[binutils, ARM] <spec_reg> changes for VMRS and VMSR instructions
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
82704155 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
3734320d 295#define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
861fb55a 296#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
297#define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299#define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301#define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 303
b49e97c9
TS
304/* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307struct mips_elf_hash_sort_data
308{
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
0f20cc35
DJ
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
55f8b9d2 314 bfd_size_type min_got_dynindx;
f4416af6
AO
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 317 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 318 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 323 symbol without a GOT entry. */
55f8b9d2 324 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
325};
326
1bbce132
MR
327/* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
330 processing. */
331
332struct plt_entry
333{
334 /* Traditional SVR4 stub offset, or -1 if none. */
335 bfd_vma stub_offset;
336
337 /* Standard PLT entry offset, or -1 if none. */
338 bfd_vma mips_offset;
339
340 /* Compressed PLT entry offset, or -1 if none. */
341 bfd_vma comp_offset;
342
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
345
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
348
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
351};
352
b49e97c9
TS
353/* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
355
356struct mips_elf_link_hash_entry
357{
358 struct elf_link_hash_entry root;
359
360 /* External symbol information. */
361 EXTR esym;
362
861fb55a
DJ
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
365
b49e97c9
TS
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 this symbol. */
368 unsigned int possibly_dynamic_relocs;
369
b49e97c9
TS
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
372 asection *fn_stub;
373
b49e97c9
TS
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
376 asection *call_stub;
377
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
7c5fcef7 381
634835ae
RS
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
384
6ccf4795
RS
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
389
71782a75
RS
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
393
861fb55a
DJ
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
398
71782a75
RS
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
404
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
408
861fb55a
DJ
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
413
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
1bbce132
MR
417
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
b49e97c9
TS
420};
421
422/* MIPS ELF linker hash table. */
423
424struct mips_elf_link_hash_table
425{
426 struct elf_link_hash_table root;
861fb55a 427
b49e97c9
TS
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
861fb55a 430
b49e97c9
TS
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
861fb55a 433
e6aea42d
MR
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 436 bfd_boolean use_rld_obj_head;
861fb55a 437
b4082c70
DD
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
861fb55a 440
b49e97c9 441 /* This is set if we see any mips16 stub sections. */
b34976b6 442 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
443
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
446
833794fc
MR
447 /* True if we can only use 32-bit microMIPS instructions. */
448 bfd_boolean insn32;
449
8b10b0b3
MR
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
452
3734320d
MF
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
455
0a44bf69
RS
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
861fb55a 458
0e53d9da
AN
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
861fb55a 461
47275900
MR
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
464
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
467
0a44bf69
RS
468 /* Shortcuts to some dynamic sections, or NULL if they are not
469 being used. */
0a44bf69 470 asection *srelplt2;
4e41d0d7 471 asection *sstubs;
861fb55a 472
a8028dd0
RS
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
861fb55a 475
d222d210
RS
476 /* The global symbol in the GOT with the lowest index in the dynamic
477 symbol table. */
478 struct elf_link_hash_entry *global_gotsym;
479
861fb55a 480 /* The size of the PLT header in bytes. */
0a44bf69 481 bfd_vma plt_header_size;
861fb55a 482
1bbce132
MR
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
485
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
488
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
491
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
494
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
861fb55a 497
33bb52fb
RS
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
861fb55a 500
5108fc1b
RS
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
861fb55a
DJ
503
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
506
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
510
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
512 pairs. */
513 htab_t la25_stubs;
514
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
519
520 The function returns the new section on success, otherwise it
521 returns null. */
522 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
523
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
1bbce132
MR
526
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
529};
530
4dfe6ac6
NC
531/* Get the MIPS ELF linker hash table from a link_info structure. */
532
533#define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
536
861fb55a 537/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
538struct mips_htab_traverse_info
539{
861fb55a
DJ
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
542 bfd *output_bfd;
543
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
545 bfd_boolean error;
b49e97c9
TS
546};
547
6ae68ba3
MR
548/* MIPS ELF private object data. */
549
550struct mips_elf_obj_tdata
551{
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
554
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
556 bfd *abi_fp_bfd;
ee227692 557
b60bf9be
CF
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
559 bfd *abi_msa_bfd;
560
351cdf24
MF
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
564
ee227692
RS
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
698600e4
AM
567
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
572
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
576
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
6ae68ba3
MR
583};
584
585/* Get MIPS ELF private object data from BFD's tdata. */
586
587#define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
589
0f20cc35
DJ
590#define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 603 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 618
b49e97c9
TS
619/* Structure used to pass information to mips_elf_output_extsym. */
620
621struct extsym_info
622{
9e4aeb93
RS
623 bfd *abfd;
624 struct bfd_link_info *info;
b49e97c9
TS
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
b34976b6 627 bfd_boolean failed;
b49e97c9
TS
628};
629
8dc1a139 630/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
631
632static const char * const mips_elf_dynsym_rtproc_names[] =
633{
634 "_procedure_table",
635 "_procedure_string_table",
636 "_procedure_table_size",
637 NULL
638};
639
640/* These structures are used to generate the .compact_rel section on
8dc1a139 641 IRIX5. */
b49e97c9
TS
642
643typedef struct
644{
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
651} Elf32_compact_rel;
652
653typedef struct
654{
655 bfd_byte id1[4];
656 bfd_byte num[4];
657 bfd_byte id2[4];
658 bfd_byte offset[4];
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661} Elf32_External_compact_rel;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
671} Elf32_crinfo;
672
673typedef struct
674{
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
680} Elf32_crinfo2;
681
682typedef struct
683{
684 bfd_byte info[4];
685 bfd_byte konst[4];
686 bfd_byte vaddr[4];
687} Elf32_External_crinfo;
688
689typedef struct
690{
691 bfd_byte info[4];
692 bfd_byte konst[4];
693} Elf32_External_crinfo2;
694
695/* These are the constants used to swap the bitfields in a crinfo. */
696
697#define CRINFO_CTYPE (0x1)
698#define CRINFO_CTYPE_SH (31)
699#define CRINFO_RTYPE (0xf)
700#define CRINFO_RTYPE_SH (27)
701#define CRINFO_DIST2TO (0xff)
702#define CRINFO_DIST2TO_SH (19)
703#define CRINFO_RELVADDR (0x7ffff)
704#define CRINFO_RELVADDR_SH (0)
705
706/* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709#define CRF_MIPS_LONG 1
710#define CRF_MIPS_SHORT 0
711
712/* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
714
715 (type) (konst)
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
720 */
721
722#define CRT_MIPS_REL32 0xa
723#define CRT_MIPS_WORD 0xb
724#define CRT_MIPS_GPHI_LO 0xc
725#define CRT_MIPS_JMPAD 0xd
726
727#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
731\f
732/* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
734
735typedef struct runtime_pdr {
ae9a127f
NC
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
b49e97c9 745 long reserved;
ae9a127f 746 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
747} RPDR, *pRPDR;
748#define cbRPDR sizeof (RPDR)
749#define rpdNil ((pRPDR) 0)
750\f
b15e6682 751static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
b34976b6 754static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 755 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
756static bfd_vma mips_elf_high
757 (bfd_vma);
b34976b6 758static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
f4416af6 762static bfd_vma mips_elf_adjust_gp
9719ad41 763 (bfd *, struct mips_got_info *, bfd *);
f4416af6 764
b49e97c9
TS
765/* This will be used when we sort the dynamic relocation records. */
766static bfd *reldyn_sorting_bfd;
767
6d30f5b2
NC
768/* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770#define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
773
cd8d5a82
CF
774/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777#define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
779
780/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
782 all CPUs. */
783#define JALR_TO_BAL_P(abfd) 1
784
38a7df63
CF
785/* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
787 all CPUs. */
788#define JR_TO_B_P(abfd) 1
789
861fb55a
DJ
790/* True if ABFD is a PIC object. */
791#define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
793
351cdf24
MF
794/* Nonzero if ABFD is using the O32 ABI. */
795#define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
797
b49e97c9 798/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
799#define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
801
4a14403c 802/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 803#define ABI_64_P(abfd) \
141ff970 804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 805
4a14403c
TS
806/* Nonzero if ABFD is using NewABI conventions. */
807#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
808
e8faf7d1
MR
809/* Nonzero if ABFD has microMIPS code. */
810#define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
812
7361da2c
AB
813/* Nonzero if ABFD is MIPS R6. */
814#define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
817
4a14403c 818/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
819#define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
821
b49e97c9
TS
822/* Whether we are trying to be compatible with IRIX at all. */
823#define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
825
826/* The name of the options section. */
827#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 829
cc2e31b9
RS
830/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
834
351cdf24
MF
835/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
838
943284cc
DJ
839/* Whether the section is readonly. */
840#define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
843
b49e97c9 844/* The name of the stub section. */
ca07892d 845#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
846
847/* The size of an external REL relocation. */
848#define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
850
0a44bf69
RS
851/* The size of an external RELA relocation. */
852#define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
854
b49e97c9
TS
855/* The size of an external dynamic table entry. */
856#define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
858
859/* The size of a GOT entry. */
860#define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
b4082c70
DD
863/* The size of the .rld_map section. */
864#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
b49e97c9
TS
867/* The size of a symbol-table entry. */
868#define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
870
871/* The default alignment for sections, as a power of two. */
872#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 873 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
874
875/* Get word-sized data. */
876#define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
878
879/* Put out word-sized data. */
880#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
07d6d2b8
AM
881 (ABI_64_P (abfd) \
882 ? bfd_put_64 (abfd, val, ptr) \
b49e97c9
TS
883 : bfd_put_32 (abfd, val, ptr))
884
861fb55a
DJ
885/* The opcode for word-sized loads (LW or LD). */
886#define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
888
b49e97c9 889/* Add a dynamic symbol table-entry. */
9719ad41 890#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 891 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
892
893#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
0aa13fee 894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
b49e97c9 895
0a44bf69
RS
896/* The name of the dynamic relocation section. */
897#define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
899
b49e97c9
TS
900/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 903#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 904
51e38d68
RS
905/* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
907 module pointer. */
908#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
910
f4416af6 911/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
912#define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
914
915/* The maximum size of the GOT for it to be addressable using 16-bit
916 offsets from $gp. */
0a44bf69 917#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 918
6a691779 919/* Instructions which appear in a stub. */
3d6746ca
DD
920#define STUB_LW(abfd) \
921 ((ABI_64_P (abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
07d6d2b8 923 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 924#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 925#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 926#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
3734320d 927#define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
5108fc1b
RS
928#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
930#define STUB_LI16S(abfd, VAL) \
931 ((ABI_64_P (abfd) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
934
1bbce132
MR
935/* Likewise for the microMIPS ASE. */
936#define STUB_LW_MICROMIPS(abfd) \
937 (ABI_64_P (abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 941#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
942#define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 945#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
946#define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948#define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950#define STUB_LI16S_MICROMIPS(abfd, VAL) \
951 (ABI_64_P (abfd) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
954
5108fc1b
RS
955#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
957#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
959#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
961
962/* The name of the dynamic interpreter. This is put in the .interp
963 section. */
964
07d6d2b8
AM
965#define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
b49e97c9
TS
968 : "/usr/lib/libc.so.1")
969
970#ifdef BFD64
ee6423ed
AO
971#define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
973#define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975#define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977#define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
979#else
ee6423ed 980#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
981#define ELF_R_SYM(bfd, i) \
982 (ELF32_R_SYM (i))
983#define ELF_R_TYPE(bfd, i) \
984 (ELF32_R_TYPE (i))
985#define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
987#endif
988\f
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
991
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1000
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1007
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1015 $f0/$f1 and $2/$3.)
1016
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1020
1021 We record any stubs that we find in the symbol table. */
1022
1023#define FN_STUB ".mips16.fn."
1024#define CALL_STUB ".mips16.call."
1025#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1026
1027#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1030\f
861fb55a 1031/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1032static const bfd_vma mips_o32_exec_plt0_entry[] =
1033{
861fb55a
DJ
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1038 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042};
1043
3734320d
MF
1044/* The format of the first PLT entry in an O32 executable using compact
1045 jumps. */
1046static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1047{
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1056};
1057
861fb55a
DJ
1058/* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1060static const bfd_vma mips_n32_exec_plt0_entry[] =
1061{
861fb55a
DJ
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1066 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1070};
1071
3734320d
MF
1072/* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1074 instead. */
1075static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1076{
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1085};
1086
861fb55a
DJ
1087/* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1089static const bfd_vma mips_n64_exec_plt0_entry[] =
1090{
861fb55a
DJ
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1095 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1099};
1100
3734320d
MF
1101/* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1103 entries. */
1104static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1105{
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1114};
1115
1116
1bbce132
MR
1117/* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1121
1122 The trailing NOP is for alignment and correct disassembly only. */
1123static const bfd_vma micromips_o32_exec_plt0_entry[] =
1124{
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1133 0x0c00 /* nop */
1134};
1135
833794fc
MR
1136/* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1139{
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1144 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1148};
1149
1bbce132 1150/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1151static const bfd_vma mips_exec_plt_entry[] =
1152{
861fb55a
DJ
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1157};
1158
7361da2c
AB
1159static const bfd_vma mipsr6_exec_plt_entry[] =
1160{
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1165};
1166
3734320d
MF
1167static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1168{
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1173};
1174
1bbce132
MR
1175/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178static const bfd_vma mips16_o32_exec_plt_entry[] =
1179{
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1183 0xeb00, /* jr $3 */
1184 0x653b, /* move $25, $3 */
1185 0x6500, /* nop */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1187};
1188
1189/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191static const bfd_vma micromips_o32_exec_plt_entry[] =
1192{
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1197};
1198
833794fc
MR
1199/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1201{
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1206};
1207
0a44bf69 1208/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1209static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1210{
0a44bf69
RS
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1217};
1218
1219/* The format of subsequent PLT entries. */
6d30f5b2
NC
1220static const bfd_vma mips_vxworks_exec_plt_entry[] =
1221{
0a44bf69
RS
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1230};
1231
1232/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1233static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1234{
0a44bf69
RS
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1241};
1242
1243/* The format of subsequent PLT entries. */
6d30f5b2
NC
1244static const bfd_vma mips_vxworks_shared_plt_entry[] =
1245{
0a44bf69
RS
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1248};
1249\f
d21911ea
MR
1250/* microMIPS 32-bit opcode helper installer. */
1251
1252static void
1253bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1254{
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
07d6d2b8 1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
d21911ea
MR
1257}
1258
1259/* microMIPS 32-bit opcode helper retriever. */
1260
1261static bfd_vma
1262bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1263{
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1265}
1266\f
b49e97c9
TS
1267/* Look up an entry in a MIPS ELF linker hash table. */
1268
1269#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1272 (copy), (follow)))
1273
1274/* Traverse a MIPS ELF linker hash table. */
1275
1276#define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1278 (&(table)->root, \
9719ad41 1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1280 (info)))
1281
0f20cc35
DJ
1282/* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1284
1285#define TP_OFFSET 0x7000
1286#define DTP_OFFSET 0x8000
1287
1288static bfd_vma
1289dtprel_base (struct bfd_link_info *info)
1290{
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1293 return 0;
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1295}
1296
1297static bfd_vma
1298tprel_base (struct bfd_link_info *info)
1299{
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1304}
1305
b49e97c9
TS
1306/* Create an entry in a MIPS ELF linker hash table. */
1307
1308static struct bfd_hash_entry *
9719ad41
RS
1309mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1311{
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1314
1315 /* Allocate the structure if it has not already been allocated by a
1316 subclass. */
9719ad41
RS
1317 if (ret == NULL)
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1319 if (ret == NULL)
b49e97c9
TS
1320 return (struct bfd_hash_entry *) ret;
1321
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1325 table, string));
9719ad41 1326 if (ret != NULL)
b49e97c9
TS
1327 {
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1332 ret->esym.ifd = -2;
861fb55a 1333 ret->la25_stub = 0;
b49e97c9 1334 ret->possibly_dynamic_relocs = 0;
b49e97c9 1335 ret->fn_stub = NULL;
b49e97c9
TS
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
634835ae 1338 ret->global_got_area = GGA_NONE;
6ccf4795 1339 ret->got_only_for_calls = TRUE;
71782a75 1340 ret->readonly_reloc = FALSE;
861fb55a 1341 ret->has_static_relocs = FALSE;
71782a75
RS
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
861fb55a 1344 ret->has_nonpic_branches = FALSE;
33bb52fb 1345 ret->needs_lazy_stub = FALSE;
1bbce132 1346 ret->use_plt_entry = FALSE;
b49e97c9
TS
1347 }
1348
1349 return (struct bfd_hash_entry *) ret;
1350}
f0abc2a1 1351
6ae68ba3
MR
1352/* Allocate MIPS ELF private object data. */
1353
1354bfd_boolean
1355_bfd_mips_elf_mkobject (bfd *abfd)
1356{
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1358 MIPS_ELF_DATA);
1359}
1360
f0abc2a1 1361bfd_boolean
9719ad41 1362_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1363{
f592407e
AM
1364 if (!sec->used_by_bfd)
1365 {
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1368
f592407e
AM
1369 sdata = bfd_zalloc (abfd, amt);
1370 if (sdata == NULL)
1371 return FALSE;
1372 sec->used_by_bfd = sdata;
1373 }
f0abc2a1
AM
1374
1375 return _bfd_elf_new_section_hook (abfd, sec);
1376}
b49e97c9
TS
1377\f
1378/* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1380
b34976b6 1381bfd_boolean
9719ad41
RS
1382_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
b49e97c9
TS
1384{
1385 HDRR *symhdr;
1386 const struct ecoff_debug_swap *swap;
9719ad41 1387 char *ext_hdr;
b49e97c9
TS
1388
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1391
9719ad41 1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1394 goto error_return;
1395
9719ad41 1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1397 swap->external_hdr_size))
b49e97c9
TS
1398 goto error_return;
1399
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1402
1403 /* The symbolic header contains absolute file offsets and sizes to
1404 read. */
1405#define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1408 else \
1409 { \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1411 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
9719ad41 1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1417 }
1418
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1425 union aux_ext *);
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1431#undef READ
1432
1433 debug->fdr = NULL;
b49e97c9 1434
b34976b6 1435 return TRUE;
b49e97c9
TS
1436
1437 error_return:
1438 if (ext_hdr != NULL)
1439 free (ext_hdr);
1440 if (debug->line != NULL)
1441 free (debug->line);
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1453 free (debug->ss);
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
b34976b6 1462 return FALSE;
b49e97c9
TS
1463}
1464\f
1465/* Swap RPDR (runtime procedure table entry) for output. */
1466
1467static void
9719ad41 1468ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1469{
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1481}
1482
1483/* Create a runtime procedure table from the .mdebug section. */
1484
b34976b6 1485static bfd_boolean
9719ad41
RS
1486mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
b49e97c9
TS
1489{
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
9719ad41 1494 void *rtproc;
b49e97c9
TS
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
9719ad41 1521 epdr = bfd_malloc (size * count);
b49e97c9
TS
1522 if (epdr == NULL)
1523 goto error_return;
1524
9719ad41 1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
9719ad41 1529 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
9719ad41 1534 sv = bfd_malloc (size * count);
b49e97c9
TS
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
9719ad41 1540 esym = bfd_malloc (size * count);
b49e97c9
TS
1541 if (esym == NULL)
1542 goto error_return;
1543
9719ad41 1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1545 goto error_return;
1546
1547 count = hdr->issMax;
9719ad41 1548 ss = bfd_malloc (count);
b49e97c9
TS
1549 if (ss == NULL)
1550 goto error_return;
f075ee0c 1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
9719ad41
RS
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
9719ad41 1575 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
9719ad41 1584 erp = rtproc;
b49e97c9
TS
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
eea6121a 1599 s->size = size;
9719ad41 1600 s->contents = rtproc;
b49e97c9
TS
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
8423293d 1604 s->map_head.link_order = NULL;
b49e97c9
TS
1605
1606 if (epdr != NULL)
1607 free (epdr);
1608 if (rpdr != NULL)
1609 free (rpdr);
1610 if (esym != NULL)
1611 free (esym);
1612 if (ss != NULL)
1613 free (ss);
1614 if (sv != NULL)
1615 free (sv);
1616
b34976b6 1617 return TRUE;
b49e97c9
TS
1618
1619 error_return:
1620 if (epdr != NULL)
1621 free (epdr);
1622 if (rpdr != NULL)
1623 free (rpdr);
1624 if (esym != NULL)
1625 free (esym);
1626 if (ss != NULL)
1627 free (ss);
1628 if (sv != NULL)
1629 free (sv);
b34976b6 1630 return FALSE;
b49e97c9 1631}
738e5348 1632\f
861fb55a
DJ
1633/* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1635
1636static bfd_boolean
1637mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1640 bfd_vma size)
1641{
a848a227 1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1645 char *name;
1646 bfd_boolean res;
861fb55a 1647
a848a227 1648 if (micromips_p)
df58fc94
RS
1649 value |= 1;
1650
861fb55a 1651 /* Create a new symbol. */
e1fa0163 1652 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1653 bh = NULL;
e1fa0163
NC
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1656 TRUE, FALSE, &bh);
1657 free (name);
1658 if (! res)
861fb55a
DJ
1659 return FALSE;
1660
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1664 elfh->size = size;
1665 elfh->forced_local = 1;
a848a227
MR
1666 if (micromips_p)
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1668 return TRUE;
1669}
1670
738e5348
RS
1671/* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1673 to read. */
1674
1675static bfd_boolean
1676mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1678 const char *prefix)
1679{
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
e1fa0163 1682 char *name;
738e5348
RS
1683 asection *s;
1684 bfd_vma value;
e1fa0163 1685 bfd_boolean res;
738e5348
RS
1686
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692
1693 /* Create a new symbol. */
e1fa0163 1694 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1695 bh = NULL;
e1fa0163
NC
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1698 TRUE, FALSE, &bh);
1699 free (name);
1700 if (! res)
738e5348
RS
1701 return FALSE;
1702
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1709 return TRUE;
1710}
1711
1712/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1714
1715static bfd_boolean
1716section_allows_mips16_refs_p (asection *section)
1717{
1718 const char *name;
1719
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1725}
1726
1727/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1730
1731static unsigned long
cb4437b8
MR
1732mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
502e814e 1734 const Elf_Internal_Rela *relocs,
738e5348
RS
1735 const Elf_Internal_Rela *relend)
1736{
cb4437b8 1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1738 const Elf_Internal_Rela *rel;
1739
cb4437b8
MR
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1745
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1750
1751 return 0;
1752}
b49e97c9
TS
1753
1754/* Check the mips16 stubs for a particular symbol, and see if we can
1755 discard them. */
1756
861fb55a
DJ
1757static void
1758mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
b49e97c9 1760{
738e5348
RS
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1765 {
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1768 }
1769
b49e97c9
TS
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1772 {
1773 /* We don't need the fn_stub; the only references to this symbol
07d6d2b8
AM
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
eea6121a 1776 h->fn_stub->size = 0;
b49e97c9
TS
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1780 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1781 }
1782
1783 if (h->call_stub != NULL
30c09090 1784 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1785 {
1786 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
eea6121a 1789 h->call_stub->size = 0;
b49e97c9
TS
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1793 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1794 }
1795
1796 if (h->call_fp_stub != NULL
30c09090 1797 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1798 {
1799 /* We don't need the call_stub; this is a 16 bit function, so
07d6d2b8
AM
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
eea6121a 1802 h->call_fp_stub->size = 0;
b49e97c9
TS
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1807 }
861fb55a
DJ
1808}
1809
1810/* Hashtable callbacks for mips_elf_la25_stubs. */
1811
1812static hashval_t
1813mips_elf_la25_stub_hash (const void *entry_)
1814{
1815 const struct mips_elf_la25_stub *entry;
1816
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1820}
1821
1822static int
1823mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1824{
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1826
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1833}
1834
1835/* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1837 success. */
1838
1839bfd_boolean
1840_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1842 asection *))
1843{
1844 struct mips_elf_link_hash_table *htab;
1845
1846 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1847 if (htab == NULL)
1848 return FALSE;
1849
861fb55a
DJ
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1854 return FALSE;
1855
1856 return TRUE;
1857}
1858
1859/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
861fb55a
DJ
1864
1865static bfd_boolean
1866mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1867{
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1872 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1877}
1878
8f0c309a
CLT
1879/* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1881
1882static bfd_vma
1883mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1884 asection **sec)
1885{
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1887 {
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1890 return 0;
1891 }
1892 else
1893 {
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1896 }
1897}
1898
861fb55a
DJ
1899/* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1902
1903static bfd_boolean
1904mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1906{
1907 struct mips_elf_link_hash_table *htab;
1908 char *name;
1909 asection *s, *input_section;
1910 unsigned int align;
1911
1912 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1913 if (htab == NULL)
1914 return FALSE;
861fb55a
DJ
1915
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1918 if (name == NULL)
1919 return FALSE;
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1921
1922 /* Create the section. */
8f0c309a 1923 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1926 if (s == NULL)
1927 return FALSE;
1928
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1932 return FALSE;
1933 if (align > 3)
1934 s->size = (1 << align) - 8;
1935
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1940
1941 /* Allocate room for it. */
1942 s->size += 8;
1943 return TRUE;
1944}
1945
1946/* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1949
1950static bfd_boolean
1951mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1953{
1954 struct mips_elf_link_hash_table *htab;
1955 asection *s;
1956
1957 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1958 if (htab == NULL)
1959 return FALSE;
861fb55a
DJ
1960
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1963 if (s == NULL)
1964 {
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1969 return FALSE;
1970 htab->strampoline = s;
1971 }
1972
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1977
1978 /* Allocate room for it. */
1979 s->size += 16;
1980 return TRUE;
1981}
1982
1983/* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1985
1986static bfd_boolean
1987mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1989{
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1993 asection *s;
1994 bfd_vma value;
1995 void **slot;
1996
861fb55a
DJ
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
1999 search.offset = 0;
2000 search.h = h;
2001
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
2004 if (htab == NULL)
2005 return FALSE;
2006
861fb55a
DJ
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2008 if (slot == NULL)
2009 return FALSE;
2010
2011 stub = (struct mips_elf_la25_stub *) *slot;
2012 if (stub != NULL)
2013 {
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2016 return TRUE;
2017 }
2018
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2021 if (stub == NULL)
2022 return FALSE;
2023 *stub = search;
2024 *slot = stub;
2025
8f0c309a
CLT
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2030 value &= ~1;
8f0c309a
CLT
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2032
861fb55a
DJ
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2037}
2038
2039/* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2041
2042static bfd_boolean
2043mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2044{
2045 struct mips_htab_traverse_info *hti;
2046
2047 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 2048 if (!bfd_link_relocatable (hti->info))
861fb55a 2049 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 2050
861fb55a
DJ
2051 if (mips_elf_local_pic_function_p (h))
2052 {
ba85c43e
NC
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2056 return TRUE;
2057
861fb55a
DJ
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2062 stub. */
0e1862bb 2063 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2064 {
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2067 }
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2069 {
2070 hti->error = TRUE;
2071 return FALSE;
2072 }
2073 }
b34976b6 2074 return TRUE;
b49e97c9
TS
2075}
2076\f
d6f16593
MR
2077/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2079 are 32 bits.
2080
2081 The format of these instructions is:
2082
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
07d6d2b8 2086 | Immediate 15:0 |
d6f16593
MR
2087 +-----------------------------------------------+
2088
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2091
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2102 instruction.
2103
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2110
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2112 defined as
2113
2114 big-endian:
2115 +--------+----------------------+
07d6d2b8
AM
2116 | | |
2117 | | targ26-16 |
2118 |31 26|25 0|
d6f16593
MR
2119 +--------+----------------------+
2120
2121 little-endian:
2122 +----------+------+-------------+
07d6d2b8
AM
2123 | | | |
2124 | sub1 | | sub2 |
2125 |0 9|10 15|16 31|
d6f16593
MR
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2129
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2135
738e5348
RS
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2139 immediate fields:
2140
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2146
2147 A typical instruction will have a format like this:
d6f16593
MR
2148
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2154
2155 EXTEND is the five bit value 11110. Major is the instruction
2156 opcode.
2157
738e5348
RS
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2160 little-endian system.
2161
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
738e5348
RS
2165
2166static inline bfd_boolean
2167mips16_reloc_p (int r_type)
2168{
2169 switch (r_type)
2170 {
2171 case R_MIPS16_26:
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2175 case R_MIPS16_HI16:
2176 case R_MIPS16_LO16:
d0f13682
CLT
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2184 case R_MIPS16_PC16_S1:
738e5348
RS
2185 return TRUE;
2186
2187 default:
2188 return FALSE;
2189 }
2190}
2191
df58fc94
RS
2192/* Check if a microMIPS reloc. */
2193
2194static inline bfd_boolean
2195micromips_reloc_p (unsigned int r_type)
2196{
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2198}
2199
2200/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2203
2204static inline bfd_boolean
2205micromips_reloc_shuffle_p (unsigned int r_type)
2206{
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2210}
2211
738e5348
RS
2212static inline bfd_boolean
2213got16_reloc_p (int r_type)
2214{
df58fc94
RS
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2218}
2219
2220static inline bfd_boolean
2221call16_reloc_p (int r_type)
2222{
df58fc94
RS
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2226}
2227
2228static inline bfd_boolean
2229got_disp_reloc_p (unsigned int r_type)
2230{
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2232}
2233
2234static inline bfd_boolean
2235got_page_reloc_p (unsigned int r_type)
2236{
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2238}
2239
df58fc94
RS
2240static inline bfd_boolean
2241got_lo16_reloc_p (unsigned int r_type)
2242{
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2244}
2245
2246static inline bfd_boolean
2247call_hi16_reloc_p (unsigned int r_type)
2248{
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2250}
2251
2252static inline bfd_boolean
2253call_lo16_reloc_p (unsigned int r_type)
2254{
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2256}
2257
2258static inline bfd_boolean
2259hi16_reloc_p (int r_type)
2260{
df58fc94
RS
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
7361da2c
AB
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
738e5348 2265}
d6f16593 2266
738e5348
RS
2267static inline bfd_boolean
2268lo16_reloc_p (int r_type)
2269{
df58fc94
RS
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
7361da2c
AB
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
738e5348
RS
2274}
2275
2276static inline bfd_boolean
2277mips16_call_reloc_p (int r_type)
2278{
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2280}
d6f16593 2281
38a7df63
CF
2282static inline bfd_boolean
2283jal_reloc_p (int r_type)
2284{
df58fc94
RS
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2288}
2289
99aefae6
MR
2290static inline bfd_boolean
2291b_reloc_p (int r_type)
2292{
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
c9775dde 2296 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2301}
2302
7361da2c
AB
2303static inline bfd_boolean
2304aligned_pcrel_reloc_p (int r_type)
2305{
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2308}
2309
9d862524
MR
2310static inline bfd_boolean
2311branch_reloc_p (int r_type)
2312{
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2318}
2319
c9775dde
MR
2320static inline bfd_boolean
2321mips16_branch_reloc_p (int r_type)
2322{
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2325}
2326
df58fc94
RS
2327static inline bfd_boolean
2328micromips_branch_reloc_p (int r_type)
2329{
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2334}
2335
2336static inline bfd_boolean
2337tls_gd_reloc_p (unsigned int r_type)
2338{
d0f13682
CLT
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2342}
2343
2344static inline bfd_boolean
2345tls_ldm_reloc_p (unsigned int r_type)
2346{
d0f13682
CLT
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2350}
2351
2352static inline bfd_boolean
2353tls_gottprel_reloc_p (unsigned int r_type)
2354{
d0f13682
CLT
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2358}
2359
d6f16593 2360void
df58fc94
RS
2361_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2363{
df58fc94 2364 bfd_vma first, second, val;
d6f16593 2365
df58fc94 2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2367 return;
2368
df58fc94
RS
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2377 else
df58fc94
RS
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2380 bfd_put_32 (abfd, val, data);
2381}
2382
2383void
df58fc94
RS
2384_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2386{
df58fc94 2387 bfd_vma first, second, val;
d6f16593 2388
df58fc94 2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2390 return;
2391
2392 val = bfd_get_32 (abfd, data);
df58fc94 2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2394 {
df58fc94
RS
2395 second = val & 0xffff;
2396 first = val >> 16;
2397 }
2398 else if (r_type != R_MIPS16_26)
2399 {
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2402 }
2403 else
2404 {
df58fc94
RS
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
d6f16593 2408 }
df58fc94
RS
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
d6f16593
MR
2411}
2412
b49e97c9 2413bfd_reloc_status_type
9719ad41
RS
2414_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2417{
2418 bfd_vma relocation;
a7ebbfdf 2419 bfd_signed_vma val;
30ac9238 2420 bfd_reloc_status_type status;
b49e97c9
TS
2421
2422 if (bfd_is_com_section (symbol->section))
2423 relocation = 0;
2424 else
2425 relocation = symbol->value;
2426
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2429
07515404 2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2431 return bfd_reloc_outofrange;
2432
b49e97c9 2433 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2434 val = reloc_entry->addend;
2435
30ac9238 2436 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2437
b49e97c9 2438 /* Adjust val for the final section location and GP value. If we
1049f94e 2439 are producing relocatable output, we don't want to do this for
b49e97c9 2440 an external symbol. */
1049f94e 2441 if (! relocatable
b49e97c9
TS
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2444
a7ebbfdf
TS
2445 if (reloc_entry->howto->partial_inplace)
2446 {
30ac9238
RS
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2448 (bfd_byte *) data
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2451 return status;
a7ebbfdf
TS
2452 }
2453 else
2454 reloc_entry->addend = val;
b49e97c9 2455
1049f94e 2456 if (relocatable)
b49e97c9 2457 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2458
2459 return bfd_reloc_ok;
2460}
2461
2462/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2465 INPUT_SECTION. */
2466
2467struct mips_hi16
2468{
2469 struct mips_hi16 *next;
2470 bfd_byte *data;
2471 asection *input_section;
2472 arelent rel;
2473};
2474
2475/* FIXME: This should not be a static variable. */
2476
2477static struct mips_hi16 *mips_hi16_list;
2478
2479/* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2482
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2487
2488bfd_reloc_status_type
2489_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2493{
2494 struct mips_hi16 *n;
2495
07515404 2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2497 return bfd_reloc_outofrange;
2498
2499 n = bfd_malloc (sizeof *n);
2500 if (n == NULL)
2501 return bfd_reloc_outofrange;
2502
2503 n->next = mips_hi16_list;
2504 n->data = data;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2507 mips_hi16_list = n;
2508
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2511
2512 return bfd_reloc_ok;
2513}
2514
738e5348 2515/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2518
2519bfd_reloc_status_type
2520_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2523{
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2530 error_message);
2531
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2534}
2535
2536/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2539
2540bfd_reloc_status_type
2541_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2544{
2545 bfd_vma vallo;
d6f16593 2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2547
07515404 2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2549 return bfd_reloc_outofrange;
2550
df58fc94 2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2552 location);
df58fc94
RS
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
d6f16593 2556
30ac9238
RS
2557 while (mips_hi16_list != NULL)
2558 {
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2561
2562 hi = mips_hi16_list;
2563
738e5348
RS
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2575
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2579
30ac9238
RS
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2582 error_message);
2583 if (ret != bfd_reloc_ok)
2584 return ret;
2585
2586 mips_hi16_list = hi->next;
2587 free (hi);
2588 }
2589
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2592 error_message);
2593}
2594
2595/* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2598
2599bfd_reloc_status_type
2600_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2604{
2605 bfd_signed_vma val;
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2608
2609 relocatable = (output_bfd != NULL);
2610
07515404 2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2612 return bfd_reloc_outofrange;
2613
2614 /* Build up the field adjustment in VAL. */
2615 val = 0;
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2617 {
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2623 }
2624
2625 if (!relocatable)
2626 {
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2631 {
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2635 }
2636 }
2637
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2644 else
2645 {
d6f16593
MR
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2647
30ac9238
RS
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2650
2651 /* Add VAL to the relocation field. */
df58fc94
RS
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2653 location);
30ac9238 2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2655 location);
df58fc94
RS
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2657 location);
d6f16593 2658
30ac9238
RS
2659 if (status != bfd_reloc_ok)
2660 return status;
2661 }
2662
2663 if (relocatable)
2664 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2665
2666 return bfd_reloc_ok;
2667}
2668\f
2669/* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2671
2672static void
9719ad41
RS
2673bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2674 Elf32_gptab *in)
b49e97c9
TS
2675{
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2678}
2679
2680static void
9719ad41
RS
2681bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
b49e97c9
TS
2683{
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2686}
2687
2688static void
9719ad41
RS
2689bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
b49e97c9
TS
2691{
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2698}
2699
2700static void
9719ad41
RS
2701bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
b49e97c9
TS
2703{
2704 unsigned long l;
2705
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2713}
b49e97c9
TS
2714\f
2715/* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2718
2719void
9719ad41
RS
2720bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2721 Elf32_RegInfo *in)
b49e97c9
TS
2722{
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2729}
2730
2731void
9719ad41
RS
2732bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
b49e97c9
TS
2734{
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741}
2742
2743/* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2748
2749void
9719ad41
RS
2750bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2752{
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2760}
2761
2762void
9719ad41
RS
2763bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
b49e97c9
TS
2765{
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2773}
2774
2775/* Swap in an options header. */
2776
2777void
9719ad41
RS
2778bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
b49e97c9
TS
2780{
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2785}
2786
2787/* Swap out an options header. */
2788
2789void
9719ad41
RS
2790bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
b49e97c9
TS
2792{
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2797}
351cdf24
MF
2798
2799/* Swap in an abiflags structure. */
2800
2801void
2802bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2805{
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2817}
2818
2819/* Swap out an abiflags structure. */
2820
2821void
2822bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2825{
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2837}
b49e97c9
TS
2838\f
2839/* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2841
2842static int
9719ad41 2843sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2844{
947216bf
AM
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
6870500c 2847 int diff;
b49e97c9 2848
947216bf
AM
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2851
6870500c
RS
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2853 if (diff != 0)
2854 return diff;
2855
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2857 return -1;
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2859 return 1;
2860 return 0;
b49e97c9
TS
2861}
2862
f4416af6
AO
2863/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2864
2865static int
7e3102a7
AM
2866sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2868{
7e3102a7 2869#ifdef BFD64
f4416af6
AO
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2872
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2877
6870500c
RS
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2879 return -1;
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2881 return 1;
2882
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2884 return -1;
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2886 return 1;
2887 return 0;
7e3102a7
AM
2888#else
2889 abort ();
2890#endif
f4416af6
AO
2891}
2892
2893
b49e97c9
TS
2894/* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2907
b34976b6 2908static bfd_boolean
9719ad41 2909mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2910{
9719ad41 2911 struct extsym_info *einfo = data;
b34976b6 2912 bfd_boolean strip;
b49e97c9
TS
2913 asection *sec, *output_section;
2914
b49e97c9 2915 if (h->root.indx == -2)
b34976b6 2916 strip = FALSE;
f5385ebf 2917 else if ((h->root.def_dynamic
77cfaee6
AM
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
b34976b6 2922 strip = TRUE;
b49e97c9
TS
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
b34976b6
AM
2927 FALSE, FALSE) == NULL))
2928 strip = TRUE;
b49e97c9 2929 else
b34976b6 2930 strip = FALSE;
b49e97c9
TS
2931
2932 if (strip)
b34976b6 2933 return TRUE;
b49e97c9
TS
2934
2935 if (h->esym.ifd == -2)
2936 {
2937 h->esym.jmptbl = 0;
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2944
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2947 {
2948 const char *name;
2949
2950 /* Use undefined class. Also, set class and type for some
07d6d2b8 2951 special symbols. */
b49e97c9
TS
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2955 {
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2959 }
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2961 {
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2966 }
b49e97c9
TS
2967 else
2968 h->esym.asym.sc = scUndefined;
2969 }
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2973 else
2974 {
2975 const char *name;
2976
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2979
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2984 else
2985 {
2986 name = bfd_section_name (output_section->owner, output_section);
2987
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3005 else
3006 h->esym.asym.sc = scAbs;
3007 }
3008 }
3009
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3012 }
3013
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3018 {
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3023
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3030 else
3031 h->esym.asym.value = 0;
3032 }
33bb52fb 3033 else
b49e97c9
TS
3034 {
3035 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
3036
3037 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 3039
33bb52fb 3040 if (hd->needs_lazy_stub)
b49e97c9 3041 {
1bbce132
MR
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3047 if (sec == NULL)
3048 h->esym.asym.value = 0;
3049 else
3050 {
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
1bbce132 3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
3054 + sec->output_offset
3055 + output_section->vma);
3056 else
3057 h->esym.asym.value = 0;
3058 }
b49e97c9
TS
3059 }
3060 }
3061
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3064 &h->esym))
3065 {
b34976b6
AM
3066 einfo->failed = TRUE;
3067 return FALSE;
b49e97c9
TS
3068 }
3069
b34976b6 3070 return TRUE;
b49e97c9
TS
3071}
3072
3073/* A comparison routine used to sort .gptab entries. */
3074
3075static int
9719ad41 3076gptab_compare (const void *p1, const void *p2)
b49e97c9 3077{
9719ad41
RS
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3080
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3082}
3083\f
b15e6682 3084/* Functions to manage the got entry hash table. */
f4416af6
AO
3085
3086/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3087 hash number. */
3088
3089static INLINE hashval_t
9719ad41 3090mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3091{
3092#ifdef BFD64
3093 return addr + (addr >> 32);
3094#else
3095 return addr;
3096#endif
3097}
3098
f4416af6 3099static hashval_t
d9bf376d 3100mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3101{
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3103
e641e783 3104 return (entry->symndx
9ab066b4
RS
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
f4416af6
AO
3111}
3112
3113static int
3dff0dd1 3114mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3115{
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3118
e641e783 3119 return (e1->symndx == e2->symndx
9ab066b4
RS
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3126}
c224138d 3127
13db6b44
RS
3128static hashval_t
3129mips_got_page_ref_hash (const void *ref_)
3130{
3131 const struct mips_got_page_ref *ref;
3132
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3138}
3139
3140static int
3141mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3142{
3143 const struct mips_got_page_ref *ref1, *ref2;
3144
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3152}
3153
c224138d
RS
3154static hashval_t
3155mips_got_page_entry_hash (const void *entry_)
3156{
3157 const struct mips_got_page_entry *entry;
3158
3159 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3160 return entry->sec->id;
c224138d
RS
3161}
3162
3163static int
3164mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3165{
3166 const struct mips_got_page_entry *entry1, *entry2;
3167
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3170 return entry1->sec == entry2->sec;
c224138d 3171}
b15e6682 3172\f
3dff0dd1 3173/* Create and return a new mips_got_info structure. */
5334aa52
RS
3174
3175static struct mips_got_info *
3dff0dd1 3176mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3177{
3178 struct mips_got_info *g;
3179
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3181 if (g == NULL)
3182 return NULL;
3183
3dff0dd1
RS
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3186 if (g->got_entries == NULL)
3187 return NULL;
3188
13db6b44
RS
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
5334aa52
RS
3192 return NULL;
3193
3194 return g;
3195}
3196
ee227692
RS
3197/* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3199
3200static struct mips_got_info *
3201mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3202{
3203 struct mips_elf_obj_tdata *tdata;
3204
3205 if (!is_mips_elf (abfd))
3206 return NULL;
3207
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3dff0dd1 3210 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3211 return tdata->got;
3212}
3213
d7206569
RS
3214/* Record that ABFD should use output GOT G. */
3215
3216static void
3217mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3218{
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3223 if (tdata->got)
3224 {
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
13db6b44
RS
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3231 }
3232 tdata->got = g;
3233}
3234
0a44bf69
RS
3235/* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
f4416af6
AO
3238
3239static asection *
0a44bf69 3240mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3241{
0a44bf69 3242 const char *dname;
f4416af6 3243 asection *sreloc;
0a44bf69 3244 bfd *dynobj;
f4416af6 3245
0a44bf69
RS
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3248 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3249 if (sreloc == NULL && create_p)
3250 {
3d4d4302
AM
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3252 (SEC_ALLOC
3253 | SEC_LOAD
3254 | SEC_HAS_CONTENTS
3255 | SEC_IN_MEMORY
3256 | SEC_LINKER_CREATED
3257 | SEC_READONLY));
f4416af6 3258 if (sreloc == NULL
f4416af6 3259 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3261 return NULL;
3262 }
3263 return sreloc;
3264}
3265
e641e783
RS
3266/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3267
3268static int
3269mips_elf_reloc_tls_type (unsigned int r_type)
3270{
3271 if (tls_gd_reloc_p (r_type))
3272 return GOT_TLS_GD;
3273
3274 if (tls_ldm_reloc_p (r_type))
3275 return GOT_TLS_LDM;
3276
3277 if (tls_gottprel_reloc_p (r_type))
3278 return GOT_TLS_IE;
3279
9ab066b4 3280 return GOT_TLS_NONE;
e641e783
RS
3281}
3282
3283/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3284
3285static int
3286mips_tls_got_entries (unsigned int type)
3287{
3288 switch (type)
3289 {
3290 case GOT_TLS_GD:
3291 case GOT_TLS_LDM:
3292 return 2;
3293
3294 case GOT_TLS_IE:
3295 return 1;
3296
9ab066b4 3297 case GOT_TLS_NONE:
e641e783
RS
3298 return 0;
3299 }
3300 abort ();
3301}
3302
0f20cc35
DJ
3303/* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3305 is NULL). */
3306
3307static int
3308mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3310{
3311 int indx = 0;
0f20cc35
DJ
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3314
1cb83cac
MR
3315 if (h != NULL
3316 && h->dynindx != -1
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3319 indx = h->dynindx;
3320
9143e72c 3321 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3325 need_relocs = TRUE;
3326
3327 if (!need_relocs)
e641e783 3328 return 0;
0f20cc35 3329
9ab066b4 3330 switch (tls_type)
0f20cc35 3331 {
e641e783
RS
3332 case GOT_TLS_GD:
3333 return indx != 0 ? 2 : 1;
0f20cc35 3334
e641e783
RS
3335 case GOT_TLS_IE:
3336 return 1;
0f20cc35 3337
e641e783 3338 case GOT_TLS_LDM:
9143e72c 3339 return bfd_link_dll (info) ? 1 : 0;
0f20cc35 3340
e641e783
RS
3341 default:
3342 return 0;
3343 }
0f20cc35
DJ
3344}
3345
ab361d49
RS
3346/* Add the number of GOT entries and TLS relocations required by ENTRY
3347 to G. */
0f20cc35 3348
ab361d49
RS
3349static void
3350mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
0f20cc35 3353{
9ab066b4 3354 if (entry->tls_type)
ab361d49 3355 {
9ab066b4
RS
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3358 entry->symndx < 0
3359 ? &entry->d.h->root : NULL);
3360 }
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3363 else
3364 g->global_gotno += 1;
0f20cc35
DJ
3365}
3366
0f20cc35
DJ
3367/* Output a simple dynamic relocation into SRELOC. */
3368
3369static void
3370mips_elf_output_dynamic_relocation (bfd *output_bfd,
3371 asection *sreloc,
861fb55a 3372 unsigned long reloc_index,
0f20cc35
DJ
3373 unsigned long indx,
3374 int r_type,
3375 bfd_vma offset)
3376{
3377 Elf_Internal_Rela rel[3];
3378
3379 memset (rel, 0, sizeof (rel));
3380
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3383
3384 if (ABI_64_P (output_bfd))
3385 {
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3388 (sreloc->contents
861fb55a 3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3390 }
3391 else
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3394 (sreloc->contents
861fb55a 3395 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3396}
3397
3398/* Initialize a set of TLS GOT entries for one symbol. */
3399
3400static void
9ab066b4
RS
3401mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
0f20cc35
DJ
3403 struct mips_elf_link_hash_entry *h,
3404 bfd_vma value)
3405{
1cb83cac 3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
23cc69b6 3407 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3408 int indx;
3409 asection *sreloc, *sgot;
9ab066b4 3410 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3411 bfd_boolean need_relocs = FALSE;
3412
23cc69b6 3413 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3414 if (htab == NULL)
3415 return;
3416
ce558b89 3417 sgot = htab->root.sgot;
0f20cc35
DJ
3418
3419 indx = 0;
1cb83cac
MR
3420 if (h != NULL
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
0f20cc35 3425
9ab066b4 3426 if (entry->tls_initialized)
0f20cc35
DJ
3427 return;
3428
9143e72c 3429 if ((bfd_link_dll (info) || indx != 0)
0f20cc35
DJ
3430 && (h == NULL
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3433 need_relocs = TRUE;
3434
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3440
3441 /* Emit necessary relocations. */
0a44bf69 3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3443 got_offset = entry->gotidx;
0f20cc35 3444
9ab066b4 3445 switch (entry->tls_type)
0f20cc35 3446 {
e641e783
RS
3447 case GOT_TLS_GD:
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3450
3451 if (need_relocs)
3452 {
3453 mips_elf_output_dynamic_relocation
861fb55a 3454 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3456 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3457
3458 if (indx)
3459 mips_elf_output_dynamic_relocation
861fb55a 3460 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3463 else
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3465 sgot->contents + got_offset2);
0f20cc35
DJ
3466 }
3467 else
3468 {
3469 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3470 sgot->contents + got_offset);
0f20cc35 3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3472 sgot->contents + got_offset2);
0f20cc35 3473 }
e641e783 3474 break;
0f20cc35 3475
e641e783
RS
3476 case GOT_TLS_IE:
3477 /* Initial Exec model. */
0f20cc35
DJ
3478 if (need_relocs)
3479 {
3480 if (indx == 0)
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3482 sgot->contents + got_offset);
0f20cc35
DJ
3483 else
3484 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3485 sgot->contents + got_offset);
0f20cc35
DJ
3486
3487 mips_elf_output_dynamic_relocation
861fb55a 3488 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3490 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3491 }
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3494 sgot->contents + got_offset);
3495 break;
0f20cc35 3496
e641e783 3497 case GOT_TLS_LDM:
0f20cc35
DJ
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3503
9143e72c 3504 if (!bfd_link_dll (info))
0f20cc35
DJ
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3507 else
3508 mips_elf_output_dynamic_relocation
861fb55a 3509 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3512 break;
3513
3514 default:
3515 abort ();
0f20cc35
DJ
3516 }
3517
9ab066b4 3518 entry->tls_initialized = TRUE;
e641e783 3519}
0f20cc35 3520
0a44bf69
RS
3521/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3524
3525static bfd_vma
3526mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528{
1bbce132 3529 bfd_vma got_address, got_value;
0a44bf69
RS
3530 struct mips_elf_link_hash_table *htab;
3531
3532 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3533 BFD_ASSERT (htab != NULL);
3534
1bbce132
MR
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3537
3538 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
1bbce132
MR
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3543
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3548
3549 return got_address - got_value;
3550}
3551
5c18022e 3552/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
b49e97c9
TS
3556
3557static bfd_vma
9719ad41 3558mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3559 bfd_vma value, unsigned long r_symndx,
0f20cc35 3560 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3561{
a8028dd0 3562 struct mips_elf_link_hash_table *htab;
b15e6682 3563 struct mips_got_entry *entry;
b49e97c9 3564
a8028dd0 3565 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3566 BFD_ASSERT (htab != NULL);
3567
a8028dd0
RS
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
0f20cc35 3570 if (!entry)
b15e6682 3571 return MINUS_ONE;
0f20cc35 3572
e641e783 3573 if (entry->tls_type)
9ab066b4
RS
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
b49e97c9
TS
3576}
3577
13fbec83 3578/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3579
3580static bfd_vma
13fbec83
RS
3581mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3583{
