hash_table *htab;
1750 struct mips_elf_la25_stub search, *stub;
1751 bfd_boolean use_trampoline_p;
1752 asection *s;
1753 bfd_vma value;
1754 void **slot;
1755
861fb55a
DJ
1756 /* Describe the stub we want. */
1757 search.stub_section = NULL;
1758 search.offset = 0;
1759 search.h = h;
1760
1761 /* See if we've already created an equivalent stub. */
1762 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1763 if (htab == NULL)
1764 return FALSE;
1765
861fb55a
DJ
1766 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1767 if (slot == NULL)
1768 return FALSE;
1769
1770 stub = (struct mips_elf_la25_stub *) *slot;
1771 if (stub != NULL)
1772 {
1773 /* We can reuse the existing stub. */
1774 h->la25_stub = stub;
1775 return TRUE;
1776 }
1777
1778 /* Create a permanent copy of ENTRY and add it to the hash table. */
1779 stub = bfd_malloc (sizeof (search));
1780 if (stub == NULL)
1781 return FALSE;
1782 *stub = search;
1783 *slot = stub;
1784
8f0c309a
CLT
1785 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1786 of the section and if we would need no more than 2 nops. */
1787 value = mips_elf_get_la25_target (stub, &s);
1788 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1789
861fb55a
DJ
1790 h->la25_stub = stub;
1791 return (use_trampoline_p
1792 ? mips_elf_add_la25_trampoline (stub, info)
1793 : mips_elf_add_la25_intro (stub, info));
1794}
1795
1796/* A mips_elf_link_hash_traverse callback that is called before sizing
1797 sections. DATA points to a mips_htab_traverse_info structure. */
1798
1799static bfd_boolean
1800mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1801{
1802 struct mips_htab_traverse_info *hti;
1803
1804 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1805 if (!hti->info->relocatable)
1806 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1807
861fb55a
DJ
1808 if (mips_elf_local_pic_function_p (h))
1809 {
ba85c43e
NC
1810 /* PR 12845: If H is in a section that has been garbage
1811 collected it will have its output section set to *ABS*. */
1812 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1813 return TRUE;
1814
861fb55a
DJ
1815 /* H is a function that might need $25 to be valid on entry.
1816 If we're creating a non-PIC relocatable object, mark H as
1817 being PIC. If we're creating a non-relocatable object with
1818 non-PIC branches and jumps to H, make sure that H has an la25
1819 stub. */
1820 if (hti->info->relocatable)
1821 {
1822 if (!PIC_OBJECT_P (hti->output_bfd))
1823 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1824 }
1825 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1826 {
1827 hti->error = TRUE;
1828 return FALSE;
1829 }
1830 }
b34976b6 1831 return TRUE;
b49e97c9
TS
1832}
1833\f
d6f16593
MR
1834/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1835 Most mips16 instructions are 16 bits, but these instructions
1836 are 32 bits.
1837
1838 The format of these instructions is:
1839
1840 +--------------+--------------------------------+
1841 | JALX | X| Imm 20:16 | Imm 25:21 |
1842 +--------------+--------------------------------+
1843 | Immediate 15:0 |
1844 +-----------------------------------------------+
1845
1846 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1847 Note that the immediate value in the first word is swapped.
1848
1849 When producing a relocatable object file, R_MIPS16_26 is
1850 handled mostly like R_MIPS_26. In particular, the addend is
1851 stored as a straight 26-bit value in a 32-bit instruction.
1852 (gas makes life simpler for itself by never adjusting a
1853 R_MIPS16_26 reloc to be against a section, so the addend is
1854 always zero). However, the 32 bit instruction is stored as 2
1855 16-bit values, rather than a single 32-bit value. In a
1856 big-endian file, the result is the same; in a little-endian
1857 file, the two 16-bit halves of the 32 bit value are swapped.
1858 This is so that a disassembler can recognize the jal
1859 instruction.
1860
1861 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1862 instruction stored as two 16-bit values. The addend A is the
1863 contents of the targ26 field. The calculation is the same as
1864 R_MIPS_26. When storing the calculated value, reorder the
1865 immediate value as shown above, and don't forget to store the
1866 value as two 16-bit values.
1867
1868 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1869 defined as
1870
1871 big-endian:
1872 +--------+----------------------+
1873 | | |
1874 | | targ26-16 |
1875 |31 26|25 0|
1876 +--------+----------------------+
1877
1878 little-endian:
1879 +----------+------+-------------+
1880 | | | |
1881 | sub1 | | sub2 |
1882 |0 9|10 15|16 31|
1883 +----------+--------------------+
1884 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1885 ((sub1 << 16) | sub2)).
1886
1887 When producing a relocatable object file, the calculation is
1888 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1889 When producing a fully linked file, the calculation is
1890 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1891 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1892
738e5348
RS
1893 The table below lists the other MIPS16 instruction relocations.
1894 Each one is calculated in the same way as the non-MIPS16 relocation
1895 given on the right, but using the extended MIPS16 layout of 16-bit
1896 immediate fields:
1897
1898 R_MIPS16_GPREL R_MIPS_GPREL16
1899 R_MIPS16_GOT16 R_MIPS_GOT16
1900 R_MIPS16_CALL16 R_MIPS_CALL16
1901 R_MIPS16_HI16 R_MIPS_HI16
1902 R_MIPS16_LO16 R_MIPS_LO16
1903
1904 A typical instruction will have a format like this:
d6f16593
MR
1905
1906 +--------------+--------------------------------+
1907 | EXTEND | Imm 10:5 | Imm 15:11 |
1908 +--------------+--------------------------------+
1909 | Major | rx | ry | Imm 4:0 |
1910 +--------------+--------------------------------+
1911
1912 EXTEND is the five bit value 11110. Major is the instruction
1913 opcode.
1914
738e5348
RS
1915 All we need to do here is shuffle the bits appropriately.
1916 As above, the two 16-bit halves must be swapped on a
1917 little-endian system. */
1918
1919static inline bfd_boolean
1920mips16_reloc_p (int r_type)
1921{
1922 switch (r_type)
1923 {
1924 case R_MIPS16_26:
1925 case R_MIPS16_GPREL:
1926 case R_MIPS16_GOT16:
1927 case R_MIPS16_CALL16:
1928 case R_MIPS16_HI16:
1929 case R_MIPS16_LO16:
d0f13682
CLT
1930 case R_MIPS16_TLS_GD:
1931 case R_MIPS16_TLS_LDM:
1932 case R_MIPS16_TLS_DTPREL_HI16:
1933 case R_MIPS16_TLS_DTPREL_LO16:
1934 case R_MIPS16_TLS_GOTTPREL:
1935 case R_MIPS16_TLS_TPREL_HI16:
1936 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1937 return TRUE;
1938
1939 default:
1940 return FALSE;
1941 }
1942}
1943
df58fc94
RS
1944/* Check if a microMIPS reloc. */
1945
1946static inline bfd_boolean
1947micromips_reloc_p (unsigned int r_type)
1948{
1949 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1950}
1951
1952/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1953 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1954 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1955
1956static inline bfd_boolean
1957micromips_reloc_shuffle_p (unsigned int r_type)
1958{
1959 return (micromips_reloc_p (r_type)
1960 && r_type != R_MICROMIPS_PC7_S1
1961 && r_type != R_MICROMIPS_PC10_S1);
1962}
1963
738e5348
RS
1964static inline bfd_boolean
1965got16_reloc_p (int r_type)
1966{
df58fc94
RS
1967 return (r_type == R_MIPS_GOT16
1968 || r_type == R_MIPS16_GOT16
1969 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1970}
1971
1972static inline bfd_boolean
1973call16_reloc_p (int r_type)
1974{
df58fc94
RS
1975 return (r_type == R_MIPS_CALL16
1976 || r_type == R_MIPS16_CALL16
1977 || r_type == R_MICROMIPS_CALL16);
1978}
1979
1980static inline bfd_boolean
1981got_disp_reloc_p (unsigned int r_type)
1982{
1983 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1984}
1985
1986static inline bfd_boolean
1987got_page_reloc_p (unsigned int r_type)
1988{
1989 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1990}
1991
1992static inline bfd_boolean
1993got_ofst_reloc_p (unsigned int r_type)
1994{
1995 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1996}
1997
1998static inline bfd_boolean
1999got_hi16_reloc_p (unsigned int r_type)
2000{
2001 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2002}
2003
2004static inline bfd_boolean
2005got_lo16_reloc_p (unsigned int r_type)
2006{
2007 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2008}
2009
2010static inline bfd_boolean
2011call_hi16_reloc_p (unsigned int r_type)
2012{
2013 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2014}
2015
2016static inline bfd_boolean
2017call_lo16_reloc_p (unsigned int r_type)
2018{
2019 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2020}
2021
2022static inline bfd_boolean
2023hi16_reloc_p (int r_type)
2024{
df58fc94
RS
2025 return (r_type == R_MIPS_HI16
2026 || r_type == R_MIPS16_HI16
2027 || r_type == R_MICROMIPS_HI16);
738e5348 2028}
d6f16593 2029
738e5348
RS
2030static inline bfd_boolean
2031lo16_reloc_p (int r_type)
2032{
df58fc94
RS
2033 return (r_type == R_MIPS_LO16
2034 || r_type == R_MIPS16_LO16
2035 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2036}
2037
2038static inline bfd_boolean
2039mips16_call_reloc_p (int r_type)
2040{
2041 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2042}
d6f16593 2043
38a7df63
CF
2044static inline bfd_boolean
2045jal_reloc_p (int r_type)
2046{
df58fc94
RS
2047 return (r_type == R_MIPS_26
2048 || r_type == R_MIPS16_26
2049 || r_type == R_MICROMIPS_26_S1);
2050}
2051
2052static inline bfd_boolean
2053micromips_branch_reloc_p (int r_type)
2054{
2055 return (r_type == R_MICROMIPS_26_S1
2056 || r_type == R_MICROMIPS_PC16_S1
2057 || r_type == R_MICROMIPS_PC10_S1
2058 || r_type == R_MICROMIPS_PC7_S1);
2059}
2060
2061static inline bfd_boolean
2062tls_gd_reloc_p (unsigned int r_type)
2063{
d0f13682
CLT
2064 return (r_type == R_MIPS_TLS_GD
2065 || r_type == R_MIPS16_TLS_GD
2066 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2067}
2068
2069static inline bfd_boolean
2070tls_ldm_reloc_p (unsigned int r_type)
2071{
d0f13682
CLT
2072 return (r_type == R_MIPS_TLS_LDM
2073 || r_type == R_MIPS16_TLS_LDM
2074 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2075}
2076
2077static inline bfd_boolean
2078tls_gottprel_reloc_p (unsigned int r_type)
2079{
d0f13682
CLT
2080 return (r_type == R_MIPS_TLS_GOTTPREL
2081 || r_type == R_MIPS16_TLS_GOTTPREL
2082 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2083}
2084
d6f16593 2085void
df58fc94
RS
2086_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2087 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2088{
df58fc94 2089 bfd_vma first, second, val;
d6f16593 2090
df58fc94 2091 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2092 return;
2093
df58fc94
RS
2094 /* Pick up the first and second halfwords of the instruction. */
2095 first = bfd_get_16 (abfd, data);
2096 second = bfd_get_16 (abfd, data + 2);
2097 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2098 val = first << 16 | second;
2099 else if (r_type != R_MIPS16_26)
2100 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2101 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2102 else
df58fc94
RS
2103 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2104 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2105 bfd_put_32 (abfd, val, data);
2106}
2107
2108void
df58fc94
RS
2109_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2110 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2111{
df58fc94 2112 bfd_vma first, second, val;
d6f16593 2113
df58fc94 2114 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2115 return;
2116
2117 val = bfd_get_32 (abfd, data);
df58fc94 2118 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2119 {
df58fc94
RS
2120 second = val & 0xffff;
2121 first = val >> 16;
2122 }
2123 else if (r_type != R_MIPS16_26)
2124 {
2125 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2126 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2127 }
2128 else
2129 {
df58fc94
RS
2130 second = val & 0xffff;
2131 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2132 | ((val >> 21) & 0x1f);
d6f16593 2133 }
df58fc94
RS
2134 bfd_put_16 (abfd, second, data + 2);
2135 bfd_put_16 (abfd, first, data);
d6f16593
MR
2136}
2137
b49e97c9 2138bfd_reloc_status_type
9719ad41
RS
2139_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2140 arelent *reloc_entry, asection *input_section,
2141 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2142{
2143 bfd_vma relocation;
a7ebbfdf 2144 bfd_signed_vma val;
30ac9238 2145 bfd_reloc_status_type status;
b49e97c9
TS
2146
2147 if (bfd_is_com_section (symbol->section))
2148 relocation = 0;
2149 else
2150 relocation = symbol->value;
2151
2152 relocation += symbol->section->output_section->vma;
2153 relocation += symbol->section->output_offset;
2154
07515404 2155 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2156 return bfd_reloc_outofrange;
2157
b49e97c9 2158 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2159 val = reloc_entry->addend;
2160
30ac9238 2161 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2162
b49e97c9 2163 /* Adjust val for the final section location and GP value. If we
1049f94e 2164 are producing relocatable output, we don't want to do this for
b49e97c9 2165 an external symbol. */
1049f94e 2166 if (! relocatable
b49e97c9
TS
2167 || (symbol->flags & BSF_SECTION_SYM) != 0)
2168 val += relocation - gp;
2169
a7ebbfdf
TS
2170 if (reloc_entry->howto->partial_inplace)
2171 {
30ac9238
RS
2172 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2173 (bfd_byte *) data
2174 + reloc_entry->address);
2175 if (status != bfd_reloc_ok)
2176 return status;
a7ebbfdf
TS
2177 }
2178 else
2179 reloc_entry->addend = val;
b49e97c9 2180
1049f94e 2181 if (relocatable)
b49e97c9 2182 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2183
2184 return bfd_reloc_ok;
2185}
2186
2187/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2188 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2189 that contains the relocation field and DATA points to the start of
2190 INPUT_SECTION. */
2191
2192struct mips_hi16
2193{
2194 struct mips_hi16 *next;
2195 bfd_byte *data;
2196 asection *input_section;
2197 arelent rel;
2198};
2199
2200/* FIXME: This should not be a static variable. */
2201
2202static struct mips_hi16 *mips_hi16_list;
2203
2204/* A howto special_function for REL *HI16 relocations. We can only
2205 calculate the correct value once we've seen the partnering
2206 *LO16 relocation, so just save the information for later.
2207
2208 The ABI requires that the *LO16 immediately follow the *HI16.
2209 However, as a GNU extension, we permit an arbitrary number of
2210 *HI16s to be associated with a single *LO16. This significantly
2211 simplies the relocation handling in gcc. */
2212
2213bfd_reloc_status_type
2214_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2215 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2216 asection *input_section, bfd *output_bfd,
2217 char **error_message ATTRIBUTE_UNUSED)
2218{
2219 struct mips_hi16 *n;
2220
07515404 2221 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2222 return bfd_reloc_outofrange;
2223
2224 n = bfd_malloc (sizeof *n);
2225 if (n == NULL)
2226 return bfd_reloc_outofrange;
2227
2228 n->next = mips_hi16_list;
2229 n->data = data;
2230 n->input_section = input_section;
2231 n->rel = *reloc_entry;
2232 mips_hi16_list = n;
2233
2234 if (output_bfd != NULL)
2235 reloc_entry->address += input_section->output_offset;
2236
2237 return bfd_reloc_ok;
2238}
2239
738e5348 2240/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2241 like any other 16-bit relocation when applied to global symbols, but is
2242 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2243
2244bfd_reloc_status_type
2245_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2246 void *data, asection *input_section,
2247 bfd *output_bfd, char **error_message)
2248{
2249 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2250 || bfd_is_und_section (bfd_get_section (symbol))
2251 || bfd_is_com_section (bfd_get_section (symbol)))
2252 /* The relocation is against a global symbol. */
2253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd,
2255 error_message);
2256
2257 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2258 input_section, output_bfd, error_message);
2259}
2260
2261/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2262 is a straightforward 16 bit inplace relocation, but we must deal with
2263 any partnering high-part relocations as well. */
2264
2265bfd_reloc_status_type
2266_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2267 void *data, asection *input_section,
2268 bfd *output_bfd, char **error_message)
2269{
2270 bfd_vma vallo;
d6f16593 2271 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2272
07515404 2273 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2274 return bfd_reloc_outofrange;
2275
df58fc94 2276 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2277 location);
df58fc94
RS
2278 vallo = bfd_get_32 (abfd, location);
2279 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2280 location);
d6f16593 2281
30ac9238
RS
2282 while (mips_hi16_list != NULL)
2283 {
2284 bfd_reloc_status_type ret;
2285 struct mips_hi16 *hi;
2286
2287 hi = mips_hi16_list;
2288
738e5348
RS
2289 /* R_MIPS*_GOT16 relocations are something of a special case. We
2290 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2291 relocation (with a rightshift of 16). However, since GOT16
2292 relocations can also be used with global symbols, their howto
2293 has a rightshift of 0. */
2294 if (hi->rel.howto->type == R_MIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2296 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2297 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2298 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2299 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2300
2301 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2302 carry or borrow will induce a change of +1 or -1 in the high part. */
2303 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2304
30ac9238
RS
2305 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2306 hi->input_section, output_bfd,
2307 error_message);
2308 if (ret != bfd_reloc_ok)
2309 return ret;
2310
2311 mips_hi16_list = hi->next;
2312 free (hi);
2313 }
2314
2315 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd,
2317 error_message);
2318}
2319
2320/* A generic howto special_function. This calculates and installs the
2321 relocation itself, thus avoiding the oft-discussed problems in
2322 bfd_perform_relocation and bfd_install_relocation. */
2323
2324bfd_reloc_status_type
2325_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2326 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2327 asection *input_section, bfd *output_bfd,
2328 char **error_message ATTRIBUTE_UNUSED)
2329{
2330 bfd_signed_vma val;
2331 bfd_reloc_status_type status;
2332 bfd_boolean relocatable;
2333
2334 relocatable = (output_bfd != NULL);
2335
07515404 2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2337 return bfd_reloc_outofrange;
2338
2339 /* Build up the field adjustment in VAL. */
2340 val = 0;
2341 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2342 {
2343 /* Either we're calculating the final field value or we have a
2344 relocation against a section symbol. Add in the section's
2345 offset or address. */
2346 val += symbol->section->output_section->vma;
2347 val += symbol->section->output_offset;
2348 }
2349
2350 if (!relocatable)
2351 {
2352 /* We're calculating the final field value. Add in the symbol's value
2353 and, if pc-relative, subtract the address of the field itself. */
2354 val += symbol->value;
2355 if (reloc_entry->howto->pc_relative)
2356 {
2357 val -= input_section->output_section->vma;
2358 val -= input_section->output_offset;
2359 val -= reloc_entry->address;
2360 }
2361 }
2362
2363 /* VAL is now the final adjustment. If we're keeping this relocation
2364 in the output file, and if the relocation uses a separate addend,
2365 we just need to add VAL to that addend. Otherwise we need to add
2366 VAL to the relocation field itself. */
2367 if (relocatable && !reloc_entry->howto->partial_inplace)
2368 reloc_entry->addend += val;
2369 else
2370 {
d6f16593
MR
2371 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2372
30ac9238
RS
2373 /* Add in the separate addend, if any. */
2374 val += reloc_entry->addend;
2375
2376 /* Add VAL to the relocation field. */
df58fc94
RS
2377 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
30ac9238 2379 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2380 location);
df58fc94
RS
2381 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2382 location);
d6f16593 2383
30ac9238
RS
2384 if (status != bfd_reloc_ok)
2385 return status;
2386 }
2387
2388 if (relocatable)
2389 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2390
2391 return bfd_reloc_ok;
2392}
2393\f
2394/* Swap an entry in a .gptab section. Note that these routines rely
2395 on the equivalence of the two elements of the union. */
2396
2397static void
9719ad41
RS
2398bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2399 Elf32_gptab *in)
b49e97c9
TS
2400{
2401 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2402 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2403}
2404
2405static void
9719ad41
RS
2406bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2407 Elf32_External_gptab *ex)
b49e97c9
TS
2408{
2409 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2410 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2411}
2412
2413static void
9719ad41
RS
2414bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2415 Elf32_External_compact_rel *ex)
b49e97c9
TS
2416{
2417 H_PUT_32 (abfd, in->id1, ex->id1);
2418 H_PUT_32 (abfd, in->num, ex->num);
2419 H_PUT_32 (abfd, in->id2, ex->id2);
2420 H_PUT_32 (abfd, in->offset, ex->offset);
2421 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2422 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2423}
2424
2425static void
9719ad41
RS
2426bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2427 Elf32_External_crinfo *ex)
b49e97c9
TS
2428{
2429 unsigned long l;
2430
2431 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2432 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2433 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2434 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2435 H_PUT_32 (abfd, l, ex->info);
2436 H_PUT_32 (abfd, in->konst, ex->konst);
2437 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2438}
b49e97c9
TS
2439\f
2440/* A .reginfo section holds a single Elf32_RegInfo structure. These
2441 routines swap this structure in and out. They are used outside of
2442 BFD, so they are globally visible. */
2443
2444void
9719ad41
RS
2445bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2446 Elf32_RegInfo *in)
b49e97c9
TS
2447{
2448 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2449 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2450 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2451 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2452 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2453 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2454}
2455
2456void
9719ad41
RS
2457bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2458 Elf32_External_RegInfo *ex)
b49e97c9
TS
2459{
2460 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466}
2467
2468/* In the 64 bit ABI, the .MIPS.options section holds register
2469 information in an Elf64_Reginfo structure. These routines swap
2470 them in and out. They are globally visible because they are used
2471 outside of BFD. These routines are here so that gas can call them
2472 without worrying about whether the 64 bit ABI has been included. */
2473
2474void
9719ad41
RS
2475bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2476 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2477{
2478 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2479 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2480 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2481 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2482 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2483 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2484 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2485}
2486
2487void
9719ad41
RS
2488bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2489 Elf64_External_RegInfo *ex)
b49e97c9
TS
2490{
2491 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2492 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2493 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2494 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2495 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2496 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2497 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2498}
2499
2500/* Swap in an options header. */
2501
2502void
9719ad41
RS
2503bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2504 Elf_Internal_Options *in)
b49e97c9
TS
2505{
2506 in->kind = H_GET_8 (abfd, ex->kind);
2507 in->size = H_GET_8 (abfd, ex->size);
2508 in->section = H_GET_16 (abfd, ex->section);
2509 in->info = H_GET_32 (abfd, ex->info);
2510}
2511
2512/* Swap out an options header. */
2513
2514void
9719ad41
RS
2515bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2516 Elf_External_Options *ex)
b49e97c9
TS
2517{
2518 H_PUT_8 (abfd, in->kind, ex->kind);
2519 H_PUT_8 (abfd, in->size, ex->size);
2520 H_PUT_16 (abfd, in->section, ex->section);
2521 H_PUT_32 (abfd, in->info, ex->info);
2522}
2523\f
2524/* This function is called via qsort() to sort the dynamic relocation
2525 entries by increasing r_symndx value. */
2526
2527static int
9719ad41 2528sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2529{
947216bf
AM
2530 Elf_Internal_Rela int_reloc1;
2531 Elf_Internal_Rela int_reloc2;
6870500c 2532 int diff;
b49e97c9 2533
947216bf
AM
2534 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2535 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2536
6870500c
RS
2537 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2538 if (diff != 0)
2539 return diff;
2540
2541 if (int_reloc1.r_offset < int_reloc2.r_offset)
2542 return -1;
2543 if (int_reloc1.r_offset > int_reloc2.r_offset)
2544 return 1;
2545 return 0;
b49e97c9
TS
2546}
2547
f4416af6
AO
2548/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2549
2550static int
7e3102a7
AM
2551sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2552 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2553{
7e3102a7 2554#ifdef BFD64
f4416af6
AO
2555 Elf_Internal_Rela int_reloc1[3];
2556 Elf_Internal_Rela int_reloc2[3];
2557
2558 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2559 (reldyn_sorting_bfd, arg1, int_reloc1);
2560 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2561 (reldyn_sorting_bfd, arg2, int_reloc2);
2562
6870500c
RS
2563 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2564 return -1;
2565 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2566 return 1;
2567
2568 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2569 return -1;
2570 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2571 return 1;
2572 return 0;
7e3102a7
AM
2573#else
2574 abort ();
2575#endif
f4416af6
AO
2576}
2577
2578
b49e97c9
TS
2579/* This routine is used to write out ECOFF debugging external symbol
2580 information. It is called via mips_elf_link_hash_traverse. The
2581 ECOFF external symbol information must match the ELF external
2582 symbol information. Unfortunately, at this point we don't know
2583 whether a symbol is required by reloc information, so the two
2584 tables may wind up being different. We must sort out the external
2585 symbol information before we can set the final size of the .mdebug
2586 section, and we must set the size of the .mdebug section before we
2587 can relocate any sections, and we can't know which symbols are
2588 required by relocation until we relocate the sections.
2589 Fortunately, it is relatively unlikely that any symbol will be
2590 stripped but required by a reloc. In particular, it can not happen
2591 when generating a final executable. */
2592
b34976b6 2593static bfd_boolean
9719ad41 2594mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2595{
9719ad41 2596 struct extsym_info *einfo = data;
b34976b6 2597 bfd_boolean strip;
b49e97c9
TS
2598 asection *sec, *output_section;
2599
b49e97c9 2600 if (h->root.indx == -2)
b34976b6 2601 strip = FALSE;
f5385ebf 2602 else if ((h->root.def_dynamic
77cfaee6
AM
2603 || h->root.ref_dynamic
2604 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2605 && !h->root.def_regular
2606 && !h->root.ref_regular)
b34976b6 2607 strip = TRUE;
b49e97c9
TS
2608 else if (einfo->info->strip == strip_all
2609 || (einfo->info->strip == strip_some
2610 && bfd_hash_lookup (einfo->info->keep_hash,
2611 h->root.root.root.string,
b34976b6
AM
2612 FALSE, FALSE) == NULL))
2613 strip = TRUE;
b49e97c9 2614 else
b34976b6 2615 strip = FALSE;
b49e97c9
TS
2616
2617 if (strip)
b34976b6 2618 return TRUE;
b49e97c9
TS
2619
2620 if (h->esym.ifd == -2)
2621 {
2622 h->esym.jmptbl = 0;
2623 h->esym.cobol_main = 0;
2624 h->esym.weakext = 0;
2625 h->esym.reserved = 0;
2626 h->esym.ifd = ifdNil;
2627 h->esym.asym.value = 0;
2628 h->esym.asym.st = stGlobal;
2629
2630 if (h->root.root.type == bfd_link_hash_undefined
2631 || h->root.root.type == bfd_link_hash_undefweak)
2632 {
2633 const char *name;
2634
2635 /* Use undefined class. Also, set class and type for some
2636 special symbols. */
2637 name = h->root.root.root.string;
2638 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2639 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2640 {
2641 h->esym.asym.sc = scData;
2642 h->esym.asym.st = stLabel;
2643 h->esym.asym.value = 0;
2644 }
2645 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2646 {
2647 h->esym.asym.sc = scAbs;
2648 h->esym.asym.st = stLabel;
2649 h->esym.asym.value =
2650 mips_elf_hash_table (einfo->info)->procedure_count;
2651 }
4a14403c 2652 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2653 {
2654 h->esym.asym.sc = scAbs;
2655 h->esym.asym.st = stLabel;
2656 h->esym.asym.value = elf_gp (einfo->abfd);
2657 }
2658 else
2659 h->esym.asym.sc = scUndefined;
2660 }
2661 else if (h->root.root.type != bfd_link_hash_defined
2662 && h->root.root.type != bfd_link_hash_defweak)
2663 h->esym.asym.sc = scAbs;
2664 else
2665 {
2666 const char *name;
2667
2668 sec = h->root.root.u.def.section;
2669 output_section = sec->output_section;
2670
2671 /* When making a shared library and symbol h is the one from
2672 the another shared library, OUTPUT_SECTION may be null. */
2673 if (output_section == NULL)
2674 h->esym.asym.sc = scUndefined;
2675 else
2676 {
2677 name = bfd_section_name (output_section->owner, output_section);
2678
2679 if (strcmp (name, ".text") == 0)
2680 h->esym.asym.sc = scText;
2681 else if (strcmp (name, ".data") == 0)
2682 h->esym.asym.sc = scData;
2683 else if (strcmp (name, ".sdata") == 0)
2684 h->esym.asym.sc = scSData;
2685 else if (strcmp (name, ".rodata") == 0
2686 || strcmp (name, ".rdata") == 0)
2687 h->esym.asym.sc = scRData;
2688 else if (strcmp (name, ".bss") == 0)
2689 h->esym.asym.sc = scBss;
2690 else if (strcmp (name, ".sbss") == 0)
2691 h->esym.asym.sc = scSBss;
2692 else if (strcmp (name, ".init") == 0)
2693 h->esym.asym.sc = scInit;
2694 else if (strcmp (name, ".fini") == 0)
2695 h->esym.asym.sc = scFini;
2696 else
2697 h->esym.asym.sc = scAbs;
2698 }
2699 }
2700
2701 h->esym.asym.reserved = 0;
2702 h->esym.asym.index = indexNil;
2703 }
2704
2705 if (h->root.root.type == bfd_link_hash_common)
2706 h->esym.asym.value = h->root.root.u.c.size;
2707 else if (h->root.root.type == bfd_link_hash_defined
2708 || h->root.root.type == bfd_link_hash_defweak)
2709 {
2710 if (h->esym.asym.sc == scCommon)
2711 h->esym.asym.sc = scBss;
2712 else if (h->esym.asym.sc == scSCommon)
2713 h->esym.asym.sc = scSBss;
2714
2715 sec = h->root.root.u.def.section;
2716 output_section = sec->output_section;
2717 if (output_section != NULL)
2718 h->esym.asym.value = (h->root.root.u.def.value
2719 + sec->output_offset
2720 + output_section->vma);
2721 else
2722 h->esym.asym.value = 0;
2723 }
33bb52fb 2724 else
b49e97c9
TS
2725 {
2726 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2727
2728 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2729 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2730
33bb52fb 2731 if (hd->needs_lazy_stub)
b49e97c9
TS
2732 {
2733 /* Set type and value for a symbol with a function stub. */
2734 h->esym.asym.st = stProc;
2735 sec = hd->root.root.u.def.section;
2736 if (sec == NULL)
2737 h->esym.asym.value = 0;
2738 else
2739 {
2740 output_section = sec->output_section;
2741 if (output_section != NULL)
2742 h->esym.asym.value = (hd->root.plt.offset
2743 + sec->output_offset
2744 + output_section->vma);
2745 else
2746 h->esym.asym.value = 0;
2747 }
b49e97c9
TS
2748 }
2749 }
2750
2751 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2752 h->root.root.root.string,
2753 &h->esym))
2754 {
b34976b6
AM
2755 einfo->failed = TRUE;
2756 return FALSE;
b49e97c9
TS
2757 }
2758
b34976b6 2759 return TRUE;
b49e97c9
TS
2760}
2761
2762/* A comparison routine used to sort .gptab entries. */
2763
2764static int
9719ad41 2765gptab_compare (const void *p1, const void *p2)
b49e97c9 2766{
9719ad41
RS
2767 const Elf32_gptab *a1 = p1;
2768 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2769
2770 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2771}
2772\f
b15e6682 2773/* Functions to manage the got entry hash table. */
f4416af6
AO
2774
2775/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2776 hash number. */
2777
2778static INLINE hashval_t
9719ad41 2779mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2780{
2781#ifdef BFD64
2782 return addr + (addr >> 32);
2783#else
2784 return addr;
2785#endif
2786}
2787
f4416af6 2788static hashval_t
d9bf376d 2789mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2790{
2791 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2792
e641e783 2793 return (entry->symndx
9ab066b4
RS
2794 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2795 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
2796 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2797 : entry->symndx >= 0 ? (entry->abfd->id
2798 + mips_elf_hash_bfd_vma (entry->d.addend))
2799 : entry->d.h->root.root.root.hash));
f4416af6
AO
2800}
2801
2802static int
3dff0dd1 2803mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2804{
2805 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2806 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2807
e641e783 2808 return (e1->symndx == e2->symndx
9ab066b4
RS
2809 && e1->tls_type == e2->tls_type
2810 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
2811 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2812 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2813 && e1->d.addend == e2->d.addend)
2814 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 2815}
c224138d 2816
13db6b44
RS
2817static hashval_t
2818mips_got_page_ref_hash (const void *ref_)
2819{
2820 const struct mips_got_page_ref *ref;
2821
2822 ref = (const struct mips_got_page_ref *) ref_;
2823 return ((ref->symndx >= 0
2824 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2825 : ref->u.h->root.root.root.hash)
2826 + mips_elf_hash_bfd_vma (ref->addend));
2827}
2828
2829static int
2830mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2831{
2832 const struct mips_got_page_ref *ref1, *ref2;
2833
2834 ref1 = (const struct mips_got_page_ref *) ref1_;
2835 ref2 = (const struct mips_got_page_ref *) ref2_;
2836 return (ref1->symndx == ref2->symndx
2837 && (ref1->symndx < 0
2838 ? ref1->u.h == ref2->u.h
2839 : ref1->u.abfd == ref2->u.abfd)
2840 && ref1->addend == ref2->addend);
2841}
2842
c224138d
RS
2843static hashval_t
2844mips_got_page_entry_hash (const void *entry_)
2845{
2846 const struct mips_got_page_entry *entry;
2847
2848 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 2849 return entry->sec->id;
c224138d
RS
2850}
2851
2852static int
2853mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2854{
2855 const struct mips_got_page_entry *entry1, *entry2;
2856
2857 entry1 = (const struct mips_got_page_entry *) entry1_;
2858 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 2859 return entry1->sec == entry2->sec;
c224138d 2860}
b15e6682 2861\f
3dff0dd1 2862/* Create and return a new mips_got_info structure. */
5334aa52
RS
2863
2864static struct mips_got_info *
3dff0dd1 2865mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
2866{
2867 struct mips_got_info *g;
2868
2869 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2870 if (g == NULL)
2871 return NULL;
2872
3dff0dd1
RS
2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2874 mips_elf_got_entry_eq, NULL);
5334aa52
RS
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
13db6b44
RS
2878 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2879 mips_got_page_ref_eq, NULL);
2880 if (g->got_page_refs == NULL)
5334aa52
RS
2881 return NULL;
2882
2883 return g;
2884}
2885
ee227692
RS
2886/* Return the GOT info for input bfd ABFD, trying to create a new one if
2887 CREATE_P and if ABFD doesn't already have a GOT. */
2888
2889static struct mips_got_info *
2890mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2891{
2892 struct mips_elf_obj_tdata *tdata;
2893
2894 if (!is_mips_elf (abfd))
2895 return NULL;
2896
2897 tdata = mips_elf_tdata (abfd);
2898 if (!tdata->got && create_p)
3dff0dd1 2899 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
2900 return tdata->got;
2901}
2902
d7206569
RS
2903/* Record that ABFD should use output GOT G. */
2904
2905static void
2906mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2907{
2908 struct mips_elf_obj_tdata *tdata;
2909
2910 BFD_ASSERT (is_mips_elf (abfd));
2911 tdata = mips_elf_tdata (abfd);
2912 if (tdata->got)
2913 {
2914 /* The GOT structure itself and the hash table entries are
2915 allocated to a bfd, but the hash tables aren't. */
2916 htab_delete (tdata->got->got_entries);
13db6b44
RS
2917 htab_delete (tdata->got->got_page_refs);
2918 if (tdata->got->got_page_entries)
2919 htab_delete (tdata->got->got_page_entries);
d7206569
RS
2920 }
2921 tdata->got = g;
2922}
2923
0a44bf69
RS
2924/* Return the dynamic relocation section. If it doesn't exist, try to
2925 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2926 if creation fails. */
f4416af6
AO
2927
2928static asection *
0a44bf69 2929mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2930{
0a44bf69 2931 const char *dname;
f4416af6 2932 asection *sreloc;
0a44bf69 2933 bfd *dynobj;
f4416af6 2934
0a44bf69
RS
2935 dname = MIPS_ELF_REL_DYN_NAME (info);
2936 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2937 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2938 if (sreloc == NULL && create_p)
2939 {
3d4d4302
AM
2940 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2941 (SEC_ALLOC
2942 | SEC_LOAD
2943 | SEC_HAS_CONTENTS
2944 | SEC_IN_MEMORY
2945 | SEC_LINKER_CREATED
2946 | SEC_READONLY));
f4416af6 2947 if (sreloc == NULL
f4416af6 2948 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2949 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2950 return NULL;
2951 }
2952 return sreloc;
2953}
2954
e641e783
RS
2955/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2956
2957static int
2958mips_elf_reloc_tls_type (unsigned int r_type)
2959{
2960 if (tls_gd_reloc_p (r_type))
2961 return GOT_TLS_GD;
2962
2963 if (tls_ldm_reloc_p (r_type))
2964 return GOT_TLS_LDM;
2965
2966 if (tls_gottprel_reloc_p (r_type))
2967 return GOT_TLS_IE;
2968
9ab066b4 2969 return GOT_TLS_NONE;
e641e783
RS
2970}
2971
2972/* Return the number of GOT slots needed for GOT TLS type TYPE. */
2973
2974static int
2975mips_tls_got_entries (unsigned int type)
2976{
2977 switch (type)
2978 {
2979 case GOT_TLS_GD:
2980 case GOT_TLS_LDM:
2981 return 2;
2982
2983 case GOT_TLS_IE:
2984 return 1;
2985
9ab066b4 2986 case GOT_TLS_NONE:
e641e783
RS
2987 return 0;
2988 }
2989 abort ();
2990}
2991
0f20cc35
DJ
2992/* Count the number of relocations needed for a TLS GOT entry, with
2993 access types from TLS_TYPE, and symbol H (or a local symbol if H
2994 is NULL). */
2995
2996static int
2997mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2998 struct elf_link_hash_entry *h)
2999{
3000 int indx = 0;
0f20cc35
DJ
3001 bfd_boolean need_relocs = FALSE;
3002 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3003
3004 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3005 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3006 indx = h->dynindx;
3007
3008 if ((info->shared || indx != 0)
3009 && (h == NULL
3010 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3011 || h->root.type != bfd_link_hash_undefweak))
3012 need_relocs = TRUE;
3013
3014 if (!need_relocs)
e641e783 3015 return 0;
0f20cc35 3016
9ab066b4 3017 switch (tls_type)
0f20cc35 3018 {
e641e783
RS
3019 case GOT_TLS_GD:
3020 return indx != 0 ? 2 : 1;
0f20cc35 3021
e641e783
RS
3022 case GOT_TLS_IE:
3023 return 1;
0f20cc35 3024
e641e783
RS
3025 case GOT_TLS_LDM:
3026 return info->shared ? 1 : 0;
0f20cc35 3027
e641e783
RS
3028 default:
3029 return 0;
3030 }
0f20cc35
DJ
3031}
3032
ab361d49
RS
3033/* Add the number of GOT entries and TLS relocations required by ENTRY
3034 to G. */
0f20cc35 3035
ab361d49
RS
3036static void
3037mips_elf_count_got_entry (struct bfd_link_info *info,
3038 struct mips_got_info *g,
3039 struct mips_got_entry *entry)
0f20cc35 3040{
9ab066b4 3041 if (entry->tls_type)
ab361d49 3042 {
9ab066b4
RS
3043 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3044 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3045 entry->symndx < 0
3046 ? &entry->d.h->root : NULL);
3047 }
3048 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3049 g->local_gotno += 1;
3050 else
3051 g->global_gotno += 1;
0f20cc35
DJ
3052}
3053
0f20cc35
DJ
3054/* Output a simple dynamic relocation into SRELOC. */
3055
3056static void
3057mips_elf_output_dynamic_relocation (bfd *output_bfd,
3058 asection *sreloc,
861fb55a 3059 unsigned long reloc_index,
0f20cc35
DJ
3060 unsigned long indx,
3061 int r_type,
3062 bfd_vma offset)
3063{
3064 Elf_Internal_Rela rel[3];
3065
3066 memset (rel, 0, sizeof (rel));
3067
3068 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3069 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3070
3071 if (ABI_64_P (output_bfd))
3072 {
3073 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3074 (output_bfd, &rel[0],
3075 (sreloc->contents
861fb55a 3076 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3077 }
3078 else
3079 bfd_elf32_swap_reloc_out
3080 (output_bfd, &rel[0],
3081 (sreloc->contents
861fb55a 3082 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3083}
3084
3085/* Initialize a set of TLS GOT entries for one symbol. */
3086
3087static void
9ab066b4
RS
3088mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3089 struct mips_got_entry *entry,
0f20cc35
DJ
3090 struct mips_elf_link_hash_entry *h,
3091 bfd_vma value)
3092{
23cc69b6 3093 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3094 int indx;
3095 asection *sreloc, *sgot;
9ab066b4 3096 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3097 bfd_boolean need_relocs = FALSE;
3098
23cc69b6 3099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3100 if (htab == NULL)
3101 return;
3102
23cc69b6 3103 sgot = htab->sgot;
0f20cc35
DJ
3104
3105 indx = 0;
3106 if (h != NULL)
3107 {
3108 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3109
3110 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3111 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3112 indx = h->root.dynindx;
3113 }
3114
9ab066b4 3115 if (entry->tls_initialized)
0f20cc35
DJ
3116 return;
3117
3118 if ((info->shared || indx != 0)
3119 && (h == NULL
3120 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3121 || h->root.type != bfd_link_hash_undefweak))
3122 need_relocs = TRUE;
3123
3124 /* MINUS_ONE means the symbol is not defined in this object. It may not
3125 be defined at all; assume that the value doesn't matter in that
3126 case. Otherwise complain if we would use the value. */
3127 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3128 || h->root.root.type == bfd_link_hash_undefweak);
3129
3130 /* Emit necessary relocations. */
0a44bf69 3131 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3132 got_offset = entry->gotidx;
0f20cc35 3133
9ab066b4 3134 switch (entry->tls_type)
0f20cc35 3135 {
e641e783
RS
3136 case GOT_TLS_GD:
3137 /* General Dynamic. */
3138 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3139
3140 if (need_relocs)
3141 {
3142 mips_elf_output_dynamic_relocation
861fb55a 3143 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3144 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3145 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3146
3147 if (indx)
3148 mips_elf_output_dynamic_relocation
861fb55a 3149 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3150 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3151 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3152 else
3153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3154 sgot->contents + got_offset2);
0f20cc35
DJ
3155 }
3156 else
3157 {
3158 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3159 sgot->contents + got_offset);
0f20cc35 3160 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3161 sgot->contents + got_offset2);
0f20cc35 3162 }
e641e783 3163 break;
0f20cc35 3164
e641e783
RS
3165 case GOT_TLS_IE:
3166 /* Initial Exec model. */
0f20cc35
DJ
3167 if (need_relocs)
3168 {
3169 if (indx == 0)
3170 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3171 sgot->contents + got_offset);
0f20cc35
DJ
3172 else
3173 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3174 sgot->contents + got_offset);
0f20cc35
DJ
3175
3176 mips_elf_output_dynamic_relocation
861fb55a 3177 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3178 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3179 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3180 }
3181 else
3182 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3183 sgot->contents + got_offset);
3184 break;
0f20cc35 3185
e641e783 3186 case GOT_TLS_LDM:
0f20cc35
DJ
3187 /* The initial offset is zero, and the LD offsets will include the
3188 bias by DTP_OFFSET. */
3189 MIPS_ELF_PUT_WORD (abfd, 0,
3190 sgot->contents + got_offset
3191 + MIPS_ELF_GOT_SIZE (abfd));
3192
3193 if (!info->shared)
3194 MIPS_ELF_PUT_WORD (abfd, 1,
3195 sgot->contents + got_offset);
3196 else
3197 mips_elf_output_dynamic_relocation
861fb55a 3198 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3199 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3200 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3201 break;
3202
3203 default:
3204 abort ();
0f20cc35
DJ
3205 }
3206
9ab066b4 3207 entry->tls_initialized = TRUE;
e641e783 3208}
0f20cc35 3209
0a44bf69
RS
3210/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3211 for global symbol H. .got.plt comes before the GOT, so the offset
3212 will be negative. */
3213
3214static bfd_vma
3215mips_elf_gotplt_index (struct bfd_link_info *info,
3216 struct elf_link_hash_entry *h)
3217{
3218 bfd_vma plt_index, got_address, got_value;
3219 struct mips_elf_link_hash_table *htab;
3220
3221 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3222 BFD_ASSERT (htab != NULL);
3223
0a44bf69
RS
3224 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3225
861fb55a
DJ
3226 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3227 section starts with reserved entries. */
3228 BFD_ASSERT (htab->is_vxworks);
3229
0a44bf69
RS
3230 /* Calculate the index of the symbol's PLT entry. */
3231 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3232
3233 /* Calculate the address of the associated .got.plt entry. */
3234 got_address = (htab->sgotplt->output_section->vma
3235 + htab->sgotplt->output_offset
3236 + plt_index * 4);
3237
3238 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3239 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3240 + htab->root.hgot->root.u.def.section->output_offset
3241 + htab->root.hgot->root.u.def.value);
3242
3243 return got_address - got_value;
3244}
3245
5c18022e 3246/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3247 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3248 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3249 offset can be found. */
b49e97c9
TS
3250
3251static bfd_vma
9719ad41 3252mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3253 bfd_vma value, unsigned long r_symndx,
0f20cc35 3254 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3255{
a8028dd0 3256 struct mips_elf_link_hash_table *htab;
b15e6682 3257 struct mips_got_entry *entry;
b49e97c9 3258
a8028dd0 3259 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3260 BFD_ASSERT (htab != NULL);
3261
a8028dd0
RS
3262 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3263 r_symndx, h, r_type);
0f20cc35 3264 if (!entry)
b15e6682 3265 return MINUS_ONE;
0f20cc35 3266
e641e783 3267 if (entry->tls_type)
9ab066b4
RS
3268 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3269 return entry->gotidx;
b49e97c9
TS
3270}
3271
13fbec83 3272/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3273
3274static bfd_vma
13fbec83
RS
3275mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3276 struct elf_link_hash_entry *h)
3277{
3278 struct mips_elf_link_hash_table *htab;
3279 long global_got_dynindx;
3280 struct mips_got_info *g;
3281 bfd_vma got_index;
3282
3283 htab = mips_elf_hash_table (info);
3284 BFD_ASSERT (htab != NULL);
3285
3286 global_got_dynindx = 0;
3287 if (htab->global_gotsym != NULL)
3288 global_got_dynindx = htab->global_gotsym->dynindx;
3289
3290 /* Once we determine the global GOT entry with the lowest dynamic
3291 symbol table index, we must put all dynamic symbols with greater
3292 indices into the primary GOT. That makes it easy to calculate the
3293 GOT offset. */
3294 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3295 g = mips_elf_bfd_got (obfd, FALSE);
3296 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3297 * MIPS_ELF_GOT_SIZE (obfd));
3298 BFD_ASSERT (got_index < htab->sgot->size);
3299
3300 return got_index;
3301}
3302
3303/* Return the GOT index for the global symbol indicated by H, which is
3304 referenced by a relocation of type R_TYPE in IBFD. */
3305
3306static bfd_vma
3307mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3308 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3309{
a8028dd0 3310 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3311 struct mips_got_info *g;
3312 struct mips_got_entry lookup, *entry;
3313 bfd_vma gotidx;
b49e97c9 3314
a8028dd0 3315 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3316 BFD_ASSERT (htab != NULL);
3317
6c42ddb9
RS
3318 g = mips_elf_bfd_got (ibfd, FALSE);
3319 BFD_ASSERT (g);
f4416af6 3320
6c42ddb9
RS
3321 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3322 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3323 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3324
6c42ddb9
RS
3325 lookup.abfd = ibfd;
3326 lookup.symndx = -1;
3327 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3328 entry = htab_find (g->got_entries, &lookup);
3329 BFD_ASSERT (entry);
0f20cc35 3330
6c42ddb9
RS
3331 gotidx = entry->gotidx;
3332 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3333
6c42ddb9 3334 if (lookup.tls_type)
0f20cc35 3335 {
0f20cc35
DJ
3336 bfd_vma value = MINUS_ONE;
3337
3338 if ((h->root.type == bfd_link_hash_defined
3339 || h->root.type == bfd_link_hash_defweak)
3340 && h->root.u.def.section->output_section)
3341 value = (h->root.u.def.value
3342 + h->root.u.def.section->output_offset
3343 + h->root.u.def.section->output_section->vma);
3344
9ab066b4 3345 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3346 }
6c42ddb9 3347 return gotidx;
b49e97c9
TS
3348}
3349
5c18022e
RS
3350/* Find a GOT page entry that points to within 32KB of VALUE. These
3351 entries are supposed to be placed at small offsets in the GOT, i.e.,
3352 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3353 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3354 offset of the GOT entry from VALUE. */
b49e97c9
TS
3355
3356static bfd_vma
9719ad41 3357mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3358 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3359{
91d6fa6a 3360 bfd_vma page, got_index;
b15e6682 3361 struct mips_got_entry *entry;
b49e97c9 3362
0a44bf69 3363 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3364 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3365 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3366
b15e6682
AO
3367 if (!entry)
3368 return MINUS_ONE;
143d77c5 3369
91d6fa6a 3370 got_index = entry->gotidx;
b49e97c9
TS
3371
3372 if (offsetp)
f4416af6 3373 *offsetp = value - entry->d.address;
b49e97c9 3374
91d6fa6a 3375 return got_index;
b49e97c9
TS
3376}
3377
738e5348 3378/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3379 EXTERNAL is true if the relocation was originally against a global
3380 symbol that binds locally. */
b49e97c9
TS
3381
3382static bfd_vma
9719ad41 3383mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3384 bfd_vma value, bfd_boolean external)
b49e97c9 3385{
b15e6682 3386 struct mips_got_entry *entry;
b49e97c9 3387
0a44bf69
RS
3388 /* GOT16 relocations against local symbols are followed by a LO16
3389 relocation; those against global symbols are not. Thus if the
3390 symbol was originally local, the GOT16 relocation should load the
3391 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3392 if (! external)
0a44bf69 3393 value = mips_elf_high (value) << 16;
b49e97c9 3394
738e5348
RS
3395 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3396 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3397 same in all cases. */
a8028dd0
RS
3398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3399 NULL, R_MIPS_GOT16);
b15e6682
AO
3400 if (entry)
3401 return entry->gotidx;
3402 else
3403 return MINUS_ONE;
b49e97c9
TS
3404}
3405
3406/* Returns the offset for the entry at the INDEXth position
3407 in the GOT. */
3408
3409static bfd_vma
a8028dd0 3410mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3411 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3412{
a8028dd0 3413 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3414 asection *sgot;
3415 bfd_vma gp;
3416
a8028dd0 3417 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3418 BFD_ASSERT (htab != NULL);
3419
a8028dd0 3420 sgot = htab->sgot;
f4416af6 3421 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3422 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3423
91d6fa6a 3424 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3425}
3426
0a44bf69
RS
3427/* Create and return a local GOT entry for VALUE, which was calculated
3428 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3429 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3430 instead. */
b49e97c9 3431
b15e6682 3432static struct mips_got_entry *
0a44bf69 3433mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3434 bfd *ibfd, bfd_vma value,
5c18022e 3435 unsigned long r_symndx,
0f20cc35
DJ
3436 struct mips_elf_link_hash_entry *h,
3437 int r_type)
b49e97c9 3438{
ebc53538
RS
3439 struct mips_got_entry lookup, *entry;
3440 void **loc;
f4416af6 3441 struct mips_got_info *g;
0a44bf69 3442 struct mips_elf_link_hash_table *htab;
6c42ddb9 3443 bfd_vma gotidx;
0a44bf69
RS
3444
3445 htab = mips_elf_hash_table (info);
4dfe6ac6 3446 BFD_ASSERT (htab != NULL);
b15e6682 3447
d7206569 3448 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3449 if (g == NULL)
3450 {
d7206569 3451 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3452 BFD_ASSERT (g != NULL);
3453 }
b15e6682 3454
020d7251
RS
3455 /* This function shouldn't be called for symbols that live in the global
3456 area of the GOT. */
3457 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3458
ebc53538
RS
3459 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3460 if (lookup.tls_type)
3461 {
3462 lookup.abfd = ibfd;
df58fc94 3463 if (tls_ldm_reloc_p (r_type))
0f20cc35 3464 {
ebc53538
RS
3465 lookup.symndx = 0;
3466 lookup.d.addend = 0;
0f20cc35
DJ
3467 }
3468 else if (h == NULL)
3469 {
ebc53538
RS
3470 lookup.symndx = r_symndx;
3471 lookup.d.addend = 0;
0f20cc35
DJ
3472 }
3473 else
ebc53538
RS
3474 {
3475 lookup.symndx = -1;
3476 lookup.d.h = h;
3477 }
0f20cc35 3478
ebc53538
RS
3479 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3480 BFD_ASSERT (entry);
