* elfxx-mips.c (_bfd_mips_elf_create_dynamic_sections): Clarify
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
64543e1a 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
e407c74b 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
58238693 4 Free Software Foundation, Inc.
b49e97c9
TS
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
ae9a127f 13 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 14
ae9a127f
NC
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
cd123cb7 17 the Free Software Foundation; either version 3 of the License, or
ae9a127f 18 (at your option) any later version.
b49e97c9 19
ae9a127f
NC
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
b49e97c9 24
ae9a127f
NC
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
cd123cb7
NC
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
b49e97c9
TS
30
31/* This file handles functionality common to the different MIPS ABI's. */
32
b49e97c9 33#include "sysdep.h"
3db64b00 34#include "bfd.h"
b49e97c9 35#include "libbfd.h"
64543e1a 36#include "libiberty.h"
b49e97c9
TS
37#include "elf-bfd.h"
38#include "elfxx-mips.h"
39#include "elf/mips.h"
0a44bf69 40#include "elf-vxworks.h"
b49e97c9
TS
41
42/* Get the ECOFF swapping routines. */
43#include "coff/sym.h"
44#include "coff/symconst.h"
45#include "coff/ecoff.h"
46#include "coff/mips.h"
47
b15e6682
AO
48#include "hashtab.h"
49
9ab066b4
RS
50/* Types of TLS GOT entry. */
51enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56};
57
ead49a57 58/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
b15e6682
AO
76struct mips_got_entry
77{
3dff0dd1 78 /* One input bfd that needs the GOT entry. */
b15e6682 79 bfd *abfd;
f4416af6
AO
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 91 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
f4416af6
AO
94 struct mips_elf_link_hash_entry *h;
95 } d;
0f20cc35 96
9ab066b4
RS
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
0f20cc35
DJ
99 unsigned char tls_type;
100
9ab066b4
RS
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
b15e6682 105 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
b15e6682
AO
109};
110
13db6b44
RS
111/* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121struct mips_got_page_ref
122{
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130};
131
c224138d
RS
132/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135struct mips_got_page_range
136{
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140};
141
142/* This structure describes the range of addends that are applied to page
13db6b44 143 relocations against a given section. */
c224138d
RS
144struct mips_got_page_entry
145{
13db6b44
RS
146 /* The section that these entries are based on. */
147 asection *sec;
c224138d
RS
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152};
153
f0abc2a1 154/* This structure is used to hold .got information when linking. */
b49e97c9
TS
155
156struct mips_got_info
157{
b49e97c9
TS
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
23cc69b6
RS
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
0f20cc35
DJ
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
c224138d 167 /* The number of local .got entries, eventually including page entries. */
b49e97c9 168 unsigned int local_gotno;
c224138d
RS
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
ab361d49
RS
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
b49e97c9
TS
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
b15e6682
AO
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
13db6b44
RS
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
c224138d
RS
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
f4416af6
AO
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184};
185
d7206569 186/* Structure passed when merging bfds' gots. */
f4416af6
AO
187
188struct mips_elf_got_per_bfd_arg
189{
f4416af6
AO
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
c224138d
RS
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
0f20cc35
DJ
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
f4416af6
AO
211};
212
ab361d49
RS
213/* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
f4416af6 215
ab361d49 216struct mips_elf_traverse_got_arg
f4416af6 217{
ab361d49 218 struct bfd_link_info *info;
f4416af6
AO
219 struct mips_got_info *g;
220 int value;
0f20cc35
DJ
221};
222
f0abc2a1
AM
223struct _mips_elf_section_data
224{
225 struct bfd_elf_section_data elf;
226 union
227 {
f0abc2a1
AM
228 bfd_byte *tdata;
229 } u;
230};
231
232#define mips_elf_section_data(sec) \
68bfbfcc 233 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 234
d5eaccd7
RS
235#define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
4dfe6ac6 238 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 239
634835ae
RS
240/* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257#define GGA_NORMAL 0
258#define GGA_RELOC_ONLY 1
259#define GGA_NONE 2
260
861fb55a
DJ
261/* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288};
289
290/* Macros for populating a mips_elf_la25_stub. */
291
292#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
295#define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297#define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299#define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 301
b49e97c9
TS
302/* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305struct mips_elf_hash_sort_data
306{
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
0f20cc35
DJ
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
b49e97c9 312 long min_got_dynindx;
f4416af6
AO
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 315 with dynamic relocations pointing to it from non-primary GOTs). */
f4416af6 316 long max_unref_got_dynindx;
b49e97c9
TS
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320};
321
322/* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325struct mips_elf_link_hash_entry
326{
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
861fb55a
DJ
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
b49e97c9
TS
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
b49e97c9
TS
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
b49e97c9
TS
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
7c5fcef7 350
634835ae
RS
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
6ccf4795
RS
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
71782a75
RS
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
861fb55a
DJ
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
71782a75
RS
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
861fb55a
DJ
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
b49e97c9
TS
386};
387
388/* MIPS ELF linker hash table. */
389
390struct mips_elf_link_hash_table
391{
392 struct elf_link_hash_table root;
861fb55a 393
b49e97c9
TS
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
861fb55a 396
b49e97c9
TS
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
861fb55a 399
e6aea42d
MR
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 402 bfd_boolean use_rld_obj_head;
861fb55a 403
b4082c70
DD
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
861fb55a 406
b49e97c9 407 /* This is set if we see any mips16 stub sections. */
b34976b6 408 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
0a44bf69
RS
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
861fb55a 415
0e53d9da
AN
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
861fb55a 418
0a44bf69
RS
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
4e41d0d7 427 asection *sstubs;
a8028dd0 428 asection *sgot;
861fb55a 429
a8028dd0
RS
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
861fb55a 432
d222d210
RS
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
861fb55a 437 /* The size of the PLT header in bytes. */
0a44bf69 438 bfd_vma plt_header_size;
861fb55a
DJ
439
440 /* The size of a PLT entry in bytes. */
0a44bf69 441 bfd_vma plt_entry_size;
861fb55a 442
33bb52fb
RS
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
861fb55a 445
5108fc1b
RS
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
861fb55a
DJ
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
861fb55a
DJ
471};
472
4dfe6ac6
NC
473/* Get the MIPS ELF linker hash table from a link_info structure. */
474
475#define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
861fb55a 479/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
480struct mips_htab_traverse_info
481{
861fb55a
DJ
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
b49e97c9
TS
488};
489
6ae68ba3
MR
490/* MIPS ELF private object data. */
491
492struct mips_elf_obj_tdata
493{
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
ee227692
RS
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
698600e4
AM
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
6ae68ba3
MR
518};
519
520/* Get MIPS ELF private object data from BFD's tdata. */
521
522#define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
0f20cc35
DJ
525#define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 538 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 553
b49e97c9
TS
554/* Structure used to pass information to mips_elf_output_extsym. */
555
556struct extsym_info
557{
9e4aeb93
RS
558 bfd *abfd;
559 struct bfd_link_info *info;
b49e97c9
TS
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
b34976b6 562 bfd_boolean failed;
b49e97c9
TS
563};
564
8dc1a139 565/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
566
567static const char * const mips_elf_dynsym_rtproc_names[] =
568{
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573};
574
575/* These structures are used to generate the .compact_rel section on
8dc1a139 576 IRIX5. */
b49e97c9
TS
577
578typedef struct
579{
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586} Elf32_compact_rel;
587
588typedef struct
589{
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596} Elf32_External_compact_rel;
597
598typedef struct
599{
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606} Elf32_crinfo;
607
608typedef struct
609{
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615} Elf32_crinfo2;
616
617typedef struct
618{
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622} Elf32_External_crinfo;
623
624typedef struct
625{
626 bfd_byte info[4];
627 bfd_byte konst[4];
628} Elf32_External_crinfo2;
629
630/* These are the constants used to swap the bitfields in a crinfo. */
631
632#define CRINFO_CTYPE (0x1)
633#define CRINFO_CTYPE_SH (31)
634#define CRINFO_RTYPE (0xf)
635#define CRINFO_RTYPE_SH (27)
636#define CRINFO_DIST2TO (0xff)
637#define CRINFO_DIST2TO_SH (19)
638#define CRINFO_RELVADDR (0x7ffff)
639#define CRINFO_RELVADDR_SH (0)
640
641/* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644#define CRF_MIPS_LONG 1
645#define CRF_MIPS_SHORT 0
646
647/* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657#define CRT_MIPS_REL32 0xa
658#define CRT_MIPS_WORD 0xb
659#define CRT_MIPS_GPHI_LO 0xc
660#define CRT_MIPS_JMPAD 0xd
661
662#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666\f
667/* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670typedef struct runtime_pdr {
ae9a127f
NC
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
b49e97c9 680 long reserved;
ae9a127f 681 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
682} RPDR, *pRPDR;
683#define cbRPDR sizeof (RPDR)
684#define rpdNil ((pRPDR) 0)
685\f
b15e6682 686static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
b34976b6 689static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 690 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
691static bfd_vma mips_elf_high
692 (bfd_vma);
b34976b6 693static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
f4416af6 697static bfd_vma mips_elf_adjust_gp
9719ad41 698 (bfd *, struct mips_got_info *, bfd *);
f4416af6 699
b49e97c9
TS
700/* This will be used when we sort the dynamic relocation records. */
701static bfd *reldyn_sorting_bfd;
702
6d30f5b2
NC
703/* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705#define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
cd8d5a82
CF
709/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712#define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718#define JALR_TO_BAL_P(abfd) 1
719
38a7df63
CF
720/* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723#define JR_TO_B_P(abfd) 1
724
861fb55a
DJ
725/* True if ABFD is a PIC object. */
726#define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
b49e97c9 729/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
730#define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
4a14403c 733/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 734#define ABI_64_P(abfd) \
141ff970 735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 736
4a14403c
TS
737/* Nonzero if ABFD is using NewABI conventions. */
738#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
740/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
741#define IRIX_COMPAT(abfd) \
742 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
743
b49e97c9
TS
744/* Whether we are trying to be compatible with IRIX at all. */
745#define SGI_COMPAT(abfd) \
746 (IRIX_COMPAT (abfd) != ict_none)
747
748/* The name of the options section. */
749#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 750 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 751
cc2e31b9
RS
752/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
753 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
754#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
755 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
756
943284cc
DJ
757/* Whether the section is readonly. */
758#define MIPS_ELF_READONLY_SECTION(sec) \
759 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
760 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
761
b49e97c9 762/* The name of the stub section. */
ca07892d 763#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
764
765/* The size of an external REL relocation. */
766#define MIPS_ELF_REL_SIZE(abfd) \
767 (get_elf_backend_data (abfd)->s->sizeof_rel)
768
0a44bf69
RS
769/* The size of an external RELA relocation. */
770#define MIPS_ELF_RELA_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rela)
772
b49e97c9
TS
773/* The size of an external dynamic table entry. */
774#define MIPS_ELF_DYN_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_dyn)
776
777/* The size of a GOT entry. */
778#define MIPS_ELF_GOT_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->arch_size / 8)
780
b4082c70
DD
781/* The size of the .rld_map section. */
782#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
b49e97c9
TS
785/* The size of a symbol-table entry. */
786#define MIPS_ELF_SYM_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->sizeof_sym)
788
789/* The default alignment for sections, as a power of two. */
790#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 791 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
792
793/* Get word-sized data. */
794#define MIPS_ELF_GET_WORD(abfd, ptr) \
795 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
796
797/* Put out word-sized data. */
798#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
799 (ABI_64_P (abfd) \
800 ? bfd_put_64 (abfd, val, ptr) \
801 : bfd_put_32 (abfd, val, ptr))
802
861fb55a
DJ
803/* The opcode for word-sized loads (LW or LD). */
804#define MIPS_ELF_LOAD_WORD(abfd) \
805 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
806
b49e97c9 807/* Add a dynamic symbol table-entry. */
9719ad41 808#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 809 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
810
811#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
812 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
813
0a44bf69
RS
814/* The name of the dynamic relocation section. */
815#define MIPS_ELF_REL_DYN_NAME(INFO) \
816 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
817
b49e97c9
TS
818/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
819 from smaller values. Start with zero, widen, *then* decrement. */
820#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 821#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 822
51e38d68
RS
823/* The value to write into got[1] for SVR4 targets, to identify it is
824 a GNU object. The dynamic linker can then use got[1] to store the
825 module pointer. */
826#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
827 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
828
f4416af6 829/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
830#define ELF_MIPS_GP_OFFSET(INFO) \
831 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
832
833/* The maximum size of the GOT for it to be addressable using 16-bit
834 offsets from $gp. */
0a44bf69 835#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 836
6a691779 837/* Instructions which appear in a stub. */
3d6746ca
DD
838#define STUB_LW(abfd) \
839 ((ABI_64_P (abfd) \
840 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
841 : 0x8f998010)) /* lw t9,0x8010(gp) */
842#define STUB_MOVE(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0x03e0782d /* daddu t7,ra */ \
845 : 0x03e07821)) /* addu t7,ra */
846#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
847#define STUB_JALR 0x0320f809 /* jalr t9,ra */
5108fc1b
RS
848#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
849#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
850#define STUB_LI16S(abfd, VAL) \
851 ((ABI_64_P (abfd) \
852 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
853 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
854
5108fc1b
RS
855#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
856#define MIPS_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
857
858/* The name of the dynamic interpreter. This is put in the .interp
859 section. */
860
861#define ELF_DYNAMIC_INTERPRETER(abfd) \
862 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
863 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
864 : "/usr/lib/libc.so.1")
865
866#ifdef BFD64
ee6423ed
AO
867#define MNAME(bfd,pre,pos) \
868 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
869#define ELF_R_SYM(bfd, i) \
870 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
871#define ELF_R_TYPE(bfd, i) \
872 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
873#define ELF_R_INFO(bfd, s, t) \
874 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
875#else
ee6423ed 876#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
877#define ELF_R_SYM(bfd, i) \
878 (ELF32_R_SYM (i))
879#define ELF_R_TYPE(bfd, i) \
880 (ELF32_R_TYPE (i))
881#define ELF_R_INFO(bfd, s, t) \
882 (ELF32_R_INFO (s, t))
883#endif
884\f
885 /* The mips16 compiler uses a couple of special sections to handle
886 floating point arguments.