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3587 bfd_vma got_index;
3588
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3591
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3595
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3599 GOT offset. */
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3604 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3605
3606 return got_index;
3607}
3608
3609/* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3611
3612static bfd_vma
3613mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3615{
a8028dd0 3616 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3619 bfd_vma gotidx;
b49e97c9 3620
a8028dd0 3621 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3622 BFD_ASSERT (htab != NULL);
3623
6c42ddb9
RS
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3625 BFD_ASSERT (g);
f4416af6 3626
6c42ddb9
RS
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3630
6c42ddb9
RS
3631 lookup.abfd = ibfd;
3632 lookup.symndx = -1;
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3635 BFD_ASSERT (entry);
0f20cc35 3636
6c42ddb9 3637 gotidx = entry->gotidx;
ce558b89 3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3639
6c42ddb9 3640 if (lookup.tls_type)
0f20cc35 3641 {
0f20cc35
DJ
3642 bfd_vma value = MINUS_ONE;
3643
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3650
9ab066b4 3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3652 }
6c42ddb9 3653 return gotidx;
b49e97c9
TS
3654}
3655
5c18022e
RS
3656/* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3660 offset of the GOT entry from VALUE. */
b49e97c9
TS
3661
3662static bfd_vma
9719ad41 3663mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3664 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3665{
91d6fa6a 3666 bfd_vma page, got_index;
b15e6682 3667 struct mips_got_entry *entry;
b49e97c9 3668
0a44bf69 3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3672
b15e6682
AO
3673 if (!entry)
3674 return MINUS_ONE;
143d77c5 3675
91d6fa6a 3676 got_index = entry->gotidx;
b49e97c9
TS
3677
3678 if (offsetp)
f4416af6 3679 *offsetp = value - entry->d.address;
b49e97c9 3680
91d6fa6a 3681 return got_index;
b49e97c9
TS
3682}
3683
738e5348 3684/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
b49e97c9
TS
3687
3688static bfd_vma
9719ad41 3689mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3690 bfd_vma value, bfd_boolean external)
b49e97c9 3691{
b15e6682 3692 struct mips_got_entry *entry;
b49e97c9 3693
0a44bf69
RS
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3698 if (! external)
0a44bf69 3699 value = mips_elf_high (value) << 16;
b49e97c9 3700
738e5348
RS
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
a8028dd0
RS
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
b15e6682
AO
3706 if (entry)
3707 return entry->gotidx;
3708 else
3709 return MINUS_ONE;
b49e97c9
TS
3710}
3711
3712/* Returns the offset for the entry at the INDEXth position
3713 in the GOT. */
3714
3715static bfd_vma
a8028dd0 3716mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3717 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3718{
a8028dd0 3719 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3720 asection *sgot;
3721 bfd_vma gp;
3722
a8028dd0 3723 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3724 BFD_ASSERT (htab != NULL);
3725
ce558b89 3726 sgot = htab->root.sgot;
f4416af6 3727 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3729
91d6fa6a 3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3731}
3732
0a44bf69
RS
3733/* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3736 instead. */
b49e97c9 3737
b15e6682 3738static struct mips_got_entry *
0a44bf69 3739mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3740 bfd *ibfd, bfd_vma value,
5c18022e 3741 unsigned long r_symndx,
0f20cc35
DJ
3742 struct mips_elf_link_hash_entry *h,
3743 int r_type)
b49e97c9 3744{
ebc53538
RS
3745 struct mips_got_entry lookup, *entry;
3746 void **loc;
f4416af6 3747 struct mips_got_info *g;
0a44bf69 3748 struct mips_elf_link_hash_table *htab;
6c42ddb9 3749 bfd_vma gotidx;
0a44bf69
RS
3750
3751 htab = mips_elf_hash_table (info);
4dfe6ac6 3752 BFD_ASSERT (htab != NULL);
b15e6682 3753
d7206569 3754 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3755 if (g == NULL)
3756 {
d7206569 3757 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3758 BFD_ASSERT (g != NULL);
3759 }
b15e6682 3760
020d7251
RS
3761 /* This function shouldn't be called for symbols that live in the global
3762 area of the GOT. */
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3764
ebc53538
RS
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3767 {
3768 lookup.abfd = ibfd;
df58fc94 3769 if (tls_ldm_reloc_p (r_type))
0f20cc35 3770 {
ebc53538
RS
3771 lookup.symndx = 0;
3772 lookup.d.addend = 0;
0f20cc35
DJ
3773 }
3774 else if (h == NULL)
3775 {
ebc53538
RS
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
0f20cc35
DJ
3778 }
3779 else
ebc53538
RS
3780 {
3781 lookup.symndx = -1;
3782 lookup.d.h = h;
3783 }
0f20cc35 3784
ebc53538
RS
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3786 BFD_ASSERT (entry);
0f20cc35 3787
6c42ddb9 3788 gotidx = entry->gotidx;
ce558b89 3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3790
ebc53538 3791 return entry;
0f20cc35
DJ
3792 }
3793
ebc53538
RS
3794 lookup.abfd = NULL;
3795 lookup.symndx = -1;
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3798 if (!loc)
b15e6682 3799 return NULL;
143d77c5 3800
ebc53538
RS
3801 entry = (struct mips_got_entry *) *loc;
3802 if (entry)
3803 return entry;
b15e6682 3804
cb22ccf4 3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3806 {
3807 /* We didn't allocate enough space in the GOT. */
4eca0228 3808 _bfd_error_handler
b49e97c9
TS
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
b15e6682 3811 return NULL;
b49e97c9
TS
3812 }
3813
ebc53538
RS
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3815 if (!entry)
3816 return NULL;
3817
cb22ccf4
KCY
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3823 else
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3825
ebc53538
RS
3826 *entry = lookup;
3827 *loc = entry;
3828
ce558b89 3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3830
5c18022e 3831 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3832 if (htab->is_vxworks)
3833 {
3834 Elf_Internal_Rela outrel;
5c18022e 3835 asection *s;
91d6fa6a 3836 bfd_byte *rloc;
0a44bf69 3837 bfd_vma got_address;
0a44bf69
RS
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
ebc53538 3842 + entry->gotidx);
0a44bf69 3843
91d6fa6a 3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3845 outrel.r_offset = got_address;
5c18022e
RS
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
91d6fa6a 3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3849 }
3850
ebc53538 3851 return entry;
b49e97c9
TS
3852}
3853
d4596a51
RS
3854/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3858
3859static bfd_size_type
3860count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3861{
3862 bfd_size_type count;
3863
3864 count = 0;
0e1862bb
L
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3867 {
3868 asection *p;
3869 const struct elf_backend_data *bed;
3870
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
7f923b7f 3875 && elf_hash_table (info)->dynamic_relocs
d4596a51
RS
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3877 ++count;
3878 }
3879 return count;
3880}
3881
b49e97c9 3882/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3883 appear towards the end. */
b49e97c9 3884
b34976b6 3885static bfd_boolean
d4596a51 3886mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3887{
a8028dd0 3888 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
b49e97c9 3891
a8028dd0 3892 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3893 BFD_ASSERT (htab != NULL);
3894
0f8c4b60 3895 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3896 return TRUE;
3897
a8028dd0 3898 g = htab->got_info;
d4596a51
RS
3899 if (g == NULL)
3900 return TRUE;
f4416af6 3901
b49e97c9 3902 hsd.low = NULL;
23cc69b6
RS
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
0f8c4b60 3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3911
3912 /* There should have been enough room in the symbol table to
44c410de 3913 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3918
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
d222d210 3921 htab->global_gotsym = hsd.low;
b49e97c9 3922
b34976b6 3923 return TRUE;
b49e97c9
TS
3924}
3925
3926/* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3928 index. */
3929
b34976b6 3930static bfd_boolean
9719ad41 3931mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3932{
9719ad41 3933 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3934
b49e97c9
TS
3935 /* Symbols without dynamic symbol table entries aren't interesting
3936 at all. */
3937 if (h->root.dynindx == -1)
b34976b6 3938 return TRUE;
b49e97c9 3939
634835ae 3940 switch (h->global_got_area)
f4416af6 3941 {
634835ae 3942 case GGA_NONE:
e17b0c35
MR
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3945 else
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3947 break;
0f20cc35 3948
634835ae 3949 case GGA_NORMAL:
b49e97c9
TS
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3952 break;
3953
3954 case GGA_RELOC_ONLY:
634835ae
RS
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3958 break;
b49e97c9
TS
3959 }
3960
b34976b6 3961 return TRUE;
b49e97c9
TS
3962}
3963
ee227692
RS
3964/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3967
3968static bfd_boolean
3969mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3971{
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3976
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3979 g = htab->got_info;
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3981 if (!loc)
3982 return FALSE;
3983
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3986 if (!entry)
3987 {
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3989 if (!entry)
3990 return FALSE;
3991
9ab066b4 3992 lookup->tls_initialized = FALSE;
ee227692
RS
3993 lookup->gotidx = -1;
3994 *entry = *lookup;
3995 *loc = entry;
3996 }
3997
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4000 if (!g)
4001 return FALSE;
4002
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4004 if (!bfd_loc)
4005 return FALSE;
4006
4007 if (!*bfd_loc)
4008 *bfd_loc = entry;
4009 return TRUE;
4010}
4011
e641e783
RS
4012/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 4014 using the GOT entry for calls. */
b49e97c9 4015
b34976b6 4016static bfd_boolean
9719ad41
RS
4017mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
e641e783 4019 bfd_boolean for_call, int r_type)
b49e97c9 4020{
a8028dd0 4021 struct mips_elf_link_hash_table *htab;
634835ae 4022 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
a8028dd0
RS
4025
4026 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4027 BFD_ASSERT (htab != NULL);
4028
634835ae 4029 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
4030 if (!for_call)
4031 hmips->got_only_for_calls = FALSE;
f4416af6 4032
b49e97c9
TS
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4034 table. */
7c5fcef7
L
4035 if (h->dynindx == -1)
4036 {
4037 switch (ELF_ST_VISIBILITY (h->other))
4038 {
4039 case STV_INTERNAL:
4040 case STV_HIDDEN:
47275900 4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
7c5fcef7
L
4042 break;
4043 }
c152c796 4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4045 return FALSE;
7c5fcef7 4046 }
b49e97c9 4047
ee227692 4048 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 4050 hmips->global_got_area = GGA_NORMAL;
86324f90 4051
f4416af6
AO
4052 entry.abfd = abfd;
4053 entry.symndx = -1;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4057}
f4416af6 4058
e641e783
RS
4059/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4061
4062static bfd_boolean
9719ad41 4063mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4064 struct bfd_link_info *info, int r_type)
f4416af6 4065{
a8028dd0
RS
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
ee227692 4068 struct mips_got_entry entry;
f4416af6 4069
a8028dd0 4070 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4071 BFD_ASSERT (htab != NULL);
4072
a8028dd0
RS
4073 g = htab->got_info;
4074 BFD_ASSERT (g != NULL);
4075
f4416af6
AO
4076 entry.abfd = abfd;
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
e641e783 4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4080 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4081}
c224138d 4082
13db6b44
RS
4083/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4085 to ABFD. */
c224138d
RS
4086
4087static bfd_boolean
13db6b44
RS
4088mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
c224138d 4091{
a8028dd0 4092 struct mips_elf_link_hash_table *htab;
ee227692 4093 struct mips_got_info *g1, *g2;
13db6b44 4094 struct mips_got_page_ref lookup, *entry;
ee227692 4095 void **loc, **bfd_loc;
c224138d 4096
a8028dd0 4097 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4098 BFD_ASSERT (htab != NULL);
4099
ee227692
RS
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
a8028dd0 4102
13db6b44
RS
4103 if (h)
4104 {
4105 lookup.symndx = -1;
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4107 }
4108 else
4109 {
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4112 }
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4115 if (loc == NULL)
4116 return FALSE;
4117
13db6b44 4118 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4119 if (!entry)
4120 {
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4122 if (!entry)
4123 return FALSE;
4124
13db6b44 4125 *entry = lookup;
c224138d
RS
4126 *loc = entry;
4127 }
4128
ee227692
RS
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4131 if (!g2)
4132 return FALSE;
4133
13db6b44 4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4135 if (!bfd_loc)
4136 return FALSE;
4137
4138 if (!*bfd_loc)
4139 *bfd_loc = entry;
4140
c224138d
RS
4141 return TRUE;
4142}
33bb52fb
RS
4143
4144/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4145
4146static void
4147mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4148 unsigned int n)
4149{
4150 asection *s;
4151 struct mips_elf_link_hash_table *htab;
4152
4153 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4154 BFD_ASSERT (htab != NULL);
4155
33bb52fb
RS
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4158
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4161 else
4162 {
4163 if (s->size == 0)
4164 {
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4167 ++s->reloc_count;
4168 }
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4170 }
4171}
4172\f
476366af
RS
4173/* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4177
4178static int
4179mips_elf_check_recreate_got (void **entryp, void *data)
4180{
4181 struct mips_got_entry *entry;
476366af 4182 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4183
4184 entry = (struct mips_got_entry *) *entryp;
476366af 4185 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4186 if (entry->abfd != NULL && entry->symndx == -1)
4187 {
4188 struct mips_elf_link_hash_entry *h;
4189
4190 h = entry->d.h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4193 {
476366af 4194 arg->value = TRUE;
33bb52fb
RS
4195 return 0;
4196 }
4197 }
476366af 4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4199 return 1;
4200}
4201
476366af
RS
4202/* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4206
4207static int
4208mips_elf_recreate_got (void **entryp, void *data)
4209{
72e7511a 4210 struct mips_got_entry new_entry, *entry;
476366af 4211 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4212 void **slot;
4213
33bb52fb 4214 entry = (struct mips_got_entry *) *entryp;
476366af 4215 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
72e7511a
RS
4223 new_entry = *entry;
4224 entry = &new_entry;
33bb52fb 4225 h = entry->d.h;
72e7511a 4226 do
634835ae
RS
4227 {
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4230 }
72e7511a
RS
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4233 entry->d.h = h;
4234 }
476366af 4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4236 if (slot == NULL)
4237 {
476366af 4238 arg->g = NULL;
33bb52fb
RS
4239 return 0;
4240 }
4241 if (*slot == NULL)
72e7511a
RS
4242 {
4243 if (entry == &new_entry)
4244 {
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4246 if (!entry)
4247 {
476366af 4248 arg->g = NULL;
72e7511a
RS
4249 return 0;
4250 }
4251 *entry = new_entry;
4252 }
4253 *slot = entry;
476366af 4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4255 }
33bb52fb
RS
4256 return 1;
4257}
4258
13db6b44
RS
4259/* Return the maximum number of GOT page entries required for RANGE. */
4260
4261static bfd_vma
4262mips_elf_pages_for_range (const struct mips_got_page_range *range)
4263{
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4265}
4266
4267/* Record that G requires a page entry that can reach SEC + ADDEND. */
4268
4269static bfd_boolean
b75d42bc 4270mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4271 asection *sec, bfd_signed_vma addend)
4272{
b75d42bc 4273 struct mips_got_info *g = arg->g;
13db6b44
RS
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4277 void **loc;
4278
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4280 lookup.sec = sec;
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4282 if (loc == NULL)
4283 return FALSE;
4284
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4288 if (!entry)
4289 {
b75d42bc 4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4291 if (!entry)
4292 return FALSE;
4293
4294 entry->sec = sec;
4295 *loc = entry;
4296 }
4297
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4299 with ADDEND. */
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4303
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4307 range = *range_ptr;
4308 if (!range || addend < range->min_addend - 0xffff)
4309 {
b75d42bc 4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4311 if (!range)
4312 return FALSE;
4313
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4317
4318 *range_ptr = range;
4319 entry->num_pages++;
4320 g->page_gotno++;
4321 return TRUE;
4322 }
4323
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4326
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4331 {
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4333 {
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4337 }
4338 else
4339 range->max_addend = addend;
4340 }
4341
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4345 {
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4348 }
4349
4350 return TRUE;
4351}
4352
4353/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4357
4358static bfd_boolean
4359mips_elf_resolve_got_page_ref (void **refp, void *data)
4360{
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4364 asection *sec;
4365 bfd_vma addend;
4366
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4370
4371 if (ref->symndx < 0)
4372 {
4373 struct mips_elf_link_hash_entry *h;
4374
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4376 h = ref->u.h;
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4378 return 1;
4379
4380 /* Ignore undefined symbols; we'll issue an error later if
4381 appropriate. */
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4385 return 1;
4386
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4389 }
4390 else
4391 {
4392 Elf_Internal_Sym *isym;
4393
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4396 ref->symndx);
4397 if (isym == NULL)
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4405 if (sec == NULL)
4406 {
4407 arg->g = NULL;
4408 return 0;
4409 }
4410
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4416 {
4417 void *secinfo;
4418
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4423 else
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4426 }
4427 else
4428 addend = isym->st_value + ref->addend;
4429 }
b75d42bc 4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435 return 1;
4436}
4437
33bb52fb 4438/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
33bb52fb
RS
4442
4443static bfd_boolean
476366af
RS
4444mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
33bb52fb 4446{
476366af
RS
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4449
4450 oldg = *g;
33bb52fb 4451
476366af
RS
4452 tga.info = info;
4453 tga.g = g;
4454 tga.value = FALSE;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4456 if (tga.value)
33bb52fb 4457 {
476366af
RS
4458 *g = oldg;
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
33bb52fb
RS
4463 return FALSE;
4464
476366af
RS
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4466 if (!tga.g)
4467 return FALSE;
4468
4469 htab_delete (oldg.got_entries);
33bb52fb 4470 }
13db6b44
RS
4471
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4475 return FALSE;
4476
4477 tga.info = info;
4478 tga.g = g;
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4480
33bb52fb
RS
4481 return TRUE;
4482}
4483
c5d6fa44
RS
4484/* Return true if a GOT entry for H should live in the local rather than
4485 global GOT area. */
4486
4487static bfd_boolean
4488mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4490{
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4496 return TRUE;
4497
47275900
MR
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4502 return FALSE;
4503
c5d6fa44
RS
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4509 return TRUE;
4510
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
0e1862bb 4514 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4515 return TRUE;
4516
4517 return FALSE;
4518}
4519
6c42ddb9
RS
4520/* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4525
4526static int
d4596a51 4527mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4528{
020d7251 4529 struct bfd_link_info *info;
6ccf4795 4530 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4531 struct mips_got_info *g;
4532
020d7251 4533 info = (struct bfd_link_info *) data;
6ccf4795
RS
4534 htab = mips_elf_hash_table (info);
4535 g = htab->got_info;
d4596a51 4536 if (h->global_got_area != GGA_NONE)
33bb52fb 4537 {
020d7251 4538 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
6ccf4795
RS
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
1bbce132 4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
6c42ddb9 4552 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4553 {
6c42ddb9 4554 g->reloc_only_gotno++;
23cc69b6 4555 g->global_gotno++;
23cc69b6 4556 }
33bb52fb
RS
4557 }
4558 return 1;
4559}
f4416af6 4560\f
d7206569
RS
4561/* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4563
4564static int
d7206569 4565mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4566{
d7206569
RS
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4569 void **slot;
f4416af6 4570
d7206569
RS
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4574 if (!slot)
f4416af6 4575 {
d7206569
RS
4576 arg->g = NULL;
4577 return 0;
f4416af6 4578 }
d7206569 4579 if (!*slot)
c224138d 4580 {
d7206569
RS
4581 *slot = entry;
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4583 }
f4416af6
AO
4584 return 1;
4585}
4586
d7206569
RS
4587/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4589
4590static int
d7206569 4591mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4592{
d7206569
RS
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4595 void **slot;
c224138d 4596
d7206569
RS
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4600 if (!slot)
c224138d 4601 {
d7206569 4602 arg->g = NULL;
c224138d
RS
4603 return 0;
4604 }
d7206569
RS
4605 if (!*slot)
4606 {
4607 *slot = entry;
4608 arg->g->page_gotno += entry->num_pages;
4609 }
c224138d
RS
4610 return 1;
4611}
4612
d7206569
RS
4613/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4617 callback.) */
c224138d
RS
4618
4619static int
d7206569 4620mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4623{
d7206569 4624 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4625 unsigned int estimate;
4626
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4631
e2ece73c 4632 /* And conservatively estimate how many local and TLS entries
c224138d 4633 would be needed. */
e2ece73c
RS
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4636
17214937
RS
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
e2ece73c 4639 conservatively as well. */
17214937 4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4641 estimate += arg->global_count;
4642 else
4643 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4644
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4647 return -1;
4648
c224138d 4649 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4650 tga.info = arg->info;
4651 tga.g = to;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4653 if (!tga.g)
c224138d
RS
4654 return 0;
4655
d7206569
RS
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4657 if (!tga.g)
c224138d
RS
4658 return 0;
4659
d7206569 4660 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4661 return 1;
4662}
4663
d7206569 4664/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4670
d7206569
RS
4671static bfd_boolean
4672mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4674{
c224138d
RS
4675 unsigned int estimate;
4676 int result;
4677
476366af 4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4679 return FALSE;
4680
c224138d
RS
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4686
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
c224138d 4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4692
c224138d 4693 if (estimate <= arg->max_count)
f4416af6 4694 {
c224138d
RS
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4697 if (!arg->primary)
4698 {
d7206569
RS
4699 arg->primary = g;
4700 return TRUE;
c224138d 4701 }
f4416af6 4702
c224138d 4703 /* Try merging with the primary GOT. */
d7206569 4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4705 if (result >= 0)
4706 return result;
f4416af6 4707 }
c224138d 4708
f4416af6 4709 /* If we can merge with the last-created got, do it. */
c224138d 4710 if (arg->current)
f4416af6 4711 {
d7206569 4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4713 if (result >= 0)
4714 return result;
f4416af6 4715 }
c224138d 4716
f4416af6
AO
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
c224138d
RS
4720 g->next = arg->current;
4721 arg->current = g;
0f20cc35 4722
d7206569 4723 return TRUE;
0f20cc35
DJ
4724}
4725
72e7511a
RS
4726/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4729
4730static bfd_boolean
4731mips_elf_set_gotidx (void **entryp, long gotidx)
4732{
4733 struct mips_got_entry *entry;
4734
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4737 {
4738 struct mips_got_entry *new_entry;
4739
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4741 if (!new_entry)
4742 return FALSE;
4743
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4746 entry = new_entry;
4747 }
4748 entry->gotidx = gotidx;
4749 return TRUE;
4750}
4751
4752/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4755
4756static int
72e7511a 4757mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4758{
72e7511a
RS
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4761
4762 /* We're only interested in TLS symbols. */
72e7511a 4763 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4764 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4765 return 1;
4766
72e7511a 4767 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4769 {
6c42ddb9
RS
4770 arg->g = NULL;
4771 return 0;
f4416af6
AO
4772 }
4773
ead49a57 4774 /* Account for the entries we've just allocated. */
9ab066b4 4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4776 return 1;
4777}
4778
ab361d49
RS
4779/* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
f4416af6 4782
f4416af6 4783static int
ab361d49 4784mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4785{
ab361d49
RS
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
f4416af6 4788
ab361d49
RS
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4795 return 1;
4796}
4797
4798/* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
72e7511a 4801 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4802
4803static int
4804mips_elf_set_global_gotidx (void **entryp, void *data)
4805{
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4808
ab361d49
RS
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4814 {
cb22ccf4 4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4816 {
4817 arg->g = NULL;
4818 return 0;
4819 }
cb22ccf4 4820 arg->g->assigned_low_gotno += 1;
72e7511a 4821
0e1862bb 4822 if (bfd_link_pic (arg->info)
ab361d49
RS
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
f4416af6
AO
4827 }
4828
4829 return 1;
4830}
4831
33bb52fb
RS
4832/* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4835
0626d451 4836static int
33bb52fb 4837mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4838{
33bb52fb
RS
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
0626d451 4842
33bb52fb
RS
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4846 BFD_ASSERT (htab != NULL);
4847
0626d451
RS
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
33bb52fb 4850 && entry->d.h->needs_lazy_stub)
f4416af6 4851 {
33bb52fb
RS
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
f4416af6 4854 }
143d77c5 4855
f4416af6
AO
4856 return 1;
4857}
4858
f4416af6
AO
4859/* Return the offset of an input bfd IBFD's GOT from the beginning of
4860 the primary GOT. */
4861static bfd_vma
9719ad41 4862mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4863{
d7206569 4864 if (!g->next)
f4416af6
AO
4865 return 0;
4866
d7206569 4867 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4868 if (! g)
4869 return 0;
4870
4871 BFD_ASSERT (g->next);
4872
4873 g = g->next;
143d77c5 4874
0f20cc35
DJ
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4877}
4878
4879/* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4881
4882static bfd_boolean
9719ad41 4883mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4884 asection *got, bfd_size_type pages)
f4416af6 4885{
a8028dd0 4886 struct mips_elf_link_hash_table *htab;
f4416af6 4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4888 struct mips_elf_traverse_got_arg tga;
a8028dd0 4889 struct mips_got_info *g, *gg;
33bb52fb 4890 unsigned int assign, needed_relocs;
d7206569 4891 bfd *dynobj, *ibfd;
f4416af6 4892
33bb52fb 4893 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4894 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4895 BFD_ASSERT (htab != NULL);
4896
a8028dd0 4897 g = htab->got_info;
f4416af6 4898
f4416af6
AO
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
f4416af6
AO
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
0a44bf69 4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4904 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4905 - htab->reserved_gotno);
c224138d 4906 got_per_bfd_arg.max_pages = pages;
0f20cc35 4907 /* The number of globals that will be included in the primary GOT.
ab361d49 4908 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4909 information. */
4910 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4911
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
c72f2fb2 4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4916 {
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4919 return FALSE;
4920 }
f4416af6 4921
0f20cc35 4922 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4923 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4924 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4925 else
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4928
4929 /* GG is now the master GOT, and G is the primary GOT. */
4930 gg = g;
4931 g = g->next;
4932
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4937 list. */
d7206569 4938 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4939
634835ae
RS
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
23cc69b6 4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4944 g->global_gotno = gg->global_gotno;
f4416af6 4945
ab361d49
RS
4946 tga.info = info;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4951
4952 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
0f20cc35 4967 gg->tls_gotno = 0;
f4416af6
AO
4968 assign = 0;
4969 gg->next = gg;
4970
4971 do
4972 {
4973 struct mips_got_info *gn;
4974
861fb55a 4975 assign += htab->reserved_gotno;
cb22ccf4 4976 g->assigned_low_gotno = assign;
c224138d
RS
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4979 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4981
ead49a57
RS
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4985 gn = g->next;
4986 g->next = gg->next;
4987 gg->next = g;
4988
0f20cc35
DJ
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4992 tga.g = g;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4995 if (!tga.g)
4996 return FALSE;
1fd20d70 4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4998
ead49a57 4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 5000 g = gn;
0626d451 5001
33bb52fb
RS
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
0626d451 5004 if (g)
33bb52fb 5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
5006 }
5007 while (g);
5008
59b08994 5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
5010
5011 needed_relocs = 0;
33bb52fb
RS
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5013 {
5014 unsigned int save_assign;
5015
ab361d49
RS
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
cb22ccf4
KCY
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
5020 tga.info = info;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 tga.g = g;
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
5024 if (!tga.g)
5025 return FALSE;
cb22ccf4
KCY
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
72e7511a 5028
0e1862bb 5029 if (bfd_link_pic (info))
33bb52fb 5030 {
cb22ccf4
KCY
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
861fb55a 5035 + htab->reserved_gotno);
33bb52fb 5036 }
ab361d49 5037 needed_relocs += g->relocs;
33bb52fb 5038 }
ab361d49 5039 needed_relocs += g->relocs;
33bb52fb
RS
5040
5041 if (needed_relocs)
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5043 needed_relocs);
143d77c5 5044
f4416af6
AO
5045 return TRUE;
5046}
143d77c5 5047
b49e97c9
TS
5048\f
5049/* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5051
5052static const Elf_Internal_Rela *
9719ad41
RS
5053mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
b49e97c9 5056{
c000e262
TS
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5058
b49e97c9
TS
5059 while (relocation < relend)
5060 {
c000e262
TS
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5063 return relocation;
5064
5065 ++relocation;
5066 }
5067
5068 /* We didn't find it. */
b49e97c9
TS
5069 return NULL;
5070}
5071
020d7251 5072/* Return whether an input relocation is against a local symbol. */
b49e97c9 5073
b34976b6 5074static bfd_boolean
9719ad41
RS
5075mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
020d7251 5077 asection **local_sections)
b49e97c9
TS
5078{
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5081 size_t extsymoff;
5082
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5086
5087 if (r_symndx < extsymoff)
b34976b6 5088 return TRUE;
b49e97c9 5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5090 return TRUE;
b49e97c9 5091
b34976b6 5092 return FALSE;
b49e97c9
TS
5093}
5094\f
5095/* Sign-extend VALUE, which has the indicated number of BITS. */
5096
a7ebbfdf 5097bfd_vma
9719ad41 5098_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5099{
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5103
5104 return value;
5105}
5106
5107/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5108 range expressible by a signed number with the indicated number of
b49e97c9
TS
5109 BITS. */
5110
b34976b6 5111static bfd_boolean
9719ad41 5112mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5113{
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5115
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
b34976b6 5118 return TRUE;
b49e97c9
TS
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
b34976b6 5121 return TRUE;
b49e97c9
TS
5122
5123 /* All is well. */
b34976b6 5124 return FALSE;
b49e97c9
TS
5125}
5126
5127/* Calculate the %high function. */
5128
5129static bfd_vma
9719ad41 5130mips_elf_high (bfd_vma value)
b49e97c9
TS
5131{
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5133}
5134
5135/* Calculate the %higher function. */
5136
5137static bfd_vma
9719ad41 5138mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5139{
5140#ifdef BFD64
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5142#else
5143 abort ();
c5ae1840 5144 return MINUS_ONE;
b49e97c9
TS
5145#endif
5146}
5147
5148/* Calculate the %highest function. */
5149
5150static bfd_vma
9719ad41 5151mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5152{
5153#ifdef BFD64
b15e6682 5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5155#else
5156 abort ();
c5ae1840 5157 return MINUS_ONE;
b49e97c9
TS
5158#endif
5159}
5160\f
5161/* Create the .compact_rel section. */
5162
b34976b6 5163static bfd_boolean
9719ad41
RS
5164mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5166{
5167 flagword flags;
5168 register asection *s;
5169
3d4d4302 5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5171 {
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5173 | SEC_READONLY);
5174
3d4d4302 5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5176 if (s == NULL
b49e97c9
TS
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5179 return FALSE;
b49e97c9 5180
eea6121a 5181 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5182 }
5183
b34976b6 5184 return TRUE;
b49e97c9
TS
5185}
5186
5187/* Create the .got section to hold the global offset table. */
5188
b34976b6 5189static bfd_boolean
23cc69b6 5190mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5191{
5192 flagword flags;
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
14a793b2 5195 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
4dfe6ac6 5199 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5200
5201 /* This function may be called more than once. */
ce558b89 5202 if (htab->root.sgot)
23cc69b6 5203 return TRUE;
b49e97c9
TS
5204
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5207
72b4917c
TS
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
87e0a731 5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5211 if (s == NULL
72b4917c 5212 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5213 return FALSE;
ce558b89 5214 htab->root.sgot = s;
b49e97c9
TS
5215
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
14a793b2 5219 bh = NULL;
b49e97c9
TS
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5223 return FALSE;
14a793b2
AM
5224
5225 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5226 h->non_elf = 0;
5227 h->def_regular = 1;
b49e97c9 5228 h->type = STT_OBJECT;
2f9efdfc 5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5230 elf_hash_table (info)->hgot = h;
b49e97c9 5231
0e1862bb 5232 if (bfd_link_pic (info)
c152c796 5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5234 return FALSE;
b49e97c9 5235
3dff0dd1 5236 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5239
861fb55a 5240 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5243 | SEC_HAS_CONTENTS
5244 | SEC_IN_MEMORY
5245 | SEC_LINKER_CREATED);
861fb55a
DJ
5246 if (s == NULL)
5247 return FALSE;
ce558b89 5248 htab->root.sgotplt = s;
0a44bf69 5249
b34976b6 5250 return TRUE;
b49e97c9 5251}
b49e97c9 5252\f
0a44bf69
RS
5253/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5256
5257static bfd_boolean
5258is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5259{
5260 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5261 && bfd_link_pic (info)
0a44bf69
RS
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5264}
861fb55a
DJ
5265
5266/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5269 stub. */
5270
5271static bfd_boolean
8f0c309a
CLT
5272mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5274{
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5281 return FALSE;
5282
5283 switch (r_type)
5284 {
5285 case R_MIPS_26:
5286 case R_MIPS_PC16:
7361da2c
AB
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
df58fc94
RS
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5294 return TRUE;
5295
8f0c309a
CLT
5296 case R_MIPS16_26:
5297 return !target_is_16_bit_code_p;
5298
861fb55a
DJ
5299 default:
5300 return FALSE;
5301 }
5302}
0a44bf69 5303\f
47275900
MR
5304/* Obtain the field relocated by RELOCATION. */
5305
5306static bfd_vma
5307mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5310{
5311 bfd_vma x = 0;
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5314
5315 /* Obtain the bytes. */
5316 if (size != 0)
5317 x = bfd_get (8 * size, input_bfd, location);
5318
5319 return x;
5320}
5321
98e10ffa
MR
5322/* Store the field relocated by RELOCATION. */
5323
5324static void
5325mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5328{
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5331
5332 /* Put the value into the output. */
5333 if (size != 0)
5334 bfd_put (8 * size, input_bfd, x, location);
5335}
5336
47275900
MR
5337/* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5342*/
5343
5344static bfd_boolean
5345mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5348{
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5352 bfd_vma x;
5353
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5355
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5358
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5371 else
5372 nullified = FALSE;
5373
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5377
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5379
5380 return nullified;
5381}
5382
b49e97c9
TS
5383/* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5386
5387 The result of the relocation calculation is stored in VALUEP.
38a7df63 5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5390
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5395
5396static bfd_reloc_status_type
9719ad41 5397mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
47275900 5398 asection *input_section, bfd_byte *contents,
9719ad41
RS
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5404 const char **namep,
5405 bfd_boolean *cross_mode_jump_p,
9719ad41 5406 bfd_boolean save_addend)
b49e97c9
TS
5407{
5408 /* The eventual value we will return. */
5409 bfd_vma value;
5410 /* The address of the symbol against which the relocation is
5411 occurring. */
5412 bfd_vma symbol = 0;
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
0a61c8c2 5415 bfd_vma gp;
b49e97c9
TS
5416 /* The place (section offset or address) of the storage unit being
5417 relocated. */
5418 bfd_vma p;
5419 /* The value of GP used to create the relocatable object. */
0a61c8c2 5420 bfd_vma gp0;
b49e97c9
TS
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5426 located. */
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5429 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5430 symbol. */
b34976b6 5431 bfd_boolean local_p, was_local_p;
77434823
MR
5432 /* TRUE if the symbol referred to by this relocation is a section
5433 symbol. */
5434 bfd_boolean section_p = FALSE;
b34976b6
AM
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5440 Elf_Internal_Shdr *symtab_hdr;
5441 size_t extsymoff;
5442 unsigned long r_symndx;
5443 int r_type;
b34976b6 5444 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5445 relocation value. */
b34976b6
AM
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5449 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5450 struct mips_elf_link_hash_table *htab;
5451 bfd *dynobj;
ad951203 5452 bfd_boolean resolved_to_zero;
0a44bf69
RS
5453
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
4dfe6ac6 5456 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5457
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5464
5465 /* Assume that there will be no overflow. */
b34976b6 5466 overflowed_p = FALSE;
b49e97c9
TS
5467
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5472 local_sections);
bce03d3d 5473 was_local_p = local_p;
b49e97c9
TS
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5476 else
5477 {
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5480 extsymoff = 0;
5481 }
5482
5483 /* Figure out the value of the symbol. */
5484 if (local_p)
5485 {
9d862524 5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5487 Elf_Internal_Sym *sym;
5488
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5491
77434823
MR
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5493
b49e97c9 5494 symbol = sec->output_section->vma + sec->output_offset;
77434823 5495 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5496 symbol += sym->st_value;
77434823 5497 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5498 {
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5500 addend -= symbol;
5501 addend += sec->output_section->vma + sec->output_offset;
5502 }
b49e97c9 5503
df58fc94
RS
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5506 ++symbol;
5507
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5511 sym->st_name);
ceab86af 5512 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5513 *namep = bfd_section_name (input_bfd, sec);
5514
9d862524 5515 /* For relocations against a section symbol and ones against no
07d6d2b8 5516 symbol (absolute relocations) infer the ISA mode from the addend. */
9d862524
MR
5517 if (section_p || r_symndx == STN_UNDEF)
5518 {
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5521 }
5522 /* For relocations against an absolute symbol infer the ISA mode
07d6d2b8 5523 from the value of the symbol plus addend. */
9d862524
MR
5524 else if (bfd_is_abs_section (sec))
5525 {
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5528 }
5529 /* Otherwise just use the regular symbol annotation available. */
5530 else
5531 {
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5534 }
b49e97c9
TS
5535 }
5536 else
5537 {
560e09e9
NC
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5539
b49e97c9
TS
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5547
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5550
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
560e09e9 5553 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5554 && ! NEWABI_P (input_bfd))
5555 {
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5559 return bfd_reloc_notsupported;
5560
b34976b6 5561 gp_disp_p = TRUE;
b49e97c9 5562 }
bbe506e8
TS
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5567
5568
b49e97c9
TS
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5572 its defined. */
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5576 {
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5582 else
5583 symbol = h->root.root.u.def.value;
5584 }
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5589 addresses. */
5590 symbol = 0;
59c2e50f 5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5593 symbol = 0;
a4d0f181
TS
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5596 {
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5599 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5602 somehow as well. */
0e1862bb 5603 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5605 symbol = 0;
5606 }
5e2b0d47
NC
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5608 {
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5616 symbol = 0;
5617 }
b49e97c9
TS
5618 else
5619 {
dfb93f11
JC
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5623
1a72702b
AM
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
dfb93f11
JC
5626 input_section, relocation->r_offset, reject_undefined);
5627
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5630
5631 symbol = 0;
b49e97c9
TS
5632 }
5633
30c09090 5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5636 }
5637
738e5348
RS
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5640
5641 (a) the relocation is for a MIPS16 JAL;
5642
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5645
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
0e1862bb 5648 && !bfd_link_relocatable (info)
738e5348
RS
5649 && ((h != NULL
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5652 || (local_p
698600e4
AM
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5655 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5656 {
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5659 stub. */
5660 if (local_p)
8f0c309a 5661 {
698600e4 5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5663 value = 0;
5664 }
b49e97c9
TS
5665 else
5666 {
5667 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5668 if (h->la25_stub)
5669 {
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5674 }
5675 else
5676 {
5677 sec = h->fn_stub;
5678 value = 0;
5679 }
b49e97c9
TS
5680 }
5681
8f0c309a 5682 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
b49e97c9 5685 }
1bbce132
MR
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
0e1862bb 5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5692 || (local_p
698600e4
AM
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5696 {
b9d58d71 5697 if (local_p)
698600e4 5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5699 else
b49e97c9 5700 {
b9d58d71
TS
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5703 file. */
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5705 {
b9d58d71 5706 asection *o;
68ffbac6 5707
b9d58d71
TS
5708 sec = NULL;
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5710 {
b9d58d71
TS
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5712 {
5713 sec = h->call_fp_stub;
5714 break;
5715 }
b49e97c9 5716 }
b9d58d71
TS
5717 if (sec == NULL)
5718 sec = h->call_stub;
b49e97c9 5719 }
b9d58d71 5720 else if (h->call_stub != NULL)
b49e97c9 5721 sec = h->call_stub;
b9d58d71
TS
5722 else
5723 sec = h->call_fp_stub;
07d6d2b8 5724 }
b49e97c9 5725
eea6121a 5726 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5727 symbol = sec->output_section->vma + sec->output_offset;
5728 }
861fb55a
DJ
5729 /* If this is a direct call to a PIC function, redirect to the
5730 non-PIC stub. */
5731 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
c7318def
MR
5734 {
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5739 symbol |= 1;
5740 }
1bbce132
MR
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5745 one. */
54806ffa
MR
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
0e1862bb 5748 && !bfd_link_relocatable (info)
1bbce132
MR
5749 && h != NULL
5750 && h->use_plt_entry
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5753 {
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5755
ce558b89 5756 sec = htab->root.splt;
1bbce132
MR
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5762 + 1);
5763
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5766 }
b49e97c9 5767
df58fc94 5768 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5771 {
4eca0228 5772 _bfd_error_handler
df58fc94
RS
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5775 }
5776
b49e97c9 5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5782 acceptable. */
0e1862bb 5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
df58fc94 5788 && !target_is_micromips_code_p)
9d862524
MR
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
df58fc94
RS
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
b49e97c9 5793
47275900
MR
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5796
5797 switch (r_type)
5798 {
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5801 case R_MIPS_CALL16:
5802 case R_MIPS_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5818
5819 /* Fall through. */
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5827 {
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5832 }
5833 break;
5834 }
5835
c5d6fa44 5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5837
0a61c8c2
RS
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
23cc69b6 5840 if (htab->got_info)
a8028dd0 5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5842
5843 if (gnu_local_gp_p)
5844 symbol = gp;
5845
df58fc94
RS
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5850 {
df58fc94
RS
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5853 addend = 0;
5854 }
5855
e77760d2 5856 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5857 to need it, get it now. */
b49e97c9
TS
5858 switch (r_type)
5859 {
738e5348
RS
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
b49e97c9
TS
5862 case R_MIPS_CALL16:
5863 case R_MIPS_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
df58fc94
RS
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5876 case R_MIPS_TLS_GD:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
d0f13682
CLT
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
df58fc94
RS
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
b49e97c9 5885 /* Find the index into the GOT where this value is located. */
df58fc94 5886 if (tls_ldm_reloc_p (r_type))
0f20cc35 5887 {
0a44bf69 5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5889 0, 0, NULL, r_type);
0f20cc35
DJ
5890 if (g == MINUS_ONE)
5891 return bfd_reloc_outofrange;
5892 }
5893 else if (!local_p)
b49e97c9 5894 {
0a44bf69
RS
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
df58fc94
RS
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
738e5348 5900 || call16_reloc_p (r_type)))
0a44bf69
RS
5901 {
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5905 }
5906 else
b49e97c9 5907 {
020d7251 5908 BFD_ASSERT (addend == 0);
13fbec83
RS
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5910 &h->root, r_type);
e641e783 5911 if (!TLS_RELOC_P (r_type)
020d7251
RS
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5915 }
5916 }
0a44bf69 5917 else if (!htab->is_vxworks
738e5348 5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5919 /* The calculation below does not involve "g". */
b49e97c9
TS
5920 break;
5921 else
5922 {
5c18022e 5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5924 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5925 if (g == MINUS_ONE)
5926 return bfd_reloc_outofrange;
5927 }
5928
5929 /* Convert GOT indices to actual offsets. */
a8028dd0 5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5931 break;
b49e97c9
TS
5932 }
5933
0a44bf69
RS
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5937 {
5938 Elf_Internal_Rela outrel;
5939 bfd_byte *loc;
5940 asection *s;
5941
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5944
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5951
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5954 DT_TEXTREL tag. */
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5957
0a44bf69
RS
5958 *valuep = 0;
5959 return bfd_reloc_ok;
5960 }
5961
b49e97c9
TS
5962 /* Figure out what kind of relocation is being performed. */
5963 switch (r_type)
5964 {
5965 case R_MIPS_NONE:
5966 return bfd_reloc_continue;
5967
5968 case R_MIPS_16:
c3eb94b4
MF
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
b49e97c9
TS
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5973 break;
5974
5975 case R_MIPS_32:
5976 case R_MIPS_REL32:
5977 case R_MIPS_64:
0e1862bb 5978 if ((bfd_link_pic (info)
861fb55a 5979 || (htab->root.dynamic_sections_created
b49e97c9 5980 && h != NULL
f5385ebf 5981 && h->root.def_dynamic
861fb55a
DJ
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
cf35638d 5984 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5985 && (h == NULL
5986 || h->root.root.type != bfd_link_hash_undefweak
ad951203
L
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
b49e97c9
TS
5989 && (input_section->flags & SEC_ALLOC) != 0)
5990 {
861fb55a 5991 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
b49e97c9
TS
5997 value = addend;
5998 if (!mips_elf_create_dynamic_relocation (abfd,
5999 info,
6000 relocation,
6001 h,
6002 sec,
6003 symbol,
6004 &value,
6005 input_section))
6006 return bfd_reloc_undefined;
6007 }
6008 else
6009 {
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6012 else
6013 value = addend;
6014 }
6015 value &= howto->dst_mask;
092dcd75
CD
6016 break;
6017
6018 case R_MIPS_PC32:
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
b49e97c9
TS
6021 break;
6022
b49e97c9
TS
6023 case R_MIPS16_26:
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6029 case R_MIPS_26:
df58fc94
RS
6030 case R_MICROMIPS_26_S1:
6031 {
6032 unsigned int shift;
6033
df58fc94
RS
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6036
77434823 6037 if (howto->partial_inplace && !section_p)
df58fc94 6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
6039 else
6040 value = addend;
bc27bb05
MR
6041 value += symbol;
6042
9d862524
MR
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6045 symbols. */
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
07d6d2b8 6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
6050 return bfd_reloc_outofrange;
6051
6052 value >>= shift;
77434823 6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6056 }
b49e97c9
TS
6057 break;
6058
0f20cc35 6059 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 6060 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 6061 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6063 & howto->dst_mask);
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
d0f13682 6069 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 6070 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_TLS_TPREL_HI16:
d0f13682 6075 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 6076 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6078 & howto->dst_mask);
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 6085 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6087 break;
6088
b49e97c9 6089 case R_MIPS_HI16:
d6f16593 6090 case R_MIPS16_HI16:
df58fc94 6091 case R_MICROMIPS_HI16:
b49e97c9
TS
6092 if (!gp_disp_p)
6093 {
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6096 }
6097 else
6098 {
d6f16593 6099 /* For MIPS16 ABI code we generate this sequence
07d6d2b8
AM
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6102 8: sll $v0,16
d6f16593
MR
6103 12: addu $v0,$v1
6104 14: move $gp,$v0
6105 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
d6f16593 6109 if (r_type == R_MIPS16_HI16)
888b9c01 6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
6116 else
6117 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
6118 }
6119 break;
6120
6121 case R_MIPS_LO16:
d6f16593 6122 case R_MIPS16_LO16:
df58fc94
RS
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
6125 if (!gp_disp_p)
6126 value = (symbol + addend) & howto->dst_mask;
6127 else
6128 {
d6f16593
MR
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
888b9c01 6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
d6f16593
MR
6136 else
6137 value = addend + gp - p + 4;
b49e97c9 6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 6139 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6142 this:
6143
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6146 addu $gp,$gp,$t9
6147
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6154 }
6155 break;
6156
6157 case R_MIPS_LITERAL:
df58fc94 6158 case R_MICROMIPS_LITERAL:
b49e97c9
TS
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6162 here. */
6163
6164 /* Fall through. */
6165
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
df58fc94
RS
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
bce03d3d
AO
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
a7ebbfdf 6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6184 to them before. */
6185 if (was_local_p)
6186 value += gp0;
538baf8b
AB
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6189 break;
6190
738e5348
RS
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
b49e97c9
TS
6193 case R_MIPS_GOT16:
6194 case R_MIPS_CALL16:
df58fc94
RS
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
0a44bf69 6197 /* VxWorks does not have separate local and global semantics for
738e5348 6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6199 if (!htab->is_vxworks && local_p)
b49e97c9 6200 {
5c18022e 6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6202 symbol + addend, !was_local_p);
b49e97c9
TS
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6205 value
a8028dd0 6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
0f20cc35
DJ
6213 case R_MIPS_TLS_GD:
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
b49e97c9 6216 case R_MIPS_GOT_DISP:
d0f13682
CLT
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
df58fc94
RS
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6224 value = g;
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6226 break;
6227
6228 case R_MIPS_GPREL32:
bce03d3d
AO
6229 value = (addend + symbol + gp0 - gp);
6230 if (!save_addend)
6231 value &= howto->dst_mask;
b49e97c9
TS
6232 break;
6233
6234 case R_MIPS_PC16:
bad36eac 6235 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6238
9d862524 6239 /* No need to exclude weak undefined symbols here as they resolve
07d6d2b8
AM
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
9d862524
MR
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6245 return bfd_reloc_outofrange;
6246
6247 value = symbol + addend - p;
538baf8b
AB
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
b49e97c9
TS
6252 break;
6253
c9775dde
MR
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6257
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6262 return bfd_reloc_outofrange;
6263
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6269 break;
6270
7361da2c
AB
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6274
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6277
6278 value = symbol + addend - p;
538baf8b
AB
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6288
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6291
6292 value = symbol + addend - p;
538baf8b
AB
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6297 break;
6298
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6302
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6305
6306 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6311 break;
6312
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6316
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6319
6320 value = symbol + addend - p;
538baf8b
AB
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6325 break;
6326
6327 case R_MIPS_PCHI16:
6328 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6329 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6330 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCLO16:
6335 if (howto->partial_inplace)
6336 addend = _bfd_mips_elf_sign_extend (addend, 16);
6337 value = symbol + addend - p;
6338 value &= howto->dst_mask;
6339 break;
6340
df58fc94 6341 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6342 if (howto->partial_inplace)
6343 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6344
6345 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6346 && (*cross_mode_jump_p
6347 ? ((symbol + addend + 2) & 3) != 0
6348 : ((symbol + addend + 2) & 1) == 0))
6349 return bfd_reloc_outofrange;
6350
c3eb94b4 6351 value = symbol + addend - p;
538baf8b
AB
6352 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6353 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6354 value >>= howto->rightshift;
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6359 if (howto->partial_inplace)
6360 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6361
6362 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6363 && (*cross_mode_jump_p
6364 ? ((symbol + addend + 2) & 3) != 0
6365 : ((symbol + addend + 2) & 1) == 0))
6366 return bfd_reloc_outofrange;
6367
c3eb94b4 6368 value = symbol + addend - p;
538baf8b
AB
6369 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6370 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6371 value >>= howto->rightshift;
6372 value &= howto->dst_mask;
6373 break;
6374
6375 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6376 if (howto->partial_inplace)
6377 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6378
6379 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6380 && (*cross_mode_jump_p
6381 ? ((symbol + addend) & 3) != 0
6382 : ((symbol + addend) & 1) == 0))
6383 return bfd_reloc_outofrange;
6384
c3eb94b4 6385 value = symbol + addend - p;
538baf8b
AB
6386 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6387 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6388 value >>= howto->rightshift;
6389 value &= howto->dst_mask;
6390 break;
6391
6392 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6393 if (howto->partial_inplace)
6394 addend = _bfd_mips_elf_sign_extend (addend, 25);
6395 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6396 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6397 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6398 value >>= howto->rightshift;
6399 value &= howto->dst_mask;
6400 break;
6401
b49e97c9
TS
6402 case R_MIPS_GOT_HI16:
6403 case R_MIPS_CALL_HI16:
df58fc94
RS
6404 case R_MICROMIPS_GOT_HI16:
6405 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6406 /* We're allowed to handle these two relocations identically.
6407 The dynamic linker is allowed to handle the CALL relocations
6408 differently by creating a lazy evaluation stub. */
6409 value = g;
6410 value = mips_elf_high (value);
6411 value &= howto->dst_mask;
6412 break;
6413
6414 case R_MIPS_GOT_LO16:
6415 case R_MIPS_CALL_LO16:
df58fc94
RS
6416 case R_MICROMIPS_GOT_LO16:
6417 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6418 value = g & howto->dst_mask;
6419 break;
6420
6421 case R_MIPS_GOT_PAGE:
df58fc94 6422 case R_MICROMIPS_GOT_PAGE:
5c18022e 6423 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6424 if (value == MINUS_ONE)
6425 return bfd_reloc_outofrange;
a8028dd0 6426 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6427 overflowed_p = mips_elf_overflow_p (value, 16);
6428 break;
6429
6430 case R_MIPS_GOT_OFST:
df58fc94 6431 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6432 if (local_p)
5c18022e 6433 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6434 else
6435 value = addend;
b49e97c9
TS
6436 overflowed_p = mips_elf_overflow_p (value, 16);
6437 break;
6438
6439 case R_MIPS_SUB:
df58fc94 6440 case R_MICROMIPS_SUB:
b49e97c9
TS
6441 value = symbol - addend;
6442 value &= howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_HIGHER:
df58fc94 6446 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6447 value = mips_elf_higher (addend + symbol);
6448 value &= howto->dst_mask;
6449 break;
6450
6451 case R_MIPS_HIGHEST:
df58fc94 6452 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6453 value = mips_elf_highest (addend + symbol);
6454 value &= howto->dst_mask;
6455 break;
6456
6457 case R_MIPS_SCN_DISP:
df58fc94 6458 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6459 value = symbol + addend - sec->output_offset;
6460 value &= howto->dst_mask;
6461 break;
6462
b49e97c9 6463 case R_MIPS_JALR:
df58fc94 6464 case R_MICROMIPS_JALR:
1367d393
ILT
6465 /* This relocation is only a hint. In some cases, we optimize
6466 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6467 when the symbol does not resolve locally. */
6468 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6469 return bfd_reloc_continue;
c1556ecd
MR
6470 /* We can't optimize cross-mode jumps either. */
6471 if (*cross_mode_jump_p)
6472 return bfd_reloc_continue;
1367d393 6473 value = symbol + addend;
c1556ecd
MR
6474 /* Neither we can non-instruction-aligned targets. */
6475 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6476 return bfd_reloc_continue;
1367d393 6477 break;
b49e97c9 6478
1367d393 6479 case R_MIPS_PJUMP:
b49e97c9
TS
6480 case R_MIPS_GNU_VTINHERIT:
6481 case R_MIPS_GNU_VTENTRY:
6482 /* We don't do anything with these at present. */
6483 return bfd_reloc_continue;
6484
6485 default:
6486 /* An unrecognized relocation type. */
6487 return bfd_reloc_notsupported;
6488 }
6489
6490 /* Store the VALUE for our caller. */
6491 *valuep = value;
6492 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6493}
6494
b49e97c9
TS
6495/* It has been determined that the result of the RELOCATION is the
6496 VALUE. Use HOWTO to place VALUE into the output file at the
6497 appropriate position. The SECTION is the section to which the
68ffbac6 6498 relocation applies.