0f20cc35 3481
6c42ddb9
RS
3482 gotidx = entry->gotidx;
3483 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3484
ebc53538 3485 return entry;
0f20cc35
DJ
3486 }
3487
ebc53538
RS
3488 lookup.abfd = NULL;
3489 lookup.symndx = -1;
3490 lookup.d.address = value;
3491 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3492 if (!loc)
b15e6682 3493 return NULL;
143d77c5 3494
ebc53538
RS
3495 entry = (struct mips_got_entry *) *loc;
3496 if (entry)
3497 return entry;
b15e6682 3498
ebc53538 3499 if (g->assigned_gotno >= g->local_gotno)
b49e97c9
TS
3500 {
3501 /* We didn't allocate enough space in the GOT. */
3502 (*_bfd_error_handler)
3503 (_("not enough GOT space for local GOT entries"));
3504 bfd_set_error (bfd_error_bad_value);
b15e6682 3505 return NULL;
b49e97c9
TS
3506 }
3507
ebc53538
RS
3508 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3509 if (!entry)
3510 return NULL;
3511
3512 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3513 *entry = lookup;
3514 *loc = entry;
3515
3516 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3517
5c18022e 3518 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3519 if (htab->is_vxworks)
3520 {
3521 Elf_Internal_Rela outrel;
5c18022e 3522 asection *s;
91d6fa6a 3523 bfd_byte *rloc;
0a44bf69 3524 bfd_vma got_address;
0a44bf69
RS
3525
3526 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3527 got_address = (htab->sgot->output_section->vma
3528 + htab->sgot->output_offset
ebc53538 3529 + entry->gotidx);
0a44bf69 3530
91d6fa6a 3531 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3532 outrel.r_offset = got_address;
5c18022e
RS
3533 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3534 outrel.r_addend = value;
91d6fa6a 3535 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3536 }
3537
ebc53538 3538 return entry;
b49e97c9
TS
3539}
3540
d4596a51
RS
3541/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3542 The number might be exact or a worst-case estimate, depending on how
3543 much information is available to elf_backend_omit_section_dynsym at
3544 the current linking stage. */
3545
3546static bfd_size_type
3547count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3548{
3549 bfd_size_type count;
3550
3551 count = 0;
3552 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3553 {
3554 asection *p;
3555 const struct elf_backend_data *bed;
3556
3557 bed = get_elf_backend_data (output_bfd);
3558 for (p = output_bfd->sections; p ; p = p->next)
3559 if ((p->flags & SEC_EXCLUDE) == 0
3560 && (p->flags & SEC_ALLOC) != 0
3561 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3562 ++count;
3563 }
3564 return count;
3565}
3566
b49e97c9 3567/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3568 appear towards the end. */
b49e97c9 3569
b34976b6 3570static bfd_boolean
d4596a51 3571mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3572{
a8028dd0 3573 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3574 struct mips_elf_hash_sort_data hsd;
3575 struct mips_got_info *g;
b49e97c9 3576
d4596a51
RS
3577 if (elf_hash_table (info)->dynsymcount == 0)
3578 return TRUE;
3579
a8028dd0 3580 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3581 BFD_ASSERT (htab != NULL);
3582
a8028dd0 3583 g = htab->got_info;
d4596a51
RS
3584 if (g == NULL)
3585 return TRUE;
f4416af6 3586
b49e97c9 3587 hsd.low = NULL;
23cc69b6
RS
3588 hsd.max_unref_got_dynindx
3589 = hsd.min_got_dynindx
3590 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3591 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3592 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3593 elf_hash_table (info)),
3594 mips_elf_sort_hash_table_f,
3595 &hsd);
3596
3597 /* There should have been enough room in the symbol table to
44c410de 3598 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3599 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3600 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3601 == elf_hash_table (info)->dynsymcount);
3602 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3603 == g->global_gotno);
b49e97c9
TS
3604
3605 /* Now we know which dynamic symbol has the lowest dynamic symbol
3606 table index in the GOT. */
d222d210 3607 htab->global_gotsym = hsd.low;
b49e97c9 3608
b34976b6 3609 return TRUE;
b49e97c9
TS
3610}
3611
3612/* If H needs a GOT entry, assign it the highest available dynamic
3613 index. Otherwise, assign it the lowest available dynamic
3614 index. */
3615
b34976b6 3616static bfd_boolean
9719ad41 3617mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3618{
9719ad41 3619 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3620
b49e97c9
TS
3621 /* Symbols without dynamic symbol table entries aren't interesting
3622 at all. */
3623 if (h->root.dynindx == -1)
b34976b6 3624 return TRUE;
b49e97c9 3625
634835ae 3626 switch (h->global_got_area)
f4416af6 3627 {
634835ae
RS
3628 case GGA_NONE:
3629 h->root.dynindx = hsd->max_non_got_dynindx++;
3630 break;
0f20cc35 3631
634835ae 3632 case GGA_NORMAL:
b49e97c9
TS
3633 h->root.dynindx = --hsd->min_got_dynindx;
3634 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3635 break;
3636
3637 case GGA_RELOC_ONLY:
634835ae
RS
3638 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3639 hsd->low = (struct elf_link_hash_entry *) h;
3640 h->root.dynindx = hsd->max_unref_got_dynindx++;
3641 break;
b49e97c9
TS
3642 }
3643
b34976b6 3644 return TRUE;
b49e97c9
TS
3645}
3646
ee227692
RS
3647/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3648 (which is owned by the caller and shouldn't be added to the
3649 hash table directly). */
3650
3651static bfd_boolean
3652mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3653 struct mips_got_entry *lookup)
3654{
3655 struct mips_elf_link_hash_table *htab;
3656 struct mips_got_entry *entry;
3657 struct mips_got_info *g;
3658 void **loc, **bfd_loc;
3659
3660 /* Make sure there's a slot for this entry in the master GOT. */
3661 htab = mips_elf_hash_table (info);
3662 g = htab->got_info;
3663 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3664 if (!loc)
3665 return FALSE;
3666
3667 /* Populate the entry if it isn't already. */
3668 entry = (struct mips_got_entry *) *loc;
3669 if (!entry)
3670 {
3671 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3672 if (!entry)
3673 return FALSE;
3674
9ab066b4 3675 lookup->tls_initialized = FALSE;
ee227692
RS
3676 lookup->gotidx = -1;
3677 *entry = *lookup;
3678 *loc = entry;
3679 }
3680
3681 /* Reuse the same GOT entry for the BFD's GOT. */
3682 g = mips_elf_bfd_got (abfd, TRUE);
3683 if (!g)
3684 return FALSE;
3685
3686 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3687 if (!bfd_loc)
3688 return FALSE;
3689
3690 if (!*bfd_loc)
3691 *bfd_loc = entry;
3692 return TRUE;
3693}
3694
e641e783
RS
3695/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3696 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3697 using the GOT entry for calls. */
b49e97c9 3698
b34976b6 3699static bfd_boolean
9719ad41
RS
3700mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3701 bfd *abfd, struct bfd_link_info *info,
e641e783 3702 bfd_boolean for_call, int r_type)
b49e97c9 3703{
a8028dd0 3704 struct mips_elf_link_hash_table *htab;
634835ae 3705 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3706 struct mips_got_entry entry;
3707 unsigned char tls_type;
a8028dd0
RS
3708
3709 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3710 BFD_ASSERT (htab != NULL);
3711
634835ae 3712 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3713 if (!for_call)
3714 hmips->got_only_for_calls = FALSE;
f4416af6 3715
b49e97c9
TS
3716 /* A global symbol in the GOT must also be in the dynamic symbol
3717 table. */
7c5fcef7
L
3718 if (h->dynindx == -1)
3719 {
3720 switch (ELF_ST_VISIBILITY (h->other))
3721 {
3722 case STV_INTERNAL:
3723 case STV_HIDDEN:
33bb52fb 3724 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3725 break;
3726 }
c152c796 3727 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3728 return FALSE;
7c5fcef7 3729 }
b49e97c9 3730
ee227692 3731 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3732 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3733 hmips->global_got_area = GGA_NORMAL;
86324f90 3734
f4416af6
AO
3735 entry.abfd = abfd;
3736 entry.symndx = -1;
3737 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3738 entry.tls_type = tls_type;
3739 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3740}
f4416af6 3741
e641e783
RS
3742/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3743 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3744
3745static bfd_boolean
9719ad41 3746mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3747 struct bfd_link_info *info, int r_type)
f4416af6 3748{
a8028dd0
RS
3749 struct mips_elf_link_hash_table *htab;
3750 struct mips_got_info *g;
ee227692 3751 struct mips_got_entry entry;
f4416af6 3752
a8028dd0 3753 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3754 BFD_ASSERT (htab != NULL);
3755
a8028dd0
RS
3756 g = htab->got_info;
3757 BFD_ASSERT (g != NULL);
3758
f4416af6
AO
3759 entry.abfd = abfd;
3760 entry.symndx = symndx;
3761 entry.d.addend = addend;
e641e783 3762 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3763 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3764}
c224138d 3765
13db6b44
RS
3766/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3767 H is the symbol's hash table entry, or null if SYMNDX is local
3768 to ABFD. */
c224138d
RS
3769
3770static bfd_boolean
13db6b44
RS
3771mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3772 long symndx, struct elf_link_hash_entry *h,
3773 bfd_signed_vma addend)
c224138d 3774{
a8028dd0 3775 struct mips_elf_link_hash_table *htab;
ee227692 3776 struct mips_got_info *g1, *g2;
13db6b44 3777 struct mips_got_page_ref lookup, *entry;
ee227692 3778 void **loc, **bfd_loc;
c224138d 3779
a8028dd0 3780 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3781 BFD_ASSERT (htab != NULL);
3782
ee227692
RS
3783 g1 = htab->got_info;
3784 BFD_ASSERT (g1 != NULL);
a8028dd0 3785
13db6b44
RS
3786 if (h)
3787 {
3788 lookup.symndx = -1;
3789 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3790 }
3791 else
3792 {
3793 lookup.symndx = symndx;
3794 lookup.u.abfd = abfd;
3795 }
3796 lookup.addend = addend;
3797 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
3798 if (loc == NULL)
3799 return FALSE;
3800
13db6b44 3801 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
3802 if (!entry)
3803 {
3804 entry = bfd_alloc (abfd, sizeof (*entry));
3805 if (!entry)
3806 return FALSE;
3807
13db6b44 3808 *entry = lookup;
c224138d
RS
3809 *loc = entry;
3810 }
3811
ee227692
RS
3812 /* Add the same entry to the BFD's GOT. */
3813 g2 = mips_elf_bfd_got (abfd, TRUE);
3814 if (!g2)
3815 return FALSE;
3816
13db6b44 3817 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
3818 if (!bfd_loc)
3819 return FALSE;
3820
3821 if (!*bfd_loc)
3822 *bfd_loc = entry;
3823
c224138d
RS
3824 return TRUE;
3825}
33bb52fb
RS
3826
3827/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3828
3829static void
3830mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3831 unsigned int n)
3832{
3833 asection *s;
3834 struct mips_elf_link_hash_table *htab;
3835
3836 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3837 BFD_ASSERT (htab != NULL);
3838
33bb52fb
RS
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 BFD_ASSERT (s != NULL);
3841
3842 if (htab->is_vxworks)
3843 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3844 else
3845 {
3846 if (s->size == 0)
3847 {
3848 /* Make room for a null element. */
3849 s->size += MIPS_ELF_REL_SIZE (abfd);
3850 ++s->reloc_count;
3851 }
3852 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3853 }
3854}
3855\f
476366af
RS
3856/* A htab_traverse callback for GOT entries, with DATA pointing to a
3857 mips_elf_traverse_got_arg structure. Count the number of GOT
3858 entries and TLS relocs. Set DATA->value to true if we need
3859 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
3860
3861static int
3862mips_elf_check_recreate_got (void **entryp, void *data)
3863{
3864 struct mips_got_entry *entry;
476366af 3865 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3866
3867 entry = (struct mips_got_entry *) *entryp;
476366af 3868 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
3869 if (entry->abfd != NULL && entry->symndx == -1)
3870 {
3871 struct mips_elf_link_hash_entry *h;
3872
3873 h = entry->d.h;
3874 if (h->root.root.type == bfd_link_hash_indirect
3875 || h->root.root.type == bfd_link_hash_warning)
3876 {
476366af 3877 arg->value = TRUE;
33bb52fb
RS
3878 return 0;
3879 }
3880 }
476366af 3881 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
3882 return 1;
3883}
3884
476366af
RS
3885/* A htab_traverse callback for GOT entries, with DATA pointing to a
3886 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3887 converting entries for indirect and warning symbols into entries
3888 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
3889
3890static int
3891mips_elf_recreate_got (void **entryp, void *data)
3892{
72e7511a 3893 struct mips_got_entry new_entry, *entry;
476366af 3894 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3895 void **slot;
3896
33bb52fb 3897 entry = (struct mips_got_entry *) *entryp;
476366af 3898 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
3899 if (entry->abfd != NULL
3900 && entry->symndx == -1
3901 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3902 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
3903 {
3904 struct mips_elf_link_hash_entry *h;
3905
72e7511a
RS
3906 new_entry = *entry;
3907 entry = &new_entry;
33bb52fb 3908 h = entry->d.h;
72e7511a 3909 do
634835ae
RS
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
72e7511a
RS
3914 while (h->root.root.type == bfd_link_hash_indirect
3915 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
3916 entry->d.h = h;
3917 }
476366af 3918 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
3919 if (slot == NULL)
3920 {
476366af 3921 arg->g = NULL;
33bb52fb
RS
3922 return 0;
3923 }
3924 if (*slot == NULL)
72e7511a
RS
3925 {
3926 if (entry == &new_entry)
3927 {
3928 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3929 if (!entry)
3930 {
476366af 3931 arg->g = NULL;
72e7511a
RS
3932 return 0;
3933 }
3934 *entry = new_entry;
3935 }
3936 *slot = entry;
476366af 3937 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 3938 }
33bb52fb
RS
3939 return 1;
3940}
3941
13db6b44
RS
3942/* Return the maximum number of GOT page entries required for RANGE. */
3943
3944static bfd_vma
3945mips_elf_pages_for_range (const struct mips_got_page_range *range)
3946{
3947 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3948}
3949
3950/* Record that G requires a page entry that can reach SEC + ADDEND. */
3951
3952static bfd_boolean
3953mips_elf_record_got_page_entry (struct mips_got_info *g,
3954 asection *sec, bfd_signed_vma addend)
3955{
3956 struct mips_got_page_entry lookup, *entry;
3957 struct mips_got_page_range **range_ptr, *range;
3958 bfd_vma old_pages, new_pages;
3959 void **loc;
3960
3961 /* Find the mips_got_page_entry hash table entry for this section. */
3962 lookup.sec = sec;
3963 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3964 if (loc == NULL)
3965 return FALSE;
3966
3967 /* Create a mips_got_page_entry if this is the first time we've
3968 seen the section. */
3969 entry = (struct mips_got_page_entry *) *loc;
3970 if (!entry)
3971 {
3972 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3973 if (!entry)
3974 return FALSE;
3975
3976 entry->sec = sec;
3977 *loc = entry;
3978 }
3979
3980 /* Skip over ranges whose maximum extent cannot share a page entry
3981 with ADDEND. */
3982 range_ptr = &entry->ranges;
3983 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3984 range_ptr = &(*range_ptr)->next;
3985
3986 /* If we scanned to the end of the list, or found a range whose
3987 minimum extent cannot share a page entry with ADDEND, create
3988 a new singleton range. */
3989 range = *range_ptr;
3990 if (!range || addend < range->min_addend - 0xffff)
3991 {
3992 range = bfd_zalloc (sec->owner, sizeof (*range));
3993 if (!range)
3994 return FALSE;
3995
3996 range->next = *range_ptr;
3997 range->min_addend = addend;
3998 range->max_addend = addend;
3999
4000 *range_ptr = range;
4001 entry->num_pages++;
4002 g->page_gotno++;
4003 return TRUE;
4004 }
4005
4006 /* Remember how many pages the old range contributed. */
4007 old_pages = mips_elf_pages_for_range (range);
4008
4009 /* Update the ranges. */
4010 if (addend < range->min_addend)
4011 range->min_addend = addend;
4012 else if (addend > range->max_addend)
4013 {
4014 if (range->next && addend >= range->next->min_addend - 0xffff)
4015 {
4016 old_pages += mips_elf_pages_for_range (range->next);
4017 range->max_addend = range->next->max_addend;
4018 range->next = range->next->next;
4019 }
4020 else
4021 range->max_addend = addend;
4022 }
4023
4024 /* Record any change in the total estimate. */
4025 new_pages = mips_elf_pages_for_range (range);
4026 if (old_pages != new_pages)
4027 {
4028 entry->num_pages += new_pages - old_pages;
4029 g->page_gotno += new_pages - old_pages;
4030 }
4031
4032 return TRUE;
4033}
4034
4035/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4036 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4037 whether the page reference described by *REFP needs a GOT page entry,
4038 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4039
4040static bfd_boolean
4041mips_elf_resolve_got_page_ref (void **refp, void *data)
4042{
4043 struct mips_got_page_ref *ref;
4044 struct mips_elf_traverse_got_arg *arg;
4045 struct mips_elf_link_hash_table *htab;
4046 asection *sec;
4047 bfd_vma addend;
4048
4049 ref = (struct mips_got_page_ref *) *refp;
4050 arg = (struct mips_elf_traverse_got_arg *) data;
4051 htab = mips_elf_hash_table (arg->info);
4052
4053 if (ref->symndx < 0)
4054 {
4055 struct mips_elf_link_hash_entry *h;
4056
4057 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4058 h = ref->u.h;
4059 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4060 return 1;
4061
4062 /* Ignore undefined symbols; we'll issue an error later if
4063 appropriate. */
4064 if (!((h->root.root.type == bfd_link_hash_defined
4065 || h->root.root.type == bfd_link_hash_defweak)
4066 && h->root.root.u.def.section))
4067 return 1;
4068
4069 sec = h->root.root.u.def.section;
4070 addend = h->root.root.u.def.value + ref->addend;
4071 }
4072 else
4073 {
4074 Elf_Internal_Sym *isym;
4075
4076 /* Read in the symbol. */
4077 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4078 ref->symndx);
4079 if (isym == NULL)
4080 {
4081 arg->g = NULL;
4082 return 0;
4083 }
4084
4085 /* Get the associated input section. */
4086 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4087 if (sec == NULL)
4088 {
4089 arg->g = NULL;
4090 return 0;
4091 }
4092
4093 /* If this is a mergable section, work out the section and offset
4094 of the merged data. For section symbols, the addend specifies
4095 of the offset _of_ the first byte in the data, otherwise it
4096 specifies the offset _from_ the first byte. */
4097 if (sec->flags & SEC_MERGE)
4098 {
4099 void *secinfo;
4100
4101 secinfo = elf_section_data (sec)->sec_info;
4102 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4103 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4104 isym->st_value + ref->addend);
4105 else
4106 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4107 isym->st_value) + ref->addend;
4108 }
4109 else
4110 addend = isym->st_value + ref->addend;
4111 }
4112 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4113 {
4114 arg->g = NULL;
4115 return 0;
4116 }
4117 return 1;
4118}
4119
33bb52fb 4120/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4121 replace them with entries for the target symbol. Convert g->got_page_refs
4122 into got_page_entry structures and estimate the number of page entries
4123 that they require. */
33bb52fb
RS
4124
4125static bfd_boolean
476366af
RS
4126mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4127 struct mips_got_info *g)
33bb52fb 4128{
476366af
RS
4129 struct mips_elf_traverse_got_arg tga;
4130 struct mips_got_info oldg;
4131
4132 oldg = *g;
33bb52fb 4133
476366af
RS
4134 tga.info = info;
4135 tga.g = g;
4136 tga.value = FALSE;
4137 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4138 if (tga.value)
33bb52fb 4139 {
476366af
RS
4140 *g = oldg;
4141 g->got_entries = htab_create (htab_size (oldg.got_entries),
4142 mips_elf_got_entry_hash,
4143 mips_elf_got_entry_eq, NULL);
4144 if (!g->got_entries)
33bb52fb
RS
4145 return FALSE;
4146
476366af
RS
4147 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4148 if (!tga.g)
4149 return FALSE;
4150
4151 htab_delete (oldg.got_entries);
33bb52fb 4152 }
13db6b44
RS
4153
4154 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4155 mips_got_page_entry_eq, NULL);
4156 if (g->got_page_entries == NULL)
4157 return FALSE;
4158
4159 tga.info = info;
4160 tga.g = g;
4161 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4162
33bb52fb
RS
4163 return TRUE;
4164}
4165
6c42ddb9
RS
4166/* A mips_elf_link_hash_traverse callback for which DATA points to the
4167 link_info structure. Decide whether the hash entry needs an entry in
4168 the global part of the primary GOT, setting global_got_area accordingly.
4169 Count the number of global symbols that are in the primary GOT only
4170 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4171
4172static int
d4596a51 4173mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4174{
020d7251 4175 struct bfd_link_info *info;
6ccf4795 4176 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4177 struct mips_got_info *g;
4178
020d7251 4179 info = (struct bfd_link_info *) data;
6ccf4795
RS
4180 htab = mips_elf_hash_table (info);
4181 g = htab->got_info;
d4596a51 4182 if (h->global_got_area != GGA_NONE)
33bb52fb 4183 {
020d7251
RS
4184 /* Make a final decision about whether the symbol belongs in the
4185 local or global GOT. Symbols that bind locally can (and in the
4186 case of forced-local symbols, must) live in the local GOT.
4187 Those that are aren't in the dynamic symbol table must also
4188 live in the local GOT.
4189
4190 Note that the former condition does not always imply the
4191 latter: symbols do not bind locally if they are completely
4192 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4193 if (h->root.dynindx == -1
4194 || (h->got_only_for_calls
4195 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4196 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
6c42ddb9
RS
4197 /* The symbol belongs in the local GOT. We no longer need this
4198 entry if it was only used for relocations; those relocations
4199 will be against the null or section symbol instead of H. */
4200 h->global_got_area = GGA_NONE;
6ccf4795
RS
4201 else if (htab->is_vxworks
4202 && h->got_only_for_calls
4203 && h->root.plt.offset != MINUS_ONE)
4204 /* On VxWorks, calls can refer directly to the .got.plt entry;
4205 they don't need entries in the regular GOT. .got.plt entries
4206 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4207 h->global_got_area = GGA_NONE;
6c42ddb9 4208 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4209 {
6c42ddb9 4210 g->reloc_only_gotno++;
23cc69b6 4211 g->global_gotno++;
23cc69b6 4212 }
33bb52fb
RS
4213 }
4214 return 1;
4215}
f4416af6 4216\f
d7206569
RS
4217/* A htab_traverse callback for GOT entries. Add each one to the GOT
4218 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4219
4220static int
d7206569 4221mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4222{
d7206569
RS
4223 struct mips_got_entry *entry;
4224 struct mips_elf_traverse_got_arg *arg;
4225 void **slot;
f4416af6 4226
d7206569
RS
4227 entry = (struct mips_got_entry *) *entryp;
4228 arg = (struct mips_elf_traverse_got_arg *) data;
4229 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4230 if (!slot)
f4416af6 4231 {
d7206569
RS
4232 arg->g = NULL;
4233 return 0;
f4416af6 4234 }
d7206569 4235 if (!*slot)
c224138d 4236 {
d7206569
RS
4237 *slot = entry;
4238 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4239 }
f4416af6
AO
4240 return 1;
4241}
4242
d7206569
RS
4243/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4244 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4245
4246static int
d7206569 4247mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4248{
d7206569
RS
4249 struct mips_got_page_entry *entry;
4250 struct mips_elf_traverse_got_arg *arg;
4251 void **slot;
c224138d 4252
d7206569
RS
4253 entry = (struct mips_got_page_entry *) *entryp;
4254 arg = (struct mips_elf_traverse_got_arg *) data;
4255 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4256 if (!slot)
c224138d 4257 {
d7206569 4258 arg->g = NULL;
c224138d
RS
4259 return 0;
4260 }
d7206569
RS
4261 if (!*slot)
4262 {
4263 *slot = entry;
4264 arg->g->page_gotno += entry->num_pages;
4265 }
c224138d
RS
4266 return 1;
4267}
4268
d7206569
RS
4269/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4270 this would lead to overflow, 1 if they were merged successfully,
4271 and 0 if a merge failed due to lack of memory. (These values are chosen
4272 so that nonnegative return values can be returned by a htab_traverse
4273 callback.) */
c224138d
RS
4274
4275static int
d7206569 4276mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4277 struct mips_got_info *to,
4278 struct mips_elf_got_per_bfd_arg *arg)
4279{
d7206569 4280 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4281 unsigned int estimate;
4282
4283 /* Work out how many page entries we would need for the combined GOT. */
4284 estimate = arg->max_pages;
4285 if (estimate >= from->page_gotno + to->page_gotno)
4286 estimate = from->page_gotno + to->page_gotno;
4287
e2ece73c 4288 /* And conservatively estimate how many local and TLS entries
c224138d 4289 would be needed. */
e2ece73c
RS
4290 estimate += from->local_gotno + to->local_gotno;
4291 estimate += from->tls_gotno + to->tls_gotno;
4292
17214937
RS
4293 /* If we're merging with the primary got, any TLS relocations will
4294 come after the full set of global entries. Otherwise estimate those
e2ece73c 4295 conservatively as well. */
17214937 4296 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4297 estimate += arg->global_count;
4298 else
4299 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4300
4301 /* Bail out if the combined GOT might be too big. */
4302 if (estimate > arg->max_count)
4303 return -1;
4304
c224138d 4305 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4306 tga.info = arg->info;
4307 tga.g = to;
4308 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4309 if (!tga.g)
c224138d
RS
4310 return 0;
4311
d7206569
RS
4312 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4313 if (!tga.g)
c224138d
RS
4314 return 0;
4315
d7206569 4316 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4317 return 1;
4318}
4319
d7206569 4320/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4321 as possible of the primary got, since it doesn't require explicit
4322 dynamic relocations, but don't use bfds that would reference global
4323 symbols out of the addressable range. Failing the primary got,
4324 attempt to merge with the current got, or finish the current got
4325 and then make make the new got current. */
4326
d7206569
RS
4327static bfd_boolean
4328mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4329 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4330{
c224138d
RS
4331 unsigned int estimate;
4332 int result;
4333
476366af 4334 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4335 return FALSE;
4336
c224138d
RS
4337 /* Work out the number of page, local and TLS entries. */
4338 estimate = arg->max_pages;
4339 if (estimate > g->page_gotno)
4340 estimate = g->page_gotno;
4341 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4342
4343 /* We place TLS GOT entries after both locals and globals. The globals
4344 for the primary GOT may overflow the normal GOT size limit, so be
4345 sure not to merge a GOT which requires TLS with the primary GOT in that
4346 case. This doesn't affect non-primary GOTs. */
c224138d 4347 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4348
c224138d 4349 if (estimate <= arg->max_count)
f4416af6 4350 {
c224138d
RS
4351 /* If we don't have a primary GOT, use it as
4352 a starting point for the primary GOT. */
4353 if (!arg->primary)
4354 {
d7206569
RS
4355 arg->primary = g;
4356 return TRUE;
c224138d 4357 }
f4416af6 4358
c224138d 4359 /* Try merging with the primary GOT. */
d7206569 4360 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4361 if (result >= 0)
4362 return result;
f4416af6 4363 }
c224138d 4364
f4416af6 4365 /* If we can merge with the last-created got, do it. */
c224138d 4366 if (arg->current)
f4416af6 4367 {
d7206569 4368 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4369 if (result >= 0)
4370 return result;
f4416af6 4371 }
c224138d 4372
f4416af6
AO
4373 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4374 fits; if it turns out that it doesn't, we'll get relocation
4375 overflows anyway. */
c224138d
RS
4376 g->next = arg->current;
4377 arg->current = g;
0f20cc35 4378
d7206569 4379 return TRUE;
0f20cc35
DJ
4380}
4381
72e7511a
RS
4382/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4383 to GOTIDX, duplicating the entry if it has already been assigned
4384 an index in a different GOT. */
4385
4386static bfd_boolean
4387mips_elf_set_gotidx (void **entryp, long gotidx)
4388{
4389 struct mips_got_entry *entry;
4390
4391 entry = (struct mips_got_entry *) *entryp;
4392 if (entry->gotidx > 0)
4393 {
4394 struct mips_got_entry *new_entry;
4395
4396 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4397 if (!new_entry)
4398 return FALSE;
4399
4400 *new_entry = *entry;
4401 *entryp = new_entry;
4402 entry = new_entry;
4403 }
4404 entry->gotidx = gotidx;
4405 return TRUE;
4406}
4407
4408/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4409 mips_elf_traverse_got_arg in which DATA->value is the size of one
4410 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4411
4412static int
72e7511a 4413mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4414{
72e7511a
RS
4415 struct mips_got_entry *entry;
4416 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4417
4418 /* We're only interested in TLS symbols. */
72e7511a 4419 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4420 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4421 return 1;
4422
72e7511a 4423 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4424 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4425 {
6c42ddb9
RS
4426 arg->g = NULL;
4427 return 0;
f4416af6
AO
4428 }
4429
ead49a57 4430 /* Account for the entries we've just allocated. */
9ab066b4 4431 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4432 return 1;
4433}
4434
ab361d49
RS
4435/* A htab_traverse callback for GOT entries, where DATA points to a
4436 mips_elf_traverse_got_arg. Set the global_got_area of each global
4437 symbol to DATA->value. */
f4416af6 4438
f4416af6 4439static int
ab361d49 4440mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4441{
ab361d49
RS
4442 struct mips_got_entry *entry;
4443 struct mips_elf_traverse_got_arg *arg;
f4416af6 4444
ab361d49
RS
4445 entry = (struct mips_got_entry *) *entryp;
4446 arg = (struct mips_elf_traverse_got_arg *) data;
4447 if (entry->abfd != NULL
4448 && entry->symndx == -1
4449 && entry->d.h->global_got_area != GGA_NONE)
4450 entry->d.h->global_got_area = arg->value;
4451 return 1;
4452}
4453
4454/* A htab_traverse callback for secondary GOT entries, where DATA points
4455 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4456 and record the number of relocations they require. DATA->value is
72e7511a 4457 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4458
4459static int
4460mips_elf_set_global_gotidx (void **entryp, void *data)
4461{
4462 struct mips_got_entry *entry;
4463 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4464
ab361d49
RS
4465 entry = (struct mips_got_entry *) *entryp;
4466 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4467 if (entry->abfd != NULL
4468 && entry->symndx == -1
4469 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4470 {
72e7511a
RS
4471 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 arg->g->assigned_gotno += 1;
4477
ab361d49
RS
4478 if (arg->info->shared
4479 || (elf_hash_table (arg->info)->dynamic_sections_created
4480 && entry->d.h->root.def_dynamic
4481 && !entry->d.h->root.def_regular))
4482 arg->g->relocs += 1;
f4416af6
AO
4483 }
4484
4485 return 1;
4486}
4487
33bb52fb
RS
4488/* A htab_traverse callback for GOT entries for which DATA is the
4489 bfd_link_info. Forbid any global symbols from having traditional
4490 lazy-binding stubs. */
4491
0626d451 4492static int
33bb52fb 4493mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4494{
33bb52fb
RS
4495 struct bfd_link_info *info;
4496 struct mips_elf_link_hash_table *htab;
4497 struct mips_got_entry *entry;
0626d451 4498
33bb52fb
RS
4499 entry = (struct mips_got_entry *) *entryp;
4500 info = (struct bfd_link_info *) data;
4501 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4502 BFD_ASSERT (htab != NULL);
4503
0626d451
RS
4504 if (entry->abfd != NULL
4505 && entry->symndx == -1
33bb52fb 4506 && entry->d.h->needs_lazy_stub)
f4416af6 4507 {
33bb52fb
RS
4508 entry->d.h->needs_lazy_stub = FALSE;
4509 htab->lazy_stub_count--;
f4416af6 4510 }
143d77c5 4511
f4416af6
AO
4512 return 1;
4513}
4514
f4416af6
AO
4515/* Return the offset of an input bfd IBFD's GOT from the beginning of
4516 the primary GOT. */
4517static bfd_vma
9719ad41 4518mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4519{
d7206569 4520 if (!g->next)
f4416af6
AO
4521 return 0;
4522
d7206569 4523 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4524 if (! g)
4525 return 0;
4526
4527 BFD_ASSERT (g->next);
4528
4529 g = g->next;
143d77c5 4530
0f20cc35
DJ
4531 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4532 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4533}
4534
4535/* Turn a single GOT that is too big for 16-bit addressing into
4536 a sequence of GOTs, each one 16-bit addressable. */
4537
4538static bfd_boolean
9719ad41 4539mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4540 asection *got, bfd_size_type pages)
f4416af6 4541{
a8028dd0 4542 struct mips_elf_link_hash_table *htab;
f4416af6 4543 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4544 struct mips_elf_traverse_got_arg tga;
a8028dd0 4545 struct mips_got_info *g, *gg;
33bb52fb 4546 unsigned int assign, needed_relocs;
d7206569 4547 bfd *dynobj, *ibfd;
f4416af6 4548
33bb52fb 4549 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4550 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4551 BFD_ASSERT (htab != NULL);
4552
a8028dd0 4553 g = htab->got_info;
f4416af6 4554
f4416af6
AO
4555 got_per_bfd_arg.obfd = abfd;
4556 got_per_bfd_arg.info = info;
f4416af6
AO
4557 got_per_bfd_arg.current = NULL;
4558 got_per_bfd_arg.primary = NULL;
0a44bf69 4559 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4560 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4561 - htab->reserved_gotno);
c224138d 4562 got_per_bfd_arg.max_pages = pages;
0f20cc35 4563 /* The number of globals that will be included in the primary GOT.
ab361d49 4564 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4565 information. */
4566 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4567
4568 /* Try to merge the GOTs of input bfds together, as long as they
4569 don't seem to exceed the maximum GOT size, choosing one of them
4570 to be the primary GOT. */
d7206569
RS
4571 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4572 {
4573 gg = mips_elf_bfd_got (ibfd, FALSE);
4574 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4575 return FALSE;
4576 }
f4416af6 4577
0f20cc35 4578 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4579 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4580 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4581 else
4582 g->next = got_per_bfd_arg.primary;
4583 g->next->next = got_per_bfd_arg.current;
4584
4585 /* GG is now the master GOT, and G is the primary GOT. */
4586 gg = g;
4587 g = g->next;
4588
4589 /* Map the output bfd to the primary got. That's what we're going
4590 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4591 didn't mark in check_relocs, and we want a quick way to find it.
4592 We can't just use gg->next because we're going to reverse the
4593 list. */
d7206569 4594 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4595
634835ae
RS
4596 /* Every symbol that is referenced in a dynamic relocation must be
4597 present in the primary GOT, so arrange for them to appear after
4598 those that are actually referenced. */
23cc69b6 4599 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4600 g->global_gotno = gg->global_gotno;
f4416af6 4601
ab361d49
RS
4602 tga.info = info;
4603 tga.value = GGA_RELOC_ONLY;
4604 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4605 tga.value = GGA_NORMAL;
4606 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4607
4608 /* Now go through the GOTs assigning them offset ranges.
4609 [assigned_gotno, local_gotno[ will be set to the range of local
4610 entries in each GOT. We can then compute the end of a GOT by
4611 adding local_gotno to global_gotno. We reverse the list and make
4612 it circular since then we'll be able to quickly compute the
4613 beginning of a GOT, by computing the end of its predecessor. To
4614 avoid special cases for the primary GOT, while still preserving
4615 assertions that are valid for both single- and multi-got links,
4616 we arrange for the main got struct to have the right number of
4617 global entries, but set its local_gotno such that the initial
4618 offset of the primary GOT is zero. Remember that the primary GOT
4619 will become the last item in the circular linked list, so it
4620 points back to the master GOT. */
4621 gg->local_gotno = -g->global_gotno;
4622 gg->global_gotno = g->global_gotno;
0f20cc35 4623 gg->tls_gotno = 0;
f4416af6
AO
4624 assign = 0;
4625 gg->next = gg;
4626
4627 do
4628 {
4629 struct mips_got_info *gn;
4630
861fb55a 4631 assign += htab->reserved_gotno;
f4416af6 4632 g->assigned_gotno = assign;
c224138d
RS
4633 g->local_gotno += assign;
4634 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4635 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4636
ead49a57
RS
4637 /* Take g out of the direct list, and push it onto the reversed
4638 list that gg points to. g->next is guaranteed to be nonnull after
4639 this operation, as required by mips_elf_initialize_tls_index. */
4640 gn = g->next;
4641 g->next = gg->next;
4642 gg->next = g;
4643
0f20cc35
DJ
4644 /* Set up any TLS entries. We always place the TLS entries after
4645 all non-TLS entries. */
4646 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4647 tga.g = g;
4648 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4649 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4650 if (!tga.g)
4651 return FALSE;
1fd20d70 4652 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4653
ead49a57 4654 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4655 g = gn;
0626d451 4656
33bb52fb
RS
4657 /* Forbid global symbols in every non-primary GOT from having
4658 lazy-binding stubs. */
0626d451 4659 if (g)
33bb52fb 4660 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4661 }
4662 while (g);
4663
59b08994 4664 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4665
4666 needed_relocs = 0;
33bb52fb
RS
4667 for (g = gg->next; g && g->next != gg; g = g->next)
4668 {
4669 unsigned int save_assign;
4670
ab361d49
RS
4671 /* Assign offsets to global GOT entries and count how many
4672 relocations they need. */
33bb52fb
RS
4673 save_assign = g->assigned_gotno;
4674 g->assigned_gotno = g->local_gotno;
ab361d49
RS
4675 tga.info = info;
4676 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4677 tga.g = g;
4678 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4679 if (!tga.g)
4680 return FALSE;
4681 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
33bb52fb 4682 g->assigned_gotno = save_assign;
72e7511a 4683
33bb52fb
RS
4684 if (info->shared)
4685 {
ab361d49 4686 g->relocs += g->local_gotno - g->assigned_gotno;
33bb52fb
RS
4687 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4688 + g->next->global_gotno
4689 + g->next->tls_gotno
861fb55a 4690 + htab->reserved_gotno);
33bb52fb 4691 }
ab361d49 4692 needed_relocs += g->relocs;
33bb52fb 4693 }
ab361d49 4694 needed_relocs += g->relocs;
33bb52fb
RS
4695
4696 if (needed_relocs)
4697 mips_elf_allocate_dynamic_relocations (dynobj, info,
4698 needed_relocs);
143d77c5 4699
f4416af6
AO
4700 return TRUE;
4701}
143d77c5 4702
b49e97c9
TS
4703\f
4704/* Returns the first relocation of type r_type found, beginning with
4705 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4706
4707static const Elf_Internal_Rela *
9719ad41
RS
4708mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4709 const Elf_Internal_Rela *relocation,
4710 const Elf_Internal_Rela *relend)
b49e97c9 4711{
c000e262
TS
4712 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4713
b49e97c9
TS
4714 while (relocation < relend)
4715 {
c000e262
TS
4716 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4717 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4718 return relocation;
4719
4720 ++relocation;
4721 }
4722
4723 /* We didn't find it. */
b49e97c9
TS
4724 return NULL;
4725}
4726
020d7251 4727/* Return whether an input relocation is against a local symbol. */
b49e97c9 4728
b34976b6 4729static bfd_boolean
9719ad41
RS
4730mips_elf_local_relocation_p (bfd *input_bfd,
4731 const Elf_Internal_Rela *relocation,
020d7251 4732 asection **local_sections)
b49e97c9
TS
4733{
4734 unsigned long r_symndx;
4735 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4736 size_t extsymoff;
4737
4738 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4739 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4740 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4741
4742 if (r_symndx < extsymoff)
b34976b6 4743 return TRUE;
b49e97c9 4744 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4745 return TRUE;
b49e97c9 4746
b34976b6 4747 return FALSE;
b49e97c9
TS
4748}
4749\f
4750/* Sign-extend VALUE, which has the indicated number of BITS. */
4751
a7ebbfdf 4752bfd_vma
9719ad41 4753_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4754{
4755 if (value & ((bfd_vma) 1 << (bits - 1)))
4756 /* VALUE is negative. */
4757 value |= ((bfd_vma) - 1) << bits;
4758
4759 return value;
4760}
4761
4762/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4763 range expressible by a signed number with the indicated number of
b49e97c9
TS
4764 BITS. */
4765
b34976b6 4766static bfd_boolean
9719ad41 4767mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4768{
4769 bfd_signed_vma svalue = (bfd_signed_vma) value;
4770
4771 if (svalue > (1 << (bits - 1)) - 1)
4772 /* The value is too big. */
b34976b6 4773 return TRUE;
b49e97c9
TS
4774 else if (svalue < -(1 << (bits - 1)))
4775 /* The value is too small. */
b34976b6 4776 return TRUE;
b49e97c9
TS
4777
4778 /* All is well. */
b34976b6 4779 return FALSE;
b49e97c9
TS
4780}
4781
4782/* Calculate the %high function. */
4783
4784static bfd_vma
9719ad41 4785mips_elf_high (bfd_vma value)
b49e97c9
TS
4786{
4787 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4788}
4789
4790/* Calculate the %higher function. */
4791
4792static bfd_vma
9719ad41 4793mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4794{
4795#ifdef BFD64
4796 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4797#else
4798 abort ();
c5ae1840 4799 return MINUS_ONE;
b49e97c9
TS
4800#endif
4801}
4802
4803/* Calculate the %highest function. */
4804
4805static bfd_vma
9719ad41 4806mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4807{
4808#ifdef BFD64
b15e6682 4809 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4810#else
4811 abort ();
c5ae1840 4812 return MINUS_ONE;
b49e97c9
TS
4813#endif
4814}
4815\f
4816/* Create the .compact_rel section. */
4817
b34976b6 4818static bfd_boolean
9719ad41
RS
4819mips_elf_create_compact_rel_section
4820 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4821{
4822 flagword flags;
4823 register asection *s;
4824
3d4d4302 4825 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4826 {
4827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4828 | SEC_READONLY);
4829
3d4d4302 4830 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4831 if (s == NULL
b49e97c9
TS
4832 || ! bfd_set_section_alignment (abfd, s,
4833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4834 return FALSE;
b49e97c9 4835
eea6121a 4836 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4837 }
4838
b34976b6 4839 return TRUE;
b49e97c9
TS
4840}
4841
4842/* Create the .got section to hold the global offset table. */
4843
b34976b6 4844static bfd_boolean
23cc69b6 4845mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4846{
4847 flagword flags;
4848 register asection *s;
4849 struct elf_link_hash_entry *h;
14a793b2 4850 struct bfd_link_hash_entry *bh;
0a44bf69
RS
4851 struct mips_elf_link_hash_table *htab;
4852
4853 htab = mips_elf_hash_table (info);
4dfe6ac6 4854 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4855
4856 /* This function may be called more than once. */
23cc69b6
RS
4857 if (htab->sgot)
4858 return TRUE;
b49e97c9
TS
4859
4860 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4861 | SEC_LINKER_CREATED);
4862
72b4917c
TS
4863 /* We have to use an alignment of 2**4 here because this is hardcoded
4864 in the function stub generation and in the linker script. */
87e0a731 4865 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4866 if (s == NULL
72b4917c 4867 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4868 return FALSE;
a8028dd0 4869 htab->sgot = s;
b49e97c9
TS
4870
4871 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4872 linker script because we don't want to define the symbol if we
4873 are not creating a global offset table. */
14a793b2 4874 bh = NULL;
b49e97c9
TS
4875 if (! (_bfd_generic_link_add_one_symbol
4876 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4877 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4878 return FALSE;
14a793b2
AM
4879
4880 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4881 h->non_elf = 0;
4882 h->def_regular = 1;
b49e97c9 4883 h->type = STT_OBJECT;
d329bcd1 4884 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4885
4886 if (info->shared
c152c796 4887 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4888 return FALSE;
b49e97c9 4889
3dff0dd1 4890 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 4891 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4892 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4893
861fb55a 4894 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4895 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4896 SEC_ALLOC | SEC_LOAD
4897 | SEC_HAS_CONTENTS
4898 | SEC_IN_MEMORY
4899 | SEC_LINKER_CREATED);
861fb55a
DJ
4900 if (s == NULL)
4901 return FALSE;
4902 htab->sgotplt = s;
0a44bf69 4903
b34976b6 4904 return TRUE;
b49e97c9 4905}
b49e97c9 4906\f
0a44bf69
RS
4907/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4908 __GOTT_INDEX__ symbols. These symbols are only special for
4909 shared objects; they are not used in executables. */
4910
4911static bfd_boolean
4912is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4913{
4914 return (mips_elf_hash_table (info)->is_vxworks
4915 && info->shared
4916 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4917 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4918}
861fb55a
DJ
4919
4920/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4921 require an la25 stub. See also mips_elf_local_pic_function_p,
4922 which determines whether the destination function ever requires a
4923 stub. */
4924
4925static bfd_boolean
8f0c309a
CLT
4926mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4927 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4928{
4929 /* We specifically ignore branches and jumps from EF_PIC objects,
4930 where the onus is on the compiler or programmer to perform any
4931 necessary initialization of $25. Sometimes such initialization
4932 is unnecessary; for example, -mno-shared functions do not use
4933 the incoming value of $25, and may therefore be called directly. */
4934 if (PIC_OBJECT_P (input_bfd))
4935 return FALSE;
4936
4937 switch (r_type)
4938 {
4939 case R_MIPS_26:
4940 case R_MIPS_PC16:
df58fc94
RS
4941 case R_MICROMIPS_26_S1:
4942 case R_MICROMIPS_PC7_S1:
4943 case R_MICROMIPS_PC10_S1:
4944 case R_MICROMIPS_PC16_S1:
4945 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4946 return TRUE;
4947
8f0c309a
CLT
4948 case R_MIPS16_26:
4949 return !target_is_16_bit_code_p;
4950
861fb55a
DJ
4951 default:
4952 return FALSE;
4953 }
4954}
0a44bf69 4955\f
b49e97c9
TS
4956/* Calculate the value produced by the RELOCATION (which comes from
4957 the INPUT_BFD). The ADDEND is the addend to use for this
4958 RELOCATION; RELOCATION->R_ADDEND is ignored.
4959
4960 The result of the relocation calculation is stored in VALUEP.
38a7df63 4961 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4962 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4963
4964 This function returns bfd_reloc_continue if the caller need take no
4965 further action regarding this relocation, bfd_reloc_notsupported if
4966 something goes dramatically wrong, bfd_reloc_overflow if an
4967 overflow occurs, and bfd_reloc_ok to indicate success. */
4968
4969static bfd_reloc_status_type
9719ad41
RS
4970mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4971 asection *input_section,
4972 struct bfd_link_info *info,
4973 const Elf_Internal_Rela *relocation,
4974 bfd_vma addend, reloc_howto_type *howto,
4975 Elf_Internal_Sym *local_syms,
4976 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4977 const char **namep,
4978 bfd_boolean *cross_mode_jump_p,
9719ad41 4979 bfd_boolean save_addend)
b49e97c9
TS
4980{
4981 /* The eventual value we will return. */
4982 bfd_vma value;
4983 /* The address of the symbol against which the relocation is
4984 occurring. */
4985 bfd_vma symbol = 0;
4986 /* The final GP value to be used for the relocatable, executable, or
4987 shared object file being produced. */
0a61c8c2 4988 bfd_vma gp;
b49e97c9
TS
4989 /* The place (section offset or address) of the storage unit being
4990 relocated. */
4991 bfd_vma p;
4992 /* The value of GP used to create the relocatable object. */
0a61c8c2 4993 bfd_vma gp0;
b49e97c9
TS
4994 /* The offset into the global offset table at which the address of
4995 the relocation entry symbol, adjusted by the addend, resides
4996 during execution. */
4997 bfd_vma g = MINUS_ONE;
4998 /* The section in which the symbol referenced by the relocation is
4999 located. */
5000 asection *sec = NULL;
5001 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5002 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5003 symbol. */
b34976b6
AM
5004 bfd_boolean local_p, was_local_p;
5005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5006 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5007 /* TRUE if the symbol referred to by this relocation is
5008 "__gnu_local_gp". */
5009 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5010 Elf_Internal_Shdr *symtab_hdr;
5011 size_t extsymoff;
5012 unsigned long r_symndx;
5013 int r_type;
b34976b6 5014 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5015 relocation value. */
b34976b6
AM
5016 bfd_boolean overflowed_p;
5017 /* TRUE if this relocation refers to a MIPS16 function. */
5018 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5019 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5020 struct mips_elf_link_hash_table *htab;
5021 bfd *dynobj;
5022
5023 dynobj = elf_hash_table (info)->dynobj;
5024 htab = mips_elf_hash_table (info);
4dfe6ac6 5025 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5026
5027 /* Parse the relocation. */
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5030 p = (input_section->output_section->vma
5031 + input_section->output_offset
5032 + relocation->r_offset);
5033
5034 /* Assume that there will be no overflow. */
b34976b6 5035 overflowed_p = FALSE;
b49e97c9
TS
5036
5037 /* Figure out whether or not the symbol is local, and get the offset
5038 used in the array of hash table entries. */
5039 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5040 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5041 local_sections);
bce03d3d 5042 was_local_p = local_p;
b49e97c9
TS
5043 if (! elf_bad_symtab (input_bfd))
5044 extsymoff = symtab_hdr->sh_info;
5045 else
5046 {
5047 /* The symbol table does not follow the rule that local symbols
5048 must come before globals. */
5049 extsymoff = 0;
5050 }
5051
5052 /* Figure out the value of the symbol. */
5053 if (local_p)
5054 {
5055 Elf_Internal_Sym *sym;
5056
5057 sym = local_syms + r_symndx;
5058 sec = local_sections[r_symndx];
5059
5060 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5062 || (sec->flags & SEC_MERGE))
b49e97c9 5063 symbol += sym->st_value;
d4df96e6
L
5064 if ((sec->flags & SEC_MERGE)
5065 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5066 {
5067 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5068 addend -= symbol;
5069 addend += sec->output_section->vma + sec->output_offset;
5070 }
b49e97c9 5071
df58fc94
RS
5072 /* MIPS16/microMIPS text labels should be treated as odd. */
5073 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5074 ++symbol;
5075
5076 /* Record the name of this symbol, for our caller. */
5077 *namep = bfd_elf_string_from_elf_section (input_bfd,
5078 symtab_hdr->sh_link,
5079 sym->st_name);
5080 if (*namep == '\0')
5081 *namep = bfd_section_name (input_bfd, sec);
5082
30c09090 5083 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5084 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5085 }
5086 else
5087 {
560e09e9
NC
5088 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5089
b49e97c9
TS
5090 /* For global symbols we look up the symbol in the hash-table. */
5091 h = ((struct mips_elf_link_hash_entry *)
5092 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5093 /* Find the real hash-table entry for this symbol. */
5094 while (h->root.root.type == bfd_link_hash_indirect
5095 || h->root.root.type == bfd_link_hash_warning)
5096 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5097
5098 /* Record the name of this symbol, for our caller. */
5099 *namep = h->root.root.root.string;
5100
5101 /* See if this is the special _gp_disp symbol. Note that such a
5102 symbol must always be a global symbol. */
560e09e9 5103 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5104 && ! NEWABI_P (input_bfd))
5105 {
5106 /* Relocations against _gp_disp are permitted only with
5107 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5108 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5109 return bfd_reloc_notsupported;
5110
b34976b6 5111 gp_disp_p = TRUE;
b49e97c9 5112 }
bbe506e8
TS
5113 /* See if this is the special _gp symbol. Note that such a
5114 symbol must always be a global symbol. */
5115 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5116 gnu_local_gp_p = TRUE;
5117
5118
b49e97c9
TS
5119 /* If this symbol is defined, calculate its address. Note that
5120 _gp_disp is a magic symbol, always implicitly defined by the
5121 linker, so it's inappropriate to check to see whether or not
5122 its defined. */
5123 else if ((h->root.root.type == bfd_link_hash_defined
5124 || h->root.root.type == bfd_link_hash_defweak)
5125 && h->root.root.u.def.section)
5126 {
5127 sec = h->root.root.u.def.section;
5128 if (sec->output_section)
5129 symbol = (h->root.root.u.def.value
5130 + sec->output_section->vma
5131 + sec->output_offset);
5132 else
5133 symbol = h->root.root.u.def.value;
5134 }
5135 else if (h->root.root.type == bfd_link_hash_undefweak)
5136 /* We allow relocations against undefined weak symbols, giving
5137 it the value zero, so that you can undefined weak functions
5138 and check to see if they exist by looking at their
5139 addresses. */
5140 symbol = 0;
59c2e50f 5141 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5142 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5143 symbol = 0;
a4d0f181
TS
5144 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5145 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5146 {
5147 /* If this is a dynamic link, we should have created a
5148 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5149 in in _bfd_mips_elf_create_dynamic_sections.
