* elfcode.h (elf_object_p): Delay the setting of start_address
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
77cfaee6 3 2003, 2004, 2005 Free Software Foundation, Inc.
b49e97c9
TS
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
ae9a127f 12 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 13
ae9a127f
NC
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
b49e97c9 18
ae9a127f
NC
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
b49e97c9 23
ae9a127f
NC
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
3e110533 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
b49e97c9
TS
27
28/* This file handles functionality common to the different MIPS ABI's. */
29
30#include "bfd.h"
31#include "sysdep.h"
32#include "libbfd.h"
64543e1a 33#include "libiberty.h"
b49e97c9
TS
34#include "elf-bfd.h"
35#include "elfxx-mips.h"
36#include "elf/mips.h"
37
38/* Get the ECOFF swapping routines. */
39#include "coff/sym.h"
40#include "coff/symconst.h"
41#include "coff/ecoff.h"
42#include "coff/mips.h"
43
b15e6682
AO
44#include "hashtab.h"
45
46/* This structure is used to hold .got entries while estimating got
47 sizes. */
48struct mips_got_entry
49{
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
f4416af6
AO
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
0f20cc35
DJ
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
b15e6682 75 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
b15e6682
AO
79};
80
f0abc2a1 81/* This structure is used to hold .got information when linking. */
b49e97c9
TS
82
83struct mips_got_info
84{
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
0f20cc35
DJ
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
b49e97c9
TS
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
b15e6682
AO
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
f4416af6
AO
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
0f20cc35
DJ
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
f4416af6
AO
112};
113
114/* Map an input bfd to a got in a multi-got link. */
115
116struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119};
120
121/* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124struct mips_elf_got_per_bfd_arg
125{
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
0f20cc35
DJ
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
f4416af6
AO
151};
152
153/* Another structure used to pass arguments for got entries traversal. */
154
155struct mips_elf_set_global_got_offset_arg
156{
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
b49e97c9
TS
161};
162
0f20cc35
DJ
163/* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166struct mips_elf_count_tls_arg
167{
168 struct bfd_link_info *info;
169 unsigned int needed;
170};
171
f0abc2a1
AM
172struct _mips_elf_section_data
173{
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180};
181
182#define mips_elf_section_data(sec) \
68bfbfcc 183 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 184
b49e97c9
TS
185/* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188struct mips_elf_hash_sort_data
189{
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
0f20cc35
DJ
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
b49e97c9 195 long min_got_dynindx;
f4416af6
AO
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 198 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 199 long max_unref_got_dynindx;
b49e97c9
TS
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203};
204
205/* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208struct mips_elf_link_hash_entry
209{
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
b34976b6 221 bfd_boolean readonly_reloc;
b49e97c9 222
b49e97c9
TS
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
b34976b6 227 bfd_boolean no_fn_stub;
b49e97c9
TS
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
b34976b6 235 bfd_boolean need_fn_stub;
b49e97c9
TS
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
7c5fcef7 244
a008ac03
DJ
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
b34976b6 247 bfd_boolean forced_local;
0f20cc35
DJ
248
249#define GOT_NORMAL 0
250#define GOT_TLS_GD 1
251#define GOT_TLS_LDM 2
252#define GOT_TLS_IE 4
253#define GOT_TLS_OFFSET_DONE 0x40
254#define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
b49e97c9
TS
263};
264
265/* MIPS ELF linker hash table. */
266
267struct mips_elf_link_hash_table
268{
269 struct elf_link_hash_table root;
270#if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274#endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
8dc1a139 280 entry is set to the address of __rld_obj_head as in IRIX5. */
b34976b6 281 bfd_boolean use_rld_obj_head;
b49e97c9
TS
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
b34976b6 285 bfd_boolean mips16_stubs_seen;
b49e97c9
TS
286};
287
0f20cc35
DJ
288#define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
b49e97c9
TS
303/* Structure used to pass information to mips_elf_output_extsym. */
304
305struct extsym_info
306{
9e4aeb93
RS
307 bfd *abfd;
308 struct bfd_link_info *info;
b49e97c9
TS
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
b34976b6 311 bfd_boolean failed;
b49e97c9
TS
312};
313
8dc1a139 314/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
315
316static const char * const mips_elf_dynsym_rtproc_names[] =
317{
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322};
323
324/* These structures are used to generate the .compact_rel section on
8dc1a139 325 IRIX5. */
b49e97c9
TS
326
327typedef struct
328{
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335} Elf32_compact_rel;
336
337typedef struct
338{
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345} Elf32_External_compact_rel;
346
347typedef struct
348{
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355} Elf32_crinfo;
356
357typedef struct
358{
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364} Elf32_crinfo2;
365
366typedef struct
367{
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371} Elf32_External_crinfo;
372
373typedef struct
374{
375 bfd_byte info[4];
376 bfd_byte konst[4];
377} Elf32_External_crinfo2;
378
379/* These are the constants used to swap the bitfields in a crinfo. */
380
381#define CRINFO_CTYPE (0x1)
382#define CRINFO_CTYPE_SH (31)
383#define CRINFO_RTYPE (0xf)
384#define CRINFO_RTYPE_SH (27)
385#define CRINFO_DIST2TO (0xff)
386#define CRINFO_DIST2TO_SH (19)
387#define CRINFO_RELVADDR (0x7ffff)
388#define CRINFO_RELVADDR_SH (0)
389
390/* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393#define CRF_MIPS_LONG 1
394#define CRF_MIPS_SHORT 0
395
396/* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406#define CRT_MIPS_REL32 0xa
407#define CRT_MIPS_WORD 0xb
408#define CRT_MIPS_GPHI_LO 0xc
409#define CRT_MIPS_JMPAD 0xd
410
411#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415\f
416/* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419typedef struct runtime_pdr {
ae9a127f
NC
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
b49e97c9 429 long reserved;
ae9a127f 430 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
431} RPDR, *pRPDR;
432#define cbRPDR sizeof (RPDR)
433#define rpdNil ((pRPDR) 0)
434\f
b15e6682 435static struct mips_got_entry *mips_elf_create_local_got_entry
0f20cc35
DJ
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
b34976b6 438static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 439 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
440static bfd_vma mips_elf_high
441 (bfd_vma);
b34976b6 442static bfd_boolean mips_elf_stub_section_p
9719ad41 443 (bfd *, asection *);
b34976b6 444static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
9719ad41
RS
448static hashval_t mips_elf_got_entry_hash
449 (const void *);
f4416af6 450static bfd_vma mips_elf_adjust_gp
9719ad41 451 (bfd *, struct mips_got_info *, bfd *);
f4416af6 452static struct mips_got_info *mips_elf_got_for_ibfd
9719ad41 453 (struct mips_got_info *, bfd *);
f4416af6 454
b49e97c9
TS
455/* This will be used when we sort the dynamic relocation records. */
456static bfd *reldyn_sorting_bfd;
457
458/* Nonzero if ABFD is using the N32 ABI. */
0b25d3e6 459
b49e97c9
TS
460#define ABI_N32_P(abfd) \
461 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462
4a14403c 463/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 464#define ABI_64_P(abfd) \
141ff970 465 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 466
4a14403c
TS
467/* Nonzero if ABFD is using NewABI conventions. */
468#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469
470/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
471#define IRIX_COMPAT(abfd) \
472 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473
b49e97c9
TS
474/* Whether we are trying to be compatible with IRIX at all. */
475#define SGI_COMPAT(abfd) \
476 (IRIX_COMPAT (abfd) != ict_none)
477
478/* The name of the options section. */
479#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 480 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 481
cc2e31b9
RS
482/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
483 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
484#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
485 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486
b49e97c9 487/* The name of the stub section. */
ca07892d 488#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
489
490/* The size of an external REL relocation. */
491#define MIPS_ELF_REL_SIZE(abfd) \
492 (get_elf_backend_data (abfd)->s->sizeof_rel)
493
494/* The size of an external dynamic table entry. */
495#define MIPS_ELF_DYN_SIZE(abfd) \
496 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497
498/* The size of a GOT entry. */
499#define MIPS_ELF_GOT_SIZE(abfd) \
500 (get_elf_backend_data (abfd)->s->arch_size / 8)
501
502/* The size of a symbol-table entry. */
503#define MIPS_ELF_SYM_SIZE(abfd) \
504 (get_elf_backend_data (abfd)->s->sizeof_sym)
505
506/* The default alignment for sections, as a power of two. */
507#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 508 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
509
510/* Get word-sized data. */
511#define MIPS_ELF_GET_WORD(abfd, ptr) \
512 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513
514/* Put out word-sized data. */
515#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 (ABI_64_P (abfd) \
517 ? bfd_put_64 (abfd, val, ptr) \
518 : bfd_put_32 (abfd, val, ptr))
519
520/* Add a dynamic symbol table-entry. */
9719ad41 521#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 522 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
523
524#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526
4ffba85c
AO
527/* Determine whether the internal relocation of index REL_IDX is REL
528 (zero) or RELA (non-zero). The assumption is that, if there are
529 two relocation sections for this section, one of them is REL and
530 the other is RELA. If the index of the relocation we're testing is
531 in range for the first relocation section, check that the external
532 relocation size is that for RELA. It is also assumed that, if
533 rel_idx is not in range for the first section, and this first
534 section contains REL relocs, then the relocation is in the second
535 section, that is RELA. */
536#define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
537 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
538 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
539 > (bfd_vma)(rel_idx)) \
540 == (elf_section_data (sec)->rel_hdr.sh_entsize \
541 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
542 : sizeof (Elf32_External_Rela))))
543
b49e97c9
TS
544/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
545 from smaller values. Start with zero, widen, *then* decrement. */
546#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 547#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9
TS
548
549/* The number of local .got entries we reserve. */
550#define MIPS_RESERVED_GOTNO (2)
551
f4416af6
AO
552/* The offset of $gp from the beginning of the .got section. */
553#define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554
555/* The maximum size of the GOT for it to be addressable using 16-bit
556 offsets from $gp. */
557#define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558
6a691779 559/* Instructions which appear in a stub. */
b49e97c9 560#define STUB_LW(abfd) \
f4416af6
AO
561 ((ABI_64_P (abfd) \
562 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
563 : 0x8f998010)) /* lw t9,0x8010(gp) */
b49e97c9 564#define STUB_MOVE(abfd) \
6a691779
TS
565 ((ABI_64_P (abfd) \
566 ? 0x03e0782d /* daddu t7,ra */ \
567 : 0x03e07821)) /* addu t7,ra */
568#define STUB_JALR 0x0320f809 /* jalr t9,ra */
b49e97c9 569#define STUB_LI16(abfd) \
6a691779
TS
570 ((ABI_64_P (abfd) \
571 ? 0x64180000 /* daddiu t8,zero,0 */ \
572 : 0x24180000)) /* addiu t8,zero,0 */
b49e97c9
TS
573#define MIPS_FUNCTION_STUB_SIZE (16)
574
575/* The name of the dynamic interpreter. This is put in the .interp
576 section. */
577
578#define ELF_DYNAMIC_INTERPRETER(abfd) \
579 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
580 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
581 : "/usr/lib/libc.so.1")
582
583#ifdef BFD64
ee6423ed
AO
584#define MNAME(bfd,pre,pos) \
585 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
586#define ELF_R_SYM(bfd, i) \
587 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
588#define ELF_R_TYPE(bfd, i) \
589 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
590#define ELF_R_INFO(bfd, s, t) \
591 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592#else
ee6423ed 593#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
594#define ELF_R_SYM(bfd, i) \
595 (ELF32_R_SYM (i))
596#define ELF_R_TYPE(bfd, i) \
597 (ELF32_R_TYPE (i))
598#define ELF_R_INFO(bfd, s, t) \
599 (ELF32_R_INFO (s, t))
600#endif
601\f
602 /* The mips16 compiler uses a couple of special sections to handle
603 floating point arguments.
604
605 Section names that look like .mips16.fn.FNNAME contain stubs that
606 copy floating point arguments from the fp regs to the gp regs and
607 then jump to FNNAME. If any 32 bit function calls FNNAME, the
608 call should be redirected to the stub instead. If no 32 bit
609 function calls FNNAME, the stub should be discarded. We need to
610 consider any reference to the function, not just a call, because
611 if the address of the function is taken we will need the stub,
612 since the address might be passed to a 32 bit function.
613
614 Section names that look like .mips16.call.FNNAME contain stubs
615 that copy floating point arguments from the gp regs to the fp
616 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
617 then any 16 bit function that calls FNNAME should be redirected
618 to the stub instead. If FNNAME is not a 32 bit function, the
619 stub should be discarded.
620
621 .mips16.call.fp.FNNAME sections are similar, but contain stubs
622 which call FNNAME and then copy the return value from the fp regs
623 to the gp regs. These stubs store the return value in $18 while
624 calling FNNAME; any function which might call one of these stubs
625 must arrange to save $18 around the call. (This case is not
626 needed for 32 bit functions that call 16 bit functions, because
627 16 bit functions always return floating point values in both
628 $f0/$f1 and $2/$3.)
629
630 Note that in all cases FNNAME might be defined statically.
631 Therefore, FNNAME is not used literally. Instead, the relocation
632 information will indicate which symbol the section is for.
633
634 We record any stubs that we find in the symbol table. */
635
636#define FN_STUB ".mips16.fn."
637#define CALL_STUB ".mips16.call."
638#define CALL_FP_STUB ".mips16.call.fp."
639\f
640/* Look up an entry in a MIPS ELF linker hash table. */
641
642#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
643 ((struct mips_elf_link_hash_entry *) \
644 elf_link_hash_lookup (&(table)->root, (string), (create), \
645 (copy), (follow)))
646
647/* Traverse a MIPS ELF linker hash table. */
648
649#define mips_elf_link_hash_traverse(table, func, info) \
650 (elf_link_hash_traverse \
651 (&(table)->root, \
9719ad41 652 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
653 (info)))
654
655/* Get the MIPS ELF linker hash table from a link_info structure. */
656
657#define mips_elf_hash_table(p) \
658 ((struct mips_elf_link_hash_table *) ((p)->hash))
659
0f20cc35
DJ
660/* Find the base offsets for thread-local storage in this object,
661 for GD/LD and IE/LE respectively. */
662
663#define TP_OFFSET 0x7000
664#define DTP_OFFSET 0x8000
665
666static bfd_vma
667dtprel_base (struct bfd_link_info *info)
668{
669 /* If tls_sec is NULL, we should have signalled an error already. */
670 if (elf_hash_table (info)->tls_sec == NULL)
671 return 0;
672 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
673}
674
675static bfd_vma
676tprel_base (struct bfd_link_info *info)
677{
678 /* If tls_sec is NULL, we should have signalled an error already. */
679 if (elf_hash_table (info)->tls_sec == NULL)
680 return 0;
681 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
682}
683
b49e97c9
TS
684/* Create an entry in a MIPS ELF linker hash table. */
685
686static struct bfd_hash_entry *
9719ad41
RS
687mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
688 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
689{
690 struct mips_elf_link_hash_entry *ret =
691 (struct mips_elf_link_hash_entry *) entry;
692
693 /* Allocate the structure if it has not already been allocated by a
694 subclass. */
9719ad41
RS
695 if (ret == NULL)
696 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
697 if (ret == NULL)
b49e97c9
TS
698 return (struct bfd_hash_entry *) ret;
699
700 /* Call the allocation method of the superclass. */
701 ret = ((struct mips_elf_link_hash_entry *)
702 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
703 table, string));
9719ad41 704 if (ret != NULL)
b49e97c9
TS
705 {
706 /* Set local fields. */
707 memset (&ret->esym, 0, sizeof (EXTR));
708 /* We use -2 as a marker to indicate that the information has
709 not been set. -1 means there is no associated ifd. */
710 ret->esym.ifd = -2;
711 ret->possibly_dynamic_relocs = 0;
b34976b6 712 ret->readonly_reloc = FALSE;
b34976b6 713 ret->no_fn_stub = FALSE;
b49e97c9 714 ret->fn_stub = NULL;
b34976b6 715 ret->need_fn_stub = FALSE;
b49e97c9
TS
716 ret->call_stub = NULL;
717 ret->call_fp_stub = NULL;
b34976b6 718 ret->forced_local = FALSE;
0f20cc35 719 ret->tls_type = GOT_NORMAL;
b49e97c9
TS
720 }
721
722 return (struct bfd_hash_entry *) ret;
723}
f0abc2a1
AM
724
725bfd_boolean
9719ad41 726_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1
AM
727{
728 struct _mips_elf_section_data *sdata;
729 bfd_size_type amt = sizeof (*sdata);
730
9719ad41 731 sdata = bfd_zalloc (abfd, amt);
f0abc2a1
AM
732 if (sdata == NULL)
733 return FALSE;
9719ad41 734 sec->used_by_bfd = sdata;
f0abc2a1
AM
735
736 return _bfd_elf_new_section_hook (abfd, sec);
737}
b49e97c9
TS
738\f
739/* Read ECOFF debugging information from a .mdebug section into a
740 ecoff_debug_info structure. */
741
b34976b6 742bfd_boolean
9719ad41
RS
743_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
744 struct ecoff_debug_info *debug)
b49e97c9
TS
745{
746 HDRR *symhdr;
747 const struct ecoff_debug_swap *swap;
9719ad41 748 char *ext_hdr;
b49e97c9
TS
749
750 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
751 memset (debug, 0, sizeof (*debug));
752
9719ad41 753 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
754 if (ext_hdr == NULL && swap->external_hdr_size != 0)
755 goto error_return;
756
9719ad41 757 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 758 swap->external_hdr_size))
b49e97c9
TS
759 goto error_return;
760
761 symhdr = &debug->symbolic_header;
762 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
763
764 /* The symbolic header contains absolute file offsets and sizes to
765 read. */
766#define READ(ptr, offset, count, size, type) \
767 if (symhdr->count == 0) \
768 debug->ptr = NULL; \
769 else \
770 { \
771 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 772 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
773 if (debug->ptr == NULL) \
774 goto error_return; \
9719ad41 775 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
776 || bfd_bread (debug->ptr, amt, abfd) != amt) \
777 goto error_return; \
778 }
779
780 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
781 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
782 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
783 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
784 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
785 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
786 union aux_ext *);
787 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
788 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
789 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
790 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
791 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
792#undef READ
793
794 debug->fdr = NULL;
b49e97c9 795
b34976b6 796 return TRUE;
b49e97c9
TS
797
798 error_return:
799 if (ext_hdr != NULL)
800 free (ext_hdr);
801 if (debug->line != NULL)
802 free (debug->line);
803 if (debug->external_dnr != NULL)
804 free (debug->external_dnr);
805 if (debug->external_pdr != NULL)
806 free (debug->external_pdr);
807 if (debug->external_sym != NULL)
808 free (debug->external_sym);
809 if (debug->external_opt != NULL)
810 free (debug->external_opt);
811 if (debug->external_aux != NULL)
812 free (debug->external_aux);
813 if (debug->ss != NULL)
814 free (debug->ss);
815 if (debug->ssext != NULL)
816 free (debug->ssext);
817 if (debug->external_fdr != NULL)
818 free (debug->external_fdr);
819 if (debug->external_rfd != NULL)
820 free (debug->external_rfd);
821 if (debug->external_ext != NULL)
822 free (debug->external_ext);
b34976b6 823 return FALSE;
b49e97c9
TS
824}
825\f
826/* Swap RPDR (runtime procedure table entry) for output. */
827
828static void
9719ad41 829ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
830{
831 H_PUT_S32 (abfd, in->adr, ex->p_adr);
832 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
833 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
834 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
835 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
836 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
837
838 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
839 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
840
841 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
842}
843
844/* Create a runtime procedure table from the .mdebug section. */
845
b34976b6 846static bfd_boolean
9719ad41
RS
847mips_elf_create_procedure_table (void *handle, bfd *abfd,
848 struct bfd_link_info *info, asection *s,
849 struct ecoff_debug_info *debug)
b49e97c9
TS
850{
851 const struct ecoff_debug_swap *swap;
852 HDRR *hdr = &debug->symbolic_header;
853 RPDR *rpdr, *rp;
854 struct rpdr_ext *erp;
9719ad41 855 void *rtproc;
b49e97c9
TS
856 struct pdr_ext *epdr;
857 struct sym_ext *esym;
858 char *ss, **sv;
859 char *str;
860 bfd_size_type size;
861 bfd_size_type count;
862 unsigned long sindex;
863 unsigned long i;
864 PDR pdr;
865 SYMR sym;
866 const char *no_name_func = _("static procedure (no name)");
867
868 epdr = NULL;
869 rpdr = NULL;
870 esym = NULL;
871 ss = NULL;
872 sv = NULL;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875
876 sindex = strlen (no_name_func) + 1;
877 count = hdr->ipdMax;
878 if (count > 0)
879 {
880 size = swap->external_pdr_size;
881
9719ad41 882 epdr = bfd_malloc (size * count);
b49e97c9
TS
883 if (epdr == NULL)
884 goto error_return;
885
9719ad41 886 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
887 goto error_return;
888
889 size = sizeof (RPDR);
9719ad41 890 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
891 if (rpdr == NULL)
892 goto error_return;
893
894 size = sizeof (char *);
9719ad41 895 sv = bfd_malloc (size * count);
b49e97c9
TS
896 if (sv == NULL)
897 goto error_return;
898
899 count = hdr->isymMax;
900 size = swap->external_sym_size;
9719ad41 901 esym = bfd_malloc (size * count);
b49e97c9
TS
902 if (esym == NULL)
903 goto error_return;
904
9719ad41 905 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
906 goto error_return;
907
908 count = hdr->issMax;
9719ad41 909 ss = bfd_malloc (count);
b49e97c9
TS
910 if (ss == NULL)
911 goto error_return;
f075ee0c 912 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
913 goto error_return;
914
915 count = hdr->ipdMax;
916 for (i = 0; i < (unsigned long) count; i++, rp++)
917 {
9719ad41
RS
918 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
919 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
920 rp->adr = sym.value;
921 rp->regmask = pdr.regmask;
922 rp->regoffset = pdr.regoffset;
923 rp->fregmask = pdr.fregmask;
924 rp->fregoffset = pdr.fregoffset;
925 rp->frameoffset = pdr.frameoffset;
926 rp->framereg = pdr.framereg;
927 rp->pcreg = pdr.pcreg;
928 rp->irpss = sindex;
929 sv[i] = ss + sym.iss;
930 sindex += strlen (sv[i]) + 1;
931 }
932 }
933
934 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
935 size = BFD_ALIGN (size, 16);
9719ad41 936 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
937 if (rtproc == NULL)
938 {
939 mips_elf_hash_table (info)->procedure_count = 0;
940 goto error_return;
941 }
942
943 mips_elf_hash_table (info)->procedure_count = count + 2;
944
9719ad41 945 erp = rtproc;
b49e97c9
TS
946 memset (erp, 0, sizeof (struct rpdr_ext));
947 erp++;
948 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
949 strcpy (str, no_name_func);
950 str += strlen (no_name_func) + 1;
951 for (i = 0; i < count; i++)
952 {
953 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
954 strcpy (str, sv[i]);
955 str += strlen (sv[i]) + 1;
956 }
957 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
958
959 /* Set the size and contents of .rtproc section. */
eea6121a 960 s->size = size;
9719ad41 961 s->contents = rtproc;
b49e97c9
TS
962
963 /* Skip this section later on (I don't think this currently
964 matters, but someday it might). */
8423293d 965 s->map_head.link_order = NULL;
b49e97c9
TS
966
967 if (epdr != NULL)
968 free (epdr);
969 if (rpdr != NULL)
970 free (rpdr);
971 if (esym != NULL)
972 free (esym);
973 if (ss != NULL)
974 free (ss);
975 if (sv != NULL)
976 free (sv);
977
b34976b6 978 return TRUE;
b49e97c9
TS
979
980 error_return:
981 if (epdr != NULL)
982 free (epdr);
983 if (rpdr != NULL)
984 free (rpdr);
985 if (esym != NULL)
986 free (esym);
987 if (ss != NULL)
988 free (ss);
989 if (sv != NULL)
990 free (sv);
b34976b6 991 return FALSE;
b49e97c9
TS
992}
993
994/* Check the mips16 stubs for a particular symbol, and see if we can
995 discard them. */
996
b34976b6 997static bfd_boolean
9719ad41
RS
998mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
999 void *data ATTRIBUTE_UNUSED)
b49e97c9
TS
1000{
1001 if (h->root.root.type == bfd_link_hash_warning)
1002 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1003
1004 if (h->fn_stub != NULL
1005 && ! h->need_fn_stub)
1006 {
1007 /* We don't need the fn_stub; the only references to this symbol
1008 are 16 bit calls. Clobber the size to 0 to prevent it from
1009 being included in the link. */
eea6121a 1010 h->fn_stub->size = 0;
b49e97c9
TS
1011 h->fn_stub->flags &= ~SEC_RELOC;
1012 h->fn_stub->reloc_count = 0;
1013 h->fn_stub->flags |= SEC_EXCLUDE;
1014 }
1015
1016 if (h->call_stub != NULL
1017 && h->root.other == STO_MIPS16)
1018 {
1019 /* We don't need the call_stub; this is a 16 bit function, so
1020 calls from other 16 bit functions are OK. Clobber the size
1021 to 0 to prevent it from being included in the link. */
eea6121a 1022 h->call_stub->size = 0;
b49e97c9
TS
1023 h->call_stub->flags &= ~SEC_RELOC;
1024 h->call_stub->reloc_count = 0;
1025 h->call_stub->flags |= SEC_EXCLUDE;
1026 }
1027
1028 if (h->call_fp_stub != NULL
1029 && h->root.other == STO_MIPS16)
1030 {
1031 /* We don't need the call_stub; this is a 16 bit function, so
1032 calls from other 16 bit functions are OK. Clobber the size
1033 to 0 to prevent it from being included in the link. */
eea6121a 1034 h->call_fp_stub->size = 0;
b49e97c9
TS
1035 h->call_fp_stub->flags &= ~SEC_RELOC;
1036 h->call_fp_stub->reloc_count = 0;
1037 h->call_fp_stub->flags |= SEC_EXCLUDE;
1038 }
1039
b34976b6 1040 return TRUE;
b49e97c9
TS
1041}
1042\f
d6f16593
MR
1043/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1044 Most mips16 instructions are 16 bits, but these instructions
1045 are 32 bits.
1046
1047 The format of these instructions is:
1048
1049 +--------------+--------------------------------+
1050 | JALX | X| Imm 20:16 | Imm 25:21 |
1051 +--------------+--------------------------------+
1052 | Immediate 15:0 |
1053 +-----------------------------------------------+
1054
1055 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1056 Note that the immediate value in the first word is swapped.
1057
1058 When producing a relocatable object file, R_MIPS16_26 is
1059 handled mostly like R_MIPS_26. In particular, the addend is
1060 stored as a straight 26-bit value in a 32-bit instruction.
1061 (gas makes life simpler for itself by never adjusting a
1062 R_MIPS16_26 reloc to be against a section, so the addend is
1063 always zero). However, the 32 bit instruction is stored as 2
1064 16-bit values, rather than a single 32-bit value. In a
1065 big-endian file, the result is the same; in a little-endian
1066 file, the two 16-bit halves of the 32 bit value are swapped.
1067 This is so that a disassembler can recognize the jal
1068 instruction.
1069
1070 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1071 instruction stored as two 16-bit values. The addend A is the
1072 contents of the targ26 field. The calculation is the same as
1073 R_MIPS_26. When storing the calculated value, reorder the
1074 immediate value as shown above, and don't forget to store the
1075 value as two 16-bit values.
1076
1077 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1078 defined as
1079
1080 big-endian:
1081 +--------+----------------------+
1082 | | |
1083 | | targ26-16 |
1084 |31 26|25 0|
1085 +--------+----------------------+
1086
1087 little-endian:
1088 +----------+------+-------------+
1089 | | | |
1090 | sub1 | | sub2 |
1091 |0 9|10 15|16 31|
1092 +----------+--------------------+
1093 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1094 ((sub1 << 16) | sub2)).
1095
1096 When producing a relocatable object file, the calculation is
1097 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1098 When producing a fully linked file, the calculation is
1099 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1100 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101
1102 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1103 mode. A typical instruction will have a format like this:
1104
1105 +--------------+--------------------------------+
1106 | EXTEND | Imm 10:5 | Imm 15:11 |
1107 +--------------+--------------------------------+
1108 | Major | rx | ry | Imm 4:0 |
1109 +--------------+--------------------------------+
1110
1111 EXTEND is the five bit value 11110. Major is the instruction
1112 opcode.
1113
1114 This is handled exactly like R_MIPS_GPREL16, except that the
1115 addend is retrieved and stored as shown in this diagram; that
1116 is, the Imm fields above replace the V-rel16 field.
1117
1118 All we need to do here is shuffle the bits appropriately. As
1119 above, the two 16-bit halves must be swapped on a
1120 little-endian system.
1121
1122 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1123 access data when neither GP-relative nor PC-relative addressing
1124 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1125 except that the addend is retrieved and stored as shown above
1126 for R_MIPS16_GPREL.
1127 */
1128void
1129_bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1130 bfd_boolean jal_shuffle, bfd_byte *data)
1131{
1132 bfd_vma extend, insn, val;
1133
1134 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1135 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1136 return;
1137
1138 /* Pick up the mips16 extend instruction and the real instruction. */
1139 extend = bfd_get_16 (abfd, data);
1140 insn = bfd_get_16 (abfd, data + 2);
1141 if (r_type == R_MIPS16_26)
1142 {
1143 if (jal_shuffle)
1144 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1145 | ((extend & 0x1f) << 21) | insn;
1146 else
1147 val = extend << 16 | insn;
1148 }
1149 else
1150 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1151 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1152 bfd_put_32 (abfd, val, data);
1153}
1154
1155void
1156_bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1157 bfd_boolean jal_shuffle, bfd_byte *data)
1158{
1159 bfd_vma extend, insn, val;
1160
1161 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1162 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1163 return;
1164
1165 val = bfd_get_32 (abfd, data);
1166 if (r_type == R_MIPS16_26)
1167 {
1168 if (jal_shuffle)
1169 {
1170 insn = val & 0xffff;
1171 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1172 | ((val >> 21) & 0x1f);
1173 }
1174 else
1175 {
1176 insn = val & 0xffff;
1177 extend = val >> 16;
1178 }
1179 }
1180 else
1181 {
1182 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1183 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1184 }
1185 bfd_put_16 (abfd, insn, data + 2);
1186 bfd_put_16 (abfd, extend, data);
1187}
1188
b49e97c9 1189bfd_reloc_status_type
9719ad41
RS
1190_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1191 arelent *reloc_entry, asection *input_section,
1192 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
1193{
1194 bfd_vma relocation;
a7ebbfdf 1195 bfd_signed_vma val;
30ac9238 1196 bfd_reloc_status_type status;
b49e97c9
TS
1197
1198 if (bfd_is_com_section (symbol->section))
1199 relocation = 0;
1200 else
1201 relocation = symbol->value;
1202
1203 relocation += symbol->section->output_section->vma;
1204 relocation += symbol->section->output_offset;
1205
07515404 1206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
1207 return bfd_reloc_outofrange;
1208
b49e97c9 1209 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
1210 val = reloc_entry->addend;
1211
30ac9238 1212 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 1213
b49e97c9 1214 /* Adjust val for the final section location and GP value. If we
1049f94e 1215 are producing relocatable output, we don't want to do this for
b49e97c9 1216 an external symbol. */
1049f94e 1217 if (! relocatable
b49e97c9
TS
1218 || (symbol->flags & BSF_SECTION_SYM) != 0)
1219 val += relocation - gp;
1220
a7ebbfdf
TS
1221 if (reloc_entry->howto->partial_inplace)
1222 {
30ac9238
RS
1223 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1224 (bfd_byte *) data
1225 + reloc_entry->address);
1226 if (status != bfd_reloc_ok)
1227 return status;
a7ebbfdf
TS
1228 }
1229 else
1230 reloc_entry->addend = val;
b49e97c9 1231
1049f94e 1232 if (relocatable)
b49e97c9 1233 reloc_entry->address += input_section->output_offset;
30ac9238
RS
1234
1235 return bfd_reloc_ok;
1236}
1237
1238/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1239 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1240 that contains the relocation field and DATA points to the start of
1241 INPUT_SECTION. */
1242
1243struct mips_hi16
1244{
1245 struct mips_hi16 *next;
1246 bfd_byte *data;
1247 asection *input_section;
1248 arelent rel;
1249};
1250
1251/* FIXME: This should not be a static variable. */
1252
1253static struct mips_hi16 *mips_hi16_list;
1254
1255/* A howto special_function for REL *HI16 relocations. We can only
1256 calculate the correct value once we've seen the partnering
1257 *LO16 relocation, so just save the information for later.