887
888 Section names that look like .mips16.fn.FNNAME contain stubs that
889 copy floating point arguments from the fp regs to the gp regs and
890 then jump to FNNAME. If any 32 bit function calls FNNAME, the
891 call should be redirected to the stub instead. If no 32 bit
892 function calls FNNAME, the stub should be discarded. We need to
893 consider any reference to the function, not just a call, because
894 if the address of the function is taken we will need the stub,
895 since the address might be passed to a 32 bit function.
896
897 Section names that look like .mips16.call.FNNAME contain stubs
898 that copy floating point arguments from the gp regs to the fp
899 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
900 then any 16 bit function that calls FNNAME should be redirected
901 to the stub instead. If FNNAME is not a 32 bit function, the
902 stub should be discarded.
903
904 .mips16.call.fp.FNNAME sections are similar, but contain stubs
905 which call FNNAME and then copy the return value from the fp regs
906 to the gp regs. These stubs store the return value in $18 while
907 calling FNNAME; any function which might call one of these stubs
908 must arrange to save $18 around the call. (This case is not
909 needed for 32 bit functions that call 16 bit functions, because
910 16 bit functions always return floating point values in both
911 $f0/$f1 and $2/$3.)
912
913 Note that in all cases FNNAME might be defined statically.
914 Therefore, FNNAME is not used literally. Instead, the relocation
915 information will indicate which symbol the section is for.
916
917 We record any stubs that we find in the symbol table. */
918
919#define FN_STUB ".mips16.fn."
920#define CALL_STUB ".mips16.call."
921#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
922
923#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
924#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
925#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 926\f
861fb55a 927/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
928static const bfd_vma mips_o32_exec_plt0_entry[] =
929{
861fb55a
DJ
930 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
931 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
932 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
933 0x031cc023, /* subu $24, $24, $28 */
81f5d455 934 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938};
939
940/* The format of the first PLT entry in an N32 executable. Different
941 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
942static const bfd_vma mips_n32_exec_plt0_entry[] =
943{
861fb55a
DJ
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
81f5d455 948 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
861fb55a
DJ
949 0x0018c082, /* srl $24, $24, 2 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
952};
953
954/* The format of the first PLT entry in an N64 executable. Different
955 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
956static const bfd_vma mips_n64_exec_plt0_entry[] =
957{
861fb55a
DJ
958 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
959 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
960 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
961 0x030ec023, /* subu $24, $24, $14 */
81f5d455 962 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
861fb55a
DJ
963 0x0018c0c2, /* srl $24, $24, 3 */
964 0x0320f809, /* jalr $25 */
965 0x2718fffe /* subu $24, $24, 2 */
966};
967
968/* The format of subsequent PLT entries. */
6d30f5b2
NC
969static const bfd_vma mips_exec_plt_entry[] =
970{
861fb55a
DJ
971 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
972 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
973 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
974 0x03200008 /* jr $25 */
975};
976
0a44bf69 977/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
978static const bfd_vma mips_vxworks_exec_plt0_entry[] =
979{
0a44bf69
RS
980 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
981 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
982 0x8f390008, /* lw t9, 8(t9) */
983 0x00000000, /* nop */
984 0x03200008, /* jr t9 */
985 0x00000000 /* nop */
986};
987
988/* The format of subsequent PLT entries. */
6d30f5b2
NC
989static const bfd_vma mips_vxworks_exec_plt_entry[] =
990{
0a44bf69
RS
991 0x10000000, /* b .PLT_resolver */
992 0x24180000, /* li t8, <pltindex> */
993 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
994 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
995 0x8f390000, /* lw t9, 0(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
998 0x00000000 /* nop */
999};
1000
1001/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1002static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1003{
0a44bf69
RS
1004 0x8f990008, /* lw t9, 8(gp) */
1005 0x00000000, /* nop */
1006 0x03200008, /* jr t9 */
1007 0x00000000, /* nop */
1008 0x00000000, /* nop */
1009 0x00000000 /* nop */
1010};
1011
1012/* The format of subsequent PLT entries. */
6d30f5b2
NC
1013static const bfd_vma mips_vxworks_shared_plt_entry[] =
1014{
0a44bf69
RS
1015 0x10000000, /* b .PLT_resolver */
1016 0x24180000 /* li t8, <pltindex> */
1017};
1018\f
d21911ea
MR
1019/* microMIPS 32-bit opcode helper installer. */
1020
1021static void
1022bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1023{
1024 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1025 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1026}
1027
1028/* microMIPS 32-bit opcode helper retriever. */
1029
1030static bfd_vma
1031bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1032{
1033 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1034}
1035\f
b49e97c9
TS
1036/* Look up an entry in a MIPS ELF linker hash table. */
1037
1038#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1039 ((struct mips_elf_link_hash_entry *) \
1040 elf_link_hash_lookup (&(table)->root, (string), (create), \
1041 (copy), (follow)))
1042
1043/* Traverse a MIPS ELF linker hash table. */
1044
1045#define mips_elf_link_hash_traverse(table, func, info) \
1046 (elf_link_hash_traverse \
1047 (&(table)->root, \
9719ad41 1048 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1049 (info)))
1050
0f20cc35
DJ
1051/* Find the base offsets for thread-local storage in this object,
1052 for GD/LD and IE/LE respectively. */
1053
1054#define TP_OFFSET 0x7000
1055#define DTP_OFFSET 0x8000
1056
1057static bfd_vma
1058dtprel_base (struct bfd_link_info *info)
1059{
1060 /* If tls_sec is NULL, we should have signalled an error already. */
1061 if (elf_hash_table (info)->tls_sec == NULL)
1062 return 0;
1063 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1064}
1065
1066static bfd_vma
1067tprel_base (struct bfd_link_info *info)
1068{
1069 /* If tls_sec is NULL, we should have signalled an error already. */
1070 if (elf_hash_table (info)->tls_sec == NULL)
1071 return 0;
1072 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1073}
1074
b49e97c9
TS
1075/* Create an entry in a MIPS ELF linker hash table. */
1076
1077static struct bfd_hash_entry *
9719ad41
RS
1078mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1079 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1080{
1081 struct mips_elf_link_hash_entry *ret =
1082 (struct mips_elf_link_hash_entry *) entry;
1083
1084 /* Allocate the structure if it has not already been allocated by a
1085 subclass. */
9719ad41
RS
1086 if (ret == NULL)
1087 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1088 if (ret == NULL)
b49e97c9
TS
1089 return (struct bfd_hash_entry *) ret;
1090
1091 /* Call the allocation method of the superclass. */
1092 ret = ((struct mips_elf_link_hash_entry *)
1093 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1094 table, string));
9719ad41 1095 if (ret != NULL)
b49e97c9
TS
1096 {
1097 /* Set local fields. */
1098 memset (&ret->esym, 0, sizeof (EXTR));
1099 /* We use -2 as a marker to indicate that the information has
1100 not been set. -1 means there is no associated ifd. */
1101 ret->esym.ifd = -2;
861fb55a 1102 ret->la25_stub = 0;
b49e97c9 1103 ret->possibly_dynamic_relocs = 0;
b49e97c9 1104 ret->fn_stub = NULL;
b49e97c9
TS
1105 ret->call_stub = NULL;
1106 ret->call_fp_stub = NULL;
634835ae 1107 ret->global_got_area = GGA_NONE;
6ccf4795 1108 ret->got_only_for_calls = TRUE;
71782a75 1109 ret->readonly_reloc = FALSE;
861fb55a 1110 ret->has_static_relocs = FALSE;
71782a75
RS
1111 ret->no_fn_stub = FALSE;
1112 ret->need_fn_stub = FALSE;
861fb55a 1113 ret->has_nonpic_branches = FALSE;
33bb52fb 1114 ret->needs_lazy_stub = FALSE;
b49e97c9
TS
1115 }
1116
1117 return (struct bfd_hash_entry *) ret;
1118}
f0abc2a1 1119
6ae68ba3
MR
1120/* Allocate MIPS ELF private object data. */
1121
1122bfd_boolean
1123_bfd_mips_elf_mkobject (bfd *abfd)
1124{
1125 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1126 MIPS_ELF_DATA);
1127}
1128
f0abc2a1 1129bfd_boolean
9719ad41 1130_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1131{
f592407e
AM
1132 if (!sec->used_by_bfd)
1133 {
1134 struct _mips_elf_section_data *sdata;
1135 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1136
f592407e
AM
1137 sdata = bfd_zalloc (abfd, amt);
1138 if (sdata == NULL)
1139 return FALSE;
1140 sec->used_by_bfd = sdata;
1141 }
f0abc2a1
AM
1142
1143 return _bfd_elf_new_section_hook (abfd, sec);
1144}
b49e97c9
TS
1145\f
1146/* Read ECOFF debugging information from a .mdebug section into a
1147 ecoff_debug_info structure. */
1148
b34976b6 1149bfd_boolean
9719ad41
RS
1150_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1151 struct ecoff_debug_info *debug)
b49e97c9
TS
1152{
1153 HDRR *symhdr;
1154 const struct ecoff_debug_swap *swap;
9719ad41 1155 char *ext_hdr;
b49e97c9
TS
1156
1157 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1158 memset (debug, 0, sizeof (*debug));
1159
9719ad41 1160 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1161 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1162 goto error_return;
1163
9719ad41 1164 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1165 swap->external_hdr_size))
b49e97c9
TS
1166 goto error_return;
1167
1168 symhdr = &debug->symbolic_header;
1169 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1170
1171 /* The symbolic header contains absolute file offsets and sizes to
1172 read. */
1173#define READ(ptr, offset, count, size, type) \
1174 if (symhdr->count == 0) \
1175 debug->ptr = NULL; \
1176 else \
1177 { \
1178 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1179 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1180 if (debug->ptr == NULL) \