5150 Otherwise, we should define the symbol with a value of 0.
5151 FIXME: It should probably get into the symbol table
5152 somehow as well. */
5153 BFD_ASSERT (! info->shared);
5154 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5155 symbol = 0;
5156 }
5e2b0d47
NC
5157 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5158 {
5159 /* This is an optional symbol - an Irix specific extension to the
5160 ELF spec. Ignore it for now.
5161 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5162 than simply ignoring them, but we do not handle this for now.
5163 For information see the "64-bit ELF Object File Specification"
5164 which is available from here:
5165 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5166 symbol = 0;
5167 }
e7e2196d
MR
5168 else if ((*info->callbacks->undefined_symbol)
5169 (info, h->root.root.root.string, input_bfd,
5170 input_section, relocation->r_offset,
5171 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5172 || ELF_ST_VISIBILITY (h->root.other)))
5173 {
5174 return bfd_reloc_undefined;
5175 }
b49e97c9
TS
5176 else
5177 {
e7e2196d 5178 return bfd_reloc_notsupported;
b49e97c9
TS
5179 }
5180
30c09090 5181 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5182 /* If the output section is the PLT section,
5183 then the target is not microMIPS. */
5184 target_is_micromips_code_p = (htab->splt != sec
5185 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5186 }
5187
738e5348
RS
5188 /* If this is a reference to a 16-bit function with a stub, we need
5189 to redirect the relocation to the stub unless:
5190
5191 (a) the relocation is for a MIPS16 JAL;
5192
5193 (b) the relocation is for a MIPS16 PIC call, and there are no
5194 non-MIPS16 uses of the GOT slot; or
5195
5196 (c) the section allows direct references to MIPS16 functions. */
5197 if (r_type != R_MIPS16_26
5198 && !info->relocatable
5199 && ((h != NULL
5200 && h->fn_stub != NULL
5201 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5202 || (local_p
698600e4
AM
5203 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5204 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5205 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5206 {
5207 /* This is a 32- or 64-bit call to a 16-bit function. We should
5208 have already noticed that we were going to need the
5209 stub. */
5210 if (local_p)
8f0c309a 5211 {
698600e4 5212 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5213 value = 0;
5214 }
b49e97c9
TS
5215 else
5216 {
5217 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5218 if (h->la25_stub)
5219 {
5220 /* If a LA25 header for the stub itself exists, point to the
5221 prepended LUI/ADDIU sequence. */
5222 sec = h->la25_stub->stub_section;
5223 value = h->la25_stub->offset;
5224 }
5225 else
5226 {
5227 sec = h->fn_stub;
5228 value = 0;
5229 }
b49e97c9
TS
5230 }
5231
8f0c309a 5232 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5233 /* The target is 16-bit, but the stub isn't. */
5234 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5235 }
5236 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5237 need to redirect the call to the stub. Note that we specifically
5238 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5239 use an indirect stub instead. */
1049f94e 5240 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5241 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5242 || (local_p
698600e4
AM
5243 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5244 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5245 && !target_is_16_bit_code_p)
5246 {
b9d58d71 5247 if (local_p)
698600e4 5248 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5249 else
b49e97c9 5250 {
b9d58d71
TS
5251 /* If both call_stub and call_fp_stub are defined, we can figure
5252 out which one to use by checking which one appears in the input
5253 file. */
5254 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5255 {
b9d58d71 5256 asection *o;
68ffbac6 5257
b9d58d71
TS
5258 sec = NULL;
5259 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5260 {
b9d58d71
TS
5261 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5262 {
5263 sec = h->call_fp_stub;
5264 break;
5265 }
b49e97c9 5266 }
b9d58d71
TS
5267 if (sec == NULL)
5268 sec = h->call_stub;
b49e97c9 5269 }
b9d58d71 5270 else if (h->call_stub != NULL)
b49e97c9 5271 sec = h->call_stub;
b9d58d71
TS
5272 else
5273 sec = h->call_fp_stub;
5274 }
b49e97c9 5275
eea6121a 5276 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5277 symbol = sec->output_section->vma + sec->output_offset;
5278 }
861fb55a
DJ
5279 /* If this is a direct call to a PIC function, redirect to the
5280 non-PIC stub. */
5281 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5282 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5283 target_is_16_bit_code_p))
861fb55a
DJ
5284 symbol = (h->la25_stub->stub_section->output_section->vma
5285 + h->la25_stub->stub_section->output_offset
5286 + h->la25_stub->offset);
b49e97c9 5287
df58fc94
RS
5288 /* Make sure MIPS16 and microMIPS are not used together. */
5289 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5290 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5291 {
5292 (*_bfd_error_handler)
5293 (_("MIPS16 and microMIPS functions cannot call each other"));
5294 return bfd_reloc_notsupported;
5295 }
5296
b49e97c9 5297 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5298 mode change. However, we can ignore calls to undefined weak symbols,
5299 which should never be executed at runtime. This exception is important
5300 because the assembly writer may have "known" that any definition of the
5301 symbol would be 16-bit code, and that direct jumps were therefore
5302 acceptable. */
5303 *cross_mode_jump_p = (!info->relocatable
5304 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5305 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5306 || (r_type == R_MICROMIPS_26_S1
5307 && !target_is_micromips_code_p)
5308 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5309 && (target_is_16_bit_code_p
5310 || target_is_micromips_code_p))));
b49e97c9 5311
9f1a453e
MR
5312 local_p = (h == NULL
5313 || (h->got_only_for_calls
5314 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5315 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5316
0a61c8c2
RS
5317 gp0 = _bfd_get_gp_value (input_bfd);
5318 gp = _bfd_get_gp_value (abfd);
23cc69b6 5319 if (htab->got_info)
a8028dd0 5320 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5321
5322 if (gnu_local_gp_p)
5323 symbol = gp;
5324
df58fc94
RS
5325 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5326 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5327 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5328 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5329 {
df58fc94
RS
5330 r_type = (micromips_reloc_p (r_type)
5331 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5332 addend = 0;
5333 }
5334
e77760d2 5335 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5336 to need it, get it now. */
b49e97c9
TS
5337 switch (r_type)
5338 {
738e5348
RS
5339 case R_MIPS16_CALL16:
5340 case R_MIPS16_GOT16:
b49e97c9
TS
5341 case R_MIPS_CALL16:
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_DISP:
5344 case R_MIPS_GOT_HI16:
5345 case R_MIPS_CALL_HI16:
5346 case R_MIPS_GOT_LO16:
5347 case R_MIPS_CALL_LO16:
df58fc94
RS
5348 case R_MICROMIPS_CALL16:
5349 case R_MICROMIPS_GOT16:
5350 case R_MICROMIPS_GOT_DISP:
5351 case R_MICROMIPS_GOT_HI16:
5352 case R_MICROMIPS_CALL_HI16:
5353 case R_MICROMIPS_GOT_LO16:
5354 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5355 case R_MIPS_TLS_GD:
5356 case R_MIPS_TLS_GOTTPREL:
5357 case R_MIPS_TLS_LDM:
d0f13682
CLT
5358 case R_MIPS16_TLS_GD:
5359 case R_MIPS16_TLS_GOTTPREL:
5360 case R_MIPS16_TLS_LDM:
df58fc94
RS
5361 case R_MICROMIPS_TLS_GD:
5362 case R_MICROMIPS_TLS_GOTTPREL:
5363 case R_MICROMIPS_TLS_LDM:
b49e97c9 5364 /* Find the index into the GOT where this value is located. */
df58fc94 5365 if (tls_ldm_reloc_p (r_type))
0f20cc35 5366 {
0a44bf69 5367 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5368 0, 0, NULL, r_type);
0f20cc35
DJ
5369 if (g == MINUS_ONE)
5370 return bfd_reloc_outofrange;
5371 }
5372 else if (!local_p)
b49e97c9 5373 {
0a44bf69
RS
5374 /* On VxWorks, CALL relocations should refer to the .got.plt
5375 entry, which is initialized to point at the PLT stub. */
5376 if (htab->is_vxworks
df58fc94
RS
5377 && (call_hi16_reloc_p (r_type)
5378 || call_lo16_reloc_p (r_type)
738e5348 5379 || call16_reloc_p (r_type)))
0a44bf69
RS
5380 {
5381 BFD_ASSERT (addend == 0);
5382 BFD_ASSERT (h->root.needs_plt);
5383 g = mips_elf_gotplt_index (info, &h->root);
5384 }
5385 else
b49e97c9 5386 {
020d7251 5387 BFD_ASSERT (addend == 0);
13fbec83
RS
5388 g = mips_elf_global_got_index (abfd, info, input_bfd,
5389 &h->root, r_type);
e641e783 5390 if (!TLS_RELOC_P (r_type)
020d7251
RS
5391 && !elf_hash_table (info)->dynamic_sections_created)
5392 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5393 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5394 }
5395 }
0a44bf69 5396 else if (!htab->is_vxworks
738e5348 5397 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5398 /* The calculation below does not involve "g". */
b49e97c9
TS
5399 break;
5400 else
5401 {
5c18022e 5402 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5403 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5404 if (g == MINUS_ONE)
5405 return bfd_reloc_outofrange;
5406 }
5407
5408 /* Convert GOT indices to actual offsets. */
a8028dd0 5409 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5410 break;
b49e97c9
TS
5411 }
5412
0a44bf69
RS
5413 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5414 symbols are resolved by the loader. Add them to .rela.dyn. */
5415 if (h != NULL && is_gott_symbol (info, &h->root))
5416 {
5417 Elf_Internal_Rela outrel;
5418 bfd_byte *loc;
5419 asection *s;
5420
5421 s = mips_elf_rel_dyn_section (info, FALSE);
5422 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5423
5424 outrel.r_offset = (input_section->output_section->vma
5425 + input_section->output_offset
5426 + relocation->r_offset);
5427 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5428 outrel.r_addend = addend;
5429 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5430
5431 /* If we've written this relocation for a readonly section,
5432 we need to set DF_TEXTREL again, so that we do not delete the
5433 DT_TEXTREL tag. */
5434 if (MIPS_ELF_READONLY_SECTION (input_section))
5435 info->flags |= DF_TEXTREL;
5436
0a44bf69
RS
5437 *valuep = 0;
5438 return bfd_reloc_ok;
5439 }
5440
b49e97c9
TS
5441 /* Figure out what kind of relocation is being performed. */
5442 switch (r_type)
5443 {
5444 case R_MIPS_NONE:
5445 return bfd_reloc_continue;
5446
5447 case R_MIPS_16:
a7ebbfdf 5448 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5449 overflowed_p = mips_elf_overflow_p (value, 16);
5450 break;
5451
5452 case R_MIPS_32:
5453 case R_MIPS_REL32:
5454 case R_MIPS_64:
5455 if ((info->shared
861fb55a 5456 || (htab->root.dynamic_sections_created
b49e97c9 5457 && h != NULL
f5385ebf 5458 && h->root.def_dynamic
861fb55a
DJ
5459 && !h->root.def_regular
5460 && !h->has_static_relocs))
cf35638d 5461 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5462 && (h == NULL
5463 || h->root.root.type != bfd_link_hash_undefweak
5464 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5465 && (input_section->flags & SEC_ALLOC) != 0)
5466 {
861fb55a 5467 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5468 where the symbol will end up. So, we create a relocation
5469 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5470 linker. We must do the same for executable references to
5471 shared library symbols, unless we've decided to use copy
5472 relocs or PLTs instead. */
b49e97c9
TS
5473 value = addend;
5474 if (!mips_elf_create_dynamic_relocation (abfd,
5475 info,
5476 relocation,
5477 h,
5478 sec,
5479 symbol,
5480 &value,
5481 input_section))
5482 return bfd_reloc_undefined;
5483 }
5484 else
5485 {
5486 if (r_type != R_MIPS_REL32)
5487 value = symbol + addend;
5488 else
5489 value = addend;
5490 }
5491 value &= howto->dst_mask;
092dcd75
CD
5492 break;
5493
5494 case R_MIPS_PC32:
5495 value = symbol + addend - p;
5496 value &= howto->dst_mask;
b49e97c9
TS
5497 break;
5498
b49e97c9
TS
5499 case R_MIPS16_26:
5500 /* The calculation for R_MIPS16_26 is just the same as for an
5501 R_MIPS_26. It's only the storage of the relocated field into
5502 the output file that's different. That's handled in
5503 mips_elf_perform_relocation. So, we just fall through to the
5504 R_MIPS_26 case here. */
5505 case R_MIPS_26:
df58fc94
RS
5506 case R_MICROMIPS_26_S1:
5507 {
5508 unsigned int shift;
5509
5510 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5511 the correct ISA mode selector and bit 1 must be 0. */
5512 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5513 return bfd_reloc_outofrange;
5514
5515 /* Shift is 2, unusually, for microMIPS JALX. */
5516 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5517
5518 if (was_local_p)
5519 value = addend | ((p + 4) & (0xfc000000 << shift));
5520 else
5521 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5522 value = (value + symbol) >> shift;
5523 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5524 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5525 value &= howto->dst_mask;
5526 }
b49e97c9
TS
5527 break;
5528
0f20cc35 5529 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5530 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5531 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5532 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5533 & howto->dst_mask);
5534 break;
5535
5536 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5537 case R_MIPS_TLS_DTPREL32:
5538 case R_MIPS_TLS_DTPREL64:
d0f13682 5539 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5540 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5541 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5542 break;
5543
5544 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5545 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5546 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5547 value = (mips_elf_high (addend + symbol - tprel_base (info))
5548 & howto->dst_mask);
5549 break;
5550
5551 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5552 case R_MIPS_TLS_TPREL32:
5553 case R_MIPS_TLS_TPREL64:
5554 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5555 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5556 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5557 break;
5558
b49e97c9 5559 case R_MIPS_HI16:
d6f16593 5560 case R_MIPS16_HI16:
df58fc94 5561 case R_MICROMIPS_HI16:
b49e97c9
TS
5562 if (!gp_disp_p)
5563 {
5564 value = mips_elf_high (addend + symbol);
5565 value &= howto->dst_mask;
5566 }
5567 else
5568 {
d6f16593
MR
5569 /* For MIPS16 ABI code we generate this sequence
5570 0: li $v0,%hi(_gp_disp)
5571 4: addiupc $v1,%lo(_gp_disp)
5572 8: sll $v0,16
5573 12: addu $v0,$v1
5574 14: move $gp,$v0
5575 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5576 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5577 ADDIUPC clears the low two bits of the instruction address,
5578 so the base is ($t9 + 4) & ~3. */
d6f16593 5579 if (r_type == R_MIPS16_HI16)
888b9c01 5580 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5581 /* The microMIPS .cpload sequence uses the same assembly
5582 instructions as the traditional psABI version, but the
5583 incoming $t9 has the low bit set. */
5584 else if (r_type == R_MICROMIPS_HI16)
5585 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5586 else
5587 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5588 overflowed_p = mips_elf_overflow_p (value, 16);
5589 }
5590 break;
5591
5592 case R_MIPS_LO16:
d6f16593 5593 case R_MIPS16_LO16:
df58fc94
RS
5594 case R_MICROMIPS_LO16:
5595 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5596 if (!gp_disp_p)
5597 value = (symbol + addend) & howto->dst_mask;
5598 else
5599 {
d6f16593
MR
5600 /* See the comment for R_MIPS16_HI16 above for the reason
5601 for this conditional. */
5602 if (r_type == R_MIPS16_LO16)
888b9c01 5603 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5604 else if (r_type == R_MICROMIPS_LO16
5605 || r_type == R_MICROMIPS_HI0_LO16)
5606 value = addend + gp - p + 3;
d6f16593
MR
5607 else
5608 value = addend + gp - p + 4;
b49e97c9 5609 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5610 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5611 _gp_disp are normally generated from the .cpload
5612 pseudo-op. It generates code that normally looks like
5613 this:
5614
5615 lui $gp,%hi(_gp_disp)
5616 addiu $gp,$gp,%lo(_gp_disp)
5617 addu $gp,$gp,$t9
5618
5619 Here $t9 holds the address of the function being called,
5620 as required by the MIPS ELF ABI. The R_MIPS_LO16
5621 relocation can easily overflow in this situation, but the
5622 R_MIPS_HI16 relocation will handle the overflow.
5623 Therefore, we consider this a bug in the MIPS ABI, and do
5624 not check for overflow here. */
5625 }
5626 break;
5627
5628 case R_MIPS_LITERAL:
df58fc94 5629 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5630 /* Because we don't merge literal sections, we can handle this
5631 just like R_MIPS_GPREL16. In the long run, we should merge
5632 shared literals, and then we will need to additional work
5633 here. */
5634
5635 /* Fall through. */
5636
5637 case R_MIPS16_GPREL:
5638 /* The R_MIPS16_GPREL performs the same calculation as
5639 R_MIPS_GPREL16, but stores the relocated bits in a different
5640 order. We don't need to do anything special here; the
5641 differences are handled in mips_elf_perform_relocation. */
5642 case R_MIPS_GPREL16:
df58fc94
RS
5643 case R_MICROMIPS_GPREL7_S2:
5644 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5645 /* Only sign-extend the addend if it was extracted from the
5646 instruction. If the addend was separate, leave it alone,
5647 otherwise we may lose significant bits. */
5648 if (howto->partial_inplace)
a7ebbfdf 5649 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5650 value = symbol + addend - gp;
5651 /* If the symbol was local, any earlier relocatable links will
5652 have adjusted its addend with the gp offset, so compensate
5653 for that now. Don't do it for symbols forced local in this
5654 link, though, since they won't have had the gp offset applied
5655 to them before. */
5656 if (was_local_p)
5657 value += gp0;
b49e97c9
TS
5658 overflowed_p = mips_elf_overflow_p (value, 16);
5659 break;
5660
738e5348
RS
5661 case R_MIPS16_GOT16:
5662 case R_MIPS16_CALL16:
b49e97c9
TS
5663 case R_MIPS_GOT16:
5664 case R_MIPS_CALL16:
df58fc94
RS
5665 case R_MICROMIPS_GOT16:
5666 case R_MICROMIPS_CALL16:
0a44bf69 5667 /* VxWorks does not have separate local and global semantics for
738e5348 5668 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5669 if (!htab->is_vxworks && local_p)
b49e97c9 5670 {
5c18022e 5671 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5672 symbol + addend, !was_local_p);
b49e97c9
TS
5673 if (value == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 value
a8028dd0 5676 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5677 overflowed_p = mips_elf_overflow_p (value, 16);
5678 break;
5679 }
5680
5681 /* Fall through. */
5682
0f20cc35
DJ
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
b49e97c9 5686 case R_MIPS_GOT_DISP:
d0f13682
CLT
5687 case R_MIPS16_TLS_GD:
5688 case R_MIPS16_TLS_GOTTPREL:
5689 case R_MIPS16_TLS_LDM:
df58fc94
RS
5690 case R_MICROMIPS_TLS_GD:
5691 case R_MICROMIPS_TLS_GOTTPREL:
5692 case R_MICROMIPS_TLS_LDM:
5693 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5694 value = g;
5695 overflowed_p = mips_elf_overflow_p (value, 16);
5696 break;
5697
5698 case R_MIPS_GPREL32:
bce03d3d
AO
5699 value = (addend + symbol + gp0 - gp);
5700 if (!save_addend)
5701 value &= howto->dst_mask;
b49e97c9
TS
5702 break;
5703
5704 case R_MIPS_PC16:
bad36eac
DJ
5705 case R_MIPS_GNU_REL16_S2:
5706 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5707 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5708 value >>= howto->rightshift;
5709 value &= howto->dst_mask;
b49e97c9
TS
5710 break;
5711
df58fc94
RS
5712 case R_MICROMIPS_PC7_S1:
5713 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5714 overflowed_p = mips_elf_overflow_p (value, 8);
5715 value >>= howto->rightshift;
5716 value &= howto->dst_mask;
5717 break;
5718
5719 case R_MICROMIPS_PC10_S1:
5720 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5721 overflowed_p = mips_elf_overflow_p (value, 11);
5722 value >>= howto->rightshift;
5723 value &= howto->dst_mask;
5724 break;
5725
5726 case R_MICROMIPS_PC16_S1:
5727 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5728 overflowed_p = mips_elf_overflow_p (value, 17);
5729 value >>= howto->rightshift;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MICROMIPS_PC23_S2:
5734 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5735 overflowed_p = mips_elf_overflow_p (value, 25);
5736 value >>= howto->rightshift;
5737 value &= howto->dst_mask;
5738 break;
5739
b49e97c9
TS
5740 case R_MIPS_GOT_HI16:
5741 case R_MIPS_CALL_HI16:
df58fc94
RS
5742 case R_MICROMIPS_GOT_HI16:
5743 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5744 /* We're allowed to handle these two relocations identically.
5745 The dynamic linker is allowed to handle the CALL relocations
5746 differently by creating a lazy evaluation stub. */
5747 value = g;
5748 value = mips_elf_high (value);
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MIPS_GOT_LO16:
5753 case R_MIPS_CALL_LO16:
df58fc94
RS
5754 case R_MICROMIPS_GOT_LO16:
5755 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5756 value = g & howto->dst_mask;
5757 break;
5758
5759 case R_MIPS_GOT_PAGE:
df58fc94 5760 case R_MICROMIPS_GOT_PAGE:
5c18022e 5761 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5762 if (value == MINUS_ONE)
5763 return bfd_reloc_outofrange;
a8028dd0 5764 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5765 overflowed_p = mips_elf_overflow_p (value, 16);
5766 break;
5767
5768 case R_MIPS_GOT_OFST:
df58fc94 5769 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5770 if (local_p)
5c18022e 5771 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5772 else
5773 value = addend;
b49e97c9
TS
5774 overflowed_p = mips_elf_overflow_p (value, 16);
5775 break;
5776
5777 case R_MIPS_SUB:
df58fc94 5778 case R_MICROMIPS_SUB:
b49e97c9
TS
5779 value = symbol - addend;
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_HIGHER:
df58fc94 5784 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5785 value = mips_elf_higher (addend + symbol);
5786 value &= howto->dst_mask;
5787 break;
5788
5789 case R_MIPS_HIGHEST:
df58fc94 5790 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5791 value = mips_elf_highest (addend + symbol);
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MIPS_SCN_DISP:
df58fc94 5796 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5797 value = symbol + addend - sec->output_offset;
5798 value &= howto->dst_mask;
5799 break;
5800
b49e97c9 5801 case R_MIPS_JALR:
df58fc94 5802 case R_MICROMIPS_JALR:
1367d393
ILT
5803 /* This relocation is only a hint. In some cases, we optimize
5804 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5805 when the symbol does not resolve locally. */
5806 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5807 return bfd_reloc_continue;
5808 value = symbol + addend;
5809 break;
b49e97c9 5810
1367d393 5811 case R_MIPS_PJUMP:
b49e97c9
TS
5812 case R_MIPS_GNU_VTINHERIT:
5813 case R_MIPS_GNU_VTENTRY:
5814 /* We don't do anything with these at present. */
5815 return bfd_reloc_continue;
5816
5817 default:
5818 /* An unrecognized relocation type. */
5819 return bfd_reloc_notsupported;
5820 }
5821
5822 /* Store the VALUE for our caller. */
5823 *valuep = value;
5824 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5825}
5826
5827/* Obtain the field relocated by RELOCATION. */
5828
5829static bfd_vma
9719ad41
RS
5830mips_elf_obtain_contents (reloc_howto_type *howto,
5831 const Elf_Internal_Rela *relocation,
5832 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5833{
5834 bfd_vma x;
5835 bfd_byte *location = contents + relocation->r_offset;
5836
5837 /* Obtain the bytes. */
5838 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5839
b49e97c9
TS
5840 return x;
5841}
5842
5843/* It has been determined that the result of the RELOCATION is the
5844 VALUE. Use HOWTO to place VALUE into the output file at the
5845 appropriate position. The SECTION is the section to which the
68ffbac6 5846 relocation applies.
38a7df63 5847 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5848 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5849
b34976b6 5850 Returns FALSE if anything goes wrong. */
b49e97c9 5851
b34976b6 5852static bfd_boolean
9719ad41
RS
5853mips_elf_perform_relocation (struct bfd_link_info *info,
5854 reloc_howto_type *howto,
5855 const Elf_Internal_Rela *relocation,
5856 bfd_vma value, bfd *input_bfd,
5857 asection *input_section, bfd_byte *contents,
38a7df63 5858 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5859{
5860 bfd_vma x;
5861 bfd_byte *location;
5862 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5863
5864 /* Figure out where the relocation is occurring. */
5865 location = contents + relocation->r_offset;
5866
df58fc94 5867 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5868
b49e97c9
TS
5869 /* Obtain the current value. */
5870 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5871
5872 /* Clear the field we are setting. */
5873 x &= ~howto->dst_mask;
5874
b49e97c9
TS
5875 /* Set the field. */
5876 x |= (value & howto->dst_mask);
5877
5878 /* If required, turn JAL into JALX. */
38a7df63 5879 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5880 {
b34976b6 5881 bfd_boolean ok;
b49e97c9
TS
5882 bfd_vma opcode = x >> 26;
5883 bfd_vma jalx_opcode;
5884
5885 /* Check to see if the opcode is already JAL or JALX. */
5886 if (r_type == R_MIPS16_26)
5887 {
5888 ok = ((opcode == 0x6) || (opcode == 0x7));
5889 jalx_opcode = 0x7;
5890 }
df58fc94
RS
5891 else if (r_type == R_MICROMIPS_26_S1)
5892 {
5893 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5894 jalx_opcode = 0x3c;
5895 }
b49e97c9
TS
5896 else
5897 {
5898 ok = ((opcode == 0x3) || (opcode == 0x1d));
5899 jalx_opcode = 0x1d;
5900 }
5901
3bdf9505
MR
5902 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5903 convert J or JALS to JALX. */
b49e97c9
TS
5904 if (!ok)
5905 {
5906 (*_bfd_error_handler)
3bdf9505 5907 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5908 input_bfd,
5909 input_section,
b49e97c9
TS
5910 (unsigned long) relocation->r_offset);
5911 bfd_set_error (bfd_error_bad_value);
b34976b6 5912 return FALSE;
b49e97c9
TS
5913 }
5914
5915 /* Make this the JALX opcode. */
5916 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5917 }
5918
38a7df63
CF
5919 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5920 range. */
cd8d5a82 5921 if (!info->relocatable
38a7df63 5922 && !cross_mode_jump_p
cd8d5a82
CF
5923 && ((JAL_TO_BAL_P (input_bfd)
5924 && r_type == R_MIPS_26
5925 && (x >> 26) == 0x3) /* jal addr */
5926 || (JALR_TO_BAL_P (input_bfd)
5927 && r_type == R_MIPS_JALR
38a7df63
CF
5928 && x == 0x0320f809) /* jalr t9 */
5929 || (JR_TO_B_P (input_bfd)
5930 && r_type == R_MIPS_JALR
5931 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5932 {
5933 bfd_vma addr;
5934 bfd_vma dest;
5935 bfd_signed_vma off;
5936
5937 addr = (input_section->output_section->vma
5938 + input_section->output_offset
5939 + relocation->r_offset
5940 + 4);
5941 if (r_type == R_MIPS_26)
5942 dest = (value << 2) | ((addr >> 28) << 28);
5943 else
5944 dest = value;
5945 off = dest - addr;
5946 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5947 {
5948 if (x == 0x03200008) /* jr t9 */
5949 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5950 else
5951 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5952 }
1367d393
ILT
5953 }
5954
b49e97c9
TS
5955 /* Put the value into the output. */
5956 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5957
df58fc94
RS
5958 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5959 location);
d6f16593 5960
b34976b6 5961 return TRUE;
b49e97c9 5962}
b49e97c9 5963\f
b49e97c9
TS
5964/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5965 is the original relocation, which is now being transformed into a
5966 dynamic relocation. The ADDENDP is adjusted if necessary; the
5967 caller should store the result in place of the original addend. */
5968
b34976b6 5969static bfd_boolean
9719ad41
RS
5970mips_elf_create_dynamic_relocation (bfd *output_bfd,
5971 struct bfd_link_info *info,
5972 const Elf_Internal_Rela *rel,
5973 struct mips_elf_link_hash_entry *h,
5974 asection *sec, bfd_vma symbol,
5975 bfd_vma *addendp, asection *input_section)
b49e97c9 5976{
947216bf 5977 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5978 asection *sreloc;
5979 bfd *dynobj;
5980 int r_type;
5d41f0b6
RS
5981 long indx;
5982 bfd_boolean defined_p;
0a44bf69 5983 struct mips_elf_link_hash_table *htab;
b49e97c9 5984
0a44bf69 5985 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5986 BFD_ASSERT (htab != NULL);
5987
b49e97c9
TS
5988 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5989 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5990 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5991 BFD_ASSERT (sreloc != NULL);
5992 BFD_ASSERT (sreloc->contents != NULL);
5993 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5994 < sreloc->size);
b49e97c9 5995
b49e97c9
TS
5996 outrel[0].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5998 if (ABI_64_P (output_bfd))
5999 {
6000 outrel[1].r_offset =
6001 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6002 outrel[2].r_offset =
6003 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6004 }
b49e97c9 6005
c5ae1840 6006 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6007 /* The relocation field has been deleted. */
5d41f0b6
RS
6008 return TRUE;
6009
6010 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6011 {
6012 /* The relocation field has been converted into a relative value of
6013 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6014 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6015 *addendp += symbol;
5d41f0b6 6016 return TRUE;
0d591ff7 6017 }
b49e97c9 6018
5d41f0b6
RS
6019 /* We must now calculate the dynamic symbol table index to use
6020 in the relocation. */
d4a77f3f 6021 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6022 {
020d7251 6023 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6024 indx = h->root.dynindx;
6025 if (SGI_COMPAT (output_bfd))
6026 defined_p = h->root.def_regular;
6027 else
6028 /* ??? glibc's ld.so just adds the final GOT entry to the
6029 relocation field. It therefore treats relocs against
6030 defined symbols in the same way as relocs against
6031 undefined symbols. */
6032 defined_p = FALSE;
6033 }
b49e97c9
TS
6034 else
6035 {
5d41f0b6
RS
6036 if (sec != NULL && bfd_is_abs_section (sec))
6037 indx = 0;
6038 else if (sec == NULL || sec->owner == NULL)
fdd07405 6039 {
5d41f0b6
RS
6040 bfd_set_error (bfd_error_bad_value);
6041 return FALSE;
b49e97c9
TS
6042 }
6043 else
6044 {
5d41f0b6 6045 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6046 if (indx == 0)
6047 {
6048 asection *osec = htab->root.text_index_section;
6049 indx = elf_section_data (osec)->dynindx;
6050 }
5d41f0b6
RS
6051 if (indx == 0)
6052 abort ();
b49e97c9
TS
6053 }
6054
5d41f0b6
RS
6055 /* Instead of generating a relocation using the section
6056 symbol, we may as well make it a fully relative
6057 relocation. We want to avoid generating relocations to
6058 local symbols because we used to generate them
6059 incorrectly, without adding the original symbol value,
6060 which is mandated by the ABI for section symbols. In
6061 order to give dynamic loaders and applications time to
6062 phase out the incorrect use, we refrain from emitting
6063 section-relative relocations. It's not like they're
6064 useful, after all. This should be a bit more efficient
6065 as well. */
6066 /* ??? Although this behavior is compatible with glibc's ld.so,
6067 the ABI says that relocations against STN_UNDEF should have
6068 a symbol value of 0. Irix rld honors this, so relocations
6069 against STN_UNDEF have no effect. */
6070 if (!SGI_COMPAT (output_bfd))
6071 indx = 0;
6072 defined_p = TRUE;
b49e97c9
TS
6073 }
6074
5d41f0b6
RS
6075 /* If the relocation was previously an absolute relocation and
6076 this symbol will not be referred to by the relocation, we must
6077 adjust it by the value we give it in the dynamic symbol table.
6078 Otherwise leave the job up to the dynamic linker. */
6079 if (defined_p && r_type != R_MIPS_REL32)
6080 *addendp += symbol;
6081
0a44bf69
RS
6082 if (htab->is_vxworks)
6083 /* VxWorks uses non-relative relocations for this. */
6084 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6085 else
6086 /* The relocation is always an REL32 relocation because we don't
6087 know where the shared library will wind up at load-time. */
6088 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6089 R_MIPS_REL32);
6090
5d41f0b6
RS
6091 /* For strict adherence to the ABI specification, we should
6092 generate a R_MIPS_64 relocation record by itself before the
6093 _REL32/_64 record as well, such that the addend is read in as
6094 a 64-bit value (REL32 is a 32-bit relocation, after all).
6095 However, since none of the existing ELF64 MIPS dynamic
6096 loaders seems to care, we don't waste space with these
6097 artificial relocations. If this turns out to not be true,
6098 mips_elf_allocate_dynamic_relocation() should be tweaked so
6099 as to make room for a pair of dynamic relocations per
6100 invocation if ABI_64_P, and here we should generate an
6101 additional relocation record with R_MIPS_64 by itself for a
6102 NULL symbol before this relocation record. */
6103 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6104 ABI_64_P (output_bfd)
6105 ? R_MIPS_64
6106 : R_MIPS_NONE);
6107 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6108
6109 /* Adjust the output offset of the relocation to reference the
6110 correct location in the output file. */
6111 outrel[0].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113 outrel[1].r_offset += (input_section->output_section->vma
6114 + input_section->output_offset);
6115 outrel[2].r_offset += (input_section->output_section->vma
6116 + input_section->output_offset);
6117
b49e97c9
TS
6118 /* Put the relocation back out. We have to use the special
6119 relocation outputter in the 64-bit case since the 64-bit
6120 relocation format is non-standard. */
6121 if (ABI_64_P (output_bfd))
6122 {
6123 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6124 (output_bfd, &outrel[0],
6125 (sreloc->contents
6126 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6127 }
0a44bf69
RS
6128 else if (htab->is_vxworks)
6129 {
6130 /* VxWorks uses RELA rather than REL dynamic relocations. */
6131 outrel[0].r_addend = *addendp;
6132 bfd_elf32_swap_reloca_out
6133 (output_bfd, &outrel[0],
6134 (sreloc->contents
6135 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6136 }
b49e97c9 6137 else
947216bf
AM
6138 bfd_elf32_swap_reloc_out
6139 (output_bfd, &outrel[0],
6140 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6141
b49e97c9
TS
6142 /* We've now added another relocation. */
6143 ++sreloc->reloc_count;
6144
6145 /* Make sure the output section is writable. The dynamic linker
6146 will be writing to it. */
6147 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6148 |= SHF_WRITE;
6149
6150 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6151 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6152 {
3d4d4302 6153 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6154 bfd_byte *cr;
6155
6156 if (scpt)
6157 {
6158 Elf32_crinfo cptrel;
6159
6160 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6161 cptrel.vaddr = (rel->r_offset
6162 + input_section->output_section->vma
6163 + input_section->output_offset);
6164 if (r_type == R_MIPS_REL32)
6165 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6166 else
6167 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6168 mips_elf_set_cr_dist2to (cptrel, 0);
6169 cptrel.konst = *addendp;
6170
6171 cr = (scpt->contents
6172 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6173 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6174 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6175 ((Elf32_External_crinfo *) cr
6176 + scpt->reloc_count));
6177 ++scpt->reloc_count;
6178 }
6179 }
6180
943284cc
DJ
6181 /* If we've written this relocation for a readonly section,
6182 we need to set DF_TEXTREL again, so that we do not delete the
6183 DT_TEXTREL tag. */
6184 if (MIPS_ELF_READONLY_SECTION (input_section))
6185 info->flags |= DF_TEXTREL;
6186
b34976b6 6187 return TRUE;
b49e97c9
TS
6188}
6189\f
b49e97c9
TS
6190/* Return the MACH for a MIPS e_flags value. */
6191
6192unsigned long
9719ad41 6193_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6194{
6195 switch (flags & EF_MIPS_MACH)
6196 {
6197 case E_MIPS_MACH_3900:
6198 return bfd_mach_mips3900;
6199
6200 case E_MIPS_MACH_4010:
6201 return bfd_mach_mips4010;
6202
6203 case E_MIPS_MACH_4100:
6204 return bfd_mach_mips4100;
6205
6206 case E_MIPS_MACH_4111:
6207 return bfd_mach_mips4111;
6208
00707a0e
RS
6209 case E_MIPS_MACH_4120:
6210 return bfd_mach_mips4120;
6211
b49e97c9
TS
6212 case E_MIPS_MACH_4650:
6213 return bfd_mach_mips4650;
6214
00707a0e
RS
6215 case E_MIPS_MACH_5400:
6216 return bfd_mach_mips5400;
6217
6218 case E_MIPS_MACH_5500:
6219 return bfd_mach_mips5500;
6220
e407c74b
NC
6221 case E_MIPS_MACH_5900:
6222 return bfd_mach_mips5900;
6223
0d2e43ed
ILT
6224 case E_MIPS_MACH_9000:
6225 return bfd_mach_mips9000;
6226
b49e97c9
TS
6227 case E_MIPS_MACH_SB1:
6228 return bfd_mach_mips_sb1;
6229
350cc38d
MS
6230 case E_MIPS_MACH_LS2E:
6231 return bfd_mach_mips_loongson_2e;
6232
6233 case E_MIPS_MACH_LS2F:
6234 return bfd_mach_mips_loongson_2f;
6235
fd503541
NC
6236 case E_MIPS_MACH_LS3A:
6237 return bfd_mach_mips_loongson_3a;
6238
432233b3
AP
6239 case E_MIPS_MACH_OCTEON2:
6240 return bfd_mach_mips_octeon2;
6241
6f179bd0
AN
6242 case E_MIPS_MACH_OCTEON:
6243 return bfd_mach_mips_octeon;
6244
52b6b6b9
JM
6245 case E_MIPS_MACH_XLR:
6246 return bfd_mach_mips_xlr;
6247
b49e97c9
TS
6248 default:
6249 switch (flags & EF_MIPS_ARCH)
6250 {
6251 default:
6252 case E_MIPS_ARCH_1:
6253 return bfd_mach_mips3000;
b49e97c9
TS
6254
6255 case E_MIPS_ARCH_2:
6256 return bfd_mach_mips6000;
b49e97c9
TS
6257
6258 case E_MIPS_ARCH_3:
6259 return bfd_mach_mips4000;
b49e97c9
TS
6260
6261 case E_MIPS_ARCH_4:
6262 return bfd_mach_mips8000;
b49e97c9
TS
6263
6264 case E_MIPS_ARCH_5:
6265 return bfd_mach_mips5;
b49e97c9
TS
6266
6267 case E_MIPS_ARCH_32:
6268 return bfd_mach_mipsisa32;
b49e97c9
TS
6269
6270 case E_MIPS_ARCH_64:
6271 return bfd_mach_mipsisa64;
af7ee8bf
CD
6272
6273 case E_MIPS_ARCH_32R2:
6274 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6275
6276 case E_MIPS_ARCH_64R2:
6277 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6278 }
6279 }
6280
6281 return 0;
6282}
6283
6284/* Return printable name for ABI. */
6285
6286static INLINE char *
9719ad41 6287elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6288{
6289 flagword flags;
6290
6291 flags = elf_elfheader (abfd)->e_flags;
6292 switch (flags & EF_MIPS_ABI)
6293 {
6294 case 0:
6295 if (ABI_N32_P (abfd))
6296 return "N32";
6297 else if (ABI_64_P (abfd))
6298 return "64";
6299 else
6300 return "none";
6301 case E_MIPS_ABI_O32:
6302 return "O32";
6303 case E_MIPS_ABI_O64:
6304 return "O64";
6305 case E_MIPS_ABI_EABI32:
6306 return "EABI32";
6307 case E_MIPS_ABI_EABI64:
6308 return "EABI64";
6309 default:
6310 return "unknown abi";
6311 }
6312}
6313\f
6314/* MIPS ELF uses two common sections. One is the usual one, and the
6315 other is for small objects. All the small objects are kept
6316 together, and then referenced via the gp pointer, which yields
6317 faster assembler code. This is what we use for the small common
6318 section. This approach is copied from ecoff.c. */
6319static asection mips_elf_scom_section;
6320static asymbol mips_elf_scom_symbol;
6321static asymbol *mips_elf_scom_symbol_ptr;
6322
6323/* MIPS ELF also uses an acommon section, which represents an
6324 allocated common symbol which may be overridden by a
6325 definition in a shared library. */
6326static asection mips_elf_acom_section;
6327static asymbol mips_elf_acom_symbol;
6328static asymbol *mips_elf_acom_symbol_ptr;
6329
738e5348 6330/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6331
6332void
9719ad41 6333_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6334{
6335 elf_symbol_type *elfsym;
6336
738e5348 6337 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6338 elfsym = (elf_symbol_type *) asym;
6339 switch (elfsym->internal_elf_sym.st_shndx)
6340 {
6341 case SHN_MIPS_ACOMMON:
6342 /* This section is used in a dynamically linked executable file.
6343 It is an allocated common section. The dynamic linker can
6344 either resolve these symbols to something in a shared
6345 library, or it can just leave them here. For our purposes,
6346 we can consider these symbols to be in a new section. */
6347 if (mips_elf_acom_section.name == NULL)
6348 {
6349 /* Initialize the acommon section. */
6350 mips_elf_acom_section.name = ".acommon";
6351 mips_elf_acom_section.flags = SEC_ALLOC;
6352 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6353 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6354 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6355 mips_elf_acom_symbol.name = ".acommon";
6356 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6357 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6358 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6359 }
6360 asym->section = &mips_elf_acom_section;
6361 break;
6362
6363 case SHN_COMMON:
6364 /* Common symbols less than the GP size are automatically
6365 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6366 if (asym->value > elf_gp_size (abfd)
b59eed79 6367 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6368 || IRIX_COMPAT (abfd) == ict_irix6)
6369 break;
6370 /* Fall through. */
6371 case SHN_MIPS_SCOMMON:
6372 if (mips_elf_scom_section.name == NULL)
6373 {
6374 /* Initialize the small common section. */
6375 mips_elf_scom_section.name = ".scommon";
6376 mips_elf_scom_section.flags = SEC_IS_COMMON;
6377 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6378 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6379 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6380 mips_elf_scom_symbol.name = ".scommon";
6381 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6383 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6384 }
6385 asym->section = &mips_elf_scom_section;
6386 asym->value = elfsym->internal_elf_sym.st_size;
6387 break;
6388
6389 case SHN_MIPS_SUNDEFINED:
6390 asym->section = bfd_und_section_ptr;
6391 break;
6392
b49e97c9 6393 case SHN_MIPS_TEXT:
00b4930b
TS
6394 {
6395 asection *section = bfd_get_section_by_name (abfd, ".text");
6396
00b4930b
TS
6397 if (section != NULL)
6398 {
6399 asym->section = section;
6400 /* MIPS_TEXT is a bit special, the address is not an offset
6401 to the base of the .text section. So substract the section
6402 base address to make it an offset. */
6403 asym->value -= section->vma;
6404 }
6405 }
b49e97c9
TS
6406 break;
6407
6408 case SHN_MIPS_DATA:
00b4930b
TS
6409 {
6410 asection *section = bfd_get_section_by_name (abfd, ".data");
6411
00b4930b
TS
6412 if (section != NULL)
6413 {
6414 asym->section = section;
6415 /* MIPS_DATA is a bit special, the address is not an offset
6416 to the base of the .data section. So substract the section
6417 base address to make it an offset. */
6418 asym->value -= section->vma;
6419 }
6420 }
b49e97c9 6421 break;
b49e97c9 6422 }
738e5348 6423
df58fc94
RS
6424 /* If this is an odd-valued function symbol, assume it's a MIPS16
6425 or microMIPS one. */
738e5348
RS
6426 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6427 && (asym->value & 1) != 0)
6428 {
6429 asym->value--;
e8faf7d1 6430 if (MICROMIPS_P (abfd))
df58fc94
RS
6431 elfsym->internal_elf_sym.st_other
6432 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6433 else
6434 elfsym->internal_elf_sym.st_other
6435 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6436 }
b49e97c9
TS
6437}
6438\f
8c946ed5
RS
6439/* Implement elf_backend_eh_frame_address_size. This differs from
6440 the default in the way it handles EABI64.
6441
6442 EABI64 was originally specified as an LP64 ABI, and that is what
6443 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6444 historically accepted the combination of -mabi=eabi and -mlong32,
6445 and this ILP32 variation has become semi-official over time.
6446 Both forms use elf32 and have pointer-sized FDE addresses.
6447
6448 If an EABI object was generated by GCC 4.0 or above, it will have
6449 an empty .gcc_compiled_longXX section, where XX is the size of longs
6450 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6451 have no special marking to distinguish them from LP64 objects.