1258
1259 The ABI requires that the *LO16 immediately follow the *HI16.
1260 However, as a GNU extension, we permit an arbitrary number of
1261 *HI16s to be associated with a single *LO16. This significantly
1262 simplies the relocation handling in gcc. */
1263
1264bfd_reloc_status_type
1265_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1266 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1267 asection *input_section, bfd *output_bfd,
1268 char **error_message ATTRIBUTE_UNUSED)
1269{
1270 struct mips_hi16 *n;
1271
07515404 1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1273 return bfd_reloc_outofrange;
1274
1275 n = bfd_malloc (sizeof *n);
1276 if (n == NULL)
1277 return bfd_reloc_outofrange;
1278
1279 n->next = mips_hi16_list;
1280 n->data = data;
1281 n->input_section = input_section;
1282 n->rel = *reloc_entry;
1283 mips_hi16_list = n;
1284
1285 if (output_bfd != NULL)
1286 reloc_entry->address += input_section->output_offset;
1287
1288 return bfd_reloc_ok;
1289}
1290
1291/* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1292 like any other 16-bit relocation when applied to global symbols, but is
1293 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294
1295bfd_reloc_status_type
1296_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1297 void *data, asection *input_section,
1298 bfd *output_bfd, char **error_message)
1299{
1300 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (symbol))
1302 || bfd_is_com_section (bfd_get_section (symbol)))
1303 /* The relocation is against a global symbol. */
1304 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1305 input_section, output_bfd,
1306 error_message);
1307
1308 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310}
1311
1312/* A howto special_function for REL *LO16 relocations. The *LO16 itself
1313 is a straightforward 16 bit inplace relocation, but we must deal with
1314 any partnering high-part relocations as well. */
1315
1316bfd_reloc_status_type
1317_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320{
1321 bfd_vma vallo;
d6f16593 1322 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 1323
07515404 1324 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1325 return bfd_reloc_outofrange;
1326
d6f16593
MR
1327 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1328 location);
1329 vallo = bfd_get_32 (abfd, location);
1330 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332
30ac9238
RS
1333 while (mips_hi16_list != NULL)
1334 {
1335 bfd_reloc_status_type ret;
1336 struct mips_hi16 *hi;
1337
1338 hi = mips_hi16_list;
1339
1340 /* R_MIPS_GOT16 relocations are something of a special case. We
1341 want to install the addend in the same way as for a R_MIPS_HI16
1342 relocation (with a rightshift of 16). However, since GOT16
1343 relocations can also be used with global symbols, their howto
1344 has a rightshift of 0. */
1345 if (hi->rel.howto->type == R_MIPS_GOT16)
1346 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1347
1348 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1349 carry or borrow will induce a change of +1 or -1 in the high part. */
1350 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1351
30ac9238
RS
1352 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1353 hi->input_section, output_bfd,
1354 error_message);
1355 if (ret != bfd_reloc_ok)
1356 return ret;
1357
1358 mips_hi16_list = hi->next;
1359 free (hi);
1360 }
1361
1362 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1363 input_section, output_bfd,
1364 error_message);
1365}
1366
1367/* A generic howto special_function. This calculates and installs the
1368 relocation itself, thus avoiding the oft-discussed problems in
1369 bfd_perform_relocation and bfd_install_relocation. */
1370
1371bfd_reloc_status_type
1372_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1373 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1374 asection *input_section, bfd *output_bfd,
1375 char **error_message ATTRIBUTE_UNUSED)
1376{
1377 bfd_signed_vma val;
1378 bfd_reloc_status_type status;
1379 bfd_boolean relocatable;
1380
1381 relocatable = (output_bfd != NULL);
1382
07515404 1383 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
1384 return bfd_reloc_outofrange;
1385
1386 /* Build up the field adjustment in VAL. */
1387 val = 0;
1388 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1389 {
1390 /* Either we're calculating the final field value or we have a
1391 relocation against a section symbol. Add in the section's
1392 offset or address. */
1393 val += symbol->section->output_section->vma;
1394 val += symbol->section->output_offset;
1395 }
1396
1397 if (!relocatable)
1398 {
1399 /* We're calculating the final field value. Add in the symbol's value
1400 and, if pc-relative, subtract the address of the field itself. */
1401 val += symbol->value;
1402 if (reloc_entry->howto->pc_relative)
1403 {
1404 val -= input_section->output_section->vma;
1405 val -= input_section->output_offset;
1406 val -= reloc_entry->address;
1407 }
1408 }
1409
1410 /* VAL is now the final adjustment. If we're keeping this relocation
1411 in the output file, and if the relocation uses a separate addend,
1412 we just need to add VAL to that addend. Otherwise we need to add
1413 VAL to the relocation field itself. */
1414 if (relocatable && !reloc_entry->howto->partial_inplace)
1415 reloc_entry->addend += val;
1416 else
1417 {
d6f16593
MR
1418 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1419
30ac9238
RS
1420 /* Add in the separate addend, if any. */
1421 val += reloc_entry->addend;
1422
1423 /* Add VAL to the relocation field. */
d6f16593
MR
1424 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1425 location);
30ac9238 1426 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593
MR
1427 location);
1428 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430
30ac9238
RS
1431 if (status != bfd_reloc_ok)
1432 return status;
1433 }
1434
1435 if (relocatable)
1436 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
1437
1438 return bfd_reloc_ok;
1439}
1440\f
1441/* Swap an entry in a .gptab section. Note that these routines rely
1442 on the equivalence of the two elements of the union. */
1443
1444static void
9719ad41
RS
1445bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1446 Elf32_gptab *in)
b49e97c9
TS
1447{
1448 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1449 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1450}
1451
1452static void
9719ad41
RS
1453bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1454 Elf32_External_gptab *ex)
b49e97c9
TS
1455{
1456 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1457 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1458}
1459
1460static void
9719ad41
RS
1461bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1462 Elf32_External_compact_rel *ex)
b49e97c9
TS
1463{
1464 H_PUT_32 (abfd, in->id1, ex->id1);
1465 H_PUT_32 (abfd, in->num, ex->num);
1466 H_PUT_32 (abfd, in->id2, ex->id2);
1467 H_PUT_32 (abfd, in->offset, ex->offset);
1468 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1469 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1470}
1471
1472static void
9719ad41
RS
1473bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1474 Elf32_External_crinfo *ex)
b49e97c9
TS
1475{
1476 unsigned long l;
1477
1478 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1479 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1480 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1481 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1482 H_PUT_32 (abfd, l, ex->info);
1483 H_PUT_32 (abfd, in->konst, ex->konst);
1484 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1485}
b49e97c9
TS
1486\f
1487/* A .reginfo section holds a single Elf32_RegInfo structure. These
1488 routines swap this structure in and out. They are used outside of
1489 BFD, so they are globally visible. */
1490
1491void
9719ad41
RS
1492bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1493 Elf32_RegInfo *in)
b49e97c9
TS
1494{
1495 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1496 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1497 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1498 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1499 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1500 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1501}
1502
1503void
9719ad41
RS
1504bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1505 Elf32_External_RegInfo *ex)
b49e97c9
TS
1506{
1507 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1508 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1509 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1510 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1511 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1512 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1513}
1514
1515/* In the 64 bit ABI, the .MIPS.options section holds register
1516 information in an Elf64_Reginfo structure. These routines swap
1517 them in and out. They are globally visible because they are used
1518 outside of BFD. These routines are here so that gas can call them
1519 without worrying about whether the 64 bit ABI has been included. */
1520
1521void
9719ad41
RS
1522bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1523 Elf64_Internal_RegInfo *in)
b49e97c9
TS
1524{
1525 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1526 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1527 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1528 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1529 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1530 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1531 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1532}
1533
1534void
9719ad41
RS
1535bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1536 Elf64_External_RegInfo *ex)
b49e97c9
TS
1537{
1538 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1539 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1540 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1541 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1542 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1543 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1544 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1545}
1546
1547/* Swap in an options header. */
1548
1549void
9719ad41
RS
1550bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1551 Elf_Internal_Options *in)
b49e97c9
TS
1552{
1553 in->kind = H_GET_8 (abfd, ex->kind);
1554 in->size = H_GET_8 (abfd, ex->size);
1555 in->section = H_GET_16 (abfd, ex->section);
1556 in->info = H_GET_32 (abfd, ex->info);
1557}
1558
1559/* Swap out an options header. */
1560
1561void
9719ad41
RS
1562bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1563 Elf_External_Options *ex)
b49e97c9
TS
1564{
1565 H_PUT_8 (abfd, in->kind, ex->kind);
1566 H_PUT_8 (abfd, in->size, ex->size);
1567 H_PUT_16 (abfd, in->section, ex->section);
1568 H_PUT_32 (abfd, in->info, ex->info);
1569}
1570\f
1571/* This function is called via qsort() to sort the dynamic relocation
1572 entries by increasing r_symndx value. */
1573
1574static int
9719ad41 1575sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 1576{
947216bf
AM
1577 Elf_Internal_Rela int_reloc1;
1578 Elf_Internal_Rela int_reloc2;
b49e97c9 1579
947216bf
AM
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1581 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 1582
947216bf 1583 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
b49e97c9
TS
1584}
1585
f4416af6
AO
1586/* Like sort_dynamic_relocs, but used for elf64 relocations. */
1587
1588static int
7e3102a7
AM
1589sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1590 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 1591{
7e3102a7 1592#ifdef BFD64
f4416af6
AO
1593 Elf_Internal_Rela int_reloc1[3];
1594 Elf_Internal_Rela int_reloc2[3];
1595
1596 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1597 (reldyn_sorting_bfd, arg1, int_reloc1);
1598 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1599 (reldyn_sorting_bfd, arg2, int_reloc2);
1600
1601 return (ELF64_R_SYM (int_reloc1[0].r_info)
1602 - ELF64_R_SYM (int_reloc2[0].r_info));
7e3102a7
AM
1603#else
1604 abort ();
1605#endif
f4416af6
AO
1606}
1607
1608
b49e97c9
TS
1609/* This routine is used to write out ECOFF debugging external symbol
1610 information. It is called via mips_elf_link_hash_traverse. The
1611 ECOFF external symbol information must match the ELF external
1612 symbol information. Unfortunately, at this point we don't know
1613 whether a symbol is required by reloc information, so the two
1614 tables may wind up being different. We must sort out the external
1615 symbol information before we can set the final size of the .mdebug
1616 section, and we must set the size of the .mdebug section before we
1617 can relocate any sections, and we can't know which symbols are
1618 required by relocation until we relocate the sections.
1619 Fortunately, it is relatively unlikely that any symbol will be
1620 stripped but required by a reloc. In particular, it can not happen
1621 when generating a final executable. */
1622
b34976b6 1623static bfd_boolean
9719ad41 1624mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 1625{
9719ad41 1626 struct extsym_info *einfo = data;
b34976b6 1627 bfd_boolean strip;
b49e97c9
TS
1628 asection *sec, *output_section;
1629
1630 if (h->root.root.type == bfd_link_hash_warning)
1631 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1632
1633 if (h->root.indx == -2)
b34976b6 1634 strip = FALSE;
f5385ebf 1635 else if ((h->root.def_dynamic
77cfaee6
AM
1636 || h->root.ref_dynamic
1637 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
1638 && !h->root.def_regular
1639 && !h->root.ref_regular)
b34976b6 1640 strip = TRUE;
b49e97c9
TS
1641 else if (einfo->info->strip == strip_all
1642 || (einfo->info->strip == strip_some
1643 && bfd_hash_lookup (einfo->info->keep_hash,
1644 h->root.root.root.string,
b34976b6
AM
1645 FALSE, FALSE) == NULL))
1646 strip = TRUE;
b49e97c9 1647 else
b34976b6 1648 strip = FALSE;
b49e97c9
TS
1649
1650 if (strip)
b34976b6 1651 return TRUE;
b49e97c9
TS
1652
1653 if (h->esym.ifd == -2)
1654 {
1655 h->esym.jmptbl = 0;
1656 h->esym.cobol_main = 0;
1657 h->esym.weakext = 0;
1658 h->esym.reserved = 0;
1659 h->esym.ifd = ifdNil;
1660 h->esym.asym.value = 0;
1661 h->esym.asym.st = stGlobal;
1662
1663 if (h->root.root.type == bfd_link_hash_undefined
1664 || h->root.root.type == bfd_link_hash_undefweak)
1665 {
1666 const char *name;
1667
1668 /* Use undefined class. Also, set class and type for some
1669 special symbols. */
1670 name = h->root.root.root.string;
1671 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1672 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1673 {
1674 h->esym.asym.sc = scData;
1675 h->esym.asym.st = stLabel;
1676 h->esym.asym.value = 0;
1677 }
1678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1679 {
1680 h->esym.asym.sc = scAbs;
1681 h->esym.asym.st = stLabel;
1682 h->esym.asym.value =
1683 mips_elf_hash_table (einfo->info)->procedure_count;
1684 }
4a14403c 1685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
1686 {
1687 h->esym.asym.sc = scAbs;
1688 h->esym.asym.st = stLabel;
1689 h->esym.asym.value = elf_gp (einfo->abfd);
1690 }
1691 else
1692 h->esym.asym.sc = scUndefined;
1693 }
1694 else if (h->root.root.type != bfd_link_hash_defined
1695 && h->root.root.type != bfd_link_hash_defweak)
1696 h->esym.asym.sc = scAbs;
1697 else
1698 {
1699 const char *name;
1700
1701 sec = h->root.root.u.def.section;
1702 output_section = sec->output_section;
1703
1704 /* When making a shared library and symbol h is the one from
1705 the another shared library, OUTPUT_SECTION may be null. */
1706 if (output_section == NULL)
1707 h->esym.asym.sc = scUndefined;
1708 else
1709 {
1710 name = bfd_section_name (output_section->owner, output_section);
1711
1712 if (strcmp (name, ".text") == 0)
1713 h->esym.asym.sc = scText;
1714 else if (strcmp (name, ".data") == 0)
1715 h->esym.asym.sc = scData;
1716 else if (strcmp (name, ".sdata") == 0)
1717 h->esym.asym.sc = scSData;
1718 else if (strcmp (name, ".rodata") == 0
1719 || strcmp (name, ".rdata") == 0)
1720 h->esym.asym.sc = scRData;
1721 else if (strcmp (name, ".bss") == 0)
1722 h->esym.asym.sc = scBss;
1723 else if (strcmp (name, ".sbss") == 0)
1724 h->esym.asym.sc = scSBss;
1725 else if (strcmp (name, ".init") == 0)
1726 h->esym.asym.sc = scInit;
1727 else if (strcmp (name, ".fini") == 0)
1728 h->esym.asym.sc = scFini;
1729 else
1730 h->esym.asym.sc = scAbs;
1731 }
1732 }
1733
1734 h->esym.asym.reserved = 0;
1735 h->esym.asym.index = indexNil;
1736 }
1737
1738 if (h->root.root.type == bfd_link_hash_common)
1739 h->esym.asym.value = h->root.root.u.c.size;
1740 else if (h->root.root.type == bfd_link_hash_defined
1741 || h->root.root.type == bfd_link_hash_defweak)
1742 {
1743 if (h->esym.asym.sc == scCommon)
1744 h->esym.asym.sc = scBss;
1745 else if (h->esym.asym.sc == scSCommon)
1746 h->esym.asym.sc = scSBss;
1747
1748 sec = h->root.root.u.def.section;
1749 output_section = sec->output_section;
1750 if (output_section != NULL)
1751 h->esym.asym.value = (h->root.root.u.def.value
1752 + sec->output_offset
1753 + output_section->vma);
1754 else
1755 h->esym.asym.value = 0;
1756 }
f5385ebf 1757 else if (h->root.needs_plt)
b49e97c9
TS
1758 {
1759 struct mips_elf_link_hash_entry *hd = h;
b34976b6 1760 bfd_boolean no_fn_stub = h->no_fn_stub;
b49e97c9
TS
1761
1762 while (hd->root.root.type == bfd_link_hash_indirect)
1763 {
1764 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1765 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1766 }
1767
1768 if (!no_fn_stub)
1769 {
1770 /* Set type and value for a symbol with a function stub. */
1771 h->esym.asym.st = stProc;
1772 sec = hd->root.root.u.def.section;
1773 if (sec == NULL)
1774 h->esym.asym.value = 0;
1775 else
1776 {
1777 output_section = sec->output_section;
1778 if (output_section != NULL)
1779 h->esym.asym.value = (hd->root.plt.offset
1780 + sec->output_offset
1781 + output_section->vma);
1782 else
1783 h->esym.asym.value = 0;
1784 }
b49e97c9
TS
1785 }
1786 }
1787
1788 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1789 h->root.root.root.string,
1790 &h->esym))
1791 {
b34976b6
AM
1792 einfo->failed = TRUE;
1793 return FALSE;
b49e97c9
TS
1794 }
1795
b34976b6 1796 return TRUE;
b49e97c9
TS
1797}
1798
1799/* A comparison routine used to sort .gptab entries. */
1800
1801static int
9719ad41 1802gptab_compare (const void *p1, const void *p2)
b49e97c9 1803{
9719ad41
RS
1804 const Elf32_gptab *a1 = p1;
1805 const Elf32_gptab *a2 = p2;
b49e97c9
TS
1806
1807 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1808}
1809\f
b15e6682 1810/* Functions to manage the got entry hash table. */
f4416af6
AO
1811
1812/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1813 hash number. */
1814
1815static INLINE hashval_t
9719ad41 1816mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
1817{
1818#ifdef BFD64
1819 return addr + (addr >> 32);
1820#else
1821 return addr;
1822#endif
1823}
1824
1825/* got_entries only match if they're identical, except for gotidx, so
1826 use all fields to compute the hash, and compare the appropriate
1827 union members. */
1828
b15e6682 1829static hashval_t
9719ad41 1830mips_elf_got_entry_hash (const void *entry_)
b15e6682
AO
1831{
1832 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1833
38985a1c 1834 return entry->symndx
0f20cc35 1835 + ((entry->tls_type & GOT_TLS_LDM) << 17)
f4416af6 1836 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
38985a1c
AO
1837 : entry->abfd->id
1838 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1839 : entry->d.h->root.root.root.hash));
b15e6682
AO
1840}
1841
1842static int
9719ad41 1843mips_elf_got_entry_eq (const void *entry1, const void *entry2)
b15e6682
AO
1844{
1845 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1846 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1847
0f20cc35
DJ
1848 /* An LDM entry can only match another LDM entry. */
1849 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1850 return 0;
1851
b15e6682 1852 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
f4416af6
AO
1853 && (! e1->abfd ? e1->d.address == e2->d.address
1854 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1855 : e1->d.h == e2->d.h);
1856}
1857
1858/* multi_got_entries are still a match in the case of global objects,
1859 even if the input bfd in which they're referenced differs, so the
1860 hash computation and compare functions are adjusted
1861 accordingly. */
1862
1863static hashval_t
9719ad41 1864mips_elf_multi_got_entry_hash (const void *entry_)
f4416af6
AO
1865{
1866 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1867
1868 return entry->symndx
1869 + (! entry->abfd
1870 ? mips_elf_hash_bfd_vma (entry->d.address)
1871 : entry->symndx >= 0
0f20cc35
DJ
1872 ? ((entry->tls_type & GOT_TLS_LDM)
1873 ? (GOT_TLS_LDM << 17)
1874 : (entry->abfd->id
1875 + mips_elf_hash_bfd_vma (entry->d.addend)))
f4416af6
AO
1876 : entry->d.h->root.root.root.hash);
1877}
1878
1879static int
9719ad41 1880mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
1881{
1882 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1883 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1884
0f20cc35
DJ
1885 /* Any two LDM entries match. */
1886 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1887 return 1;
1888
1889 /* Nothing else matches an LDM entry. */
1890 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1891 return 0;
1892
f4416af6
AO
1893 return e1->symndx == e2->symndx
1894 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1895 : e1->abfd == NULL || e2->abfd == NULL
1896 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1897 : e1->d.h == e2->d.h);
b15e6682
AO
1898}
1899\f
f4416af6
AO
1900/* Returns the dynamic relocation section for DYNOBJ. */
1901
1902static asection *
9719ad41 1903mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
f4416af6
AO
1904{
1905 static const char dname[] = ".rel.dyn";
1906 asection *sreloc;
1907
1908 sreloc = bfd_get_section_by_name (dynobj, dname);
1909 if (sreloc == NULL && create_p)
1910 {
3496cb2a
L
1911 sreloc = bfd_make_section_with_flags (dynobj, dname,
1912 (SEC_ALLOC
1913 | SEC_LOAD
1914 | SEC_HAS_CONTENTS
1915 | SEC_IN_MEMORY
1916 | SEC_LINKER_CREATED
1917 | SEC_READONLY));
f4416af6 1918 if (sreloc == NULL
f4416af6 1919 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
1921 return NULL;
1922 }
1923 return sreloc;
1924}
1925
b49e97c9
TS
1926/* Returns the GOT section for ABFD. */
1927
1928static asection *
9719ad41 1929mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
b49e97c9 1930{
f4416af6
AO
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
b49e97c9
TS
1936}
1937
1938/* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942static struct mips_got_info *
9719ad41 1943mips_elf_got_info (bfd *abfd, asection **sgotp)
b49e97c9
TS
1944{
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
f4416af6 1948 sgot = mips_elf_got_section (abfd, TRUE);
b49e97c9 1949 BFD_ASSERT (sgot != NULL);
f0abc2a1
AM
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
f4416af6
AO
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
b49e97c9
TS
1957 return g;
1958}
1959
0f20cc35
DJ
1960/* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964static int
1965mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967{
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000}
2001
2002/* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005static int
2006mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007{
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015}
2016
2017/* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020static int
2021mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022{
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033}
2034
2035/* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038static int
2039mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040{
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048}
2049
2050/* Output a simple dynamic relocation into SRELOC. */
2051
2052static void
2053mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058{
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079}
2080
2081/* Initialize a set of TLS GOT entries for one symbol. */
2082
2083static void
2084mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089{
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203}
2204
2205/* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210static bfd_vma
2211mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214{
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242}
2243
b49e97c9 2244/* Returns the GOT offset at which the indicated address can be found.
0f20cc35
DJ
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
b49e97c9
TS
2248
2249static bfd_vma
9719ad41 2250mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
0f20cc35
DJ
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9
TS
2253{
2254 asection *sgot;
2255 struct mips_got_info *g;
b15e6682 2256 struct mips_got_entry *entry;
b49e97c9
TS
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
0f20cc35
DJ
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
b15e6682 2263 return MINUS_ONE;
0f20cc35
DJ
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
b49e97c9
TS
2270}
2271
2272/* Returns the GOT index for the global symbol indicated by H. */
2273
2274static bfd_vma
0f20cc35
DJ
2275mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
b49e97c9
TS
2277{
2278 bfd_vma index;
2279 asection *sgot;
f4416af6 2280 struct mips_got_info *g, *gg;
d0c7ff07 2281 long global_got_dynindx = 0;
b49e97c9 2282
f4416af6
AO
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
143d77c5 2287
f4416af6
AO
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
0f20cc35 2291 if (g->next != gg || TLS_RELOC_P (r_type))
f4416af6
AO
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 2296 e.tls_type = 0;
f4416af6 2297
9719ad41 2298 p = htab_find (g->got_entries, &e);
f4416af6
AO
2299
2300 BFD_ASSERT (p->gotidx > 0);
0f20cc35
DJ
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
f4416af6
AO
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
b49e97c9 2322
0f20cc35
DJ
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
eea6121a 2349 BFD_ASSERT (index < sgot->size);
b49e97c9
TS
2350
2351 return index;
2352}
2353
2354/* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360static bfd_vma
9719ad41
RS
2361mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
b49e97c9
TS
2363{
2364 asection *sgot;
2365 struct mips_got_info *g;
b15e6682
AO
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
b49e97c9
TS
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
f4416af6 2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
b15e6682 2372 (value + 0x8000)
0f20cc35
DJ
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
b49e97c9 2375
b15e6682
AO
2376 if (!entry)
2377 return MINUS_ONE;
143d77c5 2378
b15e6682 2379 index = entry->gotidx;
b49e97c9
TS
2380
2381 if (offsetp)
f4416af6 2382 *offsetp = value - entry->d.address;
b49e97c9
TS
2383
2384 return index;
2385}
2386
2387/* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390static bfd_vma
9719ad41
RS
2391mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
b49e97c9
TS
2393{
2394 asection *sgot;
2395 struct mips_got_info *g;
b15e6682 2396 struct mips_got_entry *entry;
b49e97c9
TS
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
0f20cc35
DJ
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
b15e6682
AO
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
b49e97c9
TS
2415}
2416
2417/* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420static bfd_vma
9719ad41
RS
2421mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
b49e97c9
TS
2423{
2424 asection *sgot;
2425 bfd_vma gp;
f4416af6 2426 struct mips_got_info *g;
b49e97c9 2427
f4416af6
AO
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
143d77c5 2431
f4416af6 2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
b49e97c9
TS
2433}
2434
2435/* Create a local GOT entry for VALUE. Return the index of the entry,
0f20cc35
DJ
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
b49e97c9 2438
b15e6682 2439static struct mips_got_entry *
9719ad41
RS
2440mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
0f20cc35
DJ
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
b49e97c9 2446{
b15e6682 2447 struct mips_got_entry entry, **loc;
f4416af6 2448 struct mips_got_info *g;
b15e6682 2449
f4416af6
AO
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
0f20cc35 2453 entry.tls_type = 0;
f4416af6
AO
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
b15e6682 2461
0f20cc35
DJ
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
a008ac03 2466 BFD_ASSERT (h == NULL || h->root.forced_local);
0f20cc35
DJ
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
b15e6682
AO
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
143d77c5 2497
b15e6682 2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
0f20cc35 2499 entry.tls_type = 0;
b15e6682
AO
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
143d77c5 2505
b15e6682
AO
2506 memcpy (*loc, &entry, sizeof entry);
2507
b49e97c9
TS
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
f4416af6 2510 (*loc)->gotidx = -1;
b49e97c9
TS
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
b15e6682 2515 return NULL;
b49e97c9
TS
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
b15e6682
AO
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
b49e97c9
TS
2522}
2523
2524/* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
b34976b6 2531static bfd_boolean
9719ad41 2532mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
b49e97c9
TS
2533{
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
f4416af6
AO
2540 g = mips_elf_got_info (dynobj, NULL);
2541
b49e97c9 2542 hsd.low = NULL;
143d77c5 2543 hsd.max_unref_got_dynindx =
f4416af6
AO
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
b49e97c9
TS
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
44c410de 2560 accommodate both the GOT and non-GOT symbols. */
b49e97c9 2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
f4416af6
AO
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
b49e97c9
TS
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
b49e97c9
TS
2567 g->global_gotsym = hsd.low;
2568
b34976b6 2569 return TRUE;
b49e97c9
TS
2570}
2571
2572/* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
b34976b6 2576static bfd_boolean
9719ad41 2577mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2578{
9719ad41 2579 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9
TS
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
b34976b6 2587 return TRUE;
b49e97c9 2588
f4416af6
AO
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
0f20cc35
DJ
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
f4416af6
AO
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
b49e97c9
TS
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
0f20cc35
DJ
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
b49e97c9
TS
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
b34976b6 2611 return TRUE;
b49e97c9
TS
2612}
2613
2614/* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
b34976b6 2618static bfd_boolean
9719ad41
RS
2619mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
0f20cc35
DJ
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
b49e97c9 2623{
f4416af6
AO
2624 struct mips_got_entry entry, **loc;
2625
b49e97c9
TS
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
7c5fcef7
L
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
b34976b6 2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
2635 break;
2636 }
c152c796 2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 2638 return FALSE;
7c5fcef7 2639 }
b49e97c9 2640
f4416af6
AO
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
0f20cc35 2644 entry.tls_type = 0;
f4416af6
AO
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
b49e97c9
TS
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
f4416af6 2651 if (*loc)
0f20cc35
DJ
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
f4416af6
AO
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
143d77c5 2661
f4416af6 2662 entry.gotidx = -1;
0f20cc35
DJ
2663 entry.tls_type = tls_flag;
2664
f4416af6
AO
2665 memcpy (*loc, &entry, sizeof entry);
2666
b49e97c9 2667 if (h->got.offset != MINUS_ONE)
b34976b6 2668 return TRUE;
b49e97c9
TS
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
0f20cc35
DJ
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
b49e97c9 2675
b34976b6 2676 return TRUE;
b49e97c9 2677}
f4416af6
AO
2678
2679/* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682static bfd_boolean
9719ad41 2683mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
0f20cc35
DJ
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
f4416af6
AO
2686{
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
0f20cc35 2692 entry.tls_type = tls_flag;
f4416af6
AO
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
0f20cc35
DJ
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
f4416af6 2710
0f20cc35
DJ
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
f4416af6
AO
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
143d77c5 2735
f4416af6
AO
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739}
2740\f
2741/* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743static hashval_t
9719ad41 2744mips_elf_bfd2got_entry_hash (const void *entry_)
f4416af6
AO
2745{
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750}
2751
2752/* Check whether two hash entries have the same bfd. */
2753
2754static int
9719ad41 2755mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2756{
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763}
2764
0b25d3e6 2765/* In a multi-got link, determine the GOT to be used for IBDF. G must
f4416af6
AO
2766 be the master GOT data. */
2767
2768static struct mips_got_info *
9719ad41 2769mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
2770{
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
9719ad41 2777 p = htab_find (g->bfd2got, &e);
f4416af6
AO
2778 return p ? p->g : NULL;
2779}
2780
2781/* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785static int
9719ad41 2786mips_elf_make_got_per_bfd (void **entryp, void *p)
f4416af6
AO
2787{
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
143d77c5 2794
f4416af6
AO
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
0f20cc35
DJ
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
f4416af6 2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
9719ad41 2833 mips_elf_multi_got_entry_eq, NULL);
f4416af6
AO
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
143d77c5 2848
f4416af6
AO
2849 *entryp = entry;
2850
0f20cc35
DJ
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
f4416af6
AO
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864}
2865
2866/* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873static int
9719ad41 2874mips_elf_merge_gots (void **bfd2got_, void *p)
f4416af6
AO
2875{
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
0f20cc35 2881 unsigned int tcount = bfd2got->g->tls_gotno;
f4416af6 2882 unsigned int maxcnt = arg->max_count;
0f20cc35
DJ
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
143d77c5 2896
f4416af6
AO
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
0f20cc35
DJ
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
f4416af6
AO
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
0f20cc35
DJ
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
f4416af6
AO
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
0f20cc35 2914 int old_tcount = arg->primary->tls_gotno;
f4416af6
AO
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
caec41ff 2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
f4416af6 2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
0f20cc35 2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
f4416af6
AO
2932
2933 arg->primary_count = arg->primary->local_gotno
0f20cc35 2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
f4416af6
AO
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
0f20cc35 2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
f4416af6
AO
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
0f20cc35 2943 int old_tcount = arg->current->tls_gotno;
f4416af6
AO
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
caec41ff 2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
f4416af6 2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
0f20cc35 2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
f4416af6
AO
2958
2959 arg->current_count = arg->current->local_gotno
0f20cc35 2960 + arg->current->global_gotno + arg->current->tls_gotno;
f4416af6
AO
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
143d77c5 2969
0f20cc35
DJ
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974}
2975
2976/* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978static int
2979mips_elf_initialize_tls_index (void **entryp, void *p)
2980{
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
f4416af6
AO
3007 }
3008
0f20cc35
DJ
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
f4416af6
AO
3022 return 1;
3023}
3024
3025/* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4cc11e76 3036 marked as not eligible for lazy resolution through a function
f4416af6
AO
3037 stub. */
3038static int
9719ad41 3039mips_elf_set_global_got_offset (void **entryp, void *p)
f4416af6
AO
3040{
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
0f20cc35
DJ
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
f4416af6 3051 if (entry->abfd != NULL && entry->symndx == -1
0f20cc35
DJ
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
f4416af6
AO
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
f4416af6
AO
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
f5385ebf
AM
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
f4416af6
AO
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071}
3072
0626d451
RS
3073/* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075static int
9719ad41 3076mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
0626d451
RS
3077{
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086}
3087
f4416af6
AO
3088/* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094static int
9719ad41 3095mips_elf_resolve_final_got_entry (void **entryp, void *p)
f4416af6
AO
3096{
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
143d77c5 3110
f4416af6
AO
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
143d77c5 3130
f4416af6
AO
3131 return 1;
3132}
3133
3134/* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136static void
9719ad41 3137mips_elf_resolve_final_got_entries (struct mips_got_info *g)
f4416af6
AO
3138{
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150}
3151
3152/* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154static bfd_vma
9719ad41 3155mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6
AO
3156{
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
143d77c5 3167
0f20cc35
DJ
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
3170}
3171
3172/* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175static bfd_boolean
9719ad41
RS
3176mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
f4416af6
AO
3179{
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
9719ad41 3186 mips_elf_bfd2got_entry_eq, NULL);
f4416af6
AO
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
f4416af6
AO
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
0f20cc35
DJ
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
0f20cc35 3220 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6
AO
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
0f20cc35 3231 g->next->tls_gotno = 0;
f4416af6 3232 g->next->assigned_gotno = 0;
0f20cc35
DJ
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
f4416af6
AO
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
9719ad41 3237 NULL);
f4416af6
AO
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
143d77c5 3258
f4416af6
AO
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
143d77c5 3284
f4416af6
AO
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
0f20cc35 3334 gg->tls_gotno = 0;
f4416af6
AO
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
0f20cc35
DJ
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
f4416af6
AO
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
0626d451
RS
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
f4416af6
AO
3363 }
3364 while (g);
3365
eea6121a 3366 got->size = (gg->next->local_gotno
0f20cc35
DJ
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
143d77c5 3369
f4416af6
AO
3370 return TRUE;
3371}
143d77c5 3372
b49e97c9
TS
3373\f
3374/* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377static const Elf_Internal_Rela *
9719ad41
RS
3378mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
b49e97c9 3381{
b49e97c9
TS
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393}
3394
3395/* Return whether a relocation is against a local symbol. */
3396
b34976b6 3397static bfd_boolean
9719ad41
RS
3398mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
b49e97c9
TS
3402{
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
b34976b6 3413 return TRUE;
b49e97c9 3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 3415 return TRUE;
b49e97c9
TS
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
f5385ebf 3427 if (h->root.forced_local)
b34976b6 3428 return TRUE;
b49e97c9
TS
3429 }
3430
b34976b6 3431 return FALSE;
b49e97c9
TS
3432}
3433\f
3434/* Sign-extend VALUE, which has the indicated number of BITS. */
3435
a7ebbfdf 3436bfd_vma
9719ad41 3437_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
3438{
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444}
3445
3446/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 3447 range expressible by a signed number with the indicated number of
b49e97c9
TS
3448 BITS. */
3449
b34976b6 3450static bfd_boolean
9719ad41 3451mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
3452{
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
b34976b6 3457 return TRUE;
b49e97c9
TS
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
b34976b6 3460 return TRUE;
b49e97c9
TS
3461
3462 /* All is well. */
b34976b6 3463 return FALSE;
b49e97c9
TS
3464}
3465
3466/* Calculate the %high function. */
3467
3468static bfd_vma
9719ad41 3469mips_elf_high (bfd_vma value)
b49e97c9
TS
3470{
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472}
3473
3474/* Calculate the %higher function. */
3475
3476static bfd_vma
9719ad41 3477mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3478{
3479#ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481#else
3482 abort ();
c5ae1840 3483 return MINUS_ONE;
b49e97c9
TS
3484#endif
3485}
3486
3487/* Calculate the %highest function. */
3488
3489static bfd_vma
9719ad41 3490mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
3491{
3492#ifdef BFD64
b15e6682 3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
3494#else
3495 abort ();
c5ae1840 3496 return MINUS_ONE;
b49e97c9
TS
3497#endif
3498}
3499\f
3500/* Create the .compact_rel section. */
3501
b34976b6 3502static bfd_boolean
9719ad41
RS
3503mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
3505{
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3496cb2a 3514 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
b49e97c9 3515 if (s == NULL
b49e97c9
TS
3516 || ! bfd_set_section_alignment (abfd, s,
3517 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 3518 return FALSE;
b49e97c9 3519
eea6121a 3520 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
3521 }
3522
b34976b6 3523 return TRUE;
b49e97c9
TS
3524}
3525
3526/* Create the .got section to hold the global offset table. */
3527
b34976b6 3528static bfd_boolean
9719ad41
RS
3529mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3530 bfd_boolean maybe_exclude)
b49e97c9
TS
3531{
3532 flagword flags;
3533 register asection *s;
3534 struct elf_link_hash_entry *h;
14a793b2 3535 struct bfd_link_hash_entry *bh;
b49e97c9
TS
3536 struct mips_got_info *g;
3537 bfd_size_type amt;
3538
3539 /* This function may be called more than once. */
f4416af6
AO
3540 s = mips_elf_got_section (abfd, TRUE);
3541 if (s)
3542 {
3543 if (! maybe_exclude)
3544 s->flags &= ~SEC_EXCLUDE;
3545 return TRUE;
3546 }
b49e97c9
TS
3547
3548 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3549 | SEC_LINKER_CREATED);
3550
f4416af6
AO
3551 if (maybe_exclude)
3552 flags |= SEC_EXCLUDE;
3553
72b4917c
TS
3554 /* We have to use an alignment of 2**4 here because this is hardcoded
3555 in the function stub generation and in the linker script. */
3496cb2a 3556 s = bfd_make_section_with_flags (abfd, ".got", flags);
b49e97c9 3557 if (s == NULL
72b4917c 3558 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 3559 return FALSE;
b49e97c9
TS
3560
3561 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3562 linker script because we don't want to define the symbol if we
3563 are not creating a global offset table. */
14a793b2 3564 bh = NULL;
b49e97c9
TS
3565 if (! (_bfd_generic_link_add_one_symbol
3566 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 3567 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 3568 return FALSE;
14a793b2
AM
3569
3570 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
3571 h->non_elf = 0;
3572 h->def_regular = 1;
b49e97c9
TS
3573 h->type = STT_OBJECT;
3574
3575 if (info->shared
c152c796 3576 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3577 return FALSE;
b49e97c9 3578
b49e97c9 3579 amt = sizeof (struct mips_got_info);
9719ad41 3580 g = bfd_alloc (abfd, amt);
b49e97c9 3581 if (g == NULL)
b34976b6 3582 return FALSE;
b49e97c9 3583 g->global_gotsym = NULL;
e3d54347 3584 g->global_gotno = 0;
0f20cc35 3585 g->tls_gotno = 0;
b49e97c9
TS
3586 g->local_gotno = MIPS_RESERVED_GOTNO;
3587 g->assigned_gotno = MIPS_RESERVED_GOTNO;
f4416af6
AO
3588 g->bfd2got = NULL;
3589 g->next = NULL;
0f20cc35 3590 g->tls_ldm_offset = MINUS_ONE;
b15e6682 3591 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
9719ad41 3592 mips_elf_got_entry_eq, NULL);
b15e6682
AO
3593 if (g->got_entries == NULL)
3594 return FALSE;
f0abc2a1
AM
3595 mips_elf_section_data (s)->u.got_info = g;
3596 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
3597 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3598
b34976b6 3599 return TRUE;
b49e97c9 3600}
b49e97c9
TS
3601\f
3602/* Calculate the value produced by the RELOCATION (which comes from
3603 the INPUT_BFD). The ADDEND is the addend to use for this
3604 RELOCATION; RELOCATION->R_ADDEND is ignored.
3605
3606 The result of the relocation calculation is stored in VALUEP.
3607 REQUIRE_JALXP indicates whether or not the opcode used with this
3608 relocation must be JALX.