1181 goto error_return; \
9719ad41 1182 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1183 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1184 goto error_return; \
1185 }
1186
1187 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1188 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1189 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1190 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1191 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1192 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1193 union aux_ext *);
1194 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1195 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1196 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1197 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1198 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1199#undef READ
1200
1201 debug->fdr = NULL;
b49e97c9 1202
b34976b6 1203 return TRUE;
b49e97c9
TS
1204
1205 error_return:
1206 if (ext_hdr != NULL)
1207 free (ext_hdr);
1208 if (debug->line != NULL)
1209 free (debug->line);
1210 if (debug->external_dnr != NULL)
1211 free (debug->external_dnr);
1212 if (debug->external_pdr != NULL)
1213 free (debug->external_pdr);
1214 if (debug->external_sym != NULL)
1215 free (debug->external_sym);
1216 if (debug->external_opt != NULL)
1217 free (debug->external_opt);
1218 if (debug->external_aux != NULL)
1219 free (debug->external_aux);
1220 if (debug->ss != NULL)
1221 free (debug->ss);
1222 if (debug->ssext != NULL)
1223 free (debug->ssext);
1224 if (debug->external_fdr != NULL)
1225 free (debug->external_fdr);
1226 if (debug->external_rfd != NULL)
1227 free (debug->external_rfd);
1228 if (debug->external_ext != NULL)
1229 free (debug->external_ext);
b34976b6 1230 return FALSE;
b49e97c9
TS
1231}
1232\f
1233/* Swap RPDR (runtime procedure table entry) for output. */
1234
1235static void
9719ad41 1236ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1237{
1238 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1239 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1240 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1241 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1242 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1243 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1244
1245 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1246 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1247
1248 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1249}
1250
1251/* Create a runtime procedure table from the .mdebug section. */
1252
b34976b6 1253static bfd_boolean
9719ad41
RS
1254mips_elf_create_procedure_table (void *handle, bfd *abfd,
1255 struct bfd_link_info *info, asection *s,
1256 struct ecoff_debug_info *debug)
b49e97c9
TS
1257{
1258 const struct ecoff_debug_swap *swap;
1259 HDRR *hdr = &debug->symbolic_header;
1260 RPDR *rpdr, *rp;
1261 struct rpdr_ext *erp;
9719ad41 1262 void *rtproc;
b49e97c9
TS
1263 struct pdr_ext *epdr;
1264 struct sym_ext *esym;
1265 char *ss, **sv;
1266 char *str;
1267 bfd_size_type size;
1268 bfd_size_type count;
1269 unsigned long sindex;
1270 unsigned long i;
1271 PDR pdr;
1272 SYMR sym;
1273 const char *no_name_func = _("static procedure (no name)");
1274
1275 epdr = NULL;
1276 rpdr = NULL;
1277 esym = NULL;
1278 ss = NULL;
1279 sv = NULL;
1280
1281 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1282
1283 sindex = strlen (no_name_func) + 1;
1284 count = hdr->ipdMax;
1285 if (count > 0)
1286 {
1287 size = swap->external_pdr_size;
1288
9719ad41 1289 epdr = bfd_malloc (size * count);
b49e97c9
TS
1290 if (epdr == NULL)
1291 goto error_return;
1292
9719ad41 1293 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1294 goto error_return;
1295
1296 size = sizeof (RPDR);
9719ad41 1297 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1298 if (rpdr == NULL)
1299 goto error_return;
1300
1301 size = sizeof (char *);
9719ad41 1302 sv = bfd_malloc (size * count);
b49e97c9
TS
1303 if (sv == NULL)
1304 goto error_return;
1305
1306 count = hdr->isymMax;
1307 size = swap->external_sym_size;
9719ad41 1308 esym = bfd_malloc (size * count);
b49e97c9
TS
1309 if (esym == NULL)
1310 goto error_return;
1311
9719ad41 1312 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1313 goto error_return;
1314
1315 count = hdr->issMax;
9719ad41 1316 ss = bfd_malloc (count);
b49e97c9
TS
1317 if (ss == NULL)
1318 goto error_return;
f075ee0c 1319 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1320 goto error_return;
1321
1322 count = hdr->ipdMax;
1323 for (i = 0; i < (unsigned long) count; i++, rp++)
1324 {
9719ad41
RS
1325 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1326 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1327 rp->adr = sym.value;
1328 rp->regmask = pdr.regmask;
1329 rp->regoffset = pdr.regoffset;
1330 rp->fregmask = pdr.fregmask;
1331 rp->fregoffset = pdr.fregoffset;
1332 rp->frameoffset = pdr.frameoffset;
1333 rp->framereg = pdr.framereg;
1334 rp->pcreg = pdr.pcreg;
1335 rp->irpss = sindex;
1336 sv[i] = ss + sym.iss;
1337 sindex += strlen (sv[i]) + 1;
1338 }
1339 }
1340
1341 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1342 size = BFD_ALIGN (size, 16);
9719ad41 1343 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1344 if (rtproc == NULL)
1345 {
1346 mips_elf_hash_table (info)->procedure_count = 0;
1347 goto error_return;
1348 }
1349
1350 mips_elf_hash_table (info)->procedure_count = count + 2;
1351
9719ad41 1352 erp = rtproc;
b49e97c9
TS
1353 memset (erp, 0, sizeof (struct rpdr_ext));
1354 erp++;
1355 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1356 strcpy (str, no_name_func);
1357 str += strlen (no_name_func) + 1;
1358 for (i = 0; i < count; i++)
1359 {
1360 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1361 strcpy (str, sv[i]);
1362 str += strlen (sv[i]) + 1;
1363 }
1364 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1365
1366 /* Set the size and contents of .rtproc section. */
eea6121a 1367 s->size = size;
9719ad41 1368 s->contents = rtproc;
b49e97c9
TS
1369
1370 /* Skip this section later on (I don't think this currently
1371 matters, but someday it might). */
8423293d 1372 s->map_head.link_order = NULL;
b49e97c9
TS
1373
1374 if (epdr != NULL)
1375 free (epdr);
1376 if (rpdr != NULL)
1377 free (rpdr);
1378 if (esym != NULL)
1379 free (esym);
1380 if (ss != NULL)
1381 free (ss);
1382 if (sv != NULL)
1383 free (sv);
1384
b34976b6 1385 return TRUE;
b49e97c9
TS
1386
1387 error_return:
1388 if (epdr != NULL)
1389 free (epdr);
1390 if (rpdr != NULL)
1391 free (rpdr);
1392 if (esym != NULL)
1393 free (esym);
1394 if (ss != NULL)
1395 free (ss);
1396 if (sv != NULL)
1397 free (sv);
b34976b6 1398 return FALSE;
b49e97c9 1399}
738e5348 1400\f
861fb55a
DJ
1401/* We're going to create a stub for H. Create a symbol for the stub's
1402 value and size, to help make the disassembly easier to read. */
1403
1404static bfd_boolean
1405mips_elf_create_stub_symbol (struct bfd_link_info *info,
1406 struct mips_elf_link_hash_entry *h,
1407 const char *prefix, asection *s, bfd_vma value,
1408 bfd_vma size)
1409{
1410 struct bfd_link_hash_entry *bh;
1411 struct elf_link_hash_entry *elfh;
1412 const char *name;
1413
df58fc94
RS
1414 if (ELF_ST_IS_MICROMIPS (h->root.other))
1415 value |= 1;
1416
861fb55a
DJ
1417 /* Create a new symbol. */
1418 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1419 bh = NULL;
1420 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1421 BSF_LOCAL, s, value, NULL,
1422 TRUE, FALSE, &bh))
1423 return FALSE;
1424
1425 /* Make it a local function. */
1426 elfh = (struct elf_link_hash_entry *) bh;
1427 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1428 elfh->size = size;
1429 elfh->forced_local = 1;
1430 return TRUE;
1431}
1432
738e5348
RS
1433/* We're about to redefine H. Create a symbol to represent H's
1434 current value and size, to help make the disassembly easier
1435 to read. */
1436
1437static bfd_boolean
1438mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1439 struct mips_elf_link_hash_entry *h,
1440 const char *prefix)
1441{
1442 struct bfd_link_hash_entry *bh;
1443 struct elf_link_hash_entry *elfh;
1444 const char *name;
1445 asection *s;
1446 bfd_vma value;
1447
1448 /* Read the symbol's value. */
1449 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1450 || h->root.root.type == bfd_link_hash_defweak);
1451 s = h->root.root.u.def.section;
1452 value = h->root.root.u.def.value;
1453
1454 /* Create a new symbol. */
1455 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1456 bh = NULL;
1457 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1458 BSF_LOCAL, s, value, NULL,
1459 TRUE, FALSE, &bh))
1460 return FALSE;
1461
1462 /* Make it local and copy the other attributes from H. */
1463 elfh = (struct elf_link_hash_entry *) bh;
1464 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1465 elfh->other = h->root.other;
1466 elfh->size = h->root.size;
1467 elfh->forced_local = 1;
1468 return TRUE;
1469}
1470
1471/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1472 function rather than to a hard-float stub. */
1473
1474static bfd_boolean
1475section_allows_mips16_refs_p (asection *section)
1476{
1477 const char *name;
1478
1479 name = bfd_get_section_name (section->owner, section);
1480 return (FN_STUB_P (name)
1481 || CALL_STUB_P (name)
1482 || CALL_FP_STUB_P (name)
1483 || strcmp (name, ".pdr") == 0);
1484}
1485
1486/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1487 stub section of some kind. Return the R_SYMNDX of the target
1488 function, or 0 if we can't decide which function that is. */
1489
1490static unsigned long
cb4437b8
MR
1491mips16_stub_symndx (const struct elf_backend_data *bed,
1492 asection *sec ATTRIBUTE_UNUSED,
502e814e 1493 const Elf_Internal_Rela *relocs,
738e5348
RS
1494 const Elf_Internal_Rela *relend)
1495{
cb4437b8 1496 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1497 const Elf_Internal_Rela *rel;
1498
cb4437b8
MR
1499 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1500 one in a compound relocation. */
1501 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1502 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1503 return ELF_R_SYM (sec->owner, rel->r_info);
1504
1505 /* Otherwise trust the first relocation, whatever its kind. This is
1506 the traditional behavior. */
1507 if (relocs < relend)
1508 return ELF_R_SYM (sec->owner, relocs->r_info);
1509
1510 return 0;
1511}
b49e97c9
TS
1512