38a7df63 6499 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6500 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6501
b34976b6 6502 Returns FALSE if anything goes wrong. */
b49e97c9 6503
b34976b6 6504static bfd_boolean
9719ad41
RS
6505mips_elf_perform_relocation (struct bfd_link_info *info,
6506 reloc_howto_type *howto,
6507 const Elf_Internal_Rela *relocation,
6508 bfd_vma value, bfd *input_bfd,
6509 asection *input_section, bfd_byte *contents,
38a7df63 6510 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6511{
6512 bfd_vma x;
6513 bfd_byte *location;
6514 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6515
6516 /* Figure out where the relocation is occurring. */
6517 location = contents + relocation->r_offset;
6518
df58fc94 6519 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6520
b49e97c9
TS
6521 /* Obtain the current value. */
6522 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6523
6524 /* Clear the field we are setting. */
6525 x &= ~howto->dst_mask;
6526
b49e97c9
TS
6527 /* Set the field. */
6528 x |= (value & howto->dst_mask);
6529
a6ebf616 6530 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6531 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6532 {
6533 bfd_vma opcode = x >> 26;
6534
6535 if (r_type == R_MIPS16_26 ? opcode == 0x7
6536 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6537 : opcode == 0x1d)
6538 {
6539 info->callbacks->einfo
2c1c9679 6540 (_("%X%H: unsupported JALX to the same ISA mode\n"),
9d862524
MR
6541 input_bfd, input_section, relocation->r_offset);
6542 return TRUE;
6543 }
6544 }
38a7df63 6545 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6546 {
b34976b6 6547 bfd_boolean ok;
b49e97c9
TS
6548 bfd_vma opcode = x >> 26;
6549 bfd_vma jalx_opcode;
6550
6551 /* Check to see if the opcode is already JAL or JALX. */
6552 if (r_type == R_MIPS16_26)
6553 {
6554 ok = ((opcode == 0x6) || (opcode == 0x7));
6555 jalx_opcode = 0x7;
6556 }
df58fc94
RS
6557 else if (r_type == R_MICROMIPS_26_S1)
6558 {
6559 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6560 jalx_opcode = 0x3c;
6561 }
b49e97c9
TS
6562 else
6563 {
6564 ok = ((opcode == 0x3) || (opcode == 0x1d));
6565 jalx_opcode = 0x1d;
6566 }
6567
3bdf9505 6568 /* If the opcode is not JAL or JALX, there's a problem. We cannot
07d6d2b8 6569 convert J or JALS to JALX. */
b49e97c9
TS
6570 if (!ok)
6571 {
5f68df25 6572 info->callbacks->einfo
2c1c9679 6573 (_("%X%H: unsupported jump between ISA modes; "
5f68df25
MR
6574 "consider recompiling with interlinking enabled\n"),
6575 input_bfd, input_section, relocation->r_offset);
6576 return TRUE;
b49e97c9
TS
6577 }
6578
6579 /* Make this the JALX opcode. */
6580 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6581 }
9d862524
MR
6582 else if (cross_mode_jump_p && b_reloc_p (r_type))
6583 {
a6ebf616
MR
6584 bfd_boolean ok = FALSE;
6585 bfd_vma opcode = x >> 16;
6586 bfd_vma jalx_opcode = 0;
70e65ca8 6587 bfd_vma sign_bit = 0;
a6ebf616
MR
6588 bfd_vma addr;
6589 bfd_vma dest;
6590
6591 if (r_type == R_MICROMIPS_PC16_S1)
6592 {
6593 ok = opcode == 0x4060;
6594 jalx_opcode = 0x3c;
70e65ca8 6595 sign_bit = 0x10000;
a6ebf616
MR
6596 value <<= 1;
6597 }
6598 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6599 {
6600 ok = opcode == 0x411;
6601 jalx_opcode = 0x1d;
70e65ca8 6602 sign_bit = 0x20000;
a6ebf616
MR
6603 value <<= 2;
6604 }
6605
8b10b0b3 6606 if (ok && !bfd_link_pic (info))
a6ebf616 6607 {
8b10b0b3
MR
6608 addr = (input_section->output_section->vma
6609 + input_section->output_offset
6610 + relocation->r_offset
6611 + 4);
70e65ca8
MR
6612 dest = (addr
6613 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
a6ebf616 6614
8b10b0b3
MR
6615 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6616 {
6617 info->callbacks->einfo
2c1c9679 6618 (_("%X%H: cannot convert branch between ISA modes "
8b10b0b3
MR
6619 "to JALX: relocation out of range\n"),
6620 input_bfd, input_section, relocation->r_offset);
6621 return TRUE;
6622 }
a6ebf616 6623
8b10b0b3
MR
6624 /* Make this the JALX opcode. */
6625 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6626 }
6627 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6628 {
6629 info->callbacks->einfo
2c1c9679 6630 (_("%X%H: unsupported branch between ISA modes\n"),
a6ebf616
MR
6631 input_bfd, input_section, relocation->r_offset);
6632 return TRUE;
6633 }
9d862524 6634 }
b49e97c9 6635
38a7df63
CF
6636 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6637 range. */
0e1862bb 6638 if (!bfd_link_relocatable (info)
38a7df63 6639 && !cross_mode_jump_p
cd8d5a82
CF
6640 && ((JAL_TO_BAL_P (input_bfd)
6641 && r_type == R_MIPS_26
0e392101 6642 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6643 || (JALR_TO_BAL_P (input_bfd)
6644 && r_type == R_MIPS_JALR
0e392101 6645 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6646 || (JR_TO_B_P (input_bfd)
6647 && r_type == R_MIPS_JALR
0e392101 6648 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6649 {
6650 bfd_vma addr;
6651 bfd_vma dest;
6652 bfd_signed_vma off;
6653
6654 addr = (input_section->output_section->vma
6655 + input_section->output_offset
6656 + relocation->r_offset
6657 + 4);
6658 if (r_type == R_MIPS_26)
6659 dest = (value << 2) | ((addr >> 28) << 28);
6660 else
6661 dest = value;
6662 off = dest - addr;
6663 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6664 {
0e392101 6665 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6666 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6667 else
6668 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6669 }
1367d393
ILT
6670 }
6671
b49e97c9 6672 /* Put the value into the output. */
98e10ffa 6673 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
d6f16593 6674
0e1862bb 6675 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6676 location);
d6f16593 6677
b34976b6 6678 return TRUE;
b49e97c9 6679}
b49e97c9 6680\f
b49e97c9
TS
6681/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6682 is the original relocation, which is now being transformed into a
6683 dynamic relocation. The ADDENDP is adjusted if necessary; the
6684 caller should store the result in place of the original addend. */
6685
b34976b6 6686static bfd_boolean
9719ad41
RS
6687mips_elf_create_dynamic_relocation (bfd *output_bfd,
6688 struct bfd_link_info *info,
6689 const Elf_Internal_Rela *rel,
6690 struct mips_elf_link_hash_entry *h,
6691 asection *sec, bfd_vma symbol,
6692 bfd_vma *addendp, asection *input_section)
b49e97c9 6693{
947216bf 6694 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6695 asection *sreloc;
6696 bfd *dynobj;
6697 int r_type;
5d41f0b6
RS
6698 long indx;
6699 bfd_boolean defined_p;
0a44bf69 6700 struct mips_elf_link_hash_table *htab;
b49e97c9 6701
0a44bf69 6702 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6703 BFD_ASSERT (htab != NULL);
6704
b49e97c9
TS
6705 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6706 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6707 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6708 BFD_ASSERT (sreloc != NULL);
6709 BFD_ASSERT (sreloc->contents != NULL);
6710 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6711 < sreloc->size);
b49e97c9 6712
b49e97c9
TS
6713 outrel[0].r_offset =
6714 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6715 if (ABI_64_P (output_bfd))
6716 {
6717 outrel[1].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6719 outrel[2].r_offset =
6720 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6721 }
b49e97c9 6722
c5ae1840 6723 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6724 /* The relocation field has been deleted. */
5d41f0b6
RS
6725 return TRUE;
6726
6727 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6728 {
6729 /* The relocation field has been converted into a relative value of
6730 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6731 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6732 *addendp += symbol;
5d41f0b6 6733 return TRUE;
0d591ff7 6734 }
b49e97c9 6735
5d41f0b6
RS
6736 /* We must now calculate the dynamic symbol table index to use
6737 in the relocation. */
d4a77f3f 6738 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6739 {
020d7251 6740 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6741 indx = h->root.dynindx;
6742 if (SGI_COMPAT (output_bfd))
6743 defined_p = h->root.def_regular;
6744 else
6745 /* ??? glibc's ld.so just adds the final GOT entry to the
6746 relocation field. It therefore treats relocs against
6747 defined symbols in the same way as relocs against
6748 undefined symbols. */
6749 defined_p = FALSE;
6750 }
b49e97c9
TS
6751 else
6752 {
5d41f0b6
RS
6753 if (sec != NULL && bfd_is_abs_section (sec))
6754 indx = 0;
6755 else if (sec == NULL || sec->owner == NULL)
fdd07405 6756 {
5d41f0b6
RS
6757 bfd_set_error (bfd_error_bad_value);
6758 return FALSE;
b49e97c9
TS
6759 }
6760 else
6761 {
5d41f0b6 6762 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6763 if (indx == 0)
6764 {
6765 asection *osec = htab->root.text_index_section;
6766 indx = elf_section_data (osec)->dynindx;
6767 }
5d41f0b6
RS
6768 if (indx == 0)
6769 abort ();
b49e97c9
TS
6770 }
6771
5d41f0b6
RS
6772 /* Instead of generating a relocation using the section
6773 symbol, we may as well make it a fully relative
6774 relocation. We want to avoid generating relocations to
6775 local symbols because we used to generate them
6776 incorrectly, without adding the original symbol value,
6777 which is mandated by the ABI for section symbols. In
6778 order to give dynamic loaders and applications time to
6779 phase out the incorrect use, we refrain from emitting
6780 section-relative relocations. It's not like they're
6781 useful, after all. This should be a bit more efficient
6782 as well. */
6783 /* ??? Although this behavior is compatible with glibc's ld.so,
6784 the ABI says that relocations against STN_UNDEF should have
6785 a symbol value of 0. Irix rld honors this, so relocations
6786 against STN_UNDEF have no effect. */
6787 if (!SGI_COMPAT (output_bfd))
6788 indx = 0;
6789 defined_p = TRUE;
b49e97c9
TS
6790 }
6791
5d41f0b6
RS
6792 /* If the relocation was previously an absolute relocation and
6793 this symbol will not be referred to by the relocation, we must
6794 adjust it by the value we give it in the dynamic symbol table.
6795 Otherwise leave the job up to the dynamic linker. */
6796 if (defined_p && r_type != R_MIPS_REL32)
6797 *addendp += symbol;
6798
0a44bf69
RS
6799 if (htab->is_vxworks)
6800 /* VxWorks uses non-relative relocations for this. */
6801 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6802 else
6803 /* The relocation is always an REL32 relocation because we don't
6804 know where the shared library will wind up at load-time. */
6805 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6806 R_MIPS_REL32);
6807
5d41f0b6
RS
6808 /* For strict adherence to the ABI specification, we should
6809 generate a R_MIPS_64 relocation record by itself before the
6810 _REL32/_64 record as well, such that the addend is read in as
6811 a 64-bit value (REL32 is a 32-bit relocation, after all).
6812 However, since none of the existing ELF64 MIPS dynamic
6813 loaders seems to care, we don't waste space with these
6814 artificial relocations. If this turns out to not be true,
6815 mips_elf_allocate_dynamic_relocation() should be tweaked so
6816 as to make room for a pair of dynamic relocations per
6817 invocation if ABI_64_P, and here we should generate an
6818 additional relocation record with R_MIPS_64 by itself for a
6819 NULL symbol before this relocation record. */
6820 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6821 ABI_64_P (output_bfd)
6822 ? R_MIPS_64
6823 : R_MIPS_NONE);
6824 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6825
6826 /* Adjust the output offset of the relocation to reference the
6827 correct location in the output file. */
6828 outrel[0].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[1].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6832 outrel[2].r_offset += (input_section->output_section->vma
6833 + input_section->output_offset);
6834
b49e97c9
TS
6835 /* Put the relocation back out. We have to use the special
6836 relocation outputter in the 64-bit case since the 64-bit
6837 relocation format is non-standard. */
6838 if (ABI_64_P (output_bfd))
6839 {
6840 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6841 (output_bfd, &outrel[0],
6842 (sreloc->contents
6843 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6844 }
0a44bf69
RS
6845 else if (htab->is_vxworks)
6846 {
6847 /* VxWorks uses RELA rather than REL dynamic relocations. */
6848 outrel[0].r_addend = *addendp;
6849 bfd_elf32_swap_reloca_out
6850 (output_bfd, &outrel[0],
6851 (sreloc->contents
6852 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6853 }
b49e97c9 6854 else
947216bf
AM
6855 bfd_elf32_swap_reloc_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6858
b49e97c9
TS
6859 /* We've now added another relocation. */
6860 ++sreloc->reloc_count;
6861
6862 /* Make sure the output section is writable. The dynamic linker
6863 will be writing to it. */
6864 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6865 |= SHF_WRITE;
6866
6867 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6868 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6869 {
3d4d4302 6870 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6871 bfd_byte *cr;
6872
6873 if (scpt)
6874 {
6875 Elf32_crinfo cptrel;
6876
6877 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6878 cptrel.vaddr = (rel->r_offset
6879 + input_section->output_section->vma
6880 + input_section->output_offset);
6881 if (r_type == R_MIPS_REL32)
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6883 else
6884 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6885 mips_elf_set_cr_dist2to (cptrel, 0);
6886 cptrel.konst = *addendp;
6887
6888 cr = (scpt->contents
6889 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6890 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6891 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6892 ((Elf32_External_crinfo *) cr
6893 + scpt->reloc_count));
6894 ++scpt->reloc_count;
6895 }
6896 }
6897
943284cc
DJ
6898 /* If we've written this relocation for a readonly section,
6899 we need to set DF_TEXTREL again, so that we do not delete the
6900 DT_TEXTREL tag. */
6901 if (MIPS_ELF_READONLY_SECTION (input_section))
6902 info->flags |= DF_TEXTREL;
6903
b34976b6 6904 return TRUE;
b49e97c9
TS
6905}
6906\f
b49e97c9
TS
6907/* Return the MACH for a MIPS e_flags value. */
6908
6909unsigned long
9719ad41 6910_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6911{
6912 switch (flags & EF_MIPS_MACH)
6913 {
6914 case E_MIPS_MACH_3900:
6915 return bfd_mach_mips3900;
6916
6917 case E_MIPS_MACH_4010:
6918 return bfd_mach_mips4010;
6919
6920 case E_MIPS_MACH_4100:
6921 return bfd_mach_mips4100;
6922
6923 case E_MIPS_MACH_4111:
6924 return bfd_mach_mips4111;
6925
00707a0e
RS
6926 case E_MIPS_MACH_4120:
6927 return bfd_mach_mips4120;
6928
b49e97c9
TS
6929 case E_MIPS_MACH_4650:
6930 return bfd_mach_mips4650;
6931
00707a0e
RS
6932 case E_MIPS_MACH_5400:
6933 return bfd_mach_mips5400;
6934
6935 case E_MIPS_MACH_5500:
6936 return bfd_mach_mips5500;
6937
e407c74b
NC
6938 case E_MIPS_MACH_5900:
6939 return bfd_mach_mips5900;
6940
0d2e43ed
ILT
6941 case E_MIPS_MACH_9000:
6942 return bfd_mach_mips9000;
6943
b49e97c9
TS
6944 case E_MIPS_MACH_SB1:
6945 return bfd_mach_mips_sb1;
6946
350cc38d
MS
6947 case E_MIPS_MACH_LS2E:
6948 return bfd_mach_mips_loongson_2e;
6949
6950 case E_MIPS_MACH_LS2F:
6951 return bfd_mach_mips_loongson_2f;
6952
ac8cb70f
CX
6953 case E_MIPS_MACH_GS464:
6954 return bfd_mach_mips_gs464;
fd503541 6955
bd782c07
CX
6956 case E_MIPS_MACH_GS464E:
6957 return bfd_mach_mips_gs464e;
6958
9108bc33
CX
6959 case E_MIPS_MACH_GS264E:
6960 return bfd_mach_mips_gs264e;
6961
2c629856
N
6962 case E_MIPS_MACH_OCTEON3:
6963 return bfd_mach_mips_octeon3;
6964
432233b3
AP
6965 case E_MIPS_MACH_OCTEON2:
6966 return bfd_mach_mips_octeon2;
6967
6f179bd0
AN
6968 case E_MIPS_MACH_OCTEON:
6969 return bfd_mach_mips_octeon;
6970
52b6b6b9
JM
6971 case E_MIPS_MACH_XLR:
6972 return bfd_mach_mips_xlr;
6973
38bf472a
MR
6974 case E_MIPS_MACH_IAMR2:
6975 return bfd_mach_mips_interaptiv_mr2;
6976
b49e97c9
TS
6977 default:
6978 switch (flags & EF_MIPS_ARCH)
6979 {
6980 default:
6981 case E_MIPS_ARCH_1:
6982 return bfd_mach_mips3000;
b49e97c9
TS
6983
6984 case E_MIPS_ARCH_2:
6985 return bfd_mach_mips6000;
b49e97c9
TS
6986
6987 case E_MIPS_ARCH_3:
6988 return bfd_mach_mips4000;
b49e97c9
TS
6989
6990 case E_MIPS_ARCH_4:
6991 return bfd_mach_mips8000;
b49e97c9
TS
6992
6993 case E_MIPS_ARCH_5:
6994 return bfd_mach_mips5;
b49e97c9
TS
6995
6996 case E_MIPS_ARCH_32:
6997 return bfd_mach_mipsisa32;
b49e97c9
TS
6998
6999 case E_MIPS_ARCH_64:
7000 return bfd_mach_mipsisa64;
af7ee8bf
CD
7001
7002 case E_MIPS_ARCH_32R2:
7003 return bfd_mach_mipsisa32r2;
5f74bc13
CD
7004
7005 case E_MIPS_ARCH_64R2:
7006 return bfd_mach_mipsisa64r2;
7361da2c
AB
7007
7008 case E_MIPS_ARCH_32R6:
7009 return bfd_mach_mipsisa32r6;
7010
7011 case E_MIPS_ARCH_64R6:
7012 return bfd_mach_mipsisa64r6;
b49e97c9
TS
7013 }
7014 }
7015
7016 return 0;
7017}
7018
7019/* Return printable name for ABI. */
7020
7021static INLINE char *
9719ad41 7022elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
7023{
7024 flagword flags;
7025
7026 flags = elf_elfheader (abfd)->e_flags;
7027 switch (flags & EF_MIPS_ABI)
7028 {
7029 case 0:
7030 if (ABI_N32_P (abfd))
7031 return "N32";
7032 else if (ABI_64_P (abfd))
7033 return "64";
7034 else
7035 return "none";
7036 case E_MIPS_ABI_O32:
7037 return "O32";
7038 case E_MIPS_ABI_O64:
7039 return "O64";
7040 case E_MIPS_ABI_EABI32:
7041 return "EABI32";
7042 case E_MIPS_ABI_EABI64:
7043 return "EABI64";
7044 default:
7045 return "unknown abi";
7046 }
7047}
7048\f
7049/* MIPS ELF uses two common sections. One is the usual one, and the
7050 other is for small objects. All the small objects are kept
7051 together, and then referenced via the gp pointer, which yields
7052 faster assembler code. This is what we use for the small common
7053 section. This approach is copied from ecoff.c. */
7054static asection mips_elf_scom_section;
7055static asymbol mips_elf_scom_symbol;
7056static asymbol *mips_elf_scom_symbol_ptr;
7057
7058/* MIPS ELF also uses an acommon section, which represents an
7059 allocated common symbol which may be overridden by a
7060 definition in a shared library. */
7061static asection mips_elf_acom_section;
7062static asymbol mips_elf_acom_symbol;
7063static asymbol *mips_elf_acom_symbol_ptr;
7064
738e5348 7065/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
7066
7067void
9719ad41 7068_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
7069{
7070 elf_symbol_type *elfsym;
7071
738e5348 7072 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
7073 elfsym = (elf_symbol_type *) asym;
7074 switch (elfsym->internal_elf_sym.st_shndx)
7075 {
7076 case SHN_MIPS_ACOMMON:
7077 /* This section is used in a dynamically linked executable file.
7078 It is an allocated common section. The dynamic linker can
7079 either resolve these symbols to something in a shared
7080 library, or it can just leave them here. For our purposes,
7081 we can consider these symbols to be in a new section. */
7082 if (mips_elf_acom_section.name == NULL)
7083 {
7084 /* Initialize the acommon section. */
7085 mips_elf_acom_section.name = ".acommon";
7086 mips_elf_acom_section.flags = SEC_ALLOC;
7087 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7088 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7089 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7090 mips_elf_acom_symbol.name = ".acommon";
7091 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7092 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7093 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7094 }
7095 asym->section = &mips_elf_acom_section;
7096 break;
7097
7098 case SHN_COMMON:
7099 /* Common symbols less than the GP size are automatically
7100 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7101 if (asym->value > elf_gp_size (abfd)
b59eed79 7102 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
7103 || IRIX_COMPAT (abfd) == ict_irix6)
7104 break;
7105 /* Fall through. */
7106 case SHN_MIPS_SCOMMON:
7107 if (mips_elf_scom_section.name == NULL)
7108 {
7109 /* Initialize the small common section. */
7110 mips_elf_scom_section.name = ".scommon";
7111 mips_elf_scom_section.flags = SEC_IS_COMMON;
7112 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7113 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7114 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7115 mips_elf_scom_symbol.name = ".scommon";
7116 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7117 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7118 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7119 }
7120 asym->section = &mips_elf_scom_section;
7121 asym->value = elfsym->internal_elf_sym.st_size;
7122 break;
7123
7124 case SHN_MIPS_SUNDEFINED:
7125 asym->section = bfd_und_section_ptr;
7126 break;
7127
b49e97c9 7128 case SHN_MIPS_TEXT:
00b4930b
TS
7129 {
7130 asection *section = bfd_get_section_by_name (abfd, ".text");
7131
00b4930b
TS
7132 if (section != NULL)
7133 {
7134 asym->section = section;
7135 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 7136 to the base of the .text section. So subtract the section
00b4930b
TS
7137 base address to make it an offset. */
7138 asym->value -= section->vma;
7139 }
7140 }
b49e97c9
TS
7141 break;
7142
7143 case SHN_MIPS_DATA:
00b4930b
TS
7144 {
7145 asection *section = bfd_get_section_by_name (abfd, ".data");
7146
00b4930b
TS
7147 if (section != NULL)
7148 {
7149 asym->section = section;
7150 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 7151 to the base of the .data section. So subtract the section
00b4930b
TS
7152 base address to make it an offset. */
7153 asym->value -= section->vma;
7154 }
7155 }
b49e97c9 7156 break;
b49e97c9 7157 }
738e5348 7158
df58fc94
RS
7159 /* If this is an odd-valued function symbol, assume it's a MIPS16
7160 or microMIPS one. */
738e5348
RS
7161 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7162 && (asym->value & 1) != 0)
7163 {
7164 asym->value--;
e8faf7d1 7165 if (MICROMIPS_P (abfd))
df58fc94
RS
7166 elfsym->internal_elf_sym.st_other
7167 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7168 else
7169 elfsym->internal_elf_sym.st_other
7170 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 7171 }
b49e97c9
TS
7172}
7173\f
8c946ed5
RS
7174/* Implement elf_backend_eh_frame_address_size. This differs from
7175 the default in the way it handles EABI64.
7176
7177 EABI64 was originally specified as an LP64 ABI, and that is what
7178 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7179 historically accepted the combination of -mabi=eabi and -mlong32,
7180 and this ILP32 variation has become semi-official over time.
7181 Both forms use elf32 and have pointer-sized FDE addresses.
7182
7183 If an EABI object was generated by GCC 4.0 or above, it will have
7184 an empty .gcc_compiled_longXX section, where XX is the size of longs
7185 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7186 have no special marking to distinguish them from LP64 objects.
7187
7188 We don't want users of the official LP64 ABI to be punished for the
7189 existence of the ILP32 variant, but at the same time, we don't want
7190 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7191 We therefore take the following approach:
7192
7193 - If ABFD contains a .gcc_compiled_longXX section, use it to
07d6d2b8 7194 determine the pointer size.
8c946ed5
RS
7195
7196 - Otherwise check the type of the first relocation. Assume that
07d6d2b8 7197 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
8c946ed5
RS
7198
7199 - Otherwise punt.
7200
7201 The second check is enough to detect LP64 objects generated by pre-4.0
7202 compilers because, in the kind of output generated by those compilers,
7203 the first relocation will be associated with either a CIE personality
7204 routine or an FDE start address. Furthermore, the compilers never
7205 used a special (non-pointer) encoding for this ABI.
7206
7207 Checking the relocation type should also be safe because there is no
7208 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7209 did so. */
7210
7211unsigned int
76c20d54 7212_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7213{
7214 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7215 return 8;
7216 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7217 {
7218 bfd_boolean long32_p, long64_p;
7219
7220 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7221 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7222 if (long32_p && long64_p)
7223 return 0;
7224 if (long32_p)
7225 return 4;
7226 if (long64_p)
7227 return 8;
7228
7229 if (sec->reloc_count > 0
7230 && elf_section_data (sec)->relocs != NULL
7231 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7232 == R_MIPS_64))
7233 return 8;
7234
7235 return 0;
7236 }
7237 return 4;
7238}
7239\f
174fd7f9
RS
7240/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7241 relocations against two unnamed section symbols to resolve to the
7242 same address. For example, if we have code like:
7243
7244 lw $4,%got_disp(.data)($gp)
7245 lw $25,%got_disp(.text)($gp)
7246 jalr $25
7247
7248 then the linker will resolve both relocations to .data and the program
7249 will jump there rather than to .text.
7250
7251 We can work around this problem by giving names to local section symbols.
7252 This is also what the MIPSpro tools do. */
7253
7254bfd_boolean
7255_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7256{
7257 return SGI_COMPAT (abfd);
7258}
7259\f
b49e97c9
TS
7260/* Work over a section just before writing it out. This routine is
7261 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7262 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7263 a better way. */
7264
b34976b6 7265bfd_boolean
9719ad41 7266_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7267{
7268 if (hdr->sh_type == SHT_MIPS_REGINFO
7269 && hdr->sh_size > 0)
7270 {
7271 bfd_byte buf[4];
7272
b49e97c9
TS
7273 BFD_ASSERT (hdr->contents == NULL);
7274
2d6dda71
MR
7275 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7276 {
7277 _bfd_error_handler
2c1c9679 7278 (_("%pB: incorrect `.reginfo' section size; "
2dcf00ce
AM
7279 "expected %" PRIu64 ", got %" PRIu64),
7280 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7281 (uint64_t) hdr->sh_size);
2d6dda71
MR
7282 bfd_set_error (bfd_error_bad_value);
7283 return FALSE;
7284 }
7285
b49e97c9
TS
7286 if (bfd_seek (abfd,
7287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7288 SEEK_SET) != 0)
b34976b6 7289 return FALSE;
b49e97c9 7290 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7291 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7292 return FALSE;
b49e97c9
TS
7293 }
7294
7295 if (hdr->sh_type == SHT_MIPS_OPTIONS
7296 && hdr->bfd_section != NULL
f0abc2a1
AM
7297 && mips_elf_section_data (hdr->bfd_section) != NULL
7298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7299 {
7300 bfd_byte *contents, *l, *lend;
7301
f0abc2a1
AM
7302 /* We stored the section contents in the tdata field in the
7303 set_section_contents routine. We save the section contents
7304 so that we don't have to read them again.
b49e97c9
TS
7305 At this point we know that elf_gp is set, so we can look
7306 through the section contents to see if there is an
7307 ODK_REGINFO structure. */
7308
f0abc2a1 7309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7310 l = contents;
7311 lend = contents + hdr->sh_size;
7312 while (l + sizeof (Elf_External_Options) <= lend)
7313 {
7314 Elf_Internal_Options intopt;
7315
7316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7317 &intopt);
1bc8074d
MR
7318 if (intopt.size < sizeof (Elf_External_Options))
7319 {
4eca0228 7320 _bfd_error_handler
695344c0 7321 /* xgettext:c-format */
2c1c9679 7322 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7323 " its header"),
1bc8074d
MR
7324 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7325 break;
7326 }
b49e97c9
TS
7327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7328 {
7329 bfd_byte buf[8];
7330
7331 if (bfd_seek (abfd,
7332 (hdr->sh_offset
7333 + (l - contents)
7334 + sizeof (Elf_External_Options)
7335 + (sizeof (Elf64_External_RegInfo) - 8)),
7336 SEEK_SET) != 0)
b34976b6 7337 return FALSE;
b49e97c9 7338 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7339 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7340 return FALSE;
b49e97c9
TS
7341 }
7342 else if (intopt.kind == ODK_REGINFO)
7343 {
7344 bfd_byte buf[4];
7345
7346 if (bfd_seek (abfd,
7347 (hdr->sh_offset
7348 + (l - contents)
7349 + sizeof (Elf_External_Options)
7350 + (sizeof (Elf32_External_RegInfo) - 4)),
7351 SEEK_SET) != 0)
b34976b6 7352 return FALSE;
b49e97c9 7353 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7354 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7355 return FALSE;
b49e97c9
TS
7356 }
7357 l += intopt.size;
7358 }
7359 }
7360
7361 if (hdr->bfd_section != NULL)
7362 {
7363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7364
2d0f9ad9
JM
7365 /* .sbss is not handled specially here because the GNU/Linux
7366 prelinker can convert .sbss from NOBITS to PROGBITS and
7367 changing it back to NOBITS breaks the binary. The entry in
7368 _bfd_mips_elf_special_sections will ensure the correct flags
7369 are set on .sbss if BFD creates it without reading it from an
7370 input file, and without special handling here the flags set
7371 on it in an input file will be followed. */
b49e97c9
TS
7372 if (strcmp (name, ".sdata") == 0
7373 || strcmp (name, ".lit8") == 0
7374 || strcmp (name, ".lit4") == 0)
fd6f9d17 7375 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7376 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7377 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7378 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7379 hdr->sh_flags = 0;
b49e97c9
TS
7380 else if (strcmp (name, ".rtproc") == 0)
7381 {
7382 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7383 {
7384 unsigned int adjust;
7385
7386 adjust = hdr->sh_size % hdr->sh_addralign;
7387 if (adjust != 0)
7388 hdr->sh_size += hdr->sh_addralign - adjust;
7389 }
7390 }
7391 }
7392
b34976b6 7393 return TRUE;
b49e97c9
TS
7394}
7395
7396/* Handle a MIPS specific section when reading an object file. This
7397 is called when elfcode.h finds a section with an unknown type.
7398 This routine supports both the 32-bit and 64-bit ELF ABI.
7399
7400 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7401 how to. */
7402
b34976b6 7403bfd_boolean
6dc132d9
L
7404_bfd_mips_elf_section_from_shdr (bfd *abfd,
7405 Elf_Internal_Shdr *hdr,
7406 const char *name,
7407 int shindex)
b49e97c9
TS
7408{
7409 flagword flags = 0;
7410
7411 /* There ought to be a place to keep ELF backend specific flags, but
7412 at the moment there isn't one. We just keep track of the
7413 sections by their name, instead. Fortunately, the ABI gives
7414 suggested names for all the MIPS specific sections, so we will
7415 probably get away with this. */
7416 switch (hdr->sh_type)
7417 {
7418 case SHT_MIPS_LIBLIST:
7419 if (strcmp (name, ".liblist") != 0)
b34976b6 7420 return FALSE;
b49e97c9
TS
7421 break;
7422 case SHT_MIPS_MSYM:
7423 if (strcmp (name, ".msym") != 0)
b34976b6 7424 return FALSE;
b49e97c9
TS
7425 break;
7426 case SHT_MIPS_CONFLICT:
7427 if (strcmp (name, ".conflict") != 0)
b34976b6 7428 return FALSE;
b49e97c9
TS
7429 break;
7430 case SHT_MIPS_GPTAB:
0112cd26 7431 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7432 return FALSE;
b49e97c9
TS
7433 break;
7434 case SHT_MIPS_UCODE:
7435 if (strcmp (name, ".ucode") != 0)
b34976b6 7436 return FALSE;
b49e97c9
TS
7437 break;
7438 case SHT_MIPS_DEBUG:
7439 if (strcmp (name, ".mdebug") != 0)
b34976b6 7440 return FALSE;
b49e97c9
TS
7441 flags = SEC_DEBUGGING;
7442 break;
7443 case SHT_MIPS_REGINFO:
7444 if (strcmp (name, ".reginfo") != 0
7445 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7446 return FALSE;
b49e97c9
TS
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_IFACE:
7450 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7451 return FALSE;
b49e97c9
TS
7452 break;
7453 case SHT_MIPS_CONTENT:
0112cd26 7454 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7455 return FALSE;
b49e97c9
TS
7456 break;
7457 case SHT_MIPS_OPTIONS:
cc2e31b9 7458 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7459 return FALSE;
b49e97c9 7460 break;
351cdf24
MF
7461 case SHT_MIPS_ABIFLAGS:
7462 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7463 return FALSE;
7464 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7465 break;
b49e97c9 7466 case SHT_MIPS_DWARF:
1b315056 7467 if (! CONST_STRNEQ (name, ".debug_")
07d6d2b8 7468 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7469 return FALSE;
b49e97c9
TS
7470 break;
7471 case SHT_MIPS_SYMBOL_LIB:
7472 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7473 return FALSE;
b49e97c9
TS
7474 break;
7475 case SHT_MIPS_EVENTS:
0112cd26
NC
7476 if (! CONST_STRNEQ (name, ".MIPS.events")
7477 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7478 return FALSE;
b49e97c9
TS
7479 break;
7480 default:
cc2e31b9 7481 break;
b49e97c9
TS
7482 }
7483
6dc132d9 7484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7485 return FALSE;
b49e97c9
TS
7486
7487 if (flags)
7488 {
7489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7490 (bfd_get_section_flags (abfd,
7491 hdr->bfd_section)
7492 | flags)))
b34976b6 7493 return FALSE;
b49e97c9
TS
7494 }
7495
351cdf24
MF
7496 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7497 {
7498 Elf_External_ABIFlags_v0 ext;
7499
7500 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7501 &ext, 0, sizeof ext))
7502 return FALSE;
7503 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7504 &mips_elf_tdata (abfd)->abiflags);
7505 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7506 return FALSE;
7507 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7508 }
7509
b49e97c9
TS
7510 /* FIXME: We should record sh_info for a .gptab section. */
7511
7512 /* For a .reginfo section, set the gp value in the tdata information
7513 from the contents of this section. We need the gp value while
7514 processing relocs, so we just get it now. The .reginfo section
7515 is not used in the 64-bit MIPS ELF ABI. */
7516 if (hdr->sh_type == SHT_MIPS_REGINFO)
7517 {
7518 Elf32_External_RegInfo ext;
7519 Elf32_RegInfo s;
7520
9719ad41
RS
7521 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7522 &ext, 0, sizeof ext))
b34976b6 7523 return FALSE;
b49e97c9
TS
7524 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7525 elf_gp (abfd) = s.ri_gp_value;
7526 }
7527
7528 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7529 set the gp value based on what we find. We may see both
7530 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7531 they should agree. */
7532 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7533 {
7534 bfd_byte *contents, *l, *lend;
7535
9719ad41 7536 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7537 if (contents == NULL)
b34976b6 7538 return FALSE;
b49e97c9 7539 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7540 0, hdr->sh_size))
b49e97c9
TS
7541 {
7542 free (contents);
b34976b6 7543 return FALSE;
b49e97c9
TS
7544 }
7545 l = contents;
7546 lend = contents + hdr->sh_size;
7547 while (l + sizeof (Elf_External_Options) <= lend)
7548 {
7549 Elf_Internal_Options intopt;
7550
7551 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7552 &intopt);
1bc8074d
MR
7553 if (intopt.size < sizeof (Elf_External_Options))
7554 {
4eca0228 7555 _bfd_error_handler
695344c0 7556 /* xgettext:c-format */
2c1c9679 7557 (_("%pB: warning: bad `%s' option size %u smaller than"
63a5468a 7558 " its header"),
1bc8074d
MR
7559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7560 break;
7561 }
b49e97c9
TS
7562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7563 {
7564 Elf64_Internal_RegInfo intreg;
7565
7566 bfd_mips_elf64_swap_reginfo_in
7567 (abfd,
7568 ((Elf64_External_RegInfo *)
7569 (l + sizeof (Elf_External_Options))),
7570 &intreg);
7571 elf_gp (abfd) = intreg.ri_gp_value;
7572 }
7573 else if (intopt.kind == ODK_REGINFO)
7574 {
7575 Elf32_RegInfo intreg;
7576
7577 bfd_mips_elf32_swap_reginfo_in
7578 (abfd,
7579 ((Elf32_External_RegInfo *)
7580 (l + sizeof (Elf_External_Options))),
7581 &intreg);
7582 elf_gp (abfd) = intreg.ri_gp_value;
7583 }
7584 l += intopt.size;
7585 }
7586 free (contents);
7587 }
7588
b34976b6 7589 return TRUE;
b49e97c9
TS
7590}
7591
7592/* Set the correct type for a MIPS ELF section. We do this by the
7593 section name, which is a hack, but ought to work. This routine is
7594 used by both the 32-bit and the 64-bit ABI. */
7595
b34976b6 7596bfd_boolean
9719ad41 7597_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7598{
0414f35b 7599 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7600
7601 if (strcmp (name, ".liblist") == 0)
7602 {
7603 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7604 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7605 /* The sh_link field is set in final_write_processing. */
7606 }
7607 else if (strcmp (name, ".conflict") == 0)
7608 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7609 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7610 {
7611 hdr->sh_type = SHT_MIPS_GPTAB;
7612 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7613 /* The sh_info field is set in final_write_processing. */
7614 }
7615 else if (strcmp (name, ".ucode") == 0)
7616 hdr->sh_type = SHT_MIPS_UCODE;
7617 else if (strcmp (name, ".mdebug") == 0)
7618 {
7619 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7620 /* In a shared object on IRIX 5.3, the .mdebug section has an
07d6d2b8 7621 entsize of 0. FIXME: Does this matter? */
b49e97c9
TS
7622 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7623 hdr->sh_entsize = 0;
7624 else
7625 hdr->sh_entsize = 1;
7626 }
7627 else if (strcmp (name, ".reginfo") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7630 /* In a shared object on IRIX 5.3, the .reginfo section has an
07d6d2b8 7631 entsize of 0x18. FIXME: Does this matter? */
b49e97c9
TS
7632 if (SGI_COMPAT (abfd))
7633 {
7634 if ((abfd->flags & DYNAMIC) != 0)
7635 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7636 else
7637 hdr->sh_entsize = 1;
7638 }
7639 else
7640 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7641 }
7642 else if (SGI_COMPAT (abfd)
7643 && (strcmp (name, ".hash") == 0
7644 || strcmp (name, ".dynamic") == 0
7645 || strcmp (name, ".dynstr") == 0))
7646 {
7647 if (SGI_COMPAT (abfd))
7648 hdr->sh_entsize = 0;
7649#if 0
8dc1a139 7650 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7651 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7652#endif
7653 }
7654 else if (strcmp (name, ".got") == 0
7655 || strcmp (name, ".srdata") == 0
7656 || strcmp (name, ".sdata") == 0
7657 || strcmp (name, ".sbss") == 0
7658 || strcmp (name, ".lit4") == 0
7659 || strcmp (name, ".lit8") == 0)
7660 hdr->sh_flags |= SHF_MIPS_GPREL;
7661 else if (strcmp (name, ".MIPS.interfaces") == 0)
7662 {
7663 hdr->sh_type = SHT_MIPS_IFACE;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 }
0112cd26 7666 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7667 {
7668 hdr->sh_type = SHT_MIPS_CONTENT;
7669 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7670 /* The sh_info field is set in final_write_processing. */
7671 }
cc2e31b9 7672 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7673 {
7674 hdr->sh_type = SHT_MIPS_OPTIONS;
7675 hdr->sh_entsize = 1;
7676 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7677 }
351cdf24
MF
7678 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7679 {
7680 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7681 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7682 }
1b315056 7683 else if (CONST_STRNEQ (name, ".debug_")
07d6d2b8 7684 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7685 {
7686 hdr->sh_type = SHT_MIPS_DWARF;
7687
7688 /* Irix facilities such as libexc expect a single .debug_frame
7689 per executable, the system ones have NOSTRIP set and the linker
7690 doesn't merge sections with different flags so ... */
7691 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7692 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7693 }
b49e97c9
TS
7694 else if (strcmp (name, ".MIPS.symlib") == 0)
7695 {
7696 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7697 /* The sh_link and sh_info fields are set in
07d6d2b8 7698 final_write_processing. */
b49e97c9 7699 }
0112cd26
NC
7700 else if (CONST_STRNEQ (name, ".MIPS.events")
7701 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7702 {
7703 hdr->sh_type = SHT_MIPS_EVENTS;
7704 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7705 /* The sh_link field is set in final_write_processing. */
7706 }
7707 else if (strcmp (name, ".msym") == 0)
7708 {
7709 hdr->sh_type = SHT_MIPS_MSYM;
7710 hdr->sh_flags |= SHF_ALLOC;
7711 hdr->sh_entsize = 8;
7712 }
7713
7a79a000
TS
7714 /* The generic elf_fake_sections will set up REL_HDR using the default
7715 kind of relocations. We used to set up a second header for the
7716 non-default kind of relocations here, but only NewABI would use
7717 these, and the IRIX ld doesn't like resulting empty RELA sections.
7718 Thus we create those header only on demand now. */
b49e97c9 7719
b34976b6 7720 return TRUE;
b49e97c9
TS
7721}
7722
7723/* Given a BFD section, try to locate the corresponding ELF section
7724 index. This is used by both the 32-bit and the 64-bit ABI.
7725 Actually, it's not clear to me that the 64-bit ABI supports these,
7726 but for non-PIC objects we will certainly want support for at least
7727 the .scommon section. */
7728
b34976b6 7729bfd_boolean
9719ad41
RS
7730_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7731 asection *sec, int *retval)
b49e97c9
TS
7732{
7733 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7734 {
7735 *retval = SHN_MIPS_SCOMMON;
b34976b6 7736 return TRUE;
b49e97c9
TS
7737 }
7738 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7739 {
7740 *retval = SHN_MIPS_ACOMMON;
b34976b6 7741 return TRUE;
b49e97c9 7742 }
b34976b6 7743 return FALSE;
b49e97c9
TS
7744}
7745\f
7746/* Hook called by the linker routine which adds symbols from an object
7747 file. We must handle the special MIPS section numbers here. */
7748
b34976b6 7749bfd_boolean
9719ad41 7750_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7751 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7752 flagword *flagsp ATTRIBUTE_UNUSED,
7753 asection **secp, bfd_vma *valp)
b49e97c9
TS
7754{
7755 if (SGI_COMPAT (abfd)
7756 && (abfd->flags & DYNAMIC) != 0
7757 && strcmp (*namep, "_rld_new_interface") == 0)
7758 {
8dc1a139 7759 /* Skip IRIX5 rld entry name. */
b49e97c9 7760 *namep = NULL;
b34976b6 7761 return TRUE;
b49e97c9
TS
7762 }
7763
eedecc07
DD
7764 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7765 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7766 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7767 a magic symbol resolved by the linker, we ignore this bogus definition
7768 of _gp_disp. New ABI objects do not suffer from this problem so this
7769 is not done for them. */
7770 if (!NEWABI_P(abfd)
7771 && (sym->st_shndx == SHN_ABS)
7772 && (strcmp (*namep, "_gp_disp") == 0))
7773 {
7774 *namep = NULL;
7775 return TRUE;
7776 }
7777
b49e97c9
TS
7778 switch (sym->st_shndx)
7779 {
7780 case SHN_COMMON:
7781 /* Common symbols less than the GP size are automatically
7782 treated as SHN_MIPS_SCOMMON symbols. */
7783 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7784 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7785 || IRIX_COMPAT (abfd) == ict_irix6)
7786 break;
7787 /* Fall through. */
7788 case SHN_MIPS_SCOMMON:
7789 *secp = bfd_make_section_old_way (abfd, ".scommon");
7790 (*secp)->flags |= SEC_IS_COMMON;
7791 *valp = sym->st_size;
7792 break;
7793
7794 case SHN_MIPS_TEXT:
7795 /* This section is used in a shared object. */
698600e4 7796 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7797 {
7798 asymbol *elf_text_symbol;
7799 asection *elf_text_section;
7800 bfd_size_type amt = sizeof (asection);
7801
7802 elf_text_section = bfd_zalloc (abfd, amt);
7803 if (elf_text_section == NULL)
b34976b6 7804 return FALSE;
b49e97c9
TS
7805
7806 amt = sizeof (asymbol);
7807 elf_text_symbol = bfd_zalloc (abfd, amt);
7808 if (elf_text_symbol == NULL)
b34976b6 7809 return FALSE;
b49e97c9
TS
7810
7811 /* Initialize the section. */
7812
698600e4
AM
7813 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7814 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7815
7816 elf_text_section->symbol = elf_text_symbol;
698600e4 7817 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7818
7819 elf_text_section->name = ".text";
7820 elf_text_section->flags = SEC_NO_FLAGS;
7821 elf_text_section->output_section = NULL;
7822 elf_text_section->owner = abfd;
7823 elf_text_symbol->name = ".text";
7824 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7825 elf_text_symbol->section = elf_text_section;
7826 }
7827 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7828 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7829 so I took it out. */
698600e4 7830 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7831 break;
7832
7833 case SHN_MIPS_ACOMMON:
7834 /* Fall through. XXX Can we treat this as allocated data? */
7835 case SHN_MIPS_DATA:
7836 /* This section is used in a shared object. */
698600e4 7837 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7838 {
7839 asymbol *elf_data_symbol;
7840 asection *elf_data_section;
7841 bfd_size_type amt = sizeof (asection);
7842
7843 elf_data_section = bfd_zalloc (abfd, amt);
7844 if (elf_data_section == NULL)
b34976b6 7845 return FALSE;
b49e97c9
TS
7846
7847 amt = sizeof (asymbol);
7848 elf_data_symbol = bfd_zalloc (abfd, amt);
7849 if (elf_data_symbol == NULL)
b34976b6 7850 return FALSE;
b49e97c9
TS
7851
7852 /* Initialize the section. */
7853
698600e4
AM
7854 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7855 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7856
7857 elf_data_section->symbol = elf_data_symbol;
698600e4 7858 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7859
7860 elf_data_section->name = ".data";
7861 elf_data_section->flags = SEC_NO_FLAGS;
7862 elf_data_section->output_section = NULL;
7863 elf_data_section->owner = abfd;
7864 elf_data_symbol->name = ".data";
7865 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7866 elf_data_symbol->section = elf_data_section;
7867 }
7868 /* This code used to do *secp = bfd_und_section_ptr if
07d6d2b8
AM
7869 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7870 so I took it out. */
698600e4 7871 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7872 break;
7873
7874 case SHN_MIPS_SUNDEFINED:
7875 *secp = bfd_und_section_ptr;
7876 break;
7877 }
7878
7879 if (SGI_COMPAT (abfd)
0e1862bb 7880 && ! bfd_link_pic (info)
f13a99db 7881 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7882 && strcmp (*namep, "__rld_obj_head") == 0)
7883 {
7884 struct elf_link_hash_entry *h;
14a793b2 7885 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7886
7887 /* Mark __rld_obj_head as dynamic. */
14a793b2 7888 bh = NULL;
b49e97c9 7889 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7890 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7891 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7892 return FALSE;
14a793b2
AM
7893
7894 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7895 h->non_elf = 0;
7896 h->def_regular = 1;
b49e97c9
TS
7897 h->type = STT_OBJECT;
7898
c152c796 7899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7900 return FALSE;
b49e97c9 7901
b34976b6 7902 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7903 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7904 }
7905
7906 /* If this is a mips16 text symbol, add 1 to the value to make it
7907 odd. This will cause something like .word SYM to come up with
7908 the right value when it is loaded into the PC. */
df58fc94 7909 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7910 ++*valp;
7911
b34976b6 7912 return TRUE;
b49e97c9
TS
7913}
7914
7915/* This hook function is called before the linker writes out a global
7916 symbol. We mark symbols as small common if appropriate. This is
7917 also where we undo the increment of the value for a mips16 symbol. */
7918
6e0b88f1 7919int
9719ad41
RS
7920_bfd_mips_elf_link_output_symbol_hook
7921 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7922 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7923 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7924{
7925 /* If we see a common symbol, which implies a relocatable link, then
7926 if a symbol was small common in an input file, mark it as small
7927 common in the output file. */
7928 if (sym->st_shndx == SHN_COMMON
7929 && strcmp (input_sec->name, ".scommon") == 0)
7930 sym->st_shndx = SHN_MIPS_SCOMMON;
7931
df58fc94 7932 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7933 sym->st_value &= ~1;
b49e97c9 7934
6e0b88f1 7935 return 1;
b49e97c9
TS
7936}
7937\f
7938/* Functions for the dynamic linker. */
7939
7940/* Create dynamic sections when linking against a dynamic object. */
7941
b34976b6 7942bfd_boolean
9719ad41 7943_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7944{
7945 struct elf_link_hash_entry *h;
14a793b2 7946 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7947 flagword flags;
7948 register asection *s;
7949 const char * const *namep;
0a44bf69 7950 struct mips_elf_link_hash_table *htab;
b49e97c9 7951
0a44bf69 7952 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7953 BFD_ASSERT (htab != NULL);
7954
b49e97c9
TS
7955 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7956 | SEC_LINKER_CREATED | SEC_READONLY);
7957
0a44bf69
RS
7958 /* The psABI requires a read-only .dynamic section, but the VxWorks
7959 EABI doesn't. */
7960 if (!htab->is_vxworks)
b49e97c9 7961 {
3d4d4302 7962 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7963 if (s != NULL)
7964 {
7965 if (! bfd_set_section_flags (abfd, s, flags))
7966 return FALSE;
7967 }
b49e97c9
TS
7968 }
7969
7970 /* We need to create .got section. */
23cc69b6 7971 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7972 return FALSE;
7973
0a44bf69 7974 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7975 return FALSE;
b49e97c9 7976
b49e97c9 7977 /* Create .stub section. */
3d4d4302
AM
7978 s = bfd_make_section_anyway_with_flags (abfd,
7979 MIPS_ELF_STUB_SECTION_NAME (abfd),
7980 flags | SEC_CODE);
4e41d0d7
RS
7981 if (s == NULL
7982 || ! bfd_set_section_alignment (abfd, s,
7983 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7984 return FALSE;
7985 htab->sstubs = s;
b49e97c9 7986
e6aea42d 7987 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7988 && bfd_link_executable (info)
3d4d4302 7989 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7990 {
3d4d4302
AM
7991 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7992 flags &~ (flagword) SEC_READONLY);
b49e97c9 7993 if (s == NULL
b49e97c9
TS
7994 || ! bfd_set_section_alignment (abfd, s,
7995 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7996 return FALSE;
b49e97c9
TS
7997 }
7998
7999 /* On IRIX5, we adjust add some additional symbols and change the
8000 alignments of several sections. There is no ABI documentation
8001 indicating that this is necessary on IRIX6, nor any evidence that
8002 the linker takes such action. */
8003 if (IRIX_COMPAT (abfd) == ict_irix5)
8004 {
8005 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8006 {
14a793b2 8007 bh = NULL;
b49e97c9 8008 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
8009 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8010 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8011 return FALSE;
14a793b2
AM
8012
8013 h = (struct elf_link_hash_entry *) bh;
12f09816 8014 h->mark = 1;
f5385ebf
AM
8015 h->non_elf = 0;
8016 h->def_regular = 1;
b49e97c9
TS
8017 h->type = STT_SECTION;
8018
c152c796 8019 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8020 return FALSE;
b49e97c9
TS
8021 }
8022
8023 /* We need to create a .compact_rel section. */
8024 if (SGI_COMPAT (abfd))
8025 {
8026 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 8027 return FALSE;
b49e97c9
TS
8028 }
8029
44c410de 8030 /* Change alignments of some sections. */
3d4d4302 8031 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 8032 if (s != NULL)
a253d456
NC
8033 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8034
3d4d4302 8035 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 8036 if (s != NULL)
a253d456
NC
8037 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8038
3d4d4302 8039 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 8040 if (s != NULL)
a253d456
NC
8041 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8042
3d4d4302 8043 /* ??? */
b49e97c9
TS
8044 s = bfd_get_section_by_name (abfd, ".reginfo");
8045 if (s != NULL)
a253d456
NC
8046 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8047
3d4d4302 8048 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 8049 if (s != NULL)
a253d456 8050 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
8051 }
8052
0e1862bb 8053 if (bfd_link_executable (info))
b49e97c9 8054 {
14a793b2
AM
8055 const char *name;
8056
8057 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8058 bh = NULL;
8059 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
8060 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8061 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 8062 return FALSE;
14a793b2
AM
8063
8064 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
8065 h->non_elf = 0;
8066 h->def_regular = 1;
b49e97c9
TS
8067 h->type = STT_SECTION;
8068
c152c796 8069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 8070 return FALSE;
b49e97c9
TS
8071
8072 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8073 {
8074 /* __rld_map is a four byte word located in the .data section
8075 and is filled in by the rtld to contain a pointer to
8076 the _r_debug structure. Its symbol value will be set in
8077 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 8078 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 8079 BFD_ASSERT (s != NULL);
14a793b2 8080
0abfb97a
L
8081 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8082 bh = NULL;
8083 if (!(_bfd_generic_link_add_one_symbol
8084 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8085 get_elf_backend_data (abfd)->collect, &bh)))
8086 return FALSE;
b49e97c9 8087
0abfb97a
L
8088 h = (struct elf_link_hash_entry *) bh;
8089 h->non_elf = 0;
8090 h->def_regular = 1;
8091 h->type = STT_OBJECT;
8092
8093 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8094 return FALSE;
b4082c70 8095 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
8096 }
8097 }
8098
861fb55a 8099 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 8100 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
8101 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8102 return FALSE;
8103
1bbce132
MR
8104 /* Do the usual VxWorks handling. */
8105 if (htab->is_vxworks
8106 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8107 return FALSE;
0a44bf69 8108
b34976b6 8109 return TRUE;
b49e97c9
TS
8110}
8111\f
c224138d
RS
8112/* Return true if relocation REL against section SEC is a REL rather than
8113 RELA relocation. RELOCS is the first relocation in the section and
8114 ABFD is the bfd that contains SEC. */
8115
8116static bfd_boolean
8117mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8118 const Elf_Internal_Rela *relocs,
8119 const Elf_Internal_Rela *rel)
8120{
8121 Elf_Internal_Shdr *rel_hdr;
8122 const struct elf_backend_data *bed;
8123
d4730f92
BS
8124 /* To determine which flavor of relocation this is, we depend on the
8125 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8126 rel_hdr = elf_section_data (sec)->rel.hdr;
8127 if (rel_hdr == NULL)
8128 return FALSE;
c224138d 8129 bed = get_elf_backend_data (abfd);
d4730f92
BS
8130 return ((size_t) (rel - relocs)
8131 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
8132}
8133
8134/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8135 HOWTO is the relocation's howto and CONTENTS points to the contents
8136 of the section that REL is against. */
8137
8138static bfd_vma
8139mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8140 reloc_howto_type *howto, bfd_byte *contents)
8141{
8142 bfd_byte *location;
8143 unsigned int r_type;
8144 bfd_vma addend;
17c6c9d9 8145 bfd_vma bytes;
c224138d
RS
8146
8147 r_type = ELF_R_TYPE (abfd, rel->r_info);
8148 location = contents + rel->r_offset;
8149
8150 /* Get the addend, which is stored in the input file. */
df58fc94 8151 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 8152 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 8153 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 8154
17c6c9d9
MR
8155 addend = bytes & howto->src_mask;
8156
8157 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8158 accordingly. */
8159 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8160 addend <<= 1;
8161
8162 return addend;
c224138d
RS
8163}
8164
8165/* REL is a relocation in ABFD that needs a partnering LO16 relocation
8166 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8167 and update *ADDEND with the final addend. Return true on success
8168 or false if the LO16 could not be found. RELEND is the exclusive
8169 upper bound on the relocations for REL's section. */
8170
8171static bfd_boolean
8172mips_elf_add_lo16_rel_addend (bfd *abfd,
8173 const Elf_Internal_Rela *rel,
8174 const Elf_Internal_Rela *relend,
8175 bfd_byte *contents, bfd_vma *addend)
8176{
8177 unsigned int r_type, lo16_type;
8178 const Elf_Internal_Rela *lo16_relocation;
8179 reloc_howto_type *lo16_howto;
8180 bfd_vma l;
8181
8182 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 8183 if (mips16_reloc_p (r_type))
c224138d 8184 lo16_type = R_MIPS16_LO16;
df58fc94
RS
8185 else if (micromips_reloc_p (r_type))
8186 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
8187 else if (r_type == R_MIPS_PCHI16)
8188 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8189 else
8190 lo16_type = R_MIPS_LO16;
8191
8192 /* The combined value is the sum of the HI16 addend, left-shifted by
8193 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8194 code does a `lui' of the HI16 value, and then an `addiu' of the
8195 LO16 value.)
8196
8197 Scan ahead to find a matching LO16 relocation.
8198
8199 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8200 be immediately following. However, for the IRIX6 ABI, the next
8201 relocation may be a composed relocation consisting of several
8202 relocations for the same address. In that case, the R_MIPS_LO16
8203 relocation may occur as one of these. We permit a similar
8204 extension in general, as that is useful for GCC.