3609
3610 This function returns bfd_reloc_continue if the caller need take no
3611 further action regarding this relocation, bfd_reloc_notsupported if
3612 something goes dramatically wrong, bfd_reloc_overflow if an
3613 overflow occurs, and bfd_reloc_ok to indicate success. */
3614
3615static bfd_reloc_status_type
9719ad41
RS
3616mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3617 asection *input_section,
3618 struct bfd_link_info *info,
3619 const Elf_Internal_Rela *relocation,
3620 bfd_vma addend, reloc_howto_type *howto,
3621 Elf_Internal_Sym *local_syms,
3622 asection **local_sections, bfd_vma *valuep,
3623 const char **namep, bfd_boolean *require_jalxp,
3624 bfd_boolean save_addend)
b49e97c9
TS
3625{
3626 /* The eventual value we will return. */
3627 bfd_vma value;
3628 /* The address of the symbol against which the relocation is
3629 occurring. */
3630 bfd_vma symbol = 0;
3631 /* The final GP value to be used for the relocatable, executable, or
3632 shared object file being produced. */
3633 bfd_vma gp = MINUS_ONE;
3634 /* The place (section offset or address) of the storage unit being
3635 relocated. */
3636 bfd_vma p;
3637 /* The value of GP used to create the relocatable object. */
3638 bfd_vma gp0 = MINUS_ONE;
3639 /* The offset into the global offset table at which the address of
3640 the relocation entry symbol, adjusted by the addend, resides
3641 during execution. */
3642 bfd_vma g = MINUS_ONE;
3643 /* The section in which the symbol referenced by the relocation is
3644 located. */
3645 asection *sec = NULL;
3646 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 3647 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 3648 symbol. */
b34976b6
AM
3649 bfd_boolean local_p, was_local_p;
3650 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3651 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
3652 /* TRUE if the symbol referred to by this relocation is
3653 "__gnu_local_gp". */
3654 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
3655 Elf_Internal_Shdr *symtab_hdr;
3656 size_t extsymoff;
3657 unsigned long r_symndx;
3658 int r_type;
b34976b6 3659 /* TRUE if overflow occurred during the calculation of the
b49e97c9 3660 relocation value. */
b34976b6
AM
3661 bfd_boolean overflowed_p;
3662 /* TRUE if this relocation refers to a MIPS16 function. */
3663 bfd_boolean target_is_16_bit_code_p = FALSE;
b49e97c9
TS
3664
3665 /* Parse the relocation. */
3666 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3667 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3668 p = (input_section->output_section->vma
3669 + input_section->output_offset
3670 + relocation->r_offset);
3671
3672 /* Assume that there will be no overflow. */
b34976b6 3673 overflowed_p = FALSE;
b49e97c9
TS
3674
3675 /* Figure out whether or not the symbol is local, and get the offset
3676 used in the array of hash table entries. */
3677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3678 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3679 local_sections, FALSE);
bce03d3d 3680 was_local_p = local_p;
b49e97c9
TS
3681 if (! elf_bad_symtab (input_bfd))
3682 extsymoff = symtab_hdr->sh_info;
3683 else
3684 {
3685 /* The symbol table does not follow the rule that local symbols
3686 must come before globals. */
3687 extsymoff = 0;
3688 }
3689
3690 /* Figure out the value of the symbol. */
3691 if (local_p)
3692 {
3693 Elf_Internal_Sym *sym;
3694
3695 sym = local_syms + r_symndx;
3696 sec = local_sections[r_symndx];
3697
3698 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
3699 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3700 || (sec->flags & SEC_MERGE))
b49e97c9 3701 symbol += sym->st_value;
d4df96e6
L
3702 if ((sec->flags & SEC_MERGE)
3703 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3704 {
3705 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3706 addend -= symbol;
3707 addend += sec->output_section->vma + sec->output_offset;
3708 }
b49e97c9
TS
3709
3710 /* MIPS16 text labels should be treated as odd. */
3711 if (sym->st_other == STO_MIPS16)
3712 ++symbol;
3713
3714 /* Record the name of this symbol, for our caller. */
3715 *namep = bfd_elf_string_from_elf_section (input_bfd,
3716 symtab_hdr->sh_link,
3717 sym->st_name);
3718 if (*namep == '\0')
3719 *namep = bfd_section_name (input_bfd, sec);
3720
3721 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3722 }
3723 else
3724 {
560e09e9
NC
3725 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3726
b49e97c9
TS
3727 /* For global symbols we look up the symbol in the hash-table. */
3728 h = ((struct mips_elf_link_hash_entry *)
3729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3730 /* Find the real hash-table entry for this symbol. */
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3734
3735 /* Record the name of this symbol, for our caller. */
3736 *namep = h->root.root.root.string;
3737
3738 /* See if this is the special _gp_disp symbol. Note that such a
3739 symbol must always be a global symbol. */
560e09e9 3740 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
3741 && ! NEWABI_P (input_bfd))
3742 {
3743 /* Relocations against _gp_disp are permitted only with
3744 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
d6f16593
MR
3745 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3746 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
b49e97c9
TS
3747 return bfd_reloc_notsupported;
3748
b34976b6 3749 gp_disp_p = TRUE;
b49e97c9 3750 }
bbe506e8
TS
3751 /* See if this is the special _gp symbol. Note that such a
3752 symbol must always be a global symbol. */
3753 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3754 gnu_local_gp_p = TRUE;
3755
3756
b49e97c9
TS
3757 /* If this symbol is defined, calculate its address. Note that
3758 _gp_disp is a magic symbol, always implicitly defined by the
3759 linker, so it's inappropriate to check to see whether or not
3760 its defined. */
3761 else if ((h->root.root.type == bfd_link_hash_defined
3762 || h->root.root.type == bfd_link_hash_defweak)
3763 && h->root.root.u.def.section)
3764 {
3765 sec = h->root.root.u.def.section;
3766 if (sec->output_section)
3767 symbol = (h->root.root.u.def.value
3768 + sec->output_section->vma
3769 + sec->output_offset);
3770 else
3771 symbol = h->root.root.u.def.value;
3772 }
3773 else if (h->root.root.type == bfd_link_hash_undefweak)
3774 /* We allow relocations against undefined weak symbols, giving
3775 it the value zero, so that you can undefined weak functions
3776 and check to see if they exist by looking at their
3777 addresses. */
3778 symbol = 0;
59c2e50f 3779 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
3780 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3781 symbol = 0;
a4d0f181
TS
3782 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3783 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
3784 {
3785 /* If this is a dynamic link, we should have created a
3786 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3787 in in _bfd_mips_elf_create_dynamic_sections.
3788 Otherwise, we should define the symbol with a value of 0.
3789 FIXME: It should probably get into the symbol table
3790 somehow as well. */
3791 BFD_ASSERT (! info->shared);
3792 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3793 symbol = 0;
3794 }
5e2b0d47
NC
3795 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
3796 {
3797 /* This is an optional symbol - an Irix specific extension to the
3798 ELF spec. Ignore it for now.
3799 XXX - FIXME - there is more to the spec for OPTIONAL symbols
3800 than simply ignoring them, but we do not handle this for now.
3801 For information see the "64-bit ELF Object File Specification"
3802 which is available from here:
3803 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
3804 symbol = 0;
3805 }
b49e97c9
TS
3806 else
3807 {
3808 if (! ((*info->callbacks->undefined_symbol)
3809 (info, h->root.root.root.string, input_bfd,
3810 input_section, relocation->r_offset,
59c2e50f
L
3811 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3812 || ELF_ST_VISIBILITY (h->root.other))))
b49e97c9
TS
3813 return bfd_reloc_undefined;
3814 symbol = 0;
3815 }
3816
3817 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3818 }
3819
3820 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3821 need to redirect the call to the stub, unless we're already *in*
3822 a stub. */
1049f94e 3823 if (r_type != R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3824 && ((h != NULL && h->fn_stub != NULL)
3825 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3826 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3827 && !mips_elf_stub_section_p (input_bfd, input_section))
3828 {
3829 /* This is a 32- or 64-bit call to a 16-bit function. We should
3830 have already noticed that we were going to need the
3831 stub. */
3832 if (local_p)
3833 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3834 else
3835 {
3836 BFD_ASSERT (h->need_fn_stub);
3837 sec = h->fn_stub;
3838 }
3839
3840 symbol = sec->output_section->vma + sec->output_offset;
3841 }
3842 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3843 need to redirect the call to the stub. */
1049f94e 3844 else if (r_type == R_MIPS16_26 && !info->relocatable
b49e97c9
TS
3845 && h != NULL
3846 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3847 && !target_is_16_bit_code_p)
3848 {
3849 /* If both call_stub and call_fp_stub are defined, we can figure
3850 out which one to use by seeing which one appears in the input
3851 file. */
3852 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3853 {
3854 asection *o;
3855
3856 sec = NULL;
3857 for (o = input_bfd->sections; o != NULL; o = o->next)
3858 {
3859 if (strncmp (bfd_get_section_name (input_bfd, o),
3860 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3861 {
3862 sec = h->call_fp_stub;
3863 break;
3864 }
3865 }
3866 if (sec == NULL)
3867 sec = h->call_stub;
3868 }
3869 else if (h->call_stub != NULL)
3870 sec = h->call_stub;
3871 else
3872 sec = h->call_fp_stub;
3873
eea6121a 3874 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
3875 symbol = sec->output_section->vma + sec->output_offset;
3876 }
3877
3878 /* Calls from 16-bit code to 32-bit code and vice versa require the
3879 special jalx instruction. */
1049f94e 3880 *require_jalxp = (!info->relocatable
b49e97c9
TS
3881 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3882 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3883
3884 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 3885 local_sections, TRUE);
b49e97c9
TS
3886
3887 /* If we haven't already determined the GOT offset, or the GP value,
3888 and we're going to need it, get it now. */
3889 switch (r_type)
3890 {
0fdc1bf1 3891 case R_MIPS_GOT_PAGE:
93a2b7ae 3892 case R_MIPS_GOT_OFST:
d25aed71
RS
3893 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3894 bind locally. */
3895 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
93a2b7ae 3896 if (local_p || r_type == R_MIPS_GOT_OFST)
0fdc1bf1
AO
3897 break;
3898 /* Fall through. */
3899
b49e97c9
TS
3900 case R_MIPS_CALL16:
3901 case R_MIPS_GOT16:
3902 case R_MIPS_GOT_DISP:
3903 case R_MIPS_GOT_HI16:
3904 case R_MIPS_CALL_HI16:
3905 case R_MIPS_GOT_LO16:
3906 case R_MIPS_CALL_LO16:
0f20cc35
DJ
3907 case R_MIPS_TLS_GD:
3908 case R_MIPS_TLS_GOTTPREL:
3909 case R_MIPS_TLS_LDM:
b49e97c9 3910 /* Find the index into the GOT where this value is located. */
0f20cc35
DJ
3911 if (r_type == R_MIPS_TLS_LDM)
3912 {
3913 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3914 r_type);
3915 if (g == MINUS_ONE)
3916 return bfd_reloc_outofrange;
3917 }
3918 else if (!local_p)
b49e97c9 3919 {
0fdc1bf1
AO
3920 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3921 GOT_PAGE relocation that decays to GOT_DISP because the
3922 symbol turns out to be global. The addend is then added
3923 as GOT_OFST. */
3924 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
b49e97c9 3925 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
f4416af6 3926 input_bfd,
0f20cc35
DJ
3927 (struct elf_link_hash_entry *) h,
3928 r_type, info);
3929 if (h->tls_type == GOT_NORMAL
3930 && (! elf_hash_table(info)->dynamic_sections_created
3931 || (info->shared
6ece8836 3932 && (info->symbolic || h->root.forced_local)
0f20cc35 3933 && h->root.def_regular)))
b49e97c9
TS
3934 {
3935 /* This is a static link or a -Bsymbolic link. The
3936 symbol is defined locally, or was forced to be local.
3937 We must initialize this entry in the GOT. */
3938 bfd *tmpbfd = elf_hash_table (info)->dynobj;
f4416af6 3939 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
0fdc1bf1 3940 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
b49e97c9
TS
3941 }
3942 }
3943 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3944 /* There's no need to create a local GOT entry here; the
3945 calculation for a local GOT16 entry does not involve G. */
3946 break;
3947 else
3948 {
f4416af6 3949 g = mips_elf_local_got_index (abfd, input_bfd,
0f20cc35
DJ
3950 info, symbol + addend, r_symndx, h,
3951 r_type);
b49e97c9
TS
3952 if (g == MINUS_ONE)
3953 return bfd_reloc_outofrange;
3954 }
3955
3956 /* Convert GOT indices to actual offsets. */
3957 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 3958 abfd, input_bfd, g);
b49e97c9
TS
3959 break;
3960
3961 case R_MIPS_HI16:
3962 case R_MIPS_LO16:
b49e97c9
TS
3963 case R_MIPS_GPREL16:
3964 case R_MIPS_GPREL32:
3965 case R_MIPS_LITERAL:
d6f16593
MR
3966 case R_MIPS16_HI16:
3967 case R_MIPS16_LO16:
3968 case R_MIPS16_GPREL:
b49e97c9
TS
3969 gp0 = _bfd_get_gp_value (input_bfd);
3970 gp = _bfd_get_gp_value (abfd);
f4416af6
AO
3971 if (elf_hash_table (info)->dynobj)
3972 gp += mips_elf_adjust_gp (abfd,
3973 mips_elf_got_info
3974 (elf_hash_table (info)->dynobj, NULL),
3975 input_bfd);
b49e97c9
TS
3976 break;
3977
3978 default:
3979 break;
3980 }
3981
bbe506e8
TS
3982 if (gnu_local_gp_p)
3983 symbol = gp;
3984
b49e97c9
TS
3985 /* Figure out what kind of relocation is being performed. */
3986 switch (r_type)
3987 {
3988 case R_MIPS_NONE:
3989 return bfd_reloc_continue;
3990
3991 case R_MIPS_16:
a7ebbfdf 3992 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
3993 overflowed_p = mips_elf_overflow_p (value, 16);
3994 break;
3995
3996 case R_MIPS_32:
3997 case R_MIPS_REL32:
3998 case R_MIPS_64:
3999 if ((info->shared
4000 || (elf_hash_table (info)->dynamic_sections_created
4001 && h != NULL
f5385ebf
AM
4002 && h->root.def_dynamic
4003 && !h->root.def_regular))
b49e97c9
TS
4004 && r_symndx != 0
4005 && (input_section->flags & SEC_ALLOC) != 0)
4006 {
4007 /* If we're creating a shared library, or this relocation is
4008 against a symbol in a shared library, then we can't know
4009 where the symbol will end up. So, we create a relocation
4010 record in the output, and leave the job up to the dynamic
4011 linker. */
4012 value = addend;
4013 if (!mips_elf_create_dynamic_relocation (abfd,
4014 info,
4015 relocation,
4016 h,
4017 sec,
4018 symbol,
4019 &value,
4020 input_section))
4021 return bfd_reloc_undefined;
4022 }
4023 else
4024 {
4025 if (r_type != R_MIPS_REL32)
4026 value = symbol + addend;
4027 else
4028 value = addend;
4029 }
4030 value &= howto->dst_mask;
092dcd75
CD
4031 break;
4032
4033 case R_MIPS_PC32:
4034 value = symbol + addend - p;
4035 value &= howto->dst_mask;
b49e97c9
TS
4036 break;
4037
0b25d3e6 4038 case R_MIPS_GNU_REL16_S2:
30ac9238 4039 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
0b25d3e6
AO
4040 overflowed_p = mips_elf_overflow_p (value, 18);
4041 value = (value >> 2) & howto->dst_mask;
4042 break;
4043
b49e97c9
TS
4044 case R_MIPS16_26:
4045 /* The calculation for R_MIPS16_26 is just the same as for an
4046 R_MIPS_26. It's only the storage of the relocated field into
4047 the output file that's different. That's handled in
4048 mips_elf_perform_relocation. So, we just fall through to the
4049 R_MIPS_26 case here. */
4050 case R_MIPS_26:
4051 if (local_p)
30ac9238 4052 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
b49e97c9 4053 else
728b2f21
ILT
4054 {
4055 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
c314987d
RS
4056 if (h->root.root.type != bfd_link_hash_undefweak)
4057 overflowed_p = (value >> 26) != ((p + 4) >> 28);
728b2f21 4058 }
b49e97c9
TS
4059 value &= howto->dst_mask;
4060 break;
4061
0f20cc35
DJ
4062 case R_MIPS_TLS_DTPREL_HI16:
4063 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4064 & howto->dst_mask);
4065 break;
4066
4067 case R_MIPS_TLS_DTPREL_LO16:
4068 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4069 break;
4070
4071 case R_MIPS_TLS_TPREL_HI16:
4072 value = (mips_elf_high (addend + symbol - tprel_base (info))
4073 & howto->dst_mask);
4074 break;
4075
4076 case R_MIPS_TLS_TPREL_LO16:
4077 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4078 break;
4079
b49e97c9 4080 case R_MIPS_HI16:
d6f16593 4081 case R_MIPS16_HI16:
b49e97c9
TS
4082 if (!gp_disp_p)
4083 {
4084 value = mips_elf_high (addend + symbol);
4085 value &= howto->dst_mask;
4086 }
4087 else
4088 {
d6f16593
MR
4089 /* For MIPS16 ABI code we generate this sequence
4090 0: li $v0,%hi(_gp_disp)
4091 4: addiupc $v1,%lo(_gp_disp)
4092 8: sll $v0,16
4093 12: addu $v0,$v1
4094 14: move $gp,$v0
4095 So the offsets of hi and lo relocs are the same, but the
4096 $pc is four higher than $t9 would be, so reduce
4097 both reloc addends by 4. */
4098 if (r_type == R_MIPS16_HI16)
4099 value = mips_elf_high (addend + gp - p - 4);
4100 else
4101 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
4102 overflowed_p = mips_elf_overflow_p (value, 16);
4103 }
4104 break;
4105
4106 case R_MIPS_LO16:
d6f16593 4107 case R_MIPS16_LO16:
b49e97c9
TS
4108 if (!gp_disp_p)
4109 value = (symbol + addend) & howto->dst_mask;
4110 else
4111 {
d6f16593
MR
4112 /* See the comment for R_MIPS16_HI16 above for the reason
4113 for this conditional. */
4114 if (r_type == R_MIPS16_LO16)
4115 value = addend + gp - p;
4116 else
4117 value = addend + gp - p + 4;
b49e97c9 4118 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 4119 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
4120 _gp_disp are normally generated from the .cpload
4121 pseudo-op. It generates code that normally looks like
4122 this:
4123
4124 lui $gp,%hi(_gp_disp)
4125 addiu $gp,$gp,%lo(_gp_disp)
4126 addu $gp,$gp,$t9
4127
4128 Here $t9 holds the address of the function being called,
4129 as required by the MIPS ELF ABI. The R_MIPS_LO16
4130 relocation can easily overflow in this situation, but the
4131 R_MIPS_HI16 relocation will handle the overflow.
4132 Therefore, we consider this a bug in the MIPS ABI, and do
4133 not check for overflow here. */
4134 }
4135 break;
4136
4137 case R_MIPS_LITERAL:
4138 /* Because we don't merge literal sections, we can handle this
4139 just like R_MIPS_GPREL16. In the long run, we should merge
4140 shared literals, and then we will need to additional work
4141 here. */
4142
4143 /* Fall through. */
4144
4145 case R_MIPS16_GPREL:
4146 /* The R_MIPS16_GPREL performs the same calculation as
4147 R_MIPS_GPREL16, but stores the relocated bits in a different
4148 order. We don't need to do anything special here; the
4149 differences are handled in mips_elf_perform_relocation. */
4150 case R_MIPS_GPREL16:
bce03d3d
AO
4151 /* Only sign-extend the addend if it was extracted from the
4152 instruction. If the addend was separate, leave it alone,
4153 otherwise we may lose significant bits. */
4154 if (howto->partial_inplace)
a7ebbfdf 4155 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
4156 value = symbol + addend - gp;
4157 /* If the symbol was local, any earlier relocatable links will
4158 have adjusted its addend with the gp offset, so compensate
4159 for that now. Don't do it for symbols forced local in this
4160 link, though, since they won't have had the gp offset applied
4161 to them before. */
4162 if (was_local_p)
4163 value += gp0;
b49e97c9
TS
4164 overflowed_p = mips_elf_overflow_p (value, 16);
4165 break;
4166
4167 case R_MIPS_GOT16:
4168 case R_MIPS_CALL16:
4169 if (local_p)
4170 {
b34976b6 4171 bfd_boolean forced;
b49e97c9
TS
4172
4173 /* The special case is when the symbol is forced to be local. We
4174 need the full address in the GOT since no R_MIPS_LO16 relocation
4175 follows. */
4176 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
b34976b6 4177 local_sections, FALSE);
f4416af6
AO
4178 value = mips_elf_got16_entry (abfd, input_bfd, info,
4179 symbol + addend, forced);
b49e97c9
TS
4180 if (value == MINUS_ONE)
4181 return bfd_reloc_outofrange;
4182 value
4183 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4184 abfd, input_bfd, value);
b49e97c9
TS
4185 overflowed_p = mips_elf_overflow_p (value, 16);
4186 break;
4187 }
4188
4189 /* Fall through. */
4190
0f20cc35
DJ
4191 case R_MIPS_TLS_GD:
4192 case R_MIPS_TLS_GOTTPREL:
4193 case R_MIPS_TLS_LDM:
b49e97c9 4194 case R_MIPS_GOT_DISP:
0fdc1bf1 4195 got_disp:
b49e97c9
TS
4196 value = g;
4197 overflowed_p = mips_elf_overflow_p (value, 16);
4198 break;
4199
4200 case R_MIPS_GPREL32:
bce03d3d
AO
4201 value = (addend + symbol + gp0 - gp);
4202 if (!save_addend)
4203 value &= howto->dst_mask;
b49e97c9
TS
4204 break;
4205
4206 case R_MIPS_PC16:
a7ebbfdf 4207 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
0b25d3e6 4208 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
4209 break;
4210
4211 case R_MIPS_GOT_HI16:
4212 case R_MIPS_CALL_HI16:
4213 /* We're allowed to handle these two relocations identically.
4214 The dynamic linker is allowed to handle the CALL relocations
4215 differently by creating a lazy evaluation stub. */
4216 value = g;
4217 value = mips_elf_high (value);
4218 value &= howto->dst_mask;
4219 break;
4220
4221 case R_MIPS_GOT_LO16:
4222 case R_MIPS_CALL_LO16:
4223 value = g & howto->dst_mask;
4224 break;
4225
4226 case R_MIPS_GOT_PAGE:
0fdc1bf1
AO
4227 /* GOT_PAGE relocations that reference non-local symbols decay
4228 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4229 0. */
93a2b7ae 4230 if (! local_p)
0fdc1bf1 4231 goto got_disp;
f4416af6 4232 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
4233 if (value == MINUS_ONE)
4234 return bfd_reloc_outofrange;
4235 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
f4416af6 4236 abfd, input_bfd, value);
b49e97c9
TS
4237 overflowed_p = mips_elf_overflow_p (value, 16);
4238 break;
4239
4240 case R_MIPS_GOT_OFST:
93a2b7ae 4241 if (local_p)
0fdc1bf1
AO
4242 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4243 else
4244 value = addend;
b49e97c9
TS
4245 overflowed_p = mips_elf_overflow_p (value, 16);
4246 break;
4247
4248 case R_MIPS_SUB:
4249 value = symbol - addend;
4250 value &= howto->dst_mask;
4251 break;
4252
4253 case R_MIPS_HIGHER:
4254 value = mips_elf_higher (addend + symbol);
4255 value &= howto->dst_mask;
4256 break;
4257
4258 case R_MIPS_HIGHEST:
4259 value = mips_elf_highest (addend + symbol);
4260 value &= howto->dst_mask;
4261 break;
4262
4263 case R_MIPS_SCN_DISP:
4264 value = symbol + addend - sec->output_offset;
4265 value &= howto->dst_mask;
4266 break;
4267
b49e97c9 4268 case R_MIPS_JALR:
1367d393
ILT
4269 /* This relocation is only a hint. In some cases, we optimize
4270 it into a bal instruction. But we don't try to optimize
4271 branches to the PLT; that will wind up wasting time. */
4272 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4273 return bfd_reloc_continue;
4274 value = symbol + addend;
4275 break;
b49e97c9 4276
1367d393 4277 case R_MIPS_PJUMP:
b49e97c9
TS
4278 case R_MIPS_GNU_VTINHERIT:
4279 case R_MIPS_GNU_VTENTRY:
4280 /* We don't do anything with these at present. */
4281 return bfd_reloc_continue;
4282
4283 default:
4284 /* An unrecognized relocation type. */
4285 return bfd_reloc_notsupported;
4286 }
4287
4288 /* Store the VALUE for our caller. */
4289 *valuep = value;
4290 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4291}
4292
4293/* Obtain the field relocated by RELOCATION. */
4294
4295static bfd_vma
9719ad41
RS
4296mips_elf_obtain_contents (reloc_howto_type *howto,
4297 const Elf_Internal_Rela *relocation,
4298 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
4299{
4300 bfd_vma x;
4301 bfd_byte *location = contents + relocation->r_offset;
4302
4303 /* Obtain the bytes. */
4304 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4305
b49e97c9
TS
4306 return x;
4307}
4308
4309/* It has been determined that the result of the RELOCATION is the
4310 VALUE. Use HOWTO to place VALUE into the output file at the
4311 appropriate position. The SECTION is the section to which the
b34976b6 4312 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
b49e97c9
TS
4313 for the relocation must be either JAL or JALX, and it is
4314 unconditionally converted to JALX.
4315
b34976b6 4316 Returns FALSE if anything goes wrong. */
b49e97c9 4317
b34976b6 4318static bfd_boolean
9719ad41
RS
4319mips_elf_perform_relocation (struct bfd_link_info *info,
4320 reloc_howto_type *howto,
4321 const Elf_Internal_Rela *relocation,
4322 bfd_vma value, bfd *input_bfd,
4323 asection *input_section, bfd_byte *contents,
4324 bfd_boolean require_jalx)
b49e97c9
TS
4325{
4326 bfd_vma x;
4327 bfd_byte *location;
4328 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4329
4330 /* Figure out where the relocation is occurring. */
4331 location = contents + relocation->r_offset;
4332
d6f16593
MR
4333 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4334
b49e97c9
TS
4335 /* Obtain the current value. */
4336 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4337
4338 /* Clear the field we are setting. */
4339 x &= ~howto->dst_mask;
4340
b49e97c9
TS
4341 /* Set the field. */
4342 x |= (value & howto->dst_mask);
4343
4344 /* If required, turn JAL into JALX. */
4345 if (require_jalx)
4346 {
b34976b6 4347 bfd_boolean ok;
b49e97c9
TS
4348 bfd_vma opcode = x >> 26;
4349 bfd_vma jalx_opcode;
4350
4351 /* Check to see if the opcode is already JAL or JALX. */
4352 if (r_type == R_MIPS16_26)
4353 {
4354 ok = ((opcode == 0x6) || (opcode == 0x7));
4355 jalx_opcode = 0x7;
4356 }
4357 else
4358 {
4359 ok = ((opcode == 0x3) || (opcode == 0x1d));
4360 jalx_opcode = 0x1d;
4361 }
4362
4363 /* If the opcode is not JAL or JALX, there's a problem. */
4364 if (!ok)
4365 {
4366 (*_bfd_error_handler)
d003868e
AM
4367 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4368 input_bfd,
4369 input_section,
b49e97c9
TS
4370 (unsigned long) relocation->r_offset);
4371 bfd_set_error (bfd_error_bad_value);
b34976b6 4372 return FALSE;
b49e97c9
TS
4373 }
4374
4375 /* Make this the JALX opcode. */
4376 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4377 }
4378
1367d393
ILT
4379 /* On the RM9000, bal is faster than jal, because bal uses branch
4380 prediction hardware. If we are linking for the RM9000, and we
4381 see jal, and bal fits, use it instead. Note that this
4382 transformation should be safe for all architectures. */
4383 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4384 && !info->relocatable
4385 && !require_jalx
4386 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4387 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4388 {
4389 bfd_vma addr;
4390 bfd_vma dest;
4391 bfd_signed_vma off;
4392
4393 addr = (input_section->output_section->vma
4394 + input_section->output_offset
4395 + relocation->r_offset
4396 + 4);
4397 if (r_type == R_MIPS_26)
4398 dest = (value << 2) | ((addr >> 28) << 28);
4399 else
4400 dest = value;
4401 off = dest - addr;
4402 if (off <= 0x1ffff && off >= -0x20000)
4403 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4404 }
4405
b49e97c9
TS
4406 /* Put the value into the output. */
4407 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593
MR
4408
4409 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4410 location);
4411
b34976b6 4412 return TRUE;
b49e97c9
TS
4413}
4414
b34976b6 4415/* Returns TRUE if SECTION is a MIPS16 stub section. */
b49e97c9 4416
b34976b6 4417static bfd_boolean
9719ad41 4418mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
b49e97c9
TS
4419{
4420 const char *name = bfd_get_section_name (abfd, section);
4421
4422 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4423 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4424 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4425}
4426\f
4427/* Add room for N relocations to the .rel.dyn section in ABFD. */
4428
4429static void
9719ad41 4430mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
b49e97c9
TS
4431{
4432 asection *s;
4433
f4416af6 4434 s = mips_elf_rel_dyn_section (abfd, FALSE);
b49e97c9
TS
4435 BFD_ASSERT (s != NULL);
4436
eea6121a 4437 if (s->size == 0)
b49e97c9
TS
4438 {
4439 /* Make room for a null element. */
eea6121a 4440 s->size += MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4441 ++s->reloc_count;
4442 }
eea6121a 4443 s->size += n * MIPS_ELF_REL_SIZE (abfd);
b49e97c9
TS
4444}
4445
4446/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4447 is the original relocation, which is now being transformed into a
4448 dynamic relocation. The ADDENDP is adjusted if necessary; the
4449 caller should store the result in place of the original addend. */
4450
b34976b6 4451static bfd_boolean
9719ad41
RS
4452mips_elf_create_dynamic_relocation (bfd *output_bfd,
4453 struct bfd_link_info *info,
4454 const Elf_Internal_Rela *rel,
4455 struct mips_elf_link_hash_entry *h,
4456 asection *sec, bfd_vma symbol,
4457 bfd_vma *addendp, asection *input_section)
b49e97c9 4458{
947216bf 4459 Elf_Internal_Rela outrel[3];
b49e97c9
TS
4460 asection *sreloc;
4461 bfd *dynobj;
4462 int r_type;
5d41f0b6
RS
4463 long indx;
4464 bfd_boolean defined_p;
b49e97c9
TS
4465
4466 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4467 dynobj = elf_hash_table (info)->dynobj;
f4416af6 4468 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
4469 BFD_ASSERT (sreloc != NULL);
4470 BFD_ASSERT (sreloc->contents != NULL);
4471 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 4472 < sreloc->size);
b49e97c9 4473
b49e97c9
TS
4474 outrel[0].r_offset =
4475 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4476 outrel[1].r_offset =
4477 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4478 outrel[2].r_offset =
4479 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4480
c5ae1840 4481 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 4482 /* The relocation field has been deleted. */
5d41f0b6
RS
4483 return TRUE;
4484
4485 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
4486 {
4487 /* The relocation field has been converted into a relative value of
4488 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4489 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 4490 *addendp += symbol;
5d41f0b6 4491 return TRUE;
0d591ff7 4492 }
b49e97c9 4493
5d41f0b6
RS
4494 /* We must now calculate the dynamic symbol table index to use
4495 in the relocation. */
4496 if (h != NULL
6ece8836
TS
4497 && (!h->root.def_regular
4498 || (info->shared && !info->symbolic && !h->root.forced_local)))
5d41f0b6
RS
4499 {
4500 indx = h->root.dynindx;
4501 if (SGI_COMPAT (output_bfd))
4502 defined_p = h->root.def_regular;
4503 else
4504 /* ??? glibc's ld.so just adds the final GOT entry to the
4505 relocation field. It therefore treats relocs against
4506 defined symbols in the same way as relocs against
4507 undefined symbols. */
4508 defined_p = FALSE;
4509 }
b49e97c9
TS
4510 else
4511 {
5d41f0b6
RS
4512 if (sec != NULL && bfd_is_abs_section (sec))
4513 indx = 0;
4514 else if (sec == NULL || sec->owner == NULL)
fdd07405 4515 {
5d41f0b6
RS
4516 bfd_set_error (bfd_error_bad_value);
4517 return FALSE;
b49e97c9
TS
4518 }
4519 else
4520 {
5d41f0b6
RS
4521 indx = elf_section_data (sec->output_section)->dynindx;
4522 if (indx == 0)
4523 abort ();
b49e97c9
TS
4524 }
4525
5d41f0b6
RS
4526 /* Instead of generating a relocation using the section
4527 symbol, we may as well make it a fully relative
4528 relocation. We want to avoid generating relocations to
4529 local symbols because we used to generate them
4530 incorrectly, without adding the original symbol value,
4531 which is mandated by the ABI for section symbols. In
4532 order to give dynamic loaders and applications time to
4533 phase out the incorrect use, we refrain from emitting
4534 section-relative relocations. It's not like they're
4535 useful, after all. This should be a bit more efficient
4536 as well. */
4537 /* ??? Although this behavior is compatible with glibc's ld.so,
4538 the ABI says that relocations against STN_UNDEF should have
4539 a symbol value of 0. Irix rld honors this, so relocations
4540 against STN_UNDEF have no effect. */
4541 if (!SGI_COMPAT (output_bfd))
4542 indx = 0;
4543 defined_p = TRUE;
b49e97c9
TS
4544 }
4545
5d41f0b6
RS
4546 /* If the relocation was previously an absolute relocation and
4547 this symbol will not be referred to by the relocation, we must
4548 adjust it by the value we give it in the dynamic symbol table.
4549 Otherwise leave the job up to the dynamic linker. */
4550 if (defined_p && r_type != R_MIPS_REL32)
4551 *addendp += symbol;
4552
4553 /* The relocation is always an REL32 relocation because we don't
4554 know where the shared library will wind up at load-time. */
4555 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4556 R_MIPS_REL32);
4557 /* For strict adherence to the ABI specification, we should
4558 generate a R_MIPS_64 relocation record by itself before the
4559 _REL32/_64 record as well, such that the addend is read in as
4560 a 64-bit value (REL32 is a 32-bit relocation, after all).