1513/* Check the mips16 stubs for a particular symbol, and see if we can
1514 discard them. */
1515
861fb55a
DJ
1516static void
1517mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1518 struct mips_elf_link_hash_entry *h)
b49e97c9 1519{
738e5348
RS
1520 /* Dynamic symbols must use the standard call interface, in case other
1521 objects try to call them. */
1522 if (h->fn_stub != NULL
1523 && h->root.dynindx != -1)
1524 {
1525 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1526 h->need_fn_stub = TRUE;
1527 }
1528
b49e97c9
TS
1529 if (h->fn_stub != NULL
1530 && ! h->need_fn_stub)
1531 {
1532 /* We don't need the fn_stub; the only references to this symbol
1533 are 16 bit calls. Clobber the size to 0 to prevent it from
1534 being included in the link. */
eea6121a 1535 h->fn_stub->size = 0;
b49e97c9
TS
1536 h->fn_stub->flags &= ~SEC_RELOC;
1537 h->fn_stub->reloc_count = 0;
1538 h->fn_stub->flags |= SEC_EXCLUDE;
1539 }
1540
1541 if (h->call_stub != NULL
30c09090 1542 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1543 {
1544 /* We don't need the call_stub; this is a 16 bit function, so
1545 calls from other 16 bit functions are OK. Clobber the size
1546 to 0 to prevent it from being included in the link. */
eea6121a 1547 h->call_stub->size = 0;
b49e97c9
TS
1548 h->call_stub->flags &= ~SEC_RELOC;
1549 h->call_stub->reloc_count = 0;
1550 h->call_stub->flags |= SEC_EXCLUDE;
1551 }
1552
1553 if (h->call_fp_stub != NULL
30c09090 1554 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1555 {
1556 /* We don't need the call_stub; this is a 16 bit function, so
1557 calls from other 16 bit functions are OK. Clobber the size
1558 to 0 to prevent it from being included in the link. */
eea6121a 1559 h->call_fp_stub->size = 0;
b49e97c9
TS
1560 h->call_fp_stub->flags &= ~SEC_RELOC;
1561 h->call_fp_stub->reloc_count = 0;
1562 h->call_fp_stub->flags |= SEC_EXCLUDE;
1563 }
861fb55a
DJ
1564}
1565
1566/* Hashtable callbacks for mips_elf_la25_stubs. */
1567
1568static hashval_t
1569mips_elf_la25_stub_hash (const void *entry_)
1570{
1571 const struct mips_elf_la25_stub *entry;
1572
1573 entry = (struct mips_elf_la25_stub *) entry_;
1574 return entry->h->root.root.u.def.section->id
1575 + entry->h->root.root.u.def.value;
1576}
1577
1578static int
1579mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1580{
1581 const struct mips_elf_la25_stub *entry1, *entry2;
1582
1583 entry1 = (struct mips_elf_la25_stub *) entry1_;
1584 entry2 = (struct mips_elf_la25_stub *) entry2_;
1585 return ((entry1->h->root.root.u.def.section
1586 == entry2->h->root.root.u.def.section)
1587 && (entry1->h->root.root.u.def.value
1588 == entry2->h->root.root.u.def.value));
1589}
1590
1591/* Called by the linker to set up the la25 stub-creation code. FN is
1592 the linker's implementation of add_stub_function. Return true on
1593 success. */
1594
1595bfd_boolean
1596_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1597 asection *(*fn) (const char *, asection *,
1598 asection *))
1599{
1600 struct mips_elf_link_hash_table *htab;
1601
1602 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1603 if (htab == NULL)
1604 return FALSE;
1605
861fb55a
DJ
1606 htab->add_stub_section = fn;
1607 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1608 mips_elf_la25_stub_eq, NULL);
1609 if (htab->la25_stubs == NULL)
1610 return FALSE;
1611
1612 return TRUE;
1613}
1614
1615/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1616 that it or its fn_stub might need $25 to be valid on entry.
1617 Note that MIPS16 functions set up $gp using PC-relative instructions,
1618 so they themselves never need $25 to be valid. Only non-MIPS16
1619 entry points are of interest here. */
861fb55a
DJ
1620
1621static bfd_boolean
1622mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1623{
1624 return ((h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak)
1626 && h->root.def_regular
1627 && !bfd_is_abs_section (h->root.root.u.def.section)
8f0c309a
CLT
1628 && (!ELF_ST_IS_MIPS16 (h->root.other)
1629 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1630 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1631 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1632}
1633
8f0c309a
CLT
1634/* Set *SEC to the input section that contains the target of STUB.
1635 Return the offset of the target from the start of that section. */
1636
1637static bfd_vma
1638mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1639 asection **sec)
1640{
1641 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1642 {
1643 BFD_ASSERT (stub->h->need_fn_stub);
1644 *sec = stub->h->fn_stub;
1645 return 0;
1646 }
1647 else
1648 {
1649 *sec = stub->h->root.root.u.def.section;
1650 return stub->h->root.root.u.def.value;
1651 }
1652}
1653
861fb55a
DJ
1654/* STUB describes an la25 stub that we have decided to implement
1655 by inserting an LUI/ADDIU pair before the target function.
1656 Create the section and redirect the function symbol to it. */
1657
1658static bfd_boolean
1659mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1660 struct bfd_link_info *info)
1661{
1662 struct mips_elf_link_hash_table *htab;
1663 char *name;
1664 asection *s, *input_section;
1665 unsigned int align;
1666
1667 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1668 if (htab == NULL)
1669 return FALSE;
861fb55a
DJ
1670
1671 /* Create a unique name for the new section. */
1672 name = bfd_malloc (11 + sizeof (".text.stub."));
1673 if (name == NULL)
1674 return FALSE;
1675 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1676
1677 /* Create the section. */
8f0c309a 1678 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1679 s = htab->add_stub_section (name, input_section,
1680 input_section->output_section);
1681 if (s == NULL)
1682 return FALSE;
1683
1684 /* Make sure that any padding goes before the stub. */
1685 align = input_section->alignment_power;
1686 if (!bfd_set_section_alignment (s->owner, s, align))
1687 return FALSE;
1688 if (align > 3)
1689 s->size = (1 << align) - 8;
1690
1691 /* Create a symbol for the stub. */
1692 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1693 stub->stub_section = s;
1694 stub->offset = s->size;
1695
1696 /* Allocate room for it. */
1697 s->size += 8;
1698 return TRUE;
1699}
1700
1701/* STUB describes an la25 stub that we have decided to implement
1702 with a separate trampoline. Allocate room for it and redirect
1703 the function symbol to it. */
1704
1705static bfd_boolean
1706mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1707 struct bfd_link_info *info)
1708{
1709 struct mips_elf_link_hash_table *htab;
1710 asection *s;
1711
1712 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1713 if (htab == NULL)
1714 return FALSE;
861fb55a
DJ
1715
1716 /* Create a trampoline section, if we haven't already. */
1717 s = htab->strampoline;
1718 if (s == NULL)
1719 {
1720 asection *input_section = stub->h->root.root.u.def.section;
1721 s = htab->add_stub_section (".text", NULL,
1722 input_section->output_section);
1723 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1724 return FALSE;
1725 htab->strampoline = s;
1726 }
1727
1728 /* Create a symbol for the stub. */
1729 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1730 stub->stub_section = s;
1731 stub->offset = s->size;
1732
1733 /* Allocate room for it. */
1734 s->size += 16;
1735 return TRUE;
1736}
1737
1738/* H describes a symbol that needs an la25 stub. Make sure that an
1739 appropriate stub exists and point H at it. */
1740
1741static bfd_boolean
1742mips_elf_add_la25_stub (struct bfd_link_info *info,
1743 struct mips_elf_link_hash_entry *h)
1744{
1745 struct mips_elf_link_hash_table *htab;
1746 struct mips_elf_la25_stub search, *stub;
1747 bfd_boolean use_trampoline_p;
1748 asection *s;
1749 bfd_vma value;
1750 void **slot;
1751
861fb55a
DJ
1752 /* Describe the stub we want. */
1753 search.stub_section = NULL;
1754 search.offset = 0;
1755 search.h = h;
1756
1757 /* See if we've already created an equivalent stub. */
1758 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1759 if (htab == NULL)
1760 return FALSE;
1761
861fb55a
DJ
1762 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1763 if (slot == NULL)
1764 return FALSE;
1765
1766 stub = (struct mips_elf_la25_stub *) *slot;
1767 if (stub != NULL)
1768 {
1769 /* We can reuse the existing stub. */
1770 h->la25_stub = stub;
1771 return TRUE;
1772 }
1773
1774 /* Create a permanent copy of ENTRY and add it to the hash table. */
1775 stub = bfd_malloc (sizeof (search));
1776 if (stub == NULL)
1777 return FALSE;
1778 *stub = search;
1779 *slot = stub;
1780
8f0c309a
CLT
1781 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1782 of the section and if we would need no more than 2 nops. */
1783 value = mips_elf_get_la25_target (stub, &s);
1784 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1785
861fb55a
DJ
1786 h->la25_stub = stub;
1787 return (use_trampoline_p
1788 ? mips_elf_add_la25_trampoline (stub, info)
1789 : mips_elf_add_la25_intro (stub, info));
1790}
1791
1792/* A mips_elf_link_hash_traverse callback that is called before sizing
1793 sections. DATA points to a mips_htab_traverse_info structure. */
1794
1795static bfd_boolean
1796mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1797{
1798 struct mips_htab_traverse_info *hti;
1799
1800 hti = (struct mips_htab_traverse_info *) data;
861fb55a
DJ
1801 if (!hti->info->relocatable)
1802 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1803
861fb55a
DJ
1804 if (mips_elf_local_pic_function_p (h))
1805 {
ba85c43e
NC
1806 /* PR 12845: If H is in a section that has been garbage
1807 collected it will have its output section set to *ABS*. */
1808 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1809 return TRUE;
1810
861fb55a
DJ
1811 /* H is a function that might need $25 to be valid on entry.
1812 If we're creating a non-PIC relocatable object, mark H as
1813 being PIC. If we're creating a non-relocatable object with
1814 non-PIC branches and jumps to H, make sure that H has an la25
1815 stub. */
1816 if (hti->info->relocatable)
1817 {
1818 if (!PIC_OBJECT_P (hti->output_bfd))
1819 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1820 }
1821 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1822 {
1823 hti->error = TRUE;
1824 return FALSE;
1825 }
1826 }
b34976b6 1827 return TRUE;
b49e97c9
TS
1828}
1829\f
d6f16593
MR
1830/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1831 Most mips16 instructions are 16 bits, but these instructions
1832 are 32 bits.