6452
6453 We don't want users of the official LP64 ABI to be punished for the
6454 existence of the ILP32 variant, but at the same time, we don't want
6455 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6456 We therefore take the following approach:
6457
6458 - If ABFD contains a .gcc_compiled_longXX section, use it to
6459 determine the pointer size.
6460
6461 - Otherwise check the type of the first relocation. Assume that
6462 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6463
6464 - Otherwise punt.
6465
6466 The second check is enough to detect LP64 objects generated by pre-4.0
6467 compilers because, in the kind of output generated by those compilers,
6468 the first relocation will be associated with either a CIE personality
6469 routine or an FDE start address. Furthermore, the compilers never
6470 used a special (non-pointer) encoding for this ABI.
6471
6472 Checking the relocation type should also be safe because there is no
6473 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6474 did so. */
6475
6476unsigned int
6477_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6478{
6479 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6480 return 8;
6481 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6482 {
6483 bfd_boolean long32_p, long64_p;
6484
6485 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6486 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6487 if (long32_p && long64_p)
6488 return 0;
6489 if (long32_p)
6490 return 4;
6491 if (long64_p)
6492 return 8;
6493
6494 if (sec->reloc_count > 0
6495 && elf_section_data (sec)->relocs != NULL
6496 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6497 == R_MIPS_64))
6498 return 8;
6499
6500 return 0;
6501 }
6502 return 4;
6503}
6504\f
174fd7f9
RS
6505/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6506 relocations against two unnamed section symbols to resolve to the
6507 same address. For example, if we have code like:
6508
6509 lw $4,%got_disp(.data)($gp)
6510 lw $25,%got_disp(.text)($gp)
6511 jalr $25
6512
6513 then the linker will resolve both relocations to .data and the program
6514 will jump there rather than to .text.
6515
6516 We can work around this problem by giving names to local section symbols.
6517 This is also what the MIPSpro tools do. */
6518
6519bfd_boolean
6520_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6521{
6522 return SGI_COMPAT (abfd);
6523}
6524\f
b49e97c9
TS
6525/* Work over a section just before writing it out. This routine is
6526 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6527 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6528 a better way. */
6529
b34976b6 6530bfd_boolean
9719ad41 6531_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6532{
6533 if (hdr->sh_type == SHT_MIPS_REGINFO
6534 && hdr->sh_size > 0)
6535 {
6536 bfd_byte buf[4];
6537
6538 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6539 BFD_ASSERT (hdr->contents == NULL);
6540
6541 if (bfd_seek (abfd,
6542 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6543 SEEK_SET) != 0)
b34976b6 6544 return FALSE;
b49e97c9 6545 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6546 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6547 return FALSE;
b49e97c9
TS
6548 }
6549
6550 if (hdr->sh_type == SHT_MIPS_OPTIONS
6551 && hdr->bfd_section != NULL
f0abc2a1
AM
6552 && mips_elf_section_data (hdr->bfd_section) != NULL
6553 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6554 {
6555 bfd_byte *contents, *l, *lend;
6556
f0abc2a1
AM
6557 /* We stored the section contents in the tdata field in the
6558 set_section_contents routine. We save the section contents
6559 so that we don't have to read them again.
b49e97c9
TS
6560 At this point we know that elf_gp is set, so we can look
6561 through the section contents to see if there is an
6562 ODK_REGINFO structure. */
6563
f0abc2a1 6564 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6565 l = contents;
6566 lend = contents + hdr->sh_size;
6567 while (l + sizeof (Elf_External_Options) <= lend)
6568 {
6569 Elf_Internal_Options intopt;
6570
6571 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6572 &intopt);
1bc8074d
MR
6573 if (intopt.size < sizeof (Elf_External_Options))
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6577 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6578 break;
6579 }
b49e97c9
TS
6580 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6581 {
6582 bfd_byte buf[8];
6583
6584 if (bfd_seek (abfd,
6585 (hdr->sh_offset
6586 + (l - contents)
6587 + sizeof (Elf_External_Options)
6588 + (sizeof (Elf64_External_RegInfo) - 8)),
6589 SEEK_SET) != 0)
b34976b6 6590 return FALSE;
b49e97c9 6591 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6592 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6593 return FALSE;
b49e97c9
TS
6594 }
6595 else if (intopt.kind == ODK_REGINFO)
6596 {
6597 bfd_byte buf[4];
6598
6599 if (bfd_seek (abfd,
6600 (hdr->sh_offset
6601 + (l - contents)
6602 + sizeof (Elf_External_Options)
6603 + (sizeof (Elf32_External_RegInfo) - 4)),
6604 SEEK_SET) != 0)
b34976b6 6605 return FALSE;
b49e97c9 6606 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6607 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6608 return FALSE;
b49e97c9
TS
6609 }
6610 l += intopt.size;
6611 }
6612 }
6613
6614 if (hdr->bfd_section != NULL)
6615 {
6616 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6617
2d0f9ad9
JM
6618 /* .sbss is not handled specially here because the GNU/Linux
6619 prelinker can convert .sbss from NOBITS to PROGBITS and
6620 changing it back to NOBITS breaks the binary. The entry in
6621 _bfd_mips_elf_special_sections will ensure the correct flags
6622 are set on .sbss if BFD creates it without reading it from an
6623 input file, and without special handling here the flags set
6624 on it in an input file will be followed. */
b49e97c9
TS
6625 if (strcmp (name, ".sdata") == 0
6626 || strcmp (name, ".lit8") == 0
6627 || strcmp (name, ".lit4") == 0)
6628 {
6629 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6630 hdr->sh_type = SHT_PROGBITS;
6631 }
b49e97c9
TS
6632 else if (strcmp (name, ".srdata") == 0)
6633 {
6634 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6635 hdr->sh_type = SHT_PROGBITS;
6636 }
6637 else if (strcmp (name, ".compact_rel") == 0)
6638 {
6639 hdr->sh_flags = 0;
6640 hdr->sh_type = SHT_PROGBITS;
6641 }
6642 else if (strcmp (name, ".rtproc") == 0)
6643 {
6644 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6645 {
6646 unsigned int adjust;
6647
6648 adjust = hdr->sh_size % hdr->sh_addralign;
6649 if (adjust != 0)
6650 hdr->sh_size += hdr->sh_addralign - adjust;
6651 }
6652 }
6653 }
6654
b34976b6 6655 return TRUE;
b49e97c9
TS
6656}
6657
6658/* Handle a MIPS specific section when reading an object file. This
6659 is called when elfcode.h finds a section with an unknown type.
6660 This routine supports both the 32-bit and 64-bit ELF ABI.
6661
6662 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6663 how to. */
6664
b34976b6 6665bfd_boolean
6dc132d9
L
6666_bfd_mips_elf_section_from_shdr (bfd *abfd,
6667 Elf_Internal_Shdr *hdr,
6668 const char *name,
6669 int shindex)
b49e97c9
TS
6670{
6671 flagword flags = 0;
6672
6673 /* There ought to be a place to keep ELF backend specific flags, but
6674 at the moment there isn't one. We just keep track of the
6675 sections by their name, instead. Fortunately, the ABI gives
6676 suggested names for all the MIPS specific sections, so we will
6677 probably get away with this. */
6678 switch (hdr->sh_type)
6679 {
6680 case SHT_MIPS_LIBLIST:
6681 if (strcmp (name, ".liblist") != 0)
b34976b6 6682 return FALSE;
b49e97c9
TS
6683 break;
6684 case SHT_MIPS_MSYM:
6685 if (strcmp (name, ".msym") != 0)
b34976b6 6686 return FALSE;
b49e97c9
TS
6687 break;
6688 case SHT_MIPS_CONFLICT:
6689 if (strcmp (name, ".conflict") != 0)
b34976b6 6690 return FALSE;
b49e97c9
TS
6691 break;
6692 case SHT_MIPS_GPTAB:
0112cd26 6693 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6694 return FALSE;
b49e97c9
TS
6695 break;
6696 case SHT_MIPS_UCODE:
6697 if (strcmp (name, ".ucode") != 0)
b34976b6 6698 return FALSE;
b49e97c9
TS
6699 break;
6700 case SHT_MIPS_DEBUG:
6701 if (strcmp (name, ".mdebug") != 0)
b34976b6 6702 return FALSE;
b49e97c9
TS
6703 flags = SEC_DEBUGGING;
6704 break;
6705 case SHT_MIPS_REGINFO:
6706 if (strcmp (name, ".reginfo") != 0
6707 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6708 return FALSE;
b49e97c9
TS
6709 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6710 break;
6711 case SHT_MIPS_IFACE:
6712 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6713 return FALSE;
b49e97c9
TS
6714 break;
6715 case SHT_MIPS_CONTENT:
0112cd26 6716 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6717 return FALSE;
b49e97c9
TS
6718 break;
6719 case SHT_MIPS_OPTIONS:
cc2e31b9 6720 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6721 return FALSE;
b49e97c9
TS
6722 break;
6723 case SHT_MIPS_DWARF:
1b315056 6724 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6725 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6726 return FALSE;
b49e97c9
TS
6727 break;
6728 case SHT_MIPS_SYMBOL_LIB:
6729 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6730 return FALSE;
b49e97c9
TS
6731 break;
6732 case SHT_MIPS_EVENTS:
0112cd26
NC
6733 if (! CONST_STRNEQ (name, ".MIPS.events")
6734 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6735 return FALSE;
b49e97c9
TS
6736 break;
6737 default:
cc2e31b9 6738 break;
b49e97c9
TS
6739 }
6740
6dc132d9 6741 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6742 return FALSE;
b49e97c9
TS
6743
6744 if (flags)
6745 {
6746 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6747 (bfd_get_section_flags (abfd,
6748 hdr->bfd_section)
6749 | flags)))
b34976b6 6750 return FALSE;
b49e97c9
TS
6751 }
6752
6753 /* FIXME: We should record sh_info for a .gptab section. */
6754
6755 /* For a .reginfo section, set the gp value in the tdata information
6756 from the contents of this section. We need the gp value while
6757 processing relocs, so we just get it now. The .reginfo section
6758 is not used in the 64-bit MIPS ELF ABI. */
6759 if (hdr->sh_type == SHT_MIPS_REGINFO)
6760 {
6761 Elf32_External_RegInfo ext;
6762 Elf32_RegInfo s;
6763
9719ad41
RS
6764 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6765 &ext, 0, sizeof ext))
b34976b6 6766 return FALSE;
b49e97c9
TS
6767 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6768 elf_gp (abfd) = s.ri_gp_value;
6769 }
6770
6771 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6772 set the gp value based on what we find. We may see both
6773 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6774 they should agree. */
6775 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6776 {
6777 bfd_byte *contents, *l, *lend;
6778
9719ad41 6779 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6780 if (contents == NULL)
b34976b6 6781 return FALSE;
b49e97c9 6782 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6783 0, hdr->sh_size))
b49e97c9
TS
6784 {
6785 free (contents);
b34976b6 6786 return FALSE;
b49e97c9
TS
6787 }
6788 l = contents;
6789 lend = contents + hdr->sh_size;
6790 while (l + sizeof (Elf_External_Options) <= lend)
6791 {
6792 Elf_Internal_Options intopt;
6793
6794 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6795 &intopt);
1bc8074d
MR
6796 if (intopt.size < sizeof (Elf_External_Options))
6797 {
6798 (*_bfd_error_handler)
6799 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6800 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6801 break;
6802 }
b49e97c9
TS
6803 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6804 {
6805 Elf64_Internal_RegInfo intreg;
6806
6807 bfd_mips_elf64_swap_reginfo_in
6808 (abfd,
6809 ((Elf64_External_RegInfo *)
6810 (l + sizeof (Elf_External_Options))),
6811 &intreg);
6812 elf_gp (abfd) = intreg.ri_gp_value;
6813 }
6814 else if (intopt.kind == ODK_REGINFO)
6815 {
6816 Elf32_RegInfo intreg;
6817
6818 bfd_mips_elf32_swap_reginfo_in
6819 (abfd,
6820 ((Elf32_External_RegInfo *)
6821 (l + sizeof (Elf_External_Options))),
6822 &intreg);
6823 elf_gp (abfd) = intreg.ri_gp_value;
6824 }
6825 l += intopt.size;
6826 }
6827 free (contents);
6828 }
6829
b34976b6 6830 return TRUE;
b49e97c9
TS
6831}
6832
6833/* Set the correct type for a MIPS ELF section. We do this by the
6834 section name, which is a hack, but ought to work. This routine is
6835 used by both the 32-bit and the 64-bit ABI. */
6836
b34976b6 6837bfd_boolean
9719ad41 6838_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6839{
0414f35b 6840 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6841
6842 if (strcmp (name, ".liblist") == 0)
6843 {
6844 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6845 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6846 /* The sh_link field is set in final_write_processing. */
6847 }
6848 else if (strcmp (name, ".conflict") == 0)
6849 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6850 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6851 {
6852 hdr->sh_type = SHT_MIPS_GPTAB;
6853 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6854 /* The sh_info field is set in final_write_processing. */
6855 }
6856 else if (strcmp (name, ".ucode") == 0)
6857 hdr->sh_type = SHT_MIPS_UCODE;
6858 else if (strcmp (name, ".mdebug") == 0)
6859 {
6860 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6861 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6862 entsize of 0. FIXME: Does this matter? */
6863 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6864 hdr->sh_entsize = 0;
6865 else
6866 hdr->sh_entsize = 1;
6867 }
6868 else if (strcmp (name, ".reginfo") == 0)
6869 {
6870 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6871 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6872 entsize of 0x18. FIXME: Does this matter? */
6873 if (SGI_COMPAT (abfd))
6874 {
6875 if ((abfd->flags & DYNAMIC) != 0)
6876 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6877 else
6878 hdr->sh_entsize = 1;
6879 }
6880 else
6881 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6882 }
6883 else if (SGI_COMPAT (abfd)
6884 && (strcmp (name, ".hash") == 0
6885 || strcmp (name, ".dynamic") == 0
6886 || strcmp (name, ".dynstr") == 0))
6887 {
6888 if (SGI_COMPAT (abfd))
6889 hdr->sh_entsize = 0;
6890#if 0
8dc1a139 6891 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6892 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6893#endif
6894 }
6895 else if (strcmp (name, ".got") == 0
6896 || strcmp (name, ".srdata") == 0
6897 || strcmp (name, ".sdata") == 0
6898 || strcmp (name, ".sbss") == 0
6899 || strcmp (name, ".lit4") == 0
6900 || strcmp (name, ".lit8") == 0)
6901 hdr->sh_flags |= SHF_MIPS_GPREL;
6902 else if (strcmp (name, ".MIPS.interfaces") == 0)
6903 {
6904 hdr->sh_type = SHT_MIPS_IFACE;
6905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6906 }
0112cd26 6907 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6908 {
6909 hdr->sh_type = SHT_MIPS_CONTENT;
6910 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6911 /* The sh_info field is set in final_write_processing. */
6912 }
cc2e31b9 6913 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6914 {
6915 hdr->sh_type = SHT_MIPS_OPTIONS;
6916 hdr->sh_entsize = 1;
6917 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6918 }
1b315056
CS
6919 else if (CONST_STRNEQ (name, ".debug_")
6920 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6921 {
6922 hdr->sh_type = SHT_MIPS_DWARF;
6923
6924 /* Irix facilities such as libexc expect a single .debug_frame
6925 per executable, the system ones have NOSTRIP set and the linker
6926 doesn't merge sections with different flags so ... */
6927 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6928 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6929 }
b49e97c9
TS
6930 else if (strcmp (name, ".MIPS.symlib") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6933 /* The sh_link and sh_info fields are set in
6934 final_write_processing. */
6935 }
0112cd26
NC
6936 else if (CONST_STRNEQ (name, ".MIPS.events")
6937 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6938 {
6939 hdr->sh_type = SHT_MIPS_EVENTS;
6940 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6941 /* The sh_link field is set in final_write_processing. */
6942 }
6943 else if (strcmp (name, ".msym") == 0)
6944 {
6945 hdr->sh_type = SHT_MIPS_MSYM;
6946 hdr->sh_flags |= SHF_ALLOC;
6947 hdr->sh_entsize = 8;
6948 }
6949
7a79a000
TS
6950 /* The generic elf_fake_sections will set up REL_HDR using the default
6951 kind of relocations. We used to set up a second header for the
6952 non-default kind of relocations here, but only NewABI would use
6953 these, and the IRIX ld doesn't like resulting empty RELA sections.
6954 Thus we create those header only on demand now. */
b49e97c9 6955
b34976b6 6956 return TRUE;
b49e97c9
TS
6957}
6958
6959/* Given a BFD section, try to locate the corresponding ELF section
6960 index. This is used by both the 32-bit and the 64-bit ABI.
6961 Actually, it's not clear to me that the 64-bit ABI supports these,
6962 but for non-PIC objects we will certainly want support for at least
6963 the .scommon section. */
6964
b34976b6 6965bfd_boolean
9719ad41
RS
6966_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6967 asection *sec, int *retval)
b49e97c9
TS
6968{
6969 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6970 {
6971 *retval = SHN_MIPS_SCOMMON;
b34976b6 6972 return TRUE;
b49e97c9
TS
6973 }
6974 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6975 {
6976 *retval = SHN_MIPS_ACOMMON;
b34976b6 6977 return TRUE;
b49e97c9 6978 }
b34976b6 6979 return FALSE;
b49e97c9
TS
6980}
6981\f
6982/* Hook called by the linker routine which adds symbols from an object
6983 file. We must handle the special MIPS section numbers here. */
6984
b34976b6 6985bfd_boolean
9719ad41 6986_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6987 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6988 flagword *flagsp ATTRIBUTE_UNUSED,
6989 asection **secp, bfd_vma *valp)
b49e97c9
TS
6990{
6991 if (SGI_COMPAT (abfd)
6992 && (abfd->flags & DYNAMIC) != 0
6993 && strcmp (*namep, "_rld_new_interface") == 0)
6994 {
8dc1a139 6995 /* Skip IRIX5 rld entry name. */
b49e97c9 6996 *namep = NULL;
b34976b6 6997 return TRUE;
b49e97c9
TS
6998 }
6999
eedecc07
DD
7000 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7001 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7002 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7003 a magic symbol resolved by the linker, we ignore this bogus definition
7004 of _gp_disp. New ABI objects do not suffer from this problem so this
7005 is not done for them. */
7006 if (!NEWABI_P(abfd)
7007 && (sym->st_shndx == SHN_ABS)
7008 && (strcmp (*namep, "_gp_disp") == 0))
7009 {
7010 *namep = NULL;
7011 return TRUE;
7012 }
7013
b49e97c9
TS
7014 switch (sym->st_shndx)
7015 {
7016 case SHN_COMMON:
7017 /* Common symbols less than the GP size are automatically
7018 treated as SHN_MIPS_SCOMMON symbols. */
7019 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7020 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7021 || IRIX_COMPAT (abfd) == ict_irix6)
7022 break;
7023 /* Fall through. */
7024 case SHN_MIPS_SCOMMON:
7025 *secp = bfd_make_section_old_way (abfd, ".scommon");
7026 (*secp)->flags |= SEC_IS_COMMON;
7027 *valp = sym->st_size;
7028 break;
7029
7030 case SHN_MIPS_TEXT:
7031 /* This section is used in a shared object. */
698600e4 7032 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7033 {
7034 asymbol *elf_text_symbol;
7035 asection *elf_text_section;
7036 bfd_size_type amt = sizeof (asection);
7037
7038 elf_text_section = bfd_zalloc (abfd, amt);
7039 if (elf_text_section == NULL)
b34976b6 7040 return FALSE;
b49e97c9
TS
7041
7042 amt = sizeof (asymbol);
7043 elf_text_symbol = bfd_zalloc (abfd, amt);
7044 if (elf_text_symbol == NULL)
b34976b6 7045 return FALSE;
b49e97c9
TS
7046
7047 /* Initialize the section. */
7048
698600e4
AM
7049 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7050 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7051
7052 elf_text_section->symbol = elf_text_symbol;
698600e4 7053 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7054
7055 elf_text_section->name = ".text";
7056 elf_text_section->flags = SEC_NO_FLAGS;
7057 elf_text_section->output_section = NULL;
7058 elf_text_section->owner = abfd;
7059 elf_text_symbol->name = ".text";
7060 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7061 elf_text_symbol->section = elf_text_section;
7062 }
7063 /* This code used to do *secp = bfd_und_section_ptr if
7064 info->shared. I don't know why, and that doesn't make sense,
7065 so I took it out. */
698600e4 7066 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7067 break;
7068
7069 case SHN_MIPS_ACOMMON:
7070 /* Fall through. XXX Can we treat this as allocated data? */
7071 case SHN_MIPS_DATA:
7072 /* This section is used in a shared object. */
698600e4 7073 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7074 {
7075 asymbol *elf_data_symbol;
7076 asection *elf_data_section;
7077 bfd_size_type amt = sizeof (asection);
7078
7079 elf_data_section = bfd_zalloc (abfd, amt);
7080 if (elf_data_section == NULL)
b34976b6 7081 return FALSE;
b49e97c9
TS
7082
7083 amt = sizeof (asymbol);
7084 elf_data_symbol = bfd_zalloc (abfd, amt);
7085 if (elf_data_symbol == NULL)
b34976b6 7086 return FALSE;
b49e97c9
TS
7087
7088 /* Initialize the section. */
7089
698600e4
AM
7090 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7091 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7092
7093 elf_data_section->symbol = elf_data_symbol;
698600e4 7094 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7095
7096 elf_data_section->name = ".data";
7097 elf_data_section->flags = SEC_NO_FLAGS;
7098 elf_data_section->output_section = NULL;
7099 elf_data_section->owner = abfd;
7100 elf_data_symbol->name = ".data";
7101 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7102 elf_data_symbol->section = elf_data_section;
7103 }
7104 /* This code used to do *secp = bfd_und_section_ptr if
7105 info->shared. I don't know why, and that doesn't make sense,
7106 so I took it out. */
698600e4 7107 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 *secp = bfd_und_section_ptr;
7112 break;
7113 }
7114
7115 if (SGI_COMPAT (abfd)
7116 && ! info->shared
f13a99db 7117 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7118 && strcmp (*namep, "__rld_obj_head") == 0)
7119 {
7120 struct elf_link_hash_entry *h;
14a793b2 7121 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7122
7123 /* Mark __rld_obj_head as dynamic. */
14a793b2 7124 bh = NULL;
b49e97c9 7125 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7126 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7127 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7128 return FALSE;
14a793b2
AM
7129
7130 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7131 h->non_elf = 0;
7132 h->def_regular = 1;
b49e97c9
TS
7133 h->type = STT_OBJECT;
7134
c152c796 7135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7136 return FALSE;
b49e97c9 7137
b34976b6 7138 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7139 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7140 }
7141
7142 /* If this is a mips16 text symbol, add 1 to the value to make it
7143 odd. This will cause something like .word SYM to come up with
7144 the right value when it is loaded into the PC. */
df58fc94 7145 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7146 ++*valp;
7147
b34976b6 7148 return TRUE;
b49e97c9
TS
7149}
7150
7151/* This hook function is called before the linker writes out a global
7152 symbol. We mark symbols as small common if appropriate. This is
7153 also where we undo the increment of the value for a mips16 symbol. */
7154
6e0b88f1 7155int
9719ad41
RS
7156_bfd_mips_elf_link_output_symbol_hook
7157 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7158 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7159 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7160{
7161 /* If we see a common symbol, which implies a relocatable link, then
7162 if a symbol was small common in an input file, mark it as small
7163 common in the output file. */
7164 if (sym->st_shndx == SHN_COMMON
7165 && strcmp (input_sec->name, ".scommon") == 0)
7166 sym->st_shndx = SHN_MIPS_SCOMMON;
7167
df58fc94 7168 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7169 sym->st_value &= ~1;
b49e97c9 7170
6e0b88f1 7171 return 1;
b49e97c9
TS
7172}
7173\f
7174/* Functions for the dynamic linker. */
7175
7176/* Create dynamic sections when linking against a dynamic object. */
7177
b34976b6 7178bfd_boolean
9719ad41 7179_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7180{
7181 struct elf_link_hash_entry *h;
14a793b2 7182 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7183 flagword flags;
7184 register asection *s;
7185 const char * const *namep;
0a44bf69 7186 struct mips_elf_link_hash_table *htab;
b49e97c9 7187
0a44bf69 7188 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7189 BFD_ASSERT (htab != NULL);
7190
b49e97c9
TS
7191 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7192 | SEC_LINKER_CREATED | SEC_READONLY);
7193
0a44bf69
RS
7194 /* The psABI requires a read-only .dynamic section, but the VxWorks
7195 EABI doesn't. */
7196 if (!htab->is_vxworks)
b49e97c9 7197 {
3d4d4302 7198 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7199 if (s != NULL)
7200 {
7201 if (! bfd_set_section_flags (abfd, s, flags))
7202 return FALSE;
7203 }
b49e97c9
TS
7204 }
7205
7206 /* We need to create .got section. */
23cc69b6 7207 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7208 return FALSE;
7209
0a44bf69 7210 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7211 return FALSE;
b49e97c9 7212
b49e97c9 7213 /* Create .stub section. */
3d4d4302
AM
7214 s = bfd_make_section_anyway_with_flags (abfd,
7215 MIPS_ELF_STUB_SECTION_NAME (abfd),
7216 flags | SEC_CODE);
4e41d0d7
RS
7217 if (s == NULL
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7220 return FALSE;
7221 htab->sstubs = s;
b49e97c9 7222
e6aea42d 7223 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7224 && !info->shared
3d4d4302 7225 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7226 {
3d4d4302
AM
7227 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7228 flags &~ (flagword) SEC_READONLY);
b49e97c9 7229 if (s == NULL
b49e97c9
TS
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7232 return FALSE;
b49e97c9
TS
7233 }
7234
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
7240 {
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7242 {
14a793b2 7243 bh = NULL;
b49e97c9 7244 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7246 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7247 return FALSE;
14a793b2
AM
7248
7249 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7250 h->non_elf = 0;
7251 h->def_regular = 1;
b49e97c9
TS
7252 h->type = STT_SECTION;
7253
c152c796 7254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7255 return FALSE;
b49e97c9
TS
7256 }
7257
7258 /* We need to create a .compact_rel section. */
7259 if (SGI_COMPAT (abfd))
7260 {
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7262 return FALSE;
b49e97c9
TS
7263 }
7264
44c410de 7265 /* Change alignments of some sections. */
3d4d4302 7266 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7267 if (s != NULL)
d80dcc6a 7268 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7269 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7270 if (s != NULL)
d80dcc6a 7271 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7272 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7273 if (s != NULL)
d80dcc6a 7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7275 /* ??? */
b49e97c9
TS
7276 s = bfd_get_section_by_name (abfd, ".reginfo");
7277 if (s != NULL)
d80dcc6a 7278 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7279 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7280 if (s != NULL)
d80dcc6a 7281 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7282 }
7283
7284 if (!info->shared)
7285 {
14a793b2
AM
7286 const char *name;
7287
7288 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7289 bh = NULL;
7290 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7291 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7292 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7293 return FALSE;
14a793b2
AM
7294
7295 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7296 h->non_elf = 0;
7297 h->def_regular = 1;
b49e97c9
TS
7298 h->type = STT_SECTION;
7299
c152c796 7300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7301 return FALSE;
b49e97c9
TS
7302
7303 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7304 {
7305 /* __rld_map is a four byte word located in the .data section
7306 and is filled in by the rtld to contain a pointer to
7307 the _r_debug structure. Its symbol value will be set in
7308 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7309 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7310 BFD_ASSERT (s != NULL);
14a793b2 7311
0abfb97a
L
7312 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7316 get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
b49e97c9 7318
0abfb97a
L
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_OBJECT;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
b4082c70 7326 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7327 }
7328 }
7329
861fb55a 7330 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7331 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7332 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7333 return FALSE;
7334
7335 /* Cache the sections created above. */
3d4d4302
AM
7336 htab->splt = bfd_get_linker_section (abfd, ".plt");
7337 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7338 if (htab->is_vxworks)
7339 {
3d4d4302
AM
7340 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7341 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7342 }
7343 else
3d4d4302 7344 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7345 if (!htab->sdynbss
7346 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7347 || !htab->srelplt
7348 || !htab->splt)
7349 abort ();
0a44bf69 7350
861fb55a
DJ
7351 if (htab->is_vxworks)
7352 {
0a44bf69
RS
7353 /* Do the usual VxWorks handling. */
7354 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7355 return FALSE;
7356
7357 /* Work out the PLT sizes. */
7358 if (info->shared)
7359 {
7360 htab->plt_header_size
7361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7362 htab->plt_entry_size
7363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7364 }
7365 else
7366 {
7367 htab->plt_header_size
7368 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7369 htab->plt_entry_size
7370 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7371 }
7372 }
861fb55a
DJ
7373 else if (!info->shared)
7374 {
7375 /* All variants of the plt0 entry are the same size. */
7376 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7377 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7378 }
0a44bf69 7379
b34976b6 7380 return TRUE;
b49e97c9
TS
7381}
7382\f
c224138d
RS
7383/* Return true if relocation REL against section SEC is a REL rather than
7384 RELA relocation. RELOCS is the first relocation in the section and
7385 ABFD is the bfd that contains SEC. */
7386
7387static bfd_boolean
7388mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7389 const Elf_Internal_Rela *relocs,
7390 const Elf_Internal_Rela *rel)
7391{
7392 Elf_Internal_Shdr *rel_hdr;
7393 const struct elf_backend_data *bed;
7394
d4730f92
BS
7395 /* To determine which flavor of relocation this is, we depend on the
7396 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7397 rel_hdr = elf_section_data (sec)->rel.hdr;
7398 if (rel_hdr == NULL)
7399 return FALSE;
c224138d 7400 bed = get_elf_backend_data (abfd);
d4730f92
BS
7401 return ((size_t) (rel - relocs)
7402 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7403}
7404
7405/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7406 HOWTO is the relocation's howto and CONTENTS points to the contents
7407 of the section that REL is against. */
7408
7409static bfd_vma
7410mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7411 reloc_howto_type *howto, bfd_byte *contents)
7412{
7413 bfd_byte *location;
7414 unsigned int r_type;
7415 bfd_vma addend;
7416
7417 r_type = ELF_R_TYPE (abfd, rel->r_info);
7418 location = contents + rel->r_offset;
7419
7420 /* Get the addend, which is stored in the input file. */
df58fc94 7421 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7422 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7423 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7424
7425 return addend & howto->src_mask;
7426}
7427
7428/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7429 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7430 and update *ADDEND with the final addend. Return true on success
7431 or false if the LO16 could not be found. RELEND is the exclusive
7432 upper bound on the relocations for REL's section. */
7433
7434static bfd_boolean
7435mips_elf_add_lo16_rel_addend (bfd *abfd,
7436 const Elf_Internal_Rela *rel,
7437 const Elf_Internal_Rela *relend,
7438 bfd_byte *contents, bfd_vma *addend)
7439{
7440 unsigned int r_type, lo16_type;
7441 const Elf_Internal_Rela *lo16_relocation;
7442 reloc_howto_type *lo16_howto;
7443 bfd_vma l;
7444
7445 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7446 if (mips16_reloc_p (r_type))
c224138d 7447 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7448 else if (micromips_reloc_p (r_type))
7449 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7450 else
7451 lo16_type = R_MIPS_LO16;
7452
7453 /* The combined value is the sum of the HI16 addend, left-shifted by
7454 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7455 code does a `lui' of the HI16 value, and then an `addiu' of the
7456 LO16 value.)
7457
7458 Scan ahead to find a matching LO16 relocation.
7459
7460 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7461 be immediately following. However, for the IRIX6 ABI, the next
7462 relocation may be a composed relocation consisting of several
7463 relocations for the same address. In that case, the R_MIPS_LO16
7464 relocation may occur as one of these. We permit a similar
7465 extension in general, as that is useful for GCC.
7466
7467 In some cases GCC dead code elimination removes the LO16 but keeps
7468 the corresponding HI16. This is strictly speaking a violation of
7469 the ABI but not immediately harmful. */
7470 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7471 if (lo16_relocation == NULL)
7472 return FALSE;
7473
7474 /* Obtain the addend kept there. */
7475 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7476 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7477
7478 l <<= lo16_howto->rightshift;
7479 l = _bfd_mips_elf_sign_extend (l, 16);
7480
7481 *addend <<= 16;
7482 *addend += l;
7483 return TRUE;
7484}
7485
7486/* Try to read the contents of section SEC in bfd ABFD. Return true and
7487 store the contents in *CONTENTS on success. Assume that *CONTENTS
7488 already holds the contents if it is nonull on entry. */
7489
7490static bfd_boolean
7491mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7492{
7493 if (*contents)
7494 return TRUE;
7495
7496 /* Get cached copy if it exists. */
7497 if (elf_section_data (sec)->this_hdr.contents != NULL)
7498 {
7499 *contents = elf_section_data (sec)->this_hdr.contents;
7500 return TRUE;
7501 }
7502
7503 return bfd_malloc_and_get_section (abfd, sec, contents);
7504}
7505
b49e97c9
TS
7506/* Look through the relocs for a section during the first phase, and
7507 allocate space in the global offset table. */
7508
b34976b6 7509bfd_boolean
9719ad41
RS
7510_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7511 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7512{
7513 const char *name;
7514 bfd *dynobj;
7515 Elf_Internal_Shdr *symtab_hdr;
7516 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7517 size_t extsymoff;
7518 const Elf_Internal_Rela *rel;
7519 const Elf_Internal_Rela *rel_end;
b49e97c9 7520 asection *sreloc;
9c5bfbb7 7521 const struct elf_backend_data *bed;
0a44bf69 7522 struct mips_elf_link_hash_table *htab;
c224138d
RS
7523 bfd_byte *contents;
7524 bfd_vma addend;
7525 reloc_howto_type *howto;
b49e97c9 7526
1049f94e 7527 if (info->relocatable)
b34976b6 7528 return TRUE;
b49e97c9 7529
0a44bf69 7530 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7531 BFD_ASSERT (htab != NULL);
7532
b49e97c9
TS
7533 dynobj = elf_hash_table (info)->dynobj;
7534 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7535 sym_hashes = elf_sym_hashes (abfd);
7536 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7537
738e5348
RS
7538 bed = get_elf_backend_data (abfd);
7539 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7540
b49e97c9
TS
7541 /* Check for the mips16 stub sections. */
7542
7543 name = bfd_get_section_name (abfd, sec);
b9d58d71 7544 if (FN_STUB_P (name))
b49e97c9
TS
7545 {
7546 unsigned long r_symndx;
7547
7548 /* Look at the relocation information to figure out which symbol
7549 this is for. */
7550
cb4437b8 7551 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7552 if (r_symndx == 0)
7553 {
7554 (*_bfd_error_handler)
7555 (_("%B: Warning: cannot determine the target function for"
7556 " stub section `%s'"),
7557 abfd, name);
7558 bfd_set_error (bfd_error_bad_value);
7559 return FALSE;
7560 }
b49e97c9
TS
7561
7562 if (r_symndx < extsymoff
7563 || sym_hashes[r_symndx - extsymoff] == NULL)
7564 {
7565 asection *o;
7566
7567 /* This stub is for a local symbol. This stub will only be
7568 needed if there is some relocation in this BFD, other
7569 than a 16 bit function call, which refers to this symbol. */
7570 for (o = abfd->sections; o != NULL; o = o->next)
7571 {
7572 Elf_Internal_Rela *sec_relocs;
7573 const Elf_Internal_Rela *r, *rend;
7574
7575 /* We can ignore stub sections when looking for relocs. */
7576 if ((o->flags & SEC_RELOC) == 0
7577 || o->reloc_count == 0
738e5348 7578 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7579 continue;
7580
45d6a902 7581 sec_relocs
9719ad41 7582 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7583 info->keep_memory);
b49e97c9 7584 if (sec_relocs == NULL)
b34976b6 7585 return FALSE;
b49e97c9
TS
7586
7587 rend = sec_relocs + o->reloc_count;
7588 for (r = sec_relocs; r < rend; r++)
7589 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7590 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7591 break;
7592
6cdc0ccc 7593 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7594 free (sec_relocs);
7595
7596 if (r < rend)
7597 break;
7598 }
7599
7600 if (o == NULL)
7601 {
7602 /* There is no non-call reloc for this stub, so we do
7603 not need it. Since this function is called before
7604 the linker maps input sections to output sections, we
7605 can easily discard it by setting the SEC_EXCLUDE
7606 flag. */
7607 sec->flags |= SEC_EXCLUDE;
b34976b6 7608 return TRUE;
b49e97c9
TS
7609 }
7610
7611 /* Record this stub in an array of local symbol stubs for
7612 this BFD. */
698600e4 7613 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
7614 {
7615 unsigned long symcount;
7616 asection **n;
7617 bfd_size_type amt;
7618
7619 if (elf_bad_symtab (abfd))
7620 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7621 else
7622 symcount = symtab_hdr->sh_info;
7623 amt = symcount * sizeof (asection *);
9719ad41 7624 n = bfd_zalloc (abfd, amt);
b49e97c9 7625 if (n == NULL)
b34976b6 7626 return FALSE;
698600e4 7627 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
7628 }
7629
b9d58d71 7630 sec->flags |= SEC_KEEP;
698600e4 7631 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
7632
7633 /* We don't need to set mips16_stubs_seen in this case.
7634 That flag is used to see whether we need to look through
7635 the global symbol table for stubs. We don't need to set
7636 it here, because we just have a local stub. */
7637 }
7638 else
7639 {
7640 struct mips_elf_link_hash_entry *h;
7641
7642 h = ((struct mips_elf_link_hash_entry *)
7643 sym_hashes[r_symndx - extsymoff]);
7644
973a3492
L
7645 while (h->root.root.type == bfd_link_hash_indirect
7646 || h->root.root.type == bfd_link_hash_warning)
7647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7648
b49e97c9
TS
7649 /* H is the symbol this stub is for. */
7650
b9d58d71
TS
7651 /* If we already have an appropriate stub for this function, we
7652 don't need another one, so we can discard this one. Since
7653 this function is called before the linker maps input sections
7654 to output sections, we can easily discard it by setting the
7655 SEC_EXCLUDE flag. */
7656 if (h->fn_stub != NULL)
7657 {
7658 sec->flags |= SEC_EXCLUDE;
7659 return TRUE;
7660 }
7661
7662 sec->flags |= SEC_KEEP;
b49e97c9 7663 h->fn_stub = sec;
b34976b6 7664 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7665 }
7666 }
b9d58d71 7667 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7668 {
7669 unsigned long r_symndx;
7670 struct mips_elf_link_hash_entry *h;
7671 asection **loc;
7672
7673 /* Look at the relocation information to figure out which symbol
7674 this is for. */
7675
cb4437b8 7676 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7677 if (r_symndx == 0)
7678 {
7679 (*_bfd_error_handler)
7680 (_("%B: Warning: cannot determine the target function for"
7681 " stub section `%s'"),
7682 abfd, name);
7683 bfd_set_error (bfd_error_bad_value);
7684 return FALSE;
7685 }
b49e97c9
TS
7686
7687 if (r_symndx < extsymoff
7688 || sym_hashes[r_symndx - extsymoff] == NULL)
7689 {
b9d58d71 7690 asection *o;
b49e97c9 7691
b9d58d71
TS
7692 /* This stub is for a local symbol. This stub will only be
7693 needed if there is some relocation (R_MIPS16_26) in this BFD
7694 that refers to this symbol. */
7695 for (o = abfd->sections; o != NULL; o = o->next)
7696 {
7697 Elf_Internal_Rela *sec_relocs;
7698 const Elf_Internal_Rela *r, *rend;
7699
7700 /* We can ignore stub sections when looking for relocs. */
7701 if ((o->flags & SEC_RELOC) == 0
7702 || o->reloc_count == 0
738e5348 7703 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7704 continue;
7705
7706 sec_relocs
7707 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7708 info->keep_memory);
7709 if (sec_relocs == NULL)
7710 return FALSE;
7711
7712 rend = sec_relocs + o->reloc_count;
7713 for (r = sec_relocs; r < rend; r++)
7714 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7715 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7716 break;
7717
7718 if (elf_section_data (o)->relocs != sec_relocs)
7719 free (sec_relocs);
7720
7721 if (r < rend)
7722 break;
7723 }
7724
7725 if (o == NULL)
7726 {
7727 /* There is no non-call reloc for this stub, so we do
7728 not need it. Since this function is called before
7729 the linker maps input sections to output sections, we
7730 can easily discard it by setting the SEC_EXCLUDE
7731 flag. */
7732 sec->flags |= SEC_EXCLUDE;
7733 return TRUE;
7734 }
7735
7736 /* Record this stub in an array of local symbol call_stubs for
7737 this BFD. */
698600e4 7738 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
7739 {
7740 unsigned long symcount;
7741 asection **n;
7742 bfd_size_type amt;
7743
7744 if (elf_bad_symtab (abfd))
7745 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7746 else
7747 symcount = symtab_hdr->sh_info;
7748 amt = symcount * sizeof (asection *);
7749 n = bfd_zalloc (abfd, amt);
7750 if (n == NULL)
7751 return FALSE;
698600e4 7752 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 7753 }
b49e97c9 7754
b9d58d71 7755 sec->flags |= SEC_KEEP;
698600e4 7756 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7757
b9d58d71
TS
7758 /* We don't need to set mips16_stubs_seen in this case.
7759 That flag is used to see whether we need to look through
7760 the global symbol table for stubs. We don't need to set
7761 it here, because we just have a local stub. */
7762 }
b49e97c9 7763 else
b49e97c9 7764 {
b9d58d71
TS
7765 h = ((struct mips_elf_link_hash_entry *)
7766 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7767
b9d58d71 7768 /* H is the symbol this stub is for. */
68ffbac6 7769
b9d58d71
TS
7770 if (CALL_FP_STUB_P (name))
7771 loc = &h->call_fp_stub;
7772 else
7773 loc = &h->call_stub;
68ffbac6 7774
b9d58d71
TS
7775 /* If we already have an appropriate stub for this function, we
7776 don't need another one, so we can discard this one. Since
7777 this function is called before the linker maps input sections
7778 to output sections, we can easily discard it by setting the
7779 SEC_EXCLUDE flag. */
7780 if (*loc != NULL)
7781 {
7782 sec->flags |= SEC_EXCLUDE;
7783 return TRUE;
7784 }
b49e97c9 7785
b9d58d71
TS
7786 sec->flags |= SEC_KEEP;
7787 *loc = sec;
7788 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7789 }
b49e97c9
TS
7790 }
7791
b49e97c9 7792 sreloc = NULL;
c224138d 7793 contents = NULL;
b49e97c9
TS
7794 for (rel = relocs; rel < rel_end; ++rel)
7795 {
7796 unsigned long r_symndx;
7797 unsigned int r_type;
7798 struct elf_link_hash_entry *h;
861fb55a 7799 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7800
7801 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7802 r_type = ELF_R_TYPE (abfd, rel->r_info);
7803
7804 if (r_symndx < extsymoff)
7805 h = NULL;
7806 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7807 {
7808 (*_bfd_error_handler)
d003868e
AM
7809 (_("%B: Malformed reloc detected for section %s"),
7810 abfd, name);
b49e97c9 7811 bfd_set_error (bfd_error_bad_value);
b34976b6 7812 return FALSE;
b49e97c9
TS
7813 }
7814 else
7815 {
7816 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7817 while (h != NULL
7818 && (h->root.type == bfd_link_hash_indirect
7819 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7821 }
b49e97c9 7822
861fb55a
DJ
7823 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7824 relocation into a dynamic one. */
7825 can_make_dynamic_p = FALSE;
7826 switch (r_type)
7827 {
861fb55a
DJ
7828 case R_MIPS_GOT16:
7829 case R_MIPS_CALL16:
7830 case R_MIPS_CALL_HI16:
7831 case R_MIPS_CALL_LO16:
7832 case R_MIPS_GOT_HI16:
7833 case R_MIPS_GOT_LO16:
7834 case R_MIPS_GOT_PAGE:
7835 case R_MIPS_GOT_OFST:
7836 case R_MIPS_GOT_DISP:
7837 case R_MIPS_TLS_GOTTPREL:
7838 case R_MIPS_TLS_GD:
7839 case R_MIPS_TLS_LDM:
d0f13682
CLT
7840 case R_MIPS16_GOT16:
7841 case R_MIPS16_CALL16:
7842 case R_MIPS16_TLS_GOTTPREL:
7843 case R_MIPS16_TLS_GD:
7844 case R_MIPS16_TLS_LDM:
df58fc94
RS
7845 case R_MICROMIPS_GOT16:
7846 case R_MICROMIPS_CALL16:
7847 case R_MICROMIPS_CALL_HI16:
7848 case R_MICROMIPS_CALL_LO16:
7849 case R_MICROMIPS_GOT_HI16:
7850 case R_MICROMIPS_GOT_LO16:
7851 case R_MICROMIPS_GOT_PAGE:
7852 case R_MICROMIPS_GOT_OFST:
7853 case R_MICROMIPS_GOT_DISP:
7854 case R_MICROMIPS_TLS_GOTTPREL:
7855 case R_MICROMIPS_TLS_GD:
7856 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7857 if (dynobj == NULL)
7858 elf_hash_table (info)->dynobj = dynobj = abfd;
7859 if (!mips_elf_create_got_section (dynobj, info))
7860 return FALSE;
7861 if (htab->is_vxworks && !info->shared)
b49e97c9 7862 {
861fb55a
DJ
7863 (*_bfd_error_handler)
7864 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7865 abfd, (unsigned long) rel->r_offset);
7866 bfd_set_error (bfd_error_bad_value);
7867 return FALSE;
b49e97c9 7868 }
861fb55a 7869 break;
b49e97c9 7870
99da6b5f
AN
7871 /* This is just a hint; it can safely be ignored. Don't set
7872 has_static_relocs for the corresponding symbol. */
7873 case R_MIPS_JALR:
df58fc94 7874 case R_MICROMIPS_JALR:
99da6b5f
AN
7875 break;
7876
861fb55a
DJ
7877 case R_MIPS_32:
7878 case R_MIPS_REL32:
7879 case R_MIPS_64:
7880 /* In VxWorks executables, references to external symbols
7881 must be handled using copy relocs or PLT entries; it is not
7882 possible to convert this relocation into a dynamic one.
7883
7884 For executables that use PLTs and copy-relocs, we have a
7885 choice between converting the relocation into a dynamic
7886 one or using copy relocations or PLT entries. It is
7887 usually better to do the former, unless the relocation is
7888 against a read-only section. */
7889 if ((info->shared
7890 || (h != NULL
7891 && !htab->is_vxworks
7892 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7893 && !(!info->nocopyreloc
7894 && !PIC_OBJECT_P (abfd)
7895 && MIPS_ELF_READONLY_SECTION (sec))))
7896 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7897 {
861fb55a 7898 can_make_dynamic_p = TRUE;
b49e97c9
TS
7899 if (dynobj == NULL)
7900 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7901 break;
861fb55a 7902 }
21d790b9
MR
7903 /* For sections that are not SEC_ALLOC a copy reloc would be
7904 output if possible (implying questionable semantics for
7905 read-only data objects) or otherwise the final link would
7906 fail as ld.so will not process them and could not therefore
7907 handle any outstanding dynamic relocations.
7908
7909 For such sections that are also SEC_DEBUGGING, we can avoid
7910 these problems by simply ignoring any relocs as these
7911 sections have a predefined use and we know it is safe to do
7912 so.