4561 However, since none of the existing ELF64 MIPS dynamic
4562 loaders seems to care, we don't waste space with these
4563 artificial relocations. If this turns out to not be true,
4564 mips_elf_allocate_dynamic_relocation() should be tweaked so
4565 as to make room for a pair of dynamic relocations per
4566 invocation if ABI_64_P, and here we should generate an
4567 additional relocation record with R_MIPS_64 by itself for a
4568 NULL symbol before this relocation record. */
4569 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4570 ABI_64_P (output_bfd)
4571 ? R_MIPS_64
4572 : R_MIPS_NONE);
4573 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4574
4575 /* Adjust the output offset of the relocation to reference the
4576 correct location in the output file. */
4577 outrel[0].r_offset += (input_section->output_section->vma
4578 + input_section->output_offset);
4579 outrel[1].r_offset += (input_section->output_section->vma
4580 + input_section->output_offset);
4581 outrel[2].r_offset += (input_section->output_section->vma
4582 + input_section->output_offset);
4583
b49e97c9
TS
4584 /* Put the relocation back out. We have to use the special
4585 relocation outputter in the 64-bit case since the 64-bit
4586 relocation format is non-standard. */
4587 if (ABI_64_P (output_bfd))
4588 {
4589 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4590 (output_bfd, &outrel[0],
4591 (sreloc->contents
4592 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4593 }
4594 else
947216bf
AM
4595 bfd_elf32_swap_reloc_out
4596 (output_bfd, &outrel[0],
4597 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 4598
b49e97c9
TS
4599 /* We've now added another relocation. */
4600 ++sreloc->reloc_count;
4601
4602 /* Make sure the output section is writable. The dynamic linker
4603 will be writing to it. */
4604 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4605 |= SHF_WRITE;
4606
4607 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 4608 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9
TS
4609 {
4610 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4611 bfd_byte *cr;
4612
4613 if (scpt)
4614 {
4615 Elf32_crinfo cptrel;
4616
4617 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4618 cptrel.vaddr = (rel->r_offset
4619 + input_section->output_section->vma
4620 + input_section->output_offset);
4621 if (r_type == R_MIPS_REL32)
4622 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4623 else
4624 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4625 mips_elf_set_cr_dist2to (cptrel, 0);
4626 cptrel.konst = *addendp;
4627
4628 cr = (scpt->contents
4629 + sizeof (Elf32_External_compact_rel));
abc0f8d0 4630 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
4631 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4632 ((Elf32_External_crinfo *) cr
4633 + scpt->reloc_count));
4634 ++scpt->reloc_count;
4635 }
4636 }
4637
b34976b6 4638 return TRUE;
b49e97c9
TS
4639}
4640\f
b49e97c9
TS
4641/* Return the MACH for a MIPS e_flags value. */
4642
4643unsigned long
9719ad41 4644_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
4645{
4646 switch (flags & EF_MIPS_MACH)
4647 {
4648 case E_MIPS_MACH_3900:
4649 return bfd_mach_mips3900;
4650
4651 case E_MIPS_MACH_4010:
4652 return bfd_mach_mips4010;
4653
4654 case E_MIPS_MACH_4100:
4655 return bfd_mach_mips4100;
4656
4657 case E_MIPS_MACH_4111:
4658 return bfd_mach_mips4111;
4659
00707a0e
RS
4660 case E_MIPS_MACH_4120:
4661 return bfd_mach_mips4120;
4662
b49e97c9
TS
4663 case E_MIPS_MACH_4650:
4664 return bfd_mach_mips4650;
4665
00707a0e
RS
4666 case E_MIPS_MACH_5400:
4667 return bfd_mach_mips5400;
4668
4669 case E_MIPS_MACH_5500:
4670 return bfd_mach_mips5500;
4671
0d2e43ed
ILT
4672 case E_MIPS_MACH_9000:
4673 return bfd_mach_mips9000;
4674
b49e97c9
TS
4675 case E_MIPS_MACH_SB1:
4676 return bfd_mach_mips_sb1;
4677
4678 default:
4679 switch (flags & EF_MIPS_ARCH)
4680 {
4681 default:
4682 case E_MIPS_ARCH_1:
4683 return bfd_mach_mips3000;
4684 break;
4685
4686 case E_MIPS_ARCH_2:
4687 return bfd_mach_mips6000;
4688 break;
4689
4690 case E_MIPS_ARCH_3:
4691 return bfd_mach_mips4000;
4692 break;
4693
4694 case E_MIPS_ARCH_4:
4695 return bfd_mach_mips8000;
4696 break;
4697
4698 case E_MIPS_ARCH_5:
4699 return bfd_mach_mips5;
4700 break;
4701
4702 case E_MIPS_ARCH_32:
4703 return bfd_mach_mipsisa32;
4704 break;
4705
4706 case E_MIPS_ARCH_64:
4707 return bfd_mach_mipsisa64;
4708 break;
af7ee8bf
CD
4709
4710 case E_MIPS_ARCH_32R2:
4711 return bfd_mach_mipsisa32r2;
4712 break;
5f74bc13
CD
4713
4714 case E_MIPS_ARCH_64R2:
4715 return bfd_mach_mipsisa64r2;
4716 break;
b49e97c9
TS
4717 }
4718 }
4719
4720 return 0;
4721}
4722
4723/* Return printable name for ABI. */
4724
4725static INLINE char *
9719ad41 4726elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
4727{
4728 flagword flags;
4729
4730 flags = elf_elfheader (abfd)->e_flags;
4731 switch (flags & EF_MIPS_ABI)
4732 {
4733 case 0:
4734 if (ABI_N32_P (abfd))
4735 return "N32";
4736 else if (ABI_64_P (abfd))
4737 return "64";
4738 else
4739 return "none";
4740 case E_MIPS_ABI_O32:
4741 return "O32";
4742 case E_MIPS_ABI_O64:
4743 return "O64";
4744 case E_MIPS_ABI_EABI32:
4745 return "EABI32";
4746 case E_MIPS_ABI_EABI64:
4747 return "EABI64";
4748 default:
4749 return "unknown abi";
4750 }
4751}
4752\f
4753/* MIPS ELF uses two common sections. One is the usual one, and the
4754 other is for small objects. All the small objects are kept
4755 together, and then referenced via the gp pointer, which yields
4756 faster assembler code. This is what we use for the small common
4757 section. This approach is copied from ecoff.c. */
4758static asection mips_elf_scom_section;
4759static asymbol mips_elf_scom_symbol;
4760static asymbol *mips_elf_scom_symbol_ptr;
4761
4762/* MIPS ELF also uses an acommon section, which represents an
4763 allocated common symbol which may be overridden by a
4764 definition in a shared library. */
4765static asection mips_elf_acom_section;
4766static asymbol mips_elf_acom_symbol;
4767static asymbol *mips_elf_acom_symbol_ptr;
4768
4769/* Handle the special MIPS section numbers that a symbol may use.
4770 This is used for both the 32-bit and the 64-bit ABI. */
4771
4772void
9719ad41 4773_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
4774{
4775 elf_symbol_type *elfsym;
4776
4777 elfsym = (elf_symbol_type *) asym;
4778 switch (elfsym->internal_elf_sym.st_shndx)
4779 {
4780 case SHN_MIPS_ACOMMON:
4781 /* This section is used in a dynamically linked executable file.
4782 It is an allocated common section. The dynamic linker can
4783 either resolve these symbols to something in a shared
4784 library, or it can just leave them here. For our purposes,
4785 we can consider these symbols to be in a new section. */
4786 if (mips_elf_acom_section.name == NULL)
4787 {
4788 /* Initialize the acommon section. */
4789 mips_elf_acom_section.name = ".acommon";
4790 mips_elf_acom_section.flags = SEC_ALLOC;
4791 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4792 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4793 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4794 mips_elf_acom_symbol.name = ".acommon";
4795 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4796 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4797 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4798 }
4799 asym->section = &mips_elf_acom_section;
4800 break;
4801
4802 case SHN_COMMON:
4803 /* Common symbols less than the GP size are automatically
4804 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4805 if (asym->value > elf_gp_size (abfd)
4806 || IRIX_COMPAT (abfd) == ict_irix6)
4807 break;
4808 /* Fall through. */
4809 case SHN_MIPS_SCOMMON:
4810 if (mips_elf_scom_section.name == NULL)
4811 {
4812 /* Initialize the small common section. */
4813 mips_elf_scom_section.name = ".scommon";
4814 mips_elf_scom_section.flags = SEC_IS_COMMON;
4815 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4816 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4817 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4818 mips_elf_scom_symbol.name = ".scommon";
4819 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4820 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4821 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4822 }
4823 asym->section = &mips_elf_scom_section;
4824 asym->value = elfsym->internal_elf_sym.st_size;
4825 break;
4826
4827 case SHN_MIPS_SUNDEFINED:
4828 asym->section = bfd_und_section_ptr;
4829 break;
4830
b49e97c9 4831 case SHN_MIPS_TEXT:
00b4930b
TS
4832 {
4833 asection *section = bfd_get_section_by_name (abfd, ".text");
4834
4835 BFD_ASSERT (SGI_COMPAT (abfd));
4836 if (section != NULL)
4837 {
4838 asym->section = section;
4839 /* MIPS_TEXT is a bit special, the address is not an offset
4840 to the base of the .text section. So substract the section
4841 base address to make it an offset. */
4842 asym->value -= section->vma;
4843 }
4844 }
b49e97c9
TS
4845 break;
4846
4847 case SHN_MIPS_DATA:
00b4930b
TS
4848 {
4849 asection *section = bfd_get_section_by_name (abfd, ".data");
4850
4851 BFD_ASSERT (SGI_COMPAT (abfd));
4852 if (section != NULL)
4853 {
4854 asym->section = section;
4855 /* MIPS_DATA is a bit special, the address is not an offset
4856 to the base of the .data section. So substract the section
4857 base address to make it an offset. */
4858 asym->value -= section->vma;
4859 }
4860 }
b49e97c9 4861 break;
b49e97c9
TS
4862 }
4863}
4864\f
8c946ed5
RS
4865/* Implement elf_backend_eh_frame_address_size. This differs from
4866 the default in the way it handles EABI64.
4867
4868 EABI64 was originally specified as an LP64 ABI, and that is what
4869 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4870 historically accepted the combination of -mabi=eabi and -mlong32,
4871 and this ILP32 variation has become semi-official over time.
4872 Both forms use elf32 and have pointer-sized FDE addresses.
4873
4874 If an EABI object was generated by GCC 4.0 or above, it will have
4875 an empty .gcc_compiled_longXX section, where XX is the size of longs
4876 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4877 have no special marking to distinguish them from LP64 objects.
4878
4879 We don't want users of the official LP64 ABI to be punished for the
4880 existence of the ILP32 variant, but at the same time, we don't want
4881 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4882 We therefore take the following approach:
4883
4884 - If ABFD contains a .gcc_compiled_longXX section, use it to
4885 determine the pointer size.
4886
4887 - Otherwise check the type of the first relocation. Assume that
4888 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4889
4890 - Otherwise punt.
4891
4892 The second check is enough to detect LP64 objects generated by pre-4.0
4893 compilers because, in the kind of output generated by those compilers,
4894 the first relocation will be associated with either a CIE personality
4895 routine or an FDE start address. Furthermore, the compilers never
4896 used a special (non-pointer) encoding for this ABI.
4897
4898 Checking the relocation type should also be safe because there is no
4899 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4900 did so. */
4901
4902unsigned int
4903_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4904{
4905 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4906 return 8;
4907 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4908 {
4909 bfd_boolean long32_p, long64_p;
4910
4911 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4912 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4913 if (long32_p && long64_p)
4914 return 0;
4915 if (long32_p)
4916 return 4;
4917 if (long64_p)
4918 return 8;
4919
4920 if (sec->reloc_count > 0
4921 && elf_section_data (sec)->relocs != NULL
4922 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4923 == R_MIPS_64))
4924 return 8;
4925
4926 return 0;
4927 }
4928 return 4;
4929}
4930\f
174fd7f9
RS
4931/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4932 relocations against two unnamed section symbols to resolve to the
4933 same address. For example, if we have code like:
4934
4935 lw $4,%got_disp(.data)($gp)
4936 lw $25,%got_disp(.text)($gp)
4937 jalr $25
4938
4939 then the linker will resolve both relocations to .data and the program
4940 will jump there rather than to .text.
4941
4942 We can work around this problem by giving names to local section symbols.
4943 This is also what the MIPSpro tools do. */
4944
4945bfd_boolean
4946_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4947{
4948 return SGI_COMPAT (abfd);
4949}
4950\f
b49e97c9
TS
4951/* Work over a section just before writing it out. This routine is
4952 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4953 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4954 a better way. */
4955
b34976b6 4956bfd_boolean
9719ad41 4957_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
4958{
4959 if (hdr->sh_type == SHT_MIPS_REGINFO
4960 && hdr->sh_size > 0)
4961 {
4962 bfd_byte buf[4];
4963
4964 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4965 BFD_ASSERT (hdr->contents == NULL);
4966
4967 if (bfd_seek (abfd,
4968 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4969 SEEK_SET) != 0)
b34976b6 4970 return FALSE;
b49e97c9 4971 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 4972 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 4973 return FALSE;
b49e97c9
TS
4974 }
4975
4976 if (hdr->sh_type == SHT_MIPS_OPTIONS
4977 && hdr->bfd_section != NULL
f0abc2a1
AM
4978 && mips_elf_section_data (hdr->bfd_section) != NULL
4979 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
4980 {
4981 bfd_byte *contents, *l, *lend;
4982
f0abc2a1
AM
4983 /* We stored the section contents in the tdata field in the
4984 set_section_contents routine. We save the section contents
4985 so that we don't have to read them again.
b49e97c9
TS
4986 At this point we know that elf_gp is set, so we can look
4987 through the section contents to see if there is an
4988 ODK_REGINFO structure. */
4989
f0abc2a1 4990 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
4991 l = contents;
4992 lend = contents + hdr->sh_size;
4993 while (l + sizeof (Elf_External_Options) <= lend)
4994 {
4995 Elf_Internal_Options intopt;
4996
4997 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4998 &intopt);
1bc8074d
MR
4999 if (intopt.size < sizeof (Elf_External_Options))
5000 {
5001 (*_bfd_error_handler)
5002 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5003 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5004 break;
5005 }
b49e97c9
TS
5006 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5007 {
5008 bfd_byte buf[8];
5009
5010 if (bfd_seek (abfd,
5011 (hdr->sh_offset
5012 + (l - contents)
5013 + sizeof (Elf_External_Options)
5014 + (sizeof (Elf64_External_RegInfo) - 8)),
5015 SEEK_SET) != 0)
b34976b6 5016 return FALSE;
b49e97c9 5017 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 5018 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 5019 return FALSE;
b49e97c9
TS
5020 }
5021 else if (intopt.kind == ODK_REGINFO)
5022 {
5023 bfd_byte buf[4];
5024
5025 if (bfd_seek (abfd,
5026 (hdr->sh_offset
5027 + (l - contents)
5028 + sizeof (Elf_External_Options)
5029 + (sizeof (Elf32_External_RegInfo) - 4)),
5030 SEEK_SET) != 0)
b34976b6 5031 return FALSE;
b49e97c9 5032 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 5033 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 5034 return FALSE;
b49e97c9
TS
5035 }
5036 l += intopt.size;
5037 }
5038 }
5039
5040 if (hdr->bfd_section != NULL)
5041 {
5042 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5043
5044 if (strcmp (name, ".sdata") == 0
5045 || strcmp (name, ".lit8") == 0
5046 || strcmp (name, ".lit4") == 0)
5047 {
5048 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5049 hdr->sh_type = SHT_PROGBITS;
5050 }
5051 else if (strcmp (name, ".sbss") == 0)
5052 {
5053 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5054 hdr->sh_type = SHT_NOBITS;
5055 }
5056 else if (strcmp (name, ".srdata") == 0)
5057 {
5058 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5059 hdr->sh_type = SHT_PROGBITS;
5060 }
5061 else if (strcmp (name, ".compact_rel") == 0)
5062 {
5063 hdr->sh_flags = 0;
5064 hdr->sh_type = SHT_PROGBITS;
5065 }
5066 else if (strcmp (name, ".rtproc") == 0)
5067 {
5068 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5069 {
5070 unsigned int adjust;
5071
5072 adjust = hdr->sh_size % hdr->sh_addralign;
5073 if (adjust != 0)
5074 hdr->sh_size += hdr->sh_addralign - adjust;
5075 }
5076 }
5077 }
5078
b34976b6 5079 return TRUE;
b49e97c9
TS
5080}
5081
5082/* Handle a MIPS specific section when reading an object file. This
5083 is called when elfcode.h finds a section with an unknown type.
5084 This routine supports both the 32-bit and 64-bit ELF ABI.
5085
5086 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5087 how to. */
5088
b34976b6 5089bfd_boolean
6dc132d9
L
5090_bfd_mips_elf_section_from_shdr (bfd *abfd,
5091 Elf_Internal_Shdr *hdr,
5092 const char *name,
5093 int shindex)
b49e97c9
TS
5094{
5095 flagword flags = 0;
5096
5097 /* There ought to be a place to keep ELF backend specific flags, but
5098 at the moment there isn't one. We just keep track of the
5099 sections by their name, instead. Fortunately, the ABI gives
5100 suggested names for all the MIPS specific sections, so we will
5101 probably get away with this. */
5102 switch (hdr->sh_type)
5103 {
5104 case SHT_MIPS_LIBLIST:
5105 if (strcmp (name, ".liblist") != 0)
b34976b6 5106 return FALSE;
b49e97c9
TS
5107 break;
5108 case SHT_MIPS_MSYM:
5109 if (strcmp (name, ".msym") != 0)
b34976b6 5110 return FALSE;
b49e97c9
TS
5111 break;
5112 case SHT_MIPS_CONFLICT:
5113 if (strcmp (name, ".conflict") != 0)
b34976b6 5114 return FALSE;
b49e97c9
TS
5115 break;
5116 case SHT_MIPS_GPTAB:
5117 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
b34976b6 5118 return FALSE;
b49e97c9
TS
5119 break;
5120 case SHT_MIPS_UCODE:
5121 if (strcmp (name, ".ucode") != 0)
b34976b6 5122 return FALSE;
b49e97c9
TS
5123 break;
5124 case SHT_MIPS_DEBUG:
5125 if (strcmp (name, ".mdebug") != 0)
b34976b6 5126 return FALSE;
b49e97c9
TS
5127 flags = SEC_DEBUGGING;
5128 break;
5129 case SHT_MIPS_REGINFO:
5130 if (strcmp (name, ".reginfo") != 0
5131 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 5132 return FALSE;
b49e97c9
TS
5133 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5134 break;
5135 case SHT_MIPS_IFACE:
5136 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 5137 return FALSE;
b49e97c9
TS
5138 break;
5139 case SHT_MIPS_CONTENT:
5140 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
b34976b6 5141 return FALSE;
b49e97c9
TS
5142 break;
5143 case SHT_MIPS_OPTIONS:
cc2e31b9 5144 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 5145 return FALSE;
b49e97c9
TS
5146 break;
5147 case SHT_MIPS_DWARF:
5148 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
b34976b6 5149 return FALSE;
b49e97c9
TS
5150 break;
5151 case SHT_MIPS_SYMBOL_LIB:
5152 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 5153 return FALSE;
b49e97c9
TS
5154 break;
5155 case SHT_MIPS_EVENTS:
5156 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5157 && strncmp (name, ".MIPS.post_rel",
5158 sizeof ".MIPS.post_rel" - 1) != 0)
b34976b6 5159 return FALSE;
b49e97c9
TS
5160 break;
5161 default:
cc2e31b9 5162 break;
b49e97c9
TS
5163 }
5164
6dc132d9 5165 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 5166 return FALSE;
b49e97c9
TS
5167
5168 if (flags)
5169 {
5170 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5171 (bfd_get_section_flags (abfd,
5172 hdr->bfd_section)
5173 | flags)))
b34976b6 5174 return FALSE;
b49e97c9
TS
5175 }
5176
5177 /* FIXME: We should record sh_info for a .gptab section. */
5178
5179 /* For a .reginfo section, set the gp value in the tdata information
5180 from the contents of this section. We need the gp value while
5181 processing relocs, so we just get it now. The .reginfo section
5182 is not used in the 64-bit MIPS ELF ABI. */
5183 if (hdr->sh_type == SHT_MIPS_REGINFO)
5184 {
5185 Elf32_External_RegInfo ext;
5186 Elf32_RegInfo s;
5187
9719ad41
RS
5188 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5189 &ext, 0, sizeof ext))
b34976b6 5190 return FALSE;
b49e97c9
TS
5191 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5192 elf_gp (abfd) = s.ri_gp_value;
5193 }
5194
5195 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5196 set the gp value based on what we find. We may see both
5197 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5198 they should agree. */
5199 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5200 {
5201 bfd_byte *contents, *l, *lend;
5202
9719ad41 5203 contents = bfd_malloc (hdr->sh_size);
b49e97c9 5204 if (contents == NULL)
b34976b6 5205 return FALSE;
b49e97c9 5206 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 5207 0, hdr->sh_size))
b49e97c9
TS
5208 {
5209 free (contents);
b34976b6 5210 return FALSE;
b49e97c9
TS
5211 }
5212 l = contents;
5213 lend = contents + hdr->sh_size;
5214 while (l + sizeof (Elf_External_Options) <= lend)
5215 {
5216 Elf_Internal_Options intopt;
5217
5218 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5219 &intopt);
1bc8074d
MR
5220 if (intopt.size < sizeof (Elf_External_Options))
5221 {
5222 (*_bfd_error_handler)
5223 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5224 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5225 break;
5226 }
b49e97c9
TS
5227 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5228 {
5229 Elf64_Internal_RegInfo intreg;
5230
5231 bfd_mips_elf64_swap_reginfo_in
5232 (abfd,
5233 ((Elf64_External_RegInfo *)
5234 (l + sizeof (Elf_External_Options))),
5235 &intreg);
5236 elf_gp (abfd) = intreg.ri_gp_value;
5237 }
5238 else if (intopt.kind == ODK_REGINFO)
5239 {
5240 Elf32_RegInfo intreg;
5241
5242 bfd_mips_elf32_swap_reginfo_in
5243 (abfd,
5244 ((Elf32_External_RegInfo *)
5245 (l + sizeof (Elf_External_Options))),
5246 &intreg);
5247 elf_gp (abfd) = intreg.ri_gp_value;
5248 }
5249 l += intopt.size;
5250 }
5251 free (contents);
5252 }
5253
b34976b6 5254 return TRUE;
b49e97c9
TS
5255}
5256
5257/* Set the correct type for a MIPS ELF section. We do this by the
5258 section name, which is a hack, but ought to work. This routine is
5259 used by both the 32-bit and the 64-bit ABI. */
5260
b34976b6 5261bfd_boolean
9719ad41 5262_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9
TS
5263{
5264 register const char *name;
1bc8074d 5265 unsigned int sh_type;
b49e97c9
TS
5266
5267 name = bfd_get_section_name (abfd, sec);
1bc8074d 5268 sh_type = hdr->sh_type;
b49e97c9
TS
5269
5270 if (strcmp (name, ".liblist") == 0)
5271 {
5272 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 5273 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
5274 /* The sh_link field is set in final_write_processing. */
5275 }
5276 else if (strcmp (name, ".conflict") == 0)
5277 hdr->sh_type = SHT_MIPS_CONFLICT;
5278 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5279 {
5280 hdr->sh_type = SHT_MIPS_GPTAB;
5281 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5282 /* The sh_info field is set in final_write_processing. */
5283 }
5284 else if (strcmp (name, ".ucode") == 0)
5285 hdr->sh_type = SHT_MIPS_UCODE;
5286 else if (strcmp (name, ".mdebug") == 0)
5287 {
5288 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 5289 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
5290 entsize of 0. FIXME: Does this matter? */
5291 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5292 hdr->sh_entsize = 0;
5293 else
5294 hdr->sh_entsize = 1;
5295 }
5296 else if (strcmp (name, ".reginfo") == 0)
5297 {
5298 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 5299 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
5300 entsize of 0x18. FIXME: Does this matter? */
5301 if (SGI_COMPAT (abfd))
5302 {
5303 if ((abfd->flags & DYNAMIC) != 0)
5304 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5305 else
5306 hdr->sh_entsize = 1;
5307 }
5308 else
5309 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5310 }
5311 else if (SGI_COMPAT (abfd)
5312 && (strcmp (name, ".hash") == 0
5313 || strcmp (name, ".dynamic") == 0
5314 || strcmp (name, ".dynstr") == 0))
5315 {
5316 if (SGI_COMPAT (abfd))
5317 hdr->sh_entsize = 0;
5318#if 0
8dc1a139 5319 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
5320 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5321#endif
5322 }
5323 else if (strcmp (name, ".got") == 0
5324 || strcmp (name, ".srdata") == 0
5325 || strcmp (name, ".sdata") == 0
5326 || strcmp (name, ".sbss") == 0
5327 || strcmp (name, ".lit4") == 0
5328 || strcmp (name, ".lit8") == 0)
5329 hdr->sh_flags |= SHF_MIPS_GPREL;
5330 else if (strcmp (name, ".MIPS.interfaces") == 0)
5331 {
5332 hdr->sh_type = SHT_MIPS_IFACE;
5333 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5334 }
5335 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5336 {
5337 hdr->sh_type = SHT_MIPS_CONTENT;
5338 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5339 /* The sh_info field is set in final_write_processing. */
5340 }
cc2e31b9 5341 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
5342 {
5343 hdr->sh_type = SHT_MIPS_OPTIONS;
5344 hdr->sh_entsize = 1;
5345 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5346 }
5347 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5348 hdr->sh_type = SHT_MIPS_DWARF;
5349 else if (strcmp (name, ".MIPS.symlib") == 0)
5350 {
5351 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5352 /* The sh_link and sh_info fields are set in
5353 final_write_processing. */
5354 }
5355 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5356 || strncmp (name, ".MIPS.post_rel",
5357 sizeof ".MIPS.post_rel" - 1) == 0)
5358 {
5359 hdr->sh_type = SHT_MIPS_EVENTS;
5360 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5361 /* The sh_link field is set in final_write_processing. */
5362 }
5363 else if (strcmp (name, ".msym") == 0)
5364 {
5365 hdr->sh_type = SHT_MIPS_MSYM;
5366 hdr->sh_flags |= SHF_ALLOC;
5367 hdr->sh_entsize = 8;
5368 }
5369
1bc8074d
MR
5370 /* In the unlikely event a special section is empty it has to lose its
5371 special meaning. This may happen e.g. when using `strip' with the
5372 "--only-keep-debug" option. */
5373 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5374 hdr->sh_type = sh_type;
5375
7a79a000
TS
5376 /* The generic elf_fake_sections will set up REL_HDR using the default
5377 kind of relocations. We used to set up a second header for the
5378 non-default kind of relocations here, but only NewABI would use
5379 these, and the IRIX ld doesn't like resulting empty RELA sections.
5380 Thus we create those header only on demand now. */
b49e97c9 5381
b34976b6 5382 return TRUE;
b49e97c9
TS
5383}
5384
5385/* Given a BFD section, try to locate the corresponding ELF section
5386 index. This is used by both the 32-bit and the 64-bit ABI.
5387 Actually, it's not clear to me that the 64-bit ABI supports these,
5388 but for non-PIC objects we will certainly want support for at least
5389 the .scommon section. */
5390
b34976b6 5391bfd_boolean
9719ad41
RS
5392_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5393 asection *sec, int *retval)
b49e97c9
TS
5394{
5395 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5396 {
5397 *retval = SHN_MIPS_SCOMMON;
b34976b6 5398 return TRUE;
b49e97c9
TS
5399 }
5400 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5401 {
5402 *retval = SHN_MIPS_ACOMMON;
b34976b6 5403 return TRUE;
b49e97c9 5404 }
b34976b6 5405 return FALSE;
b49e97c9
TS
5406}
5407\f
5408/* Hook called by the linker routine which adds symbols from an object
5409 file. We must handle the special MIPS section numbers here. */
5410
b34976b6 5411bfd_boolean
9719ad41 5412_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 5413 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
5414 flagword *flagsp ATTRIBUTE_UNUSED,
5415 asection **secp, bfd_vma *valp)
b49e97c9
TS
5416{
5417 if (SGI_COMPAT (abfd)
5418 && (abfd->flags & DYNAMIC) != 0
5419 && strcmp (*namep, "_rld_new_interface") == 0)
5420 {
8dc1a139 5421 /* Skip IRIX5 rld entry name. */
b49e97c9 5422 *namep = NULL;
b34976b6 5423 return TRUE;
b49e97c9
TS
5424 }
5425
eedecc07
DD
5426 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5427 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5428 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5429 a magic symbol resolved by the linker, we ignore this bogus definition
5430 of _gp_disp. New ABI objects do not suffer from this problem so this
5431 is not done for them. */
5432 if (!NEWABI_P(abfd)
5433 && (sym->st_shndx == SHN_ABS)
5434 && (strcmp (*namep, "_gp_disp") == 0))
5435 {
5436 *namep = NULL;
5437 return TRUE;
5438 }
5439
b49e97c9
TS
5440 switch (sym->st_shndx)
5441 {
5442 case SHN_COMMON:
5443 /* Common symbols less than the GP size are automatically
5444 treated as SHN_MIPS_SCOMMON symbols. */
5445 if (sym->st_size > elf_gp_size (abfd)
5446 || IRIX_COMPAT (abfd) == ict_irix6)
5447 break;
5448 /* Fall through. */
5449 case SHN_MIPS_SCOMMON:
5450 *secp = bfd_make_section_old_way (abfd, ".scommon");
5451 (*secp)->flags |= SEC_IS_COMMON;
5452 *valp = sym->st_size;
5453 break;
5454
5455 case SHN_MIPS_TEXT:
5456 /* This section is used in a shared object. */
5457 if (elf_tdata (abfd)->elf_text_section == NULL)
5458 {
5459 asymbol *elf_text_symbol;
5460 asection *elf_text_section;
5461 bfd_size_type amt = sizeof (asection);
5462
5463 elf_text_section = bfd_zalloc (abfd, amt);
5464 if (elf_text_section == NULL)
b34976b6 5465 return FALSE;
b49e97c9
TS
5466
5467 amt = sizeof (asymbol);
5468 elf_text_symbol = bfd_zalloc (abfd, amt);
5469 if (elf_text_symbol == NULL)
b34976b6 5470 return FALSE;
b49e97c9
TS
5471
5472 /* Initialize the section. */
5473
5474 elf_tdata (abfd)->elf_text_section = elf_text_section;
5475 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5476
5477 elf_text_section->symbol = elf_text_symbol;
5478 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5479
5480 elf_text_section->name = ".text";
5481 elf_text_section->flags = SEC_NO_FLAGS;
5482 elf_text_section->output_section = NULL;
5483 elf_text_section->owner = abfd;
5484 elf_text_symbol->name = ".text";
5485 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5486 elf_text_symbol->section = elf_text_section;
5487 }
5488 /* This code used to do *secp = bfd_und_section_ptr if
5489 info->shared. I don't know why, and that doesn't make sense,
5490 so I took it out. */
5491 *secp = elf_tdata (abfd)->elf_text_section;
5492 break;
5493
5494 case SHN_MIPS_ACOMMON:
5495 /* Fall through. XXX Can we treat this as allocated data? */
5496 case SHN_MIPS_DATA:
5497 /* This section is used in a shared object. */
5498 if (elf_tdata (abfd)->elf_data_section == NULL)
5499 {
5500 asymbol *elf_data_symbol;
5501 asection *elf_data_section;
5502 bfd_size_type amt = sizeof (asection);
5503
5504 elf_data_section = bfd_zalloc (abfd, amt);
5505 if (elf_data_section == NULL)
b34976b6 5506 return FALSE;
b49e97c9
TS
5507
5508 amt = sizeof (asymbol);
5509 elf_data_symbol = bfd_zalloc (abfd, amt);
5510 if (elf_data_symbol == NULL)
b34976b6 5511 return FALSE;
b49e97c9
TS
5512
5513 /* Initialize the section. */
5514
5515 elf_tdata (abfd)->elf_data_section = elf_data_section;
5516 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5517
5518 elf_data_section->symbol = elf_data_symbol;
5519 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5520
5521 elf_data_section->name = ".data";
5522 elf_data_section->flags = SEC_NO_FLAGS;
5523 elf_data_section->output_section = NULL;
5524 elf_data_section->owner = abfd;
5525 elf_data_symbol->name = ".data";
5526 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5527 elf_data_symbol->section = elf_data_section;
5528 }
5529 /* This code used to do *secp = bfd_und_section_ptr if
5530 info->shared. I don't know why, and that doesn't make sense,
5531 so I took it out. */
5532 *secp = elf_tdata (abfd)->elf_data_section;
5533 break;
5534
5535 case SHN_MIPS_SUNDEFINED:
5536 *secp = bfd_und_section_ptr;
5537 break;
5538 }
5539
5540 if (SGI_COMPAT (abfd)
5541 && ! info->shared
5542 && info->hash->creator == abfd->xvec
5543 && strcmp (*namep, "__rld_obj_head") == 0)
5544 {
5545 struct elf_link_hash_entry *h;
14a793b2 5546 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5547
5548 /* Mark __rld_obj_head as dynamic. */
14a793b2 5549 bh = NULL;
b49e97c9 5550 if (! (_bfd_generic_link_add_one_symbol
9719ad41 5551 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 5552 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5553 return FALSE;
14a793b2
AM
5554
5555 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5556 h->non_elf = 0;
5557 h->def_regular = 1;
b49e97c9
TS
5558 h->type = STT_OBJECT;
5559
c152c796 5560 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5561 return FALSE;
b49e97c9 5562
b34976b6 5563 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b49e97c9
TS
5564 }
5565
5566 /* If this is a mips16 text symbol, add 1 to the value to make it
5567 odd. This will cause something like .word SYM to come up with
5568 the right value when it is loaded into the PC. */
5569 if (sym->st_other == STO_MIPS16)
5570 ++*valp;
5571
b34976b6 5572 return TRUE;
b49e97c9
TS
5573}
5574
5575/* This hook function is called before the linker writes out a global
5576 symbol. We mark symbols as small common if appropriate. This is
5577 also where we undo the increment of the value for a mips16 symbol. */
5578
b34976b6 5579bfd_boolean
9719ad41
RS
5580_bfd_mips_elf_link_output_symbol_hook
5581 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5582 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5583 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
5584{
5585 /* If we see a common symbol, which implies a relocatable link, then
5586 if a symbol was small common in an input file, mark it as small
5587 common in the output file. */
5588 if (sym->st_shndx == SHN_COMMON
5589 && strcmp (input_sec->name, ".scommon") == 0)
5590 sym->st_shndx = SHN_MIPS_SCOMMON;
5591
79cda7cf
FF
5592 if (sym->st_other == STO_MIPS16)
5593 sym->st_value &= ~1;
b49e97c9 5594
b34976b6 5595 return TRUE;
b49e97c9
TS
5596}
5597\f
5598/* Functions for the dynamic linker. */
5599
5600/* Create dynamic sections when linking against a dynamic object. */
5601
b34976b6 5602bfd_boolean
9719ad41 5603_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5604{
5605 struct elf_link_hash_entry *h;
14a793b2 5606 struct bfd_link_hash_entry *bh;
b49e97c9
TS
5607 flagword flags;
5608 register asection *s;
5609 const char * const *namep;
5610
5611 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5612 | SEC_LINKER_CREATED | SEC_READONLY);
5613
5614 /* Mips ABI requests the .dynamic section to be read only. */
5615 s = bfd_get_section_by_name (abfd, ".dynamic");
5616 if (s != NULL)
5617 {
5618 if (! bfd_set_section_flags (abfd, s, flags))
b34976b6 5619 return FALSE;
b49e97c9
TS
5620 }
5621
5622 /* We need to create .got section. */
f4416af6
AO
5623 if (! mips_elf_create_got_section (abfd, info, FALSE))
5624 return FALSE;
5625
5626 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
b34976b6 5627 return FALSE;
b49e97c9 5628
b49e97c9
TS
5629 /* Create .stub section. */
5630 if (bfd_get_section_by_name (abfd,
5631 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5632 {
3496cb2a
L
5633 s = bfd_make_section_with_flags (abfd,
5634 MIPS_ELF_STUB_SECTION_NAME (abfd),
5635 flags | SEC_CODE);
b49e97c9 5636 if (s == NULL
b49e97c9
TS
5637 || ! bfd_set_section_alignment (abfd, s,
5638 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5639 return FALSE;
b49e97c9
TS
5640 }
5641
5642 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5643 && !info->shared
5644 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5645 {
3496cb2a
L
5646 s = bfd_make_section_with_flags (abfd, ".rld_map",
5647 flags &~ (flagword) SEC_READONLY);
b49e97c9 5648 if (s == NULL
b49e97c9
TS
5649 || ! bfd_set_section_alignment (abfd, s,
5650 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5651 return FALSE;
b49e97c9
TS
5652 }
5653
5654 /* On IRIX5, we adjust add some additional symbols and change the
5655 alignments of several sections. There is no ABI documentation
5656 indicating that this is necessary on IRIX6, nor any evidence that
5657 the linker takes such action. */
5658 if (IRIX_COMPAT (abfd) == ict_irix5)
5659 {
5660 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5661 {
14a793b2 5662 bh = NULL;
b49e97c9 5663 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
5664 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5665 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5666 return FALSE;
14a793b2
AM
5667
5668 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5669 h->non_elf = 0;
5670 h->def_regular = 1;
b49e97c9
TS
5671 h->type = STT_SECTION;
5672
c152c796 5673 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5674 return FALSE;
b49e97c9
TS
5675 }
5676
5677 /* We need to create a .compact_rel section. */
5678 if (SGI_COMPAT (abfd))
5679 {
5680 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 5681 return FALSE;
b49e97c9
TS
5682 }
5683
44c410de 5684 /* Change alignments of some sections. */
b49e97c9
TS
5685 s = bfd_get_section_by_name (abfd, ".hash");
5686 if (s != NULL)
d80dcc6a 5687 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5688 s = bfd_get_section_by_name (abfd, ".dynsym");
5689 if (s != NULL)
d80dcc6a 5690 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5691 s = bfd_get_section_by_name (abfd, ".dynstr");
5692 if (s != NULL)
d80dcc6a 5693 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5694 s = bfd_get_section_by_name (abfd, ".reginfo");
5695 if (s != NULL)
d80dcc6a 5696 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5697 s = bfd_get_section_by_name (abfd, ".dynamic");
5698 if (s != NULL)
d80dcc6a 5699 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
5700 }
5701
5702 if (!info->shared)
5703 {
14a793b2
AM
5704 const char *name;
5705
5706 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5707 bh = NULL;
5708 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
5709 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5710 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5711 return FALSE;
14a793b2
AM
5712
5713 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5714 h->non_elf = 0;
5715 h->def_regular = 1;
b49e97c9
TS
5716 h->type = STT_SECTION;
5717
c152c796 5718 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5719 return FALSE;
b49e97c9
TS
5720
5721 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5722 {
5723 /* __rld_map is a four byte word located in the .data section
5724 and is filled in by the rtld to contain a pointer to
5725 the _r_debug structure. Its symbol value will be set in
5726 _bfd_mips_elf_finish_dynamic_symbol. */
5727 s = bfd_get_section_by_name (abfd, ".rld_map");
5728 BFD_ASSERT (s != NULL);
5729
14a793b2
AM
5730 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5731 bh = NULL;
5732 if (!(_bfd_generic_link_add_one_symbol
9719ad41 5733 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
14a793b2 5734 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5735 return FALSE;
14a793b2
AM
5736
5737 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5738 h->non_elf = 0;
5739 h->def_regular = 1;
b49e97c9
TS
5740 h->type = STT_OBJECT;
5741
c152c796 5742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5743 return FALSE;
b49e97c9
TS
5744 }
5745 }
5746
b34976b6 5747 return TRUE;
b49e97c9
TS
5748}
5749\f
5750/* Look through the relocs for a section during the first phase, and
5751 allocate space in the global offset table. */
5752
b34976b6 5753bfd_boolean
9719ad41
RS
5754_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5755 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
5756{
5757 const char *name;
5758 bfd *dynobj;
5759 Elf_Internal_Shdr *symtab_hdr;
5760 struct elf_link_hash_entry **sym_hashes;
5761 struct mips_got_info *g;
5762 size_t extsymoff;
5763 const Elf_Internal_Rela *rel;
5764 const Elf_Internal_Rela *rel_end;
5765 asection *sgot;
5766 asection *sreloc;
9c5bfbb7 5767 const struct elf_backend_data *bed;
b49e97c9 5768
1049f94e 5769 if (info->relocatable)
b34976b6 5770 return TRUE;
b49e97c9
TS
5771
5772 dynobj = elf_hash_table (info)->dynobj;
5773 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5774 sym_hashes = elf_sym_hashes (abfd);
5775 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5776
5777 /* Check for the mips16 stub sections. */
5778
5779 name = bfd_get_section_name (abfd, sec);
5780 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5781 {
5782 unsigned long r_symndx;
5783
5784 /* Look at the relocation information to figure out which symbol
5785 this is for. */
5786
5787 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5788
5789 if (r_symndx < extsymoff
5790 || sym_hashes[r_symndx - extsymoff] == NULL)
5791 {
5792 asection *o;
5793
5794 /* This stub is for a local symbol. This stub will only be
5795 needed if there is some relocation in this BFD, other
5796 than a 16 bit function call, which refers to this symbol. */
5797 for (o = abfd->sections; o != NULL; o = o->next)
5798 {
5799 Elf_Internal_Rela *sec_relocs;
5800 const Elf_Internal_Rela *r, *rend;
5801
5802 /* We can ignore stub sections when looking for relocs. */
5803 if ((o->flags & SEC_RELOC) == 0
5804 || o->reloc_count == 0
5805 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5806 sizeof FN_STUB - 1) == 0
5807 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5808 sizeof CALL_STUB - 1) == 0
5809 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5810 sizeof CALL_FP_STUB - 1) == 0)
5811 continue;
5812
45d6a902 5813 sec_relocs
9719ad41 5814 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 5815 info->keep_memory);
b49e97c9 5816 if (sec_relocs == NULL)
b34976b6 5817 return FALSE;
b49e97c9
TS
5818
5819 rend = sec_relocs + o->reloc_count;
5820 for (r = sec_relocs; r < rend; r++)
5821 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5822 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5823 break;
5824
6cdc0ccc 5825 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
5826 free (sec_relocs);
5827
5828 if (r < rend)
5829 break;
5830 }
5831
5832 if (o == NULL)
5833 {
5834 /* There is no non-call reloc for this stub, so we do
5835 not need it. Since this function is called before
5836 the linker maps input sections to output sections, we
5837 can easily discard it by setting the SEC_EXCLUDE
5838 flag. */
5839 sec->flags |= SEC_EXCLUDE;
b34976b6 5840 return TRUE;
b49e97c9
TS
5841 }
5842
5843 /* Record this stub in an array of local symbol stubs for
5844 this BFD. */
5845 if (elf_tdata (abfd)->local_stubs == NULL)
5846 {
5847 unsigned long symcount;
5848 asection **n;
5849 bfd_size_type amt;
5850
5851 if (elf_bad_symtab (abfd))
5852 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5853 else
5854 symcount = symtab_hdr->sh_info;
5855 amt = symcount * sizeof (asection *);
9719ad41 5856 n = bfd_zalloc (abfd, amt);
b49e97c9 5857 if (n == NULL)
b34976b6 5858 return FALSE;
b49e97c9
TS
5859 elf_tdata (abfd)->local_stubs = n;
5860 }
5861
5862 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5863
5864 /* We don't need to set mips16_stubs_seen in this case.