1833
1834 The format of these instructions is:
1835
1836 +--------------+--------------------------------+
1837 | JALX | X| Imm 20:16 | Imm 25:21 |
1838 +--------------+--------------------------------+
1839 | Immediate 15:0 |
1840 +-----------------------------------------------+
1841
1842 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1843 Note that the immediate value in the first word is swapped.
1844
1845 When producing a relocatable object file, R_MIPS16_26 is
1846 handled mostly like R_MIPS_26. In particular, the addend is
1847 stored as a straight 26-bit value in a 32-bit instruction.
1848 (gas makes life simpler for itself by never adjusting a
1849 R_MIPS16_26 reloc to be against a section, so the addend is
1850 always zero). However, the 32 bit instruction is stored as 2
1851 16-bit values, rather than a single 32-bit value. In a
1852 big-endian file, the result is the same; in a little-endian
1853 file, the two 16-bit halves of the 32 bit value are swapped.
1854 This is so that a disassembler can recognize the jal
1855 instruction.
1856
1857 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1858 instruction stored as two 16-bit values. The addend A is the
1859 contents of the targ26 field. The calculation is the same as
1860 R_MIPS_26. When storing the calculated value, reorder the
1861 immediate value as shown above, and don't forget to store the
1862 value as two 16-bit values.
1863
1864 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1865 defined as
1866
1867 big-endian:
1868 +--------+----------------------+
1869 | | |
1870 | | targ26-16 |
1871 |31 26|25 0|
1872 +--------+----------------------+
1873
1874 little-endian:
1875 +----------+------+-------------+
1876 | | | |
1877 | sub1 | | sub2 |
1878 |0 9|10 15|16 31|
1879 +----------+--------------------+
1880 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1881 ((sub1 << 16) | sub2)).
1882
1883 When producing a relocatable object file, the calculation is
1884 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1885 When producing a fully linked file, the calculation is
1886 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1887 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1888
738e5348
RS
1889 The table below lists the other MIPS16 instruction relocations.
1890 Each one is calculated in the same way as the non-MIPS16 relocation
1891 given on the right, but using the extended MIPS16 layout of 16-bit
1892 immediate fields:
1893
1894 R_MIPS16_GPREL R_MIPS_GPREL16
1895 R_MIPS16_GOT16 R_MIPS_GOT16
1896 R_MIPS16_CALL16 R_MIPS_CALL16
1897 R_MIPS16_HI16 R_MIPS_HI16
1898 R_MIPS16_LO16 R_MIPS_LO16
1899
1900 A typical instruction will have a format like this:
d6f16593
MR
1901
1902 +--------------+--------------------------------+
1903 | EXTEND | Imm 10:5 | Imm 15:11 |
1904 +--------------+--------------------------------+
1905 | Major | rx | ry | Imm 4:0 |
1906 +--------------+--------------------------------+
1907
1908 EXTEND is the five bit value 11110. Major is the instruction
1909 opcode.
1910
738e5348
RS
1911 All we need to do here is shuffle the bits appropriately.
1912 As above, the two 16-bit halves must be swapped on a
1913 little-endian system. */
1914
1915static inline bfd_boolean
1916mips16_reloc_p (int r_type)
1917{
1918 switch (r_type)
1919 {
1920 case R_MIPS16_26:
1921 case R_MIPS16_GPREL:
1922 case R_MIPS16_GOT16:
1923 case R_MIPS16_CALL16:
1924 case R_MIPS16_HI16:
1925 case R_MIPS16_LO16:
d0f13682
CLT
1926 case R_MIPS16_TLS_GD:
1927 case R_MIPS16_TLS_LDM:
1928 case R_MIPS16_TLS_DTPREL_HI16:
1929 case R_MIPS16_TLS_DTPREL_LO16:
1930 case R_MIPS16_TLS_GOTTPREL:
1931 case R_MIPS16_TLS_TPREL_HI16:
1932 case R_MIPS16_TLS_TPREL_LO16:
738e5348
RS
1933 return TRUE;
1934
1935 default:
1936 return FALSE;
1937 }
1938}
1939
df58fc94
RS
1940/* Check if a microMIPS reloc. */
1941
1942static inline bfd_boolean
1943micromips_reloc_p (unsigned int r_type)
1944{
1945 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1946}
1947
1948/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1949 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1950 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1951
1952static inline bfd_boolean
1953micromips_reloc_shuffle_p (unsigned int r_type)
1954{
1955 return (micromips_reloc_p (r_type)
1956 && r_type != R_MICROMIPS_PC7_S1
1957 && r_type != R_MICROMIPS_PC10_S1);
1958}
1959
738e5348
RS
1960static inline bfd_boolean
1961got16_reloc_p (int r_type)
1962{
df58fc94
RS
1963 return (r_type == R_MIPS_GOT16
1964 || r_type == R_MIPS16_GOT16
1965 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
1966}
1967
1968static inline bfd_boolean
1969call16_reloc_p (int r_type)
1970{
df58fc94
RS
1971 return (r_type == R_MIPS_CALL16
1972 || r_type == R_MIPS16_CALL16
1973 || r_type == R_MICROMIPS_CALL16);
1974}
1975
1976static inline bfd_boolean
1977got_disp_reloc_p (unsigned int r_type)
1978{
1979 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1980}
1981
1982static inline bfd_boolean
1983got_page_reloc_p (unsigned int r_type)
1984{
1985 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1986}
1987
1988static inline bfd_boolean
1989got_ofst_reloc_p (unsigned int r_type)
1990{
1991 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1992}
1993
1994static inline bfd_boolean
1995got_hi16_reloc_p (unsigned int r_type)
1996{
1997 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1998}
1999
2000static inline bfd_boolean
2001got_lo16_reloc_p (unsigned int r_type)
2002{
2003 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2004}
2005
2006static inline bfd_boolean
2007call_hi16_reloc_p (unsigned int r_type)
2008{
2009 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2010}
2011
2012static inline bfd_boolean
2013call_lo16_reloc_p (unsigned int r_type)
2014{
2015 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2016}
2017
2018static inline bfd_boolean
2019hi16_reloc_p (int r_type)
2020{
df58fc94
RS
2021 return (r_type == R_MIPS_HI16
2022 || r_type == R_MIPS16_HI16
2023 || r_type == R_MICROMIPS_HI16);
738e5348 2024}
d6f16593 2025
738e5348
RS
2026static inline bfd_boolean
2027lo16_reloc_p (int r_type)
2028{
df58fc94
RS
2029 return (r_type == R_MIPS_LO16
2030 || r_type == R_MIPS16_LO16
2031 || r_type == R_MICROMIPS_LO16);
738e5348
RS
2032}
2033
2034static inline bfd_boolean
2035mips16_call_reloc_p (int r_type)
2036{
2037 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2038}
d6f16593 2039
38a7df63
CF
2040static inline bfd_boolean
2041jal_reloc_p (int r_type)
2042{
df58fc94
RS
2043 return (r_type == R_MIPS_26
2044 || r_type == R_MIPS16_26
2045 || r_type == R_MICROMIPS_26_S1);
2046}
2047
2048static inline bfd_boolean
2049micromips_branch_reloc_p (int r_type)
2050{
2051 return (r_type == R_MICROMIPS_26_S1
2052 || r_type == R_MICROMIPS_PC16_S1
2053 || r_type == R_MICROMIPS_PC10_S1
2054 || r_type == R_MICROMIPS_PC7_S1);
2055}
2056
2057static inline bfd_boolean
2058tls_gd_reloc_p (unsigned int r_type)
2059{
d0f13682
CLT
2060 return (r_type == R_MIPS_TLS_GD
2061 || r_type == R_MIPS16_TLS_GD
2062 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2063}
2064
2065static inline bfd_boolean
2066tls_ldm_reloc_p (unsigned int r_type)
2067{
d0f13682
CLT
2068 return (r_type == R_MIPS_TLS_LDM
2069 || r_type == R_MIPS16_TLS_LDM
2070 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2071}
2072
2073static inline bfd_boolean
2074tls_gottprel_reloc_p (unsigned int r_type)
2075{
d0f13682
CLT
2076 return (r_type == R_MIPS_TLS_GOTTPREL
2077 || r_type == R_MIPS16_TLS_GOTTPREL
2078 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2079}
2080
d6f16593 2081void
df58fc94
RS
2082_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2083 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2084{
df58fc94 2085 bfd_vma first, second, val;
d6f16593 2086
df58fc94 2087 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2088 return;
2089
df58fc94
RS
2090 /* Pick up the first and second halfwords of the instruction. */
2091 first = bfd_get_16 (abfd, data);
2092 second = bfd_get_16 (abfd, data + 2);
2093 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2094 val = first << 16 | second;
2095 else if (r_type != R_MIPS16_26)
2096 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2097 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2098 else
df58fc94
RS
2099 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2100 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2101 bfd_put_32 (abfd, val, data);
2102}
2103
2104void
df58fc94
RS
2105_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2106 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2107{
df58fc94 2108 bfd_vma first, second, val;
d6f16593 2109
df58fc94 2110 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2111 return;
2112
2113 val = bfd_get_32 (abfd, data);
df58fc94 2114 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2115 {
df58fc94
RS
2116 second = val & 0xffff;
2117 first = val >> 16;
2118 }
2119 else if (r_type != R_MIPS16_26)
2120 {
2121 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2122 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2123 }
2124 else
2125 {
df58fc94
RS
2126 second = val & 0xffff;
2127 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2128 | ((val >> 21) & 0x1f);
d6f16593 2129 }
df58fc94
RS
2130 bfd_put_16 (abfd, second, data + 2);
2131 bfd_put_16 (abfd, first, data);
d6f16593
MR
2132}
2133
b49e97c9 2134bfd_reloc_status_type
9719ad41
RS
2135_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2136 arelent *reloc_entry, asection *input_section,
2137 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2138{
2139 bfd_vma relocation;
a7ebbfdf 2140 bfd_signed_vma val;
30ac9238 2141 bfd_reloc_status_type status;
b49e97c9
TS
2142
2143 if (bfd_is_com_section (symbol->section))
2144 relocation = 0;
2145 else
2146 relocation = symbol->value;
2147
2148 relocation += symbol->section->output_section->vma;
2149 relocation += symbol->section->output_offset;
2150
07515404 2151 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2152 return bfd_reloc_outofrange;
2153
b49e97c9 2154 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2155 val = reloc_entry->addend;
2156
30ac9238 2157 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2158
b49e97c9 2159 /* Adjust val for the final section location and GP value. If we
1049f94e 2160 are producing relocatable output, we don't want to do this for
b49e97c9 2161 an external symbol. */
1049f94e 2162 if (! relocatable
b49e97c9
TS
2163 || (symbol->flags & BSF_SECTION_SYM) != 0)
2164 val += relocation - gp;
2165
a7ebbfdf
TS
2166 if (reloc_entry->howto->partial_inplace)
2167 {
30ac9238
RS
2168 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2169 (bfd_byte *) data
2170 + reloc_entry->address);
2171 if (status != bfd_reloc_ok)
2172 return status;
a7ebbfdf
TS
2173 }
2174 else
2175 reloc_entry->addend = val;
b49e97c9 2176
1049f94e 2177 if (relocatable)
b49e97c9 2178 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2179
2180 return bfd_reloc_ok;
2181}
2182
2183/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2184 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2185 that contains the relocation field and DATA points to the start of
2186 INPUT_SECTION. */
2187
2188struct mips_hi16
2189{
2190 struct mips_hi16 *next;
2191 bfd_byte *data;
2192 asection *input_section;
2193 arelent rel;
2194};
2195
2196/* FIXME: This should not be a static variable. */
2197
2198static struct mips_hi16 *mips_hi16_list;
2199
2200/* A howto special_function for REL *HI16 relocations. We can only
2201 calculate the correct value once we've seen the partnering
2202 *LO16 relocation, so just save the information for later.