7913
7914 This is needed in cases such as a global symbol definition
7915 in a shared library causing a common symbol from an object
7916 file to be converted to an undefined reference. If that
7917 happens, then all the relocations against this symbol from
7918 SEC_DEBUGGING sections in the object file will resolve to
7919 nil. */
7920 if ((sec->flags & SEC_DEBUGGING) != 0)
7921 break;
861fb55a 7922 /* Fall through. */
b49e97c9 7923
861fb55a
DJ
7924 default:
7925 /* Most static relocations require pointer equality, except
7926 for branches. */
7927 if (h)
7928 h->pointer_equality_needed = TRUE;
7929 /* Fall through. */
b49e97c9 7930
861fb55a
DJ
7931 case R_MIPS_26:
7932 case R_MIPS_PC16:
7933 case R_MIPS16_26:
df58fc94
RS
7934 case R_MICROMIPS_26_S1:
7935 case R_MICROMIPS_PC7_S1:
7936 case R_MICROMIPS_PC10_S1:
7937 case R_MICROMIPS_PC16_S1:
7938 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7939 if (h)
7940 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7941 break;
b49e97c9
TS
7942 }
7943
0a44bf69
RS
7944 if (h)
7945 {
0a44bf69
RS
7946 /* Relocations against the special VxWorks __GOTT_BASE__ and
7947 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7948 room for them in .rela.dyn. */
7949 if (is_gott_symbol (info, h))
7950 {
7951 if (sreloc == NULL)
7952 {
7953 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7954 if (sreloc == NULL)
7955 return FALSE;
7956 }
7957 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7958 if (MIPS_ELF_READONLY_SECTION (sec))
7959 /* We tell the dynamic linker that there are
7960 relocations against the text segment. */
7961 info->flags |= DF_TEXTREL;
0a44bf69
RS
7962 }
7963 }
df58fc94
RS
7964 else if (call_lo16_reloc_p (r_type)
7965 || got_lo16_reloc_p (r_type)
7966 || got_disp_reloc_p (r_type)
738e5348 7967 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7968 {
7969 /* We may need a local GOT entry for this relocation. We
7970 don't count R_MIPS_GOT_PAGE because we can estimate the
7971 maximum number of pages needed by looking at the size of
738e5348
RS
7972 the segment. Similar comments apply to R_MIPS*_GOT16 and
7973 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7974 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7975 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7976 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 7977 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 7978 rel->r_addend, info, r_type))
f4416af6 7979 return FALSE;
b49e97c9
TS
7980 }
7981
8f0c309a
CLT
7982 if (h != NULL
7983 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7984 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
7985 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7986
b49e97c9
TS
7987 switch (r_type)
7988 {
7989 case R_MIPS_CALL16:
738e5348 7990 case R_MIPS16_CALL16:
df58fc94 7991 case R_MICROMIPS_CALL16:
b49e97c9
TS
7992 if (h == NULL)
7993 {
7994 (*_bfd_error_handler)
d003868e
AM
7995 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7996 abfd, (unsigned long) rel->r_offset);
b49e97c9 7997 bfd_set_error (bfd_error_bad_value);
b34976b6 7998 return FALSE;
b49e97c9
TS
7999 }
8000 /* Fall through. */
8001
8002 case R_MIPS_CALL_HI16:
8003 case R_MIPS_CALL_LO16:
df58fc94
RS
8004 case R_MICROMIPS_CALL_HI16:
8005 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8006 if (h != NULL)
8007 {
6ccf4795
RS
8008 /* Make sure there is room in the regular GOT to hold the
8009 function's address. We may eliminate it in favour of
8010 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8011 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8012 r_type))
b34976b6 8013 return FALSE;
b49e97c9
TS
8014
8015 /* We need a stub, not a plt entry for the undefined
8016 function. But we record it as if it needs plt. See
c152c796 8017 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8018 h->needs_plt = 1;
b49e97c9
TS
8019 h->type = STT_FUNC;
8020 }
8021 break;
8022
0fdc1bf1 8023 case R_MIPS_GOT_PAGE:
df58fc94 8024 case R_MICROMIPS_GOT_PAGE:
738e5348 8025 case R_MIPS16_GOT16:
b49e97c9
TS
8026 case R_MIPS_GOT16:
8027 case R_MIPS_GOT_HI16:
8028 case R_MIPS_GOT_LO16:
df58fc94
RS
8029 case R_MICROMIPS_GOT16:
8030 case R_MICROMIPS_GOT_HI16:
8031 case R_MICROMIPS_GOT_LO16:
8032 if (!h || got_page_reloc_p (r_type))
c224138d 8033 {
3a3b6725
DJ
8034 /* This relocation needs (or may need, if h != NULL) a
8035 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8036 know for sure until we know whether the symbol is
8037 preemptible. */
c224138d
RS
8038 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8039 {
8040 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8041 return FALSE;
8042 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8043 addend = mips_elf_read_rel_addend (abfd, rel,
8044 howto, contents);
9684f078 8045 if (got16_reloc_p (r_type))
c224138d
RS
8046 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8047 contents, &addend);
8048 else
8049 addend <<= howto->rightshift;
8050 }
8051 else
8052 addend = rel->r_addend;
13db6b44
RS
8053 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8054 h, addend))
c224138d 8055 return FALSE;
13db6b44
RS
8056
8057 if (h)
8058 {
8059 struct mips_elf_link_hash_entry *hmips =
8060 (struct mips_elf_link_hash_entry *) h;
8061
8062 /* This symbol is definitely not overridable. */
8063 if (hmips->root.def_regular
8064 && ! (info->shared && ! info->symbolic
8065 && ! hmips->root.forced_local))
8066 h = NULL;
8067 }
c224138d 8068 }
13db6b44
RS
8069 /* If this is a global, overridable symbol, GOT_PAGE will
8070 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8071 /* Fall through. */
8072
b49e97c9 8073 case R_MIPS_GOT_DISP:
df58fc94 8074 case R_MICROMIPS_GOT_DISP:
6ccf4795 8075 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8076 FALSE, r_type))
b34976b6 8077 return FALSE;
b49e97c9
TS
8078 break;
8079
0f20cc35 8080 case R_MIPS_TLS_GOTTPREL:
d0f13682 8081 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8082 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8083 if (info->shared)
8084 info->flags |= DF_STATIC_TLS;
8085 /* Fall through */
8086
8087 case R_MIPS_TLS_LDM:
d0f13682 8088 case R_MIPS16_TLS_LDM:
df58fc94
RS
8089 case R_MICROMIPS_TLS_LDM:
8090 if (tls_ldm_reloc_p (r_type))
0f20cc35 8091 {
cf35638d 8092 r_symndx = STN_UNDEF;
0f20cc35
DJ
8093 h = NULL;
8094 }
8095 /* Fall through */
8096
8097 case R_MIPS_TLS_GD:
d0f13682 8098 case R_MIPS16_TLS_GD:
df58fc94 8099 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8100 /* This symbol requires a global offset table entry, or two
8101 for TLS GD relocations. */
e641e783
RS
8102 if (h != NULL)
8103 {
8104 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8105 FALSE, r_type))
8106 return FALSE;
8107 }
8108 else
8109 {
8110 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8111 rel->r_addend,
8112 info, r_type))
8113 return FALSE;
8114 }
0f20cc35
DJ
8115 break;
8116
b49e97c9
TS
8117 case R_MIPS_32:
8118 case R_MIPS_REL32:
8119 case R_MIPS_64:
0a44bf69
RS
8120 /* In VxWorks executables, references to external symbols
8121 are handled using copy relocs or PLT stubs, so there's
8122 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8123 if (can_make_dynamic_p)
b49e97c9
TS
8124 {
8125 if (sreloc == NULL)
8126 {
0a44bf69 8127 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8128 if (sreloc == NULL)
f4416af6 8129 return FALSE;
b49e97c9 8130 }
9a59ad6b 8131 if (info->shared && h == NULL)
82f0cfbd
EC
8132 {
8133 /* When creating a shared object, we must copy these
8134 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8135 relocs. Make room for this reloc in .rel(a).dyn. */
8136 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8137 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8138 /* We tell the dynamic linker that there are
8139 relocations against the text segment. */
8140 info->flags |= DF_TEXTREL;
8141 }
b49e97c9
TS
8142 else
8143 {
8144 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8145
9a59ad6b
DJ
8146 /* For a shared object, we must copy this relocation
8147 unless the symbol turns out to be undefined and
8148 weak with non-default visibility, in which case
8149 it will be left as zero.
8150
8151 We could elide R_MIPS_REL32 for locally binding symbols
8152 in shared libraries, but do not yet do so.
8153
8154 For an executable, we only need to copy this
8155 reloc if the symbol is defined in a dynamic
8156 object. */
b49e97c9
TS
8157 hmips = (struct mips_elf_link_hash_entry *) h;
8158 ++hmips->possibly_dynamic_relocs;
943284cc 8159 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8160 /* We need it to tell the dynamic linker if there
8161 are relocations against the text segment. */
8162 hmips->readonly_reloc = TRUE;
b49e97c9 8163 }
b49e97c9
TS
8164 }
8165
8166 if (SGI_COMPAT (abfd))
8167 mips_elf_hash_table (info)->compact_rel_size +=
8168 sizeof (Elf32_External_crinfo);
8169 break;
8170
8171 case R_MIPS_26:
8172 case R_MIPS_GPREL16:
8173 case R_MIPS_LITERAL:
8174 case R_MIPS_GPREL32:
df58fc94
RS
8175 case R_MICROMIPS_26_S1:
8176 case R_MICROMIPS_GPREL16:
8177 case R_MICROMIPS_LITERAL:
8178 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8179 if (SGI_COMPAT (abfd))
8180 mips_elf_hash_table (info)->compact_rel_size +=
8181 sizeof (Elf32_External_crinfo);
8182 break;
8183
8184 /* This relocation describes the C++ object vtable hierarchy.
8185 Reconstruct it for later use during GC. */
8186 case R_MIPS_GNU_VTINHERIT:
c152c796 8187 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8188 return FALSE;
b49e97c9
TS
8189 break;
8190
8191 /* This relocation describes which C++ vtable entries are actually
8192 used. Record for later use during GC. */
8193 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8194 BFD_ASSERT (h != NULL);
8195 if (h != NULL
8196 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8197 return FALSE;
b49e97c9
TS
8198 break;
8199
8200 default:
8201 break;
8202 }
8203
8204 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8205 related to taking the function's address. This doesn't apply to
8206 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8207 a normal .got entry. */
8208 if (!htab->is_vxworks && h != NULL)
8209 switch (r_type)
8210 {
8211 default:
8212 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8213 break;
738e5348 8214 case R_MIPS16_CALL16:
0a44bf69
RS
8215 case R_MIPS_CALL16:
8216 case R_MIPS_CALL_HI16:
8217 case R_MIPS_CALL_LO16:
8218 case R_MIPS_JALR:
df58fc94
RS
8219 case R_MICROMIPS_CALL16:
8220 case R_MICROMIPS_CALL_HI16:
8221 case R_MICROMIPS_CALL_LO16:
8222 case R_MICROMIPS_JALR:
0a44bf69
RS
8223 break;
8224 }
b49e97c9 8225
738e5348
RS
8226 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8227 if there is one. We only need to handle global symbols here;
8228 we decide whether to keep or delete stubs for local symbols
8229 when processing the stub's relocations. */
b49e97c9 8230 if (h != NULL
738e5348
RS
8231 && !mips16_call_reloc_p (r_type)
8232 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8233 {
8234 struct mips_elf_link_hash_entry *mh;
8235
8236 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8237 mh->need_fn_stub = TRUE;
b49e97c9 8238 }
861fb55a
DJ
8239
8240 /* Refuse some position-dependent relocations when creating a
8241 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8242 not PIC, but we can create dynamic relocations and the result
8243 will be fine. Also do not refuse R_MIPS_LO16, which can be
8244 combined with R_MIPS_GOT16. */
8245 if (info->shared)
8246 {
8247 switch (r_type)
8248 {
8249 case R_MIPS16_HI16:
8250 case R_MIPS_HI16:
8251 case R_MIPS_HIGHER:
8252 case R_MIPS_HIGHEST:
df58fc94
RS
8253 case R_MICROMIPS_HI16:
8254 case R_MICROMIPS_HIGHER:
8255 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8256 /* Don't refuse a high part relocation if it's against
8257 no symbol (e.g. part of a compound relocation). */
cf35638d 8258 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8259 break;
8260
8261 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8262 and has a special meaning. */
8263 if (!NEWABI_P (abfd) && h != NULL
8264 && strcmp (h->root.root.string, "_gp_disp") == 0)
8265 break;
8266
0fc1eb3c
RS
8267 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8268 if (is_gott_symbol (info, h))
8269 break;
8270
861fb55a
DJ
8271 /* FALLTHROUGH */
8272
8273 case R_MIPS16_26:
8274 case R_MIPS_26:
df58fc94 8275 case R_MICROMIPS_26_S1:
861fb55a
DJ
8276 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8277 (*_bfd_error_handler)
8278 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8279 abfd, howto->name,
8280 (h) ? h->root.root.string : "a local symbol");
8281 bfd_set_error (bfd_error_bad_value);
8282 return FALSE;
8283 default:
8284 break;
8285 }
8286 }
b49e97c9
TS
8287 }
8288
b34976b6 8289 return TRUE;
b49e97c9
TS
8290}
8291\f
d0647110 8292bfd_boolean
9719ad41
RS
8293_bfd_mips_relax_section (bfd *abfd, asection *sec,
8294 struct bfd_link_info *link_info,
8295 bfd_boolean *again)
d0647110
AO
8296{
8297 Elf_Internal_Rela *internal_relocs;
8298 Elf_Internal_Rela *irel, *irelend;
8299 Elf_Internal_Shdr *symtab_hdr;
8300 bfd_byte *contents = NULL;
d0647110
AO
8301 size_t extsymoff;
8302 bfd_boolean changed_contents = FALSE;
8303 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8304 Elf_Internal_Sym *isymbuf = NULL;
8305
8306 /* We are not currently changing any sizes, so only one pass. */
8307 *again = FALSE;
8308
1049f94e 8309 if (link_info->relocatable)
d0647110
AO
8310 return TRUE;
8311
9719ad41 8312 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8313 link_info->keep_memory);
d0647110
AO
8314 if (internal_relocs == NULL)
8315 return TRUE;
8316
8317 irelend = internal_relocs + sec->reloc_count
8318 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8319 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8320 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8321
8322 for (irel = internal_relocs; irel < irelend; irel++)
8323 {
8324 bfd_vma symval;
8325 bfd_signed_vma sym_offset;
8326 unsigned int r_type;
8327 unsigned long r_symndx;
8328 asection *sym_sec;
8329 unsigned long instruction;
8330
8331 /* Turn jalr into bgezal, and jr into beq, if they're marked
8332 with a JALR relocation, that indicate where they jump to.
8333 This saves some pipeline bubbles. */
8334 r_type = ELF_R_TYPE (abfd, irel->r_info);
8335 if (r_type != R_MIPS_JALR)
8336 continue;
8337
8338 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8339 /* Compute the address of the jump target. */
8340 if (r_symndx >= extsymoff)
8341 {
8342 struct mips_elf_link_hash_entry *h
8343 = ((struct mips_elf_link_hash_entry *)
8344 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8345
8346 while (h->root.root.type == bfd_link_hash_indirect
8347 || h->root.root.type == bfd_link_hash_warning)
8348 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8349
d0647110
AO
8350 /* If a symbol is undefined, or if it may be overridden,
8351 skip it. */
8352 if (! ((h->root.root.type == bfd_link_hash_defined
8353 || h->root.root.type == bfd_link_hash_defweak)
8354 && h->root.root.u.def.section)
8355 || (link_info->shared && ! link_info->symbolic
f5385ebf 8356 && !h->root.forced_local))
d0647110
AO
8357 continue;
8358
8359 sym_sec = h->root.root.u.def.section;
8360 if (sym_sec->output_section)
8361 symval = (h->root.root.u.def.value
8362 + sym_sec->output_section->vma
8363 + sym_sec->output_offset);
8364 else
8365 symval = h->root.root.u.def.value;
8366 }
8367 else
8368 {
8369 Elf_Internal_Sym *isym;
8370
8371 /* Read this BFD's symbols if we haven't done so already. */
8372 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8373 {
8374 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8375 if (isymbuf == NULL)
8376 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8377 symtab_hdr->sh_info, 0,
8378 NULL, NULL, NULL);
8379 if (isymbuf == NULL)
8380 goto relax_return;
8381 }
8382
8383 isym = isymbuf + r_symndx;
8384 if (isym->st_shndx == SHN_UNDEF)
8385 continue;
8386 else if (isym->st_shndx == SHN_ABS)
8387 sym_sec = bfd_abs_section_ptr;
8388 else if (isym->st_shndx == SHN_COMMON)
8389 sym_sec = bfd_com_section_ptr;
8390 else
8391 sym_sec
8392 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8393 symval = isym->st_value
8394 + sym_sec->output_section->vma
8395 + sym_sec->output_offset;
8396 }
8397
8398 /* Compute branch offset, from delay slot of the jump to the
8399 branch target. */
8400 sym_offset = (symval + irel->r_addend)
8401 - (sec_start + irel->r_offset + 4);
8402
8403 /* Branch offset must be properly aligned. */
8404 if ((sym_offset & 3) != 0)
8405 continue;
8406
8407 sym_offset >>= 2;
8408
8409 /* Check that it's in range. */
8410 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8411 continue;
143d77c5 8412
d0647110 8413 /* Get the section contents if we haven't done so already. */
c224138d
RS
8414 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8415 goto relax_return;
d0647110
AO
8416
8417 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8418
8419 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8420 if ((instruction & 0xfc1fffff) == 0x0000f809)
8421 instruction = 0x04110000;
8422 /* If it was jr <reg>, turn it into b <target>. */
8423 else if ((instruction & 0xfc1fffff) == 0x00000008)
8424 instruction = 0x10000000;
8425 else
8426 continue;
8427
8428 instruction |= (sym_offset & 0xffff);
8429 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8430 changed_contents = TRUE;
8431 }
8432
8433 if (contents != NULL
8434 && elf_section_data (sec)->this_hdr.contents != contents)
8435 {
8436 if (!changed_contents && !link_info->keep_memory)
8437 free (contents);
8438 else
8439 {
8440 /* Cache the section contents for elf_link_input_bfd. */
8441 elf_section_data (sec)->this_hdr.contents = contents;
8442 }
8443 }
8444 return TRUE;
8445
143d77c5 8446 relax_return:
eea6121a
AM
8447 if (contents != NULL
8448 && elf_section_data (sec)->this_hdr.contents != contents)
8449 free (contents);
d0647110
AO
8450 return FALSE;
8451}
8452\f
9a59ad6b
DJ
8453/* Allocate space for global sym dynamic relocs. */
8454
8455static bfd_boolean
8456allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8457{
8458 struct bfd_link_info *info = inf;
8459 bfd *dynobj;
8460 struct mips_elf_link_hash_entry *hmips;
8461 struct mips_elf_link_hash_table *htab;
8462
8463 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8464 BFD_ASSERT (htab != NULL);
8465
9a59ad6b
DJ
8466 dynobj = elf_hash_table (info)->dynobj;
8467 hmips = (struct mips_elf_link_hash_entry *) h;
8468
8469 /* VxWorks executables are handled elsewhere; we only need to
8470 allocate relocations in shared objects. */
8471 if (htab->is_vxworks && !info->shared)
8472 return TRUE;
8473
7686d77d
AM
8474 /* Ignore indirect symbols. All relocations against such symbols
8475 will be redirected to the target symbol. */
8476 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8477 return TRUE;
8478
9a59ad6b
DJ
8479 /* If this symbol is defined in a dynamic object, or we are creating
8480 a shared library, we will need to copy any R_MIPS_32 or
8481 R_MIPS_REL32 relocs against it into the output file. */
8482 if (! info->relocatable
8483 && hmips->possibly_dynamic_relocs != 0
8484 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8485 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8486 || info->shared))
8487 {
8488 bfd_boolean do_copy = TRUE;
8489
8490 if (h->root.type == bfd_link_hash_undefweak)
8491 {
8492 /* Do not copy relocations for undefined weak symbols with
8493 non-default visibility. */
8494 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8495 do_copy = FALSE;
8496
8497 /* Make sure undefined weak symbols are output as a dynamic
8498 symbol in PIEs. */
8499 else if (h->dynindx == -1 && !h->forced_local)
8500 {
8501 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8502 return FALSE;
8503 }
8504 }
8505
8506 if (do_copy)
8507 {
aff469fa 8508 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8509 the SVR4 psABI requires it to have a dynamic symbol table
8510 index greater that DT_MIPS_GOTSYM if there are dynamic
8511 relocations against it.
8512
8513 VxWorks does not enforce the same mapping between the GOT
8514 and the symbol table, so the same requirement does not
8515 apply there. */
6ccf4795
RS
8516 if (!htab->is_vxworks)
8517 {
8518 if (hmips->global_got_area > GGA_RELOC_ONLY)
8519 hmips->global_got_area = GGA_RELOC_ONLY;
8520 hmips->got_only_for_calls = FALSE;
8521 }
aff469fa 8522
9a59ad6b
DJ
8523 mips_elf_allocate_dynamic_relocations
8524 (dynobj, info, hmips->possibly_dynamic_relocs);
8525 if (hmips->readonly_reloc)
8526 /* We tell the dynamic linker that there are relocations
8527 against the text segment. */
8528 info->flags |= DF_TEXTREL;
8529 }
8530 }
8531
8532 return TRUE;
8533}
8534
b49e97c9
TS
8535/* Adjust a symbol defined by a dynamic object and referenced by a
8536 regular object. The current definition is in some section of the
8537 dynamic object, but we're not including those sections. We have to
8538 change the definition to something the rest of the link can
8539 understand. */
8540
b34976b6 8541bfd_boolean
9719ad41
RS
8542_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8543 struct elf_link_hash_entry *h)
b49e97c9
TS
8544{
8545 bfd *dynobj;
8546 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8547 struct mips_elf_link_hash_table *htab;
b49e97c9 8548
5108fc1b 8549 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8550 BFD_ASSERT (htab != NULL);
8551
b49e97c9 8552 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8553 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8554
8555 /* Make sure we know what is going on here. */
8556 BFD_ASSERT (dynobj != NULL
f5385ebf 8557 && (h->needs_plt
f6e332e6 8558 || h->u.weakdef != NULL
f5385ebf
AM
8559 || (h->def_dynamic
8560 && h->ref_regular
8561 && !h->def_regular)));
b49e97c9 8562
b49e97c9 8563 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8564
861fb55a
DJ
8565 /* If there are call relocations against an externally-defined symbol,
8566 see whether we can create a MIPS lazy-binding stub for it. We can
8567 only do this if all references to the function are through call
8568 relocations, and in that case, the traditional lazy-binding stubs
8569 are much more efficient than PLT entries.
8570
8571 Traditional stubs are only available on SVR4 psABI-based systems;
8572 VxWorks always uses PLTs instead. */
8573 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8574 {
8575 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8576 return TRUE;
b49e97c9
TS
8577
8578 /* If this symbol is not defined in a regular file, then set
8579 the symbol to the stub location. This is required to make
8580 function pointers compare as equal between the normal
8581 executable and the shared library. */
f5385ebf 8582 if (!h->def_regular)
b49e97c9 8583 {
33bb52fb
RS
8584 hmips->needs_lazy_stub = TRUE;
8585 htab->lazy_stub_count++;
b34976b6 8586 return TRUE;
b49e97c9
TS
8587 }
8588 }
861fb55a
DJ
8589 /* As above, VxWorks requires PLT entries for externally-defined
8590 functions that are only accessed through call relocations.
b49e97c9 8591
861fb55a
DJ
8592 Both VxWorks and non-VxWorks targets also need PLT entries if there
8593 are static-only relocations against an externally-defined function.
8594 This can technically occur for shared libraries if there are
8595 branches to the symbol, although it is unlikely that this will be
8596 used in practice due to the short ranges involved. It can occur
8597 for any relative or absolute relocation in executables; in that
8598 case, the PLT entry becomes the function's canonical address. */
8599 else if (((h->needs_plt && !hmips->no_fn_stub)
8600 || (h->type == STT_FUNC && hmips->has_static_relocs))
8601 && htab->use_plts_and_copy_relocs
8602 && !SYMBOL_CALLS_LOCAL (info, h)
8603 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8604 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8605 {
861fb55a
DJ
8606 /* If this is the first symbol to need a PLT entry, allocate room
8607 for the header. */
8608 if (htab->splt->size == 0)
8609 {
8610 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8611
861fb55a
DJ
8612 /* If we're using the PLT additions to the psABI, each PLT
8613 entry is 16 bytes and the PLT0 entry is 32 bytes.
8614 Encourage better cache usage by aligning. We do this
8615 lazily to avoid pessimizing traditional objects. */
8616 if (!htab->is_vxworks
8617 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8618 return FALSE;
0a44bf69 8619
861fb55a
DJ
8620 /* Make sure that .got.plt is word-aligned. We do this lazily
8621 for the same reason as above. */
8622 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8623 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8624 return FALSE;
0a44bf69 8625
861fb55a 8626 htab->splt->size += htab->plt_header_size;
0a44bf69 8627
861fb55a
DJ
8628 /* On non-VxWorks targets, the first two entries in .got.plt
8629 are reserved. */
8630 if (!htab->is_vxworks)
a44acb1e
MR
8631 htab->sgotplt->size
8632 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8633
861fb55a
DJ
8634 /* On VxWorks, also allocate room for the header's
8635 .rela.plt.unloaded entries. */
8636 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8637 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8638 }
8639
8640 /* Assign the next .plt entry to this symbol. */
8641 h->plt.offset = htab->splt->size;
8642 htab->splt->size += htab->plt_entry_size;
8643
8644 /* If the output file has no definition of the symbol, set the
861fb55a 8645 symbol's value to the address of the stub. */
131eb6b7 8646 if (!info->shared && !h->def_regular)
0a44bf69
RS
8647 {
8648 h->root.u.def.section = htab->splt;
8649 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8650 /* For VxWorks, point at the PLT load stub rather than the
8651 lazy resolution stub; this stub will become the canonical
8652 function address. */
8653 if (htab->is_vxworks)
8654 h->root.u.def.value += 8;
0a44bf69
RS
8655 }
8656
861fb55a
DJ
8657 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8658 relocation. */
8659 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8660 htab->srelplt->size += (htab->is_vxworks
8661 ? MIPS_ELF_RELA_SIZE (dynobj)
8662 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8663
8664 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8665 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8666 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8667
861fb55a
DJ
8668 /* All relocations against this symbol that could have been made
8669 dynamic will now refer to the PLT entry instead. */
8670 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8671
0a44bf69
RS
8672 return TRUE;
8673 }
8674
8675 /* If this is a weak symbol, and there is a real definition, the
8676 processor independent code will have arranged for us to see the
8677 real definition first, and we can just use the same value. */
8678 if (h->u.weakdef != NULL)
8679 {
8680 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8681 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8682 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8683 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8684 return TRUE;
8685 }
8686
861fb55a
DJ
8687 /* Otherwise, there is nothing further to do for symbols defined
8688 in regular objects. */
8689 if (h->def_regular)
0a44bf69
RS
8690 return TRUE;
8691
861fb55a
DJ
8692 /* There's also nothing more to do if we'll convert all relocations
8693 against this symbol into dynamic relocations. */
8694 if (!hmips->has_static_relocs)
8695 return TRUE;
8696
8697 /* We're now relying on copy relocations. Complain if we have
8698 some that we can't convert. */
8699 if (!htab->use_plts_and_copy_relocs || info->shared)
8700 {
8701 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8702 "dynamic symbol %s"),
8703 h->root.root.string);
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 }
8707
0a44bf69
RS
8708 /* We must allocate the symbol in our .dynbss section, which will
8709 become part of the .bss section of the executable. There will be
8710 an entry for this symbol in the .dynsym section. The dynamic
8711 object will contain position independent code, so all references
8712 from the dynamic object to this symbol will go through the global
8713 offset table. The dynamic linker will use the .dynsym entry to
8714 determine the address it must put in the global offset table, so
8715 both the dynamic object and the regular object will refer to the
8716 same memory location for the variable. */
8717
8718 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8719 {
861fb55a
DJ
8720 if (htab->is_vxworks)
8721 htab->srelbss->size += sizeof (Elf32_External_Rela);
8722 else
8723 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8724 h->needs_copy = 1;
8725 }
8726
861fb55a
DJ
8727 /* All relocations against this symbol that could have been made
8728 dynamic will now refer to the local copy instead. */
8729 hmips->possibly_dynamic_relocs = 0;
8730
027297b7 8731 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8732}
b49e97c9
TS
8733\f
8734/* This function is called after all the input files have been read,
8735 and the input sections have been assigned to output sections. We
8736 check for any mips16 stub sections that we can discard. */
8737
b34976b6 8738bfd_boolean
9719ad41
RS
8739_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8740 struct bfd_link_info *info)
b49e97c9
TS
8741{
8742 asection *ri;
0a44bf69 8743 struct mips_elf_link_hash_table *htab;
861fb55a 8744 struct mips_htab_traverse_info hti;
0a44bf69
RS
8745
8746 htab = mips_elf_hash_table (info);
4dfe6ac6 8747 BFD_ASSERT (htab != NULL);
f4416af6 8748
b49e97c9
TS
8749 /* The .reginfo section has a fixed size. */
8750 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8751 if (ri != NULL)
9719ad41 8752 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8753
861fb55a
DJ
8754 hti.info = info;
8755 hti.output_bfd = output_bfd;
8756 hti.error = FALSE;
8757 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8758 mips_elf_check_symbols, &hti);
8759 if (hti.error)
8760 return FALSE;
f4416af6 8761
33bb52fb
RS
8762 return TRUE;
8763}
8764
8765/* If the link uses a GOT, lay it out and work out its size. */
8766
8767static bfd_boolean
8768mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8769{
8770 bfd *dynobj;
8771 asection *s;
8772 struct mips_got_info *g;
33bb52fb
RS
8773 bfd_size_type loadable_size = 0;
8774 bfd_size_type page_gotno;
d7206569 8775 bfd *ibfd;
ab361d49 8776 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
8777 struct mips_elf_link_hash_table *htab;
8778
8779 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8780 BFD_ASSERT (htab != NULL);
8781
a8028dd0 8782 s = htab->sgot;
f4416af6 8783 if (s == NULL)
b34976b6 8784 return TRUE;
b49e97c9 8785
33bb52fb 8786 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8787 g = htab->got_info;
8788
861fb55a
DJ
8789 /* Allocate room for the reserved entries. VxWorks always reserves
8790 3 entries; other objects only reserve 2 entries. */
8791 BFD_ASSERT (g->assigned_gotno == 0);
8792 if (htab->is_vxworks)
8793 htab->reserved_gotno = 3;
8794 else
8795 htab->reserved_gotno = 2;
8796 g->local_gotno += htab->reserved_gotno;
8797 g->assigned_gotno = htab->reserved_gotno;
8798
6c42ddb9
RS
8799 /* Decide which symbols need to go in the global part of the GOT and
8800 count the number of reloc-only GOT symbols. */
020d7251 8801 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8802
13db6b44
RS
8803 if (!mips_elf_resolve_final_got_entries (info, g))
8804 return FALSE;
8805
33bb52fb
RS
8806 /* Calculate the total loadable size of the output. That
8807 will give us the maximum number of GOT_PAGE entries
8808 required. */
d7206569 8809 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
33bb52fb
RS
8810 {
8811 asection *subsection;
5108fc1b 8812
d7206569 8813 for (subsection = ibfd->sections;
33bb52fb
RS
8814 subsection;
8815 subsection = subsection->next)
8816 {
8817 if ((subsection->flags & SEC_ALLOC) == 0)
8818 continue;
8819 loadable_size += ((subsection->size + 0xf)
8820 &~ (bfd_size_type) 0xf);
8821 }
8822 }
f4416af6 8823
0a44bf69 8824 if (htab->is_vxworks)
738e5348 8825 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8826 relocations against local symbols evaluate to "G", and the EABI does
8827 not include R_MIPS_GOT_PAGE. */
c224138d 8828 page_gotno = 0;
0a44bf69
RS
8829 else
8830 /* Assume there are two loadable segments consisting of contiguous
8831 sections. Is 5 enough? */
c224138d
RS
8832 page_gotno = (loadable_size >> 16) + 5;
8833
13db6b44 8834 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
8835 conservative. */
8836 if (page_gotno > g->page_gotno)
8837 page_gotno = g->page_gotno;
f4416af6 8838
c224138d 8839 g->local_gotno += page_gotno;
ab361d49 8840
ab361d49
RS
8841 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8842 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
8843 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8844
0a44bf69
RS
8845 /* VxWorks does not support multiple GOTs. It initializes $gp to
8846 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8847 dynamic loader. */
57093f5e 8848 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8849 {
a8028dd0 8850 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8851 return FALSE;
8852 }
8853 else
8854 {
d7206569
RS
8855 /* Record that all bfds use G. This also has the effect of freeing
8856 the per-bfd GOTs, which we no longer need. */
8857 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8858 if (mips_elf_bfd_got (ibfd, FALSE))
8859 mips_elf_replace_bfd_got (ibfd, g);
8860 mips_elf_replace_bfd_got (output_bfd, g);
8861
33bb52fb 8862 /* Set up TLS entries. */
0f20cc35 8863 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
8864 tga.info = info;
8865 tga.g = g;
8866 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8867 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8868 if (!tga.g)
8869 return FALSE;
1fd20d70
RS
8870 BFD_ASSERT (g->tls_assigned_gotno
8871 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 8872
57093f5e
RS
8873 /* Each VxWorks GOT entry needs an explicit relocation. */
8874 if (htab->is_vxworks && info->shared)
8875 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8876
33bb52fb 8877 /* Allocate room for the TLS relocations. */
ab361d49
RS
8878 if (g->relocs)
8879 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 8880 }
b49e97c9 8881
b34976b6 8882 return TRUE;
b49e97c9
TS
8883}
8884
33bb52fb
RS
8885/* Estimate the size of the .MIPS.stubs section. */
8886
8887static void
8888mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8889{
8890 struct mips_elf_link_hash_table *htab;
8891 bfd_size_type dynsymcount;
8892
8893 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8894 BFD_ASSERT (htab != NULL);
8895
33bb52fb
RS
8896 if (htab->lazy_stub_count == 0)
8897 return;
8898
8899 /* IRIX rld assumes that a function stub isn't at the end of the .text
8900 section, so add a dummy entry to the end. */
8901 htab->lazy_stub_count++;
8902
8903 /* Get a worst-case estimate of the number of dynamic symbols needed.
8904 At this point, dynsymcount does not account for section symbols
8905 and count_section_dynsyms may overestimate the number that will
8906 be needed. */
8907 dynsymcount = (elf_hash_table (info)->dynsymcount
8908 + count_section_dynsyms (output_bfd, info));
8909
8910 /* Determine the size of one stub entry. */
8911 htab->function_stub_size = (dynsymcount > 0x10000
8912 ? MIPS_FUNCTION_STUB_BIG_SIZE
8913 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8914
8915 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8916}
8917
8918/* A mips_elf_link_hash_traverse callback for which DATA points to the
8919 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8920 allocate an entry in the stubs section. */
8921
8922static bfd_boolean
8923mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8924{
8925 struct mips_elf_link_hash_table *htab;
8926
8927 htab = (struct mips_elf_link_hash_table *) data;
8928 if (h->needs_lazy_stub)
8929 {
8930 h->root.root.u.def.section = htab->sstubs;
8931 h->root.root.u.def.value = htab->sstubs->size;
8932 h->root.plt.offset = htab->sstubs->size;
8933 htab->sstubs->size += htab->function_stub_size;
8934 }
8935 return TRUE;
8936}
8937
8938/* Allocate offsets in the stubs section to each symbol that needs one.
8939 Set the final size of the .MIPS.stub section. */
8940
8941static void
8942mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8943{
8944 struct mips_elf_link_hash_table *htab;
8945
8946 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8947 BFD_ASSERT (htab != NULL);
8948
33bb52fb
RS
8949 if (htab->lazy_stub_count == 0)
8950 return;
8951
8952 htab->sstubs->size = 0;
4dfe6ac6 8953 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8954 htab->sstubs->size += htab->function_stub_size;
8955 BFD_ASSERT (htab->sstubs->size
8956 == htab->lazy_stub_count * htab->function_stub_size);
8957}
8958
b49e97c9
TS
8959/* Set the sizes of the dynamic sections. */
8960
b34976b6 8961bfd_boolean
9719ad41
RS
8962_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8963 struct bfd_link_info *info)
b49e97c9
TS
8964{
8965 bfd *dynobj;
861fb55a 8966 asection *s, *sreldyn;
b34976b6 8967 bfd_boolean reltext;
0a44bf69 8968 struct mips_elf_link_hash_table *htab;
b49e97c9 8969
0a44bf69 8970 htab = mips_elf_hash_table (info);
4dfe6ac6 8971 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8972 dynobj = elf_hash_table (info)->dynobj;
8973 BFD_ASSERT (dynobj != NULL);
8974
8975 if (elf_hash_table (info)->dynamic_sections_created)
8976 {
8977 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8978 if (info->executable)
b49e97c9 8979 {
3d4d4302 8980 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 8981 BFD_ASSERT (s != NULL);
eea6121a 8982 s->size
b49e97c9
TS
8983 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8984 s->contents
8985 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8986 }
861fb55a
DJ
8987
8988 /* Create a symbol for the PLT, if we know that we are using it. */
8989 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8990 {
8991 struct elf_link_hash_entry *h;
8992
8993 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8994
8995 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8996 "_PROCEDURE_LINKAGE_TABLE_");
8997 htab->root.hplt = h;
8998 if (h == NULL)
8999 return FALSE;
9000 h->type = STT_FUNC;
9001 }
9002 }
4e41d0d7 9003
9a59ad6b 9004 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9005 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9006
33bb52fb
RS
9007 mips_elf_estimate_stub_size (output_bfd, info);
9008
9009 if (!mips_elf_lay_out_got (output_bfd, info))
9010 return FALSE;
9011
9012 mips_elf_lay_out_lazy_stubs (info);
9013
b49e97c9
TS
9014 /* The check_relocs and adjust_dynamic_symbol entry points have
9015 determined the sizes of the various dynamic sections. Allocate
9016 memory for them. */
b34976b6 9017 reltext = FALSE;
b49e97c9
TS
9018 for (s = dynobj->sections; s != NULL; s = s->next)
9019 {
9020 const char *name;
b49e97c9
TS
9021
9022 /* It's OK to base decisions on the section name, because none
9023 of the dynobj section names depend upon the input files. */
9024 name = bfd_get_section_name (dynobj, s);
9025
9026 if ((s->flags & SEC_LINKER_CREATED) == 0)
9027 continue;
9028
0112cd26 9029 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9030 {
c456f082 9031 if (s->size != 0)
b49e97c9
TS
9032 {
9033 const char *outname;
9034 asection *target;
9035
9036 /* If this relocation section applies to a read only
9037 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9038 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9039 assert a DT_TEXTREL entry rather than testing whether
9040 there exists a relocation to a read only section or
9041 not. */
9042 outname = bfd_get_section_name (output_bfd,
9043 s->output_section);
9044 target = bfd_get_section_by_name (output_bfd, outname + 4);
9045 if ((target != NULL
9046 && (target->flags & SEC_READONLY) != 0
9047 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9048 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9049 reltext = TRUE;
b49e97c9
TS
9050
9051 /* We use the reloc_count field as a counter if we need
9052 to copy relocs into the output file. */
0a44bf69 9053 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9054 s->reloc_count = 0;
f4416af6
AO
9055
9056 /* If combreloc is enabled, elf_link_sort_relocs() will
9057 sort relocations, but in a different way than we do,
9058 and before we're done creating relocations. Also, it
9059 will move them around between input sections'
9060 relocation's contents, so our sorting would be
9061 broken, so don't let it run. */
9062 info->combreloc = 0;
b49e97c9
TS
9063 }
9064 }
b49e97c9
TS
9065 else if (! info->shared
9066 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9067 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9068 {
5108fc1b 9069 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9070 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9071 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9072 }
9073 else if (SGI_COMPAT (output_bfd)
0112cd26 9074 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9075 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9076 else if (s == htab->splt)
9077 {
9078 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9079 room for an extra nop to fill the delay slot. This is
9080 for CPUs without load interlocking. */
9081 if (! LOAD_INTERLOCKS_P (output_bfd)
9082 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9083 s->size += 4;
9084 }
0112cd26 9085 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9086 && s != htab->sgot
0a44bf69 9087 && s != htab->sgotplt
861fb55a
DJ
9088 && s != htab->sstubs
9089 && s != htab->sdynbss)
b49e97c9
TS
9090 {
9091 /* It's not one of our sections, so don't allocate space. */
9092 continue;
9093 }
9094
c456f082 9095 if (s->size == 0)
b49e97c9 9096 {
8423293d 9097 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9098 continue;
9099 }
9100
c456f082
AM
9101 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9102 continue;
9103
b49e97c9 9104 /* Allocate memory for the section contents. */
eea6121a 9105 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9106 if (s->contents == NULL)
b49e97c9
TS
9107 {
9108 bfd_set_error (bfd_error_no_memory);
b34976b6 9109 return FALSE;
b49e97c9
TS
9110 }
9111 }
9112
9113 if (elf_hash_table (info)->dynamic_sections_created)
9114 {
9115 /* Add some entries to the .dynamic section. We fill in the
9116 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9117 must add the entries now so that we get the correct size for
5750dcec 9118 the .dynamic section. */
af5978fb
RS
9119
9120 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9121 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9122 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9123 may only look at the first one they see. */
af5978fb
RS
9124 if (!info->shared
9125 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9126 return FALSE;
b49e97c9 9127
5750dcec
DJ
9128 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9129 used by the debugger. */
9130 if (info->executable
9131 && !SGI_COMPAT (output_bfd)
9132 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9133 return FALSE;
9134
0a44bf69 9135 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9136 info->flags |= DF_TEXTREL;
9137
9138 if ((info->flags & DF_TEXTREL) != 0)
9139 {
9140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9141 return FALSE;
943284cc
DJ
9142
9143 /* Clear the DF_TEXTREL flag. It will be set again if we
9144 write out an actual text relocation; we may not, because
9145 at this point we do not know whether e.g. any .eh_frame
9146 absolute relocations have been converted to PC-relative. */
9147 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9148 }
9149
9150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9151 return FALSE;
b49e97c9 9152
861fb55a 9153 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9154 if (htab->is_vxworks)
b49e97c9 9155 {
0a44bf69
RS
9156 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9157 use any of the DT_MIPS_* tags. */
861fb55a 9158 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9159 {
9160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9161 return FALSE;
b49e97c9 9162
0a44bf69
RS
9163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9164 return FALSE;
b49e97c9 9165
0a44bf69
RS
9166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9167 return FALSE;
9168 }
b49e97c9 9169 }
0a44bf69
RS
9170 else
9171 {
861fb55a 9172 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9173 {
9174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9175 return FALSE;
b49e97c9 9176
0a44bf69
RS
9177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9178 return FALSE;
b49e97c9 9179
0a44bf69
RS
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9181 return FALSE;
9182 }
b49e97c9 9183
0a44bf69
RS
9184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9185 return FALSE;
b49e97c9 9186
0a44bf69
RS
9187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9188 return FALSE;
b49e97c9 9189
0a44bf69
RS
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9191 return FALSE;
b49e97c9 9192
0a44bf69
RS
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9194 return FALSE;
b49e97c9 9195
0a44bf69
RS
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9197 return FALSE;
b49e97c9 9198
0a44bf69
RS
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9200 return FALSE;
b49e97c9 9201
0a44bf69
RS
9202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9203 return FALSE;
9204
9205 if (IRIX_COMPAT (dynobj) == ict_irix5
9206 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9207 return FALSE;
9208
9209 if (IRIX_COMPAT (dynobj) == ict_irix6
9210 && (bfd_get_section_by_name
af0edeb8 9211 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9212 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9213 return FALSE;
9214 }
861fb55a
DJ
9215 if (htab->splt->size > 0)
9216 {
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9218 return FALSE;
9219
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9221 return FALSE;
9222
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9227 return FALSE;
9228 }
7a2b07ff
NS
9229 if (htab->is_vxworks
9230 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9231 return FALSE;
b49e97c9
TS
9232 }
9233
b34976b6 9234 return TRUE;
b49e97c9
TS
9235}
9236\f
81d43bff
RS
9237/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9238 Adjust its R_ADDEND field so that it is correct for the output file.