8205
8206 In some cases GCC dead code elimination removes the LO16 but keeps
8207 the corresponding HI16. This is strictly speaking a violation of
8208 the ABI but not immediately harmful. */
8209 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8210 if (lo16_relocation == NULL)
8211 return FALSE;
8212
8213 /* Obtain the addend kept there. */
8214 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8215 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8216
8217 l <<= lo16_howto->rightshift;
8218 l = _bfd_mips_elf_sign_extend (l, 16);
8219
8220 *addend <<= 16;
8221 *addend += l;
8222 return TRUE;
8223}
8224
8225/* Try to read the contents of section SEC in bfd ABFD. Return true and
8226 store the contents in *CONTENTS on success. Assume that *CONTENTS
8227 already holds the contents if it is nonull on entry. */
8228
8229static bfd_boolean
8230mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8231{
8232 if (*contents)
8233 return TRUE;
8234
8235 /* Get cached copy if it exists. */
8236 if (elf_section_data (sec)->this_hdr.contents != NULL)
8237 {
8238 *contents = elf_section_data (sec)->this_hdr.contents;
8239 return TRUE;
8240 }
8241
8242 return bfd_malloc_and_get_section (abfd, sec, contents);
8243}
8244
1bbce132
MR
8245/* Make a new PLT record to keep internal data. */
8246
8247static struct plt_entry *
8248mips_elf_make_plt_record (bfd *abfd)
8249{
8250 struct plt_entry *entry;
8251
8252 entry = bfd_zalloc (abfd, sizeof (*entry));
8253 if (entry == NULL)
8254 return NULL;
8255
8256 entry->stub_offset = MINUS_ONE;
8257 entry->mips_offset = MINUS_ONE;
8258 entry->comp_offset = MINUS_ONE;
8259 entry->gotplt_index = MINUS_ONE;
8260 return entry;
8261}
8262
47275900
MR
8263/* Define the special `__gnu_absolute_zero' symbol. We only need this
8264 for PIC code, as otherwise there is no load-time relocation involved
8265 and local GOT entries whose value is zero at static link time will
8266 retain their value at load time. */
8267
8268static bfd_boolean
8269mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8270 struct mips_elf_link_hash_table *htab,
8271 unsigned int r_type)
8272{
8273 union
8274 {
8275 struct elf_link_hash_entry *eh;
8276 struct bfd_link_hash_entry *bh;
8277 }
8278 hzero;
8279
8280 BFD_ASSERT (!htab->use_absolute_zero);
8281 BFD_ASSERT (bfd_link_pic (info));
8282
8283 hzero.bh = NULL;
8284 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8285 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8286 NULL, FALSE, FALSE, &hzero.bh))
8287 return FALSE;
8288
8289 BFD_ASSERT (hzero.bh != NULL);
8290 hzero.eh->size = 0;
8291 hzero.eh->type = STT_NOTYPE;
8292 hzero.eh->other = STV_PROTECTED;
8293 hzero.eh->def_regular = 1;
8294 hzero.eh->non_elf = 0;
8295
8296 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8297 return FALSE;
8298
8299 htab->use_absolute_zero = TRUE;
8300
8301 return TRUE;
8302}
8303
b49e97c9 8304/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8305 allocate space in the global offset table and record the need for
8306 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8307
b34976b6 8308bfd_boolean
9719ad41
RS
8309_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8310 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8311{
8312 const char *name;
8313 bfd *dynobj;
8314 Elf_Internal_Shdr *symtab_hdr;
8315 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8316 size_t extsymoff;
8317 const Elf_Internal_Rela *rel;
8318 const Elf_Internal_Rela *rel_end;
b49e97c9 8319 asection *sreloc;
9c5bfbb7 8320 const struct elf_backend_data *bed;
0a44bf69 8321 struct mips_elf_link_hash_table *htab;
c224138d
RS
8322 bfd_byte *contents;
8323 bfd_vma addend;
8324 reloc_howto_type *howto;
b49e97c9 8325
0e1862bb 8326 if (bfd_link_relocatable (info))
b34976b6 8327 return TRUE;
b49e97c9 8328
0a44bf69 8329 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8330 BFD_ASSERT (htab != NULL);
8331
b49e97c9
TS
8332 dynobj = elf_hash_table (info)->dynobj;
8333 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8334 sym_hashes = elf_sym_hashes (abfd);
8335 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8336
738e5348 8337 bed = get_elf_backend_data (abfd);
056bafd4 8338 rel_end = relocs + sec->reloc_count;
738e5348 8339
b49e97c9
TS
8340 /* Check for the mips16 stub sections. */
8341
8342 name = bfd_get_section_name (abfd, sec);
b9d58d71 8343 if (FN_STUB_P (name))
b49e97c9
TS
8344 {
8345 unsigned long r_symndx;
8346
8347 /* Look at the relocation information to figure out which symbol
07d6d2b8 8348 this is for. */
b49e97c9 8349
cb4437b8 8350 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8351 if (r_symndx == 0)
8352 {
4eca0228 8353 _bfd_error_handler
695344c0 8354 /* xgettext:c-format */
2c1c9679 8355 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8356 " stub section `%s'"),
8357 abfd, name);
8358 bfd_set_error (bfd_error_bad_value);
8359 return FALSE;
8360 }
b49e97c9
TS
8361
8362 if (r_symndx < extsymoff
8363 || sym_hashes[r_symndx - extsymoff] == NULL)
8364 {
8365 asection *o;
8366
8367 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8368 needed if there is some relocation in this BFD, other
8369 than a 16 bit function call, which refers to this symbol. */
b49e97c9
TS
8370 for (o = abfd->sections; o != NULL; o = o->next)
8371 {
8372 Elf_Internal_Rela *sec_relocs;
8373 const Elf_Internal_Rela *r, *rend;
8374
8375 /* We can ignore stub sections when looking for relocs. */
8376 if ((o->flags & SEC_RELOC) == 0
8377 || o->reloc_count == 0
738e5348 8378 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8379 continue;
8380
45d6a902 8381 sec_relocs
9719ad41 8382 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8383 info->keep_memory);
b49e97c9 8384 if (sec_relocs == NULL)
b34976b6 8385 return FALSE;
b49e97c9
TS
8386
8387 rend = sec_relocs + o->reloc_count;
8388 for (r = sec_relocs; r < rend; r++)
8389 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8390 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8391 break;
8392
6cdc0ccc 8393 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8394 free (sec_relocs);
8395
8396 if (r < rend)
8397 break;
8398 }
8399
8400 if (o == NULL)
8401 {
8402 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8403 not need it. Since this function is called before
8404 the linker maps input sections to output sections, we
8405 can easily discard it by setting the SEC_EXCLUDE
8406 flag. */
b49e97c9 8407 sec->flags |= SEC_EXCLUDE;
b34976b6 8408 return TRUE;
b49e97c9
TS
8409 }
8410
8411 /* Record this stub in an array of local symbol stubs for
07d6d2b8 8412 this BFD. */
698600e4 8413 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8414 {
8415 unsigned long symcount;
8416 asection **n;
8417 bfd_size_type amt;
8418
8419 if (elf_bad_symtab (abfd))
8420 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8421 else
8422 symcount = symtab_hdr->sh_info;
8423 amt = symcount * sizeof (asection *);
9719ad41 8424 n = bfd_zalloc (abfd, amt);
b49e97c9 8425 if (n == NULL)
b34976b6 8426 return FALSE;
698600e4 8427 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8428 }
8429
b9d58d71 8430 sec->flags |= SEC_KEEP;
698600e4 8431 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8432
8433 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8434 That flag is used to see whether we need to look through
8435 the global symbol table for stubs. We don't need to set
8436 it here, because we just have a local stub. */
b49e97c9
TS
8437 }
8438 else
8439 {
8440 struct mips_elf_link_hash_entry *h;
8441
8442 h = ((struct mips_elf_link_hash_entry *)
8443 sym_hashes[r_symndx - extsymoff]);
8444
973a3492
L
8445 while (h->root.root.type == bfd_link_hash_indirect
8446 || h->root.root.type == bfd_link_hash_warning)
8447 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8448
b49e97c9
TS
8449 /* H is the symbol this stub is for. */
8450
b9d58d71
TS
8451 /* If we already have an appropriate stub for this function, we
8452 don't need another one, so we can discard this one. Since
8453 this function is called before the linker maps input sections
8454 to output sections, we can easily discard it by setting the
8455 SEC_EXCLUDE flag. */
8456 if (h->fn_stub != NULL)
8457 {
8458 sec->flags |= SEC_EXCLUDE;
8459 return TRUE;
8460 }
8461
8462 sec->flags |= SEC_KEEP;
b49e97c9 8463 h->fn_stub = sec;
b34976b6 8464 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8465 }
8466 }
b9d58d71 8467 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8468 {
8469 unsigned long r_symndx;
8470 struct mips_elf_link_hash_entry *h;
8471 asection **loc;
8472
8473 /* Look at the relocation information to figure out which symbol
07d6d2b8 8474 this is for. */
b49e97c9 8475
cb4437b8 8476 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8477 if (r_symndx == 0)
8478 {
4eca0228 8479 _bfd_error_handler
695344c0 8480 /* xgettext:c-format */
2c1c9679 8481 (_("%pB: warning: cannot determine the target function for"
738e5348
RS
8482 " stub section `%s'"),
8483 abfd, name);
8484 bfd_set_error (bfd_error_bad_value);
8485 return FALSE;
8486 }
b49e97c9
TS
8487
8488 if (r_symndx < extsymoff
8489 || sym_hashes[r_symndx - extsymoff] == NULL)
8490 {
b9d58d71 8491 asection *o;
b49e97c9 8492
b9d58d71 8493 /* This stub is for a local symbol. This stub will only be
07d6d2b8
AM
8494 needed if there is some relocation (R_MIPS16_26) in this BFD
8495 that refers to this symbol. */
b9d58d71
TS
8496 for (o = abfd->sections; o != NULL; o = o->next)
8497 {
8498 Elf_Internal_Rela *sec_relocs;
8499 const Elf_Internal_Rela *r, *rend;
8500
8501 /* We can ignore stub sections when looking for relocs. */
8502 if ((o->flags & SEC_RELOC) == 0
8503 || o->reloc_count == 0
738e5348 8504 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8505 continue;
8506
8507 sec_relocs
8508 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8509 info->keep_memory);
8510 if (sec_relocs == NULL)
8511 return FALSE;
8512
8513 rend = sec_relocs + o->reloc_count;
8514 for (r = sec_relocs; r < rend; r++)
8515 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8516 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8517 break;
8518
8519 if (elf_section_data (o)->relocs != sec_relocs)
8520 free (sec_relocs);
8521
8522 if (r < rend)
8523 break;
8524 }
8525
8526 if (o == NULL)
8527 {
8528 /* There is no non-call reloc for this stub, so we do
07d6d2b8
AM
8529 not need it. Since this function is called before
8530 the linker maps input sections to output sections, we
8531 can easily discard it by setting the SEC_EXCLUDE
8532 flag. */
b9d58d71
TS
8533 sec->flags |= SEC_EXCLUDE;
8534 return TRUE;
8535 }
8536
8537 /* Record this stub in an array of local symbol call_stubs for
07d6d2b8 8538 this BFD. */
698600e4 8539 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8540 {
8541 unsigned long symcount;
8542 asection **n;
8543 bfd_size_type amt;
8544
8545 if (elf_bad_symtab (abfd))
8546 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8547 else
8548 symcount = symtab_hdr->sh_info;
8549 amt = symcount * sizeof (asection *);
8550 n = bfd_zalloc (abfd, amt);
8551 if (n == NULL)
8552 return FALSE;
698600e4 8553 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8554 }
b49e97c9 8555
b9d58d71 8556 sec->flags |= SEC_KEEP;
698600e4 8557 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8558
b9d58d71 8559 /* We don't need to set mips16_stubs_seen in this case.
07d6d2b8
AM
8560 That flag is used to see whether we need to look through
8561 the global symbol table for stubs. We don't need to set
8562 it here, because we just have a local stub. */
b9d58d71 8563 }
b49e97c9 8564 else
b49e97c9 8565 {
b9d58d71
TS
8566 h = ((struct mips_elf_link_hash_entry *)
8567 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8568
b9d58d71 8569 /* H is the symbol this stub is for. */
68ffbac6 8570
b9d58d71
TS
8571 if (CALL_FP_STUB_P (name))
8572 loc = &h->call_fp_stub;
8573 else
8574 loc = &h->call_stub;
68ffbac6 8575
b9d58d71
TS
8576 /* If we already have an appropriate stub for this function, we
8577 don't need another one, so we can discard this one. Since
8578 this function is called before the linker maps input sections
8579 to output sections, we can easily discard it by setting the
8580 SEC_EXCLUDE flag. */
8581 if (*loc != NULL)
8582 {
8583 sec->flags |= SEC_EXCLUDE;
8584 return TRUE;
8585 }
b49e97c9 8586
b9d58d71
TS
8587 sec->flags |= SEC_KEEP;
8588 *loc = sec;
8589 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8590 }
b49e97c9
TS
8591 }
8592
b49e97c9 8593 sreloc = NULL;
c224138d 8594 contents = NULL;
b49e97c9
TS
8595 for (rel = relocs; rel < rel_end; ++rel)
8596 {
8597 unsigned long r_symndx;
8598 unsigned int r_type;
8599 struct elf_link_hash_entry *h;
861fb55a 8600 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8601 bfd_boolean call_reloc_p;
8602 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8603
8604 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8605 r_type = ELF_R_TYPE (abfd, rel->r_info);
8606
8607 if (r_symndx < extsymoff)
8608 h = NULL;
8609 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8610 {
4eca0228 8611 _bfd_error_handler
695344c0 8612 /* xgettext:c-format */
2c1c9679 8613 (_("%pB: malformed reloc detected for section %s"),
d003868e 8614 abfd, name);
b49e97c9 8615 bfd_set_error (bfd_error_bad_value);
b34976b6 8616 return FALSE;
b49e97c9
TS
8617 }
8618 else
8619 {
8620 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8621 if (h != NULL)
8622 {
8623 while (h->root.type == bfd_link_hash_indirect
8624 || h->root.type == bfd_link_hash_warning)
8625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81fbe831 8626 }
861fb55a 8627 }
b49e97c9 8628
861fb55a
DJ
8629 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8630 relocation into a dynamic one. */
8631 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8632
8633 /* Set CALL_RELOC_P to true if the relocation is for a call,
8634 and if pointer equality therefore doesn't matter. */
8635 call_reloc_p = FALSE;
8636
8637 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8638 into account when deciding how to define the symbol.
8639 Relocations in nonallocatable sections such as .pdr and
8640 .debug* should have no effect. */
8641 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8642
861fb55a
DJ
8643 switch (r_type)
8644 {
861fb55a
DJ
8645 case R_MIPS_CALL16:
8646 case R_MIPS_CALL_HI16:
8647 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8648 case R_MIPS16_CALL16:
8649 case R_MICROMIPS_CALL16:
8650 case R_MICROMIPS_CALL_HI16:
8651 case R_MICROMIPS_CALL_LO16:
8652 call_reloc_p = TRUE;
8653 /* Fall through. */
8654
8655 case R_MIPS_GOT16:
861fb55a
DJ
8656 case R_MIPS_GOT_LO16:
8657 case R_MIPS_GOT_PAGE:
861fb55a 8658 case R_MIPS_GOT_DISP:
47275900
MR
8659 case R_MIPS16_GOT16:
8660 case R_MICROMIPS_GOT16:
8661 case R_MICROMIPS_GOT_LO16:
8662 case R_MICROMIPS_GOT_PAGE:
8663 case R_MICROMIPS_GOT_DISP:
8664 /* If we have a symbol that will resolve to zero at static link
8665 time and it is used by a GOT relocation applied to code we
8666 cannot relax to an immediate zero load, then we will be using
8667 the special `__gnu_absolute_zero' symbol whose value is zero
8668 at dynamic load time. We ignore HI16-type GOT relocations at
8669 this stage, because their handling will depend entirely on
8670 the corresponding LO16-type GOT relocation. */
8671 if (!call_hi16_reloc_p (r_type)
8672 && h != NULL
8673 && bfd_link_pic (info)
8674 && !htab->use_absolute_zero
8675 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8676 {
8677 bfd_boolean rel_reloc;
8678
8679 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8680 return FALSE;
8681
8682 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8683 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8684
8685 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8686 FALSE))
8687 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8688 return FALSE;
8689 }
8690
8691 /* Fall through. */
8692 case R_MIPS_GOT_HI16:
8693 case R_MIPS_GOT_OFST:
861fb55a
DJ
8694 case R_MIPS_TLS_GOTTPREL:
8695 case R_MIPS_TLS_GD:
8696 case R_MIPS_TLS_LDM:
d0f13682
CLT
8697 case R_MIPS16_TLS_GOTTPREL:
8698 case R_MIPS16_TLS_GD:
8699 case R_MIPS16_TLS_LDM:
df58fc94 8700 case R_MICROMIPS_GOT_HI16:
df58fc94 8701 case R_MICROMIPS_GOT_OFST:
df58fc94
RS
8702 case R_MICROMIPS_TLS_GOTTPREL:
8703 case R_MICROMIPS_TLS_GD:
8704 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8705 if (dynobj == NULL)
8706 elf_hash_table (info)->dynobj = dynobj = abfd;
8707 if (!mips_elf_create_got_section (dynobj, info))
8708 return FALSE;
0e1862bb 8709 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8710 {
4eca0228 8711 _bfd_error_handler
695344c0 8712 /* xgettext:c-format */
2dcf00ce
AM
8713 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8714 abfd, (uint64_t) rel->r_offset);
861fb55a
DJ
8715 bfd_set_error (bfd_error_bad_value);
8716 return FALSE;
b49e97c9 8717 }
c5d6fa44 8718 can_make_dynamic_p = TRUE;
861fb55a 8719 break;
b49e97c9 8720
c5d6fa44 8721 case R_MIPS_NONE:
99da6b5f 8722 case R_MIPS_JALR:
df58fc94 8723 case R_MICROMIPS_JALR:
c5d6fa44
RS
8724 /* These relocations have empty fields and are purely there to
8725 provide link information. The symbol value doesn't matter. */
8726 constrain_symbol_p = FALSE;
8727 break;
8728
8729 case R_MIPS_GPREL16:
8730 case R_MIPS_GPREL32:
8731 case R_MIPS16_GPREL:
8732 case R_MICROMIPS_GPREL16:
8733 /* GP-relative relocations always resolve to a definition in a
8734 regular input file, ignoring the one-definition rule. This is
8735 important for the GP setup sequence in NewABI code, which
8736 always resolves to a local function even if other relocations
8737 against the symbol wouldn't. */
8738 constrain_symbol_p = FALSE;
99da6b5f
AN
8739 break;
8740
861fb55a
DJ
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 must be handled using copy relocs or PLT entries; it is not
8746 possible to convert this relocation into a dynamic one.
8747
8748 For executables that use PLTs and copy-relocs, we have a
8749 choice between converting the relocation into a dynamic
8750 one or using copy relocations or PLT entries. It is
8751 usually better to do the former, unless the relocation is
8752 against a read-only section. */
0e1862bb 8753 if ((bfd_link_pic (info)
861fb55a
DJ
8754 || (h != NULL
8755 && !htab->is_vxworks
8756 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8757 && !(!info->nocopyreloc
8758 && !PIC_OBJECT_P (abfd)
8759 && MIPS_ELF_READONLY_SECTION (sec))))
8760 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8761 {
861fb55a 8762 can_make_dynamic_p = TRUE;
b49e97c9
TS
8763 if (dynobj == NULL)
8764 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8765 }
c5d6fa44 8766 break;
b49e97c9 8767
861fb55a
DJ
8768 case R_MIPS_26:
8769 case R_MIPS_PC16:
7361da2c
AB
8770 case R_MIPS_PC21_S2:
8771 case R_MIPS_PC26_S2:
861fb55a 8772 case R_MIPS16_26:
c9775dde 8773 case R_MIPS16_PC16_S1:
df58fc94
RS
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_PC7_S1:
8776 case R_MICROMIPS_PC10_S1:
8777 case R_MICROMIPS_PC16_S1:
8778 case R_MICROMIPS_PC23_S2:
c5d6fa44 8779 call_reloc_p = TRUE;
861fb55a 8780 break;
b49e97c9
TS
8781 }
8782
0a44bf69
RS
8783 if (h)
8784 {
c5d6fa44
RS
8785 if (constrain_symbol_p)
8786 {
8787 if (!can_make_dynamic_p)
8788 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8789
8790 if (!call_reloc_p)
8791 h->pointer_equality_needed = 1;
8792
8793 /* We must not create a stub for a symbol that has
8794 relocations related to taking the function's address.
8795 This doesn't apply to VxWorks, where CALL relocs refer
8796 to a .got.plt entry instead of a normal .got entry. */
8797 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8798 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8799 }
8800
0a44bf69
RS
8801 /* Relocations against the special VxWorks __GOTT_BASE__ and
8802 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8803 room for them in .rela.dyn. */
8804 if (is_gott_symbol (info, h))
8805 {
8806 if (sreloc == NULL)
8807 {
8808 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8809 if (sreloc == NULL)
8810 return FALSE;
8811 }
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8813 if (MIPS_ELF_READONLY_SECTION (sec))
8814 /* We tell the dynamic linker that there are
8815 relocations against the text segment. */
8816 info->flags |= DF_TEXTREL;
0a44bf69
RS
8817 }
8818 }
df58fc94
RS
8819 else if (call_lo16_reloc_p (r_type)
8820 || got_lo16_reloc_p (r_type)
8821 || got_disp_reloc_p (r_type)
738e5348 8822 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8823 {
8824 /* We may need a local GOT entry for this relocation. We
8825 don't count R_MIPS_GOT_PAGE because we can estimate the
8826 maximum number of pages needed by looking at the size of
738e5348
RS
8827 the segment. Similar comments apply to R_MIPS*_GOT16 and
8828 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8829 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8830 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8831 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8832 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8833 rel->r_addend, info, r_type))
f4416af6 8834 return FALSE;
b49e97c9
TS
8835 }
8836
8f0c309a
CLT
8837 if (h != NULL
8838 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8839 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8840 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8841
b49e97c9
TS
8842 switch (r_type)
8843 {
8844 case R_MIPS_CALL16:
738e5348 8845 case R_MIPS16_CALL16:
df58fc94 8846 case R_MICROMIPS_CALL16:
b49e97c9
TS
8847 if (h == NULL)
8848 {
4eca0228 8849 _bfd_error_handler
695344c0 8850 /* xgettext:c-format */
2dcf00ce
AM
8851 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8852 abfd, (uint64_t) rel->r_offset);
b49e97c9 8853 bfd_set_error (bfd_error_bad_value);
b34976b6 8854 return FALSE;
b49e97c9
TS
8855 }
8856 /* Fall through. */
8857
8858 case R_MIPS_CALL_HI16:
8859 case R_MIPS_CALL_LO16:
df58fc94
RS
8860 case R_MICROMIPS_CALL_HI16:
8861 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8862 if (h != NULL)
8863 {
6ccf4795
RS
8864 /* Make sure there is room in the regular GOT to hold the
8865 function's address. We may eliminate it in favour of
8866 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8867 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8868 r_type))
b34976b6 8869 return FALSE;
b49e97c9
TS
8870
8871 /* We need a stub, not a plt entry for the undefined
8872 function. But we record it as if it needs plt. See
c152c796 8873 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8874 h->needs_plt = 1;
b49e97c9
TS
8875 h->type = STT_FUNC;
8876 }
8877 break;
8878
0fdc1bf1 8879 case R_MIPS_GOT_PAGE:
df58fc94 8880 case R_MICROMIPS_GOT_PAGE:
738e5348 8881 case R_MIPS16_GOT16:
b49e97c9
TS
8882 case R_MIPS_GOT16:
8883 case R_MIPS_GOT_HI16:
8884 case R_MIPS_GOT_LO16:
df58fc94
RS
8885 case R_MICROMIPS_GOT16:
8886 case R_MICROMIPS_GOT_HI16:
8887 case R_MICROMIPS_GOT_LO16:
8888 if (!h || got_page_reloc_p (r_type))
c224138d 8889 {
3a3b6725
DJ
8890 /* This relocation needs (or may need, if h != NULL) a
8891 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8892 know for sure until we know whether the symbol is
8893 preemptible. */
c224138d
RS
8894 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8895 {
8896 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8897 return FALSE;
8898 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8899 addend = mips_elf_read_rel_addend (abfd, rel,
8900 howto, contents);
9684f078 8901 if (got16_reloc_p (r_type))
c224138d
RS
8902 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8903 contents, &addend);
8904 else
8905 addend <<= howto->rightshift;
8906 }
8907 else
8908 addend = rel->r_addend;
13db6b44
RS
8909 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8910 h, addend))
c224138d 8911 return FALSE;
13db6b44
RS
8912
8913 if (h)
8914 {
8915 struct mips_elf_link_hash_entry *hmips =
8916 (struct mips_elf_link_hash_entry *) h;
8917
8918 /* This symbol is definitely not overridable. */
8919 if (hmips->root.def_regular
0e1862bb 8920 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8921 && ! hmips->root.forced_local))
8922 h = NULL;
8923 }
c224138d 8924 }
13db6b44
RS
8925 /* If this is a global, overridable symbol, GOT_PAGE will
8926 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8927 /* Fall through. */
8928
b49e97c9 8929 case R_MIPS_GOT_DISP:
df58fc94 8930 case R_MICROMIPS_GOT_DISP:
6ccf4795 8931 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8932 FALSE, r_type))
b34976b6 8933 return FALSE;
b49e97c9
TS
8934 break;
8935
0f20cc35 8936 case R_MIPS_TLS_GOTTPREL:
d0f13682 8937 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8938 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8939 if (bfd_link_pic (info))
0f20cc35
DJ
8940 info->flags |= DF_STATIC_TLS;
8941 /* Fall through */
8942
8943 case R_MIPS_TLS_LDM:
d0f13682 8944 case R_MIPS16_TLS_LDM:
df58fc94
RS
8945 case R_MICROMIPS_TLS_LDM:
8946 if (tls_ldm_reloc_p (r_type))
0f20cc35 8947 {
cf35638d 8948 r_symndx = STN_UNDEF;
0f20cc35
DJ
8949 h = NULL;
8950 }
8951 /* Fall through */
8952
8953 case R_MIPS_TLS_GD:
d0f13682 8954 case R_MIPS16_TLS_GD:
df58fc94 8955 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8956 /* This symbol requires a global offset table entry, or two
8957 for TLS GD relocations. */
e641e783
RS
8958 if (h != NULL)
8959 {
8960 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8961 FALSE, r_type))
8962 return FALSE;
8963 }
8964 else
8965 {
8966 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8967 rel->r_addend,
8968 info, r_type))
8969 return FALSE;
8970 }
0f20cc35
DJ
8971 break;
8972
b49e97c9
TS
8973 case R_MIPS_32:
8974 case R_MIPS_REL32:
8975 case R_MIPS_64:
0a44bf69
RS
8976 /* In VxWorks executables, references to external symbols
8977 are handled using copy relocs or PLT stubs, so there's
8978 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8979 if (can_make_dynamic_p)
b49e97c9
TS
8980 {
8981 if (sreloc == NULL)
8982 {
0a44bf69 8983 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8984 if (sreloc == NULL)
f4416af6 8985 return FALSE;
b49e97c9 8986 }
0e1862bb 8987 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8988 {
8989 /* When creating a shared object, we must copy these
8990 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8991 relocs. Make room for this reloc in .rel(a).dyn. */
8992 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8993 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8994 /* We tell the dynamic linker that there are
8995 relocations against the text segment. */
8996 info->flags |= DF_TEXTREL;
8997 }
b49e97c9
TS
8998 else
8999 {
9000 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 9001
9a59ad6b
DJ
9002 /* For a shared object, we must copy this relocation
9003 unless the symbol turns out to be undefined and
9004 weak with non-default visibility, in which case
9005 it will be left as zero.
9006
9007 We could elide R_MIPS_REL32 for locally binding symbols
9008 in shared libraries, but do not yet do so.
9009
9010 For an executable, we only need to copy this
9011 reloc if the symbol is defined in a dynamic
9012 object. */
b49e97c9
TS
9013 hmips = (struct mips_elf_link_hash_entry *) h;
9014 ++hmips->possibly_dynamic_relocs;
943284cc 9015 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
9016 /* We need it to tell the dynamic linker if there
9017 are relocations against the text segment. */
9018 hmips->readonly_reloc = TRUE;
b49e97c9 9019 }
b49e97c9
TS
9020 }
9021
9022 if (SGI_COMPAT (abfd))
9023 mips_elf_hash_table (info)->compact_rel_size +=
9024 sizeof (Elf32_External_crinfo);
9025 break;
9026
9027 case R_MIPS_26:
9028 case R_MIPS_GPREL16:
9029 case R_MIPS_LITERAL:
9030 case R_MIPS_GPREL32:
df58fc94
RS
9031 case R_MICROMIPS_26_S1:
9032 case R_MICROMIPS_GPREL16:
9033 case R_MICROMIPS_LITERAL:
9034 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
9035 if (SGI_COMPAT (abfd))
9036 mips_elf_hash_table (info)->compact_rel_size +=
9037 sizeof (Elf32_External_crinfo);
9038 break;
9039
9040 /* This relocation describes the C++ object vtable hierarchy.
9041 Reconstruct it for later use during GC. */
9042 case R_MIPS_GNU_VTINHERIT:
c152c796 9043 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 9044 return FALSE;
b49e97c9
TS
9045 break;
9046
9047 /* This relocation describes which C++ vtable entries are actually
9048 used. Record for later use during GC. */
9049 case R_MIPS_GNU_VTENTRY:
a0ea3a14 9050 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 9051 return FALSE;
b49e97c9
TS
9052 break;
9053
9054 default:
9055 break;
9056 }
9057
1bbce132 9058 /* Record the need for a PLT entry. At this point we don't know
07d6d2b8
AM
9059 yet if we are going to create a PLT in the first place, but
9060 we only record whether the relocation requires a standard MIPS
9061 or a compressed code entry anyway. If we don't make a PLT after
9062 all, then we'll just ignore these arrangements. Likewise if
9063 a PLT entry is not created because the symbol is satisfied
9064 locally. */
1bbce132 9065 if (h != NULL
54806ffa
MR
9066 && (branch_reloc_p (r_type)
9067 || mips16_branch_reloc_p (r_type)
9068 || micromips_branch_reloc_p (r_type))
1bbce132
MR
9069 && !SYMBOL_CALLS_LOCAL (info, h))
9070 {
9071 if (h->plt.plist == NULL)
9072 h->plt.plist = mips_elf_make_plt_record (abfd);
9073 if (h->plt.plist == NULL)
9074 return FALSE;
9075
54806ffa 9076 if (branch_reloc_p (r_type))
1bbce132
MR
9077 h->plt.plist->need_mips = TRUE;
9078 else
9079 h->plt.plist->need_comp = TRUE;
9080 }
9081
738e5348
RS
9082 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9083 if there is one. We only need to handle global symbols here;
9084 we decide whether to keep or delete stubs for local symbols
9085 when processing the stub's relocations. */
b49e97c9 9086 if (h != NULL
738e5348
RS
9087 && !mips16_call_reloc_p (r_type)
9088 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
9089 {
9090 struct mips_elf_link_hash_entry *mh;
9091
9092 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 9093 mh->need_fn_stub = TRUE;
b49e97c9 9094 }
861fb55a
DJ
9095
9096 /* Refuse some position-dependent relocations when creating a
9097 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9098 not PIC, but we can create dynamic relocations and the result
9099 will be fine. Also do not refuse R_MIPS_LO16, which can be
9100 combined with R_MIPS_GOT16. */
0e1862bb 9101 if (bfd_link_pic (info))
861fb55a
DJ
9102 {
9103 switch (r_type)
9104 {
9105 case R_MIPS16_HI16:
9106 case R_MIPS_HI16:
9107 case R_MIPS_HIGHER:
9108 case R_MIPS_HIGHEST:
df58fc94
RS
9109 case R_MICROMIPS_HI16:
9110 case R_MICROMIPS_HIGHER:
9111 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
9112 /* Don't refuse a high part relocation if it's against
9113 no symbol (e.g. part of a compound relocation). */
cf35638d 9114 if (r_symndx == STN_UNDEF)
861fb55a
DJ
9115 break;
9116
3c7687b9
MR
9117 /* Likewise an absolute symbol. */
9118 if (bfd_is_abs_symbol (&h->root))
9119 break;
9120
861fb55a
DJ
9121 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9122 and has a special meaning. */
9123 if (!NEWABI_P (abfd) && h != NULL
9124 && strcmp (h->root.root.string, "_gp_disp") == 0)
9125 break;
9126
0fc1eb3c
RS
9127 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9128 if (is_gott_symbol (info, h))
9129 break;
9130
861fb55a
DJ
9131 /* FALLTHROUGH */
9132
9133 case R_MIPS16_26:
9134 case R_MIPS_26:
df58fc94 9135 case R_MICROMIPS_26_S1:
861fb55a 9136 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
aff68bd0 9137 info->callbacks->einfo
695344c0 9138 /* xgettext:c-format */
aff68bd0
MR
9139 (_("%X%H: relocation %s against `%s' cannot be used"
9140 " when making a shared object; recompile with -fPIC\n"),
9141 abfd, sec, rel->r_offset, howto->name,
861fb55a 9142 (h) ? h->root.root.string : "a local symbol");
aff68bd0 9143 break;
861fb55a
DJ
9144 default:
9145 break;
9146 }
9147 }
b49e97c9
TS
9148 }
9149
b34976b6 9150 return TRUE;
b49e97c9
TS
9151}
9152\f
9a59ad6b
DJ
9153/* Allocate space for global sym dynamic relocs. */
9154
9155static bfd_boolean
9156allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9157{
9158 struct bfd_link_info *info = inf;
9159 bfd *dynobj;
9160 struct mips_elf_link_hash_entry *hmips;
9161 struct mips_elf_link_hash_table *htab;
9162
9163 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9164 BFD_ASSERT (htab != NULL);
9165
9a59ad6b
DJ
9166 dynobj = elf_hash_table (info)->dynobj;
9167 hmips = (struct mips_elf_link_hash_entry *) h;
9168
9169 /* VxWorks executables are handled elsewhere; we only need to
9170 allocate relocations in shared objects. */
0e1862bb 9171 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
9172 return TRUE;
9173
7686d77d
AM
9174 /* Ignore indirect symbols. All relocations against such symbols
9175 will be redirected to the target symbol. */
9176 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
9177 return TRUE;
9178
9a59ad6b
DJ
9179 /* If this symbol is defined in a dynamic object, or we are creating
9180 a shared library, we will need to copy any R_MIPS_32 or
9181 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 9182 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
9183 && hmips->possibly_dynamic_relocs != 0
9184 && (h->root.type == bfd_link_hash_defweak
625ef6dc 9185 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 9186 || bfd_link_pic (info)))
9a59ad6b
DJ
9187 {
9188 bfd_boolean do_copy = TRUE;
9189
9190 if (h->root.type == bfd_link_hash_undefweak)
9191 {
262e07d0
MR
9192 /* Do not copy relocations for undefined weak symbols that
9193 we are not going to export. */
9194 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9a59ad6b
DJ
9195 do_copy = FALSE;
9196
9197 /* Make sure undefined weak symbols are output as a dynamic
9198 symbol in PIEs. */
9199 else if (h->dynindx == -1 && !h->forced_local)
9200 {
9201 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9202 return FALSE;
9203 }
9204 }
9205
9206 if (do_copy)
9207 {
aff469fa 9208 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
9209 the SVR4 psABI requires it to have a dynamic symbol table
9210 index greater that DT_MIPS_GOTSYM if there are dynamic
9211 relocations against it.
9212
9213 VxWorks does not enforce the same mapping between the GOT
9214 and the symbol table, so the same requirement does not
9215 apply there. */
6ccf4795
RS
9216 if (!htab->is_vxworks)
9217 {
9218 if (hmips->global_got_area > GGA_RELOC_ONLY)
9219 hmips->global_got_area = GGA_RELOC_ONLY;
9220 hmips->got_only_for_calls = FALSE;
9221 }
aff469fa 9222
9a59ad6b
DJ
9223 mips_elf_allocate_dynamic_relocations
9224 (dynobj, info, hmips->possibly_dynamic_relocs);
9225 if (hmips->readonly_reloc)
9226 /* We tell the dynamic linker that there are relocations
9227 against the text segment. */
9228 info->flags |= DF_TEXTREL;
9229 }
9230 }
9231
9232 return TRUE;
9233}
9234
b49e97c9
TS
9235/* Adjust a symbol defined by a dynamic object and referenced by a
9236 regular object. The current definition is in some section of the
9237 dynamic object, but we're not including those sections. We have to
9238 change the definition to something the rest of the link can
9239 understand. */
9240
b34976b6 9241bfd_boolean
9719ad41
RS
9242_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9243 struct elf_link_hash_entry *h)
b49e97c9
TS
9244{
9245 bfd *dynobj;
9246 struct mips_elf_link_hash_entry *hmips;
5108fc1b 9247 struct mips_elf_link_hash_table *htab;
5474d94f 9248 asection *s, *srel;
b49e97c9 9249
5108fc1b 9250 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9251 BFD_ASSERT (htab != NULL);
9252
b49e97c9 9253 dynobj = elf_hash_table (info)->dynobj;
861fb55a 9254 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9255
9256 /* Make sure we know what is going on here. */
9257 BFD_ASSERT (dynobj != NULL
f5385ebf 9258 && (h->needs_plt
60d67dc8 9259 || h->is_weakalias
f5385ebf
AM
9260 || (h->def_dynamic
9261 && h->ref_regular
9262 && !h->def_regular)));
b49e97c9 9263
b49e97c9 9264 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9265
861fb55a
DJ
9266 /* If there are call relocations against an externally-defined symbol,
9267 see whether we can create a MIPS lazy-binding stub for it. We can
9268 only do this if all references to the function are through call
9269 relocations, and in that case, the traditional lazy-binding stubs
9270 are much more efficient than PLT entries.
9271
9272 Traditional stubs are only available on SVR4 psABI-based systems;
9273 VxWorks always uses PLTs instead. */
9274 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9275 {
9276 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9277 return TRUE;
b49e97c9
TS
9278
9279 /* If this symbol is not defined in a regular file, then set
9280 the symbol to the stub location. This is required to make
9281 function pointers compare as equal between the normal
9282 executable and the shared library. */
4b8377e7
MR
9283 if (!h->def_regular
9284 && !bfd_is_abs_section (htab->sstubs->output_section))
b49e97c9 9285 {
33bb52fb
RS
9286 hmips->needs_lazy_stub = TRUE;
9287 htab->lazy_stub_count++;
b34976b6 9288 return TRUE;
b49e97c9
TS
9289 }
9290 }
861fb55a
DJ
9291 /* As above, VxWorks requires PLT entries for externally-defined
9292 functions that are only accessed through call relocations.
b49e97c9 9293
861fb55a
DJ
9294 Both VxWorks and non-VxWorks targets also need PLT entries if there
9295 are static-only relocations against an externally-defined function.
9296 This can technically occur for shared libraries if there are
9297 branches to the symbol, although it is unlikely that this will be
9298 used in practice due to the short ranges involved. It can occur
9299 for any relative or absolute relocation in executables; in that
9300 case, the PLT entry becomes the function's canonical address. */
9301 else if (((h->needs_plt && !hmips->no_fn_stub)
9302 || (h->type == STT_FUNC && hmips->has_static_relocs))
9303 && htab->use_plts_and_copy_relocs
9304 && !SYMBOL_CALLS_LOCAL (info, h)
9305 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9306 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9307 {
1bbce132
MR
9308 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9309 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9310
9311 /* If this is the first symbol to need a PLT entry, then make some
07d6d2b8
AM
9312 basic setup. Also work out PLT entry sizes. We'll need them
9313 for PLT offset calculations. */
1bbce132 9314 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9315 {
ce558b89 9316 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9317 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9318
861fb55a
DJ
9319 /* If we're using the PLT additions to the psABI, each PLT
9320 entry is 16 bytes and the PLT0 entry is 32 bytes.
9321 Encourage better cache usage by aligning. We do this
9322 lazily to avoid pessimizing traditional objects. */
9323 if (!htab->is_vxworks
ce558b89 9324 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9325 return FALSE;
0a44bf69 9326
861fb55a
DJ
9327 /* Make sure that .got.plt is word-aligned. We do this lazily
9328 for the same reason as above. */
ce558b89 9329 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9330 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9331 return FALSE;
0a44bf69 9332
861fb55a
DJ
9333 /* On non-VxWorks targets, the first two entries in .got.plt
9334 are reserved. */
9335 if (!htab->is_vxworks)
1bbce132
MR
9336 htab->plt_got_index
9337 += (get_elf_backend_data (dynobj)->got_header_size
9338 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9339
861fb55a
DJ
9340 /* On VxWorks, also allocate room for the header's
9341 .rela.plt.unloaded entries. */
0e1862bb 9342 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9343 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9344
9345 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9346 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9347 htab->plt_mips_entry_size
9348 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9349 else if (htab->is_vxworks)
9350 htab->plt_mips_entry_size
9351 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9352 else if (newabi_p)
9353 htab->plt_mips_entry_size
9354 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9355 else if (!micromips_p)
1bbce132
MR
9356 {
9357 htab->plt_mips_entry_size
9358 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9359 htab->plt_comp_entry_size
833794fc
MR
9360 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9361 }
9362 else if (htab->insn32)
9363 {
9364 htab->plt_mips_entry_size
9365 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9366 htab->plt_comp_entry_size
9367 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9368 }
9369 else
9370 {
9371 htab->plt_mips_entry_size
9372 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9373 htab->plt_comp_entry_size
833794fc 9374 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9375 }
0a44bf69
RS
9376 }
9377
1bbce132
MR
9378 if (h->plt.plist == NULL)
9379 h->plt.plist = mips_elf_make_plt_record (dynobj);
9380 if (h->plt.plist == NULL)
9381 return FALSE;
9382
9383 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
07d6d2b8 9384 n32 or n64, so always use a standard entry there.
1bbce132 9385
07d6d2b8
AM
9386 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9387 all MIPS16 calls will go via that stub, and there is no benefit
9388 to having a MIPS16 entry. And in the case of call_stub a
9389 standard entry actually has to be used as the stub ends with a J
9390 instruction. */
1bbce132
MR
9391 if (newabi_p
9392 || htab->is_vxworks
9393 || hmips->call_stub
9394 || hmips->call_fp_stub)
9395 {
9396 h->plt.plist->need_mips = TRUE;
9397 h->plt.plist->need_comp = FALSE;
9398 }
9399
9400 /* Otherwise, if there are no direct calls to the function, we
07d6d2b8
AM
9401 have a free choice of whether to use standard or compressed
9402 entries. Prefer microMIPS entries if the object is known to
9403 contain microMIPS code, so that it becomes possible to create
9404 pure microMIPS binaries. Prefer standard entries otherwise,
9405 because MIPS16 ones are no smaller and are usually slower. */
1bbce132
MR
9406 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9407 {
9408 if (micromips_p)
9409 h->plt.plist->need_comp = TRUE;
9410 else
9411 h->plt.plist->need_mips = TRUE;
9412 }
9413
9414 if (h->plt.plist->need_mips)
9415 {
9416 h->plt.plist->mips_offset = htab->plt_mips_offset;
9417 htab->plt_mips_offset += htab->plt_mips_entry_size;
9418 }
9419 if (h->plt.plist->need_comp)
9420 {
9421 h->plt.plist->comp_offset = htab->plt_comp_offset;
9422 htab->plt_comp_offset += htab->plt_comp_entry_size;
9423 }
9424
9425 /* Reserve the corresponding .got.plt entry now too. */
9426 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9427
9428 /* If the output file has no definition of the symbol, set the
861fb55a 9429 symbol's value to the address of the stub. */
0e1862bb 9430 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9431 hmips->use_plt_entry = TRUE;
0a44bf69 9432
1bbce132 9433 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9434 htab->root.srelplt->size += (htab->is_vxworks
9435 ? MIPS_ELF_RELA_SIZE (dynobj)
9436 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9437
9438 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9439 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9440 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9441
861fb55a
DJ
9442 /* All relocations against this symbol that could have been made
9443 dynamic will now refer to the PLT entry instead. */
9444 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9445
0a44bf69
RS
9446 return TRUE;
9447 }
9448
9449 /* If this is a weak symbol, and there is a real definition, the
9450 processor independent code will have arranged for us to see the
9451 real definition first, and we can just use the same value. */
60d67dc8 9452 if (h->is_weakalias)
0a44bf69 9453 {
60d67dc8
AM
9454 struct elf_link_hash_entry *def = weakdef (h);
9455 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9456 h->root.u.def.section = def->root.u.def.section;
9457 h->root.u.def.value = def->root.u.def.value;
0a44bf69
RS
9458 return TRUE;
9459 }
9460
861fb55a
DJ
9461 /* Otherwise, there is nothing further to do for symbols defined
9462 in regular objects. */
9463 if (h->def_regular)
0a44bf69
RS
9464 return TRUE;
9465
861fb55a
DJ
9466 /* There's also nothing more to do if we'll convert all relocations
9467 against this symbol into dynamic relocations. */
9468 if (!hmips->has_static_relocs)
9469 return TRUE;
9470
9471 /* We're now relying on copy relocations. Complain if we have
9472 some that we can't convert. */
0e1862bb 9473 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9474 {
4eca0228
AM
9475 _bfd_error_handler (_("non-dynamic relocations refer to "
9476 "dynamic symbol %s"),
9477 h->root.root.string);
861fb55a
DJ
9478 bfd_set_error (bfd_error_bad_value);
9479 return FALSE;
9480 }
9481
0a44bf69
RS
9482 /* We must allocate the symbol in our .dynbss section, which will
9483 become part of the .bss section of the executable. There will be
9484 an entry for this symbol in the .dynsym section. The dynamic
9485 object will contain position independent code, so all references
9486 from the dynamic object to this symbol will go through the global
9487 offset table. The dynamic linker will use the .dynsym entry to
9488 determine the address it must put in the global offset table, so
9489 both the dynamic object and the regular object will refer to the
9490 same memory location for the variable. */
9491
5474d94f
AM
9492 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9493 {
9494 s = htab->root.sdynrelro;
9495 srel = htab->root.sreldynrelro;
9496 }
9497 else
9498 {
9499 s = htab->root.sdynbss;
9500 srel = htab->root.srelbss;
9501 }
0a44bf69
RS
9502 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9503 {
861fb55a 9504 if (htab->is_vxworks)
5474d94f 9505 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9506 else
9507 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9508 h->needs_copy = 1;
9509 }
9510
861fb55a
DJ
9511 /* All relocations against this symbol that could have been made
9512 dynamic will now refer to the local copy instead. */
9513 hmips->possibly_dynamic_relocs = 0;
9514
5474d94f 9515 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9516}
b49e97c9
TS
9517\f
9518/* This function is called after all the input files have been read,
9519 and the input sections have been assigned to output sections. We
9520 check for any mips16 stub sections that we can discard. */
9521
b34976b6 9522bfd_boolean
9719ad41
RS
9523_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9524 struct bfd_link_info *info)
b49e97c9 9525{
351cdf24 9526 asection *sect;
0a44bf69 9527 struct mips_elf_link_hash_table *htab;
861fb55a 9528 struct mips_htab_traverse_info hti;
0a44bf69
RS
9529
9530 htab = mips_elf_hash_table (info);
4dfe6ac6 9531 BFD_ASSERT (htab != NULL);
f4416af6 9532
b49e97c9 9533 /* The .reginfo section has a fixed size. */
351cdf24
MF
9534 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9535 if (sect != NULL)
6798f8bf
MR
9536 {
9537 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9538 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9539 }
351cdf24
MF
9540
9541 /* The .MIPS.abiflags section has a fixed size. */
9542 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9543 if (sect != NULL)
6798f8bf
MR
9544 {
9545 bfd_set_section_size (output_bfd, sect,
9546 sizeof (Elf_External_ABIFlags_v0));
9547 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9548 }
b49e97c9 9549
861fb55a
DJ
9550 hti.info = info;
9551 hti.output_bfd = output_bfd;
9552 hti.error = FALSE;
9553 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9554 mips_elf_check_symbols, &hti);
9555 if (hti.error)
9556 return FALSE;
f4416af6 9557
33bb52fb
RS
9558 return TRUE;
9559}
9560
9561/* If the link uses a GOT, lay it out and work out its size. */
9562
9563static bfd_boolean
9564mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9565{
9566 bfd *dynobj;
9567 asection *s;
9568 struct mips_got_info *g;
33bb52fb
RS
9569 bfd_size_type loadable_size = 0;
9570 bfd_size_type page_gotno;
d7206569 9571 bfd *ibfd;
ab361d49 9572 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9573 struct mips_elf_link_hash_table *htab;
9574
9575 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9576 BFD_ASSERT (htab != NULL);
9577
ce558b89 9578 s = htab->root.sgot;
f4416af6 9579 if (s == NULL)
b34976b6 9580 return TRUE;
b49e97c9 9581
33bb52fb 9582 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9583 g = htab->got_info;
9584
861fb55a
DJ
9585 /* Allocate room for the reserved entries. VxWorks always reserves
9586 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9587 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9588 if (htab->is_vxworks)
9589 htab->reserved_gotno = 3;
9590 else
9591 htab->reserved_gotno = 2;
9592 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9593 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9594
6c42ddb9
RS
9595 /* Decide which symbols need to go in the global part of the GOT and
9596 count the number of reloc-only GOT symbols. */
020d7251 9597 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9598
13db6b44
RS
9599 if (!mips_elf_resolve_final_got_entries (info, g))
9600 return FALSE;
9601
33bb52fb
RS
9602 /* Calculate the total loadable size of the output. That
9603 will give us the maximum number of GOT_PAGE entries
9604 required. */
c72f2fb2 9605 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9606 {
9607 asection *subsection;
5108fc1b 9608
d7206569 9609 for (subsection = ibfd->sections;
33bb52fb
RS
9610 subsection;
9611 subsection = subsection->next)
9612 {
9613 if ((subsection->flags & SEC_ALLOC) == 0)
9614 continue;
9615 loadable_size += ((subsection->size + 0xf)
9616 &~ (bfd_size_type) 0xf);
9617 }
9618 }
f4416af6 9619
0a44bf69 9620 if (htab->is_vxworks)
738e5348 9621 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9622 relocations against local symbols evaluate to "G", and the EABI does
9623 not include R_MIPS_GOT_PAGE. */
c224138d 9624 page_gotno = 0;
0a44bf69
RS
9625 else
9626 /* Assume there are two loadable segments consisting of contiguous
9627 sections. Is 5 enough? */
c224138d
RS
9628 page_gotno = (loadable_size >> 16) + 5;
9629
13db6b44 9630 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9631 conservative. */
9632 if (page_gotno > g->page_gotno)
9633 page_gotno = g->page_gotno;
f4416af6 9634
c224138d 9635 g->local_gotno += page_gotno;
cb22ccf4 9636 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9637
ab361d49
RS
9638 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9639 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9640 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9641
0a44bf69
RS
9642 /* VxWorks does not support multiple GOTs. It initializes $gp to
9643 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9644 dynamic loader. */
57093f5e 9645 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9646 {
a8028dd0 9647 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9648 return FALSE;
9649 }
9650 else
9651 {
d7206569
RS
9652 /* Record that all bfds use G. This also has the effect of freeing
9653 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9654 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9655 if (mips_elf_bfd_got (ibfd, FALSE))
9656 mips_elf_replace_bfd_got (ibfd, g);
9657 mips_elf_replace_bfd_got (output_bfd, g);
9658
33bb52fb 9659 /* Set up TLS entries. */
0f20cc35 9660 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9661 tga.info = info;
9662 tga.g = g;
9663 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9664 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9665 if (!tga.g)
9666 return FALSE;
1fd20d70
RS
9667 BFD_ASSERT (g->tls_assigned_gotno
9668 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9669
57093f5e 9670 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9671 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9672 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9673
33bb52fb 9674 /* Allocate room for the TLS relocations. */
ab361d49
RS
9675 if (g->relocs)
9676 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9677 }
b49e97c9 9678
b34976b6 9679 return TRUE;
b49e97c9
TS
9680}
9681
33bb52fb
RS
9682/* Estimate the size of the .MIPS.stubs section. */
9683
9684static void
9685mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9686{
9687 struct mips_elf_link_hash_table *htab;
9688 bfd_size_type dynsymcount;
9689
9690 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9691 BFD_ASSERT (htab != NULL);
9692
33bb52fb
RS
9693 if (htab->lazy_stub_count == 0)
9694 return;
9695
9696 /* IRIX rld assumes that a function stub isn't at the end of the .text
9697 section, so add a dummy entry to the end. */
9698 htab->lazy_stub_count++;
9699
9700 /* Get a worst-case estimate of the number of dynamic symbols needed.