2203
2204 The ABI requires that the *LO16 immediately follow the *HI16.
2205 However, as a GNU extension, we permit an arbitrary number of
2206 *HI16s to be associated with a single *LO16. This significantly
2207 simplies the relocation handling in gcc. */
2208
2209bfd_reloc_status_type
2210_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2211 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2212 asection *input_section, bfd *output_bfd,
2213 char **error_message ATTRIBUTE_UNUSED)
2214{
2215 struct mips_hi16 *n;
2216
07515404 2217 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2218 return bfd_reloc_outofrange;
2219
2220 n = bfd_malloc (sizeof *n);
2221 if (n == NULL)
2222 return bfd_reloc_outofrange;
2223
2224 n->next = mips_hi16_list;
2225 n->data = data;
2226 n->input_section = input_section;
2227 n->rel = *reloc_entry;
2228 mips_hi16_list = n;
2229
2230 if (output_bfd != NULL)
2231 reloc_entry->address += input_section->output_offset;
2232
2233 return bfd_reloc_ok;
2234}
2235
738e5348 2236/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2237 like any other 16-bit relocation when applied to global symbols, but is
2238 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2239
2240bfd_reloc_status_type
2241_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2242 void *data, asection *input_section,
2243 bfd *output_bfd, char **error_message)
2244{
2245 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2246 || bfd_is_und_section (bfd_get_section (symbol))
2247 || bfd_is_com_section (bfd_get_section (symbol)))
2248 /* The relocation is against a global symbol. */
2249 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2250 input_section, output_bfd,
2251 error_message);
2252
2253 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd, error_message);
2255}
2256
2257/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2258 is a straightforward 16 bit inplace relocation, but we must deal with
2259 any partnering high-part relocations as well. */
2260
2261bfd_reloc_status_type
2262_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2263 void *data, asection *input_section,
2264 bfd *output_bfd, char **error_message)
2265{
2266 bfd_vma vallo;
d6f16593 2267 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2268
07515404 2269 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2270 return bfd_reloc_outofrange;
2271
df58fc94 2272 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2273 location);
df58fc94
RS
2274 vallo = bfd_get_32 (abfd, location);
2275 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2276 location);
d6f16593 2277
30ac9238
RS
2278 while (mips_hi16_list != NULL)
2279 {
2280 bfd_reloc_status_type ret;
2281 struct mips_hi16 *hi;
2282
2283 hi = mips_hi16_list;
2284
738e5348
RS
2285 /* R_MIPS*_GOT16 relocations are something of a special case. We
2286 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2287 relocation (with a rightshift of 16). However, since GOT16
2288 relocations can also be used with global symbols, their howto
2289 has a rightshift of 0. */
2290 if (hi->rel.howto->type == R_MIPS_GOT16)
2291 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2292 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2293 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2294 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2296
2297 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2298 carry or borrow will induce a change of +1 or -1 in the high part. */
2299 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2300
30ac9238
RS
2301 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2302 hi->input_section, output_bfd,
2303 error_message);
2304 if (ret != bfd_reloc_ok)
2305 return ret;
2306
2307 mips_hi16_list = hi->next;
2308 free (hi);
2309 }
2310
2311 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2312 input_section, output_bfd,
2313 error_message);
2314}
2315
2316/* A generic howto special_function. This calculates and installs the
2317 relocation itself, thus avoiding the oft-discussed problems in
2318 bfd_perform_relocation and bfd_install_relocation. */
2319
2320bfd_reloc_status_type
2321_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2322 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2323 asection *input_section, bfd *output_bfd,
2324 char **error_message ATTRIBUTE_UNUSED)
2325{
2326 bfd_signed_vma val;
2327 bfd_reloc_status_type status;
2328 bfd_boolean relocatable;
2329
2330 relocatable = (output_bfd != NULL);
2331
07515404 2332 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2333 return bfd_reloc_outofrange;
2334
2335 /* Build up the field adjustment in VAL. */
2336 val = 0;
2337 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2338 {
2339 /* Either we're calculating the final field value or we have a
2340 relocation against a section symbol. Add in the section's
2341 offset or address. */
2342 val += symbol->section->output_section->vma;
2343 val += symbol->section->output_offset;
2344 }
2345
2346 if (!relocatable)
2347 {
2348 /* We're calculating the final field value. Add in the symbol's value
2349 and, if pc-relative, subtract the address of the field itself. */
2350 val += symbol->value;
2351 if (reloc_entry->howto->pc_relative)
2352 {
2353 val -= input_section->output_section->vma;
2354 val -= input_section->output_offset;
2355 val -= reloc_entry->address;
2356 }
2357 }
2358
2359 /* VAL is now the final adjustment. If we're keeping this relocation
2360 in the output file, and if the relocation uses a separate addend,
2361 we just need to add VAL to that addend. Otherwise we need to add
2362 VAL to the relocation field itself. */
2363 if (relocatable && !reloc_entry->howto->partial_inplace)
2364 reloc_entry->addend += val;
2365 else
2366 {
d6f16593
MR
2367 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2368
30ac9238
RS
2369 /* Add in the separate addend, if any. */
2370 val += reloc_entry->addend;
2371
2372 /* Add VAL to the relocation field. */
df58fc94
RS
2373 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2374 location);
30ac9238 2375 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2376 location);
df58fc94
RS
2377 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
d6f16593 2379
30ac9238
RS
2380 if (status != bfd_reloc_ok)
2381 return status;
2382 }
2383
2384 if (relocatable)
2385 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2386
2387 return bfd_reloc_ok;
2388}
2389\f
2390/* Swap an entry in a .gptab section. Note that these routines rely
2391 on the equivalence of the two elements of the union. */
2392
2393static void
9719ad41
RS
2394bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2395 Elf32_gptab *in)
b49e97c9
TS
2396{
2397 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2398 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2399}
2400
2401static void
9719ad41
RS
2402bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2403 Elf32_External_gptab *ex)
b49e97c9
TS
2404{
2405 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2406 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2407}
2408
2409static void
9719ad41
RS
2410bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2411 Elf32_External_compact_rel *ex)
b49e97c9
TS
2412{
2413 H_PUT_32 (abfd, in->id1, ex->id1);
2414 H_PUT_32 (abfd, in->num, ex->num);
2415 H_PUT_32 (abfd, in->id2, ex->id2);
2416 H_PUT_32 (abfd, in->offset, ex->offset);
2417 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2418 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2419}
2420
2421static void
9719ad41
RS
2422bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2423 Elf32_External_crinfo *ex)
b49e97c9
TS
2424{
2425 unsigned long l;
2426
2427 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2428 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2429 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2430 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2431 H_PUT_32 (abfd, l, ex->info);
2432 H_PUT_32 (abfd, in->konst, ex->konst);
2433 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2434}
b49e97c9
TS
2435\f
2436/* A .reginfo section holds a single Elf32_RegInfo structure. These
2437 routines swap this structure in and out. They are used outside of
2438 BFD, so they are globally visible. */
2439
2440void
9719ad41
RS
2441bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2442 Elf32_RegInfo *in)
b49e97c9
TS
2443{
2444 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2445 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2446 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2447 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2448 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2449 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2450}
2451
2452void
9719ad41
RS
2453bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2454 Elf32_External_RegInfo *ex)
b49e97c9
TS
2455{
2456 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2457 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2458 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2459 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2460 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2461 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2462}
2463
2464/* In the 64 bit ABI, the .MIPS.options section holds register
2465 information in an Elf64_Reginfo structure. These routines swap
2466 them in and out. They are globally visible because they are used
2467 outside of BFD. These routines are here so that gas can call them
2468 without worrying about whether the 64 bit ABI has been included. */
2469
2470void
9719ad41
RS
2471bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2472 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2473{
2474 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2475 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2476 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2477 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2478 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2479 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2480 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2481}
2482
2483void
9719ad41
RS
2484bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2485 Elf64_External_RegInfo *ex)
b49e97c9
TS
2486{
2487 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2488 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2489 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2490 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2491 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2492 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2493 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2494}
2495
2496/* Swap in an options header. */
2497
2498void
9719ad41
RS
2499bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2500 Elf_Internal_Options *in)
b49e97c9
TS
2501{
2502 in->kind = H_GET_8 (abfd, ex->kind);
2503 in->size = H_GET_8 (abfd, ex->size);
2504 in->section = H_GET_16 (abfd, ex->section);
2505 in->info = H_GET_32 (abfd, ex->info);
2506}
2507
2508/* Swap out an options header. */
2509
2510void
9719ad41
RS
2511bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2512 Elf_External_Options *ex)
b49e97c9
TS
2513{
2514 H_PUT_8 (abfd, in->kind, ex->kind);
2515 H_PUT_8 (abfd, in->size, ex->size);
2516 H_PUT_16 (abfd, in->section, ex->section);
2517 H_PUT_32 (abfd, in->info, ex->info);
2518}
2519\f
2520/* This function is called via qsort() to sort the dynamic relocation
2521 entries by increasing r_symndx value. */
2522
2523static int
9719ad41 2524sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2525{
947216bf
AM
2526 Elf_Internal_Rela int_reloc1;
2527 Elf_Internal_Rela int_reloc2;
6870500c 2528 int diff;
b49e97c9 2529
947216bf
AM
2530 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2531 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2532
6870500c
RS
2533 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2534 if (diff != 0)
2535 return diff;
2536
2537 if (int_reloc1.r_offset < int_reloc2.r_offset)
2538 return -1;
2539 if (int_reloc1.r_offset > int_reloc2.r_offset)
2540 return 1;
2541 return 0;
b49e97c9
TS
2542}
2543
f4416af6
AO
2544/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2545
2546static int
7e3102a7
AM
2547sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2548 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2549{
7e3102a7 2550#ifdef BFD64
f4416af6
AO
2551 Elf_Internal_Rela int_reloc1[3];
2552 Elf_Internal_Rela int_reloc2[3];
2553
2554 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2555 (reldyn_sorting_bfd, arg1, int_reloc1);
2556 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2557 (reldyn_sorting_bfd, arg2, int_reloc2);
2558
6870500c
RS
2559 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2560 return -1;
2561 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2562 return 1;
2563
2564 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2565 return -1;
2566 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2567 return 1;
2568 return 0;
7e3102a7
AM
2569#else
2570 abort ();
2571#endif
f4416af6
AO
2572}
2573
2574
b49e97c9
TS
2575/* This routine is used to write out ECOFF debugging external symbol
2576 information. It is called via mips_elf_link_hash_traverse. The
2577 ECOFF external symbol information must match the ELF external
2578 symbol information. Unfortunately, at this point we don't know
2579 whether a symbol is required by reloc information, so the two
2580 tables may wind up being different. We must sort out the external
2581 symbol information before we can set the final size of the .mdebug
2582 section, and we must set the size of the .mdebug section before we
2583 can relocate any sections, and we can't know which symbols are
2584 required by relocation until we relocate the sections.