9239 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9240 and sections respectively; both use symbol indexes. */
9241
9242static void
9243mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9244 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9245 asection **local_sections, Elf_Internal_Rela *rel)
9246{
9247 unsigned int r_type, r_symndx;
9248 Elf_Internal_Sym *sym;
9249 asection *sec;
9250
020d7251 9251 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9252 {
9253 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9254 if (gprel16_reloc_p (r_type)
81d43bff 9255 || r_type == R_MIPS_GPREL32
df58fc94 9256 || literal_reloc_p (r_type))
81d43bff
RS
9257 {
9258 rel->r_addend += _bfd_get_gp_value (input_bfd);
9259 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9260 }
9261
9262 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9263 sym = local_syms + r_symndx;
9264
9265 /* Adjust REL's addend to account for section merging. */
9266 if (!info->relocatable)
9267 {
9268 sec = local_sections[r_symndx];
9269 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9270 }
9271
9272 /* This would normally be done by the rela_normal code in elflink.c. */
9273 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9274 rel->r_addend += local_sections[r_symndx]->output_offset;
9275 }
9276}
9277
545fd46b
MR
9278/* Handle relocations against symbols from removed linkonce sections,
9279 or sections discarded by a linker script. We use this wrapper around
9280 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9281 on 64-bit ELF targets. In this case for any relocation handled, which
9282 always be the first in a triplet, the remaining two have to be processed
9283 together with the first, even if they are R_MIPS_NONE. It is the symbol
9284 index referred by the first reloc that applies to all the three and the
9285 remaining two never refer to an object symbol. And it is the final
9286 relocation (the last non-null one) that determines the output field of
9287 the whole relocation so retrieve the corresponding howto structure for
9288 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9289
9290 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9291 and therefore requires to be pasted in a loop. It also defines a block
9292 and does not protect any of its arguments, hence the extra brackets. */
9293
9294static void
9295mips_reloc_against_discarded_section (bfd *output_bfd,
9296 struct bfd_link_info *info,
9297 bfd *input_bfd, asection *input_section,
9298 Elf_Internal_Rela **rel,
9299 const Elf_Internal_Rela **relend,
9300 bfd_boolean rel_reloc,
9301 reloc_howto_type *howto,
9302 bfd_byte *contents)
9303{
9304 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9305 int count = bed->s->int_rels_per_ext_rel;
9306 unsigned int r_type;
9307 int i;
9308
9309 for (i = count - 1; i > 0; i--)
9310 {
9311 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9312 if (r_type != R_MIPS_NONE)
9313 {
9314 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9315 break;
9316 }
9317 }
9318 do
9319 {
9320 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9321 (*rel), count, (*relend),
9322 howto, i, contents);
9323 }
9324 while (0);
9325}
9326
b49e97c9
TS
9327/* Relocate a MIPS ELF section. */
9328
b34976b6 9329bfd_boolean
9719ad41
RS
9330_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9331 bfd *input_bfd, asection *input_section,
9332 bfd_byte *contents, Elf_Internal_Rela *relocs,
9333 Elf_Internal_Sym *local_syms,
9334 asection **local_sections)
b49e97c9
TS
9335{
9336 Elf_Internal_Rela *rel;
9337 const Elf_Internal_Rela *relend;
9338 bfd_vma addend = 0;
b34976b6 9339 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9340 const struct elf_backend_data *bed;
b49e97c9
TS
9341
9342 bed = get_elf_backend_data (output_bfd);
9343 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9344 for (rel = relocs; rel < relend; ++rel)
9345 {
9346 const char *name;
c9adbffe 9347 bfd_vma value = 0;
b49e97c9 9348 reloc_howto_type *howto;
38a7df63 9349 bfd_boolean cross_mode_jump_p;
b34976b6 9350 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9351 REL relocation. */
b34976b6 9352 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9353 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9354 const char *msg;
ab96bf03
AM
9355 unsigned long r_symndx;
9356 asection *sec;
749b8d9d
L
9357 Elf_Internal_Shdr *symtab_hdr;
9358 struct elf_link_hash_entry *h;
d4730f92 9359 bfd_boolean rel_reloc;
b49e97c9 9360
d4730f92
BS
9361 rel_reloc = (NEWABI_P (input_bfd)
9362 && mips_elf_rel_relocation_p (input_bfd, input_section,
9363 relocs, rel));
b49e97c9 9364 /* Find the relocation howto for this relocation. */
d4730f92 9365 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9366
9367 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9369 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9370 {
9371 sec = local_sections[r_symndx];
9372 h = NULL;
9373 }
ab96bf03
AM
9374 else
9375 {
ab96bf03 9376 unsigned long extsymoff;
ab96bf03 9377
ab96bf03
AM
9378 extsymoff = 0;
9379 if (!elf_bad_symtab (input_bfd))
9380 extsymoff = symtab_hdr->sh_info;
9381 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9382 while (h->root.type == bfd_link_hash_indirect
9383 || h->root.type == bfd_link_hash_warning)
9384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9385
9386 sec = NULL;
9387 if (h->root.type == bfd_link_hash_defined
9388 || h->root.type == bfd_link_hash_defweak)
9389 sec = h->root.u.def.section;
9390 }
9391
dbaa2011 9392 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9393 {
9394 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9395 input_section, &rel, &relend,
9396 rel_reloc, howto, contents);
9397 continue;
9398 }
ab96bf03 9399
4a14403c 9400 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9401 {
9402 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9403 64-bit code, but make sure all their addresses are in the
9404 lowermost or uppermost 32-bit section of the 64-bit address
9405 space. Thus, when they use an R_MIPS_64 they mean what is
9406 usually meant by R_MIPS_32, with the exception that the
9407 stored value is sign-extended to 64 bits. */
b34976b6 9408 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9409
9410 /* On big-endian systems, we need to lie about the position
9411 of the reloc. */
9412 if (bfd_big_endian (input_bfd))
9413 rel->r_offset += 4;
9414 }
b49e97c9
TS
9415
9416 if (!use_saved_addend_p)
9417 {
b49e97c9
TS
9418 /* If these relocations were originally of the REL variety,
9419 we must pull the addend out of the field that will be
9420 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9421 RELA relocation. */
9422 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9423 relocs, rel))
b49e97c9 9424 {
b34976b6 9425 rela_relocation_p = FALSE;
c224138d
RS
9426 addend = mips_elf_read_rel_addend (input_bfd, rel,
9427 howto, contents);
738e5348
RS
9428 if (hi16_reloc_p (r_type)
9429 || (got16_reloc_p (r_type)
b49e97c9 9430 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9431 local_sections)))
b49e97c9 9432 {
c224138d
RS
9433 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9434 contents, &addend))
749b8d9d 9435 {
749b8d9d
L
9436 if (h)
9437 name = h->root.root.string;
9438 else
9439 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9440 local_syms + r_symndx,
9441 sec);
9442 (*_bfd_error_handler)
9443 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9444 input_bfd, input_section, name, howto->name,
9445 rel->r_offset);
749b8d9d 9446 }
b49e97c9 9447 }
30ac9238
RS
9448 else
9449 addend <<= howto->rightshift;
b49e97c9
TS
9450 }
9451 else
9452 addend = rel->r_addend;
81d43bff
RS
9453 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9454 local_syms, local_sections, rel);
b49e97c9
TS
9455 }
9456
1049f94e 9457 if (info->relocatable)
b49e97c9 9458 {
4a14403c 9459 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9460 && bfd_big_endian (input_bfd))
9461 rel->r_offset -= 4;
9462
81d43bff 9463 if (!rela_relocation_p && rel->r_addend)
5a659663 9464 {
81d43bff 9465 addend += rel->r_addend;
738e5348 9466 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9467 addend = mips_elf_high (addend);
9468 else if (r_type == R_MIPS_HIGHER)
9469 addend = mips_elf_higher (addend);
9470 else if (r_type == R_MIPS_HIGHEST)
9471 addend = mips_elf_highest (addend);
30ac9238
RS
9472 else
9473 addend >>= howto->rightshift;
b49e97c9 9474
30ac9238
RS
9475 /* We use the source mask, rather than the destination
9476 mask because the place to which we are writing will be
9477 source of the addend in the final link. */
b49e97c9
TS
9478 addend &= howto->src_mask;
9479
5a659663 9480 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9481 /* See the comment above about using R_MIPS_64 in the 32-bit
9482 ABI. Here, we need to update the addend. It would be
9483 possible to get away with just using the R_MIPS_32 reloc
9484 but for endianness. */
9485 {
9486 bfd_vma sign_bits;
9487 bfd_vma low_bits;
9488 bfd_vma high_bits;
9489
9490 if (addend & ((bfd_vma) 1 << 31))
9491#ifdef BFD64
9492 sign_bits = ((bfd_vma) 1 << 32) - 1;
9493#else
9494 sign_bits = -1;
9495#endif
9496 else
9497 sign_bits = 0;
9498
9499 /* If we don't know that we have a 64-bit type,
9500 do two separate stores. */
9501 if (bfd_big_endian (input_bfd))
9502 {
9503 /* Store the sign-bits (which are most significant)
9504 first. */
9505 low_bits = sign_bits;
9506 high_bits = addend;
9507 }
9508 else
9509 {
9510 low_bits = addend;
9511 high_bits = sign_bits;
9512 }
9513 bfd_put_32 (input_bfd, low_bits,
9514 contents + rel->r_offset);
9515 bfd_put_32 (input_bfd, high_bits,
9516 contents + rel->r_offset + 4);
9517 continue;
9518 }
9519
9520 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9521 input_bfd, input_section,
b34976b6
AM
9522 contents, FALSE))
9523 return FALSE;
b49e97c9
TS
9524 }
9525
9526 /* Go on to the next relocation. */
9527 continue;
9528 }
9529
9530 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9531 relocations for the same offset. In that case we are
9532 supposed to treat the output of each relocation as the addend
9533 for the next. */
9534 if (rel + 1 < relend
9535 && rel->r_offset == rel[1].r_offset
9536 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9537 use_saved_addend_p = TRUE;
b49e97c9 9538 else
b34976b6 9539 use_saved_addend_p = FALSE;
b49e97c9
TS
9540
9541 /* Figure out what value we are supposed to relocate. */
9542 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9543 input_section, info, rel,
9544 addend, howto, local_syms,
9545 local_sections, &value,
38a7df63 9546 &name, &cross_mode_jump_p,
bce03d3d 9547 use_saved_addend_p))
b49e97c9
TS
9548 {
9549 case bfd_reloc_continue:
9550 /* There's nothing to do. */
9551 continue;
9552
9553 case bfd_reloc_undefined:
9554 /* mips_elf_calculate_relocation already called the
9555 undefined_symbol callback. There's no real point in
9556 trying to perform the relocation at this point, so we
9557 just skip ahead to the next relocation. */
9558 continue;
9559
9560 case bfd_reloc_notsupported:
9561 msg = _("internal error: unsupported relocation error");
9562 info->callbacks->warning
9563 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9564 return FALSE;
b49e97c9
TS
9565
9566 case bfd_reloc_overflow:
9567 if (use_saved_addend_p)
9568 /* Ignore overflow until we reach the last relocation for
9569 a given location. */
9570 ;
9571 else
9572 {
0e53d9da
AN
9573 struct mips_elf_link_hash_table *htab;
9574
9575 htab = mips_elf_hash_table (info);
4dfe6ac6 9576 BFD_ASSERT (htab != NULL);
b49e97c9 9577 BFD_ASSERT (name != NULL);
0e53d9da 9578 if (!htab->small_data_overflow_reported
9684f078 9579 && (gprel16_reloc_p (howto->type)
df58fc94 9580 || literal_reloc_p (howto->type)))
0e53d9da 9581 {
91d6fa6a
NC
9582 msg = _("small-data section exceeds 64KB;"
9583 " lower small-data size limit (see option -G)");
0e53d9da
AN
9584
9585 htab->small_data_overflow_reported = TRUE;
9586 (*info->callbacks->einfo) ("%P: %s\n", msg);
9587 }
b49e97c9 9588 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9589 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9590 input_bfd, input_section, rel->r_offset)))
b34976b6 9591 return FALSE;
b49e97c9
TS
9592 }
9593 break;
9594
9595 case bfd_reloc_ok:
9596 break;
9597
df58fc94
RS
9598 case bfd_reloc_outofrange:
9599 if (jal_reloc_p (howto->type))
9600 {
9601 msg = _("JALX to a non-word-aligned address");
9602 info->callbacks->warning
9603 (info, msg, name, input_bfd, input_section, rel->r_offset);
9604 return FALSE;
9605 }
9606 /* Fall through. */
9607
b49e97c9
TS
9608 default:
9609 abort ();
9610 break;
9611 }
9612
9613 /* If we've got another relocation for the address, keep going
9614 until we reach the last one. */
9615 if (use_saved_addend_p)
9616 {
9617 addend = value;
9618 continue;
9619 }
9620
4a14403c 9621 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9622 /* See the comment above about using R_MIPS_64 in the 32-bit
9623 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9624 that calculated the right value. Now, however, we
9625 sign-extend the 32-bit result to 64-bits, and store it as a
9626 64-bit value. We are especially generous here in that we
9627 go to extreme lengths to support this usage on systems with
9628 only a 32-bit VMA. */
9629 {
9630 bfd_vma sign_bits;
9631 bfd_vma low_bits;
9632 bfd_vma high_bits;
9633
9634 if (value & ((bfd_vma) 1 << 31))
9635#ifdef BFD64
9636 sign_bits = ((bfd_vma) 1 << 32) - 1;
9637#else
9638 sign_bits = -1;
9639#endif
9640 else
9641 sign_bits = 0;
9642
9643 /* If we don't know that we have a 64-bit type,
9644 do two separate stores. */
9645 if (bfd_big_endian (input_bfd))
9646 {
9647 /* Undo what we did above. */
9648 rel->r_offset -= 4;
9649 /* Store the sign-bits (which are most significant)
9650 first. */
9651 low_bits = sign_bits;
9652 high_bits = value;
9653 }
9654 else
9655 {
9656 low_bits = value;
9657 high_bits = sign_bits;
9658 }
9659 bfd_put_32 (input_bfd, low_bits,
9660 contents + rel->r_offset);
9661 bfd_put_32 (input_bfd, high_bits,
9662 contents + rel->r_offset + 4);
9663 continue;
9664 }
9665
9666 /* Actually perform the relocation. */
9667 if (! mips_elf_perform_relocation (info, howto, rel, value,
9668 input_bfd, input_section,
38a7df63 9669 contents, cross_mode_jump_p))
b34976b6 9670 return FALSE;
b49e97c9
TS
9671 }
9672
b34976b6 9673 return TRUE;
b49e97c9
TS
9674}
9675\f
861fb55a
DJ
9676/* A function that iterates over each entry in la25_stubs and fills
9677 in the code for each one. DATA points to a mips_htab_traverse_info. */
9678
9679static int
9680mips_elf_create_la25_stub (void **slot, void *data)
9681{
9682 struct mips_htab_traverse_info *hti;
9683 struct mips_elf_link_hash_table *htab;
9684 struct mips_elf_la25_stub *stub;
9685 asection *s;
9686 bfd_byte *loc;
9687 bfd_vma offset, target, target_high, target_low;
9688
9689 stub = (struct mips_elf_la25_stub *) *slot;
9690 hti = (struct mips_htab_traverse_info *) data;
9691 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9692 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9693
9694 /* Create the section contents, if we haven't already. */
9695 s = stub->stub_section;
9696 loc = s->contents;
9697 if (loc == NULL)
9698 {
9699 loc = bfd_malloc (s->size);
9700 if (loc == NULL)
9701 {
9702 hti->error = TRUE;
9703 return FALSE;
9704 }
9705 s->contents = loc;
9706 }
9707
9708 /* Work out where in the section this stub should go. */
9709 offset = stub->offset;
9710
9711 /* Work out the target address. */
8f0c309a
CLT
9712 target = mips_elf_get_la25_target (stub, &s);
9713 target += s->output_section->vma + s->output_offset;
9714
861fb55a
DJ
9715 target_high = ((target + 0x8000) >> 16) & 0xffff;
9716 target_low = (target & 0xffff);
9717
9718 if (stub->stub_section != htab->strampoline)
9719 {
df58fc94 9720 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9721 of the section and write the two instructions at the end. */
9722 memset (loc, 0, offset);
9723 loc += offset;
df58fc94
RS
9724 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9725 {
d21911ea
MR
9726 bfd_put_micromips_32 (hti->output_bfd,
9727 LA25_LUI_MICROMIPS (target_high),
9728 loc);
9729 bfd_put_micromips_32 (hti->output_bfd,
9730 LA25_ADDIU_MICROMIPS (target_low),
9731 loc + 4);
df58fc94
RS
9732 }
9733 else
9734 {
9735 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9736 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9737 }
861fb55a
DJ
9738 }
9739 else
9740 {
9741 /* This is trampoline. */
9742 loc += offset;
df58fc94
RS
9743 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9744 {
d21911ea
MR
9745 bfd_put_micromips_32 (hti->output_bfd,
9746 LA25_LUI_MICROMIPS (target_high), loc);
9747 bfd_put_micromips_32 (hti->output_bfd,
9748 LA25_J_MICROMIPS (target), loc + 4);
9749 bfd_put_micromips_32 (hti->output_bfd,
9750 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9751 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9752 }
9753 else
9754 {
9755 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9756 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9757 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9758 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9759 }
861fb55a
DJ
9760 }
9761 return TRUE;
9762}
9763
b49e97c9
TS
9764/* If NAME is one of the special IRIX6 symbols defined by the linker,
9765 adjust it appropriately now. */
9766
9767static void
9719ad41
RS
9768mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9769 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9770{
9771 /* The linker script takes care of providing names and values for
9772 these, but we must place them into the right sections. */
9773 static const char* const text_section_symbols[] = {
9774 "_ftext",
9775 "_etext",
9776 "__dso_displacement",
9777 "__elf_header",
9778 "__program_header_table",
9779 NULL
9780 };
9781
9782 static const char* const data_section_symbols[] = {
9783 "_fdata",
9784 "_edata",
9785 "_end",
9786 "_fbss",
9787 NULL
9788 };
9789
9790 const char* const *p;
9791 int i;
9792
9793 for (i = 0; i < 2; ++i)
9794 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9795 *p;
9796 ++p)
9797 if (strcmp (*p, name) == 0)
9798 {
9799 /* All of these symbols are given type STT_SECTION by the
9800 IRIX6 linker. */
9801 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9802 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9803
9804 /* The IRIX linker puts these symbols in special sections. */
9805 if (i == 0)
9806 sym->st_shndx = SHN_MIPS_TEXT;
9807 else
9808 sym->st_shndx = SHN_MIPS_DATA;
9809
9810 break;
9811 }
9812}
9813
9814/* Finish up dynamic symbol handling. We set the contents of various
9815 dynamic sections here. */
9816
b34976b6 9817bfd_boolean
9719ad41
RS
9818_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9819 struct bfd_link_info *info,
9820 struct elf_link_hash_entry *h,
9821 Elf_Internal_Sym *sym)
b49e97c9
TS
9822{
9823 bfd *dynobj;
b49e97c9 9824 asection *sgot;
f4416af6 9825 struct mips_got_info *g, *gg;
b49e97c9 9826 const char *name;
3d6746ca 9827 int idx;
5108fc1b 9828 struct mips_elf_link_hash_table *htab;
738e5348 9829 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9830
5108fc1b 9831 htab = mips_elf_hash_table (info);
4dfe6ac6 9832 BFD_ASSERT (htab != NULL);
b49e97c9 9833 dynobj = elf_hash_table (info)->dynobj;
738e5348 9834 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9835
861fb55a
DJ
9836 BFD_ASSERT (!htab->is_vxworks);
9837
9838 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9839 {
9840 /* We've decided to create a PLT entry for this symbol. */
9841 bfd_byte *loc;
9842 bfd_vma header_address, plt_index, got_address;
9843 bfd_vma got_address_high, got_address_low, load;
9844 const bfd_vma *plt_entry;
9845
9846 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9847 BFD_ASSERT (h->dynindx != -1);
9848 BFD_ASSERT (htab->splt != NULL);
9849 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9850 BFD_ASSERT (!h->def_regular);
9851
9852 /* Calculate the address of the PLT header. */
9853 header_address = (htab->splt->output_section->vma
9854 + htab->splt->output_offset);
9855
9856 /* Calculate the index of the entry. */
9857 plt_index = ((h->plt.offset - htab->plt_header_size)
9858 / htab->plt_entry_size);
9859
9860 /* Calculate the address of the .got.plt entry. */
9861 got_address = (htab->sgotplt->output_section->vma
9862 + htab->sgotplt->output_offset
9863 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9864 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9865 got_address_low = got_address & 0xffff;
9866
9867 /* Initially point the .got.plt entry at the PLT header. */
9868 loc = (htab->sgotplt->contents
9869 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9870 if (ABI_64_P (output_bfd))
9871 bfd_put_64 (output_bfd, header_address, loc);
9872 else
9873 bfd_put_32 (output_bfd, header_address, loc);
9874
9875 /* Find out where the .plt entry should go. */
9876 loc = htab->splt->contents + h->plt.offset;
9877
9878 /* Pick the load opcode. */
9879 load = MIPS_ELF_LOAD_WORD (output_bfd);
9880
9881 /* Fill in the PLT entry itself. */
9882 plt_entry = mips_exec_plt_entry;
9883 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9884 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9885
9886 if (! LOAD_INTERLOCKS_P (output_bfd))
9887 {
9888 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9889 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9890 }
9891 else
9892 {
9893 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9894 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9895 }
861fb55a
DJ
9896
9897 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9898 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9899 plt_index, h->dynindx,
9900 R_MIPS_JUMP_SLOT, got_address);
9901
9902 /* We distinguish between PLT entries and lazy-binding stubs by
9903 giving the former an st_other value of STO_MIPS_PLT. Set the
9904 flag and leave the value if there are any relocations in the
9905 binary where pointer equality matters. */
9906 sym->st_shndx = SHN_UNDEF;
9907 if (h->pointer_equality_needed)
9908 sym->st_other = STO_MIPS_PLT;
9909 else
9910 sym->st_value = 0;
9911 }
9912 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9913 {
861fb55a 9914 /* We've decided to create a lazy-binding stub. */
5108fc1b 9915 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9916
9917 /* This symbol has a stub. Set it up. */
9918
9919 BFD_ASSERT (h->dynindx != -1);
9920
5108fc1b
RS
9921 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9922 || (h->dynindx <= 0xffff));
3d6746ca
DD
9923
9924 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9925 sign extension at runtime in the stub, resulting in a negative
9926 index value. */
9927 if (h->dynindx & ~0x7fffffff)
b34976b6 9928 return FALSE;
b49e97c9
TS
9929
9930 /* Fill the stub. */
3d6746ca
DD
9931 idx = 0;
9932 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9933 idx += 4;
9934 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9935 idx += 4;
5108fc1b 9936 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9937 {
5108fc1b 9938 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9939 stub + idx);
9940 idx += 4;
9941 }
9942 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9943 idx += 4;
b49e97c9 9944
3d6746ca
DD
9945 /* If a large stub is not required and sign extension is not a
9946 problem, then use legacy code in the stub. */
5108fc1b
RS
9947 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9948 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9949 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9950 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9951 else
5108fc1b
RS
9952 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9953 stub + idx);
9954
4e41d0d7
RS
9955 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9956 memcpy (htab->sstubs->contents + h->plt.offset,
9957 stub, htab->function_stub_size);
b49e97c9
TS
9958
9959 /* Mark the symbol as undefined. plt.offset != -1 occurs
9960 only for the referenced symbol. */
9961 sym->st_shndx = SHN_UNDEF;
9962
9963 /* The run-time linker uses the st_value field of the symbol
9964 to reset the global offset table entry for this external
9965 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9966 sym->st_value = (htab->sstubs->output_section->vma
9967 + htab->sstubs->output_offset
c5ae1840 9968 + h->plt.offset);
b49e97c9
TS
9969 }
9970
738e5348
RS
9971 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9972 refer to the stub, since only the stub uses the standard calling
9973 conventions. */
9974 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9975 {
9976 BFD_ASSERT (hmips->need_fn_stub);
9977 sym->st_value = (hmips->fn_stub->output_section->vma
9978 + hmips->fn_stub->output_offset);
9979 sym->st_size = hmips->fn_stub->size;
9980 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9981 }
9982
b49e97c9 9983 BFD_ASSERT (h->dynindx != -1
f5385ebf 9984 || h->forced_local);
b49e97c9 9985
23cc69b6 9986 sgot = htab->sgot;
a8028dd0 9987 g = htab->got_info;
b49e97c9
TS
9988 BFD_ASSERT (g != NULL);
9989
9990 /* Run through the global symbol table, creating GOT entries for all
9991 the symbols that need them. */
020d7251 9992 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
9993 {
9994 bfd_vma offset;
9995 bfd_vma value;
9996
6eaa6adc 9997 value = sym->st_value;
13fbec83 9998 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
9999 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10000 }
10001
e641e783 10002 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10003 {
10004 struct mips_got_entry e, *p;
0626d451 10005 bfd_vma entry;
f4416af6 10006 bfd_vma offset;
f4416af6
AO
10007
10008 gg = g;
10009
10010 e.abfd = output_bfd;
10011 e.symndx = -1;
738e5348 10012 e.d.h = hmips;
9ab066b4 10013 e.tls_type = GOT_TLS_NONE;
143d77c5 10014
f4416af6
AO
10015 for (g = g->next; g->next != gg; g = g->next)
10016 {
10017 if (g->got_entries
10018 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10019 &e)))
10020 {
10021 offset = p->gotidx;
6c42ddb9 10022 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0626d451
RS
10023 if (info->shared
10024 || (elf_hash_table (info)->dynamic_sections_created
10025 && p->d.h != NULL
f5385ebf
AM
10026 && p->d.h->root.def_dynamic
10027 && !p->d.h->root.def_regular))
0626d451
RS
10028 {
10029 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10030 the various compatibility problems, it's easier to mock
10031 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10032 mips_elf_create_dynamic_relocation to calculate the
10033 appropriate addend. */
10034 Elf_Internal_Rela rel[3];
10035
10036 memset (rel, 0, sizeof (rel));
10037 if (ABI_64_P (output_bfd))
10038 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10039 else
10040 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10041 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10042
10043 entry = 0;
10044 if (! (mips_elf_create_dynamic_relocation
10045 (output_bfd, info, rel,
10046 e.d.h, NULL, sym->st_value, &entry, sgot)))
10047 return FALSE;
10048 }
10049 else
10050 entry = sym->st_value;
10051 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10052 }
10053 }
10054 }
10055
b49e97c9
TS
10056 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10057 name = h->root.root.string;
9637f6ef 10058 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10059 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10060 sym->st_shndx = SHN_ABS;
10061 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10062 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10063 {
10064 sym->st_shndx = SHN_ABS;
10065 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10066 sym->st_value = 1;
10067 }
4a14403c 10068 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10069 {
10070 sym->st_shndx = SHN_ABS;
10071 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10072 sym->st_value = elf_gp (output_bfd);
10073 }
10074 else if (SGI_COMPAT (output_bfd))
10075 {
10076 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10077 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10078 {
10079 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10080 sym->st_other = STO_PROTECTED;
10081 sym->st_value = 0;
10082 sym->st_shndx = SHN_MIPS_DATA;
10083 }
10084 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10085 {
10086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10087 sym->st_other = STO_PROTECTED;
10088 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10089 sym->st_shndx = SHN_ABS;
10090 }
10091 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10092 {
10093 if (h->type == STT_FUNC)
10094 sym->st_shndx = SHN_MIPS_TEXT;
10095 else if (h->type == STT_OBJECT)
10096 sym->st_shndx = SHN_MIPS_DATA;
10097 }
10098 }
10099
861fb55a
DJ
10100 /* Emit a copy reloc, if needed. */
10101 if (h->needs_copy)
10102 {
10103 asection *s;
10104 bfd_vma symval;
10105
10106 BFD_ASSERT (h->dynindx != -1);
10107 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10108
10109 s = mips_elf_rel_dyn_section (info, FALSE);
10110 symval = (h->root.u.def.section->output_section->vma
10111 + h->root.u.def.section->output_offset
10112 + h->root.u.def.value);
10113 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10114 h->dynindx, R_MIPS_COPY, symval);
10115 }
10116
b49e97c9
TS
10117 /* Handle the IRIX6-specific symbols. */
10118 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10119 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10120
cbf8d970
MR
10121 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10122 to treat compressed symbols like any other. */
30c09090 10123 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10124 {
10125 BFD_ASSERT (sym->st_value & 1);
10126 sym->st_other -= STO_MIPS16;
10127 }
cbf8d970
MR
10128 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10129 {
10130 BFD_ASSERT (sym->st_value & 1);
10131 sym->st_other -= STO_MICROMIPS;
10132 }
b49e97c9 10133
b34976b6 10134 return TRUE;
b49e97c9
TS
10135}
10136
0a44bf69
RS
10137/* Likewise, for VxWorks. */
10138
10139bfd_boolean
10140_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10141 struct bfd_link_info *info,
10142 struct elf_link_hash_entry *h,
10143 Elf_Internal_Sym *sym)
10144{
10145 bfd *dynobj;
10146 asection *sgot;
10147 struct mips_got_info *g;
10148 struct mips_elf_link_hash_table *htab;
020d7251 10149 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10150
10151 htab = mips_elf_hash_table (info);
4dfe6ac6 10152 BFD_ASSERT (htab != NULL);
0a44bf69 10153 dynobj = elf_hash_table (info)->dynobj;
020d7251 10154 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10155
10156 if (h->plt.offset != (bfd_vma) -1)
10157 {
6d79d2ed 10158 bfd_byte *loc;
0a44bf69
RS
10159 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10160 Elf_Internal_Rela rel;
10161 static const bfd_vma *plt_entry;
10162
10163 BFD_ASSERT (h->dynindx != -1);
10164 BFD_ASSERT (htab->splt != NULL);
10165 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10166
10167 /* Calculate the address of the .plt entry. */
10168 plt_address = (htab->splt->output_section->vma
10169 + htab->splt->output_offset
10170 + h->plt.offset);
10171
10172 /* Calculate the index of the entry. */
10173 plt_index = ((h->plt.offset - htab->plt_header_size)
10174 / htab->plt_entry_size);
10175
10176 /* Calculate the address of the .got.plt entry. */
10177 got_address = (htab->sgotplt->output_section->vma
10178 + htab->sgotplt->output_offset
10179 + plt_index * 4);
10180
10181 /* Calculate the offset of the .got.plt entry from
10182 _GLOBAL_OFFSET_TABLE_. */
10183 got_offset = mips_elf_gotplt_index (info, h);
10184
10185 /* Calculate the offset for the branch at the start of the PLT
10186 entry. The branch jumps to the beginning of .plt. */
10187 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10188
10189 /* Fill in the initial value of the .got.plt entry. */
10190 bfd_put_32 (output_bfd, plt_address,
10191 htab->sgotplt->contents + plt_index * 4);
10192
10193 /* Find out where the .plt entry should go. */
10194 loc = htab->splt->contents + h->plt.offset;
10195
10196 if (info->shared)
10197 {
10198 plt_entry = mips_vxworks_shared_plt_entry;
10199 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10200 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10201 }
10202 else
10203 {
10204 bfd_vma got_address_high, got_address_low;
10205
10206 plt_entry = mips_vxworks_exec_plt_entry;
10207 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10208 got_address_low = got_address & 0xffff;
10209
10210 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10211 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10212 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10213 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10214 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10215 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10216 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10217 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10218
10219 loc = (htab->srelplt2->contents
10220 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10221
10222 /* Emit a relocation for the .got.plt entry. */
10223 rel.r_offset = got_address;
10224 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10225 rel.r_addend = h->plt.offset;
10226 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10227
10228 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10229 loc += sizeof (Elf32_External_Rela);
10230 rel.r_offset = plt_address + 8;
10231 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10232 rel.r_addend = got_offset;
10233 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10234
10235 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10236 loc += sizeof (Elf32_External_Rela);
10237 rel.r_offset += 4;
10238 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10239 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10240 }
10241
10242 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10243 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10244 rel.r_offset = got_address;
10245 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10246 rel.r_addend = 0;
10247 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10248
10249 if (!h->def_regular)
10250 sym->st_shndx = SHN_UNDEF;
10251 }
10252
10253 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10254
23cc69b6 10255 sgot = htab->sgot;
a8028dd0 10256 g = htab->got_info;
0a44bf69
RS
10257 BFD_ASSERT (g != NULL);
10258
10259 /* See if this symbol has an entry in the GOT. */
020d7251 10260 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10261 {
10262 bfd_vma offset;
10263 Elf_Internal_Rela outrel;
10264 bfd_byte *loc;
10265 asection *s;
10266
10267 /* Install the symbol value in the GOT. */
13fbec83 10268 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
10269 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10270
10271 /* Add a dynamic relocation for it. */
10272 s = mips_elf_rel_dyn_section (info, FALSE);
10273 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10274 outrel.r_offset = (sgot->output_section->vma
10275 + sgot->output_offset
10276 + offset);
10277 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10278 outrel.r_addend = 0;
10279 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10280 }
10281
10282 /* Emit a copy reloc, if needed. */
10283 if (h->needs_copy)
10284 {
10285 Elf_Internal_Rela rel;
10286
10287 BFD_ASSERT (h->dynindx != -1);
10288
10289 rel.r_offset = (h->root.u.def.section->output_section->vma
10290 + h->root.u.def.section->output_offset
10291 + h->root.u.def.value);
10292 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10293 rel.r_addend = 0;
10294 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10295 htab->srelbss->contents
10296 + (htab->srelbss->reloc_count
10297 * sizeof (Elf32_External_Rela)));
10298 ++htab->srelbss->reloc_count;
10299 }
10300
df58fc94
RS
10301 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10302 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10303 sym->st_value &= ~1;
10304
10305 return TRUE;
10306}
10307
861fb55a
DJ
10308/* Write out a plt0 entry to the beginning of .plt. */
10309
10310static void
10311mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10312{
10313 bfd_byte *loc;
10314 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10315 static const bfd_vma *plt_entry;
10316 struct mips_elf_link_hash_table *htab;
10317
10318 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10319 BFD_ASSERT (htab != NULL);
10320
861fb55a
DJ
10321 if (ABI_64_P (output_bfd))
10322 plt_entry = mips_n64_exec_plt0_entry;
10323 else if (ABI_N32_P (output_bfd))
10324 plt_entry = mips_n32_exec_plt0_entry;
10325 else
10326 plt_entry = mips_o32_exec_plt0_entry;
10327
10328 /* Calculate the value of .got.plt. */
10329 gotplt_value = (htab->sgotplt->output_section->vma
10330 + htab->sgotplt->output_offset);
10331 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10332 gotplt_value_low = gotplt_value & 0xffff;
10333
10334 /* The PLT sequence is not safe for N64 if .got.plt's address can
10335 not be loaded in two instructions. */
10336 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10337 || ~(gotplt_value | 0x7fffffff) == 0);
10338
10339 /* Install the PLT header. */
10340 loc = htab->splt->contents;
10341 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10342 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10343 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10344 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10345 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10346 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10347 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10348 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10349}
10350
0a44bf69
RS
10351/* Install the PLT header for a VxWorks executable and finalize the
10352 contents of .rela.plt.unloaded. */
10353
10354static void
10355mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10356{
10357 Elf_Internal_Rela rela;
10358 bfd_byte *loc;
10359 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10360 static const bfd_vma *plt_entry;
10361 struct mips_elf_link_hash_table *htab;
10362
10363 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10364 BFD_ASSERT (htab != NULL);
10365
0a44bf69
RS
10366 plt_entry = mips_vxworks_exec_plt0_entry;
10367
10368 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10369 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10370 + htab->root.hgot->root.u.def.section->output_offset
10371 + htab->root.hgot->root.u.def.value);
10372
10373 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10374 got_value_low = got_value & 0xffff;
10375
10376 /* Calculate the address of the PLT header. */
10377 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10378
10379 /* Install the PLT header. */
10380 loc = htab->splt->contents;
10381 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10382 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10383 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10384 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10385 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10386 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10387
10388 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10389 loc = htab->srelplt2->contents;
10390 rela.r_offset = plt_address;
10391 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10392 rela.r_addend = 0;
10393 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10394 loc += sizeof (Elf32_External_Rela);
10395
10396 /* Output the relocation for the following addiu of
10397 %lo(_GLOBAL_OFFSET_TABLE_). */
10398 rela.r_offset += 4;
10399 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10400 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10401 loc += sizeof (Elf32_External_Rela);
10402
10403 /* Fix up the remaining relocations. They may have the wrong
10404 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10405 in which symbols were output. */
10406 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10407 {
10408 Elf_Internal_Rela rel;
10409
10410 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10411 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10412 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10413 loc += sizeof (Elf32_External_Rela);
10414
10415 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10417 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10418 loc += sizeof (Elf32_External_Rela);
10419
10420 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10421 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10422 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10423 loc += sizeof (Elf32_External_Rela);
10424 }
10425}
10426
10427/* Install the PLT header for a VxWorks shared library. */
10428
10429static void
10430mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10431{
10432 unsigned int i;
10433 struct mips_elf_link_hash_table *htab;
10434
10435 htab = mips_elf_hash_table (info);
4dfe6ac6 10436 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10437
10438 /* We just need to copy the entry byte-by-byte. */
10439 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10440 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10441 htab->splt->contents + i * 4);
10442}
10443
b49e97c9
TS
10444/* Finish up the dynamic sections. */
10445
b34976b6 10446bfd_boolean
9719ad41
RS
10447_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10448 struct bfd_link_info *info)
b49e97c9
TS
10449{
10450 bfd *dynobj;
10451 asection *sdyn;
10452 asection *sgot;
f4416af6 10453 struct mips_got_info *gg, *g;
0a44bf69 10454 struct mips_elf_link_hash_table *htab;
b49e97c9 10455
0a44bf69 10456 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10457 BFD_ASSERT (htab != NULL);
10458
b49e97c9
TS
10459 dynobj = elf_hash_table (info)->dynobj;
10460
3d4d4302 10461 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10462
23cc69b6
RS
10463 sgot = htab->sgot;
10464 gg = htab->got_info;
b49e97c9
TS
10465
10466 if (elf_hash_table (info)->dynamic_sections_created)
10467 {
10468 bfd_byte *b;
943284cc 10469 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10470
10471 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10472 BFD_ASSERT (gg != NULL);
10473
d7206569 10474 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
10475 BFD_ASSERT (g != NULL);
10476
10477 for (b = sdyn->contents;
eea6121a 10478 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10479 b += MIPS_ELF_DYN_SIZE (dynobj))
10480 {
10481 Elf_Internal_Dyn dyn;
10482 const char *name;
10483 size_t elemsize;
10484 asection *s;
b34976b6 10485 bfd_boolean swap_out_p;
b49e97c9
TS
10486
10487 /* Read in the current dynamic entry. */
10488 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10489
10490 /* Assume that we're going to modify it and write it out. */
b34976b6 10491 swap_out_p = TRUE;
b49e97c9
TS
10492
10493 switch (dyn.d_tag)
10494 {
10495 case DT_RELENT:
b49e97c9
TS
10496 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10497 break;
10498
0a44bf69
RS
10499 case DT_RELAENT:
10500 BFD_ASSERT (htab->is_vxworks);
10501 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10502 break;
10503
b49e97c9
TS
10504 case DT_STRSZ:
10505 /* Rewrite DT_STRSZ. */
10506 dyn.d_un.d_val =
10507 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10508 break;
10509
10510 case DT_PLTGOT:
861fb55a
DJ
10511 s = htab->sgot;
10512 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10513 break;
10514
10515 case DT_MIPS_PLTGOT:
10516 s = htab->sgotplt;
10517 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10518 break;
10519
10520 case DT_MIPS_RLD_VERSION:
10521 dyn.d_un.d_val = 1; /* XXX */
10522 break;
10523
10524 case DT_MIPS_FLAGS:
10525 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10526 break;
10527
b49e97c9 10528 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10529 {
10530 time_t t;
10531 time (&t);
10532 dyn.d_un.d_val = t;
10533 }
b49e97c9
TS
10534 break;
10535
10536 case DT_MIPS_ICHECKSUM:
10537 /* XXX FIXME: */
b34976b6 10538 swap_out_p = FALSE;
b49e97c9
TS
10539 break;
10540
10541 case DT_MIPS_IVERSION:
10542 /* XXX FIXME: */
b34976b6 10543 swap_out_p = FALSE;
b49e97c9
TS
10544 break;
10545
10546 case DT_MIPS_BASE_ADDRESS:
10547 s = output_bfd->sections;
10548 BFD_ASSERT (s != NULL);
10549 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10550 break;
10551
10552 case DT_MIPS_LOCAL_GOTNO:
10553 dyn.d_un.d_val = g->local_gotno;
10554 break;
10555
10556 case DT_MIPS_UNREFEXTNO:
10557 /* The index into the dynamic symbol table which is the
10558 entry of the first external symbol that is not
10559 referenced within the same object. */
10560 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10561 break;
10562
10563 case DT_MIPS_GOTSYM:
d222d210 10564 if (htab->global_gotsym)
b49e97c9 10565 {
d222d210 10566 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10567 break;
10568 }
10569 /* In case if we don't have global got symbols we default
10570 to setting DT_MIPS_GOTSYM to the same value as
10571 DT_MIPS_SYMTABNO, so we just fall through. */
10572
10573 case DT_MIPS_SYMTABNO:
10574 name = ".dynsym";
10575 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10576 s = bfd_get_section_by_name (output_bfd, name);
10577 BFD_ASSERT (s != NULL);
10578
eea6121a 10579 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10580 break;
10581
10582 case DT_MIPS_HIPAGENO:
861fb55a 10583 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10584 break;
10585
10586 case DT_MIPS_RLD_MAP:
b4082c70
DD
10587 {
10588 struct elf_link_hash_entry *h;
10589 h = mips_elf_hash_table (info)->rld_symbol;
10590 if (!h)
10591 {
10592 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10593 swap_out_p = FALSE;
10594 break;
10595 }
10596 s = h->root.u.def.section;
10597 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10598 + h->root.u.def.value);
10599 }
b49e97c9
TS
10600 break;
10601
10602 case DT_MIPS_OPTIONS:
10603 s = (bfd_get_section_by_name
10604 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10605 dyn.d_un.d_ptr = s->vma;
10606 break;
10607
0a44bf69
RS
10608 case DT_RELASZ:
10609 BFD_ASSERT (htab->is_vxworks);
10610 /* The count does not include the JUMP_SLOT relocations. */
10611 if (htab->srelplt)
10612 dyn.d_un.d_val -= htab->srelplt->size;
10613 break;
10614
10615 case DT_PLTREL:
861fb55a
DJ
10616 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10617 if (htab->is_vxworks)
10618 dyn.d_un.d_val = DT_RELA;
10619 else
10620 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10621 break;
10622
10623 case DT_PLTRELSZ:
861fb55a 10624 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10625 dyn.d_un.d_val = htab->srelplt->size;
10626 break;
10627
10628 case DT_JMPREL:
861fb55a
DJ
10629 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10630 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10631 + htab->srelplt->output_offset);
10632 break;
10633
943284cc
DJ
10634 case DT_TEXTREL:
10635 /* If we didn't need any text relocations after all, delete
10636 the dynamic tag. */
10637 if (!(info->flags & DF_TEXTREL))
10638 {
10639 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10640 swap_out_p = FALSE;
10641 }
10642 break;
10643
10644 case DT_FLAGS:
10645 /* If we didn't need any text relocations after all, clear
10646 DF_TEXTREL from DT_FLAGS. */
10647 if (!(info->flags & DF_TEXTREL))
10648 dyn.d_un.d_val &= ~DF_TEXTREL;
10649 else
10650 swap_out_p = FALSE;
10651 break;
10652
b49e97c9 10653 default:
b34976b6 10654 swap_out_p = FALSE;
7a2b07ff
NS
10655 if (htab->is_vxworks
10656 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10657 swap_out_p = TRUE;
b49e97c9
TS
10658 break;
10659 }
10660
943284cc 10661 if (swap_out_p || dyn_skipped)
b49e97c9 10662 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10663 (dynobj, &dyn, b - dyn_skipped);
10664
10665 if (dyn_to_skip)
10666 {
10667 dyn_skipped += dyn_to_skip;
10668 dyn_to_skip = 0;
10669 }
b49e97c9 10670 }
943284cc
DJ
10671
10672 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10673 if (dyn_skipped > 0)
10674 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10675 }
10676
b55fd4d4
DJ
10677 if (sgot != NULL && sgot->size > 0
10678 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10679 {
0a44bf69
RS
10680 if (htab->is_vxworks)
10681 {
10682 /* The first entry of the global offset table points to the
10683 ".dynamic" section. The second is initialized by the
10684 loader and contains the shared library identifier.
10685 The third is also initialized by the loader and points
10686 to the lazy resolution stub. */
10687 MIPS_ELF_PUT_WORD (output_bfd,
10688 sdyn->output_offset + sdyn->output_section->vma,
10689 sgot->contents);
10690 MIPS_ELF_PUT_WORD (output_bfd, 0,
10691 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10692 MIPS_ELF_PUT_WORD (output_bfd, 0,
10693 sgot->contents
10694 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10695 }
10696 else
10697 {
10698 /* The first entry of the global offset table will be filled at
10699 runtime. The second entry will be used by some runtime loaders.
10700 This isn't the case of IRIX rld. */
10701 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10702 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10703 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10704 }
b49e97c9 10705
54938e2a
TS
10706 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10707 = MIPS_ELF_GOT_SIZE (output_bfd);
10708 }
b49e97c9 10709
f4416af6
AO
10710 /* Generate dynamic relocations for the non-primary gots. */
10711 if (gg != NULL && gg->next)
10712 {
10713 Elf_Internal_Rela rel[3];
10714 bfd_vma addend = 0;
10715
10716 memset (rel, 0, sizeof (rel));
10717 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10718
10719 for (g = gg->next; g->next != gg; g = g->next)
10720 {
91d6fa6a 10721 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10722 + g->next->tls_gotno;
f4416af6 10723
9719ad41 10724 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10725 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10726 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10727 sgot->contents
91d6fa6a 10728 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10729
10730 if (! info->shared)
10731 continue;
10732
91d6fa6a 10733 while (got_index < g->assigned_gotno)
f4416af6
AO
10734 {
10735 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10736 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10737 if (!(mips_elf_create_dynamic_relocation
10738 (output_bfd, info, rel, NULL,
10739 bfd_abs_section_ptr,
10740 0, &addend, sgot)))
10741 return FALSE;
10742 BFD_ASSERT (addend == 0);
10743 }
10744 }
10745 }
10746
3133ddbf
DJ
10747 /* The generation of dynamic relocations for the non-primary gots
10748 adds more dynamic relocations. We cannot count them until
10749 here. */
10750
10751 if (elf_hash_table (info)->dynamic_sections_created)
10752 {
10753 bfd_byte *b;
10754 bfd_boolean swap_out_p;
10755
10756 BFD_ASSERT (sdyn != NULL);
10757
10758 for (b = sdyn->contents;
10759 b < sdyn->contents + sdyn->size;
10760 b += MIPS_ELF_DYN_SIZE (dynobj))
10761 {
10762 Elf_Internal_Dyn dyn;
10763 asection *s;
10764
10765 /* Read in the current dynamic entry. */
10766 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10767
10768 /* Assume that we're going to modify it and write it out. */
10769 swap_out_p = TRUE;
10770
10771 switch (dyn.d_tag)
10772 {
10773 case DT_RELSZ:
10774 /* Reduce DT_RELSZ to account for any relocations we
10775 decided not to make. This is for the n64 irix rld,
10776 which doesn't seem to apply any relocations if there
10777 are trailing null entries. */
0a44bf69 10778 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10779 dyn.d_un.d_val = (s->reloc_count
10780 * (ABI_64_P (output_bfd)
10781 ? sizeof (Elf64_Mips_External_Rel)
10782 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10783 /* Adjust the section size too. Tools like the prelinker
10784 can reasonably expect the values to the same. */
10785 elf_section_data (s->output_section)->this_hdr.sh_size
10786 = dyn.d_un.d_val;
3133ddbf
DJ
10787 break;
10788
10789 default:
10790 swap_out_p = FALSE;
10791 break;
10792 }
10793
10794 if (swap_out_p)
10795 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10796 (dynobj, &dyn, b);
10797 }
10798 }
10799
b49e97c9 10800 {
b49e97c9
TS
10801 asection *s;
10802 Elf32_compact_rel cpt;
10803
b49e97c9
TS
10804 if (SGI_COMPAT (output_bfd))
10805 {
10806 /* Write .compact_rel section out. */
3d4d4302 10807 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10808 if (s != NULL)
10809 {
10810 cpt.id1 = 1;
10811 cpt.num = s->reloc_count;
10812 cpt.id2 = 2;
10813 cpt.offset = (s->output_section->filepos
10814 + sizeof (Elf32_External_compact_rel));
10815 cpt.reserved0 = 0;
10816 cpt.reserved1 = 0;
10817 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10818 ((Elf32_External_compact_rel *)
10819 s->contents));
10820
10821 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10822 if (htab->sstubs != NULL)
b49e97c9
TS
10823 {
10824 file_ptr dummy_offset;
10825
4e41d0d7
RS
10826 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10827 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10828 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10829 htab->function_stub_size);
b49e97c9
TS
10830 }
10831 }
10832 }
10833
0a44bf69
RS
10834 /* The psABI says that the dynamic relocations must be sorted in
10835 increasing order of r_symndx. The VxWorks EABI doesn't require
10836 this, and because the code below handles REL rather than RELA
10837 relocations, using it for VxWorks would be outright harmful. */
10838 if (!htab->is_vxworks)
b49e97c9 10839 {
0a44bf69
RS
10840 s = mips_elf_rel_dyn_section (info, FALSE);
10841 if (s != NULL
10842 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10843 {
10844 reldyn_sorting_bfd = output_bfd;
b49e97c9 10845
0a44bf69
RS
10846 if (ABI_64_P (output_bfd))
10847 qsort ((Elf64_External_Rel *) s->contents + 1,
10848 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10849 sort_dynamic_relocs_64);
10850 else
10851 qsort ((Elf32_External_Rel *) s->contents + 1,
10852 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10853 sort_dynamic_relocs);
10854 }
b49e97c9 10855 }
b49e97c9
TS
10856 }
10857
861fb55a 10858 if (htab->splt && htab->splt->size > 0)
0a44bf69 10859 {
861fb55a
DJ
10860 if (htab->is_vxworks)
10861 {
10862 if (info->shared)
10863 mips_vxworks_finish_shared_plt (output_bfd, info);
10864 else
10865 mips_vxworks_finish_exec_plt (output_bfd, info);
10866 }
0a44bf69 10867 else
861fb55a
DJ
10868 {
10869 BFD_ASSERT (!info->shared);
10870 mips_finish_exec_plt (output_bfd, info);
10871 }
0a44bf69 10872 }
b34976b6 10873 return TRUE;
b49e97c9
TS
10874}
10875
b49e97c9 10876
64543e1a
RS
10877/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10878
10879static void
9719ad41 10880mips_set_isa_flags (bfd *abfd)
b49e97c9 10881{
64543e1a 10882 flagword val;
b49e97c9
TS
10883
10884 switch (bfd_get_mach (abfd))
10885 {
10886 default:
10887 case bfd_mach_mips3000:
10888 val = E_MIPS_ARCH_1;
10889 break;
10890
10891 case bfd_mach_mips3900:
10892 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10893 break;
10894
10895 case bfd_mach_mips6000:
10896 val = E_MIPS_ARCH_2;
10897 break;
10898
10899 case bfd_mach_mips4000:
10900 case bfd_mach_mips4300:
10901 case bfd_mach_mips4400:
10902 case bfd_mach_mips4600:
10903 val = E_MIPS_ARCH_3;
10904 break;
10905
10906 case bfd_mach_mips4010:
10907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10908 break;
10909
10910 case bfd_mach_mips4100:
10911 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10912 break;
10913
10914 case bfd_mach_mips4111:
10915 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10916 break;
10917
00707a0e
RS
10918 case bfd_mach_mips4120:
10919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10920 break;
10921
b49e97c9
TS
10922 case bfd_mach_mips4650:
10923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10924 break;
10925
00707a0e
RS
10926 case bfd_mach_mips5400:
10927 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10928 break;
10929
10930 case bfd_mach_mips5500:
10931 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10932 break;
10933
e407c74b
NC
10934 case bfd_mach_mips5900:
10935 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10936 break;
10937
0d2e43ed
ILT
10938 case bfd_mach_mips9000:
10939 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10940 break;
10941
b49e97c9 10942 case bfd_mach_mips5000:
5a7ea749 10943 case bfd_mach_mips7000:
b49e97c9
TS
10944 case bfd_mach_mips8000:
10945 case bfd_mach_mips10000:
10946 case bfd_mach_mips12000:
3aa3176b
TS
10947 case bfd_mach_mips14000:
10948 case bfd_mach_mips16000:
b49e97c9
TS
10949 val = E_MIPS_ARCH_4;
10950 break;
10951
10952 case bfd_mach_mips5:
10953 val = E_MIPS_ARCH_5;
10954 break;
10955
350cc38d
MS
10956 case bfd_mach_mips_loongson_2e:
10957 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10958 break;
10959
10960 case bfd_mach_mips_loongson_2f:
10961 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10962 break;
10963
b49e97c9
TS
10964 case bfd_mach_mips_sb1:
10965 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10966 break;
10967
d051516a
NC
10968 case bfd_mach_mips_loongson_3a:
10969 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10970 break;
10971
6f179bd0 10972 case bfd_mach_mips_octeon:
dd6a37e7 10973 case bfd_mach_mips_octeonp:
6f179bd0
AN
10974 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10975 break;
10976
52b6b6b9
JM
10977 case bfd_mach_mips_xlr:
10978 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10979 break;
10980
432233b3
AP
10981 case bfd_mach_mips_octeon2:
10982 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10983 break;
10984
b49e97c9
TS
10985 case bfd_mach_mipsisa32:
10986 val = E_MIPS_ARCH_32;
10987 break;
10988
10989 case bfd_mach_mipsisa64:
10990 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10991 break;
10992
10993 case bfd_mach_mipsisa32r2:
10994 val = E_MIPS_ARCH_32R2;
10995 break;
5f74bc13
CD
10996
10997 case bfd_mach_mipsisa64r2:
10998 val = E_MIPS_ARCH_64R2;
10999 break;
b49e97c9 11000 }
b49e97c9
TS
11001 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11002 elf_elfheader (abfd)->e_flags |= val;
11003
64543e1a
RS
11004}
11005
11006
11007/* The final processing done just before writing out a MIPS ELF object
11008 file. This gets the MIPS architecture right based on the machine
11009 number. This is used by both the 32-bit and the 64-bit ABI. */
11010
11011void
9719ad41
RS
11012_bfd_mips_elf_final_write_processing (bfd *abfd,
11013 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11014{
11015 unsigned int i;
11016 Elf_Internal_Shdr **hdrpp;
11017 const char *name;
11018 asection *sec;
11019
11020 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11021 is nonzero. This is for compatibility with old objects, which used
11022 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11023 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11024 mips_set_isa_flags (abfd);
11025
b49e97c9
TS
11026 /* Set the sh_info field for .gptab sections and other appropriate
11027 info for each special section. */
11028 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11029 i < elf_numsections (abfd);
11030 i++, hdrpp++)
11031 {
11032 switch ((*hdrpp)->sh_type)
11033 {
11034 case SHT_MIPS_MSYM:
11035 case SHT_MIPS_LIBLIST:
11036 sec = bfd_get_section_by_name (abfd, ".dynstr");
11037 if (sec != NULL)
11038 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11039 break;
11040
11041 case SHT_MIPS_GPTAB:
11042 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11043 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11044 BFD_ASSERT (name != NULL
0112cd26 11045 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11046 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11047 BFD_ASSERT (sec != NULL);
11048 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11049 break;
11050
11051 case SHT_MIPS_CONTENT:
11052 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11053 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11054 BFD_ASSERT (name != NULL
0112cd26 11055 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11056 sec = bfd_get_section_by_name (abfd,
11057 name + sizeof ".MIPS.content" - 1);
11058 BFD_ASSERT (sec != NULL);
11059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_SYMBOL_LIB:
11063 sec = bfd_get_section_by_name (abfd, ".dynsym");
11064 if (sec != NULL)
11065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11066 sec = bfd_get_section_by_name (abfd, ".liblist");
11067 if (sec != NULL)
11068 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11069 break;
11070
11071 case SHT_MIPS_EVENTS:
11072 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11073 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11074 BFD_ASSERT (name != NULL);
0112cd26 11075 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11076 sec = bfd_get_section_by_name (abfd,
11077 name + sizeof ".MIPS.events" - 1);
11078 else
11079 {
0112cd26 11080 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11081 sec = bfd_get_section_by_name (abfd,
11082 (name
11083 + sizeof ".MIPS.post_rel" - 1));
11084 }
11085 BFD_ASSERT (sec != NULL);
11086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11087 break;
11088
11089 }
11090 }
11091}
11092\f
8dc1a139 11093/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11094 segments. */
11095
11096int
a6b96beb
AM
11097_bfd_mips_elf_additional_program_headers (bfd *abfd,
11098 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11099{
11100 asection *s;
11101 int ret = 0;
11102
11103 /* See if we need a PT_MIPS_REGINFO segment. */
11104 s = bfd_get_section_by_name (abfd, ".reginfo");
11105 if (s && (s->flags & SEC_LOAD))
11106 ++ret;
11107
11108 /* See if we need a PT_MIPS_OPTIONS segment. */
11109 if (IRIX_COMPAT (abfd) == ict_irix6
11110 && bfd_get_section_by_name (abfd,
11111 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11112 ++ret;
11113
11114 /* See if we need a PT_MIPS_RTPROC segment. */
11115 if (IRIX_COMPAT (abfd) == ict_irix5
11116 && bfd_get_section_by_name (abfd, ".dynamic")
11117 && bfd_get_section_by_name (abfd, ".mdebug"))
11118 ++ret;
11119
98c904a8
RS
11120 /* Allocate a PT_NULL header in dynamic objects. See
11121 _bfd_mips_elf_modify_segment_map for details. */
11122 if (!SGI_COMPAT (abfd)
11123 && bfd_get_section_by_name (abfd, ".dynamic"))
11124 ++ret;
11125
b49e97c9
TS
11126 return ret;
11127}
11128
8dc1a139 11129/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11130
b34976b6 11131bfd_boolean
9719ad41 11132_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11133 struct bfd_link_info *info)
b49e97c9
TS
11134{
11135 asection *s;
11136 struct elf_segment_map *m, **pm;
11137 bfd_size_type amt;
11138
11139 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11140 segment. */
11141 s = bfd_get_section_by_name (abfd, ".reginfo");
11142 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11143 {
12bd6957 11144 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
11145 if (m->p_type == PT_MIPS_REGINFO)
11146 break;
11147 if (m == NULL)
11148 {
11149 amt = sizeof *m;
9719ad41 11150 m = bfd_zalloc (abfd, amt);
b49e97c9 11151 if (m == NULL)
b34976b6 11152 return FALSE;
b49e97c9
TS
11153
11154 m->p_type = PT_MIPS_REGINFO;
11155 m->count = 1;
11156 m->sections[0] = s;
11157
11158 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 11159 pm = &elf_seg_map (abfd);
b49e97c9
TS
11160 while (*pm != NULL
11161 && ((*pm)->p_type == PT_PHDR
11162 || (*pm)->p_type == PT_INTERP))
11163 pm = &(*pm)->next;
11164
11165 m->next = *pm;
11166 *pm = m;
11167 }
11168 }
11169
11170 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11171 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11172 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11173 table. */
c1fd6598
AO
11174 if (NEWABI_P (abfd)
11175 /* On non-IRIX6 new abi, we'll have already created a segment
11176 for this section, so don't create another. I'm not sure this
11177 is not also the case for IRIX 6, but I can't test it right
11178 now. */
11179 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11180 {
11181 for (s = abfd->sections; s; s = s->next)
11182 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11183 break;
11184
11185 if (s)
11186 {
11187 struct elf_segment_map *options_segment;
11188
12bd6957 11189 pm = &elf_seg_map (abfd);
98a8deaf
RS
11190 while (*pm != NULL
11191 && ((*pm)->p_type == PT_PHDR
11192 || (*pm)->p_type == PT_INTERP))
11193 pm = &(*pm)->next;
b49e97c9 11194
8ded5a0f
AM
11195 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11196 {
11197 amt = sizeof (struct elf_segment_map);
11198 options_segment = bfd_zalloc (abfd, amt);
11199 options_segment->next = *pm;
11200 options_segment->p_type = PT_MIPS_OPTIONS;
11201 options_segment->p_flags = PF_R;
11202 options_segment->p_flags_valid = TRUE;
11203 options_segment->count = 1;
11204 options_segment->sections[0] = s;
11205 *pm = options_segment;
11206 }
b49e97c9
TS
11207 }
11208 }
11209 else
11210 {
11211 if (IRIX_COMPAT (abfd) == ict_irix5)
11212 {
11213 /* If there are .dynamic and .mdebug sections, we make a room
11214 for the RTPROC header. FIXME: Rewrite without section names. */
11215 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11216 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11217 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11218 {
12bd6957 11219 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
11220 if (m->p_type == PT_MIPS_RTPROC)
11221 break;
11222 if (m == NULL)
11223 {
11224 amt = sizeof *m;
9719ad41 11225 m = bfd_zalloc (abfd, amt);
b49e97c9 11226 if (m == NULL)
b34976b6 11227 return FALSE;
b49e97c9
TS
11228
11229 m->p_type = PT_MIPS_RTPROC;
11230
11231 s = bfd_get_section_by_name (abfd, ".rtproc");
11232 if (s == NULL)
11233 {
11234 m->count = 0;
11235 m->p_flags = 0;
11236 m->p_flags_valid = 1;
11237 }
11238 else
11239 {
11240 m->count = 1;
11241 m->sections[0] = s;
11242 }
11243
11244 /* We want to put it after the DYNAMIC segment. */
12bd6957 11245 pm = &elf_seg_map (abfd);
b49e97c9
TS
11246 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11247 pm = &(*pm)->next;
11248 if (*pm != NULL)
11249 pm = &(*pm)->next;
11250
11251 m->next = *pm;
11252 *pm = m;
11253 }
11254 }
11255 }
8dc1a139 11256 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11257 .dynstr, .dynsym, and .hash sections, and everything in
11258 between. */
12bd6957 11259 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
11260 pm = &(*pm)->next)
11261 if ((*pm)->p_type == PT_DYNAMIC)
11262 break;
11263 m = *pm;
11264 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11265 {
11266 /* For a normal mips executable the permissions for the PT_DYNAMIC
11267 segment are read, write and execute. We do that here since
11268 the code in elf.c sets only the read permission. This matters
11269 sometimes for the dynamic linker. */
11270 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11271 {
11272 m->p_flags = PF_R | PF_W | PF_X;
11273 m->p_flags_valid = 1;
11274 }
11275 }
f6f62d6f
RS
11276 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11277 glibc's dynamic linker has traditionally derived the number of
11278 tags from the p_filesz field, and sometimes allocates stack
11279 arrays of that size. An overly-big PT_DYNAMIC segment can
11280 be actively harmful in such cases. Making PT_DYNAMIC contain
11281 other sections can also make life hard for the prelinker,
11282 which might move one of the other sections to a different
11283 PT_LOAD segment. */
11284 if (SGI_COMPAT (abfd)
11285 && m != NULL
11286 && m->count == 1
11287 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11288 {
11289 static const char *sec_names[] =
11290 {
11291 ".dynamic", ".dynstr", ".dynsym", ".hash"
11292 };
11293 bfd_vma low, high;
11294 unsigned int i, c;
11295 struct elf_segment_map *n;
11296
792b4a53 11297 low = ~(bfd_vma) 0;
b49e97c9
TS
11298 high = 0;
11299 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11300 {
11301 s = bfd_get_section_by_name (abfd, sec_names[i]);
11302 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11303 {
11304 bfd_size_type sz;
11305
11306 if (low > s->vma)
11307 low = s->vma;
eea6121a 11308 sz = s->size;
b49e97c9
TS
11309 if (high < s->vma + sz)
11310 high = s->vma + sz;
11311 }
11312 }
11313
11314 c = 0;
11315 for (s = abfd->sections; s != NULL; s = s->next)
11316 if ((s->flags & SEC_LOAD) != 0
11317 && s->vma >= low
eea6121a 11318 && s->vma + s->size <= high)
b49e97c9
TS
11319 ++c;
11320
11321 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11322 n = bfd_zalloc (abfd, amt);
b49e97c9 11323 if (n == NULL)
b34976b6 11324 return FALSE;
b49e97c9
TS
11325 *n = *m;
11326 n->count = c;
11327
11328 i = 0;
11329 for (s = abfd->sections; s != NULL; s = s->next)
11330 {
11331 if ((s->flags & SEC_LOAD) != 0
11332 && s->vma >= low
eea6121a 11333 && s->vma + s->size <= high)
b49e97c9
TS
11334 {
11335 n->sections[i] = s;
11336 ++i;
11337 }
11338 }
11339
11340 *pm = n;
11341 }
11342 }
11343
98c904a8
RS
11344 /* Allocate a spare program header in dynamic objects so that tools
11345 like the prelinker can add an extra PT_LOAD entry.