5865 That flag is used to see whether we need to look through
5866 the global symbol table for stubs. We don't need to set
5867 it here, because we just have a local stub. */
5868 }
5869 else
5870 {
5871 struct mips_elf_link_hash_entry *h;
5872
5873 h = ((struct mips_elf_link_hash_entry *)
5874 sym_hashes[r_symndx - extsymoff]);
5875
973a3492
L
5876 while (h->root.root.type == bfd_link_hash_indirect
5877 || h->root.root.type == bfd_link_hash_warning)
5878 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5879
b49e97c9
TS
5880 /* H is the symbol this stub is for. */
5881
5882 h->fn_stub = sec;
b34976b6 5883 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5884 }
5885 }
5886 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5887 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5888 {
5889 unsigned long r_symndx;
5890 struct mips_elf_link_hash_entry *h;
5891 asection **loc;
5892
5893 /* Look at the relocation information to figure out which symbol
5894 this is for. */
5895
5896 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5897
5898 if (r_symndx < extsymoff
5899 || sym_hashes[r_symndx - extsymoff] == NULL)
5900 {
5901 /* This stub was actually built for a static symbol defined
5902 in the same file. We assume that all static symbols in
5903 mips16 code are themselves mips16, so we can simply
5904 discard this stub. Since this function is called before
5905 the linker maps input sections to output sections, we can
5906 easily discard it by setting the SEC_EXCLUDE flag. */
5907 sec->flags |= SEC_EXCLUDE;
b34976b6 5908 return TRUE;
b49e97c9
TS
5909 }
5910
5911 h = ((struct mips_elf_link_hash_entry *)
5912 sym_hashes[r_symndx - extsymoff]);
5913
5914 /* H is the symbol this stub is for. */
5915
5916 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5917 loc = &h->call_fp_stub;
5918 else
5919 loc = &h->call_stub;
5920
5921 /* If we already have an appropriate stub for this function, we
5922 don't need another one, so we can discard this one. Since
5923 this function is called before the linker maps input sections
5924 to output sections, we can easily discard it by setting the
5925 SEC_EXCLUDE flag. We can also discard this section if we
5926 happen to already know that this is a mips16 function; it is
5927 not necessary to check this here, as it is checked later, but
5928 it is slightly faster to check now. */
5929 if (*loc != NULL || h->root.other == STO_MIPS16)
5930 {
5931 sec->flags |= SEC_EXCLUDE;
b34976b6 5932 return TRUE;
b49e97c9
TS
5933 }
5934
5935 *loc = sec;
b34976b6 5936 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
5937 }
5938
5939 if (dynobj == NULL)
5940 {
5941 sgot = NULL;
5942 g = NULL;
5943 }
5944 else
5945 {
f4416af6 5946 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9
TS
5947 if (sgot == NULL)
5948 g = NULL;
5949 else
5950 {
f0abc2a1
AM
5951 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5952 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
5953 BFD_ASSERT (g != NULL);
5954 }
5955 }
5956
5957 sreloc = NULL;
5958 bed = get_elf_backend_data (abfd);
5959 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5960 for (rel = relocs; rel < rel_end; ++rel)
5961 {
5962 unsigned long r_symndx;
5963 unsigned int r_type;
5964 struct elf_link_hash_entry *h;
5965
5966 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5967 r_type = ELF_R_TYPE (abfd, rel->r_info);
5968
5969 if (r_symndx < extsymoff)
5970 h = NULL;
5971 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5972 {
5973 (*_bfd_error_handler)
d003868e
AM
5974 (_("%B: Malformed reloc detected for section %s"),
5975 abfd, name);
b49e97c9 5976 bfd_set_error (bfd_error_bad_value);
b34976b6 5977 return FALSE;
b49e97c9
TS
5978 }
5979 else
5980 {
5981 h = sym_hashes[r_symndx - extsymoff];
5982
5983 /* This may be an indirect symbol created because of a version. */
5984 if (h != NULL)
5985 {
5986 while (h->root.type == bfd_link_hash_indirect)
5987 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5988 }
5989 }
5990
5991 /* Some relocs require a global offset table. */
5992 if (dynobj == NULL || sgot == NULL)
5993 {
5994 switch (r_type)
5995 {
5996 case R_MIPS_GOT16:
5997 case R_MIPS_CALL16:
5998 case R_MIPS_CALL_HI16:
5999 case R_MIPS_CALL_LO16:
6000 case R_MIPS_GOT_HI16:
6001 case R_MIPS_GOT_LO16:
6002 case R_MIPS_GOT_PAGE:
6003 case R_MIPS_GOT_OFST:
6004 case R_MIPS_GOT_DISP:
0f20cc35
DJ
6005 case R_MIPS_TLS_GD:
6006 case R_MIPS_TLS_LDM:
b49e97c9
TS
6007 if (dynobj == NULL)
6008 elf_hash_table (info)->dynobj = dynobj = abfd;
f4416af6 6009 if (! mips_elf_create_got_section (dynobj, info, FALSE))
b34976b6 6010 return FALSE;
b49e97c9
TS
6011 g = mips_elf_got_info (dynobj, &sgot);
6012 break;
6013
6014 case R_MIPS_32:
6015 case R_MIPS_REL32:
6016 case R_MIPS_64:
6017 if (dynobj == NULL
6018 && (info->shared || h != NULL)
6019 && (sec->flags & SEC_ALLOC) != 0)
6020 elf_hash_table (info)->dynobj = dynobj = abfd;
6021 break;
6022
6023 default:
6024 break;
6025 }
6026 }
6027
6028 if (!h && (r_type == R_MIPS_CALL_LO16
6029 || r_type == R_MIPS_GOT_LO16
6030 || r_type == R_MIPS_GOT_DISP))
6031 {
6032 /* We may need a local GOT entry for this relocation. We
6033 don't count R_MIPS_GOT_PAGE because we can estimate the
6034 maximum number of pages needed by looking at the size of
6035 the segment. Similar comments apply to R_MIPS_GOT16 and
6036 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6037 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 6038 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
f4416af6 6039 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
0f20cc35 6040 rel->r_addend, g, 0))
f4416af6 6041 return FALSE;
b49e97c9
TS
6042 }
6043
6044 switch (r_type)
6045 {
6046 case R_MIPS_CALL16:
6047 if (h == NULL)
6048 {
6049 (*_bfd_error_handler)
d003868e
AM
6050 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6051 abfd, (unsigned long) rel->r_offset);
b49e97c9 6052 bfd_set_error (bfd_error_bad_value);
b34976b6 6053 return FALSE;
b49e97c9
TS
6054 }
6055 /* Fall through. */
6056
6057 case R_MIPS_CALL_HI16:
6058 case R_MIPS_CALL_LO16:
6059 if (h != NULL)
6060 {
6061 /* This symbol requires a global offset table entry. */
0f20cc35 6062 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6063 return FALSE;
b49e97c9
TS
6064
6065 /* We need a stub, not a plt entry for the undefined
6066 function. But we record it as if it needs plt. See
c152c796 6067 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 6068 h->needs_plt = 1;
b49e97c9
TS
6069 h->type = STT_FUNC;
6070 }
6071 break;
6072
0fdc1bf1
AO
6073 case R_MIPS_GOT_PAGE:
6074 /* If this is a global, overridable symbol, GOT_PAGE will
6075 decay to GOT_DISP, so we'll need a GOT entry for it. */
6076 if (h == NULL)
6077 break;
6078 else
6079 {
6080 struct mips_elf_link_hash_entry *hmips =
6081 (struct mips_elf_link_hash_entry *) h;
143d77c5 6082
0fdc1bf1
AO
6083 while (hmips->root.root.type == bfd_link_hash_indirect
6084 || hmips->root.root.type == bfd_link_hash_warning)
6085 hmips = (struct mips_elf_link_hash_entry *)
6086 hmips->root.root.u.i.link;
143d77c5 6087
f5385ebf 6088 if (hmips->root.def_regular
0fdc1bf1 6089 && ! (info->shared && ! info->symbolic
f5385ebf 6090 && ! hmips->root.forced_local))
0fdc1bf1
AO
6091 break;
6092 }
6093 /* Fall through. */
6094
b49e97c9
TS
6095 case R_MIPS_GOT16:
6096 case R_MIPS_GOT_HI16:
6097 case R_MIPS_GOT_LO16:
6098 case R_MIPS_GOT_DISP:
0f20cc35 6099 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
b34976b6 6100 return FALSE;
b49e97c9
TS
6101 break;
6102
0f20cc35
DJ
6103 case R_MIPS_TLS_GOTTPREL:
6104 if (info->shared)
6105 info->flags |= DF_STATIC_TLS;
6106 /* Fall through */
6107
6108 case R_MIPS_TLS_LDM:
6109 if (r_type == R_MIPS_TLS_LDM)
6110 {
6111 r_symndx = 0;
6112 h = NULL;
6113 }
6114 /* Fall through */
6115
6116 case R_MIPS_TLS_GD:
6117 /* This symbol requires a global offset table entry, or two
6118 for TLS GD relocations. */
6119 {
6120 unsigned char flag = (r_type == R_MIPS_TLS_GD
6121 ? GOT_TLS_GD
6122 : r_type == R_MIPS_TLS_LDM
6123 ? GOT_TLS_LDM
6124 : GOT_TLS_IE);
6125 if (h != NULL)
6126 {
6127 struct mips_elf_link_hash_entry *hmips =
6128 (struct mips_elf_link_hash_entry *) h;
6129 hmips->tls_type |= flag;
6130
6131 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6132 return FALSE;
6133 }
6134 else
6135 {
6136 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6137
6138 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6139 rel->r_addend, g, flag))
6140 return FALSE;
6141 }
6142 }
6143 break;
6144
b49e97c9
TS
6145 case R_MIPS_32:
6146 case R_MIPS_REL32:
6147 case R_MIPS_64:
6148 if ((info->shared || h != NULL)
6149 && (sec->flags & SEC_ALLOC) != 0)
6150 {
6151 if (sreloc == NULL)
6152 {
f4416af6 6153 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
b49e97c9 6154 if (sreloc == NULL)
f4416af6 6155 return FALSE;
b49e97c9 6156 }
82f0cfbd 6157#define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
b49e97c9 6158 if (info->shared)
82f0cfbd
EC
6159 {
6160 /* When creating a shared object, we must copy these
6161 reloc types into the output file as R_MIPS_REL32
6162 relocs. We make room for this reloc in the
6163 .rel.dyn reloc section. */
6164 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6165 if ((sec->flags & MIPS_READONLY_SECTION)
6166 == MIPS_READONLY_SECTION)
6167 /* We tell the dynamic linker that there are
6168 relocations against the text segment. */
6169 info->flags |= DF_TEXTREL;
6170 }
b49e97c9
TS
6171 else
6172 {
6173 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 6174
b49e97c9
TS
6175 /* We only need to copy this reloc if the symbol is
6176 defined in a dynamic object. */
6177 hmips = (struct mips_elf_link_hash_entry *) h;
6178 ++hmips->possibly_dynamic_relocs;
82f0cfbd
EC
6179 if ((sec->flags & MIPS_READONLY_SECTION)
6180 == MIPS_READONLY_SECTION)
6181 /* We need it to tell the dynamic linker if there
6182 are relocations against the text segment. */
6183 hmips->readonly_reloc = TRUE;
b49e97c9
TS
6184 }
6185
6186 /* Even though we don't directly need a GOT entry for
6187 this symbol, a symbol must have a dynamic symbol
6188 table index greater that DT_MIPS_GOTSYM if there are
6189 dynamic relocations against it. */
f4416af6
AO
6190 if (h != NULL)
6191 {
6192 if (dynobj == NULL)
6193 elf_hash_table (info)->dynobj = dynobj = abfd;
6194 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6195 return FALSE;
6196 g = mips_elf_got_info (dynobj, &sgot);
0f20cc35 6197 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
f4416af6
AO
6198 return FALSE;
6199 }
b49e97c9
TS
6200 }
6201
6202 if (SGI_COMPAT (abfd))
6203 mips_elf_hash_table (info)->compact_rel_size +=
6204 sizeof (Elf32_External_crinfo);
6205 break;
6206
6207 case R_MIPS_26:
6208 case R_MIPS_GPREL16:
6209 case R_MIPS_LITERAL:
6210 case R_MIPS_GPREL32:
6211 if (SGI_COMPAT (abfd))
6212 mips_elf_hash_table (info)->compact_rel_size +=
6213 sizeof (Elf32_External_crinfo);
6214 break;
6215
6216 /* This relocation describes the C++ object vtable hierarchy.
6217 Reconstruct it for later use during GC. */
6218 case R_MIPS_GNU_VTINHERIT:
c152c796 6219 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 6220 return FALSE;
b49e97c9
TS
6221 break;
6222
6223 /* This relocation describes which C++ vtable entries are actually
6224 used. Record for later use during GC. */
6225 case R_MIPS_GNU_VTENTRY:
c152c796 6226 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 6227 return FALSE;
b49e97c9
TS
6228 break;
6229
6230 default:
6231 break;
6232 }
6233
6234 /* We must not create a stub for a symbol that has relocations
6235 related to taking the function's address. */
6236 switch (r_type)
6237 {
6238 default:
6239 if (h != NULL)
6240 {
6241 struct mips_elf_link_hash_entry *mh;
6242
6243 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6244 mh->no_fn_stub = TRUE;
b49e97c9
TS
6245 }
6246 break;
6247 case R_MIPS_CALL16:
6248 case R_MIPS_CALL_HI16:
6249 case R_MIPS_CALL_LO16:
2b86c02e 6250 case R_MIPS_JALR:
b49e97c9
TS
6251 break;
6252 }
6253
6254 /* If this reloc is not a 16 bit call, and it has a global
6255 symbol, then we will need the fn_stub if there is one.
6256 References from a stub section do not count. */
6257 if (h != NULL
6258 && r_type != R_MIPS16_26
6259 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6260 sizeof FN_STUB - 1) != 0
6261 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6262 sizeof CALL_STUB - 1) != 0
6263 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6264 sizeof CALL_FP_STUB - 1) != 0)
6265 {
6266 struct mips_elf_link_hash_entry *mh;
6267
6268 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 6269 mh->need_fn_stub = TRUE;
b49e97c9
TS
6270 }
6271 }
6272
b34976b6 6273 return TRUE;
b49e97c9
TS
6274}
6275\f
d0647110 6276bfd_boolean
9719ad41
RS
6277_bfd_mips_relax_section (bfd *abfd, asection *sec,
6278 struct bfd_link_info *link_info,
6279 bfd_boolean *again)
d0647110
AO
6280{
6281 Elf_Internal_Rela *internal_relocs;
6282 Elf_Internal_Rela *irel, *irelend;
6283 Elf_Internal_Shdr *symtab_hdr;
6284 bfd_byte *contents = NULL;
d0647110
AO
6285 size_t extsymoff;
6286 bfd_boolean changed_contents = FALSE;
6287 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6288 Elf_Internal_Sym *isymbuf = NULL;
6289
6290 /* We are not currently changing any sizes, so only one pass. */
6291 *again = FALSE;
6292
1049f94e 6293 if (link_info->relocatable)
d0647110
AO
6294 return TRUE;
6295
9719ad41 6296 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 6297 link_info->keep_memory);
d0647110
AO
6298 if (internal_relocs == NULL)
6299 return TRUE;
6300
6301 irelend = internal_relocs + sec->reloc_count
6302 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6303 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6304 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6305
6306 for (irel = internal_relocs; irel < irelend; irel++)
6307 {
6308 bfd_vma symval;
6309 bfd_signed_vma sym_offset;
6310 unsigned int r_type;
6311 unsigned long r_symndx;
6312 asection *sym_sec;
6313 unsigned long instruction;
6314
6315 /* Turn jalr into bgezal, and jr into beq, if they're marked
6316 with a JALR relocation, that indicate where they jump to.
6317 This saves some pipeline bubbles. */
6318 r_type = ELF_R_TYPE (abfd, irel->r_info);
6319 if (r_type != R_MIPS_JALR)
6320 continue;
6321
6322 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6323 /* Compute the address of the jump target. */
6324 if (r_symndx >= extsymoff)
6325 {
6326 struct mips_elf_link_hash_entry *h
6327 = ((struct mips_elf_link_hash_entry *)
6328 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6329
6330 while (h->root.root.type == bfd_link_hash_indirect
6331 || h->root.root.type == bfd_link_hash_warning)
6332 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 6333
d0647110
AO
6334 /* If a symbol is undefined, or if it may be overridden,
6335 skip it. */
6336 if (! ((h->root.root.type == bfd_link_hash_defined
6337 || h->root.root.type == bfd_link_hash_defweak)
6338 && h->root.root.u.def.section)
6339 || (link_info->shared && ! link_info->symbolic
f5385ebf 6340 && !h->root.forced_local))
d0647110
AO
6341 continue;
6342
6343 sym_sec = h->root.root.u.def.section;
6344 if (sym_sec->output_section)
6345 symval = (h->root.root.u.def.value
6346 + sym_sec->output_section->vma
6347 + sym_sec->output_offset);
6348 else
6349 symval = h->root.root.u.def.value;
6350 }
6351 else
6352 {
6353 Elf_Internal_Sym *isym;
6354
6355 /* Read this BFD's symbols if we haven't done so already. */
6356 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6357 {
6358 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6359 if (isymbuf == NULL)
6360 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6361 symtab_hdr->sh_info, 0,
6362 NULL, NULL, NULL);
6363 if (isymbuf == NULL)
6364 goto relax_return;
6365 }
6366
6367 isym = isymbuf + r_symndx;
6368 if (isym->st_shndx == SHN_UNDEF)
6369 continue;
6370 else if (isym->st_shndx == SHN_ABS)
6371 sym_sec = bfd_abs_section_ptr;
6372 else if (isym->st_shndx == SHN_COMMON)
6373 sym_sec = bfd_com_section_ptr;
6374 else
6375 sym_sec
6376 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6377 symval = isym->st_value
6378 + sym_sec->output_section->vma
6379 + sym_sec->output_offset;
6380 }
6381
6382 /* Compute branch offset, from delay slot of the jump to the
6383 branch target. */
6384 sym_offset = (symval + irel->r_addend)
6385 - (sec_start + irel->r_offset + 4);
6386
6387 /* Branch offset must be properly aligned. */
6388 if ((sym_offset & 3) != 0)
6389 continue;
6390
6391 sym_offset >>= 2;
6392
6393 /* Check that it's in range. */
6394 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6395 continue;
143d77c5 6396
d0647110
AO
6397 /* Get the section contents if we haven't done so already. */
6398 if (contents == NULL)
6399 {
6400 /* Get cached copy if it exists. */
6401 if (elf_section_data (sec)->this_hdr.contents != NULL)
6402 contents = elf_section_data (sec)->this_hdr.contents;
6403 else
6404 {
eea6121a 6405 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
d0647110
AO
6406 goto relax_return;
6407 }
6408 }
6409
6410 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6411
6412 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6413 if ((instruction & 0xfc1fffff) == 0x0000f809)
6414 instruction = 0x04110000;
6415 /* If it was jr <reg>, turn it into b <target>. */
6416 else if ((instruction & 0xfc1fffff) == 0x00000008)
6417 instruction = 0x10000000;
6418 else
6419 continue;
6420
6421 instruction |= (sym_offset & 0xffff);
6422 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6423 changed_contents = TRUE;
6424 }
6425
6426 if (contents != NULL
6427 && elf_section_data (sec)->this_hdr.contents != contents)
6428 {
6429 if (!changed_contents && !link_info->keep_memory)
6430 free (contents);
6431 else
6432 {
6433 /* Cache the section contents for elf_link_input_bfd. */
6434 elf_section_data (sec)->this_hdr.contents = contents;
6435 }
6436 }
6437 return TRUE;
6438
143d77c5 6439 relax_return:
eea6121a
AM
6440 if (contents != NULL
6441 && elf_section_data (sec)->this_hdr.contents != contents)
6442 free (contents);
d0647110
AO
6443 return FALSE;
6444}
6445\f
b49e97c9
TS
6446/* Adjust a symbol defined by a dynamic object and referenced by a
6447 regular object. The current definition is in some section of the
6448 dynamic object, but we're not including those sections. We have to
6449 change the definition to something the rest of the link can
6450 understand. */
6451
b34976b6 6452bfd_boolean
9719ad41
RS
6453_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6454 struct elf_link_hash_entry *h)
b49e97c9
TS
6455{
6456 bfd *dynobj;
6457 struct mips_elf_link_hash_entry *hmips;
6458 asection *s;
6459
6460 dynobj = elf_hash_table (info)->dynobj;
6461
6462 /* Make sure we know what is going on here. */
6463 BFD_ASSERT (dynobj != NULL
f5385ebf 6464 && (h->needs_plt
f6e332e6 6465 || h->u.weakdef != NULL
f5385ebf
AM
6466 || (h->def_dynamic
6467 && h->ref_regular
6468 && !h->def_regular)));
b49e97c9
TS
6469
6470 /* If this symbol is defined in a dynamic object, we need to copy
6471 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6472 file. */
6473 hmips = (struct mips_elf_link_hash_entry *) h;
1049f94e 6474 if (! info->relocatable
b49e97c9
TS
6475 && hmips->possibly_dynamic_relocs != 0
6476 && (h->root.type == bfd_link_hash_defweak
f5385ebf 6477 || !h->def_regular))
b49e97c9
TS
6478 {
6479 mips_elf_allocate_dynamic_relocations (dynobj,
6480 hmips->possibly_dynamic_relocs);
82f0cfbd 6481 if (hmips->readonly_reloc)
b49e97c9
TS
6482 /* We tell the dynamic linker that there are relocations
6483 against the text segment. */
6484 info->flags |= DF_TEXTREL;
6485 }
6486
6487 /* For a function, create a stub, if allowed. */
6488 if (! hmips->no_fn_stub
f5385ebf 6489 && h->needs_plt)
b49e97c9
TS
6490 {
6491 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 6492 return TRUE;
b49e97c9
TS
6493
6494 /* If this symbol is not defined in a regular file, then set
6495 the symbol to the stub location. This is required to make
6496 function pointers compare as equal between the normal
6497 executable and the shared library. */
f5385ebf 6498 if (!h->def_regular)
b49e97c9
TS
6499 {
6500 /* We need .stub section. */
6501 s = bfd_get_section_by_name (dynobj,
6502 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6503 BFD_ASSERT (s != NULL);
6504
6505 h->root.u.def.section = s;
eea6121a 6506 h->root.u.def.value = s->size;
b49e97c9
TS
6507
6508 /* XXX Write this stub address somewhere. */
eea6121a 6509 h->plt.offset = s->size;
b49e97c9
TS
6510
6511 /* Make room for this stub code. */
eea6121a 6512 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6513
6514 /* The last half word of the stub will be filled with the index
6515 of this symbol in .dynsym section. */
b34976b6 6516 return TRUE;
b49e97c9
TS
6517 }
6518 }
6519 else if ((h->type == STT_FUNC)
f5385ebf 6520 && !h->needs_plt)
b49e97c9
TS
6521 {
6522 /* This will set the entry for this symbol in the GOT to 0, and
6523 the dynamic linker will take care of this. */
6524 h->root.u.def.value = 0;
b34976b6 6525 return TRUE;
b49e97c9
TS
6526 }
6527
6528 /* If this is a weak symbol, and there is a real definition, the
6529 processor independent code will have arranged for us to see the
6530 real definition first, and we can just use the same value. */
f6e332e6 6531 if (h->u.weakdef != NULL)
b49e97c9 6532 {
f6e332e6
AM
6533 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6534 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6535 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6536 h->root.u.def.value = h->u.weakdef->root.u.def.value;
b34976b6 6537 return TRUE;
b49e97c9
TS
6538 }
6539
6540 /* This is a reference to a symbol defined by a dynamic object which
6541 is not a function. */
6542
b34976b6 6543 return TRUE;
b49e97c9
TS
6544}
6545\f
6546/* This function is called after all the input files have been read,
6547 and the input sections have been assigned to output sections. We
6548 check for any mips16 stub sections that we can discard. */
6549
b34976b6 6550bfd_boolean
9719ad41
RS
6551_bfd_mips_elf_always_size_sections (bfd *output_bfd,
6552 struct bfd_link_info *info)
b49e97c9
TS
6553{
6554 asection *ri;
6555
f4416af6
AO
6556 bfd *dynobj;
6557 asection *s;
6558 struct mips_got_info *g;
6559 int i;
6560 bfd_size_type loadable_size = 0;
6561 bfd_size_type local_gotno;
6562 bfd *sub;
0f20cc35 6563 struct mips_elf_count_tls_arg count_tls_arg;
f4416af6 6564
b49e97c9
TS
6565 /* The .reginfo section has a fixed size. */
6566 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6567 if (ri != NULL)
9719ad41 6568 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 6569
1049f94e 6570 if (! (info->relocatable
f4416af6
AO
6571 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6572 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 6573 mips_elf_check_mips16_stubs, NULL);
f4416af6
AO
6574
6575 dynobj = elf_hash_table (info)->dynobj;
6576 if (dynobj == NULL)
6577 /* Relocatable links don't have it. */
6578 return TRUE;
143d77c5 6579
f4416af6
AO
6580 g = mips_elf_got_info (dynobj, &s);
6581 if (s == NULL)
b34976b6 6582 return TRUE;
b49e97c9 6583
f4416af6
AO
6584 /* Calculate the total loadable size of the output. That
6585 will give us the maximum number of GOT_PAGE entries
6586 required. */
6587 for (sub = info->input_bfds; sub; sub = sub->link_next)
6588 {
6589 asection *subsection;
6590
6591 for (subsection = sub->sections;
6592 subsection;
6593 subsection = subsection->next)
6594 {
6595 if ((subsection->flags & SEC_ALLOC) == 0)
6596 continue;
eea6121a 6597 loadable_size += ((subsection->size + 0xf)
f4416af6
AO
6598 &~ (bfd_size_type) 0xf);
6599 }
6600 }
6601
6602 /* There has to be a global GOT entry for every symbol with
6603 a dynamic symbol table index of DT_MIPS_GOTSYM or
6604 higher. Therefore, it make sense to put those symbols
6605 that need GOT entries at the end of the symbol table. We
6606 do that here. */
6607 if (! mips_elf_sort_hash_table (info, 1))
6608 return FALSE;
6609
6610 if (g->global_gotsym != NULL)
6611 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6612 else
6613 /* If there are no global symbols, or none requiring
6614 relocations, then GLOBAL_GOTSYM will be NULL. */
6615 i = 0;
6616
6617 /* In the worst case, we'll get one stub per dynamic symbol, plus
6618 one to account for the dummy entry at the end required by IRIX
6619 rld. */
6620 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6621
6622 /* Assume there are two loadable segments consisting of
6623 contiguous sections. Is 5 enough? */
6624 local_gotno = (loadable_size >> 16) + 5;
6625
6626 g->local_gotno += local_gotno;
eea6121a 6627 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
6628
6629 g->global_gotno = i;
eea6121a 6630 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6 6631
0f20cc35
DJ
6632 /* We need to calculate tls_gotno for global symbols at this point
6633 instead of building it up earlier, to avoid doublecounting
6634 entries for one global symbol from multiple input files. */
6635 count_tls_arg.info = info;
6636 count_tls_arg.needed = 0;
6637 elf_link_hash_traverse (elf_hash_table (info),
6638 mips_elf_count_global_tls_entries,
6639 &count_tls_arg);
6640 g->tls_gotno += count_tls_arg.needed;
6641 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6642
6643 mips_elf_resolve_final_got_entries (g);
6644
6645 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6646 {
6647 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6648 return FALSE;
6649 }
6650 else
6651 {
6652 /* Set up TLS entries for the first GOT. */
6653 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6654 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6655 }
b49e97c9 6656
b34976b6 6657 return TRUE;
b49e97c9
TS
6658}
6659
6660/* Set the sizes of the dynamic sections. */
6661
b34976b6 6662bfd_boolean
9719ad41
RS
6663_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6664 struct bfd_link_info *info)
b49e97c9
TS
6665{
6666 bfd *dynobj;
6667 asection *s;
b34976b6 6668 bfd_boolean reltext;
b49e97c9
TS
6669
6670 dynobj = elf_hash_table (info)->dynobj;
6671 BFD_ASSERT (dynobj != NULL);
6672
6673 if (elf_hash_table (info)->dynamic_sections_created)
6674 {
6675 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 6676 if (info->executable)
b49e97c9
TS
6677 {
6678 s = bfd_get_section_by_name (dynobj, ".interp");
6679 BFD_ASSERT (s != NULL);
eea6121a 6680 s->size
b49e97c9
TS
6681 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6682 s->contents
6683 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6684 }
6685 }
6686
6687 /* The check_relocs and adjust_dynamic_symbol entry points have
6688 determined the sizes of the various dynamic sections. Allocate
6689 memory for them. */
b34976b6 6690 reltext = FALSE;
b49e97c9
TS
6691 for (s = dynobj->sections; s != NULL; s = s->next)
6692 {
6693 const char *name;
b49e97c9
TS
6694
6695 /* It's OK to base decisions on the section name, because none
6696 of the dynobj section names depend upon the input files. */
6697 name = bfd_get_section_name (dynobj, s);
6698
6699 if ((s->flags & SEC_LINKER_CREATED) == 0)
6700 continue;
6701
b49e97c9
TS
6702 if (strncmp (name, ".rel", 4) == 0)
6703 {
c456f082 6704 if (s->size != 0)
b49e97c9
TS
6705 {
6706 const char *outname;
6707 asection *target;
6708
6709 /* If this relocation section applies to a read only
6710 section, then we probably need a DT_TEXTREL entry.