2585 Fortunately, it is relatively unlikely that any symbol will be
2586 stripped but required by a reloc. In particular, it can not happen
2587 when generating a final executable. */
2588
b34976b6 2589static bfd_boolean
9719ad41 2590mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2591{
9719ad41 2592 struct extsym_info *einfo = data;
b34976b6 2593 bfd_boolean strip;
b49e97c9
TS
2594 asection *sec, *output_section;
2595
b49e97c9 2596 if (h->root.indx == -2)
b34976b6 2597 strip = FALSE;
f5385ebf 2598 else if ((h->root.def_dynamic
77cfaee6
AM
2599 || h->root.ref_dynamic
2600 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2601 && !h->root.def_regular
2602 && !h->root.ref_regular)
b34976b6 2603 strip = TRUE;
b49e97c9
TS
2604 else if (einfo->info->strip == strip_all
2605 || (einfo->info->strip == strip_some
2606 && bfd_hash_lookup (einfo->info->keep_hash,
2607 h->root.root.root.string,
b34976b6
AM
2608 FALSE, FALSE) == NULL))
2609 strip = TRUE;
b49e97c9 2610 else
b34976b6 2611 strip = FALSE;
b49e97c9
TS
2612
2613 if (strip)
b34976b6 2614 return TRUE;
b49e97c9
TS
2615
2616 if (h->esym.ifd == -2)
2617 {
2618 h->esym.jmptbl = 0;
2619 h->esym.cobol_main = 0;
2620 h->esym.weakext = 0;
2621 h->esym.reserved = 0;
2622 h->esym.ifd = ifdNil;
2623 h->esym.asym.value = 0;
2624 h->esym.asym.st = stGlobal;
2625
2626 if (h->root.root.type == bfd_link_hash_undefined
2627 || h->root.root.type == bfd_link_hash_undefweak)
2628 {
2629 const char *name;
2630
2631 /* Use undefined class. Also, set class and type for some
2632 special symbols. */
2633 name = h->root.root.root.string;
2634 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2635 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2636 {
2637 h->esym.asym.sc = scData;
2638 h->esym.asym.st = stLabel;
2639 h->esym.asym.value = 0;
2640 }
2641 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2642 {
2643 h->esym.asym.sc = scAbs;
2644 h->esym.asym.st = stLabel;
2645 h->esym.asym.value =
2646 mips_elf_hash_table (einfo->info)->procedure_count;
2647 }
4a14403c 2648 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2649 {
2650 h->esym.asym.sc = scAbs;
2651 h->esym.asym.st = stLabel;
2652 h->esym.asym.value = elf_gp (einfo->abfd);
2653 }
2654 else
2655 h->esym.asym.sc = scUndefined;
2656 }
2657 else if (h->root.root.type != bfd_link_hash_defined
2658 && h->root.root.type != bfd_link_hash_defweak)
2659 h->esym.asym.sc = scAbs;
2660 else
2661 {
2662 const char *name;
2663
2664 sec = h->root.root.u.def.section;
2665 output_section = sec->output_section;
2666
2667 /* When making a shared library and symbol h is the one from
2668 the another shared library, OUTPUT_SECTION may be null. */
2669 if (output_section == NULL)
2670 h->esym.asym.sc = scUndefined;
2671 else
2672 {
2673 name = bfd_section_name (output_section->owner, output_section);
2674
2675 if (strcmp (name, ".text") == 0)
2676 h->esym.asym.sc = scText;
2677 else if (strcmp (name, ".data") == 0)
2678 h->esym.asym.sc = scData;
2679 else if (strcmp (name, ".sdata") == 0)
2680 h->esym.asym.sc = scSData;
2681 else if (strcmp (name, ".rodata") == 0
2682 || strcmp (name, ".rdata") == 0)
2683 h->esym.asym.sc = scRData;
2684 else if (strcmp (name, ".bss") == 0)
2685 h->esym.asym.sc = scBss;
2686 else if (strcmp (name, ".sbss") == 0)
2687 h->esym.asym.sc = scSBss;
2688 else if (strcmp (name, ".init") == 0)
2689 h->esym.asym.sc = scInit;
2690 else if (strcmp (name, ".fini") == 0)
2691 h->esym.asym.sc = scFini;
2692 else
2693 h->esym.asym.sc = scAbs;
2694 }
2695 }
2696
2697 h->esym.asym.reserved = 0;
2698 h->esym.asym.index = indexNil;
2699 }
2700
2701 if (h->root.root.type == bfd_link_hash_common)
2702 h->esym.asym.value = h->root.root.u.c.size;
2703 else if (h->root.root.type == bfd_link_hash_defined
2704 || h->root.root.type == bfd_link_hash_defweak)
2705 {
2706 if (h->esym.asym.sc == scCommon)
2707 h->esym.asym.sc = scBss;
2708 else if (h->esym.asym.sc == scSCommon)
2709 h->esym.asym.sc = scSBss;
2710
2711 sec = h->root.root.u.def.section;
2712 output_section = sec->output_section;
2713 if (output_section != NULL)
2714 h->esym.asym.value = (h->root.root.u.def.value
2715 + sec->output_offset
2716 + output_section->vma);
2717 else
2718 h->esym.asym.value = 0;
2719 }
33bb52fb 2720 else
b49e97c9
TS
2721 {
2722 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2723
2724 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2725 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2726
33bb52fb 2727 if (hd->needs_lazy_stub)
b49e97c9
TS
2728 {
2729 /* Set type and value for a symbol with a function stub. */
2730 h->esym.asym.st = stProc;
2731 sec = hd->root.root.u.def.section;
2732 if (sec == NULL)
2733 h->esym.asym.value = 0;
2734 else
2735 {
2736 output_section = sec->output_section;
2737 if (output_section != NULL)
2738 h->esym.asym.value = (hd->root.plt.offset
2739 + sec->output_offset
2740 + output_section->vma);
2741 else
2742 h->esym.asym.value = 0;
2743 }
b49e97c9
TS
2744 }
2745 }
2746
2747 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2748 h->root.root.root.string,
2749 &h->esym))
2750 {
b34976b6
AM
2751 einfo->failed = TRUE;
2752 return FALSE;
b49e97c9
TS
2753 }
2754
b34976b6 2755 return TRUE;
b49e97c9
TS
2756}
2757
2758/* A comparison routine used to sort .gptab entries. */
2759
2760static int
9719ad41 2761gptab_compare (const void *p1, const void *p2)
b49e97c9 2762{
9719ad41
RS
2763 const Elf32_gptab *a1 = p1;
2764 const Elf32_gptab *a2 = p2;
b49e97c9
TS
2765
2766 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2767}
2768\f
b15e6682 2769/* Functions to manage the got entry hash table. */
f4416af6
AO
2770
2771/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2772 hash number. */
2773
2774static INLINE hashval_t
9719ad41 2775mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
2776{
2777#ifdef BFD64
2778 return addr + (addr >> 32);
2779#else
2780 return addr;
2781#endif
2782}
2783
f4416af6 2784static hashval_t
d9bf376d 2785mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
2786{
2787 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2788
e641e783 2789 return (entry->symndx
9ab066b4
RS
2790 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2791 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
2792 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2793 : entry->symndx >= 0 ? (entry->abfd->id
2794 + mips_elf_hash_bfd_vma (entry->d.addend))
2795 : entry->d.h->root.root.root.hash));
f4416af6
AO
2796}
2797
2798static int
3dff0dd1 2799mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
2800{
2801 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2802 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2803
e641e783 2804 return (e1->symndx == e2->symndx
9ab066b4
RS
2805 && e1->tls_type == e2->tls_type
2806 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
2807 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2808 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2809 && e1->d.addend == e2->d.addend)
2810 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 2811}
c224138d 2812
13db6b44
RS
2813static hashval_t
2814mips_got_page_ref_hash (const void *ref_)
2815{
2816 const struct mips_got_page_ref *ref;
2817
2818 ref = (const struct mips_got_page_ref *) ref_;
2819 return ((ref->symndx >= 0
2820 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2821 : ref->u.h->root.root.root.hash)
2822 + mips_elf_hash_bfd_vma (ref->addend));
2823}
2824
2825static int
2826mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2827{
2828 const struct mips_got_page_ref *ref1, *ref2;
2829
2830 ref1 = (const struct mips_got_page_ref *) ref1_;
2831 ref2 = (const struct mips_got_page_ref *) ref2_;
2832 return (ref1->symndx == ref2->symndx
2833 && (ref1->symndx < 0
2834 ? ref1->u.h == ref2->u.h
2835 : ref1->u.abfd == ref2->u.abfd)
2836 && ref1->addend == ref2->addend);
2837}
2838
c224138d
RS
2839static hashval_t
2840mips_got_page_entry_hash (const void *entry_)
2841{
2842 const struct mips_got_page_entry *entry;
2843
2844 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 2845 return entry->sec->id;
c224138d
RS
2846}
2847
2848static int
2849mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2850{
2851 const struct mips_got_page_entry *entry1, *entry2;
2852
2853 entry1 = (const struct mips_got_page_entry *) entry1_;
2854 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 2855 return entry1->sec == entry2->sec;
c224138d 2856}
b15e6682 2857\f
3dff0dd1 2858/* Create and return a new mips_got_info structure. */
5334aa52
RS
2859
2860static struct mips_got_info *
3dff0dd1 2861mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
2862{
2863 struct mips_got_info *g;
2864
2865 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2866 if (g == NULL)
2867 return NULL;
2868
3dff0dd1
RS
2869 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2870 mips_elf_got_entry_eq, NULL);
5334aa52
RS
2871 if (g->got_entries == NULL)
2872 return NULL;
2873
13db6b44
RS
2874 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2875 mips_got_page_ref_eq, NULL);
2876 if (g->got_page_refs == NULL)
5334aa52
RS
2877 return NULL;
2878
2879 return g;
2880}
2881
ee227692
RS
2882/* Return the GOT info for input bfd ABFD, trying to create a new one if
2883 CREATE_P and if ABFD doesn't already have a GOT. */
2884
2885static struct mips_got_info *
2886mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2887{
2888 struct mips_elf_obj_tdata *tdata;
2889
2890 if (!is_mips_elf (abfd))
2891 return NULL;
2892
2893 tdata = mips_elf_tdata (abfd);
2894 if (!tdata->got && create_p)
3dff0dd1 2895 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
2896 return tdata->got;
2897}
2898
d7206569
RS
2899/* Record that ABFD should use output GOT G. */
2900
2901static void
2902mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2903{
2904 struct mips_elf_obj_tdata *tdata;
2905
2906 BFD_ASSERT (is_mips_elf (abfd));
2907 tdata = mips_elf_tdata (abfd);
2908 if (tdata->got)
2909 {
2910 /* The GOT structure itself and the hash table entries are
2911 allocated to a bfd, but the hash tables aren't. */
2912 htab_delete (tdata->got->got_entries);
13db6b44
RS
2913 htab_delete (tdata->got->got_page_refs);
2914 if (tdata->got->got_page_entries)
2915 htab_delete (tdata->got->got_page_entries);
d7206569
RS
2916 }
2917 tdata->got = g;
2918}
2919
0a44bf69
RS
2920/* Return the dynamic relocation section. If it doesn't exist, try to
2921 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2922 if creation fails. */
f4416af6
AO
2923
2924static asection *
0a44bf69 2925mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 2926{
0a44bf69 2927 const char *dname;
f4416af6 2928 asection *sreloc;
0a44bf69 2929 bfd *dynobj;
f4416af6 2930
0a44bf69
RS
2931 dname = MIPS_ELF_REL_DYN_NAME (info);