11346
11347 If the prelinker needs to make room for a new PT_LOAD entry, its
11348 standard procedure is to move the first (read-only) sections into
11349 the new (writable) segment. However, the MIPS ABI requires
11350 .dynamic to be in a read-only segment, and the section will often
11351 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11352
11353 Although the prelinker could in principle move .dynamic to a
11354 writable segment, it seems better to allocate a spare program
11355 header instead, and avoid the need to move any sections.
11356 There is a long tradition of allocating spare dynamic tags,
11357 so allocating a spare program header seems like a natural
7c8b76cc
JM
11358 extension.
11359
11360 If INFO is NULL, we may be copying an already prelinked binary
11361 with objcopy or strip, so do not add this header. */
11362 if (info != NULL
11363 && !SGI_COMPAT (abfd)
98c904a8
RS
11364 && bfd_get_section_by_name (abfd, ".dynamic"))
11365 {
12bd6957 11366 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
11367 if ((*pm)->p_type == PT_NULL)
11368 break;
11369 if (*pm == NULL)
11370 {
11371 m = bfd_zalloc (abfd, sizeof (*m));
11372 if (m == NULL)
11373 return FALSE;
11374
11375 m->p_type = PT_NULL;
11376 *pm = m;
11377 }
11378 }
11379
b34976b6 11380 return TRUE;
b49e97c9
TS
11381}
11382\f
11383/* Return the section that should be marked against GC for a given
11384 relocation. */
11385
11386asection *
9719ad41 11387_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11388 struct bfd_link_info *info,
9719ad41
RS
11389 Elf_Internal_Rela *rel,
11390 struct elf_link_hash_entry *h,
11391 Elf_Internal_Sym *sym)
b49e97c9
TS
11392{
11393 /* ??? Do mips16 stub sections need to be handled special? */
11394
11395 if (h != NULL)
07adf181
AM
11396 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11397 {
11398 case R_MIPS_GNU_VTINHERIT:
11399 case R_MIPS_GNU_VTENTRY:
11400 return NULL;
11401 }
b49e97c9 11402
07adf181 11403 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11404}
11405
11406/* Update the got entry reference counts for the section being removed. */
11407
b34976b6 11408bfd_boolean
9719ad41
RS
11409_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11410 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11411 asection *sec ATTRIBUTE_UNUSED,
11412 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11413{
11414#if 0
11415 Elf_Internal_Shdr *symtab_hdr;
11416 struct elf_link_hash_entry **sym_hashes;
11417 bfd_signed_vma *local_got_refcounts;
11418 const Elf_Internal_Rela *rel, *relend;
11419 unsigned long r_symndx;
11420 struct elf_link_hash_entry *h;
11421
7dda2462
TG
11422 if (info->relocatable)
11423 return TRUE;
11424
b49e97c9
TS
11425 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11426 sym_hashes = elf_sym_hashes (abfd);
11427 local_got_refcounts = elf_local_got_refcounts (abfd);
11428
11429 relend = relocs + sec->reloc_count;
11430 for (rel = relocs; rel < relend; rel++)
11431 switch (ELF_R_TYPE (abfd, rel->r_info))
11432 {
738e5348
RS
11433 case R_MIPS16_GOT16:
11434 case R_MIPS16_CALL16:
b49e97c9
TS
11435 case R_MIPS_GOT16:
11436 case R_MIPS_CALL16:
11437 case R_MIPS_CALL_HI16:
11438 case R_MIPS_CALL_LO16:
11439 case R_MIPS_GOT_HI16:
11440 case R_MIPS_GOT_LO16:
4a14403c
TS
11441 case R_MIPS_GOT_DISP:
11442 case R_MIPS_GOT_PAGE:
11443 case R_MIPS_GOT_OFST:
df58fc94
RS
11444 case R_MICROMIPS_GOT16:
11445 case R_MICROMIPS_CALL16:
11446 case R_MICROMIPS_CALL_HI16:
11447 case R_MICROMIPS_CALL_LO16:
11448 case R_MICROMIPS_GOT_HI16:
11449 case R_MICROMIPS_GOT_LO16:
11450 case R_MICROMIPS_GOT_DISP:
11451 case R_MICROMIPS_GOT_PAGE:
11452 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11453 /* ??? It would seem that the existing MIPS code does no sort
11454 of reference counting or whatnot on its GOT and PLT entries,
11455 so it is not possible to garbage collect them at this time. */
11456 break;
11457
11458 default:
11459 break;
11460 }
11461#endif
11462
b34976b6 11463 return TRUE;
b49e97c9
TS
11464}
11465\f
11466/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11467 hiding the old indirect symbol. Process additional relocation
11468 information. Also called for weakdefs, in which case we just let
11469 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11470
11471void
fcfa13d2 11472_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11473 struct elf_link_hash_entry *dir,
11474 struct elf_link_hash_entry *ind)
b49e97c9
TS
11475{
11476 struct mips_elf_link_hash_entry *dirmips, *indmips;
11477
fcfa13d2 11478 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11479
861fb55a
DJ
11480 dirmips = (struct mips_elf_link_hash_entry *) dir;
11481 indmips = (struct mips_elf_link_hash_entry *) ind;
11482 /* Any absolute non-dynamic relocations against an indirect or weak
11483 definition will be against the target symbol. */
11484 if (indmips->has_static_relocs)
11485 dirmips->has_static_relocs = TRUE;
11486
b49e97c9
TS
11487 if (ind->root.type != bfd_link_hash_indirect)
11488 return;
11489
b49e97c9
TS
11490 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11491 if (indmips->readonly_reloc)
b34976b6 11492 dirmips->readonly_reloc = TRUE;
b49e97c9 11493 if (indmips->no_fn_stub)
b34976b6 11494 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11495 if (indmips->fn_stub)
11496 {
11497 dirmips->fn_stub = indmips->fn_stub;
11498 indmips->fn_stub = NULL;
11499 }
11500 if (indmips->need_fn_stub)
11501 {
11502 dirmips->need_fn_stub = TRUE;
11503 indmips->need_fn_stub = FALSE;
11504 }
11505 if (indmips->call_stub)
11506 {
11507 dirmips->call_stub = indmips->call_stub;
11508 indmips->call_stub = NULL;
11509 }
11510 if (indmips->call_fp_stub)
11511 {
11512 dirmips->call_fp_stub = indmips->call_fp_stub;
11513 indmips->call_fp_stub = NULL;
11514 }
634835ae
RS
11515 if (indmips->global_got_area < dirmips->global_got_area)
11516 dirmips->global_got_area = indmips->global_got_area;
11517 if (indmips->global_got_area < GGA_NONE)
11518 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11519 if (indmips->has_nonpic_branches)
11520 dirmips->has_nonpic_branches = TRUE;
b49e97c9 11521}
b49e97c9 11522\f
d01414a5
TS
11523#define PDR_SIZE 32
11524
b34976b6 11525bfd_boolean
9719ad41
RS
11526_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11527 struct bfd_link_info *info)
d01414a5
TS
11528{
11529 asection *o;
b34976b6 11530 bfd_boolean ret = FALSE;
d01414a5
TS
11531 unsigned char *tdata;
11532 size_t i, skip;
11533
11534 o = bfd_get_section_by_name (abfd, ".pdr");
11535 if (! o)
b34976b6 11536 return FALSE;
eea6121a 11537 if (o->size == 0)
b34976b6 11538 return FALSE;
eea6121a 11539 if (o->size % PDR_SIZE != 0)
b34976b6 11540 return FALSE;
d01414a5
TS
11541 if (o->output_section != NULL
11542 && bfd_is_abs_section (o->output_section))
b34976b6 11543 return FALSE;
d01414a5 11544
eea6121a 11545 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11546 if (! tdata)
b34976b6 11547 return FALSE;
d01414a5 11548
9719ad41 11549 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11550 info->keep_memory);
d01414a5
TS
11551 if (!cookie->rels)
11552 {
11553 free (tdata);
b34976b6 11554 return FALSE;
d01414a5
TS
11555 }
11556
11557 cookie->rel = cookie->rels;
11558 cookie->relend = cookie->rels + o->reloc_count;
11559
eea6121a 11560 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11561 {
c152c796 11562 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11563 {
11564 tdata[i] = 1;
11565 skip ++;
11566 }
11567 }
11568
11569 if (skip != 0)
11570 {
f0abc2a1 11571 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11572 o->size -= skip * PDR_SIZE;
b34976b6 11573 ret = TRUE;
d01414a5
TS
11574 }
11575 else
11576 free (tdata);
11577
11578 if (! info->keep_memory)
11579 free (cookie->rels);
11580
11581 return ret;
11582}
11583
b34976b6 11584bfd_boolean
9719ad41 11585_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11586{
11587 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11588 return TRUE;
11589 return FALSE;
53bfd6b4 11590}
d01414a5 11591
b34976b6 11592bfd_boolean
c7b8f16e
JB
11593_bfd_mips_elf_write_section (bfd *output_bfd,
11594 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11595 asection *sec, bfd_byte *contents)
d01414a5
TS
11596{
11597 bfd_byte *to, *from, *end;
11598 int i;
11599
11600 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11601 return FALSE;
d01414a5 11602
f0abc2a1 11603 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11604 return FALSE;
d01414a5
TS
11605
11606 to = contents;
eea6121a 11607 end = contents + sec->size;
d01414a5
TS
11608 for (from = contents, i = 0;
11609 from < end;
11610 from += PDR_SIZE, i++)
11611 {
f0abc2a1 11612 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11613 continue;
11614 if (to != from)
11615 memcpy (to, from, PDR_SIZE);
11616 to += PDR_SIZE;
11617 }
11618 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11619 sec->output_offset, sec->size);
b34976b6 11620 return TRUE;
d01414a5 11621}
53bfd6b4 11622\f
df58fc94
RS
11623/* microMIPS code retains local labels for linker relaxation. Omit them
11624 from output by default for clarity. */
11625
11626bfd_boolean
11627_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11628{
11629 return _bfd_elf_is_local_label_name (abfd, sym->name);
11630}
11631
b49e97c9
TS
11632/* MIPS ELF uses a special find_nearest_line routine in order the
11633 handle the ECOFF debugging information. */
11634
11635struct mips_elf_find_line
11636{
11637 struct ecoff_debug_info d;
11638 struct ecoff_find_line i;
11639};
11640
b34976b6 11641bfd_boolean
9719ad41
RS
11642_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11643 asymbol **symbols, bfd_vma offset,
11644 const char **filename_ptr,
11645 const char **functionname_ptr,
11646 unsigned int *line_ptr)
b49e97c9
TS
11647{
11648 asection *msec;
11649
11650 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11651 filename_ptr, functionname_ptr,
11652 line_ptr))
b34976b6 11653 return TRUE;
b49e97c9 11654
fc28f9aa
TG
11655 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11656 section, symbols, offset,
b49e97c9 11657 filename_ptr, functionname_ptr,
9b8d1a36 11658 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11659 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11660 return TRUE;
b49e97c9
TS
11661
11662 msec = bfd_get_section_by_name (abfd, ".mdebug");
11663 if (msec != NULL)
11664 {
11665 flagword origflags;
11666 struct mips_elf_find_line *fi;
11667 const struct ecoff_debug_swap * const swap =
11668 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11669
11670 /* If we are called during a link, mips_elf_final_link may have
11671 cleared the SEC_HAS_CONTENTS field. We force it back on here
11672 if appropriate (which it normally will be). */
11673 origflags = msec->flags;
11674 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11675 msec->flags |= SEC_HAS_CONTENTS;
11676
698600e4 11677 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
11678 if (fi == NULL)
11679 {
11680 bfd_size_type external_fdr_size;
11681 char *fraw_src;
11682 char *fraw_end;
11683 struct fdr *fdr_ptr;
11684 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11685
9719ad41 11686 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11687 if (fi == NULL)
11688 {
11689 msec->flags = origflags;
b34976b6 11690 return FALSE;
b49e97c9
TS
11691 }
11692
11693 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11694 {
11695 msec->flags = origflags;
b34976b6 11696 return FALSE;
b49e97c9
TS
11697 }
11698
11699 /* Swap in the FDR information. */
11700 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11701 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11702 if (fi->d.fdr == NULL)
11703 {
11704 msec->flags = origflags;
b34976b6 11705 return FALSE;
b49e97c9
TS
11706 }
11707 external_fdr_size = swap->external_fdr_size;
11708 fdr_ptr = fi->d.fdr;
11709 fraw_src = (char *) fi->d.external_fdr;
11710 fraw_end = (fraw_src
11711 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11712 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11713 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 11714
698600e4 11715 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
11716
11717 /* Note that we don't bother to ever free this information.
11718 find_nearest_line is either called all the time, as in
11719 objdump -l, so the information should be saved, or it is
11720 rarely called, as in ld error messages, so the memory
11721 wasted is unimportant. Still, it would probably be a
11722 good idea for free_cached_info to throw it away. */
11723 }
11724
11725 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11726 &fi->i, filename_ptr, functionname_ptr,
11727 line_ptr))
11728 {
11729 msec->flags = origflags;
b34976b6 11730 return TRUE;
b49e97c9
TS
11731 }
11732
11733 msec->flags = origflags;
11734 }
11735
11736 /* Fall back on the generic ELF find_nearest_line routine. */
11737
11738 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11739 filename_ptr, functionname_ptr,
11740 line_ptr);
11741}
4ab527b0
FF
11742
11743bfd_boolean
11744_bfd_mips_elf_find_inliner_info (bfd *abfd,
11745 const char **filename_ptr,
11746 const char **functionname_ptr,
11747 unsigned int *line_ptr)
11748{
11749 bfd_boolean found;
11750 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11751 functionname_ptr, line_ptr,
11752 & elf_tdata (abfd)->dwarf2_find_line_info);
11753 return found;
11754}
11755
b49e97c9
TS
11756\f
11757/* When are writing out the .options or .MIPS.options section,
11758 remember the bytes we are writing out, so that we can install the
11759 GP value in the section_processing routine. */
11760
b34976b6 11761bfd_boolean
9719ad41
RS
11762_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11763 const void *location,
11764 file_ptr offset, bfd_size_type count)
b49e97c9 11765{
cc2e31b9 11766 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11767 {
11768 bfd_byte *c;
11769
11770 if (elf_section_data (section) == NULL)
11771 {
11772 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11773 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11774 if (elf_section_data (section) == NULL)
b34976b6 11775 return FALSE;
b49e97c9 11776 }
f0abc2a1 11777 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11778 if (c == NULL)
11779 {
eea6121a 11780 c = bfd_zalloc (abfd, section->size);
b49e97c9 11781 if (c == NULL)
b34976b6 11782 return FALSE;
f0abc2a1 11783 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11784 }
11785
9719ad41 11786 memcpy (c + offset, location, count);
b49e97c9
TS
11787 }
11788
11789 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11790 count);
11791}
11792
11793/* This is almost identical to bfd_generic_get_... except that some
11794 MIPS relocations need to be handled specially. Sigh. */
11795
11796bfd_byte *
9719ad41
RS
11797_bfd_elf_mips_get_relocated_section_contents
11798 (bfd *abfd,
11799 struct bfd_link_info *link_info,
11800 struct bfd_link_order *link_order,
11801 bfd_byte *data,
11802 bfd_boolean relocatable,
11803 asymbol **symbols)
b49e97c9
TS
11804{
11805 /* Get enough memory to hold the stuff */
11806 bfd *input_bfd = link_order->u.indirect.section->owner;
11807 asection *input_section = link_order->u.indirect.section;
eea6121a 11808 bfd_size_type sz;
b49e97c9
TS
11809
11810 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11811 arelent **reloc_vector = NULL;
11812 long reloc_count;
11813
11814 if (reloc_size < 0)
11815 goto error_return;
11816
9719ad41 11817 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11818 if (reloc_vector == NULL && reloc_size != 0)
11819 goto error_return;
11820
11821 /* read in the section */
eea6121a
AM
11822 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11823 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11824 goto error_return;
11825
b49e97c9
TS
11826 reloc_count = bfd_canonicalize_reloc (input_bfd,
11827 input_section,
11828 reloc_vector,
11829 symbols);
11830 if (reloc_count < 0)
11831 goto error_return;
11832
11833 if (reloc_count > 0)
11834 {
11835 arelent **parent;
11836 /* for mips */
11837 int gp_found;
11838 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11839
11840 {
11841 struct bfd_hash_entry *h;
11842 struct bfd_link_hash_entry *lh;
11843 /* Skip all this stuff if we aren't mixing formats. */
11844 if (abfd && input_bfd
11845 && abfd->xvec == input_bfd->xvec)
11846 lh = 0;
11847 else
11848 {
b34976b6 11849 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11850 lh = (struct bfd_link_hash_entry *) h;
11851 }
11852 lookup:
11853 if (lh)
11854 {
11855 switch (lh->type)
11856 {
11857 case bfd_link_hash_undefined:
11858 case bfd_link_hash_undefweak:
11859 case bfd_link_hash_common:
11860 gp_found = 0;
11861 break;
11862 case bfd_link_hash_defined:
11863 case bfd_link_hash_defweak:
11864 gp_found = 1;
11865 gp = lh->u.def.value;
11866 break;
11867 case bfd_link_hash_indirect:
11868 case bfd_link_hash_warning:
11869 lh = lh->u.i.link;
11870 /* @@FIXME ignoring warning for now */
11871 goto lookup;
11872 case bfd_link_hash_new:
11873 default:
11874 abort ();
11875 }
11876 }
11877 else
11878 gp_found = 0;
11879 }
11880 /* end mips */
9719ad41 11881 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11882 {
9719ad41 11883 char *error_message = NULL;
b49e97c9
TS
11884 bfd_reloc_status_type r;
11885
11886 /* Specific to MIPS: Deal with relocation types that require
11887 knowing the gp of the output bfd. */
11888 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11889
8236346f
EC
11890 /* If we've managed to find the gp and have a special
11891 function for the relocation then go ahead, else default
11892 to the generic handling. */
11893 if (gp_found
11894 && (*parent)->howto->special_function
11895 == _bfd_mips_elf32_gprel16_reloc)
11896 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11897 input_section, relocatable,
11898 data, gp);
11899 else
86324f90 11900 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11901 input_section,
11902 relocatable ? abfd : NULL,
11903 &error_message);
b49e97c9 11904
1049f94e 11905 if (relocatable)
b49e97c9
TS
11906 {
11907 asection *os = input_section->output_section;
11908
11909 /* A partial link, so keep the relocs */
11910 os->orelocation[os->reloc_count] = *parent;
11911 os->reloc_count++;
11912 }
11913
11914 if (r != bfd_reloc_ok)
11915 {
11916 switch (r)
11917 {
11918 case bfd_reloc_undefined:
11919 if (!((*link_info->callbacks->undefined_symbol)
11920 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11921 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11922 goto error_return;
11923 break;
11924 case bfd_reloc_dangerous:
9719ad41 11925 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11926 if (!((*link_info->callbacks->reloc_dangerous)
11927 (link_info, error_message, input_bfd, input_section,
11928 (*parent)->address)))
11929 goto error_return;
11930 break;
11931 case bfd_reloc_overflow:
11932 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11933 (link_info, NULL,
11934 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11935 (*parent)->howto->name, (*parent)->addend,
11936 input_bfd, input_section, (*parent)->address)))
11937 goto error_return;
11938 break;
11939 case bfd_reloc_outofrange:
11940 default:
11941 abort ();
11942 break;
11943 }
11944
11945 }
11946 }
11947 }
11948 if (reloc_vector != NULL)
11949 free (reloc_vector);
11950 return data;
11951
11952error_return:
11953 if (reloc_vector != NULL)
11954 free (reloc_vector);
11955 return NULL;
11956}
11957\f
df58fc94
RS
11958static bfd_boolean
11959mips_elf_relax_delete_bytes (bfd *abfd,
11960 asection *sec, bfd_vma addr, int count)
11961{
11962 Elf_Internal_Shdr *symtab_hdr;
11963 unsigned int sec_shndx;
11964 bfd_byte *contents;
11965 Elf_Internal_Rela *irel, *irelend;
11966 Elf_Internal_Sym *isym;
11967 Elf_Internal_Sym *isymend;
11968 struct elf_link_hash_entry **sym_hashes;
11969 struct elf_link_hash_entry **end_hashes;
11970 struct elf_link_hash_entry **start_hashes;
11971 unsigned int symcount;
11972
11973 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11974 contents = elf_section_data (sec)->this_hdr.contents;
11975
11976 irel = elf_section_data (sec)->relocs;
11977 irelend = irel + sec->reloc_count;
11978
11979 /* Actually delete the bytes. */
11980 memmove (contents + addr, contents + addr + count,
11981 (size_t) (sec->size - addr - count));
11982 sec->size -= count;
11983
11984 /* Adjust all the relocs. */
11985 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11986 {
11987 /* Get the new reloc address. */
11988 if (irel->r_offset > addr)
11989 irel->r_offset -= count;
11990 }
11991
11992 BFD_ASSERT (addr % 2 == 0);
11993 BFD_ASSERT (count % 2 == 0);
11994
11995 /* Adjust the local symbols defined in this section. */
11996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11997 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11998 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 11999 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
12000 isym->st_value -= count;
12001
12002 /* Now adjust the global symbols defined in this section. */
12003 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12004 - symtab_hdr->sh_info);
12005 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12006 end_hashes = sym_hashes + symcount;
12007
12008 for (; sym_hashes < end_hashes; sym_hashes++)
12009 {
12010 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12011
12012 if ((sym_hash->root.type == bfd_link_hash_defined
12013 || sym_hash->root.type == bfd_link_hash_defweak)
12014 && sym_hash->root.u.def.section == sec)
12015 {
2309ddf2 12016 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12017
df58fc94
RS
12018 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12019 value &= MINUS_TWO;
12020 if (value > addr)
12021 sym_hash->root.u.def.value -= count;
12022 }
12023 }
12024
12025 return TRUE;
12026}
12027
12028
12029/* Opcodes needed for microMIPS relaxation as found in
12030 opcodes/micromips-opc.c. */
12031
12032struct opcode_descriptor {
12033 unsigned long match;
12034 unsigned long mask;
12035};
12036
12037/* The $ra register aka $31. */
12038
12039#define RA 31
12040
12041/* 32-bit instruction format register fields. */
12042
12043#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12044#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12045
12046/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12047
12048#define OP16_VALID_REG(r) \
12049 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12050
12051
12052/* 32-bit and 16-bit branches. */
12053
12054static const struct opcode_descriptor b_insns_32[] = {
12055 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12056 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12057 { 0, 0 } /* End marker for find_match(). */
12058};
12059
12060static const struct opcode_descriptor bc_insn_32 =
12061 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12062
12063static const struct opcode_descriptor bz_insn_32 =
12064 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12065
12066static const struct opcode_descriptor bzal_insn_32 =
12067 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12068
12069static const struct opcode_descriptor beq_insn_32 =
12070 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12071
12072static const struct opcode_descriptor b_insn_16 =
12073 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12074
12075static const struct opcode_descriptor bz_insn_16 =
c088dedf 12076 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12077
12078
12079/* 32-bit and 16-bit branch EQ and NE zero. */
12080
12081/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12082 eq and second the ne. This convention is used when replacing a
12083 32-bit BEQ/BNE with the 16-bit version. */
12084
12085#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12086
12087static const struct opcode_descriptor bz_rs_insns_32[] = {
12088 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12089 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12090 { 0, 0 } /* End marker for find_match(). */
12091};
12092
12093static const struct opcode_descriptor bz_rt_insns_32[] = {
12094 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12095 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12096 { 0, 0 } /* End marker for find_match(). */
12097};
12098
12099static const struct opcode_descriptor bzc_insns_32[] = {
12100 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12101 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12102 { 0, 0 } /* End marker for find_match(). */
12103};
12104
12105static const struct opcode_descriptor bz_insns_16[] = {
12106 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12107 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12108 { 0, 0 } /* End marker for find_match(). */
12109};
12110
12111/* Switch between a 5-bit register index and its 3-bit shorthand. */
12112
12113#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12114#define BZ16_REG_FIELD(r) \
12115 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12116
12117
12118/* 32-bit instructions with a delay slot. */
12119
12120static const struct opcode_descriptor jal_insn_32_bd16 =
12121 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12122
12123static const struct opcode_descriptor jal_insn_32_bd32 =
12124 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12125
12126static const struct opcode_descriptor jal_x_insn_32_bd32 =
12127 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12128
12129static const struct opcode_descriptor j_insn_32 =
12130 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12131
12132static const struct opcode_descriptor jalr_insn_32 =
12133 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12134
12135/* This table can be compacted, because no opcode replacement is made. */
12136
12137static const struct opcode_descriptor ds_insns_32_bd16[] = {
12138 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12139
12140 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12141 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12142
12143 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12144 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12145 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12146 { 0, 0 } /* End marker for find_match(). */
12147};
12148
12149/* This table can be compacted, because no opcode replacement is made. */
12150
12151static const struct opcode_descriptor ds_insns_32_bd32[] = {
12152 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12153
12154 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12155 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12156 { 0, 0 } /* End marker for find_match(). */
12157};
12158
12159
12160/* 16-bit instructions with a delay slot. */
12161
12162static const struct opcode_descriptor jalr_insn_16_bd16 =
12163 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12164
12165static const struct opcode_descriptor jalr_insn_16_bd32 =
12166 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12167
12168static const struct opcode_descriptor jr_insn_16 =
12169 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12170
12171#define JR16_REG(opcode) ((opcode) & 0x1f)
12172
12173/* This table can be compacted, because no opcode replacement is made. */
12174
12175static const struct opcode_descriptor ds_insns_16_bd16[] = {
12176 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12177
12178 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12179 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12180 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12181 { 0, 0 } /* End marker for find_match(). */
12182};
12183
12184
12185/* LUI instruction. */
12186
12187static const struct opcode_descriptor lui_insn =
12188 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12189
12190
12191/* ADDIU instruction. */
12192
12193static const struct opcode_descriptor addiu_insn =
12194 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12195
12196static const struct opcode_descriptor addiupc_insn =
12197 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12198
12199#define ADDIUPC_REG_FIELD(r) \
12200 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12201
12202
12203/* Relaxable instructions in a JAL delay slot: MOVE. */
12204
12205/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12206 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12207#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12208#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12209
12210#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12211#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12212
12213static const struct opcode_descriptor move_insns_32[] = {
12214 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12215 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12216 { 0, 0 } /* End marker for find_match(). */
12217};
12218
12219static const struct opcode_descriptor move_insn_16 =
12220 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12221
12222
12223/* NOP instructions. */
12224
12225static const struct opcode_descriptor nop_insn_32 =
12226 { /* "nop", "", */ 0x00000000, 0xffffffff };
12227
12228static const struct opcode_descriptor nop_insn_16 =
12229 { /* "nop", "", */ 0x0c00, 0xffff };
12230
12231
12232/* Instruction match support. */
12233
12234#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12235
12236static int
12237find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12238{
12239 unsigned long indx;
12240
12241 for (indx = 0; insn[indx].mask != 0; indx++)
12242 if (MATCH (opcode, insn[indx]))
12243 return indx;
12244
12245 return -1;
12246}
12247
12248
12249/* Branch and delay slot decoding support. */
12250
12251/* If PTR points to what *might* be a 16-bit branch or jump, then
12252 return the minimum length of its delay slot, otherwise return 0.
12253 Non-zero results are not definitive as we might be checking against
12254 the second half of another instruction. */
12255
12256static int
12257check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12258{
12259 unsigned long opcode;
12260 int bdsize;
12261
12262 opcode = bfd_get_16 (abfd, ptr);
12263 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12264 /* 16-bit branch/jump with a 32-bit delay slot. */
12265 bdsize = 4;
12266 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12267 || find_match (opcode, ds_insns_16_bd16) >= 0)
12268 /* 16-bit branch/jump with a 16-bit delay slot. */
12269 bdsize = 2;
12270 else
12271 /* No delay slot. */
12272 bdsize = 0;
12273
12274 return bdsize;
12275}
12276
12277/* If PTR points to what *might* be a 32-bit branch or jump, then
12278 return the minimum length of its delay slot, otherwise return 0.
12279 Non-zero results are not definitive as we might be checking against
12280 the second half of another instruction. */
12281
12282static int
12283check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12284{
12285 unsigned long opcode;
12286 int bdsize;
12287
d21911ea 12288 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12289 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12290 /* 32-bit branch/jump with a 32-bit delay slot. */
12291 bdsize = 4;
12292 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12293 /* 32-bit branch/jump with a 16-bit delay slot. */
12294 bdsize = 2;
12295 else
12296 /* No delay slot. */
12297 bdsize = 0;
12298
12299 return bdsize;
12300}
12301
12302/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12303 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12304
12305static bfd_boolean
12306check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12307{
12308 unsigned long opcode;
12309
12310 opcode = bfd_get_16 (abfd, ptr);
12311 if (MATCH (opcode, b_insn_16)
12312 /* B16 */
12313 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12314 /* JR16 */
12315 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12316 /* BEQZ16, BNEZ16 */
12317 || (MATCH (opcode, jalr_insn_16_bd32)
12318 /* JALR16 */
12319 && reg != JR16_REG (opcode) && reg != RA))
12320 return TRUE;
12321
12322 return FALSE;
12323}
12324
12325/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12326 then return TRUE, otherwise FALSE. */
12327
f41e5fcc 12328static bfd_boolean
df58fc94
RS
12329check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12330{
12331 unsigned long opcode;
12332
d21911ea 12333 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12334 if (MATCH (opcode, j_insn_32)
12335 /* J */
12336 || MATCH (opcode, bc_insn_32)
12337 /* BC1F, BC1T, BC2F, BC2T */
12338 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12339 /* JAL, JALX */
12340 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12341 /* BGEZ, BGTZ, BLEZ, BLTZ */
12342 || (MATCH (opcode, bzal_insn_32)
12343 /* BGEZAL, BLTZAL */
12344 && reg != OP32_SREG (opcode) && reg != RA)
12345 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12346 /* JALR, JALR.HB, BEQ, BNE */
12347 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12348 return TRUE;
12349
12350 return FALSE;
12351}
12352
80cab405
MR
12353/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12354 IRELEND) at OFFSET indicate that there must be a compact branch there,
12355 then return TRUE, otherwise FALSE. */
df58fc94
RS
12356
12357static bfd_boolean
80cab405
MR
12358check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12359 const Elf_Internal_Rela *internal_relocs,
12360 const Elf_Internal_Rela *irelend)
df58fc94 12361{
80cab405
MR
12362 const Elf_Internal_Rela *irel;
12363 unsigned long opcode;
12364
d21911ea 12365 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12366 if (find_match (opcode, bzc_insns_32) < 0)
12367 return FALSE;
df58fc94
RS
12368
12369 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12370 if (irel->r_offset == offset
12371 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12372 return TRUE;
12373
df58fc94
RS
12374 return FALSE;
12375}
80cab405
MR
12376
12377/* Bitsize checking. */
12378#define IS_BITSIZE(val, N) \
12379 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12380 - (1ULL << ((N) - 1))) == (val))
12381
df58fc94
RS
12382\f
12383bfd_boolean
12384_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12385 struct bfd_link_info *link_info,
12386 bfd_boolean *again)
12387{
12388 Elf_Internal_Shdr *symtab_hdr;
12389 Elf_Internal_Rela *internal_relocs;
12390 Elf_Internal_Rela *irel, *irelend;
12391 bfd_byte *contents = NULL;
12392 Elf_Internal_Sym *isymbuf = NULL;
12393
12394 /* Assume nothing changes. */
12395 *again = FALSE;
12396
12397 /* We don't have to do anything for a relocatable link, if
12398 this section does not have relocs, or if this is not a
12399 code section. */
12400
12401 if (link_info->relocatable
12402 || (sec->flags & SEC_RELOC) == 0
12403 || sec->reloc_count == 0
12404 || (sec->flags & SEC_CODE) == 0)
12405 return TRUE;
12406
12407 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12408
12409 /* Get a copy of the native relocations. */
12410 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12411 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12412 link_info->keep_memory));
12413 if (internal_relocs == NULL)
12414 goto error_return;
12415
12416 /* Walk through them looking for relaxing opportunities. */
12417 irelend = internal_relocs + sec->reloc_count;
12418 for (irel = internal_relocs; irel < irelend; irel++)
12419 {
12420 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12421 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12422 bfd_boolean target_is_micromips_code_p;
12423 unsigned long opcode;
12424 bfd_vma symval;
12425 bfd_vma pcrval;
2309ddf2 12426 bfd_byte *ptr;
df58fc94
RS
12427 int fndopc;
12428
12429 /* The number of bytes to delete for relaxation and from where
12430 to delete these bytes starting at irel->r_offset. */
12431 int delcnt = 0;
12432 int deloff = 0;
12433
12434 /* If this isn't something that can be relaxed, then ignore
12435 this reloc. */
12436 if (r_type != R_MICROMIPS_HI16
12437 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12438 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12439 continue;
12440
12441 /* Get the section contents if we haven't done so already. */
12442 if (contents == NULL)
12443 {
12444 /* Get cached copy if it exists. */
12445 if (elf_section_data (sec)->this_hdr.contents != NULL)
12446 contents = elf_section_data (sec)->this_hdr.contents;
12447 /* Go get them off disk. */
12448 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12449 goto error_return;
12450 }
2309ddf2 12451 ptr = contents + irel->r_offset;
df58fc94
RS
12452
12453 /* Read this BFD's local symbols if we haven't done so already. */
12454 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12455 {
12456 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12457 if (isymbuf == NULL)
12458 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12459 symtab_hdr->sh_info, 0,
12460 NULL, NULL, NULL);
12461 if (isymbuf == NULL)
12462 goto error_return;
12463 }
12464
12465 /* Get the value of the symbol referred to by the reloc. */
12466 if (r_symndx < symtab_hdr->sh_info)
12467 {
12468 /* A local symbol. */
12469 Elf_Internal_Sym *isym;
12470 asection *sym_sec;
12471
12472 isym = isymbuf + r_symndx;
12473 if (isym->st_shndx == SHN_UNDEF)
12474 sym_sec = bfd_und_section_ptr;
12475 else if (isym->st_shndx == SHN_ABS)
12476 sym_sec = bfd_abs_section_ptr;
12477 else if (isym->st_shndx == SHN_COMMON)
12478 sym_sec = bfd_com_section_ptr;
12479 else
12480 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12481 symval = (isym->st_value
12482 + sym_sec->output_section->vma
12483 + sym_sec->output_offset);
12484 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12485 }
12486 else
12487 {
12488 unsigned long indx;
12489 struct elf_link_hash_entry *h;
12490
12491 /* An external symbol. */
12492 indx = r_symndx - symtab_hdr->sh_info;
12493 h = elf_sym_hashes (abfd)[indx];
12494 BFD_ASSERT (h != NULL);
12495
12496 if (h->root.type != bfd_link_hash_defined
12497 && h->root.type != bfd_link_hash_defweak)
12498 /* This appears to be a reference to an undefined
12499 symbol. Just ignore it -- it will be caught by the
12500 regular reloc processing. */
12501 continue;
12502
12503 symval = (h->root.u.def.value
12504 + h->root.u.def.section->output_section->vma
12505 + h->root.u.def.section->output_offset);
12506 target_is_micromips_code_p = (!h->needs_plt
12507 && ELF_ST_IS_MICROMIPS (h->other));
12508 }
12509
12510
12511 /* For simplicity of coding, we are going to modify the
12512 section contents, the section relocs, and the BFD symbol
12513 table. We must tell the rest of the code not to free up this
12514 information. It would be possible to instead create a table
12515 of changes which have to be made, as is done in coff-mips.c;
12516 that would be more work, but would require less memory when
12517 the linker is run. */
12518
12519 /* Only 32-bit instructions relaxed. */
12520 if (irel->r_offset + 4 > sec->size)
12521 continue;
12522
d21911ea 12523 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12524
12525 /* This is the pc-relative distance from the instruction the
12526 relocation is applied to, to the symbol referred. */
12527 pcrval = (symval
12528 - (sec->output_section->vma + sec->output_offset)
12529 - irel->r_offset);
12530
12531 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12532 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12533 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12534
12535 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12536
12537 where pcrval has first to be adjusted to apply against the LO16
12538 location (we make the adjustment later on, when we have figured
12539 out the offset). */
12540 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12541 {
80cab405 12542 bfd_boolean bzc = FALSE;
df58fc94
RS
12543 unsigned long nextopc;
12544 unsigned long reg;
12545 bfd_vma offset;
12546
12547 /* Give up if the previous reloc was a HI16 against this symbol
12548 too. */
12549 if (irel > internal_relocs
12550 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12551 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12552 continue;
12553
12554 /* Or if the next reloc is not a LO16 against this symbol. */
12555 if (irel + 1 >= irelend
12556 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12557 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12558 continue;
12559
12560 /* Or if the second next reloc is a LO16 against this symbol too. */
12561 if (irel + 2 >= irelend
12562 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12563 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12564 continue;
12565
80cab405
MR
12566 /* See if the LUI instruction *might* be in a branch delay slot.
12567 We check whether what looks like a 16-bit branch or jump is
12568 actually an immediate argument to a compact branch, and let
12569 it through if so. */
df58fc94 12570 if (irel->r_offset >= 2
2309ddf2 12571 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12572 && !(irel->r_offset >= 4
80cab405
MR
12573 && (bzc = check_relocated_bzc (abfd,
12574 ptr - 4, irel->r_offset - 4,
12575 internal_relocs, irelend))))
df58fc94
RS
12576 continue;
12577 if (irel->r_offset >= 4
80cab405 12578 && !bzc
2309ddf2 12579 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12580 continue;
12581
12582 reg = OP32_SREG (opcode);
12583
12584 /* We only relax adjacent instructions or ones separated with
12585 a branch or jump that has a delay slot. The branch or jump
12586 must not fiddle with the register used to hold the address.
12587 Subtract 4 for the LUI itself. */
12588 offset = irel[1].r_offset - irel[0].r_offset;
12589 switch (offset - 4)
12590 {
12591 case 0:
12592 break;
12593 case 2:
2309ddf2 12594 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12595 break;
12596 continue;
12597 case 4:
2309ddf2 12598 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12599 break;
12600 continue;
12601 default:
12602 continue;
12603 }
12604
d21911ea 12605 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12606
12607 /* Give up unless the same register is used with both
12608 relocations. */
12609 if (OP32_SREG (nextopc) != reg)
12610 continue;
12611
12612 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12613 and rounding up to take masking of the two LSBs into account. */
12614 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12615
12616 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12617 if (IS_BITSIZE (symval, 16))
12618 {
12619 /* Fix the relocation's type. */
12620 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12621
12622 /* Instructions using R_MICROMIPS_LO16 have the base or
12623 source register in bits 20:16. This register becomes $0
12624 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12625 nextopc &= ~0x001f0000;
12626 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12627 contents + irel[1].r_offset);
12628 }
12629
12630 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12631 We add 4 to take LUI deletion into account while checking
12632 the PC-relative distance. */
12633 else if (symval % 4 == 0
12634 && IS_BITSIZE (pcrval + 4, 25)
12635 && MATCH (nextopc, addiu_insn)
12636 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12637 && OP16_VALID_REG (OP32_TREG (nextopc)))
12638 {
12639 /* Fix the relocation's type. */
12640 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12641
12642 /* Replace ADDIU with the ADDIUPC version. */
12643 nextopc = (addiupc_insn.match
12644 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12645
d21911ea
MR
12646 bfd_put_micromips_32 (abfd, nextopc,
12647 contents + irel[1].r_offset);
df58fc94
RS
12648 }
12649
12650 /* Can't do anything, give up, sigh... */
12651 else
12652 continue;
12653
12654 /* Fix the relocation's type. */
12655 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12656
12657 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12658 delcnt = 4;
12659 deloff = 0;
12660 }
12661
12662 /* Compact branch relaxation -- due to the multitude of macros
12663 employed by the compiler/assembler, compact branches are not
12664 always generated. Obviously, this can/will be fixed elsewhere,
12665 but there is no drawback in double checking it here. */
12666 else if (r_type == R_MICROMIPS_PC16_S1
12667 && irel->r_offset + 5 < sec->size
12668 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12669 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12670 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12671 {
12672 unsigned long reg;
12673
12674 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12675
12676 /* Replace BEQZ/BNEZ with the compact version. */
12677 opcode = (bzc_insns_32[fndopc].match
12678 | BZC32_REG_FIELD (reg)
12679 | (opcode & 0xffff)); /* Addend value. */
12680
d21911ea 12681 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12682
12683 /* Delete the 16-bit delay slot NOP: two bytes from
12684 irel->offset + 4. */
12685 delcnt = 2;
12686 deloff = 4;
12687 }
12688
12689 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12690 to check the distance from the next instruction, so subtract 2. */
12691 else if (r_type == R_MICROMIPS_PC16_S1
12692 && IS_BITSIZE (pcrval - 2, 11)
12693 && find_match (opcode, b_insns_32) >= 0)
12694 {
12695 /* Fix the relocation's type. */
12696 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12697
a8685210 12698 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12699 bfd_put_16 (abfd,
12700 (b_insn_16.match
12701 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12702 ptr);
df58fc94
RS
12703
12704 /* Delete 2 bytes from irel->r_offset + 2. */
12705 delcnt = 2;
12706 deloff = 2;
12707 }
12708
12709 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12710 to check the distance from the next instruction, so subtract 2. */
12711 else if (r_type == R_MICROMIPS_PC16_S1
12712 && IS_BITSIZE (pcrval - 2, 8)
12713 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12714 && OP16_VALID_REG (OP32_SREG (opcode)))
12715 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12716 && OP16_VALID_REG (OP32_TREG (opcode)))))
12717 {
12718 unsigned long reg;
12719
12720 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12721
12722 /* Fix the relocation's type. */
12723 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12724
a8685210 12725 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12726 bfd_put_16 (abfd,
12727 (bz_insns_16[fndopc].match
12728 | BZ16_REG_FIELD (reg)
12729 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12730 ptr);
df58fc94
RS
12731
12732 /* Delete 2 bytes from irel->r_offset + 2. */
12733 delcnt = 2;
12734 deloff = 2;
12735 }
12736
12737 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12738 else if (r_type == R_MICROMIPS_26_S1
12739 && target_is_micromips_code_p
12740 && irel->r_offset + 7 < sec->size
12741 && MATCH (opcode, jal_insn_32_bd32))
12742 {
12743 unsigned long n32opc;
12744 bfd_boolean relaxed = FALSE;
12745
d21911ea 12746 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12747
12748 if (MATCH (n32opc, nop_insn_32))
12749 {
12750 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12751 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12752
12753 relaxed = TRUE;
12754 }
12755 else if (find_match (n32opc, move_insns_32) >= 0)
12756 {
12757 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12758 bfd_put_16 (abfd,
12759 (move_insn_16.match
12760 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12761 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12762 ptr + 4);
df58fc94
RS
12763
12764 relaxed = TRUE;
12765 }
12766 /* Other 32-bit instructions relaxable to 16-bit
12767 instructions will be handled here later. */
12768
12769 if (relaxed)
12770 {
12771 /* JAL with 32-bit delay slot that is changed to a JALS
12772 with 16-bit delay slot. */
d21911ea 12773 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12774
12775 /* Delete 2 bytes from irel->r_offset + 6. */
12776 delcnt = 2;
12777 deloff = 6;
12778 }
12779 }
12780
12781 if (delcnt != 0)
12782 {
12783 /* Note that we've changed the relocs, section contents, etc. */
12784 elf_section_data (sec)->relocs = internal_relocs;
12785 elf_section_data (sec)->this_hdr.contents = contents;
12786 symtab_hdr->contents = (unsigned char *) isymbuf;
12787
12788 /* Delete bytes depending on the delcnt and deloff. */
12789 if (!mips_elf_relax_delete_bytes (abfd, sec,
12790 irel->r_offset + deloff, delcnt))
12791 goto error_return;
12792
12793 /* That will change things, so we should relax again.