6711 If the relocation section is .rel.dyn, we always
6712 assert a DT_TEXTREL entry rather than testing whether
6713 there exists a relocation to a read only section or
6714 not. */
6715 outname = bfd_get_section_name (output_bfd,
6716 s->output_section);
6717 target = bfd_get_section_by_name (output_bfd, outname + 4);
6718 if ((target != NULL
6719 && (target->flags & SEC_READONLY) != 0
6720 && (target->flags & SEC_ALLOC) != 0)
6721 || strcmp (outname, ".rel.dyn") == 0)
b34976b6 6722 reltext = TRUE;
b49e97c9
TS
6723
6724 /* We use the reloc_count field as a counter if we need
6725 to copy relocs into the output file. */
6726 if (strcmp (name, ".rel.dyn") != 0)
6727 s->reloc_count = 0;
f4416af6
AO
6728
6729 /* If combreloc is enabled, elf_link_sort_relocs() will
6730 sort relocations, but in a different way than we do,
6731 and before we're done creating relocations. Also, it
6732 will move them around between input sections'
6733 relocation's contents, so our sorting would be
6734 broken, so don't let it run. */
6735 info->combreloc = 0;
b49e97c9
TS
6736 }
6737 }
6738 else if (strncmp (name, ".got", 4) == 0)
6739 {
f4416af6
AO
6740 /* _bfd_mips_elf_always_size_sections() has already done
6741 most of the work, but some symbols may have been mapped
6742 to versions that we must now resolve in the got_entries
6743 hash tables. */
6744 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6745 struct mips_got_info *g = gg;
6746 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6747 unsigned int needed_relocs = 0;
143d77c5 6748
f4416af6 6749 if (gg->next)
b49e97c9 6750 {
f4416af6
AO
6751 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6752 set_got_offset_arg.info = info;
b49e97c9 6753
0f20cc35
DJ
6754 /* NOTE 2005-02-03: How can this call, or the next, ever
6755 find any indirect entries to resolve? They were all
6756 resolved in mips_elf_multi_got. */
f4416af6
AO
6757 mips_elf_resolve_final_got_entries (gg);
6758 for (g = gg->next; g && g->next != gg; g = g->next)
b49e97c9 6759 {
f4416af6
AO
6760 unsigned int save_assign;
6761
6762 mips_elf_resolve_final_got_entries (g);
6763
6764 /* Assign offsets to global GOT entries. */
6765 save_assign = g->assigned_gotno;
6766 g->assigned_gotno = g->local_gotno;
6767 set_got_offset_arg.g = g;
6768 set_got_offset_arg.needed_relocs = 0;
6769 htab_traverse (g->got_entries,
6770 mips_elf_set_global_got_offset,
6771 &set_got_offset_arg);
6772 needed_relocs += set_got_offset_arg.needed_relocs;
6773 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6774 <= g->global_gotno);
6775
6776 g->assigned_gotno = save_assign;
6777 if (info->shared)
6778 {
6779 needed_relocs += g->local_gotno - g->assigned_gotno;
6780 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6781 + g->next->global_gotno
0f20cc35 6782 + g->next->tls_gotno
f4416af6
AO
6783 + MIPS_RESERVED_GOTNO);
6784 }
b49e97c9 6785 }
0f20cc35
DJ
6786 }
6787 else
6788 {
6789 struct mips_elf_count_tls_arg arg;
6790 arg.info = info;
6791 arg.needed = 0;
b49e97c9 6792
0f20cc35
DJ
6793 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6794 &arg);
6795 elf_link_hash_traverse (elf_hash_table (info),
6796 mips_elf_count_global_tls_relocs,
6797 &arg);
6798
6799 needed_relocs += arg.needed;
f4416af6 6800 }
0f20cc35
DJ
6801
6802 if (needed_relocs)
6803 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
b49e97c9
TS
6804 }
6805 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6806 {
8dc1a139 6807 /* IRIX rld assumes that the function stub isn't at the end
b49e97c9 6808 of .text section. So put a dummy. XXX */
eea6121a 6809 s->size += MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
6810 }
6811 else if (! info->shared
6812 && ! mips_elf_hash_table (info)->use_rld_obj_head
6813 && strncmp (name, ".rld_map", 8) == 0)
6814 {
6815 /* We add a room for __rld_map. It will be filled in by the
6816 rtld to contain a pointer to the _r_debug structure. */
eea6121a 6817 s->size += 4;
b49e97c9
TS
6818 }
6819 else if (SGI_COMPAT (output_bfd)
6820 && strncmp (name, ".compact_rel", 12) == 0)
eea6121a 6821 s->size += mips_elf_hash_table (info)->compact_rel_size;
b49e97c9
TS
6822 else if (strncmp (name, ".init", 5) != 0)
6823 {
6824 /* It's not one of our sections, so don't allocate space. */
6825 continue;
6826 }
6827
c456f082 6828 if (s->size == 0)
b49e97c9 6829 {
8423293d 6830 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
6831 continue;
6832 }
6833
c456f082
AM
6834 if ((s->flags & SEC_HAS_CONTENTS) == 0)
6835 continue;
6836
b49e97c9 6837 /* Allocate memory for the section contents. */
eea6121a 6838 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 6839 if (s->contents == NULL)
b49e97c9
TS
6840 {
6841 bfd_set_error (bfd_error_no_memory);
b34976b6 6842 return FALSE;
b49e97c9
TS
6843 }
6844 }
6845
6846 if (elf_hash_table (info)->dynamic_sections_created)
6847 {
6848 /* Add some entries to the .dynamic section. We fill in the
6849 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6850 must add the entries now so that we get the correct size for
6851 the .dynamic section. The DT_DEBUG entry is filled in by the
6852 dynamic linker and used by the debugger. */
6853 if (! info->shared)
6854 {
6855 /* SGI object has the equivalence of DT_DEBUG in the
6856 DT_MIPS_RLD_MAP entry. */
6857 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
b34976b6 6858 return FALSE;
b49e97c9
TS
6859 if (!SGI_COMPAT (output_bfd))
6860 {
6861 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6862 return FALSE;
b49e97c9
TS
6863 }
6864 }
6865 else
6866 {
6867 /* Shared libraries on traditional mips have DT_DEBUG. */
6868 if (!SGI_COMPAT (output_bfd))
6869 {
6870 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
b34976b6 6871 return FALSE;
b49e97c9
TS
6872 }
6873 }
6874
6875 if (reltext && SGI_COMPAT (output_bfd))
6876 info->flags |= DF_TEXTREL;
6877
6878 if ((info->flags & DF_TEXTREL) != 0)
6879 {
6880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 6881 return FALSE;
b49e97c9
TS
6882 }
6883
6884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 6885 return FALSE;
b49e97c9 6886
f4416af6 6887 if (mips_elf_rel_dyn_section (dynobj, FALSE))
b49e97c9
TS
6888 {
6889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
b34976b6 6890 return FALSE;
b49e97c9
TS
6891
6892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
b34976b6 6893 return FALSE;
b49e97c9
TS
6894
6895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
b34976b6 6896 return FALSE;
b49e97c9
TS
6897 }
6898
b49e97c9 6899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
b34976b6 6900 return FALSE;
b49e97c9
TS
6901
6902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
b34976b6 6903 return FALSE;
b49e97c9 6904
b49e97c9 6905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
b34976b6 6906 return FALSE;
b49e97c9
TS
6907
6908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
b34976b6 6909 return FALSE;
b49e97c9
TS
6910
6911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
b34976b6 6912 return FALSE;
b49e97c9
TS
6913
6914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
b34976b6 6915 return FALSE;
b49e97c9
TS
6916
6917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
b34976b6 6918 return FALSE;
b49e97c9
TS
6919
6920 if (IRIX_COMPAT (dynobj) == ict_irix5
6921 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
b34976b6 6922 return FALSE;
b49e97c9
TS
6923
6924 if (IRIX_COMPAT (dynobj) == ict_irix6
6925 && (bfd_get_section_by_name
6926 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6927 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
b34976b6 6928 return FALSE;
b49e97c9
TS
6929 }
6930
b34976b6 6931 return TRUE;
b49e97c9
TS
6932}
6933\f
6934/* Relocate a MIPS ELF section. */
6935
b34976b6 6936bfd_boolean
9719ad41
RS
6937_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6938 bfd *input_bfd, asection *input_section,
6939 bfd_byte *contents, Elf_Internal_Rela *relocs,
6940 Elf_Internal_Sym *local_syms,
6941 asection **local_sections)
b49e97c9
TS
6942{
6943 Elf_Internal_Rela *rel;
6944 const Elf_Internal_Rela *relend;
6945 bfd_vma addend = 0;
b34976b6 6946 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 6947 const struct elf_backend_data *bed;
b49e97c9
TS
6948
6949 bed = get_elf_backend_data (output_bfd);
6950 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6951 for (rel = relocs; rel < relend; ++rel)
6952 {
6953 const char *name;
c9adbffe 6954 bfd_vma value = 0;
b49e97c9 6955 reloc_howto_type *howto;
b34976b6
AM
6956 bfd_boolean require_jalx;
6957 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 6958 REL relocation. */
b34976b6 6959 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 6960 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 6961 const char *msg;
b49e97c9
TS
6962
6963 /* Find the relocation howto for this relocation. */
4a14403c 6964 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
6965 {
6966 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6967 64-bit code, but make sure all their addresses are in the
6968 lowermost or uppermost 32-bit section of the 64-bit address
6969 space. Thus, when they use an R_MIPS_64 they mean what is
6970 usually meant by R_MIPS_32, with the exception that the
6971 stored value is sign-extended to 64 bits. */
b34976b6 6972 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
6973
6974 /* On big-endian systems, we need to lie about the position
6975 of the reloc. */
6976 if (bfd_big_endian (input_bfd))
6977 rel->r_offset += 4;
6978 }
6979 else
6980 /* NewABI defaults to RELA relocations. */
6981 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
4ffba85c
AO
6982 NEWABI_P (input_bfd)
6983 && (MIPS_RELOC_RELA_P
6984 (input_bfd, input_section,
6985 rel - relocs)));
b49e97c9
TS
6986
6987 if (!use_saved_addend_p)
6988 {
6989 Elf_Internal_Shdr *rel_hdr;
6990
6991 /* If these relocations were originally of the REL variety,
6992 we must pull the addend out of the field that will be
6993 relocated. Otherwise, we simply use the contents of the
6994 RELA relocation. To determine which flavor or relocation
6995 this is, we depend on the fact that the INPUT_SECTION's
6996 REL_HDR is read before its REL_HDR2. */
6997 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6998 if ((size_t) (rel - relocs)
6999 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7000 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7001 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7002 {
d6f16593
MR
7003 bfd_byte *location = contents + rel->r_offset;
7004
b49e97c9 7005 /* Note that this is a REL relocation. */
b34976b6 7006 rela_relocation_p = FALSE;
b49e97c9
TS
7007
7008 /* Get the addend, which is stored in the input file. */
d6f16593
MR
7009 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7010 location);
b49e97c9
TS
7011 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7012 contents);
d6f16593
MR
7013 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7014 location);
7015
b49e97c9
TS
7016 addend &= howto->src_mask;
7017
7018 /* For some kinds of relocations, the ADDEND is a
7019 combination of the addend stored in two different
7020 relocations. */
d6f16593 7021 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
b49e97c9
TS
7022 || (r_type == R_MIPS_GOT16
7023 && mips_elf_local_relocation_p (input_bfd, rel,
b34976b6 7024 local_sections, FALSE)))
b49e97c9
TS
7025 {
7026 bfd_vma l;
7027 const Elf_Internal_Rela *lo16_relocation;
7028 reloc_howto_type *lo16_howto;
d6f16593
MR
7029 bfd_byte *lo16_location;
7030 int lo16_type;
7031
7032 if (r_type == R_MIPS16_HI16)
7033 lo16_type = R_MIPS16_LO16;
7034 else
7035 lo16_type = R_MIPS_LO16;
b49e97c9
TS
7036
7037 /* The combined value is the sum of the HI16 addend,
7038 left-shifted by sixteen bits, and the LO16
7039 addend, sign extended. (Usually, the code does
7040 a `lui' of the HI16 value, and then an `addiu' of
7041 the LO16 value.)
7042
4030e8f6
CD
7043 Scan ahead to find a matching LO16 relocation.
7044
7045 According to the MIPS ELF ABI, the R_MIPS_LO16
7046 relocation must be immediately following.
7047 However, for the IRIX6 ABI, the next relocation
7048 may be a composed relocation consisting of
7049 several relocations for the same address. In
7050 that case, the R_MIPS_LO16 relocation may occur
7051 as one of these. We permit a similar extension
7052 in general, as that is useful for GCC. */
7053 lo16_relocation = mips_elf_next_relocation (input_bfd,
d6f16593 7054 lo16_type,
b49e97c9
TS
7055 rel, relend);
7056 if (lo16_relocation == NULL)
b34976b6 7057 return FALSE;
b49e97c9 7058
d6f16593
MR
7059 lo16_location = contents + lo16_relocation->r_offset;
7060
b49e97c9 7061 /* Obtain the addend kept there. */
4030e8f6 7062 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
d6f16593
MR
7063 lo16_type, FALSE);
7064 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7065 lo16_location);
b49e97c9
TS
7066 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7067 input_bfd, contents);
d6f16593
MR
7068 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7069 lo16_location);
b49e97c9 7070 l &= lo16_howto->src_mask;
5a659663 7071 l <<= lo16_howto->rightshift;
a7ebbfdf 7072 l = _bfd_mips_elf_sign_extend (l, 16);
b49e97c9
TS
7073
7074 addend <<= 16;
7075
7076 /* Compute the combined addend. */
7077 addend += l;
b49e97c9 7078 }
30ac9238
RS
7079 else
7080 addend <<= howto->rightshift;
b49e97c9
TS
7081 }
7082 else
7083 addend = rel->r_addend;
7084 }
7085
1049f94e 7086 if (info->relocatable)
b49e97c9
TS
7087 {
7088 Elf_Internal_Sym *sym;
7089 unsigned long r_symndx;
7090
4a14403c 7091 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
7092 && bfd_big_endian (input_bfd))
7093 rel->r_offset -= 4;
7094
7095 /* Since we're just relocating, all we need to do is copy
7096 the relocations back out to the object file, unless
7097 they're against a section symbol, in which case we need
7098 to adjust by the section offset, or unless they're GP
7099 relative in which case we need to adjust by the amount
1049f94e 7100 that we're adjusting GP in this relocatable object. */
b49e97c9
TS
7101
7102 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
b34976b6 7103 FALSE))
b49e97c9
TS
7104 /* There's nothing to do for non-local relocations. */
7105 continue;
7106
7107 if (r_type == R_MIPS16_GPREL
7108 || r_type == R_MIPS_GPREL16
7109 || r_type == R_MIPS_GPREL32
7110 || r_type == R_MIPS_LITERAL)
7111 addend -= (_bfd_get_gp_value (output_bfd)
7112 - _bfd_get_gp_value (input_bfd));
b49e97c9
TS
7113
7114 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7115 sym = local_syms + r_symndx;
7116 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7117 /* Adjust the addend appropriately. */
7118 addend += local_sections[r_symndx]->output_offset;
7119
30ac9238
RS
7120 if (rela_relocation_p)
7121 /* If this is a RELA relocation, just update the addend. */
7122 rel->r_addend = addend;
7123 else
5a659663 7124 {
30ac9238 7125 if (r_type == R_MIPS_HI16
4030e8f6 7126 || r_type == R_MIPS_GOT16)
5a659663
TS
7127 addend = mips_elf_high (addend);
7128 else if (r_type == R_MIPS_HIGHER)
7129 addend = mips_elf_higher (addend);
7130 else if (r_type == R_MIPS_HIGHEST)
7131 addend = mips_elf_highest (addend);
30ac9238
RS
7132 else
7133 addend >>= howto->rightshift;
b49e97c9 7134
30ac9238
RS
7135 /* We use the source mask, rather than the destination
7136 mask because the place to which we are writing will be
7137 source of the addend in the final link. */
b49e97c9
TS
7138 addend &= howto->src_mask;
7139
5a659663 7140 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7141 /* See the comment above about using R_MIPS_64 in the 32-bit
7142 ABI. Here, we need to update the addend. It would be
7143 possible to get away with just using the R_MIPS_32 reloc
7144 but for endianness. */
7145 {
7146 bfd_vma sign_bits;
7147 bfd_vma low_bits;
7148 bfd_vma high_bits;
7149
7150 if (addend & ((bfd_vma) 1 << 31))
7151#ifdef BFD64
7152 sign_bits = ((bfd_vma) 1 << 32) - 1;
7153#else
7154 sign_bits = -1;
7155#endif
7156 else
7157 sign_bits = 0;
7158
7159 /* If we don't know that we have a 64-bit type,
7160 do two separate stores. */
7161 if (bfd_big_endian (input_bfd))
7162 {
7163 /* Store the sign-bits (which are most significant)
7164 first. */
7165 low_bits = sign_bits;
7166 high_bits = addend;
7167 }
7168 else
7169 {
7170 low_bits = addend;
7171 high_bits = sign_bits;
7172 }
7173 bfd_put_32 (input_bfd, low_bits,
7174 contents + rel->r_offset);
7175 bfd_put_32 (input_bfd, high_bits,
7176 contents + rel->r_offset + 4);
7177 continue;
7178 }
7179
7180 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7181 input_bfd, input_section,
b34976b6
AM
7182 contents, FALSE))
7183 return FALSE;
b49e97c9
TS
7184 }
7185
7186 /* Go on to the next relocation. */
7187 continue;
7188 }
7189
7190 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7191 relocations for the same offset. In that case we are
7192 supposed to treat the output of each relocation as the addend
7193 for the next. */
7194 if (rel + 1 < relend
7195 && rel->r_offset == rel[1].r_offset
7196 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 7197 use_saved_addend_p = TRUE;
b49e97c9 7198 else
b34976b6 7199 use_saved_addend_p = FALSE;
b49e97c9
TS
7200
7201 /* Figure out what value we are supposed to relocate. */
7202 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7203 input_section, info, rel,
7204 addend, howto, local_syms,
7205 local_sections, &value,
bce03d3d
AO
7206 &name, &require_jalx,
7207 use_saved_addend_p))
b49e97c9
TS
7208 {
7209 case bfd_reloc_continue:
7210 /* There's nothing to do. */
7211 continue;
7212
7213 case bfd_reloc_undefined:
7214 /* mips_elf_calculate_relocation already called the
7215 undefined_symbol callback. There's no real point in
7216 trying to perform the relocation at this point, so we
7217 just skip ahead to the next relocation. */
7218 continue;
7219
7220 case bfd_reloc_notsupported:
7221 msg = _("internal error: unsupported relocation error");
7222 info->callbacks->warning
7223 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 7224 return FALSE;
b49e97c9
TS
7225
7226 case bfd_reloc_overflow:
7227 if (use_saved_addend_p)
7228 /* Ignore overflow until we reach the last relocation for
7229 a given location. */
7230 ;
7231 else
7232 {
7233 BFD_ASSERT (name != NULL);
7234 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 7235 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 7236 input_bfd, input_section, rel->r_offset)))
b34976b6 7237 return FALSE;
b49e97c9
TS
7238 }
7239 break;
7240
7241 case bfd_reloc_ok:
7242 break;
7243
7244 default:
7245 abort ();
7246 break;
7247 }
7248
7249 /* If we've got another relocation for the address, keep going
7250 until we reach the last one. */
7251 if (use_saved_addend_p)
7252 {
7253 addend = value;
7254 continue;
7255 }
7256
4a14403c 7257 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7258 /* See the comment above about using R_MIPS_64 in the 32-bit
7259 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7260 that calculated the right value. Now, however, we
7261 sign-extend the 32-bit result to 64-bits, and store it as a
7262 64-bit value. We are especially generous here in that we
7263 go to extreme lengths to support this usage on systems with
7264 only a 32-bit VMA. */
7265 {
7266 bfd_vma sign_bits;
7267 bfd_vma low_bits;
7268 bfd_vma high_bits;
7269
7270 if (value & ((bfd_vma) 1 << 31))
7271#ifdef BFD64
7272 sign_bits = ((bfd_vma) 1 << 32) - 1;
7273#else
7274 sign_bits = -1;
7275#endif
7276 else
7277 sign_bits = 0;
7278
7279 /* If we don't know that we have a 64-bit type,
7280 do two separate stores. */
7281 if (bfd_big_endian (input_bfd))
7282 {
7283 /* Undo what we did above. */
7284 rel->r_offset -= 4;
7285 /* Store the sign-bits (which are most significant)
7286 first. */
7287 low_bits = sign_bits;
7288 high_bits = value;
7289 }
7290 else
7291 {
7292 low_bits = value;
7293 high_bits = sign_bits;
7294 }
7295 bfd_put_32 (input_bfd, low_bits,
7296 contents + rel->r_offset);
7297 bfd_put_32 (input_bfd, high_bits,
7298 contents + rel->r_offset + 4);
7299 continue;
7300 }
7301
7302 /* Actually perform the relocation. */
7303 if (! mips_elf_perform_relocation (info, howto, rel, value,
7304 input_bfd, input_section,
7305 contents, require_jalx))
b34976b6 7306 return FALSE;
b49e97c9
TS
7307 }
7308
b34976b6 7309 return TRUE;
b49e97c9
TS
7310}
7311\f
7312/* If NAME is one of the special IRIX6 symbols defined by the linker,
7313 adjust it appropriately now. */
7314
7315static void
9719ad41
RS
7316mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7317 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
7318{
7319 /* The linker script takes care of providing names and values for
7320 these, but we must place them into the right sections. */
7321 static const char* const text_section_symbols[] = {
7322 "_ftext",
7323 "_etext",
7324 "__dso_displacement",
7325 "__elf_header",
7326 "__program_header_table",
7327 NULL
7328 };
7329
7330 static const char* const data_section_symbols[] = {
7331 "_fdata",
7332 "_edata",
7333 "_end",
7334 "_fbss",
7335 NULL
7336 };
7337
7338 const char* const *p;
7339 int i;
7340
7341 for (i = 0; i < 2; ++i)
7342 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7343 *p;
7344 ++p)
7345 if (strcmp (*p, name) == 0)
7346 {
7347 /* All of these symbols are given type STT_SECTION by the
7348 IRIX6 linker. */
7349 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 7350 sym->st_other = STO_PROTECTED;
b49e97c9
TS
7351
7352 /* The IRIX linker puts these symbols in special sections. */
7353 if (i == 0)
7354 sym->st_shndx = SHN_MIPS_TEXT;
7355 else
7356 sym->st_shndx = SHN_MIPS_DATA;
7357
7358 break;
7359 }
7360}
7361
7362/* Finish up dynamic symbol handling. We set the contents of various
7363 dynamic sections here. */
7364
b34976b6 7365bfd_boolean
9719ad41
RS
7366_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7367 struct bfd_link_info *info,
7368 struct elf_link_hash_entry *h,
7369 Elf_Internal_Sym *sym)
b49e97c9
TS
7370{
7371 bfd *dynobj;
b49e97c9 7372 asection *sgot;
f4416af6 7373 struct mips_got_info *g, *gg;
b49e97c9 7374 const char *name;
b49e97c9
TS
7375
7376 dynobj = elf_hash_table (info)->dynobj;
b49e97c9 7377
c5ae1840 7378 if (h->plt.offset != MINUS_ONE)
b49e97c9
TS
7379 {
7380 asection *s;
7381 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7382
7383 /* This symbol has a stub. Set it up. */
7384
7385 BFD_ASSERT (h->dynindx != -1);
7386
7387 s = bfd_get_section_by_name (dynobj,
7388 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7389 BFD_ASSERT (s != NULL);
7390
6ece8836 7391 /* FIXME: Can h->dynindx be more than 64K? */
b49e97c9 7392 if (h->dynindx & 0xffff0000)
b34976b6 7393 return FALSE;
b49e97c9
TS
7394
7395 /* Fill the stub. */
7396 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7397 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7398 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7399 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7400
eea6121a 7401 BFD_ASSERT (h->plt.offset <= s->size);
b49e97c9
TS
7402 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7403
7404 /* Mark the symbol as undefined. plt.offset != -1 occurs
7405 only for the referenced symbol. */
7406 sym->st_shndx = SHN_UNDEF;
7407
7408 /* The run-time linker uses the st_value field of the symbol
7409 to reset the global offset table entry for this external
7410 to its stub address when unlinking a shared object. */
c5ae1840
TS
7411 sym->st_value = (s->output_section->vma + s->output_offset
7412 + h->plt.offset);
b49e97c9
TS
7413 }
7414
7415 BFD_ASSERT (h->dynindx != -1
f5385ebf 7416 || h->forced_local);
b49e97c9 7417
f4416af6 7418 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7419 BFD_ASSERT (sgot != NULL);
f4416af6 7420 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
f0abc2a1 7421 g = mips_elf_section_data (sgot)->u.got_info;
b49e97c9
TS
7422 BFD_ASSERT (g != NULL);
7423
7424 /* Run through the global symbol table, creating GOT entries for all
7425 the symbols that need them. */
7426 if (g->global_gotsym != NULL
7427 && h->dynindx >= g->global_gotsym->dynindx)
7428 {
7429 bfd_vma offset;
7430 bfd_vma value;
7431
6eaa6adc 7432 value = sym->st_value;
0f20cc35 7433 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
b49e97c9
TS
7434 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7435 }
7436
0f20cc35 7437 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
f4416af6
AO
7438 {
7439 struct mips_got_entry e, *p;
0626d451 7440 bfd_vma entry;
f4416af6 7441 bfd_vma offset;
f4416af6
AO
7442
7443 gg = g;
7444
7445 e.abfd = output_bfd;
7446 e.symndx = -1;
7447 e.d.h = (struct mips_elf_link_hash_entry *)h;
0f20cc35 7448 e.tls_type = 0;
143d77c5 7449
f4416af6
AO
7450 for (g = g->next; g->next != gg; g = g->next)
7451 {
7452 if (g->got_entries
7453 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7454 &e)))
7455 {
7456 offset = p->gotidx;
0626d451
RS
7457 if (info->shared
7458 || (elf_hash_table (info)->dynamic_sections_created
7459 && p->d.h != NULL
f5385ebf
AM
7460 && p->d.h->root.def_dynamic
7461 && !p->d.h->root.def_regular))
0626d451
RS
7462 {
7463 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7464 the various compatibility problems, it's easier to mock
7465 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7466 mips_elf_create_dynamic_relocation to calculate the
7467 appropriate addend. */
7468 Elf_Internal_Rela rel[3];
7469
7470 memset (rel, 0, sizeof (rel));
7471 if (ABI_64_P (output_bfd))
7472 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7473 else
7474 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7475 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7476
7477 entry = 0;
7478 if (! (mips_elf_create_dynamic_relocation
7479 (output_bfd, info, rel,
7480 e.d.h, NULL, sym->st_value, &entry, sgot)))
7481 return FALSE;
7482 }
7483 else
7484 entry = sym->st_value;
7485 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
7486 }
7487 }
7488 }
7489
b49e97c9
TS
7490 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7491 name = h->root.root.string;
7492 if (strcmp (name, "_DYNAMIC") == 0
7493 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7494 sym->st_shndx = SHN_ABS;
7495 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7496 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7497 {
7498 sym->st_shndx = SHN_ABS;
7499 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7500 sym->st_value = 1;
7501 }
4a14403c 7502 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
7503 {
7504 sym->st_shndx = SHN_ABS;
7505 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7506 sym->st_value = elf_gp (output_bfd);
7507 }
7508 else if (SGI_COMPAT (output_bfd))
7509 {
7510 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7511 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7512 {
7513 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7514 sym->st_other = STO_PROTECTED;
7515 sym->st_value = 0;
7516 sym->st_shndx = SHN_MIPS_DATA;
7517 }
7518 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7519 {
7520 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7521 sym->st_other = STO_PROTECTED;
7522 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7523 sym->st_shndx = SHN_ABS;
7524 }
7525 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7526 {
7527 if (h->type == STT_FUNC)
7528 sym->st_shndx = SHN_MIPS_TEXT;
7529 else if (h->type == STT_OBJECT)
7530 sym->st_shndx = SHN_MIPS_DATA;
7531 }
7532 }
7533
7534 /* Handle the IRIX6-specific symbols. */
7535 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7536 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7537
7538 if (! info->shared)
7539 {
7540 if (! mips_elf_hash_table (info)->use_rld_obj_head
7541 && (strcmp (name, "__rld_map") == 0
7542 || strcmp (name, "__RLD_MAP") == 0))
7543 {
7544 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7545 BFD_ASSERT (s != NULL);
7546 sym->st_value = s->output_section->vma + s->output_offset;
9719ad41 7547 bfd_put_32 (output_bfd, 0, s->contents);
b49e97c9
TS
7548 if (mips_elf_hash_table (info)->rld_value == 0)
7549 mips_elf_hash_table (info)->rld_value = sym->st_value;
7550 }
7551 else if (mips_elf_hash_table (info)->use_rld_obj_head
7552 && strcmp (name, "__rld_obj_head") == 0)
7553 {
7554 /* IRIX6 does not use a .rld_map section. */
7555 if (IRIX_COMPAT (output_bfd) == ict_irix5
7556 || IRIX_COMPAT (output_bfd) == ict_none)
7557 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7558 != NULL);
7559 mips_elf_hash_table (info)->rld_value = sym->st_value;
7560 }
7561 }
7562
7563 /* If this is a mips16 symbol, force the value to be even. */
79cda7cf
FF
7564 if (sym->st_other == STO_MIPS16)
7565 sym->st_value &= ~1;
b49e97c9 7566
b34976b6 7567 return TRUE;
b49e97c9
TS
7568}
7569
7570/* Finish up the dynamic sections. */
7571
b34976b6 7572bfd_boolean
9719ad41
RS
7573_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7574 struct bfd_link_info *info)
b49e97c9
TS
7575{
7576 bfd *dynobj;
7577 asection *sdyn;
7578 asection *sgot;
f4416af6 7579 struct mips_got_info *gg, *g;
b49e97c9
TS
7580
7581 dynobj = elf_hash_table (info)->dynobj;
7582
7583 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7584
f4416af6 7585 sgot = mips_elf_got_section (dynobj, FALSE);
b49e97c9 7586 if (sgot == NULL)
f4416af6 7587 gg = g = NULL;
b49e97c9
TS
7588 else
7589 {
f4416af6
AO
7590 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7591 gg = mips_elf_section_data (sgot)->u.got_info;
7592 BFD_ASSERT (gg != NULL);
7593 g = mips_elf_got_for_ibfd (gg, output_bfd);
b49e97c9
TS
7594 BFD_ASSERT (g != NULL);
7595 }
7596
7597 if (elf_hash_table (info)->dynamic_sections_created)
7598 {
7599 bfd_byte *b;
7600
7601 BFD_ASSERT (sdyn != NULL);
7602 BFD_ASSERT (g != NULL);
7603
7604 for (b = sdyn->contents;
eea6121a 7605 b < sdyn->contents + sdyn->size;
b49e97c9
TS
7606 b += MIPS_ELF_DYN_SIZE (dynobj))
7607 {
7608 Elf_Internal_Dyn dyn;
7609 const char *name;
7610 size_t elemsize;
7611 asection *s;
b34976b6 7612 bfd_boolean swap_out_p;
b49e97c9
TS
7613
7614 /* Read in the current dynamic entry. */
7615 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7616
7617 /* Assume that we're going to modify it and write it out. */
b34976b6 7618 swap_out_p = TRUE;
b49e97c9
TS
7619
7620 switch (dyn.d_tag)
7621 {
7622 case DT_RELENT:
f4416af6 7623 s = mips_elf_rel_dyn_section (dynobj, FALSE);
b49e97c9
TS
7624 BFD_ASSERT (s != NULL);
7625 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7626 break;
7627
7628 case DT_STRSZ:
7629 /* Rewrite DT_STRSZ. */
7630 dyn.d_un.d_val =
7631 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7632 break;
7633
7634 case DT_PLTGOT:
7635 name = ".got";
b49e97c9
TS
7636 s = bfd_get_section_by_name (output_bfd, name);
7637 BFD_ASSERT (s != NULL);
7638 dyn.d_un.d_ptr = s->vma;
7639 break;
7640
7641 case DT_MIPS_RLD_VERSION:
7642 dyn.d_un.d_val = 1; /* XXX */
7643 break;
7644
7645 case DT_MIPS_FLAGS:
7646 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7647 break;
7648
b49e97c9 7649 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
7650 {
7651 time_t t;
7652 time (&t);
7653 dyn.d_un.d_val = t;
7654 }
b49e97c9
TS
7655 break;
7656
7657 case DT_MIPS_ICHECKSUM:
7658 /* XXX FIXME: */
b34976b6 7659 swap_out_p = FALSE;
b49e97c9
TS
7660 break;
7661
7662 case DT_MIPS_IVERSION:
7663 /* XXX FIXME: */
b34976b6 7664 swap_out_p = FALSE;
b49e97c9
TS
7665 break;
7666
7667 case DT_MIPS_BASE_ADDRESS:
7668 s = output_bfd->sections;
7669 BFD_ASSERT (s != NULL);
7670 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7671 break;
7672
7673 case DT_MIPS_LOCAL_GOTNO:
7674 dyn.d_un.d_val = g->local_gotno;
7675 break;
7676
7677 case DT_MIPS_UNREFEXTNO:
7678 /* The index into the dynamic symbol table which is the
7679 entry of the first external symbol that is not
7680 referenced within the same object. */
7681 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7682 break;
7683
7684 case DT_MIPS_GOTSYM:
f4416af6 7685 if (gg->global_gotsym)
b49e97c9 7686 {
f4416af6 7687 dyn.d_un.d_val = gg->global_gotsym->dynindx;
b49e97c9
TS
7688 break;
7689 }
7690 /* In case if we don't have global got symbols we default
7691 to setting DT_MIPS_GOTSYM to the same value as
7692 DT_MIPS_SYMTABNO, so we just fall through. */
7693
7694 case DT_MIPS_SYMTABNO:
7695 name = ".dynsym";
7696 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7697 s = bfd_get_section_by_name (output_bfd, name);
7698 BFD_ASSERT (s != NULL);
7699
eea6121a 7700 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
7701 break;
7702
7703 case DT_MIPS_HIPAGENO:
7704 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7705 break;
7706
7707 case DT_MIPS_RLD_MAP:
7708 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7709 break;
7710
7711 case DT_MIPS_OPTIONS:
7712 s = (bfd_get_section_by_name
7713 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7714 dyn.d_un.d_ptr = s->vma;
7715 break;
7716
b49e97c9 7717 default:
b34976b6 7718 swap_out_p = FALSE;
b49e97c9
TS
7719 break;
7720 }
7721
7722 if (swap_out_p)
7723 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7724 (dynobj, &dyn, b);
7725 }
7726 }
7727
7728 /* The first entry of the global offset table will be filled at
7729 runtime. The second entry will be used by some runtime loaders.