9701 At this point, dynsymcount does not account for section symbols
9702 and count_section_dynsyms may overestimate the number that will
9703 be needed. */
9704 dynsymcount = (elf_hash_table (info)->dynsymcount
9705 + count_section_dynsyms (output_bfd, info));
9706
1bbce132
MR
9707 /* Determine the size of one stub entry. There's no disadvantage
9708 from using microMIPS code here, so for the sake of pure-microMIPS
9709 binaries we prefer it whenever there's any microMIPS code in
9710 output produced at all. This has a benefit of stubs being
833794fc
MR
9711 shorter by 4 bytes each too, unless in the insn32 mode. */
9712 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9713 htab->function_stub_size = (dynsymcount > 0x10000
9714 ? MIPS_FUNCTION_STUB_BIG_SIZE
9715 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9716 else if (htab->insn32)
9717 htab->function_stub_size = (dynsymcount > 0x10000
9718 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9719 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9720 else
9721 htab->function_stub_size = (dynsymcount > 0x10000
9722 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9723 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9724
9725 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9726}
9727
1bbce132
MR
9728/* A mips_elf_link_hash_traverse callback for which DATA points to a
9729 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9730 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9731
9732static bfd_boolean
af924177 9733mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9734{
1bbce132 9735 struct mips_htab_traverse_info *hti = data;
33bb52fb 9736 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9737 struct bfd_link_info *info;
9738 bfd *output_bfd;
9739
9740 info = hti->info;
9741 output_bfd = hti->output_bfd;
9742 htab = mips_elf_hash_table (info);
9743 BFD_ASSERT (htab != NULL);
33bb52fb 9744
33bb52fb
RS
9745 if (h->needs_lazy_stub)
9746 {
1bbce132
MR
9747 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9748 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9749 bfd_vma isa_bit = micromips_p;
9750
9751 BFD_ASSERT (htab->root.dynobj != NULL);
9752 if (h->root.plt.plist == NULL)
9753 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9754 if (h->root.plt.plist == NULL)
9755 {
9756 hti->error = TRUE;
9757 return FALSE;
9758 }
33bb52fb 9759 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9760 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9761 h->root.plt.plist->stub_offset = htab->sstubs->size;
9762 h->root.other = other;
33bb52fb
RS
9763 htab->sstubs->size += htab->function_stub_size;
9764 }
9765 return TRUE;
9766}
9767
9768/* Allocate offsets in the stubs section to each symbol that needs one.
9769 Set the final size of the .MIPS.stub section. */
9770
1bbce132 9771static bfd_boolean
33bb52fb
RS
9772mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9773{
1bbce132
MR
9774 bfd *output_bfd = info->output_bfd;
9775 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9776 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9777 bfd_vma isa_bit = micromips_p;
33bb52fb 9778 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9779 struct mips_htab_traverse_info hti;
9780 struct elf_link_hash_entry *h;
9781 bfd *dynobj;
33bb52fb
RS
9782
9783 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9784 BFD_ASSERT (htab != NULL);
9785
33bb52fb 9786 if (htab->lazy_stub_count == 0)
1bbce132 9787 return TRUE;
33bb52fb
RS
9788
9789 htab->sstubs->size = 0;
1bbce132
MR
9790 hti.info = info;
9791 hti.output_bfd = output_bfd;
9792 hti.error = FALSE;
9793 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9794 if (hti.error)
9795 return FALSE;
33bb52fb
RS
9796 htab->sstubs->size += htab->function_stub_size;
9797 BFD_ASSERT (htab->sstubs->size
9798 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9799
9800 dynobj = elf_hash_table (info)->dynobj;
9801 BFD_ASSERT (dynobj != NULL);
9802 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9803 if (h == NULL)
9804 return FALSE;
9805 h->root.u.def.value = isa_bit;
9806 h->other = other;
9807 h->type = STT_FUNC;
9808
9809 return TRUE;
9810}
9811
9812/* A mips_elf_link_hash_traverse callback for which DATA points to a
9813 bfd_link_info. If H uses the address of a PLT entry as the value
9814 of the symbol, then set the entry in the symbol table now. Prefer
9815 a standard MIPS PLT entry. */
9816
9817static bfd_boolean
9818mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9819{
9820 struct bfd_link_info *info = data;
9821 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9822 struct mips_elf_link_hash_table *htab;
9823 unsigned int other;
9824 bfd_vma isa_bit;
9825 bfd_vma val;
9826
9827 htab = mips_elf_hash_table (info);
9828 BFD_ASSERT (htab != NULL);
9829
9830 if (h->use_plt_entry)
9831 {
9832 BFD_ASSERT (h->root.plt.plist != NULL);
9833 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9834 || h->root.plt.plist->comp_offset != MINUS_ONE);
9835
9836 val = htab->plt_header_size;
9837 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9838 {
9839 isa_bit = 0;
9840 val += h->root.plt.plist->mips_offset;
9841 other = 0;
9842 }
9843 else
9844 {
9845 isa_bit = 1;
9846 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9847 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9848 }
9849 val += isa_bit;
9850 /* For VxWorks, point at the PLT load stub rather than the lazy
07d6d2b8
AM
9851 resolution stub; this stub will become the canonical function
9852 address. */
1bbce132
MR
9853 if (htab->is_vxworks)
9854 val += 8;
9855
ce558b89 9856 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9857 h->root.root.u.def.value = val;
9858 h->root.other = other;
9859 }
9860
9861 return TRUE;
33bb52fb
RS
9862}
9863
b49e97c9
TS
9864/* Set the sizes of the dynamic sections. */
9865
b34976b6 9866bfd_boolean
9719ad41
RS
9867_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9868 struct bfd_link_info *info)
b49e97c9
TS
9869{
9870 bfd *dynobj;
861fb55a 9871 asection *s, *sreldyn;
b34976b6 9872 bfd_boolean reltext;
0a44bf69 9873 struct mips_elf_link_hash_table *htab;
b49e97c9 9874
0a44bf69 9875 htab = mips_elf_hash_table (info);
4dfe6ac6 9876 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9877 dynobj = elf_hash_table (info)->dynobj;
9878 BFD_ASSERT (dynobj != NULL);
9879
9880 if (elf_hash_table (info)->dynamic_sections_created)
9881 {
9882 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9883 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9884 {
3d4d4302 9885 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9886 BFD_ASSERT (s != NULL);
eea6121a 9887 s->size
b49e97c9
TS
9888 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9889 s->contents
9890 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9891 }
861fb55a 9892
1bbce132 9893 /* Figure out the size of the PLT header if we know that we
07d6d2b8
AM
9894 are using it. For the sake of cache alignment always use
9895 a standard header whenever any standard entries are present
9896 even if microMIPS entries are present as well. This also
9897 lets the microMIPS header rely on the value of $v0 only set
9898 by microMIPS entries, for a small size reduction.
1bbce132 9899
07d6d2b8
AM
9900 Set symbol table entry values for symbols that use the
9901 address of their PLT entry now that we can calculate it.
1bbce132 9902
07d6d2b8
AM
9903 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9904 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9905 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9906 {
1bbce132
MR
9907 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9908 && !htab->plt_mips_offset);
9909 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9910 bfd_vma isa_bit = micromips_p;
861fb55a 9911 struct elf_link_hash_entry *h;
1bbce132 9912 bfd_vma size;
861fb55a
DJ
9913
9914 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9915 BFD_ASSERT (htab->root.sgotplt->size == 0);
9916 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9917
0e1862bb 9918 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9919 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9920 else if (htab->is_vxworks)
9921 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9922 else if (ABI_64_P (output_bfd))
9923 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9924 else if (ABI_N32_P (output_bfd))
9925 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9926 else if (!micromips_p)
9927 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9928 else if (htab->insn32)
9929 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9930 else
9931 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9932
1bbce132
MR
9933 htab->plt_header_is_comp = micromips_p;
9934 htab->plt_header_size = size;
ce558b89
AM
9935 htab->root.splt->size = (size
9936 + htab->plt_mips_offset
9937 + htab->plt_comp_offset);
9938 htab->root.sgotplt->size = (htab->plt_got_index
9939 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9940
9941 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9942
9943 if (htab->root.hplt == NULL)
9944 {
ce558b89 9945 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9946 "_PROCEDURE_LINKAGE_TABLE_");
9947 htab->root.hplt = h;
9948 if (h == NULL)
9949 return FALSE;
9950 }
9951
9952 h = htab->root.hplt;
9953 h->root.u.def.value = isa_bit;
9954 h->other = other;
861fb55a
DJ
9955 h->type = STT_FUNC;
9956 }
9957 }
4e41d0d7 9958
9a59ad6b 9959 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9960 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9961
33bb52fb
RS
9962 mips_elf_estimate_stub_size (output_bfd, info);
9963
9964 if (!mips_elf_lay_out_got (output_bfd, info))
9965 return FALSE;
9966
9967 mips_elf_lay_out_lazy_stubs (info);
9968
b49e97c9
TS
9969 /* The check_relocs and adjust_dynamic_symbol entry points have
9970 determined the sizes of the various dynamic sections. Allocate
9971 memory for them. */
b34976b6 9972 reltext = FALSE;
b49e97c9
TS
9973 for (s = dynobj->sections; s != NULL; s = s->next)
9974 {
9975 const char *name;
b49e97c9
TS
9976
9977 /* It's OK to base decisions on the section name, because none
9978 of the dynobj section names depend upon the input files. */
9979 name = bfd_get_section_name (dynobj, s);
9980
9981 if ((s->flags & SEC_LINKER_CREATED) == 0)
9982 continue;
9983
0112cd26 9984 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9985 {
c456f082 9986 if (s->size != 0)
b49e97c9
TS
9987 {
9988 const char *outname;
9989 asection *target;
9990
9991 /* If this relocation section applies to a read only
07d6d2b8
AM
9992 section, then we probably need a DT_TEXTREL entry.
9993 If the relocation section is .rel(a).dyn, we always
9994 assert a DT_TEXTREL entry rather than testing whether
9995 there exists a relocation to a read only section or
9996 not. */
b49e97c9
TS
9997 outname = bfd_get_section_name (output_bfd,
9998 s->output_section);
9999 target = bfd_get_section_by_name (output_bfd, outname + 4);
10000 if ((target != NULL
10001 && (target->flags & SEC_READONLY) != 0
10002 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 10003 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 10004 reltext = TRUE;
b49e97c9
TS
10005
10006 /* We use the reloc_count field as a counter if we need
10007 to copy relocs into the output file. */
0a44bf69 10008 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 10009 s->reloc_count = 0;
f4416af6
AO
10010
10011 /* If combreloc is enabled, elf_link_sort_relocs() will
10012 sort relocations, but in a different way than we do,
10013 and before we're done creating relocations. Also, it
10014 will move them around between input sections'
10015 relocation's contents, so our sorting would be
10016 broken, so don't let it run. */
10017 info->combreloc = 0;
b49e97c9
TS
10018 }
10019 }
0e1862bb 10020 else if (bfd_link_executable (info)
b49e97c9 10021 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 10022 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 10023 {
5108fc1b 10024 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 10025 rtld to contain a pointer to the _r_debug structure. */
b4082c70 10026 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
10027 }
10028 else if (SGI_COMPAT (output_bfd)
0112cd26 10029 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 10030 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 10031 else if (s == htab->root.splt)
861fb55a
DJ
10032 {
10033 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
10034 room for an extra nop to fill the delay slot. This is
10035 for CPUs without load interlocking. */
10036 if (! LOAD_INTERLOCKS_P (output_bfd)
10037 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
10038 s->size += 4;
10039 }
0112cd26 10040 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
10041 && s != htab->root.sgot
10042 && s != htab->root.sgotplt
861fb55a 10043 && s != htab->sstubs
5474d94f
AM
10044 && s != htab->root.sdynbss
10045 && s != htab->root.sdynrelro)
b49e97c9
TS
10046 {
10047 /* It's not one of our sections, so don't allocate space. */
10048 continue;
10049 }
10050
c456f082 10051 if (s->size == 0)
b49e97c9 10052 {
8423293d 10053 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
10054 continue;
10055 }
10056
c456f082
AM
10057 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10058 continue;
10059
b49e97c9 10060 /* Allocate memory for the section contents. */
eea6121a 10061 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 10062 if (s->contents == NULL)
b49e97c9
TS
10063 {
10064 bfd_set_error (bfd_error_no_memory);
b34976b6 10065 return FALSE;
b49e97c9
TS
10066 }
10067 }
10068
10069 if (elf_hash_table (info)->dynamic_sections_created)
10070 {
10071 /* Add some entries to the .dynamic section. We fill in the
10072 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10073 must add the entries now so that we get the correct size for
5750dcec 10074 the .dynamic section. */
af5978fb
RS
10075
10076 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 10077 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
10078 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10079 may only look at the first one they see. */
0e1862bb 10080 if (!bfd_link_pic (info)
af5978fb
RS
10081 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10082 return FALSE;
b49e97c9 10083
0e1862bb 10084 if (bfd_link_executable (info)
a5499fa4
MF
10085 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10086 return FALSE;
10087
5750dcec
DJ
10088 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10089 used by the debugger. */
0e1862bb 10090 if (bfd_link_executable (info)
5750dcec
DJ
10091 && !SGI_COMPAT (output_bfd)
10092 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10093 return FALSE;
10094
0a44bf69 10095 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
10096 info->flags |= DF_TEXTREL;
10097
10098 if ((info->flags & DF_TEXTREL) != 0)
10099 {
10100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 10101 return FALSE;
943284cc
DJ
10102
10103 /* Clear the DF_TEXTREL flag. It will be set again if we
10104 write out an actual text relocation; we may not, because
10105 at this point we do not know whether e.g. any .eh_frame
10106 absolute relocations have been converted to PC-relative. */
10107 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
10108 }
10109
10110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 10111 return FALSE;
b49e97c9 10112
861fb55a 10113 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 10114 if (htab->is_vxworks)
b49e97c9 10115 {
0a44bf69
RS
10116 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10117 use any of the DT_MIPS_* tags. */
861fb55a 10118 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
10119 {
10120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10121 return FALSE;
b49e97c9 10122
0a44bf69
RS
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10124 return FALSE;
b49e97c9 10125
0a44bf69
RS
10126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10127 return FALSE;
10128 }
b49e97c9 10129 }
0a44bf69
RS
10130 else
10131 {
db841b6f
MR
10132 if (sreldyn && sreldyn->size > 0
10133 && !bfd_is_abs_section (sreldyn->output_section))
0a44bf69
RS
10134 {
10135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10136 return FALSE;
b49e97c9 10137
0a44bf69
RS
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10139 return FALSE;
b49e97c9 10140
0a44bf69
RS
10141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10142 return FALSE;
10143 }
b49e97c9 10144
0a44bf69
RS
10145 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10146 return FALSE;
b49e97c9 10147
0a44bf69
RS
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10149 return FALSE;
b49e97c9 10150
0a44bf69
RS
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10152 return FALSE;
b49e97c9 10153
0a44bf69
RS
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10155 return FALSE;
b49e97c9 10156
0a44bf69
RS
10157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10158 return FALSE;
b49e97c9 10159
0a44bf69
RS
10160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10161 return FALSE;
b49e97c9 10162
0a44bf69
RS
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10164 return FALSE;
10165
10166 if (IRIX_COMPAT (dynobj) == ict_irix5
10167 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10168 return FALSE;
10169
10170 if (IRIX_COMPAT (dynobj) == ict_irix6
10171 && (bfd_get_section_by_name
af0edeb8 10172 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
10173 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10174 return FALSE;
10175 }
ce558b89 10176 if (htab->root.splt->size > 0)
861fb55a
DJ
10177 {
10178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10179 return FALSE;
10180
10181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10182 return FALSE;
10183
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10185 return FALSE;
10186
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10188 return FALSE;
10189 }
7a2b07ff
NS
10190 if (htab->is_vxworks
10191 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10192 return FALSE;
b49e97c9
TS
10193 }
10194
b34976b6 10195 return TRUE;
b49e97c9
TS
10196}
10197\f
81d43bff
RS
10198/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10199 Adjust its R_ADDEND field so that it is correct for the output file.
10200 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10201 and sections respectively; both use symbol indexes. */
10202
10203static void
10204mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10205 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10206 asection **local_sections, Elf_Internal_Rela *rel)
10207{
10208 unsigned int r_type, r_symndx;
10209 Elf_Internal_Sym *sym;
10210 asection *sec;
10211
020d7251 10212 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
10213 {
10214 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 10215 if (gprel16_reloc_p (r_type)
81d43bff 10216 || r_type == R_MIPS_GPREL32
df58fc94 10217 || literal_reloc_p (r_type))
81d43bff
RS
10218 {
10219 rel->r_addend += _bfd_get_gp_value (input_bfd);
10220 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10221 }
10222
10223 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10224 sym = local_syms + r_symndx;
10225
10226 /* Adjust REL's addend to account for section merging. */
0e1862bb 10227 if (!bfd_link_relocatable (info))
81d43bff
RS
10228 {
10229 sec = local_sections[r_symndx];
10230 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10231 }
10232
10233 /* This would normally be done by the rela_normal code in elflink.c. */
10234 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10235 rel->r_addend += local_sections[r_symndx]->output_offset;
10236 }
10237}
10238
545fd46b
MR
10239/* Handle relocations against symbols from removed linkonce sections,
10240 or sections discarded by a linker script. We use this wrapper around
10241 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10242 on 64-bit ELF targets. In this case for any relocation handled, which
10243 always be the first in a triplet, the remaining two have to be processed
10244 together with the first, even if they are R_MIPS_NONE. It is the symbol
10245 index referred by the first reloc that applies to all the three and the
10246 remaining two never refer to an object symbol. And it is the final
10247 relocation (the last non-null one) that determines the output field of
10248 the whole relocation so retrieve the corresponding howto structure for
10249 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10250
10251 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10252 and therefore requires to be pasted in a loop. It also defines a block
10253 and does not protect any of its arguments, hence the extra brackets. */
10254
10255static void
10256mips_reloc_against_discarded_section (bfd *output_bfd,
10257 struct bfd_link_info *info,
10258 bfd *input_bfd, asection *input_section,
10259 Elf_Internal_Rela **rel,
10260 const Elf_Internal_Rela **relend,
10261 bfd_boolean rel_reloc,
10262 reloc_howto_type *howto,
10263 bfd_byte *contents)
10264{
10265 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10266 int count = bed->s->int_rels_per_ext_rel;
10267 unsigned int r_type;
10268 int i;
10269
10270 for (i = count - 1; i > 0; i--)
10271 {
10272 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10273 if (r_type != R_MIPS_NONE)
10274 {
10275 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10276 break;
10277 }
10278 }
10279 do
10280 {
10281 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10282 (*rel), count, (*relend),
10283 howto, i, contents);
10284 }
10285 while (0);
10286}
10287
b49e97c9
TS
10288/* Relocate a MIPS ELF section. */
10289
b34976b6 10290bfd_boolean
9719ad41
RS
10291_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10292 bfd *input_bfd, asection *input_section,
10293 bfd_byte *contents, Elf_Internal_Rela *relocs,
10294 Elf_Internal_Sym *local_syms,
10295 asection **local_sections)
b49e97c9
TS
10296{
10297 Elf_Internal_Rela *rel;
10298 const Elf_Internal_Rela *relend;
10299 bfd_vma addend = 0;
b34976b6 10300 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10301
056bafd4 10302 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10303 for (rel = relocs; rel < relend; ++rel)
10304 {
10305 const char *name;
c9adbffe 10306 bfd_vma value = 0;
b49e97c9 10307 reloc_howto_type *howto;
ad3d9127 10308 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10309 /* TRUE if the relocation is a RELA relocation, rather than a
07d6d2b8 10310 REL relocation. */
b34976b6 10311 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10312 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10313 const char *msg;
ab96bf03
AM
10314 unsigned long r_symndx;
10315 asection *sec;
749b8d9d
L
10316 Elf_Internal_Shdr *symtab_hdr;
10317 struct elf_link_hash_entry *h;
d4730f92 10318 bfd_boolean rel_reloc;
b49e97c9 10319
d4730f92
BS
10320 rel_reloc = (NEWABI_P (input_bfd)
10321 && mips_elf_rel_relocation_p (input_bfd, input_section,
10322 relocs, rel));
b49e97c9 10323 /* Find the relocation howto for this relocation. */
d4730f92 10324 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10325
10326 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10327 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10328 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10329 {
10330 sec = local_sections[r_symndx];
10331 h = NULL;
10332 }
ab96bf03
AM
10333 else
10334 {
ab96bf03 10335 unsigned long extsymoff;
ab96bf03 10336
ab96bf03
AM
10337 extsymoff = 0;
10338 if (!elf_bad_symtab (input_bfd))
10339 extsymoff = symtab_hdr->sh_info;
10340 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10341 while (h->root.type == bfd_link_hash_indirect
10342 || h->root.type == bfd_link_hash_warning)
10343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10344
10345 sec = NULL;
10346 if (h->root.type == bfd_link_hash_defined
10347 || h->root.type == bfd_link_hash_defweak)
10348 sec = h->root.u.def.section;
10349 }
10350
dbaa2011 10351 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10352 {
10353 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10354 input_section, &rel, &relend,
10355 rel_reloc, howto, contents);
10356 continue;
10357 }
ab96bf03 10358
4a14403c 10359 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10360 {
10361 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10362 64-bit code, but make sure all their addresses are in the
10363 lowermost or uppermost 32-bit section of the 64-bit address
10364 space. Thus, when they use an R_MIPS_64 they mean what is
10365 usually meant by R_MIPS_32, with the exception that the
10366 stored value is sign-extended to 64 bits. */
b34976b6 10367 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10368
10369 /* On big-endian systems, we need to lie about the position
10370 of the reloc. */
10371 if (bfd_big_endian (input_bfd))
10372 rel->r_offset += 4;
10373 }
b49e97c9
TS
10374
10375 if (!use_saved_addend_p)
10376 {
b49e97c9
TS
10377 /* If these relocations were originally of the REL variety,
10378 we must pull the addend out of the field that will be
10379 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10380 RELA relocation. */
10381 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10382 relocs, rel))
b49e97c9 10383 {
b34976b6 10384 rela_relocation_p = FALSE;
c224138d
RS
10385 addend = mips_elf_read_rel_addend (input_bfd, rel,
10386 howto, contents);
738e5348
RS
10387 if (hi16_reloc_p (r_type)
10388 || (got16_reloc_p (r_type)
b49e97c9 10389 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10390 local_sections)))
b49e97c9 10391 {
c224138d
RS
10392 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10393 contents, &addend))
749b8d9d 10394 {
749b8d9d
L
10395 if (h)
10396 name = h->root.root.string;
10397 else
10398 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10399 local_syms + r_symndx,
10400 sec);
4eca0228 10401 _bfd_error_handler
695344c0 10402 /* xgettext:c-format */
2c1c9679 10403 (_("%pB: can't find matching LO16 reloc against `%s'"
2dcf00ce 10404 " for %s at %#" PRIx64 " in section `%pA'"),
c08bb8dd 10405 input_bfd, name,
2dcf00ce 10406 howto->name, (uint64_t) rel->r_offset, input_section);
749b8d9d 10407 }
b49e97c9 10408 }
30ac9238
RS
10409 else
10410 addend <<= howto->rightshift;
b49e97c9
TS
10411 }
10412 else
10413 addend = rel->r_addend;
81d43bff
RS
10414 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10415 local_syms, local_sections, rel);
b49e97c9
TS
10416 }
10417
0e1862bb 10418 if (bfd_link_relocatable (info))
b49e97c9 10419 {
4a14403c 10420 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10421 && bfd_big_endian (input_bfd))
10422 rel->r_offset -= 4;
10423
81d43bff 10424 if (!rela_relocation_p && rel->r_addend)
5a659663 10425 {
81d43bff 10426 addend += rel->r_addend;
738e5348 10427 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10428 addend = mips_elf_high (addend);
10429 else if (r_type == R_MIPS_HIGHER)
10430 addend = mips_elf_higher (addend);
10431 else if (r_type == R_MIPS_HIGHEST)
10432 addend = mips_elf_highest (addend);
30ac9238
RS
10433 else
10434 addend >>= howto->rightshift;
b49e97c9 10435
30ac9238
RS
10436 /* We use the source mask, rather than the destination
10437 mask because the place to which we are writing will be
10438 source of the addend in the final link. */
b49e97c9
TS
10439 addend &= howto->src_mask;
10440
5a659663 10441 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10442 /* See the comment above about using R_MIPS_64 in the 32-bit
10443 ABI. Here, we need to update the addend. It would be
10444 possible to get away with just using the R_MIPS_32 reloc
10445 but for endianness. */
10446 {
10447 bfd_vma sign_bits;
10448 bfd_vma low_bits;
10449 bfd_vma high_bits;
10450
10451 if (addend & ((bfd_vma) 1 << 31))
10452#ifdef BFD64
10453 sign_bits = ((bfd_vma) 1 << 32) - 1;
10454#else
10455 sign_bits = -1;
10456#endif
10457 else
10458 sign_bits = 0;
10459
10460 /* If we don't know that we have a 64-bit type,
10461 do two separate stores. */
10462 if (bfd_big_endian (input_bfd))
10463 {
10464 /* Store the sign-bits (which are most significant)
10465 first. */
10466 low_bits = sign_bits;
10467 high_bits = addend;
10468 }
10469 else
10470 {
10471 low_bits = addend;
10472 high_bits = sign_bits;
10473 }
10474 bfd_put_32 (input_bfd, low_bits,
10475 contents + rel->r_offset);
10476 bfd_put_32 (input_bfd, high_bits,
10477 contents + rel->r_offset + 4);
10478 continue;
10479 }
10480
10481 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10482 input_bfd, input_section,
b34976b6
AM
10483 contents, FALSE))
10484 return FALSE;
b49e97c9
TS
10485 }
10486
10487 /* Go on to the next relocation. */
10488 continue;
10489 }
10490
10491 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10492 relocations for the same offset. In that case we are
10493 supposed to treat the output of each relocation as the addend
10494 for the next. */
10495 if (rel + 1 < relend
10496 && rel->r_offset == rel[1].r_offset
10497 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10498 use_saved_addend_p = TRUE;
b49e97c9 10499 else
b34976b6 10500 use_saved_addend_p = FALSE;
b49e97c9
TS
10501
10502 /* Figure out what value we are supposed to relocate. */
10503 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
47275900
MR
10504 input_section, contents,
10505 info, rel, addend, howto,
10506 local_syms, local_sections,
10507 &value, &name, &cross_mode_jump_p,
bce03d3d 10508 use_saved_addend_p))
b49e97c9
TS
10509 {
10510 case bfd_reloc_continue:
10511 /* There's nothing to do. */
10512 continue;
10513
10514 case bfd_reloc_undefined:
10515 /* mips_elf_calculate_relocation already called the
10516 undefined_symbol callback. There's no real point in
10517 trying to perform the relocation at this point, so we
10518 just skip ahead to the next relocation. */
10519 continue;
10520
10521 case bfd_reloc_notsupported:
10522 msg = _("internal error: unsupported relocation error");
10523 info->callbacks->warning
10524 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10525 return FALSE;
b49e97c9
TS
10526
10527 case bfd_reloc_overflow:
10528 if (use_saved_addend_p)
10529 /* Ignore overflow until we reach the last relocation for
10530 a given location. */
10531 ;
10532 else
10533 {
0e53d9da
AN
10534 struct mips_elf_link_hash_table *htab;
10535
10536 htab = mips_elf_hash_table (info);
4dfe6ac6 10537 BFD_ASSERT (htab != NULL);
b49e97c9 10538 BFD_ASSERT (name != NULL);
0e53d9da 10539 if (!htab->small_data_overflow_reported
9684f078 10540 && (gprel16_reloc_p (howto->type)
df58fc94 10541 || literal_reloc_p (howto->type)))
0e53d9da 10542 {
91d6fa6a
NC
10543 msg = _("small-data section exceeds 64KB;"
10544 " lower small-data size limit (see option -G)");
0e53d9da
AN
10545
10546 htab->small_data_overflow_reported = TRUE;
10547 (*info->callbacks->einfo) ("%P: %s\n", msg);
10548 }
1a72702b
AM
10549 (*info->callbacks->reloc_overflow)
10550 (info, NULL, name, howto->name, (bfd_vma) 0,
10551 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10552 }
10553 break;
10554
10555 case bfd_reloc_ok:
10556 break;
10557
df58fc94 10558 case bfd_reloc_outofrange:
7db9a74e 10559 msg = NULL;
df58fc94 10560 if (jal_reloc_p (howto->type))
9d862524 10561 msg = (cross_mode_jump_p
2c1c9679 10562 ? _("cannot convert a jump to JALX "
9d862524
MR
10563 "for a non-word-aligned address")
10564 : (howto->type == R_MIPS16_26
2c1c9679
AM
10565 ? _("jump to a non-word-aligned address")
10566 : _("jump to a non-instruction-aligned address")));
99aefae6 10567 else if (b_reloc_p (howto->type))
a6ebf616 10568 msg = (cross_mode_jump_p
2c1c9679 10569 ? _("cannot convert a branch to JALX "
a6ebf616 10570 "for a non-word-aligned address")
2c1c9679 10571 : _("branch to a non-instruction-aligned address"));
7db9a74e
MR
10572 else if (aligned_pcrel_reloc_p (howto->type))
10573 msg = _("PC-relative load from unaligned address");
10574 if (msg)
df58fc94 10575 {
de341542 10576 info->callbacks->einfo
ed53407e
MR
10577 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10578 break;
7361da2c 10579 }
df58fc94
RS
10580 /* Fall through. */
10581
b49e97c9
TS
10582 default:
10583 abort ();
10584 break;
10585 }
10586
10587 /* If we've got another relocation for the address, keep going
10588 until we reach the last one. */
10589 if (use_saved_addend_p)
10590 {
10591 addend = value;
10592 continue;
10593 }
10594
4a14403c 10595 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10596 /* See the comment above about using R_MIPS_64 in the 32-bit
10597 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10598 that calculated the right value. Now, however, we
10599 sign-extend the 32-bit result to 64-bits, and store it as a
10600 64-bit value. We are especially generous here in that we
10601 go to extreme lengths to support this usage on systems with
10602 only a 32-bit VMA. */
10603 {
10604 bfd_vma sign_bits;
10605 bfd_vma low_bits;
10606 bfd_vma high_bits;
10607
10608 if (value & ((bfd_vma) 1 << 31))
10609#ifdef BFD64
10610 sign_bits = ((bfd_vma) 1 << 32) - 1;
10611#else
10612 sign_bits = -1;
10613#endif
10614 else
10615 sign_bits = 0;
10616
10617 /* If we don't know that we have a 64-bit type,
10618 do two separate stores. */
10619 if (bfd_big_endian (input_bfd))
10620 {
10621 /* Undo what we did above. */
10622 rel->r_offset -= 4;
10623 /* Store the sign-bits (which are most significant)
10624 first. */
10625 low_bits = sign_bits;
10626 high_bits = value;
10627 }
10628 else
10629 {
10630 low_bits = value;
10631 high_bits = sign_bits;
10632 }
10633 bfd_put_32 (input_bfd, low_bits,
10634 contents + rel->r_offset);
10635 bfd_put_32 (input_bfd, high_bits,
10636 contents + rel->r_offset + 4);
10637 continue;
10638 }
10639
10640 /* Actually perform the relocation. */
10641 if (! mips_elf_perform_relocation (info, howto, rel, value,
10642 input_bfd, input_section,
38a7df63 10643 contents, cross_mode_jump_p))
b34976b6 10644 return FALSE;
b49e97c9
TS
10645 }
10646
b34976b6 10647 return TRUE;
b49e97c9
TS
10648}
10649\f
861fb55a
DJ
10650/* A function that iterates over each entry in la25_stubs and fills
10651 in the code for each one. DATA points to a mips_htab_traverse_info. */
10652
10653static int
10654mips_elf_create_la25_stub (void **slot, void *data)
10655{
10656 struct mips_htab_traverse_info *hti;
10657 struct mips_elf_link_hash_table *htab;
10658 struct mips_elf_la25_stub *stub;
10659 asection *s;
10660 bfd_byte *loc;
10661 bfd_vma offset, target, target_high, target_low;
3734320d
MF
10662 bfd_vma branch_pc;
10663 bfd_signed_vma pcrel_offset = 0;
861fb55a
DJ
10664
10665 stub = (struct mips_elf_la25_stub *) *slot;
10666 hti = (struct mips_htab_traverse_info *) data;
10667 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10668 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10669
10670 /* Create the section contents, if we haven't already. */
10671 s = stub->stub_section;
10672 loc = s->contents;
10673 if (loc == NULL)
10674 {
10675 loc = bfd_malloc (s->size);
10676 if (loc == NULL)
10677 {
10678 hti->error = TRUE;
10679 return FALSE;
10680 }
10681 s->contents = loc;
10682 }
10683
10684 /* Work out where in the section this stub should go. */
10685 offset = stub->offset;
10686
3734320d
MF
10687 /* We add 8 here to account for the LUI/ADDIU instructions
10688 before the branch instruction. This cannot be moved down to
10689 where pcrel_offset is calculated as 's' is updated in
10690 mips_elf_get_la25_target. */
10691 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10692
861fb55a 10693 /* Work out the target address. */
8f0c309a
CLT
10694 target = mips_elf_get_la25_target (stub, &s);
10695 target += s->output_section->vma + s->output_offset;
10696
861fb55a
DJ
10697 target_high = ((target + 0x8000) >> 16) & 0xffff;
10698 target_low = (target & 0xffff);
10699
3734320d
MF
10700 /* Calculate the PC of the compact branch instruction (for the case where
10701 compact branches are used for either microMIPSR6 or MIPSR6 with
10702 compact branches. Add 4-bytes to account for BC using the PC of the
10703 next instruction as the base. */
10704 pcrel_offset = target - (branch_pc + 4);
10705
861fb55a
DJ
10706 if (stub->stub_section != htab->strampoline)
10707 {
df58fc94 10708 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10709 of the section and write the two instructions at the end. */
10710 memset (loc, 0, offset);
10711 loc += offset;
df58fc94
RS
10712 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10713 {
d21911ea
MR
10714 bfd_put_micromips_32 (hti->output_bfd,
10715 LA25_LUI_MICROMIPS (target_high),
10716 loc);
10717 bfd_put_micromips_32 (hti->output_bfd,
10718 LA25_ADDIU_MICROMIPS (target_low),
10719 loc + 4);
df58fc94
RS
10720 }
10721 else
10722 {
10723 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10724 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10725 }
861fb55a
DJ
10726 }
10727 else
10728 {
10729 /* This is trampoline. */
10730 loc += offset;
df58fc94
RS
10731 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10732 {
d21911ea
MR
10733 bfd_put_micromips_32 (hti->output_bfd,
10734 LA25_LUI_MICROMIPS (target_high), loc);
10735 bfd_put_micromips_32 (hti->output_bfd,
10736 LA25_J_MICROMIPS (target), loc + 4);
10737 bfd_put_micromips_32 (hti->output_bfd,
10738 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10739 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10740 }
10741 else
10742 {
10743 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
3734320d
MF
10744 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10745 {
10746 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10747 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10748 }
10749 else
10750 {
10751 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10752 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10753 }
df58fc94
RS
10754 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10755 }
861fb55a
DJ
10756 }
10757 return TRUE;
10758}
10759
b49e97c9
TS
10760/* If NAME is one of the special IRIX6 symbols defined by the linker,
10761 adjust it appropriately now. */
10762
10763static void
9719ad41
RS
10764mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10765 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10766{
10767 /* The linker script takes care of providing names and values for
10768 these, but we must place them into the right sections. */
10769 static const char* const text_section_symbols[] = {
10770 "_ftext",
10771 "_etext",
10772 "__dso_displacement",
10773 "__elf_header",
10774 "__program_header_table",
10775 NULL
10776 };
10777
10778 static const char* const data_section_symbols[] = {
10779 "_fdata",
10780 "_edata",
10781 "_end",
10782 "_fbss",
10783 NULL
10784 };
10785
10786 const char* const *p;
10787 int i;
10788
10789 for (i = 0; i < 2; ++i)
10790 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10791 *p;
10792 ++p)
10793 if (strcmp (*p, name) == 0)
10794 {
10795 /* All of these symbols are given type STT_SECTION by the
10796 IRIX6 linker. */
10797 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10798 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10799
10800 /* The IRIX linker puts these symbols in special sections. */
10801 if (i == 0)
10802 sym->st_shndx = SHN_MIPS_TEXT;
10803 else
10804 sym->st_shndx = SHN_MIPS_DATA;
10805
10806 break;
10807 }
10808}
10809
10810/* Finish up dynamic symbol handling. We set the contents of various
10811 dynamic sections here. */
10812
b34976b6 10813bfd_boolean
9719ad41
RS
10814_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10815 struct bfd_link_info *info,
10816 struct elf_link_hash_entry *h,
10817 Elf_Internal_Sym *sym)
b49e97c9
TS
10818{
10819 bfd *dynobj;
b49e97c9 10820 asection *sgot;
f4416af6 10821 struct mips_got_info *g, *gg;
b49e97c9 10822 const char *name;
3d6746ca 10823 int idx;
5108fc1b 10824 struct mips_elf_link_hash_table *htab;
738e5348 10825 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10826
5108fc1b 10827 htab = mips_elf_hash_table (info);
4dfe6ac6 10828 BFD_ASSERT (htab != NULL);
b49e97c9 10829 dynobj = elf_hash_table (info)->dynobj;
738e5348 10830 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10831
861fb55a
DJ
10832 BFD_ASSERT (!htab->is_vxworks);
10833
1bbce132
MR
10834 if (h->plt.plist != NULL
10835 && (h->plt.plist->mips_offset != MINUS_ONE
10836 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10837 {
10838 /* We've decided to create a PLT entry for this symbol. */
10839 bfd_byte *loc;
1bbce132 10840 bfd_vma header_address, got_address;
861fb55a 10841 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10842 bfd_vma got_index;
10843 bfd_vma isa_bit;
10844
10845 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10846
10847 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10848 BFD_ASSERT (h->dynindx != -1);
ce558b89 10849 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10850 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10851 BFD_ASSERT (!h->def_regular);
10852
10853 /* Calculate the address of the PLT header. */
1bbce132 10854 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10855 header_address = (htab->root.splt->output_section->vma
10856 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10857
10858 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10859 got_address = (htab->root.sgotplt->output_section->vma
10860 + htab->root.sgotplt->output_offset
1bbce132
MR
10861 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10862
861fb55a
DJ
10863 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10864 got_address_low = got_address & 0xffff;
10865
789ff5b6
MR
10866 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10867 cannot be loaded in two instructions. */
10868 if (ABI_64_P (output_bfd)
10869 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10870 {
10871 _bfd_error_handler
10872 /* xgettext:c-format */
10873 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10874 "supported; consider using `-Ttext-segment=...'"),
10875 output_bfd,
10876 htab->root.sgotplt->output_section,
10877 (int64_t) got_address);
10878 bfd_set_error (bfd_error_no_error);
10879 return FALSE;
10880 }
10881
861fb55a 10882 /* Initially point the .got.plt entry at the PLT header. */
6a382bce
MR
10883 loc = (htab->root.sgotplt->contents
10884 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10885 if (ABI_64_P (output_bfd))
10886 bfd_put_64 (output_bfd, header_address, loc);
10887 else
10888 bfd_put_32 (output_bfd, header_address, loc);
10889
1bbce132 10890 /* Now handle the PLT itself. First the standard entry (the order
07d6d2b8 10891 does not matter, we just have to pick one). */
1bbce132
MR
10892 if (h->plt.plist->mips_offset != MINUS_ONE)
10893 {
10894 const bfd_vma *plt_entry;
10895 bfd_vma plt_offset;
861fb55a 10896
1bbce132 10897 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10898
ce558b89 10899 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10900
1bbce132 10901 /* Find out where the .plt entry should go. */
ce558b89 10902 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10903
10904 /* Pick the load opcode. */
10905 load = MIPS_ELF_LOAD_WORD (output_bfd);
10906
10907 /* Fill in the PLT entry itself. */
7361da2c
AB
10908
10909 if (MIPSR6_P (output_bfd))
3734320d
MF
10910 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10911 : mipsr6_exec_plt_entry;
7361da2c
AB
10912 else
10913 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10914 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10915 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10916 loc + 4);
10917
3734320d
MF
10918 if (! LOAD_INTERLOCKS_P (output_bfd)
10919 || (MIPSR6_P (output_bfd) && htab->compact_branches))
1bbce132
MR
10920 {
10921 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10922 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10923 }
10924 else
10925 {
10926 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10927 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10928 loc + 12);
10929 }
6d30f5b2 10930 }
1bbce132
MR
10931
10932 /* Now the compressed entry. They come after any standard ones. */
10933 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10934 {
1bbce132
MR
10935 bfd_vma plt_offset;
10936
10937 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10938 + h->plt.plist->comp_offset);
10939
ce558b89 10940 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10941
10942 /* Find out where the .plt entry should go. */
ce558b89 10943 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10944
10945 /* Fill in the PLT entry itself. */
833794fc
MR
10946 if (!MICROMIPS_P (output_bfd))
10947 {
10948 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10949
10950 bfd_put_16 (output_bfd, plt_entry[0], loc);
10951 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10952 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10953 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10954 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10955 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10956 bfd_put_32 (output_bfd, got_address, loc + 12);
10957 }
10958 else if (htab->insn32)
10959 {
10960 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10961
10962 bfd_put_16 (output_bfd, plt_entry[0], loc);
10963 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10964 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10965 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10966 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10967 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10968 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10969 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10970 }
10971 else
1bbce132
MR
10972 {
10973 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10974 bfd_signed_vma gotpc_offset;
10975 bfd_vma loc_address;
10976
10977 BFD_ASSERT (got_address % 4 == 0);
10978
ce558b89
AM
10979 loc_address = (htab->root.splt->output_section->vma
10980 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10981 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10982
10983 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10984 if (gotpc_offset + 0x1000000 >= 0x2000000)
10985 {
4eca0228 10986 _bfd_error_handler
695344c0 10987 /* xgettext:c-format */
2dcf00ce 10988 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
1bbce132
MR
10989 "beyond the range of ADDIUPC"),
10990 output_bfd,
ce558b89 10991 htab->root.sgotplt->output_section,
2dcf00ce 10992 (int64_t) gotpc_offset,
c08bb8dd 10993 htab->root.splt->output_section);
1bbce132
MR
10994 bfd_set_error (bfd_error_no_error);
10995 return FALSE;
10996 }
10997 bfd_put_16 (output_bfd,
10998 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10999 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11000 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11001 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11002 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11003 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11004 }
6d30f5b2 11005 }
861fb55a
DJ
11006
11007 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11008 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 11009 got_index - 2, h->dynindx,
861fb55a
DJ
11010 R_MIPS_JUMP_SLOT, got_address);
11011
11012 /* We distinguish between PLT entries and lazy-binding stubs by
11013 giving the former an st_other value of STO_MIPS_PLT. Set the
11014 flag and leave the value if there are any relocations in the
11015 binary where pointer equality matters. */
11016 sym->st_shndx = SHN_UNDEF;
11017 if (h->pointer_equality_needed)
1bbce132 11018 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 11019 else
1bbce132
MR
11020 {
11021 sym->st_value = 0;
11022 sym->st_other = 0;
11023 }
861fb55a 11024 }
1bbce132
MR
11025
11026 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 11027 {
861fb55a 11028 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
11029 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11030 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11031 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 11032 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
11033 bfd_vma isa_bit = micromips_p;
11034 bfd_vma stub_big_size;
11035
833794fc 11036 if (!micromips_p)
1bbce132 11037 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
11038 else if (htab->insn32)
11039 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11040 else
11041 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
11042
11043 /* This symbol has a stub. Set it up. */
11044
11045 BFD_ASSERT (h->dynindx != -1);
11046
1bbce132 11047 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
11048
11049 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
11050 sign extension at runtime in the stub, resulting in a negative
11051 index value. */
11052 if (h->dynindx & ~0x7fffffff)
b34976b6 11053 return FALSE;
b49e97c9
TS
11054
11055 /* Fill the stub. */
1bbce132
MR
11056 if (micromips_p)
11057 {
11058 idx = 0;
11059 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11060 stub + idx);
11061 idx += 4;
833794fc
MR
11062 if (htab->insn32)
11063 {
11064 bfd_put_micromips_32 (output_bfd,
40fc1451 11065 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
11066 idx += 4;
11067 }
11068 else
11069 {
11070 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11071 idx += 2;
11072 }
1bbce132
MR
11073 if (stub_size == stub_big_size)
11074 {
11075 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11076
11077 bfd_put_micromips_32 (output_bfd,
11078 STUB_LUI_MICROMIPS (dynindx_hi),
11079 stub + idx);
11080 idx += 4;
11081 }
833794fc
MR
11082 if (htab->insn32)
11083 {
11084 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11085 stub + idx);
11086 idx += 4;
11087 }
11088 else
11089 {
11090 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11091 idx += 2;
11092 }
1bbce132
MR
11093
11094 /* If a large stub is not required and sign extension is not a
11095 problem, then use legacy code in the stub. */
11096 if (stub_size == stub_big_size)
11097 bfd_put_micromips_32 (output_bfd,
11098 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11099 stub + idx);
11100 else if (h->dynindx & ~0x7fff)
11101 bfd_put_micromips_32 (output_bfd,
11102 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11103 stub + idx);
11104 else
11105 bfd_put_micromips_32 (output_bfd,
11106 STUB_LI16S_MICROMIPS (output_bfd,
11107 h->dynindx),
11108 stub + idx);
11109 }
3d6746ca 11110 else
1bbce132
MR
11111 {
11112 idx = 0;
11113 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11114 idx += 4;
40fc1451 11115 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
11116 idx += 4;
11117 if (stub_size == stub_big_size)
11118 {
11119 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11120 stub + idx);
11121 idx += 4;
11122 }
3734320d
MF
11123
11124 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11125 {
11126 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11127 idx += 4;
11128 }
1bbce132
MR
11129
11130 /* If a large stub is not required and sign extension is not a
11131 problem, then use legacy code in the stub. */
11132 if (stub_size == stub_big_size)
11133 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11134 stub + idx);
11135 else if (h->dynindx & ~0x7fff)
11136 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11137 stub + idx);
11138 else
11139 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11140 stub + idx);
3734320d
MF
11141 idx += 4;
11142
11143 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11144 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
1bbce132 11145 }
5108fc1b 11146
1bbce132
MR
11147 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11148 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11149 stub, stub_size);
b49e97c9 11150
1bbce132 11151 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
11152 only for the referenced symbol. */
11153 sym->st_shndx = SHN_UNDEF;
11154
11155 /* The run-time linker uses the st_value field of the symbol
11156 to reset the global offset table entry for this external
11157 to its stub address when unlinking a shared object. */
4e41d0d7
RS
11158 sym->st_value = (htab->sstubs->output_section->vma
11159 + htab->sstubs->output_offset
1bbce132
MR
11160 + h->plt.plist->stub_offset
11161 + isa_bit);
11162 sym->st_other = other;
b49e97c9
TS
11163 }
11164
738e5348
RS
11165 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11166 refer to the stub, since only the stub uses the standard calling
11167 conventions. */
11168 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11169 {
11170 BFD_ASSERT (hmips->need_fn_stub);
11171 sym->st_value = (hmips->fn_stub->output_section->vma
11172 + hmips->fn_stub->output_offset);
11173 sym->st_size = hmips->fn_stub->size;
11174 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11175 }
11176
b49e97c9 11177 BFD_ASSERT (h->dynindx != -1
f5385ebf 11178 || h->forced_local);
b49e97c9 11179
ce558b89 11180 sgot = htab->root.sgot;
a8028dd0 11181 g = htab->got_info;
b49e97c9
TS
11182 BFD_ASSERT (g != NULL);
11183
11184 /* Run through the global symbol table, creating GOT entries for all
11185 the symbols that need them. */
020d7251 11186 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
11187 {
11188 bfd_vma offset;
11189 bfd_vma value;
11190
6eaa6adc 11191 value = sym->st_value;
13fbec83 11192 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
11193 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11194 }
11195
e641e783 11196 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
11197 {
11198 struct mips_got_entry e, *p;
0626d451 11199 bfd_vma entry;
f4416af6 11200 bfd_vma offset;
f4416af6
AO
11201
11202 gg = g;
11203
11204 e.abfd = output_bfd;
11205 e.symndx = -1;
738e5348 11206 e.d.h = hmips;
9ab066b4 11207 e.tls_type = GOT_TLS_NONE;
143d77c5 11208
f4416af6
AO
11209 for (g = g->next; g->next != gg; g = g->next)
11210 {
11211 if (g->got_entries
11212 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11213 &e)))
11214 {
11215 offset = p->gotidx;
ce558b89 11216 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 11217 if (bfd_link_pic (info)
0626d451
RS
11218 || (elf_hash_table (info)->dynamic_sections_created
11219 && p->d.h != NULL
f5385ebf
AM
11220 && p->d.h->root.def_dynamic
11221 && !p->d.h->root.def_regular))
0626d451
RS
11222 {
11223 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11224 the various compatibility problems, it's easier to mock
11225 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11226 mips_elf_create_dynamic_relocation to calculate the
11227 appropriate addend. */
11228 Elf_Internal_Rela rel[3];
11229
11230 memset (rel, 0, sizeof (rel));
11231 if (ABI_64_P (output_bfd))
11232 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11233 else
11234 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11235 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11236
11237 entry = 0;
11238 if (! (mips_elf_create_dynamic_relocation
11239 (output_bfd, info, rel,
11240 e.d.h, NULL, sym->st_value, &entry, sgot)))
11241 return FALSE;
11242 }
11243 else
11244 entry = sym->st_value;
11245 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
11246 }
11247 }
11248 }
11249
b49e97c9
TS
11250 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11251 name = h->root.root.string;
9637f6ef 11252 if (h == elf_hash_table (info)->hdynamic
22edb2f1 11253 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
11254 sym->st_shndx = SHN_ABS;
11255 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11256 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11257 {
11258 sym->st_shndx = SHN_ABS;
11259 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11260 sym->st_value = 1;
11261 }
b49e97c9
TS
11262 else if (SGI_COMPAT (output_bfd))
11263 {
11264 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11265 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11266 {
11267 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11268 sym->st_other = STO_PROTECTED;
11269 sym->st_value = 0;
11270 sym->st_shndx = SHN_MIPS_DATA;
11271 }
11272 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11273 {
11274 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11275 sym->st_other = STO_PROTECTED;
11276 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11277 sym->st_shndx = SHN_ABS;
11278 }
11279 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11280 {
11281 if (h->type == STT_FUNC)
11282 sym->st_shndx = SHN_MIPS_TEXT;
11283 else if (h->type == STT_OBJECT)
11284 sym->st_shndx = SHN_MIPS_DATA;
11285 }
11286 }
11287
861fb55a
DJ
11288 /* Emit a copy reloc, if needed. */
11289 if (h->needs_copy)
11290 {
11291 asection *s;
11292 bfd_vma symval;
11293
11294 BFD_ASSERT (h->dynindx != -1);
11295 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11296
11297 s = mips_elf_rel_dyn_section (info, FALSE);
11298 symval = (h->root.u.def.section->output_section->vma
11299 + h->root.u.def.section->output_offset
11300 + h->root.u.def.value);
11301 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11302 h->dynindx, R_MIPS_COPY, symval);
11303 }
11304
b49e97c9
TS
11305 /* Handle the IRIX6-specific symbols. */
11306 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11307 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11308
cbf8d970
MR
11309 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11310 to treat compressed symbols like any other. */
30c09090 11311 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11312 {
11313 BFD_ASSERT (sym->st_value & 1);
11314 sym->st_other -= STO_MIPS16;
11315 }
cbf8d970
MR
11316 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11317 {
11318 BFD_ASSERT (sym->st_value & 1);
11319 sym->st_other -= STO_MICROMIPS;
11320 }
b49e97c9 11321
b34976b6 11322 return TRUE;
b49e97c9
TS
11323}
11324
0a44bf69
RS
11325/* Likewise, for VxWorks. */
11326
11327bfd_boolean
11328_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11329 struct bfd_link_info *info,
11330 struct elf_link_hash_entry *h,
11331 Elf_Internal_Sym *sym)
11332{
11333 bfd *dynobj;
11334 asection *sgot;
11335 struct mips_got_info *g;