12794 Note that this is not required, and it may be slow. */
12795 *again = TRUE;
12796 }
12797 }
12798
12799 if (isymbuf != NULL
12800 && symtab_hdr->contents != (unsigned char *) isymbuf)
12801 {
12802 if (! link_info->keep_memory)
12803 free (isymbuf);
12804 else
12805 {
12806 /* Cache the symbols for elf_link_input_bfd. */
12807 symtab_hdr->contents = (unsigned char *) isymbuf;
12808 }
12809 }
12810
12811 if (contents != NULL
12812 && elf_section_data (sec)->this_hdr.contents != contents)
12813 {
12814 if (! link_info->keep_memory)
12815 free (contents);
12816 else
12817 {
12818 /* Cache the section contents for elf_link_input_bfd. */
12819 elf_section_data (sec)->this_hdr.contents = contents;
12820 }
12821 }
12822
12823 if (internal_relocs != NULL
12824 && elf_section_data (sec)->relocs != internal_relocs)
12825 free (internal_relocs);
12826
12827 return TRUE;
12828
12829 error_return:
12830 if (isymbuf != NULL
12831 && symtab_hdr->contents != (unsigned char *) isymbuf)
12832 free (isymbuf);
12833 if (contents != NULL
12834 && elf_section_data (sec)->this_hdr.contents != contents)
12835 free (contents);
12836 if (internal_relocs != NULL
12837 && elf_section_data (sec)->relocs != internal_relocs)
12838 free (internal_relocs);
12839
12840 return FALSE;
12841}
12842\f
b49e97c9
TS
12843/* Create a MIPS ELF linker hash table. */
12844
12845struct bfd_link_hash_table *
9719ad41 12846_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12847{
12848 struct mips_elf_link_hash_table *ret;
12849 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12850
7bf52ea2 12851 ret = bfd_zmalloc (amt);
9719ad41 12852 if (ret == NULL)
b49e97c9
TS
12853 return NULL;
12854
66eb6687
AM
12855 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12856 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12857 sizeof (struct mips_elf_link_hash_entry),
12858 MIPS_ELF_DATA))
b49e97c9 12859 {
e2d34d7d 12860 free (ret);
b49e97c9
TS
12861 return NULL;
12862 }
12863
b49e97c9
TS
12864 return &ret->root.root;
12865}
0a44bf69
RS
12866
12867/* Likewise, but indicate that the target is VxWorks. */
12868
12869struct bfd_link_hash_table *
12870_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12871{
12872 struct bfd_link_hash_table *ret;
12873
12874 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12875 if (ret)
12876 {
12877 struct mips_elf_link_hash_table *htab;
12878
12879 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12880 htab->use_plts_and_copy_relocs = TRUE;
12881 htab->is_vxworks = TRUE;
0a44bf69
RS
12882 }
12883 return ret;
12884}
861fb55a
DJ
12885
12886/* A function that the linker calls if we are allowed to use PLTs
12887 and copy relocs. */
12888
12889void
12890_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12891{
12892 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12893}
b49e97c9
TS
12894\f
12895/* We need to use a special link routine to handle the .reginfo and
12896 the .mdebug sections. We need to merge all instances of these
12897 sections together, not write them all out sequentially. */
12898
b34976b6 12899bfd_boolean
9719ad41 12900_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12901{
b49e97c9
TS
12902 asection *o;
12903 struct bfd_link_order *p;
12904 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12905 asection *rtproc_sec;
12906 Elf32_RegInfo reginfo;
12907 struct ecoff_debug_info debug;
861fb55a 12908 struct mips_htab_traverse_info hti;
7a2a6943
NC
12909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12910 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 12911 HDRR *symhdr = &debug.symbolic_header;
9719ad41 12912 void *mdebug_handle = NULL;
b49e97c9
TS
12913 asection *s;
12914 EXTR esym;
12915 unsigned int i;
12916 bfd_size_type amt;
0a44bf69 12917 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
12918
12919 static const char * const secname[] =
12920 {
12921 ".text", ".init", ".fini", ".data",
12922 ".rodata", ".sdata", ".sbss", ".bss"
12923 };
12924 static const int sc[] =
12925 {
12926 scText, scInit, scFini, scData,
12927 scRData, scSData, scSBss, scBss
12928 };
12929
d4596a51
RS
12930 /* Sort the dynamic symbols so that those with GOT entries come after
12931 those without. */
0a44bf69 12932 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
12933 BFD_ASSERT (htab != NULL);
12934
d4596a51
RS
12935 if (!mips_elf_sort_hash_table (abfd, info))
12936 return FALSE;
b49e97c9 12937
861fb55a
DJ
12938 /* Create any scheduled LA25 stubs. */
12939 hti.info = info;
12940 hti.output_bfd = abfd;
12941 hti.error = FALSE;
12942 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12943 if (hti.error)
12944 return FALSE;
12945
b49e97c9
TS
12946 /* Get a value for the GP register. */
12947 if (elf_gp (abfd) == 0)
12948 {
12949 struct bfd_link_hash_entry *h;
12950
b34976b6 12951 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 12952 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
12953 elf_gp (abfd) = (h->u.def.value
12954 + h->u.def.section->output_section->vma
12955 + h->u.def.section->output_offset);
0a44bf69
RS
12956 else if (htab->is_vxworks
12957 && (h = bfd_link_hash_lookup (info->hash,
12958 "_GLOBAL_OFFSET_TABLE_",
12959 FALSE, FALSE, TRUE))
12960 && h->type == bfd_link_hash_defined)
12961 elf_gp (abfd) = (h->u.def.section->output_section->vma
12962 + h->u.def.section->output_offset
12963 + h->u.def.value);
1049f94e 12964 else if (info->relocatable)
b49e97c9
TS
12965 {
12966 bfd_vma lo = MINUS_ONE;
12967
12968 /* Find the GP-relative section with the lowest offset. */
9719ad41 12969 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12970 if (o->vma < lo
12971 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12972 lo = o->vma;
12973
12974 /* And calculate GP relative to that. */
0a44bf69 12975 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
12976 }
12977 else
12978 {
12979 /* If the relocate_section function needs to do a reloc
12980 involving the GP value, it should make a reloc_dangerous
12981 callback to warn that GP is not defined. */
12982 }
12983 }
12984
12985 /* Go through the sections and collect the .reginfo and .mdebug
12986 information. */
12987 reginfo_sec = NULL;
12988 mdebug_sec = NULL;
12989 gptab_data_sec = NULL;
12990 gptab_bss_sec = NULL;
9719ad41 12991 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12992 {
12993 if (strcmp (o->name, ".reginfo") == 0)
12994 {
12995 memset (&reginfo, 0, sizeof reginfo);
12996
12997 /* We have found the .reginfo section in the output file.
12998 Look through all the link_orders comprising it and merge
12999 the information together. */
8423293d 13000 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13001 {
13002 asection *input_section;
13003 bfd *input_bfd;
13004 Elf32_External_RegInfo ext;
13005 Elf32_RegInfo sub;
13006
13007 if (p->type != bfd_indirect_link_order)
13008 {
13009 if (p->type == bfd_data_link_order)
13010 continue;
13011 abort ();
13012 }
13013
13014 input_section = p->u.indirect.section;
13015 input_bfd = input_section->owner;
13016
b49e97c9 13017 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13018 &ext, 0, sizeof ext))
b34976b6 13019 return FALSE;
b49e97c9
TS
13020
13021 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13022
13023 reginfo.ri_gprmask |= sub.ri_gprmask;
13024 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13025 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13026 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13027 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13028
13029 /* ri_gp_value is set by the function
13030 mips_elf32_section_processing when the section is
13031 finally written out. */
13032
13033 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13034 elf_link_input_bfd ignores this section. */
13035 input_section->flags &= ~SEC_HAS_CONTENTS;
13036 }
13037
13038 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13039 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13040
13041 /* Skip this section later on (I don't think this currently
13042 matters, but someday it might). */
8423293d 13043 o->map_head.link_order = NULL;
b49e97c9
TS
13044
13045 reginfo_sec = o;
13046 }
13047
13048 if (strcmp (o->name, ".mdebug") == 0)
13049 {
13050 struct extsym_info einfo;
13051 bfd_vma last;
13052
13053 /* We have found the .mdebug section in the output file.
13054 Look through all the link_orders comprising it and merge
13055 the information together. */
13056 symhdr->magic = swap->sym_magic;
13057 /* FIXME: What should the version stamp be? */
13058 symhdr->vstamp = 0;
13059 symhdr->ilineMax = 0;
13060 symhdr->cbLine = 0;
13061 symhdr->idnMax = 0;
13062 symhdr->ipdMax = 0;
13063 symhdr->isymMax = 0;
13064 symhdr->ioptMax = 0;
13065 symhdr->iauxMax = 0;
13066 symhdr->issMax = 0;
13067 symhdr->issExtMax = 0;
13068 symhdr->ifdMax = 0;
13069 symhdr->crfd = 0;
13070 symhdr->iextMax = 0;
13071
13072 /* We accumulate the debugging information itself in the
13073 debug_info structure. */
13074 debug.line = NULL;
13075 debug.external_dnr = NULL;
13076 debug.external_pdr = NULL;
13077 debug.external_sym = NULL;
13078 debug.external_opt = NULL;
13079 debug.external_aux = NULL;
13080 debug.ss = NULL;
13081 debug.ssext = debug.ssext_end = NULL;
13082 debug.external_fdr = NULL;
13083 debug.external_rfd = NULL;
13084 debug.external_ext = debug.external_ext_end = NULL;
13085
13086 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13087 if (mdebug_handle == NULL)
b34976b6 13088 return FALSE;
b49e97c9
TS
13089
13090 esym.jmptbl = 0;
13091 esym.cobol_main = 0;
13092 esym.weakext = 0;
13093 esym.reserved = 0;
13094 esym.ifd = ifdNil;
13095 esym.asym.iss = issNil;
13096 esym.asym.st = stLocal;
13097 esym.asym.reserved = 0;
13098 esym.asym.index = indexNil;
13099 last = 0;
13100 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13101 {
13102 esym.asym.sc = sc[i];
13103 s = bfd_get_section_by_name (abfd, secname[i]);
13104 if (s != NULL)
13105 {
13106 esym.asym.value = s->vma;
eea6121a 13107 last = s->vma + s->size;
b49e97c9
TS
13108 }
13109 else
13110 esym.asym.value = last;
13111 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13112 secname[i], &esym))
b34976b6 13113 return FALSE;
b49e97c9
TS
13114 }
13115
8423293d 13116 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13117 {
13118 asection *input_section;
13119 bfd *input_bfd;
13120 const struct ecoff_debug_swap *input_swap;
13121 struct ecoff_debug_info input_debug;
13122 char *eraw_src;
13123 char *eraw_end;
13124
13125 if (p->type != bfd_indirect_link_order)
13126 {
13127 if (p->type == bfd_data_link_order)
13128 continue;
13129 abort ();
13130 }
13131
13132 input_section = p->u.indirect.section;
13133 input_bfd = input_section->owner;
13134
d5eaccd7 13135 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13136 {
13137 /* I don't know what a non MIPS ELF bfd would be
13138 doing with a .mdebug section, but I don't really
13139 want to deal with it. */
13140 continue;
13141 }
13142
13143 input_swap = (get_elf_backend_data (input_bfd)
13144 ->elf_backend_ecoff_debug_swap);
13145
eea6121a 13146 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13147
13148 /* The ECOFF linking code expects that we have already
13149 read in the debugging information and set up an
13150 ecoff_debug_info structure, so we do that now. */
13151 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13152 &input_debug))
b34976b6 13153 return FALSE;
b49e97c9
TS
13154
13155 if (! (bfd_ecoff_debug_accumulate
13156 (mdebug_handle, abfd, &debug, swap, input_bfd,
13157 &input_debug, input_swap, info)))
b34976b6 13158 return FALSE;
b49e97c9
TS
13159
13160 /* Loop through the external symbols. For each one with
13161 interesting information, try to find the symbol in
13162 the linker global hash table and save the information
13163 for the output external symbols. */
13164 eraw_src = input_debug.external_ext;
13165 eraw_end = (eraw_src
13166 + (input_debug.symbolic_header.iextMax
13167 * input_swap->external_ext_size));
13168 for (;
13169 eraw_src < eraw_end;
13170 eraw_src += input_swap->external_ext_size)
13171 {
13172 EXTR ext;
13173 const char *name;
13174 struct mips_elf_link_hash_entry *h;
13175
9719ad41 13176 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13177 if (ext.asym.sc == scNil
13178 || ext.asym.sc == scUndefined
13179 || ext.asym.sc == scSUndefined)
13180 continue;
13181
13182 name = input_debug.ssext + ext.asym.iss;
13183 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13184 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13185 if (h == NULL || h->esym.ifd != -2)
13186 continue;
13187
13188 if (ext.ifd != -1)
13189 {
13190 BFD_ASSERT (ext.ifd
13191 < input_debug.symbolic_header.ifdMax);
13192 ext.ifd = input_debug.ifdmap[ext.ifd];
13193 }
13194
13195 h->esym = ext;
13196 }
13197
13198 /* Free up the information we just read. */
13199 free (input_debug.line);
13200 free (input_debug.external_dnr);
13201 free (input_debug.external_pdr);
13202 free (input_debug.external_sym);
13203 free (input_debug.external_opt);
13204 free (input_debug.external_aux);
13205 free (input_debug.ss);
13206 free (input_debug.ssext);
13207 free (input_debug.external_fdr);
13208 free (input_debug.external_rfd);
13209 free (input_debug.external_ext);
13210
13211 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13212 elf_link_input_bfd ignores this section. */
13213 input_section->flags &= ~SEC_HAS_CONTENTS;
13214 }
13215
13216 if (SGI_COMPAT (abfd) && info->shared)
13217 {
13218 /* Create .rtproc section. */
87e0a731 13219 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13220 if (rtproc_sec == NULL)
13221 {
13222 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13223 | SEC_LINKER_CREATED | SEC_READONLY);
13224
87e0a731
AM
13225 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13226 ".rtproc",
13227 flags);
b49e97c9 13228 if (rtproc_sec == NULL
b49e97c9 13229 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13230 return FALSE;
b49e97c9
TS
13231 }
13232
13233 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13234 info, rtproc_sec,
13235 &debug))
b34976b6 13236 return FALSE;
b49e97c9
TS
13237 }
13238
13239 /* Build the external symbol information. */
13240 einfo.abfd = abfd;
13241 einfo.info = info;
13242 einfo.debug = &debug;
13243 einfo.swap = swap;
b34976b6 13244 einfo.failed = FALSE;
b49e97c9 13245 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13246 mips_elf_output_extsym, &einfo);
b49e97c9 13247 if (einfo.failed)
b34976b6 13248 return FALSE;
b49e97c9
TS
13249
13250 /* Set the size of the .mdebug section. */
eea6121a 13251 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13252
13253 /* Skip this section later on (I don't think this currently
13254 matters, but someday it might). */
8423293d 13255 o->map_head.link_order = NULL;
b49e97c9
TS
13256
13257 mdebug_sec = o;
13258 }
13259
0112cd26 13260 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13261 {
13262 const char *subname;
13263 unsigned int c;
13264 Elf32_gptab *tab;
13265 Elf32_External_gptab *ext_tab;
13266 unsigned int j;
13267
13268 /* The .gptab.sdata and .gptab.sbss sections hold
13269 information describing how the small data area would
13270 change depending upon the -G switch. These sections
13271 not used in executables files. */
1049f94e 13272 if (! info->relocatable)
b49e97c9 13273 {
8423293d 13274 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13275 {
13276 asection *input_section;
13277
13278 if (p->type != bfd_indirect_link_order)
13279 {
13280 if (p->type == bfd_data_link_order)
13281 continue;
13282 abort ();
13283 }
13284
13285 input_section = p->u.indirect.section;
13286
13287 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13288 elf_link_input_bfd ignores this section. */
13289 input_section->flags &= ~SEC_HAS_CONTENTS;
13290 }
13291
13292 /* Skip this section later on (I don't think this
13293 currently matters, but someday it might). */
8423293d 13294 o->map_head.link_order = NULL;
b49e97c9
TS
13295
13296 /* Really remove the section. */
5daa8fe7 13297 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13298 --abfd->section_count;
13299
13300 continue;
13301 }
13302
13303 /* There is one gptab for initialized data, and one for
13304 uninitialized data. */
13305 if (strcmp (o->name, ".gptab.sdata") == 0)
13306 gptab_data_sec = o;
13307 else if (strcmp (o->name, ".gptab.sbss") == 0)
13308 gptab_bss_sec = o;
13309 else
13310 {
13311 (*_bfd_error_handler)
13312 (_("%s: illegal section name `%s'"),
13313 bfd_get_filename (abfd), o->name);
13314 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13315 return FALSE;
b49e97c9
TS
13316 }
13317
13318 /* The linker script always combines .gptab.data and
13319 .gptab.sdata into .gptab.sdata, and likewise for
13320 .gptab.bss and .gptab.sbss. It is possible that there is
13321 no .sdata or .sbss section in the output file, in which
13322 case we must change the name of the output section. */
13323 subname = o->name + sizeof ".gptab" - 1;
13324 if (bfd_get_section_by_name (abfd, subname) == NULL)
13325 {
13326 if (o == gptab_data_sec)
13327 o->name = ".gptab.data";
13328 else
13329 o->name = ".gptab.bss";
13330 subname = o->name + sizeof ".gptab" - 1;
13331 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13332 }
13333
13334 /* Set up the first entry. */
13335 c = 1;
13336 amt = c * sizeof (Elf32_gptab);
9719ad41 13337 tab = bfd_malloc (amt);
b49e97c9 13338 if (tab == NULL)
b34976b6 13339 return FALSE;
b49e97c9
TS
13340 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13341 tab[0].gt_header.gt_unused = 0;
13342
13343 /* Combine the input sections. */
8423293d 13344 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13345 {
13346 asection *input_section;
13347 bfd *input_bfd;
13348 bfd_size_type size;
13349 unsigned long last;
13350 bfd_size_type gpentry;
13351
13352 if (p->type != bfd_indirect_link_order)
13353 {
13354 if (p->type == bfd_data_link_order)
13355 continue;
13356 abort ();
13357 }
13358
13359 input_section = p->u.indirect.section;
13360 input_bfd = input_section->owner;
13361
13362 /* Combine the gptab entries for this input section one
13363 by one. We know that the input gptab entries are
13364 sorted by ascending -G value. */
eea6121a 13365 size = input_section->size;
b49e97c9
TS
13366 last = 0;
13367 for (gpentry = sizeof (Elf32_External_gptab);
13368 gpentry < size;
13369 gpentry += sizeof (Elf32_External_gptab))
13370 {
13371 Elf32_External_gptab ext_gptab;
13372 Elf32_gptab int_gptab;
13373 unsigned long val;
13374 unsigned long add;
b34976b6 13375 bfd_boolean exact;
b49e97c9
TS
13376 unsigned int look;
13377
13378 if (! (bfd_get_section_contents
9719ad41
RS
13379 (input_bfd, input_section, &ext_gptab, gpentry,
13380 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13381 {
13382 free (tab);
b34976b6 13383 return FALSE;
b49e97c9
TS
13384 }
13385
13386 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13387 &int_gptab);
13388 val = int_gptab.gt_entry.gt_g_value;
13389 add = int_gptab.gt_entry.gt_bytes - last;
13390
b34976b6 13391 exact = FALSE;
b49e97c9
TS
13392 for (look = 1; look < c; look++)
13393 {
13394 if (tab[look].gt_entry.gt_g_value >= val)
13395 tab[look].gt_entry.gt_bytes += add;
13396
13397 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13398 exact = TRUE;
b49e97c9
TS
13399 }
13400
13401 if (! exact)
13402 {
13403 Elf32_gptab *new_tab;
13404 unsigned int max;
13405
13406 /* We need a new table entry. */
13407 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13408 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13409 if (new_tab == NULL)
13410 {
13411 free (tab);
b34976b6 13412 return FALSE;
b49e97c9
TS
13413 }
13414 tab = new_tab;
13415 tab[c].gt_entry.gt_g_value = val;
13416 tab[c].gt_entry.gt_bytes = add;
13417
13418 /* Merge in the size for the next smallest -G
13419 value, since that will be implied by this new
13420 value. */
13421 max = 0;
13422 for (look = 1; look < c; look++)
13423 {
13424 if (tab[look].gt_entry.gt_g_value < val
13425 && (max == 0
13426 || (tab[look].gt_entry.gt_g_value
13427 > tab[max].gt_entry.gt_g_value)))
13428 max = look;
13429 }
13430 if (max != 0)
13431 tab[c].gt_entry.gt_bytes +=
13432 tab[max].gt_entry.gt_bytes;
13433
13434 ++c;
13435 }
13436
13437 last = int_gptab.gt_entry.gt_bytes;
13438 }
13439
13440 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13441 elf_link_input_bfd ignores this section. */
13442 input_section->flags &= ~SEC_HAS_CONTENTS;
13443 }
13444
13445 /* The table must be sorted by -G value. */
13446 if (c > 2)
13447 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13448
13449 /* Swap out the table. */
13450 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13451 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13452 if (ext_tab == NULL)
13453 {
13454 free (tab);
b34976b6 13455 return FALSE;
b49e97c9
TS
13456 }
13457
13458 for (j = 0; j < c; j++)
13459 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13460 free (tab);
13461
eea6121a 13462 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13463 o->contents = (bfd_byte *) ext_tab;
13464
13465 /* Skip this section later on (I don't think this currently
13466 matters, but someday it might). */
8423293d 13467 o->map_head.link_order = NULL;
b49e97c9
TS
13468 }
13469 }
13470
13471 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13472 if (!bfd_elf_final_link (abfd, info))
b34976b6 13473 return FALSE;
b49e97c9
TS
13474
13475 /* Now write out the computed sections. */
13476
9719ad41 13477 if (reginfo_sec != NULL)
b49e97c9
TS
13478 {
13479 Elf32_External_RegInfo ext;
13480
13481 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13482 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13483 return FALSE;
b49e97c9
TS
13484 }
13485
9719ad41 13486 if (mdebug_sec != NULL)
b49e97c9
TS
13487 {
13488 BFD_ASSERT (abfd->output_has_begun);
13489 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13490 swap, info,
13491 mdebug_sec->filepos))
b34976b6 13492 return FALSE;
b49e97c9
TS
13493
13494 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13495 }
13496
9719ad41 13497 if (gptab_data_sec != NULL)
b49e97c9
TS
13498 {
13499 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13500 gptab_data_sec->contents,
eea6121a 13501 0, gptab_data_sec->size))
b34976b6 13502 return FALSE;
b49e97c9
TS
13503 }
13504
9719ad41 13505 if (gptab_bss_sec != NULL)
b49e97c9
TS
13506 {
13507 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13508 gptab_bss_sec->contents,
eea6121a 13509 0, gptab_bss_sec->size))
b34976b6 13510 return FALSE;
b49e97c9
TS
13511 }
13512
13513 if (SGI_COMPAT (abfd))
13514 {
13515 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13516 if (rtproc_sec != NULL)
13517 {
13518 if (! bfd_set_section_contents (abfd, rtproc_sec,
13519 rtproc_sec->contents,
eea6121a 13520 0, rtproc_sec->size))
b34976b6 13521 return FALSE;
b49e97c9
TS
13522 }
13523 }
13524
b34976b6 13525 return TRUE;
b49e97c9
TS
13526}
13527\f
64543e1a
RS
13528/* Structure for saying that BFD machine EXTENSION extends BASE. */
13529
13530struct mips_mach_extension {
13531 unsigned long extension, base;
13532};
13533
13534
13535/* An array describing how BFD machines relate to one another. The entries
13536 are ordered topologically with MIPS I extensions listed last. */
13537
13538static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13539 /* MIPS64r2 extensions. */
432233b3 13540 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13541 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13542 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13543
64543e1a 13544 /* MIPS64 extensions. */
5f74bc13 13545 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13546 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13547 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13548 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13549
13550 /* MIPS V extensions. */
13551 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13552
13553 /* R10000 extensions. */
13554 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13555 { bfd_mach_mips14000, bfd_mach_mips10000 },
13556 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13557
13558 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13559 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13560 better to allow vr5400 and vr5500 code to be merged anyway, since
13561 many libraries will just use the core ISA. Perhaps we could add
13562 some sort of ASE flag if this ever proves a problem. */
13563 { bfd_mach_mips5500, bfd_mach_mips5400 },
13564 { bfd_mach_mips5400, bfd_mach_mips5000 },
13565
13566 /* MIPS IV extensions. */
13567 { bfd_mach_mips5, bfd_mach_mips8000 },
13568 { bfd_mach_mips10000, bfd_mach_mips8000 },
13569 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13570 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13571 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13572
13573 /* VR4100 extensions. */
13574 { bfd_mach_mips4120, bfd_mach_mips4100 },
13575 { bfd_mach_mips4111, bfd_mach_mips4100 },
13576
13577 /* MIPS III extensions. */
350cc38d
MS
13578 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13579 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13580 { bfd_mach_mips8000, bfd_mach_mips4000 },
13581 { bfd_mach_mips4650, bfd_mach_mips4000 },
13582 { bfd_mach_mips4600, bfd_mach_mips4000 },
13583 { bfd_mach_mips4400, bfd_mach_mips4000 },
13584 { bfd_mach_mips4300, bfd_mach_mips4000 },
13585 { bfd_mach_mips4100, bfd_mach_mips4000 },
13586 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13587 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13588
13589 /* MIPS32 extensions. */
13590 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13591
13592 /* MIPS II extensions. */
13593 { bfd_mach_mips4000, bfd_mach_mips6000 },
13594 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13595
13596 /* MIPS I extensions. */
13597 { bfd_mach_mips6000, bfd_mach_mips3000 },
13598 { bfd_mach_mips3900, bfd_mach_mips3000 }
13599};
13600
13601
13602/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13603
13604static bfd_boolean
9719ad41 13605mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13606{
13607 size_t i;
13608
c5211a54
RS
13609 if (extension == base)
13610 return TRUE;
13611
13612 if (base == bfd_mach_mipsisa32
13613 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13614 return TRUE;
13615
13616 if (base == bfd_mach_mipsisa32r2
13617 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13618 return TRUE;
13619
13620 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13621 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13622 {
13623 extension = mips_mach_extensions[i].base;
13624 if (extension == base)
13625 return TRUE;
13626 }
64543e1a 13627
c5211a54 13628 return FALSE;
64543e1a
RS
13629}
13630
13631
13632/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13633
b34976b6 13634static bfd_boolean
9719ad41 13635mips_32bit_flags_p (flagword flags)
00707a0e 13636{
64543e1a
RS
13637 return ((flags & EF_MIPS_32BITMODE) != 0
13638 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13639 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13640 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13641 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13642 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13643 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13644}
13645
64543e1a 13646
2cf19d5c
JM
13647/* Merge object attributes from IBFD into OBFD. Raise an error if
13648 there are conflicting attributes. */
13649static bfd_boolean
13650mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13651{
13652 obj_attribute *in_attr;
13653 obj_attribute *out_attr;
6ae68ba3
MR
13654 bfd *abi_fp_bfd;
13655
13656 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13657 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13658 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13659 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13660
13661 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13662 {
13663 /* This is the first object. Copy the attributes. */
13664 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13665
13666 /* Use the Tag_null value to indicate the attributes have been
13667 initialized. */
13668 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13669
13670 return TRUE;
13671 }
13672
13673 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13674 non-conflicting ones. */
2cf19d5c
JM
13675 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13676 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13677 {
13678 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13679 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13680 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13681 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13682 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13683 {
13684 case 1:
13685 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13686 {
13687 case 2:
13688 _bfd_error_handler
6ae68ba3
MR
13689 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13690 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13691 break;
2cf19d5c
JM
13692
13693 case 3:
13694 _bfd_error_handler
6ae68ba3
MR
13695 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13696 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13697 break;
13698
42554f6a
TS
13699 case 4:
13700 _bfd_error_handler
6ae68ba3
MR
13701 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13702 obfd, abi_fp_bfd, ibfd,
13703 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13704 break;
13705
2cf19d5c 13706 default:
6ae68ba3
MR
13707 _bfd_error_handler
13708 (_("Warning: %B uses %s (set by %B), "
13709 "%B uses unknown floating point ABI %d"),
13710 obfd, abi_fp_bfd, ibfd,
13711 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13712 break;
2cf19d5c
JM
13713 }
13714 break;
13715
13716 case 2:
13717 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13718 {
13719 case 1:
13720 _bfd_error_handler
6ae68ba3
MR
13721 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13722 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13723 break;
2cf19d5c
JM
13724
13725 case 3:
13726 _bfd_error_handler
6ae68ba3
MR
13727 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13728 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13729 break;
13730
42554f6a
TS
13731 case 4:
13732 _bfd_error_handler
6ae68ba3
MR
13733 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13734 obfd, abi_fp_bfd, ibfd,
13735 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13736 break;
13737
2cf19d5c 13738 default:
6ae68ba3
MR
13739 _bfd_error_handler
13740 (_("Warning: %B uses %s (set by %B), "
13741 "%B uses unknown floating point ABI %d"),
13742 obfd, abi_fp_bfd, ibfd,
13743 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13744 break;
2cf19d5c
JM
13745 }
13746 break;
13747
13748 case 3:
13749 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13750 {
13751 case 1:
13752 case 2:
42554f6a 13753 case 4:
2cf19d5c 13754 _bfd_error_handler
6ae68ba3
MR
13755 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13756 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13757 break;
13758
13759 default:
6ae68ba3
MR
13760 _bfd_error_handler
13761 (_("Warning: %B uses %s (set by %B), "
13762 "%B uses unknown floating point ABI %d"),
13763 obfd, abi_fp_bfd, ibfd,
13764 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13765 break;
2cf19d5c
JM
13766 }
13767 break;
13768
42554f6a
TS
13769 case 4:
13770 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13771 {
13772 case 1:
13773 _bfd_error_handler
6ae68ba3
MR
13774 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13775 obfd, abi_fp_bfd, ibfd,
13776 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13777 break;
13778
13779 case 2:
13780 _bfd_error_handler
6ae68ba3
MR
13781 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13782 obfd, abi_fp_bfd, ibfd,
13783 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13784 break;
13785
13786 case 3:
13787 _bfd_error_handler
6ae68ba3
MR
13788 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13789 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13790 break;
13791
13792 default:
6ae68ba3
MR
13793 _bfd_error_handler
13794 (_("Warning: %B uses %s (set by %B), "
13795 "%B uses unknown floating point ABI %d"),
13796 obfd, abi_fp_bfd, ibfd,
13797 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13798 break;
42554f6a
TS
13799 }
13800 break;
13801
2cf19d5c 13802 default:
6ae68ba3
MR
13803 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13804 {
13805 case 1:
13806 _bfd_error_handler
13807 (_("Warning: %B uses unknown floating point ABI %d "
13808 "(set by %B), %B uses %s"),
13809 obfd, abi_fp_bfd, ibfd,
13810 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13811 break;
13812
13813 case 2:
13814 _bfd_error_handler
13815 (_("Warning: %B uses unknown floating point ABI %d "
13816 "(set by %B), %B uses %s"),
13817 obfd, abi_fp_bfd, ibfd,
13818 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13819 break;
13820
13821 case 3:
13822 _bfd_error_handler
13823 (_("Warning: %B uses unknown floating point ABI %d "
13824 "(set by %B), %B uses %s"),
13825 obfd, abi_fp_bfd, ibfd,
13826 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13827 break;
13828
13829 case 4:
13830 _bfd_error_handler
13831 (_("Warning: %B uses unknown floating point ABI %d "
13832 "(set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13835 break;
13836
13837 default:
13838 _bfd_error_handler
13839 (_("Warning: %B uses unknown floating point ABI %d "
13840 "(set by %B), %B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13843 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13844 break;
13845 }
13846 break;
2cf19d5c
JM
13847 }
13848 }
13849
13850 /* Merge Tag_compatibility attributes and any common GNU ones. */
13851 _bfd_elf_merge_object_attributes (ibfd, obfd);
13852
13853 return TRUE;
13854}
13855
b49e97c9
TS
13856/* Merge backend specific data from an object file to the output
13857 object file when linking. */
13858
b34976b6 13859bfd_boolean
9719ad41 13860_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13861{
13862 flagword old_flags;
13863 flagword new_flags;
b34976b6
AM
13864 bfd_boolean ok;
13865 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13866 asection *sec;
13867
58238693 13868 /* Check if we have the same endianness. */
82e51918 13869 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13870 {
13871 (*_bfd_error_handler)
d003868e
AM
13872 (_("%B: endianness incompatible with that of the selected emulation"),
13873 ibfd);
aa701218
AO
13874 return FALSE;
13875 }
b49e97c9 13876
d5eaccd7 13877 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13878 return TRUE;
b49e97c9 13879
aa701218
AO
13880 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13881 {
13882 (*_bfd_error_handler)
d003868e
AM
13883 (_("%B: ABI is incompatible with that of the selected emulation"),
13884 ibfd);
aa701218
AO
13885 return FALSE;
13886 }
13887
2cf19d5c
JM
13888 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13889 return FALSE;
13890
b49e97c9
TS
13891 new_flags = elf_elfheader (ibfd)->e_flags;
13892 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13893 old_flags = elf_elfheader (obfd)->e_flags;
13894
13895 if (! elf_flags_init (obfd))
13896 {
b34976b6 13897 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13898 elf_elfheader (obfd)->e_flags = new_flags;
13899 elf_elfheader (obfd)->e_ident[EI_CLASS]
13900 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13901
13902 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13903 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13904 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13905 bfd_get_mach (ibfd))))
b49e97c9
TS
13906 {
13907 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13908 bfd_get_mach (ibfd)))
b34976b6 13909 return FALSE;
b49e97c9
TS
13910 }
13911
b34976b6 13912 return TRUE;
b49e97c9
TS
13913 }
13914
13915 /* Check flag compatibility. */
13916
13917 new_flags &= ~EF_MIPS_NOREORDER;
13918 old_flags &= ~EF_MIPS_NOREORDER;
13919
f4416af6
AO
13920 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13921 doesn't seem to matter. */
13922 new_flags &= ~EF_MIPS_XGOT;
13923 old_flags &= ~EF_MIPS_XGOT;
13924
98a8deaf
RS
13925 /* MIPSpro generates ucode info in n64 objects. Again, we should
13926 just be able to ignore this. */
13927 new_flags &= ~EF_MIPS_UCODE;
13928 old_flags &= ~EF_MIPS_UCODE;
13929
861fb55a
DJ
13930 /* DSOs should only be linked with CPIC code. */
13931 if ((ibfd->flags & DYNAMIC) != 0)
13932 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13933
b49e97c9 13934 if (new_flags == old_flags)
b34976b6 13935 return TRUE;
b49e97c9
TS
13936
13937 /* Check to see if the input BFD actually contains any sections.
13938 If not, its flags may not have been initialised either, but it cannot
13939 actually cause any incompatibility. */
13940 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13941 {
13942 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13943 which are automatically generated by gas. Also ignore fake
13944 (s)common sections, since merely defining a common symbol does
13945 not affect compatibility. */
13946 if ((sec->flags & SEC_IS_COMMON) == 0
13947 && strcmp (sec->name, ".reginfo")
b49e97c9 13948 && strcmp (sec->name, ".mdebug")
eea6121a 13949 && (sec->size != 0
d13d89fa
NS
13950 || (strcmp (sec->name, ".text")
13951 && strcmp (sec->name, ".data")
13952 && strcmp (sec->name, ".bss"))))
b49e97c9 13953 {
b34976b6 13954 null_input_bfd = FALSE;
b49e97c9
TS
13955 break;
13956 }
13957 }
13958 if (null_input_bfd)
b34976b6 13959 return TRUE;
b49e97c9 13960
b34976b6 13961 ok = TRUE;
b49e97c9 13962
143d77c5
EC
13963 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13964 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13965 {
b49e97c9 13966 (*_bfd_error_handler)
861fb55a 13967 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13968 ibfd);
143d77c5 13969 ok = TRUE;
b49e97c9
TS
13970 }
13971
143d77c5
EC
13972 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13973 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13974 if (! (new_flags & EF_MIPS_PIC))
13975 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13976
13977 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13978 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 13979
64543e1a
RS
13980 /* Compare the ISAs. */
13981 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 13982 {
64543e1a 13983 (*_bfd_error_handler)
d003868e
AM
13984 (_("%B: linking 32-bit code with 64-bit code"),
13985 ibfd);
64543e1a
RS
13986 ok = FALSE;
13987 }
13988 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13989 {
13990 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13991 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 13992 {
64543e1a
RS
13993 /* Copy the architecture info from IBFD to OBFD. Also copy
13994 the 32-bit flag (if set) so that we continue to recognise
13995 OBFD as a 32-bit binary. */
13996 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13997 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13998 elf_elfheader (obfd)->e_flags
13999 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14000
14001 /* Copy across the ABI flags if OBFD doesn't use them
14002 and if that was what caused us to treat IBFD as 32-bit. */
14003 if ((old_flags & EF_MIPS_ABI) == 0
14004 && mips_32bit_flags_p (new_flags)
14005 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14006 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
14007 }
14008 else
14009 {
64543e1a 14010 /* The ISAs aren't compatible. */
b49e97c9 14011 (*_bfd_error_handler)
d003868e
AM
14012 (_("%B: linking %s module with previous %s modules"),
14013 ibfd,
64543e1a
RS
14014 bfd_printable_name (ibfd),
14015 bfd_printable_name (obfd));
b34976b6 14016 ok = FALSE;
b49e97c9 14017 }
b49e97c9
TS
14018 }
14019
64543e1a
RS
14020 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14021 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14022
14023 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14024 does set EI_CLASS differently from any 32-bit ABI. */
14025 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14026 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14027 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14028 {
14029 /* Only error if both are set (to different values). */
14030 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14031 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14032 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14033 {
14034 (*_bfd_error_handler)
d003868e
AM
14035 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14036 ibfd,
b49e97c9
TS
14037 elf_mips_abi_name (ibfd),
14038 elf_mips_abi_name (obfd));
b34976b6 14039 ok = FALSE;
b49e97c9
TS
14040 }
14041 new_flags &= ~EF_MIPS_ABI;
14042 old_flags &= ~EF_MIPS_ABI;
14043 }
14044
df58fc94
RS
14045 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14046 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14047 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14048 {
df58fc94
RS
14049 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14050 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14051 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14052 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14053 int micro_mis = old_m16 && new_micro;
14054 int m16_mis = old_micro && new_m16;
14055
14056 if (m16_mis || micro_mis)
14057 {
14058 (*_bfd_error_handler)
14059 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14060 ibfd,
14061 m16_mis ? "MIPS16" : "microMIPS",
14062 m16_mis ? "microMIPS" : "MIPS16");
14063 ok = FALSE;
14064 }
14065
fb39dac1
RS
14066 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14067
14068 new_flags &= ~ EF_MIPS_ARCH_ASE;
14069 old_flags &= ~ EF_MIPS_ARCH_ASE;
14070 }
14071
b49e97c9
TS
14072 /* Warn about any other mismatches */
14073 if (new_flags != old_flags)
14074 {
14075 (*_bfd_error_handler)
d003868e
AM
14076 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14077 ibfd, (unsigned long) new_flags,
b49e97c9 14078 (unsigned long) old_flags);
b34976b6 14079 ok = FALSE;
b49e97c9
TS
14080 }
14081
14082 if (! ok)
14083 {
14084 bfd_set_error (bfd_error_bad_value);
b34976b6 14085 return FALSE;
b49e97c9
TS
14086 }
14087
b34976b6 14088 return TRUE;
b49e97c9
TS
14089}
14090
14091/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14092
b34976b6 14093bfd_boolean
9719ad41 14094_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14095{
14096 BFD_ASSERT (!elf_flags_init (abfd)
14097 || elf_elfheader (abfd)->e_flags == flags);
14098
14099 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14100 elf_flags_init (abfd) = TRUE;
14101 return TRUE;
b49e97c9
TS
14102}
14103
ad9563d6
CM
14104char *
14105_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14106{
14107 switch (dtag)
14108 {
14109 default: return "";
14110 case DT_MIPS_RLD_VERSION:
14111 return "MIPS_RLD_VERSION";
14112 case DT_MIPS_TIME_STAMP:
14113 return "MIPS_TIME_STAMP";
14114 case DT_MIPS_ICHECKSUM:
14115 return "MIPS_ICHECKSUM";
14116 case DT_MIPS_IVERSION:
14117 return "MIPS_IVERSION";
14118 case DT_MIPS_FLAGS:
14119 return "MIPS_FLAGS";
14120 case DT_MIPS_BASE_ADDRESS:
14121 return "MIPS_BASE_ADDRESS";
14122 case DT_MIPS_MSYM:
14123 return "MIPS_MSYM";
14124 case DT_MIPS_CONFLICT:
14125 return "MIPS_CONFLICT";
14126 case DT_MIPS_LIBLIST:
14127 return "MIPS_LIBLIST";
14128 case DT_MIPS_LOCAL_GOTNO:
14129 return "MIPS_LOCAL_GOTNO";
14130 case DT_MIPS_CONFLICTNO:
14131 return "MIPS_CONFLICTNO";
14132 case DT_MIPS_LIBLISTNO:
14133 return "MIPS_LIBLISTNO";
14134 case DT_MIPS_SYMTABNO:
14135 return "MIPS_SYMTABNO";
14136 case DT_MIPS_UNREFEXTNO:
14137 return "MIPS_UNREFEXTNO";
14138 case DT_MIPS_GOTSYM:
14139 return "MIPS_GOTSYM";
14140 case DT_MIPS_HIPAGENO:
14141 return "MIPS_HIPAGENO";
14142 case DT_MIPS_RLD_MAP:
14143 return "MIPS_RLD_MAP";
14144 case DT_MIPS_DELTA_CLASS:
14145 return "MIPS_DELTA_CLASS";
14146 case DT_MIPS_DELTA_CLASS_NO:
14147 return "MIPS_DELTA_CLASS_NO";
14148 case DT_MIPS_DELTA_INSTANCE:
14149 return "MIPS_DELTA_INSTANCE";
14150 case DT_MIPS_DELTA_INSTANCE_NO:
14151 return "MIPS_DELTA_INSTANCE_NO";
14152 case DT_MIPS_DELTA_RELOC:
14153 return "MIPS_DELTA_RELOC";
14154 case DT_MIPS_DELTA_RELOC_NO:
14155 return "MIPS_DELTA_RELOC_NO";
14156 case DT_MIPS_DELTA_SYM:
14157 return "MIPS_DELTA_SYM";
14158 case DT_MIPS_DELTA_SYM_NO:
14159 return "MIPS_DELTA_SYM_NO";
14160 case DT_MIPS_DELTA_CLASSSYM:
14161 return "MIPS_DELTA_CLASSSYM";
14162 case DT_MIPS_DELTA_CLASSSYM_NO:
14163 return "MIPS_DELTA_CLASSSYM_NO";
14164 case DT_MIPS_CXX_FLAGS:
14165 return "MIPS_CXX_FLAGS";
14166 case DT_MIPS_PIXIE_INIT:
14167 return "MIPS_PIXIE_INIT";
14168 case DT_MIPS_SYMBOL_LIB:
14169 return "MIPS_SYMBOL_LIB";
14170 case DT_MIPS_LOCALPAGE_GOTIDX:
14171 return "MIPS_LOCALPAGE_GOTIDX";
14172 case DT_MIPS_LOCAL_GOTIDX:
14173 return "MIPS_LOCAL_GOTIDX";
14174 case DT_MIPS_HIDDEN_GOTIDX:
14175 return "MIPS_HIDDEN_GOTIDX";
14176 case DT_MIPS_PROTECTED_GOTIDX:
14177 return "MIPS_PROTECTED_GOT_IDX";
14178 case DT_MIPS_OPTIONS:
14179 return "MIPS_OPTIONS";
14180 case DT_MIPS_INTERFACE:
14181 return "MIPS_INTERFACE";
14182 case DT_MIPS_DYNSTR_ALIGN:
14183 return "DT_MIPS_DYNSTR_ALIGN";
14184 case DT_MIPS_INTERFACE_SIZE:
14185 return "DT_MIPS_INTERFACE_SIZE";
14186 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14187 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14188 case DT_MIPS_PERF_SUFFIX:
14189 return "DT_MIPS_PERF_SUFFIX";
14190 case DT_MIPS_COMPACT_SIZE:
14191 return "DT_MIPS_COMPACT_SIZE";
14192 case DT_MIPS_GP_VALUE:
14193 return "DT_MIPS_GP_VALUE";
14194 case DT_MIPS_AUX_DYNAMIC:
14195 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14196 case DT_MIPS_PLTGOT:
14197 return "DT_MIPS_PLTGOT";
14198 case DT_MIPS_RWPLT:
14199 return "DT_MIPS_RWPLT";
ad9563d6
CM
14200 }
14201}
14202
b34976b6 14203bfd_boolean
9719ad41 14204_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14205{
9719ad41 14206 FILE *file = ptr;
b49e97c9
TS
14207
14208 BFD_ASSERT (abfd != NULL && ptr != NULL);
14209
14210 /* Print normal ELF private data. */
14211 _bfd_elf_print_private_bfd_data (abfd, ptr);
14212
14213 /* xgettext:c-format */
14214 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14215
14216 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14217 fprintf (file, _(" [abi=O32]"));
14218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14219 fprintf (file, _(" [abi=O64]"));
14220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14221 fprintf (file, _(" [abi=EABI32]"));
14222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14223 fprintf (file, _(" [abi=EABI64]"));
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14225 fprintf (file, _(" [abi unknown]"));
14226 else if (ABI_N32_P (abfd))
14227 fprintf (file, _(" [abi=N32]"));
14228 else if (ABI_64_P (abfd))
14229 fprintf (file, _(" [abi=64]"));
14230 else
14231 fprintf (file, _(" [no abi set]"));
14232
14233 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14234 fprintf (file, " [mips1]");
b49e97c9 14235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14236 fprintf (file, " [mips2]");
b49e97c9 14237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14238 fprintf (file, " [mips3]");
b49e97c9 14239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14240 fprintf (file, " [mips4]");
b49e97c9 14241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14242 fprintf (file, " [mips5]");
b49e97c9 14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14244 fprintf (file, " [mips32]");
b49e97c9 14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14246 fprintf (file, " [mips64]");
af7ee8bf 14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14248 fprintf (file, " [mips32r2]");
5f74bc13 14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14250 fprintf (file, " [mips64r2]");
b49e97c9
TS
14251 else
14252 fprintf (file, _(" [unknown ISA]"));
14253
40d32fc6 14254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14255 fprintf (file, " [mdmx]");
40d32fc6
CD
14256
14257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14258 fprintf (file, " [mips16]");
40d32fc6 14259
df58fc94
RS
14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14261 fprintf (file, " [micromips]");
14262
b49e97c9 14263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14264 fprintf (file, " [32bitmode]");
b49e97c9
TS
14265 else
14266 fprintf (file, _(" [not 32bitmode]"));
14267
c0e3f241 14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14269 fprintf (file, " [noreorder]");
c0e3f241
CD
14270
14271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14272 fprintf (file, " [PIC]");
c0e3f241
CD
14273
14274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14275 fprintf (file, " [CPIC]");
c0e3f241
CD
14276
14277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14278 fprintf (file, " [XGOT]");
c0e3f241
CD
14279
14280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14281 fprintf (file, " [UCODE]");
c0e3f241 14282
b49e97c9
TS
14283 fputc ('\n', file);
14284
b34976b6 14285 return TRUE;
b49e97c9 14286}
2f89ff8d 14287
b35d266b 14288const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14289{
0112cd26
NC
14290 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14291 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14292 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14293 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14294 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14295 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14296 { NULL, 0, 0, 0, 0 }
2f89ff8d 14297};
5e2b0d47 14298
8992f0d7
TS
14299/* Merge non visibility st_other attributes. Ensure that the
14300 STO_OPTIONAL flag is copied into h->other, even if this is not a
14301 definiton of the symbol. */
5e2b0d47
NC
14302void
14303_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14304 const Elf_Internal_Sym *isym,
14305 bfd_boolean definition,
14306 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14307{
8992f0d7
TS
14308 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14309 {
14310 unsigned char other;
14311
14312 other = (definition ? isym->st_other : h->other);
14313 other &= ~ELF_ST_VISIBILITY (-1);
14314 h->other = other | ELF_ST_VISIBILITY (h->other);
14315 }
14316
14317 if (!definition
5e2b0d47
NC
14318 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14319 h->other |= STO_OPTIONAL;
14320}
12ac1cf5
NC
14321
14322/* Decide whether an undefined symbol is special and can be ignored.
14323 This is the case for OPTIONAL symbols on IRIX. */
14324bfd_boolean
14325_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14326{
14327 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14328}
e0764319
NC
14329
14330bfd_boolean
14331_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14332{
14333 return (sym->st_shndx == SHN_COMMON
14334 || sym->st_shndx == SHN_MIPS_ACOMMON
14335 || sym->st_shndx == SHN_MIPS_SCOMMON);
14336}
861fb55a
DJ
14337
14338/* Return address for Ith PLT stub in section PLT, for relocation REL
14339 or (bfd_vma) -1 if it should not be included. */
14340
14341bfd_vma
14342_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14343 const arelent *rel ATTRIBUTE_UNUSED)
14344{
14345 return (plt->vma
14346 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14347 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14348}
14349
14350void
14351_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14352{
14353 struct mips_elf_link_hash_table *htab;
14354 Elf_Internal_Ehdr *i_ehdrp;
14355
14356 i_ehdrp = elf_elfheader (abfd);
14357 if (link_info)
14358 {
14359 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14360 BFD_ASSERT (htab != NULL);
14361
861fb55a
DJ
14362 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14363 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14364 }
14365}
This page took 1.684852 seconds and 4 git commands to generate.