8dc1a139 7730 This isn't the case of IRIX rld. */
eea6121a 7731 if (sgot != NULL && sgot->size > 0)
b49e97c9 7732 {
9719ad41
RS
7733 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7734 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
b49e97c9
TS
7735 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7736 }
7737
7738 if (sgot != NULL)
7739 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7740 = MIPS_ELF_GOT_SIZE (output_bfd);
7741
f4416af6
AO
7742 /* Generate dynamic relocations for the non-primary gots. */
7743 if (gg != NULL && gg->next)
7744 {
7745 Elf_Internal_Rela rel[3];
7746 bfd_vma addend = 0;
7747
7748 memset (rel, 0, sizeof (rel));
7749 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7750
7751 for (g = gg->next; g->next != gg; g = g->next)
7752 {
0f20cc35
DJ
7753 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7754 + g->next->tls_gotno;
f4416af6 7755
9719ad41 7756 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
f4416af6 7757 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9719ad41 7758 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
f4416af6
AO
7759 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7760
7761 if (! info->shared)
7762 continue;
7763
7764 while (index < g->assigned_gotno)
7765 {
7766 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7767 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7768 if (!(mips_elf_create_dynamic_relocation
7769 (output_bfd, info, rel, NULL,
7770 bfd_abs_section_ptr,
7771 0, &addend, sgot)))
7772 return FALSE;
7773 BFD_ASSERT (addend == 0);
7774 }
7775 }
7776 }
7777
3133ddbf
DJ
7778 /* The generation of dynamic relocations for the non-primary gots
7779 adds more dynamic relocations. We cannot count them until
7780 here. */
7781
7782 if (elf_hash_table (info)->dynamic_sections_created)
7783 {
7784 bfd_byte *b;
7785 bfd_boolean swap_out_p;
7786
7787 BFD_ASSERT (sdyn != NULL);
7788
7789 for (b = sdyn->contents;
7790 b < sdyn->contents + sdyn->size;
7791 b += MIPS_ELF_DYN_SIZE (dynobj))
7792 {
7793 Elf_Internal_Dyn dyn;
7794 asection *s;
7795
7796 /* Read in the current dynamic entry. */
7797 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7798
7799 /* Assume that we're going to modify it and write it out. */
7800 swap_out_p = TRUE;
7801
7802 switch (dyn.d_tag)
7803 {
7804 case DT_RELSZ:
7805 /* Reduce DT_RELSZ to account for any relocations we
7806 decided not to make. This is for the n64 irix rld,
7807 which doesn't seem to apply any relocations if there
7808 are trailing null entries. */
7809 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7810 dyn.d_un.d_val = (s->reloc_count
7811 * (ABI_64_P (output_bfd)
7812 ? sizeof (Elf64_Mips_External_Rel)
7813 : sizeof (Elf32_External_Rel)));
7814 break;
7815
7816 default:
7817 swap_out_p = FALSE;
7818 break;
7819 }
7820
7821 if (swap_out_p)
7822 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7823 (dynobj, &dyn, b);
7824 }
7825 }
7826
b49e97c9 7827 {
b49e97c9
TS
7828 asection *s;
7829 Elf32_compact_rel cpt;
7830
b49e97c9
TS
7831 if (SGI_COMPAT (output_bfd))
7832 {
7833 /* Write .compact_rel section out. */
7834 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7835 if (s != NULL)
7836 {
7837 cpt.id1 = 1;
7838 cpt.num = s->reloc_count;
7839 cpt.id2 = 2;
7840 cpt.offset = (s->output_section->filepos
7841 + sizeof (Elf32_External_compact_rel));
7842 cpt.reserved0 = 0;
7843 cpt.reserved1 = 0;
7844 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7845 ((Elf32_External_compact_rel *)
7846 s->contents));
7847
7848 /* Clean up a dummy stub function entry in .text. */
7849 s = bfd_get_section_by_name (dynobj,
7850 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7851 if (s != NULL)
7852 {
7853 file_ptr dummy_offset;
7854
eea6121a
AM
7855 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7856 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
b49e97c9
TS
7857 memset (s->contents + dummy_offset, 0,
7858 MIPS_FUNCTION_STUB_SIZE);
7859 }
7860 }
7861 }
7862
7863 /* We need to sort the entries of the dynamic relocation section. */
7864
f4416af6
AO
7865 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7866
7867 if (s != NULL
eea6121a 7868 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
b49e97c9 7869 {
f4416af6 7870 reldyn_sorting_bfd = output_bfd;
b49e97c9 7871
f4416af6 7872 if (ABI_64_P (output_bfd))
9719ad41 7873 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6
AO
7874 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7875 else
9719ad41 7876 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
f4416af6 7877 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
b49e97c9 7878 }
b49e97c9
TS
7879 }
7880
b34976b6 7881 return TRUE;
b49e97c9
TS
7882}
7883
b49e97c9 7884
64543e1a
RS
7885/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7886
7887static void
9719ad41 7888mips_set_isa_flags (bfd *abfd)
b49e97c9 7889{
64543e1a 7890 flagword val;
b49e97c9
TS
7891
7892 switch (bfd_get_mach (abfd))
7893 {
7894 default:
7895 case bfd_mach_mips3000:
7896 val = E_MIPS_ARCH_1;
7897 break;
7898
7899 case bfd_mach_mips3900:
7900 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7901 break;
7902
7903 case bfd_mach_mips6000:
7904 val = E_MIPS_ARCH_2;
7905 break;
7906
7907 case bfd_mach_mips4000:
7908 case bfd_mach_mips4300:
7909 case bfd_mach_mips4400:
7910 case bfd_mach_mips4600:
7911 val = E_MIPS_ARCH_3;
7912 break;
7913
7914 case bfd_mach_mips4010:
7915 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7916 break;
7917
7918 case bfd_mach_mips4100:
7919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7920 break;
7921
7922 case bfd_mach_mips4111:
7923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7924 break;
7925
00707a0e
RS
7926 case bfd_mach_mips4120:
7927 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7928 break;
7929
b49e97c9
TS
7930 case bfd_mach_mips4650:
7931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7932 break;
7933
00707a0e
RS
7934 case bfd_mach_mips5400:
7935 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7936 break;
7937
7938 case bfd_mach_mips5500:
7939 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7940 break;
7941
0d2e43ed
ILT
7942 case bfd_mach_mips9000:
7943 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7944 break;
7945
b49e97c9 7946 case bfd_mach_mips5000:
5a7ea749 7947 case bfd_mach_mips7000:
b49e97c9
TS
7948 case bfd_mach_mips8000:
7949 case bfd_mach_mips10000:
7950 case bfd_mach_mips12000:
7951 val = E_MIPS_ARCH_4;
7952 break;
7953
7954 case bfd_mach_mips5:
7955 val = E_MIPS_ARCH_5;
7956 break;
7957
7958 case bfd_mach_mips_sb1:
7959 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7960 break;
7961
7962 case bfd_mach_mipsisa32:
7963 val = E_MIPS_ARCH_32;
7964 break;
7965
7966 case bfd_mach_mipsisa64:
7967 val = E_MIPS_ARCH_64;
af7ee8bf
CD
7968 break;
7969
7970 case bfd_mach_mipsisa32r2:
7971 val = E_MIPS_ARCH_32R2;
7972 break;
5f74bc13
CD
7973
7974 case bfd_mach_mipsisa64r2:
7975 val = E_MIPS_ARCH_64R2;
7976 break;
b49e97c9 7977 }
b49e97c9
TS
7978 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7979 elf_elfheader (abfd)->e_flags |= val;
7980
64543e1a
RS
7981}
7982
7983
7984/* The final processing done just before writing out a MIPS ELF object
7985 file. This gets the MIPS architecture right based on the machine
7986 number. This is used by both the 32-bit and the 64-bit ABI. */
7987
7988void
9719ad41
RS
7989_bfd_mips_elf_final_write_processing (bfd *abfd,
7990 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
7991{
7992 unsigned int i;
7993 Elf_Internal_Shdr **hdrpp;
7994 const char *name;
7995 asection *sec;
7996
7997 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7998 is nonzero. This is for compatibility with old objects, which used
7999 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8000 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8001 mips_set_isa_flags (abfd);
8002
b49e97c9
TS
8003 /* Set the sh_info field for .gptab sections and other appropriate
8004 info for each special section. */
8005 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8006 i < elf_numsections (abfd);
8007 i++, hdrpp++)
8008 {
8009 switch ((*hdrpp)->sh_type)
8010 {
8011 case SHT_MIPS_MSYM:
8012 case SHT_MIPS_LIBLIST:
8013 sec = bfd_get_section_by_name (abfd, ".dynstr");
8014 if (sec != NULL)
8015 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8016 break;
8017
8018 case SHT_MIPS_GPTAB:
8019 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8020 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8021 BFD_ASSERT (name != NULL
8022 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8023 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8024 BFD_ASSERT (sec != NULL);
8025 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8026 break;
8027
8028 case SHT_MIPS_CONTENT:
8029 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8030 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8031 BFD_ASSERT (name != NULL
8032 && strncmp (name, ".MIPS.content",
8033 sizeof ".MIPS.content" - 1) == 0);
8034 sec = bfd_get_section_by_name (abfd,
8035 name + sizeof ".MIPS.content" - 1);
8036 BFD_ASSERT (sec != NULL);
8037 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8038 break;
8039
8040 case SHT_MIPS_SYMBOL_LIB:
8041 sec = bfd_get_section_by_name (abfd, ".dynsym");
8042 if (sec != NULL)
8043 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8044 sec = bfd_get_section_by_name (abfd, ".liblist");
8045 if (sec != NULL)
8046 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8047 break;
8048
8049 case SHT_MIPS_EVENTS:
8050 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8051 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8052 BFD_ASSERT (name != NULL);
8053 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8054 sec = bfd_get_section_by_name (abfd,
8055 name + sizeof ".MIPS.events" - 1);
8056 else
8057 {
8058 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8059 sizeof ".MIPS.post_rel" - 1) == 0);
8060 sec = bfd_get_section_by_name (abfd,
8061 (name
8062 + sizeof ".MIPS.post_rel" - 1));
8063 }
8064 BFD_ASSERT (sec != NULL);
8065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8066 break;
8067
8068 }
8069 }
8070}
8071\f
8dc1a139 8072/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
8073 segments. */
8074
8075int
9719ad41 8076_bfd_mips_elf_additional_program_headers (bfd *abfd)
b49e97c9
TS
8077{
8078 asection *s;
8079 int ret = 0;
8080
8081 /* See if we need a PT_MIPS_REGINFO segment. */
8082 s = bfd_get_section_by_name (abfd, ".reginfo");
8083 if (s && (s->flags & SEC_LOAD))
8084 ++ret;
8085
8086 /* See if we need a PT_MIPS_OPTIONS segment. */
8087 if (IRIX_COMPAT (abfd) == ict_irix6
8088 && bfd_get_section_by_name (abfd,
8089 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8090 ++ret;
8091
8092 /* See if we need a PT_MIPS_RTPROC segment. */
8093 if (IRIX_COMPAT (abfd) == ict_irix5
8094 && bfd_get_section_by_name (abfd, ".dynamic")
8095 && bfd_get_section_by_name (abfd, ".mdebug"))
8096 ++ret;
8097
8098 return ret;
8099}
8100
8dc1a139 8101/* Modify the segment map for an IRIX5 executable. */
b49e97c9 8102
b34976b6 8103bfd_boolean
9719ad41
RS
8104_bfd_mips_elf_modify_segment_map (bfd *abfd,
8105 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
8106{
8107 asection *s;
8108 struct elf_segment_map *m, **pm;
8109 bfd_size_type amt;
8110
8111 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8112 segment. */
8113 s = bfd_get_section_by_name (abfd, ".reginfo");
8114 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8115 {
8116 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8117 if (m->p_type == PT_MIPS_REGINFO)
8118 break;
8119 if (m == NULL)
8120 {
8121 amt = sizeof *m;
9719ad41 8122 m = bfd_zalloc (abfd, amt);
b49e97c9 8123 if (m == NULL)
b34976b6 8124 return FALSE;
b49e97c9
TS
8125
8126 m->p_type = PT_MIPS_REGINFO;
8127 m->count = 1;
8128 m->sections[0] = s;
8129
8130 /* We want to put it after the PHDR and INTERP segments. */
8131 pm = &elf_tdata (abfd)->segment_map;
8132 while (*pm != NULL
8133 && ((*pm)->p_type == PT_PHDR
8134 || (*pm)->p_type == PT_INTERP))
8135 pm = &(*pm)->next;
8136
8137 m->next = *pm;
8138 *pm = m;
8139 }
8140 }
8141
8142 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8143 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 8144 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 8145 table. */
c1fd6598
AO
8146 if (NEWABI_P (abfd)
8147 /* On non-IRIX6 new abi, we'll have already created a segment
8148 for this section, so don't create another. I'm not sure this
8149 is not also the case for IRIX 6, but I can't test it right
8150 now. */
8151 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
8152 {
8153 for (s = abfd->sections; s; s = s->next)
8154 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8155 break;
8156
8157 if (s)
8158 {
8159 struct elf_segment_map *options_segment;
8160
98a8deaf
RS
8161 pm = &elf_tdata (abfd)->segment_map;
8162 while (*pm != NULL
8163 && ((*pm)->p_type == PT_PHDR
8164 || (*pm)->p_type == PT_INTERP))
8165 pm = &(*pm)->next;
b49e97c9
TS
8166
8167 amt = sizeof (struct elf_segment_map);
8168 options_segment = bfd_zalloc (abfd, amt);
8169 options_segment->next = *pm;
8170 options_segment->p_type = PT_MIPS_OPTIONS;
8171 options_segment->p_flags = PF_R;
b34976b6 8172 options_segment->p_flags_valid = TRUE;
b49e97c9
TS
8173 options_segment->count = 1;
8174 options_segment->sections[0] = s;
8175 *pm = options_segment;
8176 }
8177 }
8178 else
8179 {
8180 if (IRIX_COMPAT (abfd) == ict_irix5)
8181 {
8182 /* If there are .dynamic and .mdebug sections, we make a room
8183 for the RTPROC header. FIXME: Rewrite without section names. */
8184 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8185 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8186 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8187 {
8188 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8189 if (m->p_type == PT_MIPS_RTPROC)
8190 break;
8191 if (m == NULL)
8192 {
8193 amt = sizeof *m;
9719ad41 8194 m = bfd_zalloc (abfd, amt);
b49e97c9 8195 if (m == NULL)
b34976b6 8196 return FALSE;
b49e97c9
TS
8197
8198 m->p_type = PT_MIPS_RTPROC;
8199
8200 s = bfd_get_section_by_name (abfd, ".rtproc");
8201 if (s == NULL)
8202 {
8203 m->count = 0;
8204 m->p_flags = 0;
8205 m->p_flags_valid = 1;
8206 }
8207 else
8208 {
8209 m->count = 1;
8210 m->sections[0] = s;
8211 }
8212
8213 /* We want to put it after the DYNAMIC segment. */
8214 pm = &elf_tdata (abfd)->segment_map;
8215 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8216 pm = &(*pm)->next;
8217 if (*pm != NULL)
8218 pm = &(*pm)->next;
8219
8220 m->next = *pm;
8221 *pm = m;
8222 }
8223 }
8224 }
8dc1a139 8225 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
8226 .dynstr, .dynsym, and .hash sections, and everything in
8227 between. */
8228 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8229 pm = &(*pm)->next)
8230 if ((*pm)->p_type == PT_DYNAMIC)
8231 break;
8232 m = *pm;
8233 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8234 {
8235 /* For a normal mips executable the permissions for the PT_DYNAMIC
8236 segment are read, write and execute. We do that here since
8237 the code in elf.c sets only the read permission. This matters
8238 sometimes for the dynamic linker. */
8239 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8240 {
8241 m->p_flags = PF_R | PF_W | PF_X;
8242 m->p_flags_valid = 1;
8243 }
8244 }
8245 if (m != NULL
8246 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8247 {
8248 static const char *sec_names[] =
8249 {
8250 ".dynamic", ".dynstr", ".dynsym", ".hash"
8251 };
8252 bfd_vma low, high;
8253 unsigned int i, c;
8254 struct elf_segment_map *n;
8255
792b4a53 8256 low = ~(bfd_vma) 0;
b49e97c9
TS
8257 high = 0;
8258 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8259 {
8260 s = bfd_get_section_by_name (abfd, sec_names[i]);
8261 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8262 {
8263 bfd_size_type sz;
8264
8265 if (low > s->vma)
8266 low = s->vma;
eea6121a 8267 sz = s->size;
b49e97c9
TS
8268 if (high < s->vma + sz)
8269 high = s->vma + sz;
8270 }
8271 }
8272
8273 c = 0;
8274 for (s = abfd->sections; s != NULL; s = s->next)
8275 if ((s->flags & SEC_LOAD) != 0
8276 && s->vma >= low
eea6121a 8277 && s->vma + s->size <= high)
b49e97c9
TS
8278 ++c;
8279
8280 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 8281 n = bfd_zalloc (abfd, amt);
b49e97c9 8282 if (n == NULL)
b34976b6 8283 return FALSE;
b49e97c9
TS
8284 *n = *m;
8285 n->count = c;
8286
8287 i = 0;
8288 for (s = abfd->sections; s != NULL; s = s->next)
8289 {
8290 if ((s->flags & SEC_LOAD) != 0
8291 && s->vma >= low
eea6121a 8292 && s->vma + s->size <= high)
b49e97c9
TS
8293 {
8294 n->sections[i] = s;
8295 ++i;
8296 }
8297 }
8298
8299 *pm = n;
8300 }
8301 }
8302
b34976b6 8303 return TRUE;
b49e97c9
TS
8304}
8305\f
8306/* Return the section that should be marked against GC for a given
8307 relocation. */
8308
8309asection *
9719ad41
RS
8310_bfd_mips_elf_gc_mark_hook (asection *sec,
8311 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8312 Elf_Internal_Rela *rel,
8313 struct elf_link_hash_entry *h,
8314 Elf_Internal_Sym *sym)
b49e97c9
TS
8315{
8316 /* ??? Do mips16 stub sections need to be handled special? */
8317
8318 if (h != NULL)
8319 {
1e2f5b6e 8320 switch (ELF_R_TYPE (sec->owner, rel->r_info))
b49e97c9
TS
8321 {
8322 case R_MIPS_GNU_VTINHERIT:
8323 case R_MIPS_GNU_VTENTRY:
8324 break;
8325
8326 default:
8327 switch (h->root.type)
8328 {
8329 case bfd_link_hash_defined:
8330 case bfd_link_hash_defweak:
8331 return h->root.u.def.section;
8332
8333 case bfd_link_hash_common:
8334 return h->root.u.c.p->section;
8335
8336 default:
8337 break;
8338 }
8339 }
8340 }
8341 else
1e2f5b6e 8342 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
b49e97c9
TS
8343
8344 return NULL;
8345}
8346
8347/* Update the got entry reference counts for the section being removed. */
8348
b34976b6 8349bfd_boolean
9719ad41
RS
8350_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8351 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8352 asection *sec ATTRIBUTE_UNUSED,
8353 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
8354{
8355#if 0
8356 Elf_Internal_Shdr *symtab_hdr;
8357 struct elf_link_hash_entry **sym_hashes;
8358 bfd_signed_vma *local_got_refcounts;
8359 const Elf_Internal_Rela *rel, *relend;
8360 unsigned long r_symndx;
8361 struct elf_link_hash_entry *h;
8362
8363 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8364 sym_hashes = elf_sym_hashes (abfd);
8365 local_got_refcounts = elf_local_got_refcounts (abfd);
8366
8367 relend = relocs + sec->reloc_count;
8368 for (rel = relocs; rel < relend; rel++)
8369 switch (ELF_R_TYPE (abfd, rel->r_info))
8370 {
8371 case R_MIPS_GOT16:
8372 case R_MIPS_CALL16:
8373 case R_MIPS_CALL_HI16:
8374 case R_MIPS_CALL_LO16:
8375 case R_MIPS_GOT_HI16:
8376 case R_MIPS_GOT_LO16:
4a14403c
TS
8377 case R_MIPS_GOT_DISP:
8378 case R_MIPS_GOT_PAGE:
8379 case R_MIPS_GOT_OFST:
b49e97c9
TS
8380 /* ??? It would seem that the existing MIPS code does no sort
8381 of reference counting or whatnot on its GOT and PLT entries,
8382 so it is not possible to garbage collect them at this time. */
8383 break;
8384
8385 default:
8386 break;
8387 }
8388#endif
8389
b34976b6 8390 return TRUE;
b49e97c9
TS
8391}
8392\f
8393/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8394 hiding the old indirect symbol. Process additional relocation
8395 information. Also called for weakdefs, in which case we just let
8396 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8397
8398void
fcfa13d2 8399_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
8400 struct elf_link_hash_entry *dir,
8401 struct elf_link_hash_entry *ind)
b49e97c9
TS
8402{
8403 struct mips_elf_link_hash_entry *dirmips, *indmips;
8404
fcfa13d2 8405 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9
TS
8406
8407 if (ind->root.type != bfd_link_hash_indirect)
8408 return;
8409
8410 dirmips = (struct mips_elf_link_hash_entry *) dir;
8411 indmips = (struct mips_elf_link_hash_entry *) ind;
8412 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8413 if (indmips->readonly_reloc)
b34976b6 8414 dirmips->readonly_reloc = TRUE;
b49e97c9 8415 if (indmips->no_fn_stub)
b34976b6 8416 dirmips->no_fn_stub = TRUE;
0f20cc35
DJ
8417
8418 if (dirmips->tls_type == 0)
8419 dirmips->tls_type = indmips->tls_type;
b49e97c9
TS
8420}
8421
8422void
9719ad41
RS
8423_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8424 struct elf_link_hash_entry *entry,
8425 bfd_boolean force_local)
b49e97c9
TS
8426{
8427 bfd *dynobj;
8428 asection *got;
8429 struct mips_got_info *g;
8430 struct mips_elf_link_hash_entry *h;
7c5fcef7 8431
b49e97c9 8432 h = (struct mips_elf_link_hash_entry *) entry;
7c5fcef7
L
8433 if (h->forced_local)
8434 return;
4b555070 8435 h->forced_local = force_local;
7c5fcef7 8436
b49e97c9 8437 dynobj = elf_hash_table (info)->dynobj;
8d1d654f
AM
8438 if (dynobj != NULL && force_local && h->root.type != STT_TLS
8439 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
8440 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
f4416af6 8441 {
c45a316a
AM
8442 if (g->next)
8443 {
8444 struct mips_got_entry e;
8445 struct mips_got_info *gg = g;
8446
8447 /* Since we're turning what used to be a global symbol into a
8448 local one, bump up the number of local entries of each GOT
8449 that had an entry for it. This will automatically decrease
8450 the number of global entries, since global_gotno is actually
8451 the upper limit of global entries. */
8452 e.abfd = dynobj;
8453 e.symndx = -1;
8454 e.d.h = h;
0f20cc35 8455 e.tls_type = 0;
c45a316a
AM
8456
8457 for (g = g->next; g != gg; g = g->next)
8458 if (htab_find (g->got_entries, &e))
8459 {
8460 BFD_ASSERT (g->global_gotno > 0);
8461 g->local_gotno++;
8462 g->global_gotno--;
8463 }
b49e97c9 8464
c45a316a
AM
8465 /* If this was a global symbol forced into the primary GOT, we
8466 no longer need an entry for it. We can't release the entry
8467 at this point, but we must at least stop counting it as one
8468 of the symbols that required a forced got entry. */
8469 if (h->root.got.offset == 2)
8470 {
8471 BFD_ASSERT (gg->assigned_gotno > 0);
8472 gg->assigned_gotno--;
8473 }
8474 }
8475 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8476 /* If we haven't got through GOT allocation yet, just bump up the
8477 number of local entries, as this symbol won't be counted as
8478 global. */
8479 g->local_gotno++;
8480 else if (h->root.got.offset == 1)
f4416af6 8481 {
c45a316a
AM
8482 /* If we're past non-multi-GOT allocation and this symbol had
8483 been marked for a global got entry, give it a local entry
8484 instead. */
8485 BFD_ASSERT (g->global_gotno > 0);
8486 g->local_gotno++;
8487 g->global_gotno--;
f4416af6
AO
8488 }
8489 }
f4416af6
AO
8490
8491 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
b49e97c9
TS
8492}
8493\f
d01414a5
TS
8494#define PDR_SIZE 32
8495
b34976b6 8496bfd_boolean
9719ad41
RS
8497_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8498 struct bfd_link_info *info)
d01414a5
TS
8499{
8500 asection *o;
b34976b6 8501 bfd_boolean ret = FALSE;
d01414a5
TS
8502 unsigned char *tdata;
8503 size_t i, skip;
8504
8505 o = bfd_get_section_by_name (abfd, ".pdr");
8506 if (! o)
b34976b6 8507 return FALSE;
eea6121a 8508 if (o->size == 0)
b34976b6 8509 return FALSE;
eea6121a 8510 if (o->size % PDR_SIZE != 0)
b34976b6 8511 return FALSE;
d01414a5
TS
8512 if (o->output_section != NULL
8513 && bfd_is_abs_section (o->output_section))
b34976b6 8514 return FALSE;
d01414a5 8515
eea6121a 8516 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 8517 if (! tdata)
b34976b6 8518 return FALSE;
d01414a5 8519
9719ad41 8520 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8521 info->keep_memory);
d01414a5
TS
8522 if (!cookie->rels)
8523 {
8524 free (tdata);
b34976b6 8525 return FALSE;
d01414a5
TS
8526 }
8527
8528 cookie->rel = cookie->rels;
8529 cookie->relend = cookie->rels + o->reloc_count;
8530
eea6121a 8531 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 8532 {
c152c796 8533 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
8534 {
8535 tdata[i] = 1;
8536 skip ++;
8537 }
8538 }
8539
8540 if (skip != 0)
8541 {
f0abc2a1 8542 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 8543 o->size -= skip * PDR_SIZE;
b34976b6 8544 ret = TRUE;
d01414a5
TS
8545 }
8546 else
8547 free (tdata);
8548
8549 if (! info->keep_memory)
8550 free (cookie->rels);
8551
8552 return ret;
8553}
8554
b34976b6 8555bfd_boolean
9719ad41 8556_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
8557{
8558 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
8559 return TRUE;
8560 return FALSE;
53bfd6b4 8561}
d01414a5 8562
b34976b6 8563bfd_boolean
9719ad41
RS
8564_bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8565 bfd_byte *contents)
d01414a5
TS
8566{
8567 bfd_byte *to, *from, *end;
8568 int i;
8569
8570 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 8571 return FALSE;
d01414a5 8572
f0abc2a1 8573 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 8574 return FALSE;
d01414a5
TS
8575
8576 to = contents;
eea6121a 8577 end = contents + sec->size;
d01414a5
TS
8578 for (from = contents, i = 0;
8579 from < end;
8580 from += PDR_SIZE, i++)
8581 {
f0abc2a1 8582 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
8583 continue;
8584 if (to != from)
8585 memcpy (to, from, PDR_SIZE);
8586 to += PDR_SIZE;
8587 }
8588 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 8589 sec->output_offset, sec->size);
b34976b6 8590 return TRUE;
d01414a5 8591}
53bfd6b4 8592\f
b49e97c9
TS
8593/* MIPS ELF uses a special find_nearest_line routine in order the
8594 handle the ECOFF debugging information. */
8595
8596struct mips_elf_find_line
8597{
8598 struct ecoff_debug_info d;
8599 struct ecoff_find_line i;
8600};
8601
b34976b6 8602bfd_boolean
9719ad41
RS
8603_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8604 asymbol **symbols, bfd_vma offset,
8605 const char **filename_ptr,
8606 const char **functionname_ptr,
8607 unsigned int *line_ptr)
b49e97c9
TS
8608{
8609 asection *msec;
8610
8611 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8612 filename_ptr, functionname_ptr,
8613 line_ptr))
b34976b6 8614 return TRUE;
b49e97c9
TS
8615
8616 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8617 filename_ptr, functionname_ptr,
9719ad41 8618 line_ptr, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 8619 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 8620 return TRUE;
b49e97c9
TS
8621
8622 msec = bfd_get_section_by_name (abfd, ".mdebug");
8623 if (msec != NULL)
8624 {
8625 flagword origflags;
8626 struct mips_elf_find_line *fi;
8627 const struct ecoff_debug_swap * const swap =
8628 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8629
8630 /* If we are called during a link, mips_elf_final_link may have
8631 cleared the SEC_HAS_CONTENTS field. We force it back on here
8632 if appropriate (which it normally will be). */
8633 origflags = msec->flags;
8634 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8635 msec->flags |= SEC_HAS_CONTENTS;
8636
8637 fi = elf_tdata (abfd)->find_line_info;
8638 if (fi == NULL)
8639 {
8640 bfd_size_type external_fdr_size;
8641 char *fraw_src;
8642 char *fraw_end;
8643 struct fdr *fdr_ptr;
8644 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8645
9719ad41 8646 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
8647 if (fi == NULL)
8648 {
8649 msec->flags = origflags;
b34976b6 8650 return FALSE;
b49e97c9
TS
8651 }
8652
8653 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8654 {
8655 msec->flags = origflags;
b34976b6 8656 return FALSE;
b49e97c9
TS
8657 }
8658
8659 /* Swap in the FDR information. */
8660 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 8661 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
8662 if (fi->d.fdr == NULL)
8663 {
8664 msec->flags = origflags;
b34976b6 8665 return FALSE;
b49e97c9
TS
8666 }
8667 external_fdr_size = swap->external_fdr_size;
8668 fdr_ptr = fi->d.fdr;
8669 fraw_src = (char *) fi->d.external_fdr;
8670 fraw_end = (fraw_src
8671 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8672 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 8673 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9
TS
8674
8675 elf_tdata (abfd)->find_line_info = fi;
8676
8677 /* Note that we don't bother to ever free this information.
8678 find_nearest_line is either called all the time, as in
8679 objdump -l, so the information should be saved, or it is
8680 rarely called, as in ld error messages, so the memory
8681 wasted is unimportant. Still, it would probably be a
8682 good idea for free_cached_info to throw it away. */
8683 }
8684
8685 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8686 &fi->i, filename_ptr, functionname_ptr,
8687 line_ptr))
8688 {
8689 msec->flags = origflags;
b34976b6 8690 return TRUE;
b49e97c9
TS
8691 }
8692
8693 msec->flags = origflags;
8694 }
8695
8696 /* Fall back on the generic ELF find_nearest_line routine. */
8697
8698 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8699 filename_ptr, functionname_ptr,
8700 line_ptr);
8701}
4ab527b0
FF
8702
8703bfd_boolean
8704_bfd_mips_elf_find_inliner_info (bfd *abfd,
8705 const char **filename_ptr,
8706 const char **functionname_ptr,
8707 unsigned int *line_ptr)
8708{
8709 bfd_boolean found;
8710 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8711 functionname_ptr, line_ptr,
8712 & elf_tdata (abfd)->dwarf2_find_line_info);
8713 return found;
8714}
8715
b49e97c9
TS
8716\f
8717/* When are writing out the .options or .MIPS.options section,
8718 remember the bytes we are writing out, so that we can install the
8719 GP value in the section_processing routine. */
8720
b34976b6 8721bfd_boolean
9719ad41
RS
8722_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8723 const void *location,
8724 file_ptr offset, bfd_size_type count)
b49e97c9 8725{
cc2e31b9 8726 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
8727 {
8728 bfd_byte *c;
8729
8730 if (elf_section_data (section) == NULL)
8731 {
8732 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 8733 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 8734 if (elf_section_data (section) == NULL)
b34976b6 8735 return FALSE;
b49e97c9 8736 }
f0abc2a1 8737 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
8738 if (c == NULL)
8739 {
eea6121a 8740 c = bfd_zalloc (abfd, section->size);
b49e97c9 8741 if (c == NULL)
b34976b6 8742 return FALSE;
f0abc2a1 8743 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
8744 }
8745
9719ad41 8746 memcpy (c + offset, location, count);
b49e97c9
TS
8747 }
8748
8749 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8750 count);
8751}
8752
8753/* This is almost identical to bfd_generic_get_... except that some
8754 MIPS relocations need to be handled specially. Sigh. */
8755
8756bfd_byte *
9719ad41
RS
8757_bfd_elf_mips_get_relocated_section_contents
8758 (bfd *abfd,
8759 struct bfd_link_info *link_info,
8760 struct bfd_link_order *link_order,
8761 bfd_byte *data,
8762 bfd_boolean relocatable,
8763 asymbol **symbols)
b49e97c9
TS
8764{
8765 /* Get enough memory to hold the stuff */
8766 bfd *input_bfd = link_order->u.indirect.section->owner;
8767 asection *input_section = link_order->u.indirect.section;
eea6121a 8768 bfd_size_type sz;
b49e97c9
TS
8769
8770 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8771 arelent **reloc_vector = NULL;
8772 long reloc_count;
8773
8774 if (reloc_size < 0)
8775 goto error_return;
8776
9719ad41 8777 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
8778 if (reloc_vector == NULL && reloc_size != 0)
8779 goto error_return;
8780
8781 /* read in the section */
eea6121a
AM
8782 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8783 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
8784 goto error_return;
8785
b49e97c9
TS
8786 reloc_count = bfd_canonicalize_reloc (input_bfd,
8787 input_section,
8788 reloc_vector,
8789 symbols);
8790 if (reloc_count < 0)
8791 goto error_return;
8792
8793 if (reloc_count > 0)
8794 {
8795 arelent **parent;
8796 /* for mips */
8797 int gp_found;
8798 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8799
8800 {
8801 struct bfd_hash_entry *h;
8802 struct bfd_link_hash_entry *lh;
8803 /* Skip all this stuff if we aren't mixing formats. */
8804 if (abfd && input_bfd
8805 && abfd->xvec == input_bfd->xvec)
8806 lh = 0;
8807 else
8808 {
b34976b6 8809 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
8810 lh = (struct bfd_link_hash_entry *) h;
8811 }
8812 lookup:
8813 if (lh)
8814 {
8815 switch (lh->type)
8816 {
8817 case bfd_link_hash_undefined:
8818 case bfd_link_hash_undefweak:
8819 case bfd_link_hash_common:
8820 gp_found = 0;
8821 break;
8822 case bfd_link_hash_defined:
8823 case bfd_link_hash_defweak:
8824 gp_found = 1;
8825 gp = lh->u.def.value;
8826 break;
8827 case bfd_link_hash_indirect:
8828 case bfd_link_hash_warning:
8829 lh = lh->u.i.link;
8830 /* @@FIXME ignoring warning for now */
8831 goto lookup;
8832 case bfd_link_hash_new:
8833 default:
8834 abort ();
8835 }
8836 }
8837 else
8838 gp_found = 0;
8839 }
8840 /* end mips */
9719ad41 8841 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 8842 {
9719ad41 8843 char *error_message = NULL;
b49e97c9
TS
8844 bfd_reloc_status_type r;
8845
8846 /* Specific to MIPS: Deal with relocation types that require
8847 knowing the gp of the output bfd. */
8848 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 8849
8236346f
EC
8850 /* If we've managed to find the gp and have a special
8851 function for the relocation then go ahead, else default
8852 to the generic handling. */
8853 if (gp_found
8854 && (*parent)->howto->special_function
8855 == _bfd_mips_elf32_gprel16_reloc)
8856 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8857 input_section, relocatable,
8858 data, gp);
8859 else
8860 r = bfd_perform_relocation (input_bfd, *parent, data,
8861 input_section,
8862 relocatable ? abfd : NULL,
8863 &error_message);
b49e97c9 8864
1049f94e 8865 if (relocatable)
b49e97c9
TS
8866 {
8867 asection *os = input_section->output_section;
8868
8869 /* A partial link, so keep the relocs */
8870 os->orelocation[os->reloc_count] = *parent;
8871 os->reloc_count++;
8872 }
8873
8874 if (r != bfd_reloc_ok)
8875 {
8876 switch (r)
8877 {
8878 case bfd_reloc_undefined:
8879 if (!((*link_info->callbacks->undefined_symbol)
8880 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 8881 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
8882 goto error_return;
8883 break;
8884 case bfd_reloc_dangerous:
9719ad41 8885 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
8886 if (!((*link_info->callbacks->reloc_dangerous)
8887 (link_info, error_message, input_bfd, input_section,
8888 (*parent)->address)))
8889 goto error_return;
8890 break;
8891 case bfd_reloc_overflow:
8892 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
8893 (link_info, NULL,
8894 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
8895 (*parent)->howto->name, (*parent)->addend,
8896 input_bfd, input_section, (*parent)->address)))
8897 goto error_return;
8898 break;
8899 case bfd_reloc_outofrange:
8900 default:
8901 abort ();
8902 break;
8903 }
8904
8905 }
8906 }
8907 }
8908 if (reloc_vector != NULL)
8909 free (reloc_vector);
8910 return data;
8911
8912error_return:
8913 if (reloc_vector != NULL)
8914 free (reloc_vector);
8915 return NULL;
8916}
8917\f
8918/* Create a MIPS ELF linker hash table. */
8919
8920struct bfd_link_hash_table *
9719ad41 8921_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
8922{
8923 struct mips_elf_link_hash_table *ret;
8924 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8925
9719ad41
RS
8926 ret = bfd_malloc (amt);
8927 if (ret == NULL)
b49e97c9
TS
8928 return NULL;
8929
8930 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8931 mips_elf_link_hash_newfunc))
8932 {
e2d34d7d 8933 free (ret);
b49e97c9
TS
8934 return NULL;
8935 }
8936
8937#if 0
8938 /* We no longer use this. */
8939 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8940 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8941#endif
8942 ret->procedure_count = 0;
8943 ret->compact_rel_size = 0;
b34976b6 8944 ret->use_rld_obj_head = FALSE;
b49e97c9 8945 ret->rld_value = 0;
b34976b6 8946 ret->mips16_stubs_seen = FALSE;
b49e97c9
TS
8947
8948 return &ret->root.root;
8949}
8950\f
8951/* We need to use a special link routine to handle the .reginfo and
8952 the .mdebug sections. We need to merge all instances of these
8953 sections together, not write them all out sequentially. */
8954
b34976b6 8955bfd_boolean
9719ad41 8956_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 8957{
b49e97c9
TS
8958 asection *o;
8959 struct bfd_link_order *p;
8960 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8961 asection *rtproc_sec;
8962 Elf32_RegInfo reginfo;
8963 struct ecoff_debug_info debug;
7a2a6943
NC
8964 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8965 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 8966 HDRR *symhdr = &debug.symbolic_header;
9719ad41 8967 void *mdebug_handle = NULL;
b49e97c9
TS
8968 asection *s;
8969 EXTR esym;
8970 unsigned int i;
8971 bfd_size_type amt;
8972
8973 static const char * const secname[] =
8974 {
8975 ".text", ".init", ".fini", ".data",
8976 ".rodata", ".sdata", ".sbss", ".bss"
8977 };
8978 static const int sc[] =
8979 {
8980 scText, scInit, scFini, scData,
8981 scRData, scSData, scSBss, scBss
8982 };
8983
b49e97c9
TS
8984 /* We'd carefully arranged the dynamic symbol indices, and then the
8985 generic size_dynamic_sections renumbered them out from under us.