11336 struct mips_elf_link_hash_table *htab;
020d7251 11337 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11338
11339 htab = mips_elf_hash_table (info);
4dfe6ac6 11340 BFD_ASSERT (htab != NULL);
0a44bf69 11341 dynobj = elf_hash_table (info)->dynobj;
020d7251 11342 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11343
1bbce132 11344 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11345 {
6d79d2ed 11346 bfd_byte *loc;
1bbce132 11347 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11348 Elf_Internal_Rela rel;
11349 static const bfd_vma *plt_entry;
1bbce132
MR
11350 bfd_vma gotplt_index;
11351 bfd_vma plt_offset;
11352
11353 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11354 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11355
11356 BFD_ASSERT (h->dynindx != -1);
ce558b89 11357 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11358 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11359 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11360
11361 /* Calculate the address of the .plt entry. */
ce558b89
AM
11362 plt_address = (htab->root.splt->output_section->vma
11363 + htab->root.splt->output_offset
1bbce132 11364 + plt_offset);
0a44bf69
RS
11365
11366 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11367 got_address = (htab->root.sgotplt->output_section->vma
11368 + htab->root.sgotplt->output_offset
1bbce132 11369 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11370
11371 /* Calculate the offset of the .got.plt entry from
11372 _GLOBAL_OFFSET_TABLE_. */
11373 got_offset = mips_elf_gotplt_index (info, h);
11374
11375 /* Calculate the offset for the branch at the start of the PLT
11376 entry. The branch jumps to the beginning of .plt. */
1bbce132 11377 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11378
11379 /* Fill in the initial value of the .got.plt entry. */
11380 bfd_put_32 (output_bfd, plt_address,
ce558b89 11381 (htab->root.sgotplt->contents
1bbce132 11382 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11383
11384 /* Find out where the .plt entry should go. */
ce558b89 11385 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11386
0e1862bb 11387 if (bfd_link_pic (info))
0a44bf69
RS
11388 {
11389 plt_entry = mips_vxworks_shared_plt_entry;
11390 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11391 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11392 }
11393 else
11394 {
11395 bfd_vma got_address_high, got_address_low;
11396
11397 plt_entry = mips_vxworks_exec_plt_entry;
11398 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11399 got_address_low = got_address & 0xffff;
11400
11401 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11402 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11403 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11404 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11405 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11406 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11407 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11408 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11409
11410 loc = (htab->srelplt2->contents
1bbce132 11411 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11412
11413 /* Emit a relocation for the .got.plt entry. */
11414 rel.r_offset = got_address;
11415 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11416 rel.r_addend = plt_offset;
0a44bf69
RS
11417 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11418
11419 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11420 loc += sizeof (Elf32_External_Rela);
11421 rel.r_offset = plt_address + 8;
11422 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11423 rel.r_addend = got_offset;
11424 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11425
11426 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11427 loc += sizeof (Elf32_External_Rela);
11428 rel.r_offset += 4;
11429 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11430 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11431 }
11432
11433 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11434 loc = (htab->root.srelplt->contents
1bbce132 11435 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11436 rel.r_offset = got_address;
11437 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11438 rel.r_addend = 0;
11439 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11440
11441 if (!h->def_regular)
11442 sym->st_shndx = SHN_UNDEF;
11443 }
11444
11445 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11446
ce558b89 11447 sgot = htab->root.sgot;
a8028dd0 11448 g = htab->got_info;
0a44bf69
RS
11449 BFD_ASSERT (g != NULL);
11450
11451 /* See if this symbol has an entry in the GOT. */
020d7251 11452 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11453 {
11454 bfd_vma offset;
11455 Elf_Internal_Rela outrel;
11456 bfd_byte *loc;
11457 asection *s;
11458
11459 /* Install the symbol value in the GOT. */
13fbec83 11460 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11461 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11462
11463 /* Add a dynamic relocation for it. */
11464 s = mips_elf_rel_dyn_section (info, FALSE);
11465 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11466 outrel.r_offset = (sgot->output_section->vma
11467 + sgot->output_offset
11468 + offset);
11469 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11470 outrel.r_addend = 0;
11471 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11472 }
11473
11474 /* Emit a copy reloc, if needed. */
11475 if (h->needs_copy)
11476 {
11477 Elf_Internal_Rela rel;
5474d94f
AM
11478 asection *srel;
11479 bfd_byte *loc;
0a44bf69
RS
11480
11481 BFD_ASSERT (h->dynindx != -1);
11482
11483 rel.r_offset = (h->root.u.def.section->output_section->vma
11484 + h->root.u.def.section->output_offset
11485 + h->root.u.def.value);
11486 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11487 rel.r_addend = 0;
afbf7e8e 11488 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11489 srel = htab->root.sreldynrelro;
11490 else
11491 srel = htab->root.srelbss;
11492 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11493 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11494 ++srel->reloc_count;
0a44bf69
RS
11495 }
11496
df58fc94
RS
11497 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11498 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11499 sym->st_value &= ~1;
11500
11501 return TRUE;
11502}
11503
861fb55a
DJ
11504/* Write out a plt0 entry to the beginning of .plt. */
11505
1bbce132 11506static bfd_boolean
861fb55a
DJ
11507mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11508{
11509 bfd_byte *loc;
11510 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11511 static const bfd_vma *plt_entry;
11512 struct mips_elf_link_hash_table *htab;
11513
11514 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11515 BFD_ASSERT (htab != NULL);
11516
861fb55a 11517 if (ABI_64_P (output_bfd))
3734320d
MF
11518 plt_entry = (htab->compact_branches
11519 ? mipsr6_n64_exec_plt0_entry_compact
11520 : mips_n64_exec_plt0_entry);
861fb55a 11521 else if (ABI_N32_P (output_bfd))
3734320d
MF
11522 plt_entry = (htab->compact_branches
11523 ? mipsr6_n32_exec_plt0_entry_compact
11524 : mips_n32_exec_plt0_entry);
833794fc 11525 else if (!htab->plt_header_is_comp)
3734320d
MF
11526 plt_entry = (htab->compact_branches
11527 ? mipsr6_o32_exec_plt0_entry_compact
11528 : mips_o32_exec_plt0_entry);
833794fc
MR
11529 else if (htab->insn32)
11530 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11531 else
11532 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11533
11534 /* Calculate the value of .got.plt. */
ce558b89
AM
11535 gotplt_value = (htab->root.sgotplt->output_section->vma
11536 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11537 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11538 gotplt_value_low = gotplt_value & 0xffff;
11539
11540 /* The PLT sequence is not safe for N64 if .got.plt's address can
11541 not be loaded in two instructions. */
789ff5b6
MR
11542 if (ABI_64_P (output_bfd)
11543 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11544 {
11545 _bfd_error_handler
11546 /* xgettext:c-format */
11547 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11548 "supported; consider using `-Ttext-segment=...'"),
11549 output_bfd,
11550 htab->root.sgotplt->output_section,
11551 (int64_t) gotplt_value);
11552 bfd_set_error (bfd_error_no_error);
11553 return FALSE;
11554 }
861fb55a
DJ
11555
11556 /* Install the PLT header. */
ce558b89 11557 loc = htab->root.splt->contents;
1bbce132
MR
11558 if (plt_entry == micromips_o32_exec_plt0_entry)
11559 {
11560 bfd_vma gotpc_offset;
11561 bfd_vma loc_address;
11562 size_t i;
11563
11564 BFD_ASSERT (gotplt_value % 4 == 0);
11565
ce558b89
AM
11566 loc_address = (htab->root.splt->output_section->vma
11567 + htab->root.splt->output_offset);
1bbce132
MR
11568 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11569
11570 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11571 if (gotpc_offset + 0x1000000 >= 0x2000000)
11572 {
4eca0228 11573 _bfd_error_handler
695344c0 11574 /* xgettext:c-format */
2dcf00ce
AM
11575 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11576 "beyond the range of ADDIUPC"),
1bbce132 11577 output_bfd,
ce558b89 11578 htab->root.sgotplt->output_section,
2dcf00ce 11579 (int64_t) gotpc_offset,
c08bb8dd 11580 htab->root.splt->output_section);
1bbce132
MR
11581 bfd_set_error (bfd_error_no_error);
11582 return FALSE;
11583 }
11584 bfd_put_16 (output_bfd,
11585 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11586 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11587 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11588 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11589 }
833794fc
MR
11590 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11591 {
11592 size_t i;
11593
11594 bfd_put_16 (output_bfd, plt_entry[0], loc);
11595 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11596 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11597 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11598 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11599 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11600 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11601 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11602 }
1bbce132
MR
11603 else
11604 {
11605 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11606 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11607 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11608 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11609 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11610 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11611 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11612 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11613 }
11614
11615 return TRUE;
861fb55a
DJ
11616}
11617
0a44bf69
RS
11618/* Install the PLT header for a VxWorks executable and finalize the
11619 contents of .rela.plt.unloaded. */
11620
11621static void
11622mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11623{
11624 Elf_Internal_Rela rela;
11625 bfd_byte *loc;
11626 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11627 static const bfd_vma *plt_entry;
11628 struct mips_elf_link_hash_table *htab;
11629
11630 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11631 BFD_ASSERT (htab != NULL);
11632
0a44bf69
RS
11633 plt_entry = mips_vxworks_exec_plt0_entry;
11634
11635 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11636 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11637 + htab->root.hgot->root.u.def.section->output_offset
11638 + htab->root.hgot->root.u.def.value);
11639
11640 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11641 got_value_low = got_value & 0xffff;
11642
11643 /* Calculate the address of the PLT header. */
ce558b89
AM
11644 plt_address = (htab->root.splt->output_section->vma
11645 + htab->root.splt->output_offset);
0a44bf69
RS
11646
11647 /* Install the PLT header. */
ce558b89 11648 loc = htab->root.splt->contents;
0a44bf69
RS
11649 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11650 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11651 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11652 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11653 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11654 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11655
11656 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11657 loc = htab->srelplt2->contents;
11658 rela.r_offset = plt_address;
11659 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11660 rela.r_addend = 0;
11661 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11662 loc += sizeof (Elf32_External_Rela);
11663
11664 /* Output the relocation for the following addiu of
11665 %lo(_GLOBAL_OFFSET_TABLE_). */
11666 rela.r_offset += 4;
11667 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11668 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11669 loc += sizeof (Elf32_External_Rela);
11670
11671 /* Fix up the remaining relocations. They may have the wrong
11672 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11673 in which symbols were output. */
11674 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11675 {
11676 Elf_Internal_Rela rel;
11677
11678 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11679 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11680 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11681 loc += sizeof (Elf32_External_Rela);
11682
11683 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11684 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11685 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11686 loc += sizeof (Elf32_External_Rela);
11687
11688 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11689 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11690 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11691 loc += sizeof (Elf32_External_Rela);
11692 }
11693}
11694
11695/* Install the PLT header for a VxWorks shared library. */
11696
11697static void
11698mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11699{
11700 unsigned int i;
11701 struct mips_elf_link_hash_table *htab;
11702
11703 htab = mips_elf_hash_table (info);
4dfe6ac6 11704 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11705
11706 /* We just need to copy the entry byte-by-byte. */
11707 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11708 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11709 htab->root.splt->contents + i * 4);
0a44bf69
RS
11710}
11711
b49e97c9
TS
11712/* Finish up the dynamic sections. */
11713
b34976b6 11714bfd_boolean
9719ad41
RS
11715_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11716 struct bfd_link_info *info)
b49e97c9
TS
11717{
11718 bfd *dynobj;
11719 asection *sdyn;
11720 asection *sgot;
f4416af6 11721 struct mips_got_info *gg, *g;
0a44bf69 11722 struct mips_elf_link_hash_table *htab;
b49e97c9 11723
0a44bf69 11724 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11725 BFD_ASSERT (htab != NULL);
11726
b49e97c9
TS
11727 dynobj = elf_hash_table (info)->dynobj;
11728
3d4d4302 11729 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11730
ce558b89 11731 sgot = htab->root.sgot;
23cc69b6 11732 gg = htab->got_info;
b49e97c9
TS
11733
11734 if (elf_hash_table (info)->dynamic_sections_created)
11735 {
11736 bfd_byte *b;
943284cc 11737 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11738
11739 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11740 BFD_ASSERT (gg != NULL);
11741
d7206569 11742 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11743 BFD_ASSERT (g != NULL);
11744
11745 for (b = sdyn->contents;
eea6121a 11746 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11747 b += MIPS_ELF_DYN_SIZE (dynobj))
11748 {
11749 Elf_Internal_Dyn dyn;
11750 const char *name;
11751 size_t elemsize;
11752 asection *s;
b34976b6 11753 bfd_boolean swap_out_p;
b49e97c9
TS
11754
11755 /* Read in the current dynamic entry. */
11756 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11757
11758 /* Assume that we're going to modify it and write it out. */
b34976b6 11759 swap_out_p = TRUE;
b49e97c9
TS
11760
11761 switch (dyn.d_tag)
11762 {
11763 case DT_RELENT:
b49e97c9
TS
11764 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11765 break;
11766
0a44bf69
RS
11767 case DT_RELAENT:
11768 BFD_ASSERT (htab->is_vxworks);
11769 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11770 break;
11771
b49e97c9
TS
11772 case DT_STRSZ:
11773 /* Rewrite DT_STRSZ. */
11774 dyn.d_un.d_val =
11775 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11776 break;
11777
11778 case DT_PLTGOT:
ce558b89 11779 s = htab->root.sgot;
861fb55a
DJ
11780 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11781 break;
11782
11783 case DT_MIPS_PLTGOT:
ce558b89 11784 s = htab->root.sgotplt;
861fb55a 11785 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11786 break;
11787
11788 case DT_MIPS_RLD_VERSION:
11789 dyn.d_un.d_val = 1; /* XXX */
11790 break;
11791
11792 case DT_MIPS_FLAGS:
11793 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11794 break;
11795
b49e97c9 11796 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11797 {
11798 time_t t;
11799 time (&t);
11800 dyn.d_un.d_val = t;
11801 }
b49e97c9
TS
11802 break;
11803
11804 case DT_MIPS_ICHECKSUM:
11805 /* XXX FIXME: */
b34976b6 11806 swap_out_p = FALSE;
b49e97c9
TS
11807 break;
11808
11809 case DT_MIPS_IVERSION:
11810 /* XXX FIXME: */
b34976b6 11811 swap_out_p = FALSE;
b49e97c9
TS
11812 break;
11813
11814 case DT_MIPS_BASE_ADDRESS:
11815 s = output_bfd->sections;
11816 BFD_ASSERT (s != NULL);
11817 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11818 break;
11819
11820 case DT_MIPS_LOCAL_GOTNO:
11821 dyn.d_un.d_val = g->local_gotno;
11822 break;
11823
11824 case DT_MIPS_UNREFEXTNO:
11825 /* The index into the dynamic symbol table which is the
11826 entry of the first external symbol that is not
11827 referenced within the same object. */
11828 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11829 break;
11830
11831 case DT_MIPS_GOTSYM:
d222d210 11832 if (htab->global_gotsym)
b49e97c9 11833 {
d222d210 11834 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11835 break;
11836 }
11837 /* In case if we don't have global got symbols we default
11838 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11839 DT_MIPS_SYMTABNO. */
11840 /* Fall through. */
b49e97c9
TS
11841
11842 case DT_MIPS_SYMTABNO:
11843 name = ".dynsym";
11844 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11845 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11846
131e2f8e
MF
11847 if (s != NULL)
11848 dyn.d_un.d_val = s->size / elemsize;
11849 else
11850 dyn.d_un.d_val = 0;
b49e97c9
TS
11851 break;
11852
11853 case DT_MIPS_HIPAGENO:
861fb55a 11854 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11855 break;
11856
11857 case DT_MIPS_RLD_MAP:
b4082c70
DD
11858 {
11859 struct elf_link_hash_entry *h;
11860 h = mips_elf_hash_table (info)->rld_symbol;
11861 if (!h)
11862 {
11863 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11864 swap_out_p = FALSE;
11865 break;
11866 }
11867 s = h->root.u.def.section;
a5499fa4
MF
11868
11869 /* The MIPS_RLD_MAP tag stores the absolute address of the
11870 debug pointer. */
b4082c70
DD
11871 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11872 + h->root.u.def.value);
11873 }
b49e97c9
TS
11874 break;
11875
a5499fa4
MF
11876 case DT_MIPS_RLD_MAP_REL:
11877 {
11878 struct elf_link_hash_entry *h;
11879 bfd_vma dt_addr, rld_addr;
11880 h = mips_elf_hash_table (info)->rld_symbol;
11881 if (!h)
11882 {
11883 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11884 swap_out_p = FALSE;
11885 break;
11886 }
11887 s = h->root.u.def.section;
11888
11889 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11890 pointer, relative to the address of the tag. */
11891 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11892 + (b - sdyn->contents));
a5499fa4
MF
11893 rld_addr = (s->output_section->vma + s->output_offset
11894 + h->root.u.def.value);
11895 dyn.d_un.d_ptr = rld_addr - dt_addr;
11896 }
11897 break;
11898
b49e97c9
TS
11899 case DT_MIPS_OPTIONS:
11900 s = (bfd_get_section_by_name
11901 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11902 dyn.d_un.d_ptr = s->vma;
11903 break;
11904
0a44bf69 11905 case DT_PLTREL:
861fb55a
DJ
11906 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11907 if (htab->is_vxworks)
11908 dyn.d_un.d_val = DT_RELA;
11909 else
11910 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11911 break;
11912
11913 case DT_PLTRELSZ:
861fb55a 11914 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11915 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11916 break;
11917
11918 case DT_JMPREL:
861fb55a 11919 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11920 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11921 + htab->root.srelplt->output_offset);
0a44bf69
RS
11922 break;
11923
943284cc
DJ
11924 case DT_TEXTREL:
11925 /* If we didn't need any text relocations after all, delete
11926 the dynamic tag. */
11927 if (!(info->flags & DF_TEXTREL))
11928 {
11929 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11930 swap_out_p = FALSE;
11931 }
11932 break;
11933
11934 case DT_FLAGS:
11935 /* If we didn't need any text relocations after all, clear
11936 DF_TEXTREL from DT_FLAGS. */
11937 if (!(info->flags & DF_TEXTREL))
11938 dyn.d_un.d_val &= ~DF_TEXTREL;
11939 else
11940 swap_out_p = FALSE;
11941 break;
11942
b49e97c9 11943 default:
b34976b6 11944 swap_out_p = FALSE;
7a2b07ff
NS
11945 if (htab->is_vxworks
11946 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11947 swap_out_p = TRUE;
b49e97c9
TS
11948 break;
11949 }
11950
943284cc 11951 if (swap_out_p || dyn_skipped)
b49e97c9 11952 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11953 (dynobj, &dyn, b - dyn_skipped);
11954
11955 if (dyn_to_skip)
11956 {
11957 dyn_skipped += dyn_to_skip;
11958 dyn_to_skip = 0;
11959 }
b49e97c9 11960 }
943284cc
DJ
11961
11962 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11963 if (dyn_skipped > 0)
11964 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11965 }
11966
b55fd4d4
DJ
11967 if (sgot != NULL && sgot->size > 0
11968 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11969 {
0a44bf69
RS
11970 if (htab->is_vxworks)
11971 {
11972 /* The first entry of the global offset table points to the
11973 ".dynamic" section. The second is initialized by the
11974 loader and contains the shared library identifier.
11975 The third is also initialized by the loader and points
11976 to the lazy resolution stub. */
11977 MIPS_ELF_PUT_WORD (output_bfd,
11978 sdyn->output_offset + sdyn->output_section->vma,
11979 sgot->contents);
11980 MIPS_ELF_PUT_WORD (output_bfd, 0,
11981 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11982 MIPS_ELF_PUT_WORD (output_bfd, 0,
11983 sgot->contents
11984 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11985 }
11986 else
11987 {
11988 /* The first entry of the global offset table will be filled at
11989 runtime. The second entry will be used by some runtime loaders.
11990 This isn't the case of IRIX rld. */
11991 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11992 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11993 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11994 }
b49e97c9 11995
54938e2a
TS
11996 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11997 = MIPS_ELF_GOT_SIZE (output_bfd);
11998 }
b49e97c9 11999
f4416af6
AO
12000 /* Generate dynamic relocations for the non-primary gots. */
12001 if (gg != NULL && gg->next)
12002 {
12003 Elf_Internal_Rela rel[3];
12004 bfd_vma addend = 0;
12005
12006 memset (rel, 0, sizeof (rel));
12007 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12008
12009 for (g = gg->next; g->next != gg; g = g->next)
12010 {
91d6fa6a 12011 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 12012 + g->next->tls_gotno;
f4416af6 12013
9719ad41 12014 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 12015 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
12016 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12017 sgot->contents
91d6fa6a 12018 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 12019
0e1862bb 12020 if (! bfd_link_pic (info))
f4416af6
AO
12021 continue;
12022
cb22ccf4 12023 for (; got_index < g->local_gotno; got_index++)
f4416af6 12024 {
cb22ccf4
KCY
12025 if (got_index >= g->assigned_low_gotno
12026 && got_index <= g->assigned_high_gotno)
12027 continue;
12028
f4416af6 12029 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 12030 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
12031 if (!(mips_elf_create_dynamic_relocation
12032 (output_bfd, info, rel, NULL,
12033 bfd_abs_section_ptr,
12034 0, &addend, sgot)))
12035 return FALSE;
12036 BFD_ASSERT (addend == 0);
12037 }
12038 }
12039 }
12040
3133ddbf
DJ
12041 /* The generation of dynamic relocations for the non-primary gots
12042 adds more dynamic relocations. We cannot count them until
12043 here. */
12044
12045 if (elf_hash_table (info)->dynamic_sections_created)
12046 {
12047 bfd_byte *b;
12048 bfd_boolean swap_out_p;
12049
12050 BFD_ASSERT (sdyn != NULL);
12051
12052 for (b = sdyn->contents;
12053 b < sdyn->contents + sdyn->size;
12054 b += MIPS_ELF_DYN_SIZE (dynobj))
12055 {
12056 Elf_Internal_Dyn dyn;
12057 asection *s;
12058
12059 /* Read in the current dynamic entry. */
12060 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12061
12062 /* Assume that we're going to modify it and write it out. */
12063 swap_out_p = TRUE;
12064
12065 switch (dyn.d_tag)
12066 {
12067 case DT_RELSZ:
12068 /* Reduce DT_RELSZ to account for any relocations we
12069 decided not to make. This is for the n64 irix rld,
12070 which doesn't seem to apply any relocations if there
12071 are trailing null entries. */
0a44bf69 12072 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
12073 dyn.d_un.d_val = (s->reloc_count
12074 * (ABI_64_P (output_bfd)
12075 ? sizeof (Elf64_Mips_External_Rel)
12076 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
12077 /* Adjust the section size too. Tools like the prelinker
12078 can reasonably expect the values to the same. */
db841b6f 12079 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
bcfdf036
RS
12080 elf_section_data (s->output_section)->this_hdr.sh_size
12081 = dyn.d_un.d_val;
3133ddbf
DJ
12082 break;
12083
12084 default:
12085 swap_out_p = FALSE;
12086 break;
12087 }
12088
12089 if (swap_out_p)
12090 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12091 (dynobj, &dyn, b);
12092 }
12093 }
12094
b49e97c9 12095 {
b49e97c9
TS
12096 asection *s;
12097 Elf32_compact_rel cpt;
12098
b49e97c9
TS
12099 if (SGI_COMPAT (output_bfd))
12100 {
12101 /* Write .compact_rel section out. */
3d4d4302 12102 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
12103 if (s != NULL)
12104 {
12105 cpt.id1 = 1;
12106 cpt.num = s->reloc_count;
12107 cpt.id2 = 2;
12108 cpt.offset = (s->output_section->filepos
12109 + sizeof (Elf32_External_compact_rel));
12110 cpt.reserved0 = 0;
12111 cpt.reserved1 = 0;
12112 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12113 ((Elf32_External_compact_rel *)
12114 s->contents));
12115
12116 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 12117 if (htab->sstubs != NULL)
b49e97c9
TS
12118 {
12119 file_ptr dummy_offset;
12120
4e41d0d7
RS
12121 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12122 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12123 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 12124 htab->function_stub_size);
b49e97c9
TS
12125 }
12126 }
12127 }
12128
0a44bf69
RS
12129 /* The psABI says that the dynamic relocations must be sorted in
12130 increasing order of r_symndx. The VxWorks EABI doesn't require
12131 this, and because the code below handles REL rather than RELA
12132 relocations, using it for VxWorks would be outright harmful. */
12133 if (!htab->is_vxworks)
b49e97c9 12134 {
0a44bf69
RS
12135 s = mips_elf_rel_dyn_section (info, FALSE);
12136 if (s != NULL
12137 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12138 {
12139 reldyn_sorting_bfd = output_bfd;
b49e97c9 12140
0a44bf69
RS
12141 if (ABI_64_P (output_bfd))
12142 qsort ((Elf64_External_Rel *) s->contents + 1,
12143 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12144 sort_dynamic_relocs_64);
12145 else
12146 qsort ((Elf32_External_Rel *) s->contents + 1,
12147 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12148 sort_dynamic_relocs);
12149 }
b49e97c9 12150 }
b49e97c9
TS
12151 }
12152
ce558b89 12153 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 12154 {
861fb55a
DJ
12155 if (htab->is_vxworks)
12156 {
0e1862bb 12157 if (bfd_link_pic (info))
861fb55a
DJ
12158 mips_vxworks_finish_shared_plt (output_bfd, info);
12159 else
12160 mips_vxworks_finish_exec_plt (output_bfd, info);
12161 }
0a44bf69 12162 else
861fb55a 12163 {
0e1862bb 12164 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
12165 if (!mips_finish_exec_plt (output_bfd, info))
12166 return FALSE;
861fb55a 12167 }
0a44bf69 12168 }
b34976b6 12169 return TRUE;
b49e97c9
TS
12170}
12171
b49e97c9 12172
64543e1a
RS
12173/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12174
12175static void
9719ad41 12176mips_set_isa_flags (bfd *abfd)
b49e97c9 12177{
64543e1a 12178 flagword val;
b49e97c9
TS
12179
12180 switch (bfd_get_mach (abfd))
12181 {
12182 default:
12183 case bfd_mach_mips3000:
12184 val = E_MIPS_ARCH_1;
12185 break;
12186
12187 case bfd_mach_mips3900:
12188 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12189 break;
12190
12191 case bfd_mach_mips6000:
12192 val = E_MIPS_ARCH_2;
12193 break;
12194
b417536f
MR
12195 case bfd_mach_mips4010:
12196 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12197 break;
12198
b49e97c9
TS
12199 case bfd_mach_mips4000:
12200 case bfd_mach_mips4300:
12201 case bfd_mach_mips4400:
12202 case bfd_mach_mips4600:
12203 val = E_MIPS_ARCH_3;
12204 break;
12205
b49e97c9
TS
12206 case bfd_mach_mips4100:
12207 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12208 break;
12209
12210 case bfd_mach_mips4111:
12211 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12212 break;
12213
00707a0e
RS
12214 case bfd_mach_mips4120:
12215 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12216 break;
12217
b49e97c9
TS
12218 case bfd_mach_mips4650:
12219 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12220 break;
12221
00707a0e
RS
12222 case bfd_mach_mips5400:
12223 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12224 break;
12225
12226 case bfd_mach_mips5500:
12227 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12228 break;
12229
e407c74b
NC
12230 case bfd_mach_mips5900:
12231 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12232 break;
12233
0d2e43ed
ILT
12234 case bfd_mach_mips9000:
12235 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12236 break;
12237
b49e97c9 12238 case bfd_mach_mips5000:
5a7ea749 12239 case bfd_mach_mips7000:
b49e97c9
TS
12240 case bfd_mach_mips8000:
12241 case bfd_mach_mips10000:
12242 case bfd_mach_mips12000:
3aa3176b
TS
12243 case bfd_mach_mips14000:
12244 case bfd_mach_mips16000:
b49e97c9
TS
12245 val = E_MIPS_ARCH_4;
12246 break;
12247
12248 case bfd_mach_mips5:
12249 val = E_MIPS_ARCH_5;
12250 break;
12251
350cc38d
MS
12252 case bfd_mach_mips_loongson_2e:
12253 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12254 break;
12255
12256 case bfd_mach_mips_loongson_2f:
12257 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12258 break;
12259
b49e97c9
TS
12260 case bfd_mach_mips_sb1:
12261 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12262 break;
12263
ac8cb70f
CX
12264 case bfd_mach_mips_gs464:
12265 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
d051516a
NC
12266 break;
12267
bd782c07
CX
12268 case bfd_mach_mips_gs464e:
12269 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12270 break;
12271
9108bc33
CX
12272 case bfd_mach_mips_gs264e:
12273 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12274 break;
12275
6f179bd0 12276 case bfd_mach_mips_octeon:
dd6a37e7 12277 case bfd_mach_mips_octeonp:
6f179bd0
AN
12278 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12279 break;
12280
2c629856
N
12281 case bfd_mach_mips_octeon3:
12282 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12283 break;
12284
52b6b6b9
JM
12285 case bfd_mach_mips_xlr:
12286 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12287 break;
12288
432233b3
AP
12289 case bfd_mach_mips_octeon2:
12290 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12291 break;
12292
b49e97c9
TS
12293 case bfd_mach_mipsisa32:
12294 val = E_MIPS_ARCH_32;
12295 break;
12296
12297 case bfd_mach_mipsisa64:
12298 val = E_MIPS_ARCH_64;
af7ee8bf
CD
12299 break;
12300
12301 case bfd_mach_mipsisa32r2:
ae52f483
AB
12302 case bfd_mach_mipsisa32r3:
12303 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
12304 val = E_MIPS_ARCH_32R2;
12305 break;
5f74bc13 12306
38bf472a
MR
12307 case bfd_mach_mips_interaptiv_mr2:
12308 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12309 break;
12310
5f74bc13 12311 case bfd_mach_mipsisa64r2:
ae52f483
AB
12312 case bfd_mach_mipsisa64r3:
12313 case bfd_mach_mipsisa64r5:
5f74bc13
CD
12314 val = E_MIPS_ARCH_64R2;
12315 break;
7361da2c
AB
12316
12317 case bfd_mach_mipsisa32r6:
12318 val = E_MIPS_ARCH_32R6;
12319 break;
12320
12321 case bfd_mach_mipsisa64r6:
12322 val = E_MIPS_ARCH_64R6;
12323 break;
b49e97c9 12324 }
b49e97c9
TS
12325 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12326 elf_elfheader (abfd)->e_flags |= val;
12327
64543e1a
RS
12328}
12329
12330
28dbcedc
AM
12331/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12332 Don't do so for code sections. We want to keep ordering of HI16/LO16
12333 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12334 relocs to be sorted. */
12335
12336bfd_boolean
12337_bfd_mips_elf_sort_relocs_p (asection *sec)
12338{
12339 return (sec->flags & SEC_CODE) == 0;
12340}
12341
12342
64543e1a
RS
12343/* The final processing done just before writing out a MIPS ELF object
12344 file. This gets the MIPS architecture right based on the machine
12345 number. This is used by both the 32-bit and the 64-bit ABI. */
12346
12347void
9719ad41
RS
12348_bfd_mips_elf_final_write_processing (bfd *abfd,
12349 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12350{
12351 unsigned int i;
12352 Elf_Internal_Shdr **hdrpp;
12353 const char *name;
12354 asection *sec;
12355
12356 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12357 is nonzero. This is for compatibility with old objects, which used
12358 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12359 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12360 mips_set_isa_flags (abfd);
12361
b49e97c9
TS
12362 /* Set the sh_info field for .gptab sections and other appropriate
12363 info for each special section. */
12364 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12365 i < elf_numsections (abfd);
12366 i++, hdrpp++)
12367 {
12368 switch ((*hdrpp)->sh_type)
12369 {
12370 case SHT_MIPS_MSYM:
12371 case SHT_MIPS_LIBLIST:
12372 sec = bfd_get_section_by_name (abfd, ".dynstr");
12373 if (sec != NULL)
12374 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12375 break;
12376
12377 case SHT_MIPS_GPTAB:
12378 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12379 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12380 BFD_ASSERT (name != NULL
0112cd26 12381 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12382 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12383 BFD_ASSERT (sec != NULL);
12384 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12385 break;
12386
12387 case SHT_MIPS_CONTENT:
12388 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12389 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12390 BFD_ASSERT (name != NULL
0112cd26 12391 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12392 sec = bfd_get_section_by_name (abfd,
12393 name + sizeof ".MIPS.content" - 1);
12394 BFD_ASSERT (sec != NULL);
12395 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12396 break;
12397
12398 case SHT_MIPS_SYMBOL_LIB:
12399 sec = bfd_get_section_by_name (abfd, ".dynsym");
12400 if (sec != NULL)
12401 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12402 sec = bfd_get_section_by_name (abfd, ".liblist");
12403 if (sec != NULL)
12404 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12405 break;
12406
12407 case SHT_MIPS_EVENTS:
12408 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12409 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12410 BFD_ASSERT (name != NULL);
0112cd26 12411 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12412 sec = bfd_get_section_by_name (abfd,
12413 name + sizeof ".MIPS.events" - 1);
12414 else
12415 {
0112cd26 12416 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12417 sec = bfd_get_section_by_name (abfd,
12418 (name
12419 + sizeof ".MIPS.post_rel" - 1));
12420 }
12421 BFD_ASSERT (sec != NULL);
12422 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12423 break;
12424
12425 }
12426 }
12427}
12428\f
8dc1a139 12429/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12430 segments. */
12431
12432int
a6b96beb
AM
12433_bfd_mips_elf_additional_program_headers (bfd *abfd,
12434 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12435{
12436 asection *s;
12437 int ret = 0;
12438
12439 /* See if we need a PT_MIPS_REGINFO segment. */
12440 s = bfd_get_section_by_name (abfd, ".reginfo");
12441 if (s && (s->flags & SEC_LOAD))
12442 ++ret;
12443
351cdf24
MF
12444 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12445 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12446 ++ret;
12447
b49e97c9
TS
12448 /* See if we need a PT_MIPS_OPTIONS segment. */
12449 if (IRIX_COMPAT (abfd) == ict_irix6
12450 && bfd_get_section_by_name (abfd,
12451 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12452 ++ret;
12453
12454 /* See if we need a PT_MIPS_RTPROC segment. */
12455 if (IRIX_COMPAT (abfd) == ict_irix5
12456 && bfd_get_section_by_name (abfd, ".dynamic")
12457 && bfd_get_section_by_name (abfd, ".mdebug"))
12458 ++ret;
12459
98c904a8
RS
12460 /* Allocate a PT_NULL header in dynamic objects. See
12461 _bfd_mips_elf_modify_segment_map for details. */
12462 if (!SGI_COMPAT (abfd)
12463 && bfd_get_section_by_name (abfd, ".dynamic"))
12464 ++ret;
12465
b49e97c9
TS
12466 return ret;
12467}
12468
8dc1a139 12469/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12470
b34976b6 12471bfd_boolean
9719ad41 12472_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12473 struct bfd_link_info *info)
b49e97c9
TS
12474{
12475 asection *s;
12476 struct elf_segment_map *m, **pm;
12477 bfd_size_type amt;
12478
12479 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12480 segment. */
12481 s = bfd_get_section_by_name (abfd, ".reginfo");
12482 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12483 {
12bd6957 12484 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12485 if (m->p_type == PT_MIPS_REGINFO)
12486 break;
12487 if (m == NULL)
12488 {
12489 amt = sizeof *m;
9719ad41 12490 m = bfd_zalloc (abfd, amt);
b49e97c9 12491 if (m == NULL)
b34976b6 12492 return FALSE;
b49e97c9
TS
12493
12494 m->p_type = PT_MIPS_REGINFO;
12495 m->count = 1;
12496 m->sections[0] = s;
12497
12498 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12499 pm = &elf_seg_map (abfd);
b49e97c9
TS
12500 while (*pm != NULL
12501 && ((*pm)->p_type == PT_PHDR
12502 || (*pm)->p_type == PT_INTERP))
12503 pm = &(*pm)->next;
12504
12505 m->next = *pm;
12506 *pm = m;
12507 }
12508 }
12509
351cdf24
MF
12510 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12511 segment. */
12512 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12513 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12514 {
12515 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12516 if (m->p_type == PT_MIPS_ABIFLAGS)
12517 break;
12518 if (m == NULL)
12519 {
12520 amt = sizeof *m;
12521 m = bfd_zalloc (abfd, amt);
12522 if (m == NULL)
12523 return FALSE;
12524
12525 m->p_type = PT_MIPS_ABIFLAGS;
12526 m->count = 1;
12527 m->sections[0] = s;
12528
12529 /* We want to put it after the PHDR and INTERP segments. */
12530 pm = &elf_seg_map (abfd);
12531 while (*pm != NULL
12532 && ((*pm)->p_type == PT_PHDR
12533 || (*pm)->p_type == PT_INTERP))
12534 pm = &(*pm)->next;
12535
12536 m->next = *pm;
12537 *pm = m;
12538 }
12539 }
12540
b49e97c9
TS
12541 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12542 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12543 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12544 table. */
c1fd6598
AO
12545 if (NEWABI_P (abfd)
12546 /* On non-IRIX6 new abi, we'll have already created a segment
12547 for this section, so don't create another. I'm not sure this
12548 is not also the case for IRIX 6, but I can't test it right
12549 now. */
12550 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12551 {
12552 for (s = abfd->sections; s; s = s->next)
12553 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12554 break;
12555
12556 if (s)
12557 {
12558 struct elf_segment_map *options_segment;
12559
12bd6957 12560 pm = &elf_seg_map (abfd);
98a8deaf
RS
12561 while (*pm != NULL
12562 && ((*pm)->p_type == PT_PHDR
12563 || (*pm)->p_type == PT_INTERP))
12564 pm = &(*pm)->next;
b49e97c9 12565
8ded5a0f
AM
12566 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12567 {
12568 amt = sizeof (struct elf_segment_map);
12569 options_segment = bfd_zalloc (abfd, amt);
12570 options_segment->next = *pm;
12571 options_segment->p_type = PT_MIPS_OPTIONS;
12572 options_segment->p_flags = PF_R;
12573 options_segment->p_flags_valid = TRUE;
12574 options_segment->count = 1;
12575 options_segment->sections[0] = s;
12576 *pm = options_segment;
12577 }
b49e97c9
TS
12578 }
12579 }
12580 else
12581 {
12582 if (IRIX_COMPAT (abfd) == ict_irix5)
12583 {
12584 /* If there are .dynamic and .mdebug sections, we make a room
12585 for the RTPROC header. FIXME: Rewrite without section names. */
12586 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12587 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12588 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12589 {
12bd6957 12590 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12591 if (m->p_type == PT_MIPS_RTPROC)
12592 break;
12593 if (m == NULL)
12594 {
12595 amt = sizeof *m;
9719ad41 12596 m = bfd_zalloc (abfd, amt);
b49e97c9 12597 if (m == NULL)
b34976b6 12598 return FALSE;
b49e97c9
TS
12599
12600 m->p_type = PT_MIPS_RTPROC;
12601
12602 s = bfd_get_section_by_name (abfd, ".rtproc");
12603 if (s == NULL)
12604 {
12605 m->count = 0;
12606 m->p_flags = 0;
12607 m->p_flags_valid = 1;
12608 }
12609 else
12610 {
12611 m->count = 1;
12612 m->sections[0] = s;
12613 }
12614
12615 /* We want to put it after the DYNAMIC segment. */
12bd6957 12616 pm = &elf_seg_map (abfd);
b49e97c9
TS
12617 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12618 pm = &(*pm)->next;
12619 if (*pm != NULL)
12620 pm = &(*pm)->next;
12621
12622 m->next = *pm;
12623 *pm = m;
12624 }
12625 }
12626 }
8dc1a139 12627 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12628 .dynstr, .dynsym, and .hash sections, and everything in
12629 between. */
12bd6957 12630 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12631 pm = &(*pm)->next)
12632 if ((*pm)->p_type == PT_DYNAMIC)
12633 break;
12634 m = *pm;
f6f62d6f
RS
12635 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12636 glibc's dynamic linker has traditionally derived the number of
12637 tags from the p_filesz field, and sometimes allocates stack
12638 arrays of that size. An overly-big PT_DYNAMIC segment can
12639 be actively harmful in such cases. Making PT_DYNAMIC contain
12640 other sections can also make life hard for the prelinker,
12641 which might move one of the other sections to a different
12642 PT_LOAD segment. */
12643 if (SGI_COMPAT (abfd)
12644 && m != NULL
12645 && m->count == 1
12646 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12647 {
12648 static const char *sec_names[] =
12649 {
12650 ".dynamic", ".dynstr", ".dynsym", ".hash"
12651 };
12652 bfd_vma low, high;
12653 unsigned int i, c;
12654 struct elf_segment_map *n;
12655
792b4a53 12656 low = ~(bfd_vma) 0;
b49e97c9
TS
12657 high = 0;
12658 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12659 {
12660 s = bfd_get_section_by_name (abfd, sec_names[i]);
12661 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12662 {
12663 bfd_size_type sz;
12664
12665 if (low > s->vma)
12666 low = s->vma;
eea6121a 12667 sz = s->size;
b49e97c9
TS
12668 if (high < s->vma + sz)
12669 high = s->vma + sz;
12670 }
12671 }
12672
12673 c = 0;
12674 for (s = abfd->sections; s != NULL; s = s->next)
12675 if ((s->flags & SEC_LOAD) != 0
12676 && s->vma >= low
eea6121a 12677 && s->vma + s->size <= high)
b49e97c9
TS
12678 ++c;
12679
12680 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12681 n = bfd_zalloc (abfd, amt);
b49e97c9 12682 if (n == NULL)
b34976b6 12683 return FALSE;
b49e97c9
TS
12684 *n = *m;
12685 n->count = c;
12686
12687 i = 0;
12688 for (s = abfd->sections; s != NULL; s = s->next)
12689 {
12690 if ((s->flags & SEC_LOAD) != 0
12691 && s->vma >= low
eea6121a 12692 && s->vma + s->size <= high)
b49e97c9
TS
12693 {
12694 n->sections[i] = s;
12695 ++i;
12696 }
12697 }
12698
12699 *pm = n;
12700 }
12701 }
12702
98c904a8
RS
12703 /* Allocate a spare program header in dynamic objects so that tools
12704 like the prelinker can add an extra PT_LOAD entry.
12705
12706 If the prelinker needs to make room for a new PT_LOAD entry, its
12707 standard procedure is to move the first (read-only) sections into
12708 the new (writable) segment. However, the MIPS ABI requires
12709 .dynamic to be in a read-only segment, and the section will often
12710 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12711
12712 Although the prelinker could in principle move .dynamic to a
12713 writable segment, it seems better to allocate a spare program
12714 header instead, and avoid the need to move any sections.
12715 There is a long tradition of allocating spare dynamic tags,
12716 so allocating a spare program header seems like a natural
7c8b76cc
JM
12717 extension.
12718
12719 If INFO is NULL, we may be copying an already prelinked binary
12720 with objcopy or strip, so do not add this header. */
12721 if (info != NULL
12722 && !SGI_COMPAT (abfd)
98c904a8
RS
12723 && bfd_get_section_by_name (abfd, ".dynamic"))
12724 {
12bd6957 12725 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12726 if ((*pm)->p_type == PT_NULL)
12727 break;
12728 if (*pm == NULL)
12729 {
12730 m = bfd_zalloc (abfd, sizeof (*m));
12731 if (m == NULL)
12732 return FALSE;
12733
12734 m->p_type = PT_NULL;
12735 *pm = m;
12736 }
12737 }
12738
b34976b6 12739 return TRUE;
b49e97c9
TS
12740}
12741\f
12742/* Return the section that should be marked against GC for a given
12743 relocation. */
12744
12745asection *
9719ad41 12746_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12747 struct bfd_link_info *info,
9719ad41
RS
12748 Elf_Internal_Rela *rel,
12749 struct elf_link_hash_entry *h,
12750 Elf_Internal_Sym *sym)
b49e97c9
TS
12751{
12752 /* ??? Do mips16 stub sections need to be handled special? */
12753
12754 if (h != NULL)
07adf181
AM
12755 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12756 {
12757 case R_MIPS_GNU_VTINHERIT:
12758 case R_MIPS_GNU_VTENTRY:
12759 return NULL;
12760 }
b49e97c9 12761
07adf181 12762 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12763}
12764
351cdf24
MF
12765/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12766
12767bfd_boolean
12768_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12769 elf_gc_mark_hook_fn gc_mark_hook)
12770{
12771 bfd *sub;
12772
12773 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12774
12775 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12776 {
12777 asection *o;
12778
12779 if (! is_mips_elf (sub))
12780 continue;
12781
12782 for (o = sub->sections; o != NULL; o = o->next)
12783 if (!o->gc_mark
12784 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12785 (bfd_get_section_name (sub, o)))
12786 {
12787 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12788 return FALSE;
12789 }
12790 }
12791
12792 return TRUE;
12793}
b49e97c9
TS
12794\f
12795/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12796 hiding the old indirect symbol. Process additional relocation
12797 information. Also called for weakdefs, in which case we just let
12798 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12799
12800void
fcfa13d2 12801_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12802 struct elf_link_hash_entry *dir,
12803 struct elf_link_hash_entry *ind)
b49e97c9
TS
12804{
12805 struct mips_elf_link_hash_entry *dirmips, *indmips;
12806
fcfa13d2 12807 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12808
861fb55a
DJ
12809 dirmips = (struct mips_elf_link_hash_entry *) dir;
12810 indmips = (struct mips_elf_link_hash_entry *) ind;
12811 /* Any absolute non-dynamic relocations against an indirect or weak
12812 definition will be against the target symbol. */
12813 if (indmips->has_static_relocs)
12814 dirmips->has_static_relocs = TRUE;
12815
b49e97c9
TS
12816 if (ind->root.type != bfd_link_hash_indirect)
12817 return;
12818
b49e97c9
TS
12819 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12820 if (indmips->readonly_reloc)
b34976b6 12821 dirmips->readonly_reloc = TRUE;
b49e97c9 12822 if (indmips->no_fn_stub)
b34976b6 12823 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12824 if (indmips->fn_stub)
12825 {
12826 dirmips->fn_stub = indmips->fn_stub;
12827 indmips->fn_stub = NULL;
12828 }
12829 if (indmips->need_fn_stub)
12830 {
12831 dirmips->need_fn_stub = TRUE;
12832 indmips->need_fn_stub = FALSE;
12833 }
12834 if (indmips->call_stub)
12835 {
12836 dirmips->call_stub = indmips->call_stub;
12837 indmips->call_stub = NULL;
12838 }
12839 if (indmips->call_fp_stub)
12840 {
12841 dirmips->call_fp_stub = indmips->call_fp_stub;
12842 indmips->call_fp_stub = NULL;
12843 }
634835ae
RS
12844 if (indmips->global_got_area < dirmips->global_got_area)
12845 dirmips->global_got_area = indmips->global_got_area;
12846 if (indmips->global_got_area < GGA_NONE)
12847 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12848 if (indmips->has_nonpic_branches)
12849 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12850}
47275900
MR
12851
12852/* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12853 to hide it. It has to remain global (it will also be protected) so as to
12854 be assigned a global GOT entry, which will then remain unchanged at load
12855 time. */
12856
12857void
12858_bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12859 struct elf_link_hash_entry *entry,
12860 bfd_boolean force_local)
12861{
12862 struct mips_elf_link_hash_table *htab;
12863
12864 htab = mips_elf_hash_table (info);
12865 BFD_ASSERT (htab != NULL);
12866 if (htab->use_absolute_zero
12867 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12868 return;
12869
12870 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12871}
b49e97c9 12872\f
d01414a5
TS
12873#define PDR_SIZE 32
12874
b34976b6 12875bfd_boolean
9719ad41
RS
12876_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12877 struct bfd_link_info *info)
d01414a5
TS
12878{
12879 asection *o;
b34976b6 12880 bfd_boolean ret = FALSE;
d01414a5
TS
12881 unsigned char *tdata;
12882 size_t i, skip;
12883
12884 o = bfd_get_section_by_name (abfd, ".pdr");
12885 if (! o)
b34976b6 12886 return FALSE;
eea6121a 12887 if (o->size == 0)
b34976b6 12888 return FALSE;
eea6121a 12889 if (o->size % PDR_SIZE != 0)
b34976b6 12890 return FALSE;
d01414a5
TS
12891 if (o->output_section != NULL
12892 && bfd_is_abs_section (o->output_section))
b34976b6 12893 return FALSE;
d01414a5 12894
eea6121a 12895 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12896 if (! tdata)
b34976b6 12897 return FALSE;
d01414a5 12898
9719ad41 12899 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12900 info->keep_memory);
d01414a5
TS
12901 if (!cookie->rels)
12902 {
12903 free (tdata);
b34976b6 12904 return FALSE;
d01414a5
TS
12905 }
12906
12907 cookie->rel = cookie->rels;
12908 cookie->relend = cookie->rels + o->reloc_count;
12909
eea6121a 12910 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12911 {
c152c796 12912 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12913 {
12914 tdata[i] = 1;
12915 skip ++;
12916 }
12917 }
12918
12919 if (skip != 0)
12920 {
f0abc2a1 12921 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12922 if (o->rawsize == 0)
12923 o->rawsize = o->size;
eea6121a 12924 o->size -= skip * PDR_SIZE;
b34976b6 12925 ret = TRUE;
d01414a5
TS
12926 }
12927 else
12928 free (tdata);
12929
12930 if (! info->keep_memory)
12931 free (cookie->rels);
12932
12933 return ret;
12934}
12935
b34976b6 12936bfd_boolean
9719ad41 12937_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12938{
12939 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12940 return TRUE;
12941 return FALSE;
53bfd6b4 12942}
d01414a5 12943
b34976b6 12944bfd_boolean
c7b8f16e
JB
12945_bfd_mips_elf_write_section (bfd *output_bfd,
12946 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
07d6d2b8 12947 asection *sec, bfd_byte *contents)
d01414a5
TS
12948{
12949 bfd_byte *to, *from, *end;
12950 int i;
12951
12952 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12953 return FALSE;
d01414a5 12954
f0abc2a1 12955 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12956 return FALSE;
d01414a5
TS
12957
12958 to = contents;
eea6121a 12959 end = contents + sec->size;
d01414a5
TS
12960 for (from = contents, i = 0;
12961 from < end;
12962 from += PDR_SIZE, i++)
12963 {
f0abc2a1 12964 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12965 continue;
12966 if (to != from)
12967 memcpy (to, from, PDR_SIZE);
12968 to += PDR_SIZE;
12969 }
12970 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12971 sec->output_offset, sec->size);
b34976b6 12972 return TRUE;
d01414a5 12973}
53bfd6b4 12974\f
df58fc94
RS
12975/* microMIPS code retains local labels for linker relaxation. Omit them
12976 from output by default for clarity. */
12977
12978bfd_boolean
12979_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12980{
12981 return _bfd_elf_is_local_label_name (abfd, sym->name);
12982}
12983
b49e97c9
TS
12984/* MIPS ELF uses a special find_nearest_line routine in order the
12985 handle the ECOFF debugging information. */
12986
12987struct mips_elf_find_line
12988{
12989 struct ecoff_debug_info d;
12990 struct ecoff_find_line i;
12991};
12992
b34976b6 12993bfd_boolean
fb167eb2
AM
12994_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12995 asection *section, bfd_vma offset,
9719ad41
RS
12996 const char **filename_ptr,
12997 const char **functionname_ptr,
fb167eb2
AM
12998 unsigned int *line_ptr,
12999 unsigned int *discriminator_ptr)
b49e97c9
TS
13000{
13001 asection *msec;
13002
fb167eb2 13003 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 13004 filename_ptr, functionname_ptr,
fb167eb2
AM
13005 line_ptr, discriminator_ptr,
13006 dwarf_debug_sections,
13007 ABI_64_P (abfd) ? 8 : 0,
46d09186
NC
13008 &elf_tdata (abfd)->dwarf2_find_line_info)
13009 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13010 filename_ptr, functionname_ptr,
13011 line_ptr))
13012 {
13013 /* PR 22789: If the function name or filename was not found through
13014 the debug information, then try an ordinary lookup instead. */
13015 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13016 || (filename_ptr != NULL && *filename_ptr == NULL))
13017 {
13018 /* Do not override already discovered names. */
13019 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13020 functionname_ptr = NULL;
b49e97c9 13021
46d09186
NC
13022 if (filename_ptr != NULL && *filename_ptr != NULL)
13023 filename_ptr = NULL;
13024
13025 _bfd_elf_find_function (abfd, symbols, section, offset,
13026 filename_ptr, functionname_ptr);
13027 }
13028
13029 return TRUE;
13030 }
b49e97c9
TS
13031
13032 msec = bfd_get_section_by_name (abfd, ".mdebug");
13033 if (msec != NULL)
13034 {
13035 flagword origflags;
13036 struct mips_elf_find_line *fi;
13037 const struct ecoff_debug_swap * const swap =
13038 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13039
13040 /* If we are called during a link, mips_elf_final_link may have
13041 cleared the SEC_HAS_CONTENTS field. We force it back on here
13042 if appropriate (which it normally will be). */
13043 origflags = msec->flags;
13044 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13045 msec->flags |= SEC_HAS_CONTENTS;
13046
698600e4 13047 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
13048 if (fi == NULL)
13049 {
13050 bfd_size_type external_fdr_size;
13051 char *fraw_src;
13052 char *fraw_end;
13053 struct fdr *fdr_ptr;
13054 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13055
9719ad41 13056 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
13057 if (fi == NULL)
13058 {
13059 msec->flags = origflags;
b34976b6 13060 return FALSE;
b49e97c9
TS
13061 }
13062
13063 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13064 {
13065 msec->flags = origflags;
b34976b6 13066 return FALSE;
b49e97c9
TS
13067 }
13068
13069 /* Swap in the FDR information. */
13070 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 13071 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
13072 if (fi->d.fdr == NULL)
13073 {
13074 msec->flags = origflags;
b34976b6 13075 return FALSE;
b49e97c9
TS
13076 }
13077 external_fdr_size = swap->external_fdr_size;
13078 fdr_ptr = fi->d.fdr;
13079 fraw_src = (char *) fi->d.external_fdr;
13080 fraw_end = (fraw_src
13081 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13082 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 13083 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 13084
698600e4 13085 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
13086
13087 /* Note that we don't bother to ever free this information.
07d6d2b8
AM
13088 find_nearest_line is either called all the time, as in
13089 objdump -l, so the information should be saved, or it is
13090 rarely called, as in ld error messages, so the memory
13091 wasted is unimportant. Still, it would probably be a
13092 good idea for free_cached_info to throw it away. */
b49e97c9
TS
13093 }
13094
13095 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13096 &fi->i, filename_ptr, functionname_ptr,
13097 line_ptr))
13098 {
13099 msec->flags = origflags;
b34976b6 13100 return TRUE;
b49e97c9
TS
13101 }
13102
13103 msec->flags = origflags;
13104 }
13105
13106 /* Fall back on the generic ELF find_nearest_line routine. */
13107
fb167eb2 13108 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 13109 filename_ptr, functionname_ptr,
fb167eb2 13110 line_ptr, discriminator_ptr);
b49e97c9 13111}
4ab527b0
FF
13112
13113bfd_boolean
13114_bfd_mips_elf_find_inliner_info (bfd *abfd,
13115 const char **filename_ptr,
13116 const char **functionname_ptr,
13117 unsigned int *line_ptr)
13118{
13119 bfd_boolean found;
13120 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13121 functionname_ptr, line_ptr,
13122 & elf_tdata (abfd)->dwarf2_find_line_info);
13123 return found;
13124}
13125
b49e97c9
TS
13126\f
13127/* When are writing out the .options or .MIPS.options section,
13128 remember the bytes we are writing out, so that we can install the
13129 GP value in the section_processing routine. */
13130
b34976b6 13131bfd_boolean
9719ad41
RS
13132_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13133 const void *location,
13134 file_ptr offset, bfd_size_type count)
b49e97c9 13135{
cc2e31b9 13136 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
13137 {
13138 bfd_byte *c;
13139
13140 if (elf_section_data (section) == NULL)
13141 {
13142 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 13143 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 13144 if (elf_section_data (section) == NULL)
b34976b6 13145 return FALSE;
b49e97c9 13146 }
f0abc2a1 13147 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
13148 if (c == NULL)
13149 {
eea6121a 13150 c = bfd_zalloc (abfd, section->size);
b49e97c9 13151 if (c == NULL)
b34976b6 13152 return FALSE;
f0abc2a1 13153 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
13154 }
13155
9719ad41 13156 memcpy (c + offset, location, count);
b49e97c9
TS
13157 }
13158
13159 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13160 count);
13161}
13162
13163/* This is almost identical to bfd_generic_get_... except that some
13164 MIPS relocations need to be handled specially. Sigh. */
13165
13166bfd_byte *
9719ad41
RS
13167_bfd_elf_mips_get_relocated_section_contents
13168 (bfd *abfd,
13169 struct bfd_link_info *link_info,
13170 struct bfd_link_order *link_order,
13171 bfd_byte *data,
13172 bfd_boolean relocatable,
13173 asymbol **symbols)
b49e97c9
TS
13174{
13175 /* Get enough memory to hold the stuff */
13176 bfd *input_bfd = link_order->u.indirect.section->owner;
13177 asection *input_section = link_order->u.indirect.section;
eea6121a 13178 bfd_size_type sz;
b49e97c9
TS
13179
13180 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13181 arelent **reloc_vector = NULL;
13182 long reloc_count;
13183
13184 if (reloc_size < 0)
13185 goto error_return;
13186
9719ad41 13187 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
13188 if (reloc_vector == NULL && reloc_size != 0)
13189 goto error_return;
13190
13191 /* read in the section */
eea6121a
AM
13192 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13193 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
13194 goto error_return;
13195
b49e97c9
TS
13196 reloc_count = bfd_canonicalize_reloc (input_bfd,
13197 input_section,
13198 reloc_vector,
13199 symbols);
13200 if (reloc_count < 0)
13201 goto error_return;
13202
13203 if (reloc_count > 0)
13204 {
13205 arelent **parent;
13206 /* for mips */
13207 int gp_found;
13208 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13209
13210 {
13211 struct bfd_hash_entry *h;
13212 struct bfd_link_hash_entry *lh;
13213 /* Skip all this stuff if we aren't mixing formats. */
13214 if (abfd && input_bfd
13215 && abfd->xvec == input_bfd->xvec)
13216 lh = 0;
13217 else
13218 {
b34976b6 13219 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
13220 lh = (struct bfd_link_hash_entry *) h;
13221 }
13222 lookup:
13223 if (lh)
13224 {
13225 switch (lh->type)
13226 {
13227 case bfd_link_hash_undefined:
13228 case bfd_link_hash_undefweak:
13229 case bfd_link_hash_common:
13230 gp_found = 0;
13231 break;
13232 case bfd_link_hash_defined:
13233 case bfd_link_hash_defweak:
13234 gp_found = 1;
13235 gp = lh->u.def.value;
13236 break;
13237 case bfd_link_hash_indirect:
13238 case bfd_link_hash_warning:
13239 lh = lh->u.i.link;
13240 /* @@FIXME ignoring warning for now */
13241 goto lookup;
13242 case bfd_link_hash_new:
13243 default:
13244 abort ();
13245 }
13246 }
13247 else
13248 gp_found = 0;
13249 }
13250 /* end mips */
9719ad41 13251 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 13252 {
9719ad41 13253 char *error_message = NULL;
b49e97c9
TS
13254 bfd_reloc_status_type r;
13255
13256 /* Specific to MIPS: Deal with relocation types that require
13257 knowing the gp of the output bfd. */
13258 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 13259
8236346f
EC
13260 /* If we've managed to find the gp and have a special
13261 function for the relocation then go ahead, else default
13262 to the generic handling. */
13263 if (gp_found
13264 && (*parent)->howto->special_function
13265 == _bfd_mips_elf32_gprel16_reloc)
13266 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13267 input_section, relocatable,
13268 data, gp);
13269 else
86324f90 13270 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
13271 input_section,
13272 relocatable ? abfd : NULL,
13273 &error_message);
b49e97c9 13274
1049f94e 13275 if (relocatable)
b49e97c9
TS
13276 {
13277 asection *os = input_section->output_section;
13278
13279 /* A partial link, so keep the relocs */
13280 os->orelocation[os->reloc_count] = *parent;
13281 os->reloc_count++;
13282 }
13283
13284 if (r != bfd_reloc_ok)
13285 {
13286 switch (r)
13287 {
13288 case bfd_reloc_undefined:
1a72702b
AM
13289 (*link_info->callbacks->undefined_symbol)
13290 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13291 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
13292 break;
13293 case bfd_reloc_dangerous:
9719ad41 13294 BFD_ASSERT (error_message != NULL);
1a72702b
AM
13295 (*link_info->callbacks->reloc_dangerous)
13296 (link_info, error_message,
13297 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13298 break;
13299 case bfd_reloc_overflow:
1a72702b
AM
13300 (*link_info->callbacks->reloc_overflow)
13301 (link_info, NULL,
13302 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13303 (*parent)->howto->name, (*parent)->addend,
13304 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
13305 break;
13306 case bfd_reloc_outofrange:
13307 default:
13308 abort ();
13309 break;
13310 }
13311
13312 }
13313 }
13314 }
13315 if (reloc_vector != NULL)
13316 free (reloc_vector);
13317 return data;
13318
13319error_return:
13320 if (reloc_vector != NULL)
13321 free (reloc_vector);
13322 return NULL;
13323}
13324\f
df58fc94
RS
13325static bfd_boolean
13326mips_elf_relax_delete_bytes (bfd *abfd,
13327 asection *sec, bfd_vma addr, int count)
13328{
13329 Elf_Internal_Shdr *symtab_hdr;
13330 unsigned int sec_shndx;
13331 bfd_byte *contents;
13332 Elf_Internal_Rela *irel, *irelend;
13333 Elf_Internal_Sym *isym;
13334 Elf_Internal_Sym *isymend;
13335 struct elf_link_hash_entry **sym_hashes;
13336 struct elf_link_hash_entry **end_hashes;
13337 struct elf_link_hash_entry **start_hashes;
13338 unsigned int symcount;
13339
13340 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13341 contents = elf_section_data (sec)->this_hdr.contents;
13342
13343 irel = elf_section_data (sec)->relocs;
13344 irelend = irel + sec->reloc_count;
13345
13346 /* Actually delete the bytes. */
13347 memmove (contents + addr, contents + addr + count,
13348 (size_t) (sec->size - addr - count));
13349 sec->size -= count;
13350
13351 /* Adjust all the relocs. */
13352 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13353 {
13354 /* Get the new reloc address. */
13355 if (irel->r_offset > addr)
13356 irel->r_offset -= count;
13357 }
13358
13359 BFD_ASSERT (addr % 2 == 0);
13360 BFD_ASSERT (count % 2 == 0);
13361
13362 /* Adjust the local symbols defined in this section. */
13363 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13364 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13365 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13366 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13367 isym->st_value -= count;
13368
13369 /* Now adjust the global symbols defined in this section. */
13370 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13371 - symtab_hdr->sh_info);
13372 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13373 end_hashes = sym_hashes + symcount;
13374
13375 for (; sym_hashes < end_hashes; sym_hashes++)
13376 {
13377 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13378
13379 if ((sym_hash->root.type == bfd_link_hash_defined
13380 || sym_hash->root.type == bfd_link_hash_defweak)
13381 && sym_hash->root.u.def.section == sec)
13382 {
2309ddf2 13383 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13384
df58fc94
RS
13385 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13386 value &= MINUS_TWO;
13387 if (value > addr)
13388 sym_hash->root.u.def.value -= count;
13389 }
13390 }
13391
13392 return TRUE;
13393}
13394
13395
13396/* Opcodes needed for microMIPS relaxation as found in
13397 opcodes/micromips-opc.c. */
13398
13399struct opcode_descriptor {
13400 unsigned long match;
13401 unsigned long mask;
13402};
13403
13404/* The $ra register aka $31. */
13405
13406#define RA 31
13407
13408/* 32-bit instruction format register fields. */
13409
13410#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13411#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13412
13413/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13414
13415#define OP16_VALID_REG(r) \
13416 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13417
13418
13419/* 32-bit and 16-bit branches. */
13420
13421static const struct opcode_descriptor b_insns_32[] = {
13422 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13423 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13424 { 0, 0 } /* End marker for find_match(). */
13425};
13426
13427static const struct opcode_descriptor bc_insn_32 =
13428 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13429
13430static const struct opcode_descriptor bz_insn_32 =
13431 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13432
13433static const struct opcode_descriptor bzal_insn_32 =
13434 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13435
13436static const struct opcode_descriptor beq_insn_32 =
13437 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13438
13439static const struct opcode_descriptor b_insn_16 =
13440 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13441
13442static const struct opcode_descriptor bz_insn_16 =
c088dedf 13443 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13444
13445
13446/* 32-bit and 16-bit branch EQ and NE zero. */
13447
13448/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13449 eq and second the ne. This convention is used when replacing a
13450 32-bit BEQ/BNE with the 16-bit version. */
13451
13452#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13453
13454static const struct opcode_descriptor bz_rs_insns_32[] = {
13455 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13456 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13457 { 0, 0 } /* End marker for find_match(). */
13458};
13459
13460static const struct opcode_descriptor bz_rt_insns_32[] = {
13461 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13462 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13463 { 0, 0 } /* End marker for find_match(). */
13464};
13465
13466static const struct opcode_descriptor bzc_insns_32[] = {
13467 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13468 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13469 { 0, 0 } /* End marker for find_match(). */
13470};
13471
13472static const struct opcode_descriptor bz_insns_16[] = {
13473 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13474 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13475 { 0, 0 } /* End marker for find_match(). */
13476};
13477
13478/* Switch between a 5-bit register index and its 3-bit shorthand. */
13479
e67f83e5 13480#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13481#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13482
13483
13484/* 32-bit instructions with a delay slot. */
13485
13486static const struct opcode_descriptor jal_insn_32_bd16 =
13487 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13488
13489static const struct opcode_descriptor jal_insn_32_bd32 =
13490 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13491
13492static const struct opcode_descriptor jal_x_insn_32_bd32 =
13493 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13494
13495static const struct opcode_descriptor j_insn_32 =
13496 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13497
13498static const struct opcode_descriptor jalr_insn_32 =
13499 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13500
13501/* This table can be compacted, because no opcode replacement is made. */
13502
13503static const struct opcode_descriptor ds_insns_32_bd16[] = {
13504 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13505
13506 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13507 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13508
13509 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13510 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13511 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13512 { 0, 0 } /* End marker for find_match(). */
13513};
13514
13515/* This table can be compacted, because no opcode replacement is made. */
13516
13517static const struct opcode_descriptor ds_insns_32_bd32[] = {
13518 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13519
13520 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13521 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13522 { 0, 0 } /* End marker for find_match(). */
13523};
13524
13525
13526/* 16-bit instructions with a delay slot. */
13527
13528static const struct opcode_descriptor jalr_insn_16_bd16 =
13529 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13530
13531static const struct opcode_descriptor jalr_insn_16_bd32 =
13532 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13533
13534static const struct opcode_descriptor jr_insn_16 =
13535 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13536
13537#define JR16_REG(opcode) ((opcode) & 0x1f)
13538
13539/* This table can be compacted, because no opcode replacement is made. */
13540
13541static const struct opcode_descriptor ds_insns_16_bd16[] = {
13542 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13543
13544 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13545 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13546 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13547 { 0, 0 } /* End marker for find_match(). */
13548};
13549
13550
13551/* LUI instruction. */
13552
13553static const struct opcode_descriptor lui_insn =
13554 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13555
13556
13557/* ADDIU instruction. */
13558
13559static const struct opcode_descriptor addiu_insn =
13560 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13561
13562static const struct opcode_descriptor addiupc_insn =
13563 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13564
13565#define ADDIUPC_REG_FIELD(r) \
13566 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13567
13568
13569/* Relaxable instructions in a JAL delay slot: MOVE. */
13570
13571/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13572 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13573#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13574#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13575
13576#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13577#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13578
13579static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13580 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13581 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13582 { 0, 0 } /* End marker for find_match(). */
13583};
13584
13585static const struct opcode_descriptor move_insn_16 =
13586 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13587
13588
13589/* NOP instructions. */
13590
13591static const struct opcode_descriptor nop_insn_32 =
13592 { /* "nop", "", */ 0x00000000, 0xffffffff };
13593
13594static const struct opcode_descriptor nop_insn_16 =
13595 { /* "nop", "", */ 0x0c00, 0xffff };
13596
13597
13598/* Instruction match support. */
13599
13600#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13601
13602static int
13603find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13604{
13605 unsigned long indx;
13606
13607 for (indx = 0; insn[indx].mask != 0; indx++)
13608 if (MATCH (opcode, insn[indx]))
13609 return indx;
13610
13611 return -1;
13612}
13613
13614
13615/* Branch and delay slot decoding support. */
13616
13617/* If PTR points to what *might* be a 16-bit branch or jump, then
13618 return the minimum length of its delay slot, otherwise return 0.
13619 Non-zero results are not definitive as we might be checking against
13620 the second half of another instruction. */
13621
13622static int
13623check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13624{
13625 unsigned long opcode;
13626 int bdsize;
13627
13628 opcode = bfd_get_16 (abfd, ptr);
13629 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13630 /* 16-bit branch/jump with a 32-bit delay slot. */
13631 bdsize = 4;
13632 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13633 || find_match (opcode, ds_insns_16_bd16) >= 0)
13634 /* 16-bit branch/jump with a 16-bit delay slot. */
13635 bdsize = 2;
13636 else
13637 /* No delay slot. */
13638 bdsize = 0;
13639
13640 return bdsize;
13641}
13642
13643/* If PTR points to what *might* be a 32-bit branch or jump, then
13644 return the minimum length of its delay slot, otherwise return 0.
13645 Non-zero results are not definitive as we might be checking against
13646 the second half of another instruction. */
13647
13648static int
13649check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13650{
13651 unsigned long opcode;
13652 int bdsize;
13653
d21911ea 13654 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13655 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13656 /* 32-bit branch/jump with a 32-bit delay slot. */
13657 bdsize = 4;
13658 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13659 /* 32-bit branch/jump with a 16-bit delay slot. */
13660 bdsize = 2;
13661 else
13662 /* No delay slot. */
13663 bdsize = 0;
13664
13665 return bdsize;
13666}
13667
13668/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13669 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13670
13671static bfd_boolean
13672check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13673{
13674 unsigned long opcode;
13675
13676 opcode = bfd_get_16 (abfd, ptr);
13677 if (MATCH (opcode, b_insn_16)
13678 /* B16 */
13679 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13680 /* JR16 */
13681 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13682 /* BEQZ16, BNEZ16 */
13683 || (MATCH (opcode, jalr_insn_16_bd32)
13684 /* JALR16 */
13685 && reg != JR16_REG (opcode) && reg != RA))
13686 return TRUE;
13687
13688 return FALSE;
13689}
13690
13691/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13692 then return TRUE, otherwise FALSE. */
13693
f41e5fcc 13694static bfd_boolean
df58fc94
RS
13695check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13696{
13697 unsigned long opcode;
13698
d21911ea 13699 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13700 if (MATCH (opcode, j_insn_32)
13701 /* J */
13702 || MATCH (opcode, bc_insn_32)
13703 /* BC1F, BC1T, BC2F, BC2T */
13704 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13705 /* JAL, JALX */
13706 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13707 /* BGEZ, BGTZ, BLEZ, BLTZ */
13708 || (MATCH (opcode, bzal_insn_32)
13709 /* BGEZAL, BLTZAL */
13710 && reg != OP32_SREG (opcode) && reg != RA)
13711 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13712 /* JALR, JALR.HB, BEQ, BNE */
13713 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13714 return TRUE;
13715
13716 return FALSE;
13717}
13718
80cab405
MR
13719/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13720 IRELEND) at OFFSET indicate that there must be a compact branch there,
13721 then return TRUE, otherwise FALSE. */
df58fc94
RS
13722
13723static bfd_boolean
80cab405
MR
13724check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13725 const Elf_Internal_Rela *internal_relocs,
13726 const Elf_Internal_Rela *irelend)
df58fc94 13727{
80cab405
MR
13728 const Elf_Internal_Rela *irel;
13729 unsigned long opcode;
13730
d21911ea 13731 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13732 if (find_match (opcode, bzc_insns_32) < 0)
13733 return FALSE;
df58fc94
RS
13734
13735 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13736 if (irel->r_offset == offset
13737 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13738 return TRUE;
13739
df58fc94
RS
13740 return FALSE;
13741}
80cab405
MR
13742
13743/* Bitsize checking. */
13744#define IS_BITSIZE(val, N) \
13745 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13746 - (1ULL << ((N) - 1))) == (val))
13747
df58fc94
RS
13748\f
13749bfd_boolean
13750_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13751 struct bfd_link_info *link_info,
13752 bfd_boolean *again)
13753{
833794fc 13754 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13755 Elf_Internal_Shdr *symtab_hdr;
13756 Elf_Internal_Rela *internal_relocs;
13757 Elf_Internal_Rela *irel, *irelend;
13758 bfd_byte *contents = NULL;
13759 Elf_Internal_Sym *isymbuf = NULL;
13760
13761 /* Assume nothing changes. */
13762 *again = FALSE;
13763
13764 /* We don't have to do anything for a relocatable link, if
13765 this section does not have relocs, or if this is not a
13766 code section. */
13767
0e1862bb 13768 if (bfd_link_relocatable (link_info)
df58fc94
RS
13769 || (sec->flags & SEC_RELOC) == 0
13770 || sec->reloc_count == 0
13771 || (sec->flags & SEC_CODE) == 0)
13772 return TRUE;
13773
13774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13775
13776 /* Get a copy of the native relocations. */
13777 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13778 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13779 link_info->keep_memory));
13780 if (internal_relocs == NULL)
13781 goto error_return;
13782
13783 /* Walk through them looking for relaxing opportunities. */
13784 irelend = internal_relocs + sec->reloc_count;
13785 for (irel = internal_relocs; irel < irelend; irel++)
13786 {
13787 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13788 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13789 bfd_boolean target_is_micromips_code_p;
13790 unsigned long opcode;
13791 bfd_vma symval;
13792 bfd_vma pcrval;
2309ddf2 13793 bfd_byte *ptr;
df58fc94
RS
13794 int fndopc;
13795
13796 /* The number of bytes to delete for relaxation and from where
07d6d2b8 13797 to delete these bytes starting at irel->r_offset. */
df58fc94
RS
13798 int delcnt = 0;
13799 int deloff = 0;
13800
13801 /* If this isn't something that can be relaxed, then ignore
07d6d2b8 13802 this reloc. */
df58fc94
RS
13803 if (r_type != R_MICROMIPS_HI16
13804 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13805 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13806 continue;
13807
13808 /* Get the section contents if we haven't done so already. */
13809 if (contents == NULL)
13810 {
13811 /* Get cached copy if it exists. */
13812 if (elf_section_data (sec)->this_hdr.contents != NULL)
13813 contents = elf_section_data (sec)->this_hdr.contents;
13814 /* Go get them off disk. */
13815 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13816 goto error_return;
13817 }
2309ddf2 13818 ptr = contents + irel->r_offset;
df58fc94
RS
13819
13820 /* Read this BFD's local symbols if we haven't done so already. */
13821 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13822 {
13823 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13824 if (isymbuf == NULL)
13825 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13826 symtab_hdr->sh_info, 0,
13827 NULL, NULL, NULL);
13828 if (isymbuf == NULL)
13829 goto error_return;
13830 }
13831
13832 /* Get the value of the symbol referred to by the reloc. */
13833 if (r_symndx < symtab_hdr->sh_info)
13834 {
13835 /* A local symbol. */
13836 Elf_Internal_Sym *isym;
13837 asection *sym_sec;
13838
13839 isym = isymbuf + r_symndx;
13840 if (isym->st_shndx == SHN_UNDEF)
13841 sym_sec = bfd_und_section_ptr;
13842 else if (isym->st_shndx == SHN_ABS)
13843 sym_sec = bfd_abs_section_ptr;
13844 else if (isym->st_shndx == SHN_COMMON)
13845 sym_sec = bfd_com_section_ptr;
13846 else
13847 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13848 symval = (isym->st_value
13849 + sym_sec->output_section->vma
13850 + sym_sec->output_offset);
13851 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13852 }
13853 else
13854 {
13855 unsigned long indx;
13856 struct elf_link_hash_entry *h;
13857
13858 /* An external symbol. */
13859 indx = r_symndx - symtab_hdr->sh_info;
13860 h = elf_sym_hashes (abfd)[indx];
13861 BFD_ASSERT (h != NULL);
13862
13863 if (h->root.type != bfd_link_hash_defined
13864 && h->root.type != bfd_link_hash_defweak)
13865 /* This appears to be a reference to an undefined
13866 symbol. Just ignore it -- it will be caught by the
13867 regular reloc processing. */
13868 continue;
13869
13870 symval = (h->root.u.def.value
13871 + h->root.u.def.section->output_section->vma
13872 + h->root.u.def.section->output_offset);
13873 target_is_micromips_code_p = (!h->needs_plt
13874 && ELF_ST_IS_MICROMIPS (h->other));
13875 }
13876
13877
13878 /* For simplicity of coding, we are going to modify the
07d6d2b8
AM
13879 section contents, the section relocs, and the BFD symbol
13880 table. We must tell the rest of the code not to free up this
13881 information. It would be possible to instead create a table
13882 of changes which have to be made, as is done in coff-mips.c;
13883 that would be more work, but would require less memory when
13884 the linker is run. */
df58fc94
RS
13885
13886 /* Only 32-bit instructions relaxed. */
13887 if (irel->r_offset + 4 > sec->size)
13888 continue;
13889
d21911ea 13890 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13891
13892 /* This is the pc-relative distance from the instruction the
07d6d2b8 13893 relocation is applied to, to the symbol referred. */
df58fc94
RS
13894 pcrval = (symval
13895 - (sec->output_section->vma + sec->output_offset)
13896 - irel->r_offset);
13897
13898 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
07d6d2b8
AM
13899 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13900 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
df58fc94 13901
07d6d2b8 13902 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
df58fc94 13903
07d6d2b8
AM
13904 where pcrval has first to be adjusted to apply against the LO16
13905 location (we make the adjustment later on, when we have figured
13906 out the offset). */
df58fc94
RS
13907 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13908 {
80cab405 13909 bfd_boolean bzc = FALSE;
df58fc94
RS
13910 unsigned long nextopc;
13911 unsigned long reg;
13912 bfd_vma offset;
13913
13914 /* Give up if the previous reloc was a HI16 against this symbol
13915 too. */
13916 if (irel > internal_relocs
13917 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13918 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13919 continue;
13920
13921 /* Or if the next reloc is not a LO16 against this symbol. */
13922 if (irel + 1 >= irelend
13923 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13924 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13925 continue;
13926
13927 /* Or if the second next reloc is a LO16 against this symbol too. */
13928 if (irel + 2 >= irelend
13929 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13930 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13931 continue;
13932
80cab405
MR
13933 /* See if the LUI instruction *might* be in a branch delay slot.
13934 We check whether what looks like a 16-bit branch or jump is
13935 actually an immediate argument to a compact branch, and let
13936 it through if so. */
df58fc94 13937 if (irel->r_offset >= 2
2309ddf2 13938 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13939 && !(irel->r_offset >= 4
80cab405
MR
13940 && (bzc = check_relocated_bzc (abfd,
13941 ptr - 4, irel->r_offset - 4,
13942 internal_relocs, irelend))))
df58fc94
RS
13943 continue;
13944 if (irel->r_offset >= 4
80cab405 13945 && !bzc
2309ddf2 13946 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13947 continue;
13948
13949 reg = OP32_SREG (opcode);
13950
13951 /* We only relax adjacent instructions or ones separated with
13952 a branch or jump that has a delay slot. The branch or jump
13953 must not fiddle with the register used to hold the address.
13954 Subtract 4 for the LUI itself. */
13955 offset = irel[1].r_offset - irel[0].r_offset;
13956 switch (offset - 4)
13957 {
13958 case 0:
13959 break;
13960 case 2:
2309ddf2 13961 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13962 break;
13963 continue;
13964 case 4:
2309ddf2 13965 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13966 break;
13967 continue;
13968 default:
13969 continue;
13970 }
13971
d21911ea 13972 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13973
13974 /* Give up unless the same register is used with both
13975 relocations. */
13976 if (OP32_SREG (nextopc) != reg)
13977 continue;
13978
13979 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13980 and rounding up to take masking of the two LSBs into account. */
13981 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13982
13983 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13984 if (IS_BITSIZE (symval, 16))
13985 {
13986 /* Fix the relocation's type. */
13987 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13988
13989 /* Instructions using R_MICROMIPS_LO16 have the base or
07d6d2b8
AM
13990 source register in bits 20:16. This register becomes $0
13991 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
df58fc94
RS
13992 nextopc &= ~0x001f0000;
13993 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13994 contents + irel[1].r_offset);
13995 }
13996
13997 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13998 We add 4 to take LUI deletion into account while checking
13999 the PC-relative distance. */
14000 else if (symval % 4 == 0
14001 && IS_BITSIZE (pcrval + 4, 25)
14002 && MATCH (nextopc, addiu_insn)
14003 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14004 && OP16_VALID_REG (OP32_TREG (nextopc)))
14005 {
14006 /* Fix the relocation's type. */
14007 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14008
14009 /* Replace ADDIU with the ADDIUPC version. */
14010 nextopc = (addiupc_insn.match
14011 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14012
d21911ea
MR
14013 bfd_put_micromips_32 (abfd, nextopc,
14014 contents + irel[1].r_offset);
df58fc94
RS
14015 }
14016
14017 /* Can't do anything, give up, sigh... */
14018 else
14019 continue;
14020
14021 /* Fix the relocation's type. */
14022 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14023
14024 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14025 delcnt = 4;
14026 deloff = 0;
14027 }
14028
14029 /* Compact branch relaxation -- due to the multitude of macros
07d6d2b8
AM
14030 employed by the compiler/assembler, compact branches are not
14031 always generated. Obviously, this can/will be fixed elsewhere,
14032 but there is no drawback in double checking it here. */
df58fc94
RS
14033 else if (r_type == R_MICROMIPS_PC16_S1
14034 && irel->r_offset + 5 < sec->size
14035 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14036 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
14037 && ((!insn32
14038 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14039 nop_insn_16) ? 2 : 0))
14040 || (irel->r_offset + 7 < sec->size
14041 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14042 ptr + 4),
14043 nop_insn_32) ? 4 : 0))))
df58fc94
RS
14044 {
14045 unsigned long reg;
14046
14047 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14048
14049 /* Replace BEQZ/BNEZ with the compact version. */
14050 opcode = (bzc_insns_32[fndopc].match
14051 | BZC32_REG_FIELD (reg)
14052 | (opcode & 0xffff)); /* Addend value. */
14053
d21911ea 14054 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 14055
833794fc
MR
14056 /* Delete the delay slot NOP: two or four bytes from
14057 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
14058 deloff = 4;
14059 }
14060
14061 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
07d6d2b8 14062 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14063 else if (!insn32
14064 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14065 && IS_BITSIZE (pcrval - 2, 11)
14066 && find_match (opcode, b_insns_32) >= 0)
14067 {
14068 /* Fix the relocation's type. */
14069 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14070
a8685210 14071 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14072 bfd_put_16 (abfd,
14073 (b_insn_16.match
14074 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 14075 ptr);
df58fc94
RS
14076
14077 /* Delete 2 bytes from irel->r_offset + 2. */
14078 delcnt = 2;
14079 deloff = 2;
14080 }
14081
14082 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
07d6d2b8 14083 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
14084 else if (!insn32
14085 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
14086 && IS_BITSIZE (pcrval - 2, 8)
14087 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14088 && OP16_VALID_REG (OP32_SREG (opcode)))
14089 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14090 && OP16_VALID_REG (OP32_TREG (opcode)))))
14091 {
14092 unsigned long reg;
14093
14094 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14095
14096 /* Fix the relocation's type. */
14097 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14098
a8685210 14099 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
14100 bfd_put_16 (abfd,
14101 (bz_insns_16[fndopc].match
14102 | BZ16_REG_FIELD (reg)
14103 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 14104 ptr);
df58fc94
RS
14105
14106 /* Delete 2 bytes from irel->r_offset + 2. */
14107 delcnt = 2;
14108 deloff = 2;
14109 }
14110
14111 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
14112 else if (!insn32
14113 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
14114 && target_is_micromips_code_p
14115 && irel->r_offset + 7 < sec->size
14116 && MATCH (opcode, jal_insn_32_bd32))
14117 {
14118 unsigned long n32opc;
14119 bfd_boolean relaxed = FALSE;
14120
d21911ea 14121 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
14122
14123 if (MATCH (n32opc, nop_insn_32))
14124 {
14125 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 14126 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
14127
14128 relaxed = TRUE;
14129 }
14130 else if (find_match (n32opc, move_insns_32) >= 0)
14131 {
14132 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14133 bfd_put_16 (abfd,
14134 (move_insn_16.match
14135 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14136 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 14137 ptr + 4);
df58fc94
RS
14138
14139 relaxed = TRUE;
14140 }
14141 /* Other 32-bit instructions relaxable to 16-bit
14142 instructions will be handled here later. */
14143
14144 if (relaxed)
14145 {
14146 /* JAL with 32-bit delay slot that is changed to a JALS
07d6d2b8 14147 with 16-bit delay slot. */
d21911ea 14148 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
14149
14150 /* Delete 2 bytes from irel->r_offset + 6. */
14151 delcnt = 2;
14152 deloff = 6;
14153 }
14154 }
14155
14156 if (delcnt != 0)
14157 {
14158 /* Note that we've changed the relocs, section contents, etc. */
14159 elf_section_data (sec)->relocs = internal_relocs;
14160 elf_section_data (sec)->this_hdr.contents = contents;
14161 symtab_hdr->contents = (unsigned char *) isymbuf;
14162
14163 /* Delete bytes depending on the delcnt and deloff. */
14164 if (!mips_elf_relax_delete_bytes (abfd, sec,
14165 irel->r_offset + deloff, delcnt))
14166 goto error_return;
14167
14168 /* That will change things, so we should relax again.
14169 Note that this is not required, and it may be slow. */
14170 *again = TRUE;
14171 }
14172 }
14173
14174 if (isymbuf != NULL
14175 && symtab_hdr->contents != (unsigned char *) isymbuf)
14176 {
14177 if (! link_info->keep_memory)
14178 free (isymbuf);
14179 else
14180 {
14181 /* Cache the symbols for elf_link_input_bfd. */
14182 symtab_hdr->contents = (unsigned char *) isymbuf;
14183 }
14184 }
14185
14186 if (contents != NULL
14187 && elf_section_data (sec)->this_hdr.contents != contents)
14188 {
14189 if (! link_info->keep_memory)
14190 free (contents);
14191 else
14192 {
14193 /* Cache the section contents for elf_link_input_bfd. */
14194 elf_section_data (sec)->this_hdr.contents = contents;
14195 }
14196 }
14197
14198 if (internal_relocs != NULL
14199 && elf_section_data (sec)->relocs != internal_relocs)
14200 free (internal_relocs);
14201
14202 return TRUE;
14203
14204 error_return:
14205 if (isymbuf != NULL
14206 && symtab_hdr->contents != (unsigned char *) isymbuf)
14207 free (isymbuf);
14208 if (contents != NULL
14209 && elf_section_data (sec)->this_hdr.contents != contents)
14210 free (contents);
14211 if (internal_relocs != NULL
14212 && elf_section_data (sec)->relocs != internal_relocs)
14213 free (internal_relocs);
14214
14215 return FALSE;
14216}
14217\f
b49e97c9
TS
14218/* Create a MIPS ELF linker hash table. */
14219
14220struct bfd_link_hash_table *
9719ad41 14221_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
14222{
14223 struct mips_elf_link_hash_table *ret;
14224 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14225
7bf52ea2 14226 ret = bfd_zmalloc (amt);
9719ad41 14227 if (ret == NULL)
b49e97c9
TS
14228 return NULL;
14229
66eb6687
AM
14230 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14231 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
14232 sizeof (struct mips_elf_link_hash_entry),
14233 MIPS_ELF_DATA))
b49e97c9 14234 {
e2d34d7d 14235 free (ret);
b49e97c9
TS
14236 return NULL;
14237 }
1bbce132
MR
14238 ret->root.init_plt_refcount.plist = NULL;
14239 ret->root.init_plt_offset.plist = NULL;
b49e97c9 14240
b49e97c9
TS
14241 return &ret->root.root;
14242}
0a44bf69
RS
14243
14244/* Likewise, but indicate that the target is VxWorks. */
14245
14246struct bfd_link_hash_table *
14247_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14248{
14249 struct bfd_link_hash_table *ret;
14250
14251 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14252 if (ret)
14253 {
14254 struct mips_elf_link_hash_table *htab;
14255
14256 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
14257 htab->use_plts_and_copy_relocs = TRUE;
14258 htab->is_vxworks = TRUE;
0a44bf69
RS
14259 }
14260 return ret;
14261}
861fb55a
DJ
14262
14263/* A function that the linker calls if we are allowed to use PLTs
14264 and copy relocs. */
14265
14266void
14267_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14268{
14269 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14270}
833794fc
MR
14271
14272/* A function that the linker calls to select between all or only
8b10b0b3 14273 32-bit microMIPS instructions, and between making or ignoring
47275900
MR
14274 branch relocation checks for invalid transitions between ISA modes.
14275 Also record whether we have been configured for a GNU target. */
833794fc
MR
14276
14277void
8b10b0b3 14278_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
47275900
MR
14279 bfd_boolean ignore_branch_isa,
14280 bfd_boolean gnu_target)
833794fc 14281{
8b10b0b3
MR
14282 mips_elf_hash_table (info)->insn32 = insn32;
14283 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
47275900 14284 mips_elf_hash_table (info)->gnu_target = gnu_target;
833794fc 14285}
3734320d
MF
14286
14287/* A function that the linker calls to enable use of compact branches in
14288 linker generated code for MIPSR6. */
14289
14290void
14291_bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14292{
14293 mips_elf_hash_table (info)->compact_branches = on;
14294}
14295
b49e97c9 14296\f
c97c330b
MF
14297/* Structure for saying that BFD machine EXTENSION extends BASE. */
14298
14299struct mips_mach_extension
14300{
14301 unsigned long extension, base;
14302};
14303
14304
14305/* An array describing how BFD machines relate to one another. The entries
14306 are ordered topologically with MIPS I extensions listed last. */
14307
14308static const struct mips_mach_extension mips_mach_extensions[] =
14309{
14310 /* MIPS64r2 extensions. */
14311 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14312 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14313 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14314 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
9108bc33 14315 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
bd782c07 14316 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
ac8cb70f 14317 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
c97c330b
MF
14318
14319 /* MIPS64 extensions. */
14320 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14321 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14322 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14323
14324 /* MIPS V extensions. */
14325 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14326
14327 /* R10000 extensions. */
14328 { bfd_mach_mips12000, bfd_mach_mips10000 },
14329 { bfd_mach_mips14000, bfd_mach_mips10000 },
14330 { bfd_mach_mips16000, bfd_mach_mips10000 },
14331
14332 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14333 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14334 better to allow vr5400 and vr5500 code to be merged anyway, since
14335 many libraries will just use the core ISA. Perhaps we could add
14336 some sort of ASE flag if this ever proves a problem. */
14337 { bfd_mach_mips5500, bfd_mach_mips5400 },
14338 { bfd_mach_mips5400, bfd_mach_mips5000 },
14339
14340 /* MIPS IV extensions. */
14341 { bfd_mach_mips5, bfd_mach_mips8000 },
14342 { bfd_mach_mips10000, bfd_mach_mips8000 },
14343 { bfd_mach_mips5000, bfd_mach_mips8000 },
14344 { bfd_mach_mips7000, bfd_mach_mips8000 },
14345 { bfd_mach_mips9000, bfd_mach_mips8000 },
14346
14347 /* VR4100 extensions. */
14348 { bfd_mach_mips4120, bfd_mach_mips4100 },
14349 { bfd_mach_mips4111, bfd_mach_mips4100 },
14350
14351 /* MIPS III extensions. */
14352 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14353 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14354 { bfd_mach_mips8000, bfd_mach_mips4000 },
14355 { bfd_mach_mips4650, bfd_mach_mips4000 },
14356 { bfd_mach_mips4600, bfd_mach_mips4000 },
14357 { bfd_mach_mips4400, bfd_mach_mips4000 },
14358 { bfd_mach_mips4300, bfd_mach_mips4000 },
14359 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14360 { bfd_mach_mips5900, bfd_mach_mips4000 },
14361
38bf472a
MR
14362 /* MIPS32r3 extensions. */
14363 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14364
14365 /* MIPS32r2 extensions. */
14366 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14367
c97c330b
MF
14368 /* MIPS32 extensions. */
14369 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14370
14371 /* MIPS II extensions. */
14372 { bfd_mach_mips4000, bfd_mach_mips6000 },
14373 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14374 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14375
14376 /* MIPS I extensions. */
14377 { bfd_mach_mips6000, bfd_mach_mips3000 },
14378 { bfd_mach_mips3900, bfd_mach_mips3000 }
14379};
14380
14381/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14382
14383static bfd_boolean
14384mips_mach_extends_p (unsigned long base, unsigned long extension)
14385{
14386 size_t i;
14387
14388 if (extension == base)
14389 return TRUE;
14390
14391 if (base == bfd_mach_mipsisa32
14392 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14393 return TRUE;
14394
14395 if (base == bfd_mach_mipsisa32r2
14396 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14397 return TRUE;
14398
14399 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14400 if (extension == mips_mach_extensions[i].extension)
14401 {
14402 extension = mips_mach_extensions[i].base;
14403 if (extension == base)
14404 return TRUE;
14405 }
14406
14407 return FALSE;
14408}
14409
14410/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14411
14412static unsigned long
14413bfd_mips_isa_ext_mach (unsigned int isa_ext)
14414{
14415 switch (isa_ext)
14416 {
07d6d2b8
AM
14417 case AFL_EXT_3900: return bfd_mach_mips3900;
14418 case AFL_EXT_4010: return bfd_mach_mips4010;
14419 case AFL_EXT_4100: return bfd_mach_mips4100;
14420 case AFL_EXT_4111: return bfd_mach_mips4111;
14421 case AFL_EXT_4120: return bfd_mach_mips4120;
14422 case AFL_EXT_4650: return bfd_mach_mips4650;
14423 case AFL_EXT_5400: return bfd_mach_mips5400;
14424 case AFL_EXT_5500: return bfd_mach_mips5500;
14425 case AFL_EXT_5900: return bfd_mach_mips5900;
14426 case AFL_EXT_10000: return bfd_mach_mips10000;
c97c330b
MF
14427 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14428 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
07d6d2b8 14429 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
c97c330b
MF
14430 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14431 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14432 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
07d6d2b8
AM
14433 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14434 default: return bfd_mach_mips3000;
c97c330b
MF
14435 }
14436}
14437
351cdf24
MF
14438/* Return the .MIPS.abiflags value representing each ISA Extension. */
14439
14440unsigned int
14441bfd_mips_isa_ext (bfd *abfd)
14442{
14443 switch (bfd_get_mach (abfd))
14444 {
07d6d2b8
AM
14445 case bfd_mach_mips3900: return AFL_EXT_3900;
14446 case bfd_mach_mips4010: return AFL_EXT_4010;
14447 case bfd_mach_mips4100: return AFL_EXT_4100;
14448 case bfd_mach_mips4111: return AFL_EXT_4111;
14449 case bfd_mach_mips4120: return AFL_EXT_4120;
14450 case bfd_mach_mips4650: return AFL_EXT_4650;
14451 case bfd_mach_mips5400: return AFL_EXT_5400;
14452 case bfd_mach_mips5500: return AFL_EXT_5500;
14453 case bfd_mach_mips5900: return AFL_EXT_5900;
14454 case bfd_mach_mips10000: return AFL_EXT_10000;
c97c330b
MF
14455 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14456 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
07d6d2b8
AM
14457 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14458 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14459 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14460 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14461 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14462 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14463 case bfd_mach_mips_interaptiv_mr2:
14464 return AFL_EXT_INTERAPTIV_MR2;
07d6d2b8 14465 default: return 0;
c97c330b
MF
14466 }
14467}
14468
14469/* Encode ISA level and revision as a single value. */
14470#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14471
14472/* Decode a single value into level and revision. */
14473#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14474#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14475
14476/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14477
14478static void
14479update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14480{
c97c330b 14481 int new_isa = 0;
351cdf24
MF
14482 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14483 {
c97c330b
MF
14484 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14485 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14486 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14487 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14488 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14489 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14490 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14491 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14492 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14493 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14494 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14495 default:
4eca0228 14496 _bfd_error_handler
695344c0 14497 /* xgettext:c-format */
2c1c9679 14498 (_("%pB: unknown architecture %s"),
351cdf24
MF
14499 abfd, bfd_printable_name (abfd));
14500 }
14501
c97c330b
MF
14502 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14503 {
14504 abiflags->isa_level = ISA_LEVEL (new_isa);
14505 abiflags->isa_rev = ISA_REV (new_isa);
14506 }
14507
14508 /* Update the isa_ext if ABFD describes a further extension. */
14509 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14510 bfd_get_mach (abfd)))
14511 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14512}
14513
14514/* Return true if the given ELF header flags describe a 32-bit binary. */
14515
14516static bfd_boolean
14517mips_32bit_flags_p (flagword flags)
14518{
14519 return ((flags & EF_MIPS_32BITMODE) != 0
14520 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14521 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14522 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14523 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14524 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14525 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14526 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14527}
14528
14529/* Infer the content of the ABI flags based on the elf header. */
14530
14531static void
14532infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14533{
14534 obj_attribute *in_attr;
14535
14536 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14537 update_mips_abiflags_isa (abfd, abiflags);
14538
14539 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14540 abiflags->gpr_size = AFL_REG_32;
14541 else
14542 abiflags->gpr_size = AFL_REG_64;
14543
14544 abiflags->cpr1_size = AFL_REG_NONE;
14545
14546 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14547 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14548
14549 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14550 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14551 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14552 && abiflags->gpr_size == AFL_REG_32))
14553 abiflags->cpr1_size = AFL_REG_32;
14554 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14555 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14556 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14557 abiflags->cpr1_size = AFL_REG_64;
14558
14559 abiflags->cpr2_size = AFL_REG_NONE;
14560
14561 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14562 abiflags->ases |= AFL_ASE_MDMX;
14563 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14564 abiflags->ases |= AFL_ASE_MIPS16;
14565 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14566 abiflags->ases |= AFL_ASE_MICROMIPS;
14567
14568 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14569 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14570 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14571 && abiflags->isa_level >= 32
bdc6c06e 14572 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
351cdf24
MF
14573 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14574}
14575
b49e97c9
TS
14576/* We need to use a special link routine to handle the .reginfo and
14577 the .mdebug sections. We need to merge all instances of these
14578 sections together, not write them all out sequentially. */
14579
b34976b6 14580bfd_boolean
9719ad41 14581_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14582{
b49e97c9
TS
14583 asection *o;
14584 struct bfd_link_order *p;
14585 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14586 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14587 Elf32_RegInfo reginfo;
14588 struct ecoff_debug_info debug;
861fb55a 14589 struct mips_htab_traverse_info hti;
7a2a6943
NC
14590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14591 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14592 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14593 void *mdebug_handle = NULL;
b49e97c9
TS
14594 asection *s;
14595 EXTR esym;
14596 unsigned int i;
14597 bfd_size_type amt;
0a44bf69 14598 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14599
14600 static const char * const secname[] =
14601 {
14602 ".text", ".init", ".fini", ".data",
14603 ".rodata", ".sdata", ".sbss", ".bss"
14604 };
14605 static const int sc[] =
14606 {
14607 scText, scInit, scFini, scData,
14608 scRData, scSData, scSBss, scBss
14609 };
14610
0a44bf69 14611 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14612 BFD_ASSERT (htab != NULL);
14613
64575f78
MR
14614 /* Sort the dynamic symbols so that those with GOT entries come after
14615 those without. */
d4596a51
RS
14616 if (!mips_elf_sort_hash_table (abfd, info))
14617 return FALSE;
b49e97c9 14618
861fb55a
DJ
14619 /* Create any scheduled LA25 stubs. */
14620 hti.info = info;
14621 hti.output_bfd = abfd;
14622 hti.error = FALSE;
14623 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14624 if (hti.error)
14625 return FALSE;
14626
b49e97c9
TS
14627 /* Get a value for the GP register. */
14628 if (elf_gp (abfd) == 0)
14629 {
14630 struct bfd_link_hash_entry *h;
14631
b34976b6 14632 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14633 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14634 elf_gp (abfd) = (h->u.def.value
14635 + h->u.def.section->output_section->vma
14636 + h->u.def.section->output_offset);
0a44bf69
RS
14637 else if (htab->is_vxworks
14638 && (h = bfd_link_hash_lookup (info->hash,
14639 "_GLOBAL_OFFSET_TABLE_",
14640 FALSE, FALSE, TRUE))
14641 && h->type == bfd_link_hash_defined)
14642 elf_gp (abfd) = (h->u.def.section->output_section->vma
14643 + h->u.def.section->output_offset
14644 + h->u.def.value);
0e1862bb 14645 else if (bfd_link_relocatable (info))
b49e97c9
TS
14646 {
14647 bfd_vma lo = MINUS_ONE;
14648
14649 /* Find the GP-relative section with the lowest offset. */
9719ad41 14650 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14651 if (o->vma < lo
14652 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14653 lo = o->vma;
14654
14655 /* And calculate GP relative to that. */
0a44bf69 14656 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14657 }
14658 else
14659 {
14660 /* If the relocate_section function needs to do a reloc
14661 involving the GP value, it should make a reloc_dangerous
14662 callback to warn that GP is not defined. */
14663 }
14664 }
14665
14666 /* Go through the sections and collect the .reginfo and .mdebug
14667 information. */
351cdf24 14668 abiflags_sec = NULL;
b49e97c9
TS
14669 reginfo_sec = NULL;
14670 mdebug_sec = NULL;
14671 gptab_data_sec = NULL;
14672 gptab_bss_sec = NULL;
9719ad41 14673 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14674 {
351cdf24
MF
14675 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14676 {
14677 /* We have found the .MIPS.abiflags section in the output file.
14678 Look through all the link_orders comprising it and remove them.
14679 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14680 for (p = o->map_head.link_order; p != NULL; p = p->next)
14681 {
14682 asection *input_section;
14683
14684 if (p->type != bfd_indirect_link_order)
14685 {
14686 if (p->type == bfd_data_link_order)
14687 continue;
14688 abort ();
14689 }
14690
14691 input_section = p->u.indirect.section;
14692
14693 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14694 elf_link_input_bfd ignores this section. */
14695 input_section->flags &= ~SEC_HAS_CONTENTS;
14696 }
14697
14698 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14699 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14700
14701 /* Skip this section later on (I don't think this currently
14702 matters, but someday it might). */
14703 o->map_head.link_order = NULL;
14704
14705 abiflags_sec = o;
14706 }
14707
b49e97c9
TS
14708 if (strcmp (o->name, ".reginfo") == 0)
14709 {
14710 memset (&reginfo, 0, sizeof reginfo);
14711
14712 /* We have found the .reginfo section in the output file.
14713 Look through all the link_orders comprising it and merge
14714 the information together. */
8423293d 14715 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14716 {
14717 asection *input_section;
14718 bfd *input_bfd;
14719 Elf32_External_RegInfo ext;
14720 Elf32_RegInfo sub;
6798f8bf 14721 bfd_size_type sz;
b49e97c9
TS
14722
14723 if (p->type != bfd_indirect_link_order)
14724 {
14725 if (p->type == bfd_data_link_order)
14726 continue;
14727 abort ();
14728 }
14729
14730 input_section = p->u.indirect.section;
14731 input_bfd = input_section->owner;
14732
6798f8bf
MR
14733 sz = (input_section->size < sizeof (ext)
14734 ? input_section->size : sizeof (ext));
14735 memset (&ext, 0, sizeof (ext));
b49e97c9 14736 if (! bfd_get_section_contents (input_bfd, input_section,
6798f8bf 14737 &ext, 0, sz))
b34976b6 14738 return FALSE;
b49e97c9
TS
14739
14740 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14741
14742 reginfo.ri_gprmask |= sub.ri_gprmask;
14743 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14744 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14745 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14746 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14747
14748 /* ri_gp_value is set by the function
1c5e4ee9 14749 `_bfd_mips_elf_section_processing' when the section is
b49e97c9
TS
14750 finally written out. */
14751
14752 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14753 elf_link_input_bfd ignores this section. */
14754 input_section->flags &= ~SEC_HAS_CONTENTS;
14755 }
14756
14757 /* Size has been set in _bfd_mips_elf_always_size_sections. */
b248d650 14758 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14759
14760 /* Skip this section later on (I don't think this currently
14761 matters, but someday it might). */
8423293d 14762 o->map_head.link_order = NULL;
b49e97c9
TS
14763
14764 reginfo_sec = o;
14765 }
14766
14767 if (strcmp (o->name, ".mdebug") == 0)
14768 {
14769 struct extsym_info einfo;
14770 bfd_vma last;
14771
14772 /* We have found the .mdebug section in the output file.