8986 Rather than trying somehow to prevent the renumbering, just do
8987 the sort again. */
8988 if (elf_hash_table (info)->dynamic_sections_created)
8989 {
8990 bfd *dynobj;
8991 asection *got;
8992 struct mips_got_info *g;
7a2a6943 8993 bfd_size_type dynsecsymcount;
b49e97c9
TS
8994
8995 /* When we resort, we must tell mips_elf_sort_hash_table what
8996 the lowest index it may use is. That's the number of section
8997 symbols we're going to add. The generic ELF linker only
8998 adds these symbols when building a shared object. Note that
8999 we count the sections after (possibly) removing the .options
9000 section above. */
7a2a6943
NC
9001
9002 dynsecsymcount = 0;
9003 if (info->shared)
9004 {
9005 asection * p;
9006
9007 for (p = abfd->sections; p ; p = p->next)
9008 if ((p->flags & SEC_EXCLUDE) == 0
9009 && (p->flags & SEC_ALLOC) != 0
9010 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9011 ++ dynsecsymcount;
9012 }
9013
9014 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
b34976b6 9015 return FALSE;
b49e97c9
TS
9016
9017 /* Make sure we didn't grow the global .got region. */
9018 dynobj = elf_hash_table (info)->dynobj;
f4416af6 9019 got = mips_elf_got_section (dynobj, FALSE);
f0abc2a1 9020 g = mips_elf_section_data (got)->u.got_info;
b49e97c9
TS
9021
9022 if (g->global_gotsym != NULL)
9023 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9024 - g->global_gotsym->dynindx)
9025 <= g->global_gotno);
9026 }
9027
b49e97c9
TS
9028 /* Get a value for the GP register. */
9029 if (elf_gp (abfd) == 0)
9030 {
9031 struct bfd_link_hash_entry *h;
9032
b34976b6 9033 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 9034 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
9035 elf_gp (abfd) = (h->u.def.value
9036 + h->u.def.section->output_section->vma
9037 + h->u.def.section->output_offset);
1049f94e 9038 else if (info->relocatable)
b49e97c9
TS
9039 {
9040 bfd_vma lo = MINUS_ONE;
9041
9042 /* Find the GP-relative section with the lowest offset. */
9719ad41 9043 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9044 if (o->vma < lo
9045 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9046 lo = o->vma;
9047
9048 /* And calculate GP relative to that. */
9049 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9050 }
9051 else
9052 {
9053 /* If the relocate_section function needs to do a reloc
9054 involving the GP value, it should make a reloc_dangerous
9055 callback to warn that GP is not defined. */
9056 }
9057 }
9058
9059 /* Go through the sections and collect the .reginfo and .mdebug
9060 information. */
9061 reginfo_sec = NULL;
9062 mdebug_sec = NULL;
9063 gptab_data_sec = NULL;
9064 gptab_bss_sec = NULL;
9719ad41 9065 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
9066 {
9067 if (strcmp (o->name, ".reginfo") == 0)
9068 {
9069 memset (&reginfo, 0, sizeof reginfo);
9070
9071 /* We have found the .reginfo section in the output file.
9072 Look through all the link_orders comprising it and merge
9073 the information together. */
8423293d 9074 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9075 {
9076 asection *input_section;
9077 bfd *input_bfd;
9078 Elf32_External_RegInfo ext;
9079 Elf32_RegInfo sub;
9080
9081 if (p->type != bfd_indirect_link_order)
9082 {
9083 if (p->type == bfd_data_link_order)
9084 continue;
9085 abort ();
9086 }
9087
9088 input_section = p->u.indirect.section;
9089 input_bfd = input_section->owner;
9090
b49e97c9 9091 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 9092 &ext, 0, sizeof ext))
b34976b6 9093 return FALSE;
b49e97c9
TS
9094
9095 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9096
9097 reginfo.ri_gprmask |= sub.ri_gprmask;
9098 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9099 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9100 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9101 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9102
9103 /* ri_gp_value is set by the function
9104 mips_elf32_section_processing when the section is
9105 finally written out. */
9106
9107 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9108 elf_link_input_bfd ignores this section. */
9109 input_section->flags &= ~SEC_HAS_CONTENTS;
9110 }
9111
9112 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 9113 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
9114
9115 /* Skip this section later on (I don't think this currently
9116 matters, but someday it might). */
8423293d 9117 o->map_head.link_order = NULL;
b49e97c9
TS
9118
9119 reginfo_sec = o;
9120 }
9121
9122 if (strcmp (o->name, ".mdebug") == 0)
9123 {
9124 struct extsym_info einfo;
9125 bfd_vma last;
9126
9127 /* We have found the .mdebug section in the output file.
9128 Look through all the link_orders comprising it and merge
9129 the information together. */
9130 symhdr->magic = swap->sym_magic;
9131 /* FIXME: What should the version stamp be? */
9132 symhdr->vstamp = 0;
9133 symhdr->ilineMax = 0;
9134 symhdr->cbLine = 0;
9135 symhdr->idnMax = 0;
9136 symhdr->ipdMax = 0;
9137 symhdr->isymMax = 0;
9138 symhdr->ioptMax = 0;
9139 symhdr->iauxMax = 0;
9140 symhdr->issMax = 0;
9141 symhdr->issExtMax = 0;
9142 symhdr->ifdMax = 0;
9143 symhdr->crfd = 0;
9144 symhdr->iextMax = 0;
9145
9146 /* We accumulate the debugging information itself in the
9147 debug_info structure. */
9148 debug.line = NULL;
9149 debug.external_dnr = NULL;
9150 debug.external_pdr = NULL;
9151 debug.external_sym = NULL;
9152 debug.external_opt = NULL;
9153 debug.external_aux = NULL;
9154 debug.ss = NULL;
9155 debug.ssext = debug.ssext_end = NULL;
9156 debug.external_fdr = NULL;
9157 debug.external_rfd = NULL;
9158 debug.external_ext = debug.external_ext_end = NULL;
9159
9160 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 9161 if (mdebug_handle == NULL)
b34976b6 9162 return FALSE;
b49e97c9
TS
9163
9164 esym.jmptbl = 0;
9165 esym.cobol_main = 0;
9166 esym.weakext = 0;
9167 esym.reserved = 0;
9168 esym.ifd = ifdNil;
9169 esym.asym.iss = issNil;
9170 esym.asym.st = stLocal;
9171 esym.asym.reserved = 0;
9172 esym.asym.index = indexNil;
9173 last = 0;
9174 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9175 {
9176 esym.asym.sc = sc[i];
9177 s = bfd_get_section_by_name (abfd, secname[i]);
9178 if (s != NULL)
9179 {
9180 esym.asym.value = s->vma;
eea6121a 9181 last = s->vma + s->size;
b49e97c9
TS
9182 }
9183 else
9184 esym.asym.value = last;
9185 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9186 secname[i], &esym))
b34976b6 9187 return FALSE;
b49e97c9
TS
9188 }
9189
8423293d 9190 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9191 {
9192 asection *input_section;
9193 bfd *input_bfd;
9194 const struct ecoff_debug_swap *input_swap;
9195 struct ecoff_debug_info input_debug;
9196 char *eraw_src;
9197 char *eraw_end;
9198
9199 if (p->type != bfd_indirect_link_order)
9200 {
9201 if (p->type == bfd_data_link_order)
9202 continue;
9203 abort ();
9204 }
9205
9206 input_section = p->u.indirect.section;
9207 input_bfd = input_section->owner;
9208
9209 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9210 || (get_elf_backend_data (input_bfd)
9211 ->elf_backend_ecoff_debug_swap) == NULL)
9212 {
9213 /* I don't know what a non MIPS ELF bfd would be
9214 doing with a .mdebug section, but I don't really
9215 want to deal with it. */
9216 continue;
9217 }
9218
9219 input_swap = (get_elf_backend_data (input_bfd)
9220 ->elf_backend_ecoff_debug_swap);
9221
eea6121a 9222 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
9223
9224 /* The ECOFF linking code expects that we have already
9225 read in the debugging information and set up an
9226 ecoff_debug_info structure, so we do that now. */
9227 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9228 &input_debug))
b34976b6 9229 return FALSE;
b49e97c9
TS
9230
9231 if (! (bfd_ecoff_debug_accumulate
9232 (mdebug_handle, abfd, &debug, swap, input_bfd,
9233 &input_debug, input_swap, info)))
b34976b6 9234 return FALSE;
b49e97c9
TS
9235
9236 /* Loop through the external symbols. For each one with
9237 interesting information, try to find the symbol in
9238 the linker global hash table and save the information
9239 for the output external symbols. */
9240 eraw_src = input_debug.external_ext;
9241 eraw_end = (eraw_src
9242 + (input_debug.symbolic_header.iextMax
9243 * input_swap->external_ext_size));
9244 for (;
9245 eraw_src < eraw_end;
9246 eraw_src += input_swap->external_ext_size)
9247 {
9248 EXTR ext;
9249 const char *name;
9250 struct mips_elf_link_hash_entry *h;
9251
9719ad41 9252 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
9253 if (ext.asym.sc == scNil
9254 || ext.asym.sc == scUndefined
9255 || ext.asym.sc == scSUndefined)
9256 continue;
9257
9258 name = input_debug.ssext + ext.asym.iss;
9259 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 9260 name, FALSE, FALSE, TRUE);
b49e97c9
TS
9261 if (h == NULL || h->esym.ifd != -2)
9262 continue;
9263
9264 if (ext.ifd != -1)
9265 {
9266 BFD_ASSERT (ext.ifd
9267 < input_debug.symbolic_header.ifdMax);
9268 ext.ifd = input_debug.ifdmap[ext.ifd];
9269 }
9270
9271 h->esym = ext;
9272 }
9273
9274 /* Free up the information we just read. */
9275 free (input_debug.line);
9276 free (input_debug.external_dnr);
9277 free (input_debug.external_pdr);
9278 free (input_debug.external_sym);
9279 free (input_debug.external_opt);
9280 free (input_debug.external_aux);
9281 free (input_debug.ss);
9282 free (input_debug.ssext);
9283 free (input_debug.external_fdr);
9284 free (input_debug.external_rfd);
9285 free (input_debug.external_ext);
9286
9287 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9288 elf_link_input_bfd ignores this section. */
9289 input_section->flags &= ~SEC_HAS_CONTENTS;
9290 }
9291
9292 if (SGI_COMPAT (abfd) && info->shared)
9293 {
9294 /* Create .rtproc section. */
9295 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9296 if (rtproc_sec == NULL)
9297 {
9298 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9299 | SEC_LINKER_CREATED | SEC_READONLY);
9300
3496cb2a
L
9301 rtproc_sec = bfd_make_section_with_flags (abfd,
9302 ".rtproc",
9303 flags);
b49e97c9 9304 if (rtproc_sec == NULL
b49e97c9 9305 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 9306 return FALSE;
b49e97c9
TS
9307 }
9308
9309 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9310 info, rtproc_sec,
9311 &debug))
b34976b6 9312 return FALSE;
b49e97c9
TS
9313 }
9314
9315 /* Build the external symbol information. */
9316 einfo.abfd = abfd;
9317 einfo.info = info;
9318 einfo.debug = &debug;
9319 einfo.swap = swap;
b34976b6 9320 einfo.failed = FALSE;
b49e97c9 9321 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 9322 mips_elf_output_extsym, &einfo);
b49e97c9 9323 if (einfo.failed)
b34976b6 9324 return FALSE;
b49e97c9
TS
9325
9326 /* Set the size of the .mdebug section. */
eea6121a 9327 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
9328
9329 /* Skip this section later on (I don't think this currently
9330 matters, but someday it might). */
8423293d 9331 o->map_head.link_order = NULL;
b49e97c9
TS
9332
9333 mdebug_sec = o;
9334 }
9335
9336 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9337 {
9338 const char *subname;
9339 unsigned int c;
9340 Elf32_gptab *tab;
9341 Elf32_External_gptab *ext_tab;
9342 unsigned int j;
9343
9344 /* The .gptab.sdata and .gptab.sbss sections hold
9345 information describing how the small data area would
9346 change depending upon the -G switch. These sections
9347 not used in executables files. */
1049f94e 9348 if (! info->relocatable)
b49e97c9 9349 {
8423293d 9350 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9351 {
9352 asection *input_section;
9353
9354 if (p->type != bfd_indirect_link_order)
9355 {
9356 if (p->type == bfd_data_link_order)
9357 continue;
9358 abort ();
9359 }
9360
9361 input_section = p->u.indirect.section;
9362
9363 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9364 elf_link_input_bfd ignores this section. */
9365 input_section->flags &= ~SEC_HAS_CONTENTS;
9366 }
9367
9368 /* Skip this section later on (I don't think this
9369 currently matters, but someday it might). */
8423293d 9370 o->map_head.link_order = NULL;
b49e97c9
TS
9371
9372 /* Really remove the section. */
5daa8fe7 9373 bfd_section_list_remove (abfd, o);
b49e97c9
TS
9374 --abfd->section_count;
9375
9376 continue;
9377 }
9378
9379 /* There is one gptab for initialized data, and one for
9380 uninitialized data. */
9381 if (strcmp (o->name, ".gptab.sdata") == 0)
9382 gptab_data_sec = o;
9383 else if (strcmp (o->name, ".gptab.sbss") == 0)
9384 gptab_bss_sec = o;
9385 else
9386 {
9387 (*_bfd_error_handler)
9388 (_("%s: illegal section name `%s'"),
9389 bfd_get_filename (abfd), o->name);
9390 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 9391 return FALSE;
b49e97c9
TS
9392 }
9393
9394 /* The linker script always combines .gptab.data and
9395 .gptab.sdata into .gptab.sdata, and likewise for
9396 .gptab.bss and .gptab.sbss. It is possible that there is
9397 no .sdata or .sbss section in the output file, in which
9398 case we must change the name of the output section. */
9399 subname = o->name + sizeof ".gptab" - 1;
9400 if (bfd_get_section_by_name (abfd, subname) == NULL)
9401 {
9402 if (o == gptab_data_sec)
9403 o->name = ".gptab.data";
9404 else
9405 o->name = ".gptab.bss";
9406 subname = o->name + sizeof ".gptab" - 1;
9407 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9408 }
9409
9410 /* Set up the first entry. */
9411 c = 1;
9412 amt = c * sizeof (Elf32_gptab);
9719ad41 9413 tab = bfd_malloc (amt);
b49e97c9 9414 if (tab == NULL)
b34976b6 9415 return FALSE;
b49e97c9
TS
9416 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9417 tab[0].gt_header.gt_unused = 0;
9418
9419 /* Combine the input sections. */
8423293d 9420 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
9421 {
9422 asection *input_section;
9423 bfd *input_bfd;
9424 bfd_size_type size;
9425 unsigned long last;
9426 bfd_size_type gpentry;
9427
9428 if (p->type != bfd_indirect_link_order)
9429 {
9430 if (p->type == bfd_data_link_order)
9431 continue;
9432 abort ();
9433 }
9434
9435 input_section = p->u.indirect.section;
9436 input_bfd = input_section->owner;
9437
9438 /* Combine the gptab entries for this input section one
9439 by one. We know that the input gptab entries are
9440 sorted by ascending -G value. */
eea6121a 9441 size = input_section->size;
b49e97c9
TS
9442 last = 0;
9443 for (gpentry = sizeof (Elf32_External_gptab);
9444 gpentry < size;
9445 gpentry += sizeof (Elf32_External_gptab))
9446 {
9447 Elf32_External_gptab ext_gptab;
9448 Elf32_gptab int_gptab;
9449 unsigned long val;
9450 unsigned long add;
b34976b6 9451 bfd_boolean exact;
b49e97c9
TS
9452 unsigned int look;
9453
9454 if (! (bfd_get_section_contents
9719ad41
RS
9455 (input_bfd, input_section, &ext_gptab, gpentry,
9456 sizeof (Elf32_External_gptab))))
b49e97c9
TS
9457 {
9458 free (tab);
b34976b6 9459 return FALSE;
b49e97c9
TS
9460 }
9461
9462 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9463 &int_gptab);
9464 val = int_gptab.gt_entry.gt_g_value;
9465 add = int_gptab.gt_entry.gt_bytes - last;
9466
b34976b6 9467 exact = FALSE;
b49e97c9
TS
9468 for (look = 1; look < c; look++)
9469 {
9470 if (tab[look].gt_entry.gt_g_value >= val)
9471 tab[look].gt_entry.gt_bytes += add;
9472
9473 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 9474 exact = TRUE;
b49e97c9
TS
9475 }
9476
9477 if (! exact)
9478 {
9479 Elf32_gptab *new_tab;
9480 unsigned int max;
9481
9482 /* We need a new table entry. */
9483 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 9484 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
9485 if (new_tab == NULL)
9486 {
9487 free (tab);
b34976b6 9488 return FALSE;
b49e97c9
TS
9489 }
9490 tab = new_tab;
9491 tab[c].gt_entry.gt_g_value = val;
9492 tab[c].gt_entry.gt_bytes = add;
9493
9494 /* Merge in the size for the next smallest -G
9495 value, since that will be implied by this new
9496 value. */
9497 max = 0;
9498 for (look = 1; look < c; look++)
9499 {
9500 if (tab[look].gt_entry.gt_g_value < val
9501 && (max == 0
9502 || (tab[look].gt_entry.gt_g_value
9503 > tab[max].gt_entry.gt_g_value)))
9504 max = look;
9505 }
9506 if (max != 0)
9507 tab[c].gt_entry.gt_bytes +=
9508 tab[max].gt_entry.gt_bytes;
9509
9510 ++c;
9511 }
9512
9513 last = int_gptab.gt_entry.gt_bytes;
9514 }
9515
9516 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9517 elf_link_input_bfd ignores this section. */
9518 input_section->flags &= ~SEC_HAS_CONTENTS;
9519 }
9520
9521 /* The table must be sorted by -G value. */
9522 if (c > 2)
9523 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9524
9525 /* Swap out the table. */
9526 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 9527 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
9528 if (ext_tab == NULL)
9529 {
9530 free (tab);
b34976b6 9531 return FALSE;
b49e97c9
TS
9532 }
9533
9534 for (j = 0; j < c; j++)
9535 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9536 free (tab);
9537
eea6121a 9538 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
9539 o->contents = (bfd_byte *) ext_tab;
9540
9541 /* Skip this section later on (I don't think this currently
9542 matters, but someday it might). */
8423293d 9543 o->map_head.link_order = NULL;
b49e97c9
TS
9544 }
9545 }
9546
9547 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 9548 if (!bfd_elf_final_link (abfd, info))
b34976b6 9549 return FALSE;
b49e97c9
TS
9550
9551 /* Now write out the computed sections. */
9552
9719ad41 9553 if (reginfo_sec != NULL)
b49e97c9
TS
9554 {
9555 Elf32_External_RegInfo ext;
9556
9557 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 9558 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 9559 return FALSE;
b49e97c9
TS
9560 }
9561
9719ad41 9562 if (mdebug_sec != NULL)
b49e97c9
TS
9563 {
9564 BFD_ASSERT (abfd->output_has_begun);
9565 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9566 swap, info,
9567 mdebug_sec->filepos))
b34976b6 9568 return FALSE;
b49e97c9
TS
9569
9570 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9571 }
9572
9719ad41 9573 if (gptab_data_sec != NULL)
b49e97c9
TS
9574 {
9575 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9576 gptab_data_sec->contents,
eea6121a 9577 0, gptab_data_sec->size))
b34976b6 9578 return FALSE;
b49e97c9
TS
9579 }
9580
9719ad41 9581 if (gptab_bss_sec != NULL)
b49e97c9
TS
9582 {
9583 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9584 gptab_bss_sec->contents,
eea6121a 9585 0, gptab_bss_sec->size))
b34976b6 9586 return FALSE;
b49e97c9
TS
9587 }
9588
9589 if (SGI_COMPAT (abfd))
9590 {
9591 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9592 if (rtproc_sec != NULL)
9593 {
9594 if (! bfd_set_section_contents (abfd, rtproc_sec,
9595 rtproc_sec->contents,
eea6121a 9596 0, rtproc_sec->size))
b34976b6 9597 return FALSE;
b49e97c9
TS
9598 }
9599 }
9600
b34976b6 9601 return TRUE;
b49e97c9
TS
9602}
9603\f
64543e1a
RS
9604/* Structure for saying that BFD machine EXTENSION extends BASE. */
9605
9606struct mips_mach_extension {
9607 unsigned long extension, base;
9608};
9609
9610
9611/* An array describing how BFD machines relate to one another. The entries
9612 are ordered topologically with MIPS I extensions listed last. */
9613
9614static const struct mips_mach_extension mips_mach_extensions[] = {
9615 /* MIPS64 extensions. */
5f74bc13 9616 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a
RS
9617 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9618
9619 /* MIPS V extensions. */
9620 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9621
9622 /* R10000 extensions. */
9623 { bfd_mach_mips12000, bfd_mach_mips10000 },
9624
9625 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9626 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9627 better to allow vr5400 and vr5500 code to be merged anyway, since
9628 many libraries will just use the core ISA. Perhaps we could add
9629 some sort of ASE flag if this ever proves a problem. */
9630 { bfd_mach_mips5500, bfd_mach_mips5400 },
9631 { bfd_mach_mips5400, bfd_mach_mips5000 },
9632
9633 /* MIPS IV extensions. */
9634 { bfd_mach_mips5, bfd_mach_mips8000 },
9635 { bfd_mach_mips10000, bfd_mach_mips8000 },
9636 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 9637 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 9638 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
9639
9640 /* VR4100 extensions. */
9641 { bfd_mach_mips4120, bfd_mach_mips4100 },
9642 { bfd_mach_mips4111, bfd_mach_mips4100 },
9643
9644 /* MIPS III extensions. */
9645 { bfd_mach_mips8000, bfd_mach_mips4000 },
9646 { bfd_mach_mips4650, bfd_mach_mips4000 },
9647 { bfd_mach_mips4600, bfd_mach_mips4000 },
9648 { bfd_mach_mips4400, bfd_mach_mips4000 },
9649 { bfd_mach_mips4300, bfd_mach_mips4000 },
9650 { bfd_mach_mips4100, bfd_mach_mips4000 },
9651 { bfd_mach_mips4010, bfd_mach_mips4000 },
9652
9653 /* MIPS32 extensions. */
9654 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9655
9656 /* MIPS II extensions. */
9657 { bfd_mach_mips4000, bfd_mach_mips6000 },
9658 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9659
9660 /* MIPS I extensions. */
9661 { bfd_mach_mips6000, bfd_mach_mips3000 },
9662 { bfd_mach_mips3900, bfd_mach_mips3000 }
9663};
9664
9665
9666/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9667
9668static bfd_boolean
9719ad41 9669mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
9670{
9671 size_t i;
9672
c5211a54
RS
9673 if (extension == base)
9674 return TRUE;
9675
9676 if (base == bfd_mach_mipsisa32
9677 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
9678 return TRUE;
9679
9680 if (base == bfd_mach_mipsisa32r2
9681 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
9682 return TRUE;
9683
9684 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 9685 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
9686 {
9687 extension = mips_mach_extensions[i].base;
9688 if (extension == base)
9689 return TRUE;
9690 }
64543e1a 9691
c5211a54 9692 return FALSE;
64543e1a
RS
9693}
9694
9695
9696/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 9697
b34976b6 9698static bfd_boolean
9719ad41 9699mips_32bit_flags_p (flagword flags)
00707a0e 9700{
64543e1a
RS
9701 return ((flags & EF_MIPS_32BITMODE) != 0
9702 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9703 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9704 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9705 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9706 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9707 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
9708}
9709
64543e1a 9710
b49e97c9
TS
9711/* Merge backend specific data from an object file to the output
9712 object file when linking. */
9713
b34976b6 9714bfd_boolean
9719ad41 9715_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
9716{
9717 flagword old_flags;
9718 flagword new_flags;
b34976b6
AM
9719 bfd_boolean ok;
9720 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
9721 asection *sec;
9722
9723 /* Check if we have the same endianess */
82e51918 9724 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
9725 {
9726 (*_bfd_error_handler)
d003868e
AM
9727 (_("%B: endianness incompatible with that of the selected emulation"),
9728 ibfd);
aa701218
AO
9729 return FALSE;
9730 }
b49e97c9
TS
9731
9732 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9733 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
b34976b6 9734 return TRUE;
b49e97c9 9735
aa701218
AO
9736 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9737 {
9738 (*_bfd_error_handler)
d003868e
AM
9739 (_("%B: ABI is incompatible with that of the selected emulation"),
9740 ibfd);
aa701218
AO
9741 return FALSE;
9742 }
9743
b49e97c9
TS
9744 new_flags = elf_elfheader (ibfd)->e_flags;
9745 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9746 old_flags = elf_elfheader (obfd)->e_flags;
9747
9748 if (! elf_flags_init (obfd))
9749 {
b34976b6 9750 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
9751 elf_elfheader (obfd)->e_flags = new_flags;
9752 elf_elfheader (obfd)->e_ident[EI_CLASS]
9753 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9754
9755 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9756 && bfd_get_arch_info (obfd)->the_default)
9757 {
9758 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9759 bfd_get_mach (ibfd)))
b34976b6 9760 return FALSE;
b49e97c9
TS
9761 }
9762
b34976b6 9763 return TRUE;
b49e97c9
TS
9764 }
9765
9766 /* Check flag compatibility. */
9767
9768 new_flags &= ~EF_MIPS_NOREORDER;
9769 old_flags &= ~EF_MIPS_NOREORDER;
9770
f4416af6
AO
9771 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9772 doesn't seem to matter. */
9773 new_flags &= ~EF_MIPS_XGOT;
9774 old_flags &= ~EF_MIPS_XGOT;
9775
98a8deaf
RS
9776 /* MIPSpro generates ucode info in n64 objects. Again, we should
9777 just be able to ignore this. */
9778 new_flags &= ~EF_MIPS_UCODE;
9779 old_flags &= ~EF_MIPS_UCODE;
9780
b49e97c9 9781 if (new_flags == old_flags)
b34976b6 9782 return TRUE;
b49e97c9
TS
9783
9784 /* Check to see if the input BFD actually contains any sections.
9785 If not, its flags may not have been initialised either, but it cannot
9786 actually cause any incompatibility. */
9787 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9788 {
9789 /* Ignore synthetic sections and empty .text, .data and .bss sections
9790 which are automatically generated by gas. */
9791 if (strcmp (sec->name, ".reginfo")
9792 && strcmp (sec->name, ".mdebug")
eea6121a 9793 && (sec->size != 0
d13d89fa
NS
9794 || (strcmp (sec->name, ".text")
9795 && strcmp (sec->name, ".data")
9796 && strcmp (sec->name, ".bss"))))
b49e97c9 9797 {
b34976b6 9798 null_input_bfd = FALSE;
b49e97c9
TS
9799 break;
9800 }
9801 }
9802 if (null_input_bfd)
b34976b6 9803 return TRUE;
b49e97c9 9804
b34976b6 9805 ok = TRUE;
b49e97c9 9806
143d77c5
EC
9807 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9808 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 9809 {
b49e97c9 9810 (*_bfd_error_handler)
d003868e
AM
9811 (_("%B: warning: linking PIC files with non-PIC files"),
9812 ibfd);
143d77c5 9813 ok = TRUE;
b49e97c9
TS
9814 }
9815
143d77c5
EC
9816 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9817 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9818 if (! (new_flags & EF_MIPS_PIC))
9819 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9820
9821 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9822 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 9823
64543e1a
RS
9824 /* Compare the ISAs. */
9825 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 9826 {
64543e1a 9827 (*_bfd_error_handler)
d003868e
AM
9828 (_("%B: linking 32-bit code with 64-bit code"),
9829 ibfd);
64543e1a
RS
9830 ok = FALSE;
9831 }
9832 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9833 {
9834 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9835 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 9836 {
64543e1a
RS
9837 /* Copy the architecture info from IBFD to OBFD. Also copy
9838 the 32-bit flag (if set) so that we continue to recognise
9839 OBFD as a 32-bit binary. */
9840 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9841 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9842 elf_elfheader (obfd)->e_flags
9843 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9844
9845 /* Copy across the ABI flags if OBFD doesn't use them
9846 and if that was what caused us to treat IBFD as 32-bit. */
9847 if ((old_flags & EF_MIPS_ABI) == 0
9848 && mips_32bit_flags_p (new_flags)
9849 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9850 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
9851 }
9852 else
9853 {
64543e1a 9854 /* The ISAs aren't compatible. */
b49e97c9 9855 (*_bfd_error_handler)
d003868e
AM
9856 (_("%B: linking %s module with previous %s modules"),
9857 ibfd,
64543e1a
RS
9858 bfd_printable_name (ibfd),
9859 bfd_printable_name (obfd));
b34976b6 9860 ok = FALSE;
b49e97c9 9861 }
b49e97c9
TS
9862 }
9863
64543e1a
RS
9864 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9865 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9866
9867 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
9868 does set EI_CLASS differently from any 32-bit ABI. */
9869 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9870 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9871 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9872 {
9873 /* Only error if both are set (to different values). */
9874 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9875 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9876 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9877 {
9878 (*_bfd_error_handler)
d003868e
AM
9879 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9880 ibfd,
b49e97c9
TS
9881 elf_mips_abi_name (ibfd),
9882 elf_mips_abi_name (obfd));
b34976b6 9883 ok = FALSE;
b49e97c9
TS
9884 }
9885 new_flags &= ~EF_MIPS_ABI;
9886 old_flags &= ~EF_MIPS_ABI;
9887 }
9888
fb39dac1
RS
9889 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9890 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9891 {
9892 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9893
9894 new_flags &= ~ EF_MIPS_ARCH_ASE;
9895 old_flags &= ~ EF_MIPS_ARCH_ASE;
9896 }
9897
b49e97c9
TS
9898 /* Warn about any other mismatches */
9899 if (new_flags != old_flags)
9900 {
9901 (*_bfd_error_handler)
d003868e
AM
9902 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9903 ibfd, (unsigned long) new_flags,
b49e97c9 9904 (unsigned long) old_flags);
b34976b6 9905 ok = FALSE;
b49e97c9
TS
9906 }
9907
9908 if (! ok)
9909 {
9910 bfd_set_error (bfd_error_bad_value);
b34976b6 9911 return FALSE;
b49e97c9
TS
9912 }
9913
b34976b6 9914 return TRUE;
b49e97c9
TS
9915}
9916
9917/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9918
b34976b6 9919bfd_boolean
9719ad41 9920_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
9921{
9922 BFD_ASSERT (!elf_flags_init (abfd)
9923 || elf_elfheader (abfd)->e_flags == flags);
9924
9925 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
9926 elf_flags_init (abfd) = TRUE;
9927 return TRUE;
b49e97c9
TS
9928}
9929
b34976b6 9930bfd_boolean
9719ad41 9931_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 9932{
9719ad41 9933 FILE *file = ptr;
b49e97c9
TS
9934
9935 BFD_ASSERT (abfd != NULL && ptr != NULL);
9936
9937 /* Print normal ELF private data. */
9938 _bfd_elf_print_private_bfd_data (abfd, ptr);
9939
9940 /* xgettext:c-format */
9941 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9942
9943 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9944 fprintf (file, _(" [abi=O32]"));
9945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9946 fprintf (file, _(" [abi=O64]"));
9947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9948 fprintf (file, _(" [abi=EABI32]"));
9949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9950 fprintf (file, _(" [abi=EABI64]"));
9951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9952 fprintf (file, _(" [abi unknown]"));
9953 else if (ABI_N32_P (abfd))
9954 fprintf (file, _(" [abi=N32]"));
9955 else if (ABI_64_P (abfd))
9956 fprintf (file, _(" [abi=64]"));
9957 else
9958 fprintf (file, _(" [no abi set]"));
9959
9960 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9961 fprintf (file, _(" [mips1]"));
9962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9963 fprintf (file, _(" [mips2]"));
9964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9965 fprintf (file, _(" [mips3]"));
9966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9967 fprintf (file, _(" [mips4]"));
9968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9969 fprintf (file, _(" [mips5]"));
9970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9971 fprintf (file, _(" [mips32]"));
9972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9973 fprintf (file, _(" [mips64]"));
af7ee8bf
CD
9974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9975 fprintf (file, _(" [mips32r2]"));
5f74bc13
CD
9976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9977 fprintf (file, _(" [mips64r2]"));
b49e97c9
TS
9978 else
9979 fprintf (file, _(" [unknown ISA]"));
9980
40d32fc6
CD
9981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9982 fprintf (file, _(" [mdmx]"));
9983
9984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9985 fprintf (file, _(" [mips16]"));
9986
b49e97c9
TS
9987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9988 fprintf (file, _(" [32bitmode]"));
9989 else
9990 fprintf (file, _(" [not 32bitmode]"));
9991
9992 fputc ('\n', file);
9993
b34976b6 9994 return TRUE;
b49e97c9 9995}
2f89ff8d 9996
b35d266b 9997const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 9998{
7dcb9820
AM
9999 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10000 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
7dcb9820 10001 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
551b43fd
AM
10002 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10003 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10004 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
7dcb9820 10005 { NULL, 0, 0, 0, 0 }
2f89ff8d 10006};
5e2b0d47
NC
10007
10008/* Ensure that the STO_OPTIONAL flag is copied into h->other,
10009 even if this is not a defintion of the symbol. */
10010void
10011_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
10012 const Elf_Internal_Sym *isym,
10013 bfd_boolean definition,
10014 bfd_boolean dynamic ATTRIBUTE_UNUSED)
10015{
10016 if (! definition
10017 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
10018 h->other |= STO_OPTIONAL;
10019}
This page took 0.971722 seconds and 4 git commands to generate.