14773 Look through all the link_orders comprising it and merge
14774 the information together. */
14775 symhdr->magic = swap->sym_magic;
14776 /* FIXME: What should the version stamp be? */
14777 symhdr->vstamp = 0;
14778 symhdr->ilineMax = 0;
14779 symhdr->cbLine = 0;
14780 symhdr->idnMax = 0;
14781 symhdr->ipdMax = 0;
14782 symhdr->isymMax = 0;
14783 symhdr->ioptMax = 0;
14784 symhdr->iauxMax = 0;
14785 symhdr->issMax = 0;
14786 symhdr->issExtMax = 0;
14787 symhdr->ifdMax = 0;
14788 symhdr->crfd = 0;
14789 symhdr->iextMax = 0;
14790
14791 /* We accumulate the debugging information itself in the
14792 debug_info structure. */
14793 debug.line = NULL;
14794 debug.external_dnr = NULL;
14795 debug.external_pdr = NULL;
14796 debug.external_sym = NULL;
14797 debug.external_opt = NULL;
14798 debug.external_aux = NULL;
14799 debug.ss = NULL;
14800 debug.ssext = debug.ssext_end = NULL;
14801 debug.external_fdr = NULL;
14802 debug.external_rfd = NULL;
14803 debug.external_ext = debug.external_ext_end = NULL;
14804
14805 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14806 if (mdebug_handle == NULL)
b34976b6 14807 return FALSE;
b49e97c9
TS
14808
14809 esym.jmptbl = 0;
14810 esym.cobol_main = 0;
14811 esym.weakext = 0;
14812 esym.reserved = 0;
14813 esym.ifd = ifdNil;
14814 esym.asym.iss = issNil;
14815 esym.asym.st = stLocal;
14816 esym.asym.reserved = 0;
14817 esym.asym.index = indexNil;
14818 last = 0;
14819 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14820 {
14821 esym.asym.sc = sc[i];
14822 s = bfd_get_section_by_name (abfd, secname[i]);
14823 if (s != NULL)
14824 {
14825 esym.asym.value = s->vma;
eea6121a 14826 last = s->vma + s->size;
b49e97c9
TS
14827 }
14828 else
14829 esym.asym.value = last;
14830 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14831 secname[i], &esym))
b34976b6 14832 return FALSE;
b49e97c9
TS
14833 }
14834
8423293d 14835 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14836 {
14837 asection *input_section;
14838 bfd *input_bfd;
14839 const struct ecoff_debug_swap *input_swap;
14840 struct ecoff_debug_info input_debug;
14841 char *eraw_src;
14842 char *eraw_end;
14843
14844 if (p->type != bfd_indirect_link_order)
14845 {
14846 if (p->type == bfd_data_link_order)
14847 continue;
14848 abort ();
14849 }
14850
14851 input_section = p->u.indirect.section;
14852 input_bfd = input_section->owner;
14853
d5eaccd7 14854 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14855 {
14856 /* I don't know what a non MIPS ELF bfd would be
14857 doing with a .mdebug section, but I don't really
14858 want to deal with it. */
14859 continue;
14860 }
14861
14862 input_swap = (get_elf_backend_data (input_bfd)
14863 ->elf_backend_ecoff_debug_swap);
14864
eea6121a 14865 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14866
14867 /* The ECOFF linking code expects that we have already
14868 read in the debugging information and set up an
14869 ecoff_debug_info structure, so we do that now. */
14870 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14871 &input_debug))
b34976b6 14872 return FALSE;
b49e97c9
TS
14873
14874 if (! (bfd_ecoff_debug_accumulate
14875 (mdebug_handle, abfd, &debug, swap, input_bfd,
14876 &input_debug, input_swap, info)))
b34976b6 14877 return FALSE;
b49e97c9
TS
14878
14879 /* Loop through the external symbols. For each one with
14880 interesting information, try to find the symbol in
14881 the linker global hash table and save the information
14882 for the output external symbols. */
14883 eraw_src = input_debug.external_ext;
14884 eraw_end = (eraw_src
14885 + (input_debug.symbolic_header.iextMax
14886 * input_swap->external_ext_size));
14887 for (;
14888 eraw_src < eraw_end;
14889 eraw_src += input_swap->external_ext_size)
14890 {
14891 EXTR ext;
14892 const char *name;
14893 struct mips_elf_link_hash_entry *h;
14894
9719ad41 14895 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14896 if (ext.asym.sc == scNil
14897 || ext.asym.sc == scUndefined
14898 || ext.asym.sc == scSUndefined)
14899 continue;
14900
14901 name = input_debug.ssext + ext.asym.iss;
14902 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14903 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14904 if (h == NULL || h->esym.ifd != -2)
14905 continue;
14906
14907 if (ext.ifd != -1)
14908 {
14909 BFD_ASSERT (ext.ifd
14910 < input_debug.symbolic_header.ifdMax);
14911 ext.ifd = input_debug.ifdmap[ext.ifd];
14912 }
14913
14914 h->esym = ext;
14915 }
14916
14917 /* Free up the information we just read. */
14918 free (input_debug.line);
14919 free (input_debug.external_dnr);
14920 free (input_debug.external_pdr);
14921 free (input_debug.external_sym);
14922 free (input_debug.external_opt);
14923 free (input_debug.external_aux);
14924 free (input_debug.ss);
14925 free (input_debug.ssext);
14926 free (input_debug.external_fdr);
14927 free (input_debug.external_rfd);
14928 free (input_debug.external_ext);
14929
14930 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14931 elf_link_input_bfd ignores this section. */
14932 input_section->flags &= ~SEC_HAS_CONTENTS;
14933 }
14934
0e1862bb 14935 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14936 {
14937 /* Create .rtproc section. */
87e0a731 14938 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14939 if (rtproc_sec == NULL)
14940 {
14941 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14942 | SEC_LINKER_CREATED | SEC_READONLY);
14943
87e0a731
AM
14944 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14945 ".rtproc",
14946 flags);
b49e97c9 14947 if (rtproc_sec == NULL
b49e97c9 14948 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14949 return FALSE;
b49e97c9
TS
14950 }
14951
14952 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14953 info, rtproc_sec,
14954 &debug))
b34976b6 14955 return FALSE;
b49e97c9
TS
14956 }
14957
14958 /* Build the external symbol information. */
14959 einfo.abfd = abfd;
14960 einfo.info = info;
14961 einfo.debug = &debug;
14962 einfo.swap = swap;
b34976b6 14963 einfo.failed = FALSE;
b49e97c9 14964 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14965 mips_elf_output_extsym, &einfo);
b49e97c9 14966 if (einfo.failed)
b34976b6 14967 return FALSE;
b49e97c9
TS
14968
14969 /* Set the size of the .mdebug section. */
eea6121a 14970 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14971
14972 /* Skip this section later on (I don't think this currently
14973 matters, but someday it might). */
8423293d 14974 o->map_head.link_order = NULL;
b49e97c9
TS
14975
14976 mdebug_sec = o;
14977 }
14978
0112cd26 14979 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14980 {
14981 const char *subname;
14982 unsigned int c;
14983 Elf32_gptab *tab;
14984 Elf32_External_gptab *ext_tab;
14985 unsigned int j;
14986
14987 /* The .gptab.sdata and .gptab.sbss sections hold
14988 information describing how the small data area would
14989 change depending upon the -G switch. These sections
14990 not used in executables files. */
0e1862bb 14991 if (! bfd_link_relocatable (info))
b49e97c9 14992 {
8423293d 14993 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14994 {
14995 asection *input_section;
14996
14997 if (p->type != bfd_indirect_link_order)
14998 {
14999 if (p->type == bfd_data_link_order)
15000 continue;
15001 abort ();
15002 }
15003
15004 input_section = p->u.indirect.section;
15005
15006 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15007 elf_link_input_bfd ignores this section. */
15008 input_section->flags &= ~SEC_HAS_CONTENTS;
15009 }
15010
15011 /* Skip this section later on (I don't think this
15012 currently matters, but someday it might). */
8423293d 15013 o->map_head.link_order = NULL;
b49e97c9
TS
15014
15015 /* Really remove the section. */
5daa8fe7 15016 bfd_section_list_remove (abfd, o);
b49e97c9
TS
15017 --abfd->section_count;
15018
15019 continue;
15020 }
15021
15022 /* There is one gptab for initialized data, and one for
15023 uninitialized data. */
15024 if (strcmp (o->name, ".gptab.sdata") == 0)
15025 gptab_data_sec = o;
15026 else if (strcmp (o->name, ".gptab.sbss") == 0)
15027 gptab_bss_sec = o;
15028 else
15029 {
4eca0228 15030 _bfd_error_handler
695344c0 15031 /* xgettext:c-format */
871b3ab2 15032 (_("%pB: illegal section name `%pA'"), abfd, o);
b49e97c9 15033 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 15034 return FALSE;
b49e97c9
TS
15035 }
15036
15037 /* The linker script always combines .gptab.data and
15038 .gptab.sdata into .gptab.sdata, and likewise for
15039 .gptab.bss and .gptab.sbss. It is possible that there is
15040 no .sdata or .sbss section in the output file, in which
15041 case we must change the name of the output section. */
15042 subname = o->name + sizeof ".gptab" - 1;
15043 if (bfd_get_section_by_name (abfd, subname) == NULL)
15044 {
15045 if (o == gptab_data_sec)
15046 o->name = ".gptab.data";
15047 else
15048 o->name = ".gptab.bss";
15049 subname = o->name + sizeof ".gptab" - 1;
15050 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15051 }
15052
15053 /* Set up the first entry. */
15054 c = 1;
15055 amt = c * sizeof (Elf32_gptab);
9719ad41 15056 tab = bfd_malloc (amt);
b49e97c9 15057 if (tab == NULL)
b34976b6 15058 return FALSE;
b49e97c9
TS
15059 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15060 tab[0].gt_header.gt_unused = 0;
15061
15062 /* Combine the input sections. */
8423293d 15063 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
15064 {
15065 asection *input_section;
15066 bfd *input_bfd;
15067 bfd_size_type size;
15068 unsigned long last;
15069 bfd_size_type gpentry;
15070
15071 if (p->type != bfd_indirect_link_order)
15072 {
15073 if (p->type == bfd_data_link_order)
15074 continue;
15075 abort ();
15076 }
15077
15078 input_section = p->u.indirect.section;
15079 input_bfd = input_section->owner;
15080
15081 /* Combine the gptab entries for this input section one
15082 by one. We know that the input gptab entries are
15083 sorted by ascending -G value. */
eea6121a 15084 size = input_section->size;
b49e97c9
TS
15085 last = 0;
15086 for (gpentry = sizeof (Elf32_External_gptab);
15087 gpentry < size;
15088 gpentry += sizeof (Elf32_External_gptab))
15089 {
15090 Elf32_External_gptab ext_gptab;
15091 Elf32_gptab int_gptab;
15092 unsigned long val;
15093 unsigned long add;
b34976b6 15094 bfd_boolean exact;
b49e97c9
TS
15095 unsigned int look;
15096
15097 if (! (bfd_get_section_contents
9719ad41
RS
15098 (input_bfd, input_section, &ext_gptab, gpentry,
15099 sizeof (Elf32_External_gptab))))
b49e97c9
TS
15100 {
15101 free (tab);
b34976b6 15102 return FALSE;
b49e97c9
TS
15103 }
15104
15105 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15106 &int_gptab);
15107 val = int_gptab.gt_entry.gt_g_value;
15108 add = int_gptab.gt_entry.gt_bytes - last;
15109
b34976b6 15110 exact = FALSE;
b49e97c9
TS
15111 for (look = 1; look < c; look++)
15112 {
15113 if (tab[look].gt_entry.gt_g_value >= val)
15114 tab[look].gt_entry.gt_bytes += add;
15115
15116 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 15117 exact = TRUE;
b49e97c9
TS
15118 }
15119
15120 if (! exact)
15121 {
15122 Elf32_gptab *new_tab;
15123 unsigned int max;
15124
15125 /* We need a new table entry. */
15126 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 15127 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
15128 if (new_tab == NULL)
15129 {
15130 free (tab);
b34976b6 15131 return FALSE;
b49e97c9
TS
15132 }
15133 tab = new_tab;
15134 tab[c].gt_entry.gt_g_value = val;
15135 tab[c].gt_entry.gt_bytes = add;
15136
15137 /* Merge in the size for the next smallest -G
15138 value, since that will be implied by this new
15139 value. */
15140 max = 0;
15141 for (look = 1; look < c; look++)
15142 {
15143 if (tab[look].gt_entry.gt_g_value < val
15144 && (max == 0
15145 || (tab[look].gt_entry.gt_g_value
15146 > tab[max].gt_entry.gt_g_value)))
15147 max = look;
15148 }
15149 if (max != 0)
15150 tab[c].gt_entry.gt_bytes +=
15151 tab[max].gt_entry.gt_bytes;
15152
15153 ++c;
15154 }
15155
15156 last = int_gptab.gt_entry.gt_bytes;
15157 }
15158
15159 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15160 elf_link_input_bfd ignores this section. */
15161 input_section->flags &= ~SEC_HAS_CONTENTS;
15162 }
15163
15164 /* The table must be sorted by -G value. */
15165 if (c > 2)
15166 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15167
15168 /* Swap out the table. */
15169 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 15170 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
15171 if (ext_tab == NULL)
15172 {
15173 free (tab);
b34976b6 15174 return FALSE;
b49e97c9
TS
15175 }
15176
15177 for (j = 0; j < c; j++)
15178 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15179 free (tab);
15180
eea6121a 15181 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
15182 o->contents = (bfd_byte *) ext_tab;
15183
15184 /* Skip this section later on (I don't think this currently
15185 matters, but someday it might). */
8423293d 15186 o->map_head.link_order = NULL;
b49e97c9
TS
15187 }
15188 }
15189
15190 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 15191 if (!bfd_elf_final_link (abfd, info))
b34976b6 15192 return FALSE;
b49e97c9
TS
15193
15194 /* Now write out the computed sections. */
15195
351cdf24
MF
15196 if (abiflags_sec != NULL)
15197 {
15198 Elf_External_ABIFlags_v0 ext;
15199 Elf_Internal_ABIFlags_v0 *abiflags;
15200
15201 abiflags = &mips_elf_tdata (abfd)->abiflags;
15202
15203 /* Set up the abiflags if no valid input sections were found. */
15204 if (!mips_elf_tdata (abfd)->abiflags_valid)
15205 {
15206 infer_mips_abiflags (abfd, abiflags);
15207 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15208 }
15209 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15210 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15211 return FALSE;
15212 }
15213
9719ad41 15214 if (reginfo_sec != NULL)
b49e97c9
TS
15215 {
15216 Elf32_External_RegInfo ext;
15217
15218 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 15219 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 15220 return FALSE;
b49e97c9
TS
15221 }
15222
9719ad41 15223 if (mdebug_sec != NULL)
b49e97c9
TS
15224 {
15225 BFD_ASSERT (abfd->output_has_begun);
15226 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15227 swap, info,
15228 mdebug_sec->filepos))
b34976b6 15229 return FALSE;
b49e97c9
TS
15230
15231 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15232 }
15233
9719ad41 15234 if (gptab_data_sec != NULL)
b49e97c9
TS
15235 {
15236 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15237 gptab_data_sec->contents,
eea6121a 15238 0, gptab_data_sec->size))
b34976b6 15239 return FALSE;
b49e97c9
TS
15240 }
15241
9719ad41 15242 if (gptab_bss_sec != NULL)
b49e97c9
TS
15243 {
15244 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15245 gptab_bss_sec->contents,
eea6121a 15246 0, gptab_bss_sec->size))
b34976b6 15247 return FALSE;
b49e97c9
TS
15248 }
15249
15250 if (SGI_COMPAT (abfd))
15251 {
15252 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15253 if (rtproc_sec != NULL)
15254 {
15255 if (! bfd_set_section_contents (abfd, rtproc_sec,
15256 rtproc_sec->contents,
eea6121a 15257 0, rtproc_sec->size))
b34976b6 15258 return FALSE;
b49e97c9
TS
15259 }
15260 }
15261
b34976b6 15262 return TRUE;
b49e97c9
TS
15263}
15264\f
b2e9744f
MR
15265/* Merge object file header flags from IBFD into OBFD. Raise an error
15266 if there are conflicting settings. */
15267
15268static bfd_boolean
50e03d47 15269mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 15270{
50e03d47 15271 bfd *obfd = info->output_bfd;
b2e9744f
MR
15272 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15273 flagword old_flags;
15274 flagword new_flags;
15275 bfd_boolean ok;
15276
15277 new_flags = elf_elfheader (ibfd)->e_flags;
15278 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15279 old_flags = elf_elfheader (obfd)->e_flags;
15280
15281 /* Check flag compatibility. */
15282
15283 new_flags &= ~EF_MIPS_NOREORDER;
15284 old_flags &= ~EF_MIPS_NOREORDER;
15285
15286 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15287 doesn't seem to matter. */
15288 new_flags &= ~EF_MIPS_XGOT;
15289 old_flags &= ~EF_MIPS_XGOT;
15290
15291 /* MIPSpro generates ucode info in n64 objects. Again, we should
15292 just be able to ignore this. */
15293 new_flags &= ~EF_MIPS_UCODE;
15294 old_flags &= ~EF_MIPS_UCODE;
15295
15296 /* DSOs should only be linked with CPIC code. */
15297 if ((ibfd->flags & DYNAMIC) != 0)
15298 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15299
15300 if (new_flags == old_flags)
15301 return TRUE;
15302
15303 ok = TRUE;
15304
15305 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15306 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15307 {
4eca0228 15308 _bfd_error_handler
871b3ab2 15309 (_("%pB: warning: linking abicalls files with non-abicalls files"),
b2e9744f
MR
15310 ibfd);
15311 ok = TRUE;
15312 }
15313
15314 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15315 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15316 if (! (new_flags & EF_MIPS_PIC))
15317 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15318
15319 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15320 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15321
15322 /* Compare the ISAs. */
15323 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15324 {
4eca0228 15325 _bfd_error_handler
871b3ab2 15326 (_("%pB: linking 32-bit code with 64-bit code"),
b2e9744f
MR
15327 ibfd);
15328 ok = FALSE;
15329 }
15330 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15331 {
15332 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15333 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15334 {
15335 /* Copy the architecture info from IBFD to OBFD. Also copy
15336 the 32-bit flag (if set) so that we continue to recognise
15337 OBFD as a 32-bit binary. */
15338 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15339 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15340 elf_elfheader (obfd)->e_flags
15341 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15342
15343 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15344 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15345
15346 /* Copy across the ABI flags if OBFD doesn't use them
15347 and if that was what caused us to treat IBFD as 32-bit. */
15348 if ((old_flags & EF_MIPS_ABI) == 0
15349 && mips_32bit_flags_p (new_flags)
15350 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15351 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15352 }
15353 else
15354 {
15355 /* The ISAs aren't compatible. */
4eca0228 15356 _bfd_error_handler
695344c0 15357 /* xgettext:c-format */
871b3ab2 15358 (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15359 ibfd,
15360 bfd_printable_name (ibfd),
15361 bfd_printable_name (obfd));
15362 ok = FALSE;
15363 }
15364 }
15365
15366 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15367 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15368
15369 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15370 does set EI_CLASS differently from any 32-bit ABI. */
15371 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15372 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15373 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15374 {
15375 /* Only error if both are set (to different values). */
15376 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15377 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15378 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15379 {
4eca0228 15380 _bfd_error_handler
695344c0 15381 /* xgettext:c-format */
871b3ab2 15382 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15383 ibfd,
15384 elf_mips_abi_name (ibfd),
15385 elf_mips_abi_name (obfd));
15386 ok = FALSE;
15387 }
15388 new_flags &= ~EF_MIPS_ABI;
15389 old_flags &= ~EF_MIPS_ABI;
15390 }
15391
15392 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15393 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15394 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15395 {
15396 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15397 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15398 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15399 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15400 int micro_mis = old_m16 && new_micro;
15401 int m16_mis = old_micro && new_m16;
15402
15403 if (m16_mis || micro_mis)
15404 {
4eca0228 15405 _bfd_error_handler
695344c0 15406 /* xgettext:c-format */
871b3ab2 15407 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
b2e9744f
MR
15408 ibfd,
15409 m16_mis ? "MIPS16" : "microMIPS",
15410 m16_mis ? "microMIPS" : "MIPS16");
15411 ok = FALSE;
15412 }
15413
15414 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15415
15416 new_flags &= ~ EF_MIPS_ARCH_ASE;
15417 old_flags &= ~ EF_MIPS_ARCH_ASE;
15418 }
15419
15420 /* Compare NaN encodings. */
15421 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15422 {
695344c0 15423 /* xgettext:c-format */
871b3ab2 15424 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15425 ibfd,
15426 (new_flags & EF_MIPS_NAN2008
15427 ? "-mnan=2008" : "-mnan=legacy"),
15428 (old_flags & EF_MIPS_NAN2008
15429 ? "-mnan=2008" : "-mnan=legacy"));
15430 ok = FALSE;
15431 new_flags &= ~EF_MIPS_NAN2008;
15432 old_flags &= ~EF_MIPS_NAN2008;
15433 }
15434
15435 /* Compare FP64 state. */
15436 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15437 {
695344c0 15438 /* xgettext:c-format */
871b3ab2 15439 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
b2e9744f
MR
15440 ibfd,
15441 (new_flags & EF_MIPS_FP64
15442 ? "-mfp64" : "-mfp32"),
15443 (old_flags & EF_MIPS_FP64
15444 ? "-mfp64" : "-mfp32"));
15445 ok = FALSE;
15446 new_flags &= ~EF_MIPS_FP64;
15447 old_flags &= ~EF_MIPS_FP64;
15448 }
15449
15450 /* Warn about any other mismatches */
15451 if (new_flags != old_flags)
15452 {
695344c0 15453 /* xgettext:c-format */
4eca0228 15454 _bfd_error_handler
871b3ab2 15455 (_("%pB: uses different e_flags (%#x) fields than previous modules "
d42c267e
AM
15456 "(%#x)"),
15457 ibfd, new_flags, old_flags);
b2e9744f
MR
15458 ok = FALSE;
15459 }
15460
15461 return ok;
15462}
15463
2cf19d5c
JM
15464/* Merge object attributes from IBFD into OBFD. Raise an error if
15465 there are conflicting attributes. */
15466static bfd_boolean
50e03d47 15467mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15468{
50e03d47 15469 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15470 obj_attribute *in_attr;
15471 obj_attribute *out_attr;
6ae68ba3 15472 bfd *abi_fp_bfd;
b60bf9be 15473 bfd *abi_msa_bfd;
6ae68ba3
MR
15474
15475 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15476 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15477 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15478 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15479
b60bf9be
CF
15480 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15481 if (!abi_msa_bfd
15482 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15483 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15484
2cf19d5c
JM
15485 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15486 {
15487 /* This is the first object. Copy the attributes. */
15488 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15489
15490 /* Use the Tag_null value to indicate the attributes have been
15491 initialized. */
15492 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15493
15494 return TRUE;
15495 }
15496
15497 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15498 non-conflicting ones. */
2cf19d5c
JM
15499 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15500 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15501 {
757a636f 15502 int out_fp, in_fp;
6ae68ba3 15503
757a636f
RS
15504 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15505 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15506 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15507 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15508 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15509 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15510 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15511 || in_fp == Val_GNU_MIPS_ABI_FP_64
15512 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15513 {
15514 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15515 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15516 }
15517 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15518 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15519 || out_fp == Val_GNU_MIPS_ABI_FP_64
15520 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15521 /* Keep the current setting. */;
15522 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15523 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15524 {
15525 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15526 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15527 }
15528 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15529 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15530 /* Keep the current setting. */;
757a636f
RS
15531 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15532 {
15533 const char *out_string, *in_string;
6ae68ba3 15534
757a636f
RS
15535 out_string = _bfd_mips_fp_abi_string (out_fp);
15536 in_string = _bfd_mips_fp_abi_string (in_fp);
15537 /* First warn about cases involving unrecognised ABIs. */
15538 if (!out_string && !in_string)
695344c0 15539 /* xgettext:c-format */
757a636f 15540 _bfd_error_handler
2c1c9679 15541 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15542 "(set by %pB), %pB uses unknown floating point ABI %d"),
c08bb8dd 15543 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15544 else if (!out_string)
15545 _bfd_error_handler
695344c0 15546 /* xgettext:c-format */
2c1c9679 15547 (_("warning: %pB uses unknown floating point ABI %d "
871b3ab2 15548 "(set by %pB), %pB uses %s"),
c08bb8dd 15549 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15550 else if (!in_string)
15551 _bfd_error_handler
695344c0 15552 /* xgettext:c-format */
2c1c9679 15553 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15554 "%pB uses unknown floating point ABI %d"),
c08bb8dd 15555 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15556 else
15557 {
15558 /* If one of the bfds is soft-float, the other must be
15559 hard-float. The exact choice of hard-float ABI isn't
15560 really relevant to the error message. */
15561 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15562 out_string = "-mhard-float";
15563 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15564 in_string = "-mhard-float";
15565 _bfd_error_handler
695344c0 15566 /* xgettext:c-format */
2c1c9679 15567 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
c08bb8dd 15568 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15569 }
15570 }
2cf19d5c
JM
15571 }
15572
b60bf9be
CF
15573 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15574 non-conflicting ones. */
15575 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15576 {
15577 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15578 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15579 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15580 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15581 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15582 {
15583 case Val_GNU_MIPS_ABI_MSA_128:
15584 _bfd_error_handler
695344c0 15585 /* xgettext:c-format */
2c1c9679 15586 (_("warning: %pB uses %s (set by %pB), "
871b3ab2 15587 "%pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15588 obfd, "-mmsa", abi_msa_bfd,
15589 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15590 break;
15591
15592 default:
15593 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15594 {
15595 case Val_GNU_MIPS_ABI_MSA_128:
15596 _bfd_error_handler
695344c0 15597 /* xgettext:c-format */
2c1c9679 15598 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15599 "(set by %pB), %pB uses %s"),
c08bb8dd
AM
15600 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15601 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15602 break;
15603
15604 default:
15605 _bfd_error_handler
695344c0 15606 /* xgettext:c-format */
2c1c9679 15607 (_("warning: %pB uses unknown MSA ABI %d "
871b3ab2 15608 "(set by %pB), %pB uses unknown MSA ABI %d"),
c08bb8dd
AM
15609 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15610 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15611 break;
15612 }
15613 }
15614 }
15615
2cf19d5c 15616 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15617 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15618}
15619
a3dc0a7f
MR
15620/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15621 there are conflicting settings. */
15622
15623static bfd_boolean
15624mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15625{
15626 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15627 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15628 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15629
15630 /* Update the output abiflags fp_abi using the computed fp_abi. */
15631 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15632
15633#define max(a, b) ((a) > (b) ? (a) : (b))
15634 /* Merge abiflags. */
15635 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15636 in_tdata->abiflags.isa_level);
15637 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15638 in_tdata->abiflags.isa_rev);
15639 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15640 in_tdata->abiflags.gpr_size);
15641 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15642 in_tdata->abiflags.cpr1_size);
15643 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15644 in_tdata->abiflags.cpr2_size);
15645#undef max
15646 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15647 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15648
15649 return TRUE;
15650}
15651
b49e97c9
TS
15652/* Merge backend specific data from an object file to the output
15653 object file when linking. */
15654
b34976b6 15655bfd_boolean
50e03d47 15656_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15657{
50e03d47 15658 bfd *obfd = info->output_bfd;
cf8502c1
MR
15659 struct mips_elf_obj_tdata *out_tdata;
15660 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15661 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15662 asection *sec;
d537eeb5 15663 bfd_boolean ok;
b49e97c9 15664
58238693 15665 /* Check if we have the same endianness. */
50e03d47 15666 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15667 {
4eca0228 15668 _bfd_error_handler
871b3ab2 15669 (_("%pB: endianness incompatible with that of the selected emulation"),
d003868e 15670 ibfd);
aa701218
AO
15671 return FALSE;
15672 }
b49e97c9 15673
d5eaccd7 15674 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15675 return TRUE;
b49e97c9 15676
cf8502c1
MR
15677 in_tdata = mips_elf_tdata (ibfd);
15678 out_tdata = mips_elf_tdata (obfd);
15679
aa701218
AO
15680 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15681 {
4eca0228 15682 _bfd_error_handler
871b3ab2 15683 (_("%pB: ABI is incompatible with that of the selected emulation"),
d003868e 15684 ibfd);
aa701218
AO
15685 return FALSE;
15686 }
15687
23ba6f18
MR
15688 /* Check to see if the input BFD actually contains any sections. If not,
15689 then it has no attributes, and its flags may not have been initialized
15690 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15691 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15692 {
15693 /* Ignore synthetic sections and empty .text, .data and .bss sections
15694 which are automatically generated by gas. Also ignore fake
15695 (s)common sections, since merely defining a common symbol does
15696 not affect compatibility. */
15697 if ((sec->flags & SEC_IS_COMMON) == 0
15698 && strcmp (sec->name, ".reginfo")
15699 && strcmp (sec->name, ".mdebug")
15700 && (sec->size != 0
15701 || (strcmp (sec->name, ".text")
15702 && strcmp (sec->name, ".data")
15703 && strcmp (sec->name, ".bss"))))
15704 {
15705 null_input_bfd = FALSE;
15706 break;
15707 }
15708 }
15709 if (null_input_bfd)
15710 return TRUE;
15711
28d45e28 15712 /* Populate abiflags using existing information. */
23ba6f18
MR
15713 if (in_tdata->abiflags_valid)
15714 {
15715 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15716 Elf_Internal_ABIFlags_v0 in_abiflags;
15717 Elf_Internal_ABIFlags_v0 abiflags;
15718
15719 /* Set up the FP ABI attribute from the abiflags if it is not already
07d6d2b8 15720 set. */
23ba6f18 15721 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
07d6d2b8 15722 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15723
351cdf24 15724 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15725 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15726
15727 /* It is not possible to infer the correct ISA revision
07d6d2b8 15728 for R3 or R5 so drop down to R2 for the checks. */
351cdf24
MF
15729 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15730 in_abiflags.isa_rev = 2;
15731
c97c330b
MF
15732 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15733 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15734 _bfd_error_handler
2c1c9679 15735 (_("%pB: warning: inconsistent ISA between e_flags and "
351cdf24
MF
15736 ".MIPS.abiflags"), ibfd);
15737 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15738 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15739 _bfd_error_handler
2c1c9679 15740 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15741 ".MIPS.abiflags"), ibfd);
15742 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15743 _bfd_error_handler
2c1c9679 15744 (_("%pB: warning: inconsistent ASEs between e_flags and "
351cdf24 15745 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15746 /* The isa_ext is allowed to be an extension of what can be inferred
15747 from e_flags. */
15748 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15749 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15750 _bfd_error_handler
2c1c9679 15751 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
351cdf24
MF
15752 ".MIPS.abiflags"), ibfd);
15753 if (in_abiflags.flags2 != 0)
4eca0228 15754 _bfd_error_handler
2c1c9679 15755 (_("%pB: warning: unexpected flag in the flags2 field of "
351cdf24 15756 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15757 in_abiflags.flags2);
351cdf24 15758 }
28d45e28
MR
15759 else
15760 {
15761 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15762 in_tdata->abiflags_valid = TRUE;
15763 }
15764
cf8502c1 15765 if (!out_tdata->abiflags_valid)
351cdf24
MF
15766 {
15767 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15768 out_tdata->abiflags = in_tdata->abiflags;
15769 out_tdata->abiflags_valid = TRUE;
351cdf24 15770 }
b49e97c9
TS
15771
15772 if (! elf_flags_init (obfd))
15773 {
b34976b6 15774 elf_flags_init (obfd) = TRUE;
351cdf24 15775 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15776 elf_elfheader (obfd)->e_ident[EI_CLASS]
15777 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15778
15779 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15780 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15781 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15782 bfd_get_mach (ibfd))))
b49e97c9
TS
15783 {
15784 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15785 bfd_get_mach (ibfd)))
b34976b6 15786 return FALSE;
351cdf24
MF
15787
15788 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15789 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15790 }
15791
d537eeb5 15792 ok = TRUE;
b49e97c9 15793 }
d537eeb5 15794 else
50e03d47 15795 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15796
50e03d47 15797 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15798
a3dc0a7f 15799 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15800
d537eeb5 15801 if (!ok)
b49e97c9
TS
15802 {
15803 bfd_set_error (bfd_error_bad_value);
b34976b6 15804 return FALSE;
b49e97c9
TS
15805 }
15806
b34976b6 15807 return TRUE;
b49e97c9
TS
15808}
15809
15810/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15811
b34976b6 15812bfd_boolean
9719ad41 15813_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15814{
15815 BFD_ASSERT (!elf_flags_init (abfd)
15816 || elf_elfheader (abfd)->e_flags == flags);
15817
15818 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15819 elf_flags_init (abfd) = TRUE;
15820 return TRUE;
b49e97c9
TS
15821}
15822
ad9563d6
CM
15823char *
15824_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15825{
15826 switch (dtag)
15827 {
15828 default: return "";
15829 case DT_MIPS_RLD_VERSION:
15830 return "MIPS_RLD_VERSION";
15831 case DT_MIPS_TIME_STAMP:
15832 return "MIPS_TIME_STAMP";
15833 case DT_MIPS_ICHECKSUM:
15834 return "MIPS_ICHECKSUM";
15835 case DT_MIPS_IVERSION:
15836 return "MIPS_IVERSION";
15837 case DT_MIPS_FLAGS:
15838 return "MIPS_FLAGS";
15839 case DT_MIPS_BASE_ADDRESS:
15840 return "MIPS_BASE_ADDRESS";
15841 case DT_MIPS_MSYM:
15842 return "MIPS_MSYM";
15843 case DT_MIPS_CONFLICT:
15844 return "MIPS_CONFLICT";
15845 case DT_MIPS_LIBLIST:
15846 return "MIPS_LIBLIST";
15847 case DT_MIPS_LOCAL_GOTNO:
15848 return "MIPS_LOCAL_GOTNO";
15849 case DT_MIPS_CONFLICTNO:
15850 return "MIPS_CONFLICTNO";
15851 case DT_MIPS_LIBLISTNO:
15852 return "MIPS_LIBLISTNO";
15853 case DT_MIPS_SYMTABNO:
15854 return "MIPS_SYMTABNO";
15855 case DT_MIPS_UNREFEXTNO:
15856 return "MIPS_UNREFEXTNO";
15857 case DT_MIPS_GOTSYM:
15858 return "MIPS_GOTSYM";
15859 case DT_MIPS_HIPAGENO:
15860 return "MIPS_HIPAGENO";
15861 case DT_MIPS_RLD_MAP:
15862 return "MIPS_RLD_MAP";
a5499fa4
MF
15863 case DT_MIPS_RLD_MAP_REL:
15864 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15865 case DT_MIPS_DELTA_CLASS:
15866 return "MIPS_DELTA_CLASS";
15867 case DT_MIPS_DELTA_CLASS_NO:
15868 return "MIPS_DELTA_CLASS_NO";
15869 case DT_MIPS_DELTA_INSTANCE:
15870 return "MIPS_DELTA_INSTANCE";
15871 case DT_MIPS_DELTA_INSTANCE_NO:
15872 return "MIPS_DELTA_INSTANCE_NO";
15873 case DT_MIPS_DELTA_RELOC:
15874 return "MIPS_DELTA_RELOC";
15875 case DT_MIPS_DELTA_RELOC_NO:
15876 return "MIPS_DELTA_RELOC_NO";
15877 case DT_MIPS_DELTA_SYM:
15878 return "MIPS_DELTA_SYM";
15879 case DT_MIPS_DELTA_SYM_NO:
15880 return "MIPS_DELTA_SYM_NO";
15881 case DT_MIPS_DELTA_CLASSSYM:
15882 return "MIPS_DELTA_CLASSSYM";
15883 case DT_MIPS_DELTA_CLASSSYM_NO:
15884 return "MIPS_DELTA_CLASSSYM_NO";
15885 case DT_MIPS_CXX_FLAGS:
15886 return "MIPS_CXX_FLAGS";
15887 case DT_MIPS_PIXIE_INIT:
15888 return "MIPS_PIXIE_INIT";
15889 case DT_MIPS_SYMBOL_LIB:
15890 return "MIPS_SYMBOL_LIB";
15891 case DT_MIPS_LOCALPAGE_GOTIDX:
15892 return "MIPS_LOCALPAGE_GOTIDX";
15893 case DT_MIPS_LOCAL_GOTIDX:
15894 return "MIPS_LOCAL_GOTIDX";
15895 case DT_MIPS_HIDDEN_GOTIDX:
15896 return "MIPS_HIDDEN_GOTIDX";
15897 case DT_MIPS_PROTECTED_GOTIDX:
15898 return "MIPS_PROTECTED_GOT_IDX";
15899 case DT_MIPS_OPTIONS:
15900 return "MIPS_OPTIONS";
15901 case DT_MIPS_INTERFACE:
15902 return "MIPS_INTERFACE";
15903 case DT_MIPS_DYNSTR_ALIGN:
15904 return "DT_MIPS_DYNSTR_ALIGN";
15905 case DT_MIPS_INTERFACE_SIZE:
15906 return "DT_MIPS_INTERFACE_SIZE";
15907 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15908 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15909 case DT_MIPS_PERF_SUFFIX:
15910 return "DT_MIPS_PERF_SUFFIX";
15911 case DT_MIPS_COMPACT_SIZE:
15912 return "DT_MIPS_COMPACT_SIZE";
15913 case DT_MIPS_GP_VALUE:
15914 return "DT_MIPS_GP_VALUE";
15915 case DT_MIPS_AUX_DYNAMIC:
15916 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15917 case DT_MIPS_PLTGOT:
15918 return "DT_MIPS_PLTGOT";
15919 case DT_MIPS_RWPLT:
15920 return "DT_MIPS_RWPLT";
ad9563d6
CM
15921 }
15922}
15923
757a636f
RS
15924/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15925 not known. */
15926
15927const char *
15928_bfd_mips_fp_abi_string (int fp)
15929{
15930 switch (fp)
15931 {
15932 /* These strings aren't translated because they're simply
15933 option lists. */
15934 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15935 return "-mdouble-float";
15936
15937 case Val_GNU_MIPS_ABI_FP_SINGLE:
15938 return "-msingle-float";
15939
15940 case Val_GNU_MIPS_ABI_FP_SOFT:
15941 return "-msoft-float";
15942
351cdf24
MF
15943 case Val_GNU_MIPS_ABI_FP_OLD_64:
15944 return _("-mips32r2 -mfp64 (12 callee-saved)");
15945
15946 case Val_GNU_MIPS_ABI_FP_XX:
15947 return "-mfpxx";
15948
757a636f 15949 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15950 return "-mgp32 -mfp64";
15951
15952 case Val_GNU_MIPS_ABI_FP_64A:
15953 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15954
15955 default:
15956 return 0;
15957 }
15958}
15959
351cdf24
MF
15960static void
15961print_mips_ases (FILE *file, unsigned int mask)
15962{
15963 if (mask & AFL_ASE_DSP)
15964 fputs ("\n\tDSP ASE", file);
15965 if (mask & AFL_ASE_DSPR2)
15966 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15967 if (mask & AFL_ASE_DSPR3)
15968 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15969 if (mask & AFL_ASE_EVA)
15970 fputs ("\n\tEnhanced VA Scheme", file);
15971 if (mask & AFL_ASE_MCU)
15972 fputs ("\n\tMCU (MicroController) ASE", file);
15973 if (mask & AFL_ASE_MDMX)
15974 fputs ("\n\tMDMX ASE", file);
15975 if (mask & AFL_ASE_MIPS3D)
15976 fputs ("\n\tMIPS-3D ASE", file);
15977 if (mask & AFL_ASE_MT)
15978 fputs ("\n\tMT ASE", file);
15979 if (mask & AFL_ASE_SMARTMIPS)
15980 fputs ("\n\tSmartMIPS ASE", file);
15981 if (mask & AFL_ASE_VIRT)
15982 fputs ("\n\tVZ ASE", file);
15983 if (mask & AFL_ASE_MSA)
15984 fputs ("\n\tMSA ASE", file);
15985 if (mask & AFL_ASE_MIPS16)
15986 fputs ("\n\tMIPS16 ASE", file);
15987 if (mask & AFL_ASE_MICROMIPS)
15988 fputs ("\n\tMICROMIPS ASE", file);
15989 if (mask & AFL_ASE_XPA)
15990 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15991 if (mask & AFL_ASE_MIPS16E2)
15992 fputs ("\n\tMIPS16e2 ASE", file);
730c3174
SE
15993 if (mask & AFL_ASE_CRC)
15994 fputs ("\n\tCRC ASE", file);
6f20c942
FS
15995 if (mask & AFL_ASE_GINV)
15996 fputs ("\n\tGINV ASE", file);
8095d2f7
CX
15997 if (mask & AFL_ASE_LOONGSON_MMI)
15998 fputs ("\n\tLoongson MMI ASE", file);
716c08de
CX
15999 if (mask & AFL_ASE_LOONGSON_CAM)
16000 fputs ("\n\tLoongson CAM ASE", file);
bdc6c06e
CX
16001 if (mask & AFL_ASE_LOONGSON_EXT)
16002 fputs ("\n\tLoongson EXT ASE", file);
a693765e
CX
16003 if (mask & AFL_ASE_LOONGSON_EXT2)
16004 fputs ("\n\tLoongson EXT2 ASE", file);
351cdf24
MF
16005 if (mask == 0)
16006 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
16007 else if ((mask & ~AFL_ASE_MASK) != 0)
16008 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
16009}
16010
16011static void
16012print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16013{
16014 switch (isa_ext)
16015 {
16016 case 0:
16017 fputs (_("None"), file);
16018 break;
16019 case AFL_EXT_XLR:
16020 fputs ("RMI XLR", file);
16021 break;
2c629856
N
16022 case AFL_EXT_OCTEON3:
16023 fputs ("Cavium Networks Octeon3", file);
16024 break;
351cdf24
MF
16025 case AFL_EXT_OCTEON2:
16026 fputs ("Cavium Networks Octeon2", file);
16027 break;
16028 case AFL_EXT_OCTEONP:
16029 fputs ("Cavium Networks OcteonP", file);
16030 break;
351cdf24
MF
16031 case AFL_EXT_OCTEON:
16032 fputs ("Cavium Networks Octeon", file);
16033 break;
16034 case AFL_EXT_5900:
16035 fputs ("Toshiba R5900", file);
16036 break;
16037 case AFL_EXT_4650:
16038 fputs ("MIPS R4650", file);
16039 break;
16040 case AFL_EXT_4010:
16041 fputs ("LSI R4010", file);
16042 break;
16043 case AFL_EXT_4100:
16044 fputs ("NEC VR4100", file);
16045 break;
16046 case AFL_EXT_3900:
16047 fputs ("Toshiba R3900", file);
16048 break;
16049 case AFL_EXT_10000:
16050 fputs ("MIPS R10000", file);
16051 break;
16052 case AFL_EXT_SB1:
16053 fputs ("Broadcom SB-1", file);
16054 break;
16055 case AFL_EXT_4111:
16056 fputs ("NEC VR4111/VR4181", file);
16057 break;
16058 case AFL_EXT_4120:
16059 fputs ("NEC VR4120", file);
16060 break;
16061 case AFL_EXT_5400:
16062 fputs ("NEC VR5400", file);
16063 break;
16064 case AFL_EXT_5500:
16065 fputs ("NEC VR5500", file);
16066 break;
16067 case AFL_EXT_LOONGSON_2E:
16068 fputs ("ST Microelectronics Loongson 2E", file);
16069 break;
16070 case AFL_EXT_LOONGSON_2F:
16071 fputs ("ST Microelectronics Loongson 2F", file);
16072 break;
38bf472a
MR
16073 case AFL_EXT_INTERAPTIV_MR2:
16074 fputs ("Imagination interAptiv MR2", file);
16075 break;
351cdf24 16076 default:
00ac7aa0 16077 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
16078 break;
16079 }
16080}
16081
16082static void
16083print_mips_fp_abi_value (FILE *file, int val)
16084{
16085 switch (val)
16086 {
16087 case Val_GNU_MIPS_ABI_FP_ANY:
16088 fprintf (file, _("Hard or soft float\n"));
16089 break;
16090 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16091 fprintf (file, _("Hard float (double precision)\n"));
16092 break;
16093 case Val_GNU_MIPS_ABI_FP_SINGLE:
16094 fprintf (file, _("Hard float (single precision)\n"));
16095 break;
16096 case Val_GNU_MIPS_ABI_FP_SOFT:
16097 fprintf (file, _("Soft float\n"));
16098 break;
16099 case Val_GNU_MIPS_ABI_FP_OLD_64:
16100 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16101 break;
16102 case Val_GNU_MIPS_ABI_FP_XX:
16103 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16104 break;
16105 case Val_GNU_MIPS_ABI_FP_64:
16106 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16107 break;
16108 case Val_GNU_MIPS_ABI_FP_64A:
16109 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16110 break;
16111 default:
16112 fprintf (file, "??? (%d)\n", val);
16113 break;
16114 }
16115}
16116
16117static int
16118get_mips_reg_size (int reg_size)
16119{
16120 return (reg_size == AFL_REG_NONE) ? 0
16121 : (reg_size == AFL_REG_32) ? 32
16122 : (reg_size == AFL_REG_64) ? 64
16123 : (reg_size == AFL_REG_128) ? 128
16124 : -1;
16125}
16126
b34976b6 16127bfd_boolean
9719ad41 16128_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 16129{
9719ad41 16130 FILE *file = ptr;
b49e97c9
TS
16131
16132 BFD_ASSERT (abfd != NULL && ptr != NULL);
16133
16134 /* Print normal ELF private data. */
16135 _bfd_elf_print_private_bfd_data (abfd, ptr);
16136
16137 /* xgettext:c-format */
16138 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16139
16140 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16141 fprintf (file, _(" [abi=O32]"));
16142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16143 fprintf (file, _(" [abi=O64]"));
16144 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16145 fprintf (file, _(" [abi=EABI32]"));
16146 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16147 fprintf (file, _(" [abi=EABI64]"));
16148 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16149 fprintf (file, _(" [abi unknown]"));
16150 else if (ABI_N32_P (abfd))
16151 fprintf (file, _(" [abi=N32]"));
16152 else if (ABI_64_P (abfd))
16153 fprintf (file, _(" [abi=64]"));
16154 else
16155 fprintf (file, _(" [no abi set]"));
16156
16157 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 16158 fprintf (file, " [mips1]");
b49e97c9 16159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 16160 fprintf (file, " [mips2]");
b49e97c9 16161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 16162 fprintf (file, " [mips3]");
b49e97c9 16163 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 16164 fprintf (file, " [mips4]");
b49e97c9 16165 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 16166 fprintf (file, " [mips5]");
b49e97c9 16167 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 16168 fprintf (file, " [mips32]");
b49e97c9 16169 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 16170 fprintf (file, " [mips64]");
af7ee8bf 16171 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 16172 fprintf (file, " [mips32r2]");
5f74bc13 16173 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 16174 fprintf (file, " [mips64r2]");
7361da2c
AB
16175 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16176 fprintf (file, " [mips32r6]");
16177 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16178 fprintf (file, " [mips64r6]");
b49e97c9
TS
16179 else
16180 fprintf (file, _(" [unknown ISA]"));
16181
40d32fc6 16182 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 16183 fprintf (file, " [mdmx]");
40d32fc6
CD
16184
16185 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 16186 fprintf (file, " [mips16]");
40d32fc6 16187
df58fc94
RS
16188 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16189 fprintf (file, " [micromips]");
16190
ba92f887
MR
16191 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16192 fprintf (file, " [nan2008]");
16193
5baf5e34 16194 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 16195 fprintf (file, " [old fp64]");
5baf5e34 16196
b49e97c9 16197 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 16198 fprintf (file, " [32bitmode]");
b49e97c9
TS
16199 else
16200 fprintf (file, _(" [not 32bitmode]"));
16201
c0e3f241 16202 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 16203 fprintf (file, " [noreorder]");
c0e3f241
CD
16204
16205 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 16206 fprintf (file, " [PIC]");
c0e3f241
CD
16207
16208 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 16209 fprintf (file, " [CPIC]");
c0e3f241
CD
16210
16211 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 16212 fprintf (file, " [XGOT]");
c0e3f241
CD
16213
16214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 16215 fprintf (file, " [UCODE]");
c0e3f241 16216
b49e97c9
TS
16217 fputc ('\n', file);
16218
351cdf24
MF
16219 if (mips_elf_tdata (abfd)->abiflags_valid)
16220 {
16221 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16222 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16223 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16224 if (abiflags->isa_rev > 1)
16225 fprintf (file, "r%d", abiflags->isa_rev);
16226 fprintf (file, "\nGPR size: %d",
16227 get_mips_reg_size (abiflags->gpr_size));
16228 fprintf (file, "\nCPR1 size: %d",
16229 get_mips_reg_size (abiflags->cpr1_size));
16230 fprintf (file, "\nCPR2 size: %d",
16231 get_mips_reg_size (abiflags->cpr2_size));
16232 fputs ("\nFP ABI: ", file);
16233 print_mips_fp_abi_value (file, abiflags->fp_abi);
16234 fputs ("ISA Extension: ", file);
16235 print_mips_isa_ext (file, abiflags->isa_ext);
16236 fputs ("\nASEs:", file);
16237 print_mips_ases (file, abiflags->ases);
16238 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16239 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16240 fputc ('\n', file);
16241 }
16242
b34976b6 16243 return TRUE;
b49e97c9 16244}
2f89ff8d 16245
b35d266b 16246const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 16247{
07d6d2b8
AM
16248 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16249 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26 16250 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
07d6d2b8 16251 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
0112cd26
NC
16252 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16253 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
07d6d2b8 16254 { NULL, 0, 0, 0, 0 }
2f89ff8d 16255};
5e2b0d47 16256
8992f0d7
TS
16257/* Merge non visibility st_other attributes. Ensure that the
16258 STO_OPTIONAL flag is copied into h->other, even if this is not a
16259 definiton of the symbol. */
5e2b0d47
NC
16260void
16261_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16262 const Elf_Internal_Sym *isym,
16263 bfd_boolean definition,
16264 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16265{
8992f0d7
TS
16266 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16267 {
16268 unsigned char other;
16269
16270 other = (definition ? isym->st_other : h->other);
16271 other &= ~ELF_ST_VISIBILITY (-1);
16272 h->other = other | ELF_ST_VISIBILITY (h->other);
16273 }
16274
16275 if (!definition
5e2b0d47
NC
16276 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16277 h->other |= STO_OPTIONAL;
16278}
12ac1cf5
NC
16279
16280/* Decide whether an undefined symbol is special and can be ignored.
16281 This is the case for OPTIONAL symbols on IRIX. */
16282bfd_boolean
16283_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16284{
16285 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16286}
e0764319
NC
16287
16288bfd_boolean
16289_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16290{
16291 return (sym->st_shndx == SHN_COMMON
16292 || sym->st_shndx == SHN_MIPS_ACOMMON
16293 || sym->st_shndx == SHN_MIPS_SCOMMON);
16294}
861fb55a
DJ
16295
16296/* Return address for Ith PLT stub in section PLT, for relocation REL
16297 or (bfd_vma) -1 if it should not be included. */
16298
16299bfd_vma
16300_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16301 const arelent *rel ATTRIBUTE_UNUSED)
16302{
16303 return (plt->vma
16304 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16305 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16306}
16307
1bbce132
MR
16308/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16309 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16310 and .got.plt and also the slots may be of a different size each we walk
16311 the PLT manually fetching instructions and matching them against known
16312 patterns. To make things easier standard MIPS slots, if any, always come
16313 first. As we don't create proper ELF symbols we use the UDATA.I member
16314 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16315 with the ST_OTHER member of the ELF symbol. */
16316
16317long
16318_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16319 long symcount ATTRIBUTE_UNUSED,
16320 asymbol **syms ATTRIBUTE_UNUSED,
16321 long dynsymcount, asymbol **dynsyms,
16322 asymbol **ret)
16323{
16324 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16325 static const char microsuffix[] = "@micromipsplt";
16326 static const char m16suffix[] = "@mips16plt";
16327 static const char mipssuffix[] = "@plt";
16328
16329 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16331 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16332 Elf_Internal_Shdr *hdr;
16333 bfd_byte *plt_data;
16334 bfd_vma plt_offset;
16335 unsigned int other;
16336 bfd_vma entry_size;
16337 bfd_vma plt0_size;
16338 asection *relplt;
16339 bfd_vma opcode;
16340 asection *plt;
16341 asymbol *send;
16342 size_t size;
16343 char *names;
16344 long counti;
16345 arelent *p;
16346 asymbol *s;
16347 char *nend;
16348 long count;
16349 long pi;
16350 long i;
16351 long n;
16352
16353 *ret = NULL;
16354
16355 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16356 return 0;
16357
16358 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16359 if (relplt == NULL)
16360 return 0;
16361
16362 hdr = &elf_section_data (relplt)->this_hdr;
16363 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16364 return 0;
16365
16366 plt = bfd_get_section_by_name (abfd, ".plt");
16367 if (plt == NULL)
16368 return 0;
16369
16370 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16371 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16372 return -1;
16373 p = relplt->relocation;
16374
16375 /* Calculating the exact amount of space required for symbols would
16376 require two passes over the PLT, so just pessimise assuming two
16377 PLT slots per relocation. */
16378 count = relplt->size / hdr->sh_entsize;
16379 counti = count * bed->s->int_rels_per_ext_rel;
16380 size = 2 * count * sizeof (asymbol);
16381 size += count * (sizeof (mipssuffix) +
16382 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16383 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16384 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16385
16386 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16387 size += sizeof (asymbol) + sizeof (pltname);
16388
16389 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16390 return -1;
16391
16392 if (plt->size < 16)
16393 return -1;
16394
16395 s = *ret = bfd_malloc (size);
16396 if (s == NULL)
16397 return -1;
16398 send = s + 2 * count + 1;
16399
16400 names = (char *) send;
16401 nend = (char *) s + size;
16402 n = 0;
16403
16404 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16405 if (opcode == 0x3302fffe)
16406 {
16407 if (!micromips_p)
16408 return -1;
16409 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16410 other = STO_MICROMIPS;
16411 }
833794fc
MR
16412 else if (opcode == 0x0398c1d0)
16413 {
16414 if (!micromips_p)
16415 return -1;
16416 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16417 other = STO_MICROMIPS;
16418 }
1bbce132
MR
16419 else
16420 {
16421 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16422 other = 0;
16423 }
16424
16425 s->the_bfd = abfd;
16426 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16427 s->section = plt;
16428 s->value = 0;
16429 s->name = names;
16430 s->udata.i = other;
16431 memcpy (names, pltname, sizeof (pltname));
16432 names += sizeof (pltname);
16433 ++s, ++n;
16434
16435 pi = 0;
16436 for (plt_offset = plt0_size;
16437 plt_offset + 8 <= plt->size && s < send;
16438 plt_offset += entry_size)
16439 {
16440 bfd_vma gotplt_addr;
16441 const char *suffix;
16442 bfd_vma gotplt_hi;
16443 bfd_vma gotplt_lo;
16444 size_t suffixlen;
16445
16446 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16447
16448 /* Check if the second word matches the expected MIPS16 instruction. */
16449 if (opcode == 0x651aeb00)
16450 {
16451 if (micromips_p)
16452 return -1;
16453 /* Truncated table??? */
16454 if (plt_offset + 16 > plt->size)
16455 break;
16456 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16457 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16458 suffixlen = sizeof (m16suffix);
16459 suffix = m16suffix;
16460 other = STO_MIPS16;
16461 }
833794fc 16462 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16463 else if (opcode == 0xff220000)
16464 {
16465 if (!micromips_p)
16466 return -1;
16467 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16468 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16469 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16470 gotplt_lo <<= 2;
16471 gotplt_addr = gotplt_hi + gotplt_lo;
16472 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16473 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16474 suffixlen = sizeof (microsuffix);
16475 suffix = microsuffix;
16476 other = STO_MICROMIPS;
16477 }
833794fc
MR
16478 /* Likewise the expected microMIPS instruction (insn32 mode). */
16479 else if ((opcode & 0xffff0000) == 0xff2f0000)
16480 {
16481 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16482 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16483 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16484 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16485 gotplt_addr = gotplt_hi + gotplt_lo;
16486 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16487 suffixlen = sizeof (microsuffix);
16488 suffix = microsuffix;
16489 other = STO_MICROMIPS;
16490 }
1bbce132
MR
16491 /* Otherwise assume standard MIPS code. */
16492 else
16493 {
16494 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16495 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16496 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16497 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16498 gotplt_addr = gotplt_hi + gotplt_lo;
16499 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16500 suffixlen = sizeof (mipssuffix);
16501 suffix = mipssuffix;
16502 other = 0;
16503 }
16504 /* Truncated table??? */
16505 if (plt_offset + entry_size > plt->size)
16506 break;
16507
16508 for (i = 0;
16509 i < count && p[pi].address != gotplt_addr;
16510 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16511
16512 if (i < count)
16513 {
16514 size_t namelen;
16515 size_t len;
16516
16517 *s = **p[pi].sym_ptr_ptr;
16518 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16519 we are defining a symbol, ensure one of them is set. */
16520 if ((s->flags & BSF_LOCAL) == 0)
16521 s->flags |= BSF_GLOBAL;
16522 s->flags |= BSF_SYNTHETIC;
16523 s->section = plt;
16524 s->value = plt_offset;
16525 s->name = names;
16526 s->udata.i = other;
16527
16528 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16529 namelen = len + suffixlen;
16530 if (names + namelen > nend)
16531 break;
16532
16533 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16534 names += len;
16535 memcpy (names, suffix, suffixlen);
16536 names += suffixlen;
16537
16538 ++s, ++n;
16539 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16540 }
16541 }
16542
16543 free (plt_data);
16544
16545 return n;
16546}
16547
5e7fc731
MR
16548/* Return the ABI flags associated with ABFD if available. */
16549
16550Elf_Internal_ABIFlags_v0 *
16551bfd_mips_elf_get_abiflags (bfd *abfd)
16552{
16553 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16554
16555 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16556}
16557
bb29b84d
MR
16558/* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16559 field. Taken from `libc-abis.h' generated at GNU libc build time.
16560 Using a MIPS_ prefix as other libc targets use different values. */
16561enum
16562{
16563 MIPS_LIBC_ABI_DEFAULT = 0,
16564 MIPS_LIBC_ABI_MIPS_PLT,
16565 MIPS_LIBC_ABI_UNIQUE,
16566 MIPS_LIBC_ABI_MIPS_O32_FP64,
47275900 16567 MIPS_LIBC_ABI_ABSOLUTE,
bb29b84d
MR
16568 MIPS_LIBC_ABI_MAX
16569};
16570
861fb55a
DJ
16571void
16572_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16573{
47275900 16574 struct mips_elf_link_hash_table *htab = NULL;
861fb55a
DJ
16575 Elf_Internal_Ehdr *i_ehdrp;
16576
16577 i_ehdrp = elf_elfheader (abfd);
16578 if (link_info)
16579 {
16580 htab = mips_elf_hash_table (link_info);
4dfe6ac6 16581 BFD_ASSERT (htab != NULL);
861fb55a 16582 }
0af03126 16583
47275900
MR
16584 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16585 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16586
351cdf24
MF
16587 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16588 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
bb29b84d 16589 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
334cd8a7 16590
47275900
MR
16591 /* Mark that we need support for absolute symbols in the dynamic loader. */
16592 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16593 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16594
334cd8a7 16595 _bfd_elf_post_process_headers (abfd, link_info);
861fb55a 16596}
2f0c68f2
CM
16597
16598int
1ced1a5f
MR
16599_bfd_mips_elf_compact_eh_encoding
16600 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16601{
16602 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16603}
16604
16605/* Return the opcode for can't unwind. */
16606
16607int
1ced1a5f
MR
16608_bfd_mips_elf_cant_unwind_opcode
16609 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
2f0c68f2
CM
16610{
16611 return COMPACT_EH_CANT_UNWIND_OPCODE;
16612}
This page took 2.408212 seconds and 4 git commands to generate.