2932 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 2933 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
2934 if (sreloc == NULL && create_p)
2935 {
3d4d4302
AM
2936 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2937 (SEC_ALLOC
2938 | SEC_LOAD
2939 | SEC_HAS_CONTENTS
2940 | SEC_IN_MEMORY
2941 | SEC_LINKER_CREATED
2942 | SEC_READONLY));
f4416af6 2943 if (sreloc == NULL
f4416af6 2944 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 2945 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
2946 return NULL;
2947 }
2948 return sreloc;
2949}
2950
e641e783
RS
2951/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2952
2953static int
2954mips_elf_reloc_tls_type (unsigned int r_type)
2955{
2956 if (tls_gd_reloc_p (r_type))
2957 return GOT_TLS_GD;
2958
2959 if (tls_ldm_reloc_p (r_type))
2960 return GOT_TLS_LDM;
2961
2962 if (tls_gottprel_reloc_p (r_type))
2963 return GOT_TLS_IE;
2964
9ab066b4 2965 return GOT_TLS_NONE;
e641e783
RS
2966}
2967
2968/* Return the number of GOT slots needed for GOT TLS type TYPE. */
2969
2970static int
2971mips_tls_got_entries (unsigned int type)
2972{
2973 switch (type)
2974 {
2975 case GOT_TLS_GD:
2976 case GOT_TLS_LDM:
2977 return 2;
2978
2979 case GOT_TLS_IE:
2980 return 1;
2981
9ab066b4 2982 case GOT_TLS_NONE:
e641e783
RS
2983 return 0;
2984 }
2985 abort ();
2986}
2987
0f20cc35
DJ
2988/* Count the number of relocations needed for a TLS GOT entry, with
2989 access types from TLS_TYPE, and symbol H (or a local symbol if H
2990 is NULL). */
2991
2992static int
2993mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2994 struct elf_link_hash_entry *h)
2995{
2996 int indx = 0;
0f20cc35
DJ
2997 bfd_boolean need_relocs = FALSE;
2998 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2999
3000 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3001 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3002 indx = h->dynindx;
3003
3004 if ((info->shared || indx != 0)
3005 && (h == NULL
3006 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3007 || h->root.type != bfd_link_hash_undefweak))
3008 need_relocs = TRUE;
3009
3010 if (!need_relocs)
e641e783 3011 return 0;
0f20cc35 3012
9ab066b4 3013 switch (tls_type)
0f20cc35 3014 {
e641e783
RS
3015 case GOT_TLS_GD:
3016 return indx != 0 ? 2 : 1;
0f20cc35 3017
e641e783
RS
3018 case GOT_TLS_IE:
3019 return 1;
0f20cc35 3020
e641e783
RS
3021 case GOT_TLS_LDM:
3022 return info->shared ? 1 : 0;
0f20cc35 3023
e641e783
RS
3024 default:
3025 return 0;
3026 }
0f20cc35
DJ
3027}
3028
ab361d49
RS
3029/* Add the number of GOT entries and TLS relocations required by ENTRY
3030 to G. */
0f20cc35 3031
ab361d49
RS
3032static void
3033mips_elf_count_got_entry (struct bfd_link_info *info,
3034 struct mips_got_info *g,
3035 struct mips_got_entry *entry)
0f20cc35 3036{
9ab066b4 3037 if (entry->tls_type)
ab361d49 3038 {
9ab066b4
RS
3039 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3040 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3041 entry->symndx < 0
3042 ? &entry->d.h->root : NULL);
3043 }
3044 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3045 g->local_gotno += 1;
3046 else
3047 g->global_gotno += 1;
0f20cc35
DJ
3048}
3049
0f20cc35
DJ
3050/* Output a simple dynamic relocation into SRELOC. */
3051
3052static void
3053mips_elf_output_dynamic_relocation (bfd *output_bfd,
3054 asection *sreloc,
861fb55a 3055 unsigned long reloc_index,
0f20cc35
DJ
3056 unsigned long indx,
3057 int r_type,
3058 bfd_vma offset)
3059{
3060 Elf_Internal_Rela rel[3];
3061
3062 memset (rel, 0, sizeof (rel));
3063
3064 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3065 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3066
3067 if (ABI_64_P (output_bfd))
3068 {
3069 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3070 (output_bfd, &rel[0],
3071 (sreloc->contents
861fb55a 3072 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3073 }
3074 else
3075 bfd_elf32_swap_reloc_out
3076 (output_bfd, &rel[0],
3077 (sreloc->contents
861fb55a 3078 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3079}
3080
3081/* Initialize a set of TLS GOT entries for one symbol. */
3082
3083static void
9ab066b4
RS
3084mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3085 struct mips_got_entry *entry,
0f20cc35
DJ
3086 struct mips_elf_link_hash_entry *h,
3087 bfd_vma value)
3088{
23cc69b6 3089 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3090 int indx;
3091 asection *sreloc, *sgot;
9ab066b4 3092 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3093 bfd_boolean need_relocs = FALSE;
3094
23cc69b6 3095 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3096 if (htab == NULL)
3097 return;
3098
23cc69b6 3099 sgot = htab->sgot;
0f20cc35
DJ
3100
3101 indx = 0;
3102 if (h != NULL)
3103 {
3104 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3105
3106 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3107 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3108 indx = h->root.dynindx;
3109 }
3110
9ab066b4 3111 if (entry->tls_initialized)
0f20cc35
DJ
3112 return;
3113
3114 if ((info->shared || indx != 0)
3115 && (h == NULL
3116 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3117 || h->root.type != bfd_link_hash_undefweak))
3118 need_relocs = TRUE;
3119
3120 /* MINUS_ONE means the symbol is not defined in this object. It may not
3121 be defined at all; assume that the value doesn't matter in that
3122 case. Otherwise complain if we would use the value. */
3123 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3124 || h->root.root.type == bfd_link_hash_undefweak);
3125
3126 /* Emit necessary relocations. */
0a44bf69 3127 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3128 got_offset = entry->gotidx;
0f20cc35 3129
9ab066b4 3130 switch (entry->tls_type)
0f20cc35 3131 {
e641e783
RS
3132 case GOT_TLS_GD:
3133 /* General Dynamic. */
3134 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3135
3136 if (need_relocs)
3137 {
3138 mips_elf_output_dynamic_relocation
861fb55a 3139 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3140 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3141 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3142
3143 if (indx)
3144 mips_elf_output_dynamic_relocation
861fb55a 3145 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3146 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3147 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3148 else
3149 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3150 sgot->contents + got_offset2);
0f20cc35
DJ
3151 }
3152 else
3153 {
3154 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3155 sgot->contents + got_offset);
0f20cc35 3156 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3157 sgot->contents + got_offset2);
0f20cc35 3158 }
e641e783 3159 break;
0f20cc35 3160
e641e783
RS
3161 case GOT_TLS_IE:
3162 /* Initial Exec model. */
0f20cc35
DJ
3163 if (need_relocs)
3164 {
3165 if (indx == 0)
3166 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3167 sgot->contents + got_offset);
0f20cc35
DJ
3168 else
3169 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3170 sgot->contents + got_offset);
0f20cc35
DJ
3171
3172 mips_elf_output_dynamic_relocation
861fb55a 3173 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3174 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3175 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3176 }
3177 else
3178 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3179 sgot->contents + got_offset);
3180 break;
0f20cc35 3181
e641e783 3182 case GOT_TLS_LDM:
0f20cc35
DJ
3183 /* The initial offset is zero, and the LD offsets will include the
3184 bias by DTP_OFFSET. */
3185 MIPS_ELF_PUT_WORD (abfd, 0,
3186 sgot->contents + got_offset
3187 + MIPS_ELF_GOT_SIZE (abfd));
3188
3189 if (!info->shared)
3190 MIPS_ELF_PUT_WORD (abfd, 1,
3191 sgot->contents + got_offset);
3192 else
3193 mips_elf_output_dynamic_relocation
861fb55a 3194 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3195 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3196 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3197 break;
3198
3199 default:
3200 abort ();
0f20cc35
DJ
3201 }
3202
9ab066b4 3203 entry->tls_initialized = TRUE;
e641e783 3204}
0f20cc35 3205
0a44bf69
RS
3206/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3207 for global symbol H. .got.plt comes before the GOT, so the offset
3208 will be negative. */
3209
3210static bfd_vma
3211mips_elf_gotplt_index (struct bfd_link_info *info,
3212 struct elf_link_hash_entry *h)
3213{
3214 bfd_vma plt_index, got_address, got_value;
3215 struct mips_elf_link_hash_table *htab;
3216
3217 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3218 BFD_ASSERT (htab != NULL);
3219
0a44bf69
RS
3220 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3221
861fb55a
DJ
3222 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3223 section starts with reserved entries. */
3224 BFD_ASSERT (htab->is_vxworks);
3225
0a44bf69
RS
3226 /* Calculate the index of the symbol's PLT entry. */
3227 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3228
3229 /* Calculate the address of the associated .got.plt entry. */
3230 got_address = (htab->sgotplt->output_section->vma
3231 + htab->sgotplt->output_offset
3232 + plt_index * 4);
3233
3234 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3235 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3236 + htab->root.hgot->root.u.def.section->output_offset
3237 + htab->root.hgot->root.u.def.value);
3238
3239 return got_address - got_value;
3240}
3241
5c18022e 3242/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3243 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3244 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3245 offset can be found. */
b49e97c9
TS
3246
3247static bfd_vma
9719ad41 3248mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3249 bfd_vma value, unsigned long r_symndx,
0f20cc35 3250 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3251{
a8028dd0 3252 struct mips_elf_link_hash_table *htab;
b15e6682 3253 struct mips_got_entry *entry;
b49e97c9 3254
a8028dd0 3255 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3256 BFD_ASSERT (htab != NULL);
3257
a8028dd0
RS
3258 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3259 r_symndx, h, r_type);
0f20cc35 3260 if (!entry)
b15e6682 3261 return MINUS_ONE;
0f20cc35 3262
e641e783 3263 if (entry->tls_type)
9ab066b4
RS
3264 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3265 return entry->gotidx;
b49e97c9
TS
3266}
3267
13fbec83 3268/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3269
3270static bfd_vma
13fbec83
RS
3271mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3272 struct elf_link_hash_entry *h)
3273{
3274 struct mips_elf_link_hash_table *htab;
3275 long global_got_dynindx;
3276 struct mips_got_info *g;
3277 bfd_vma got_index;
3278
3279 htab = mips_elf_hash_table (info);
3280 BFD_ASSERT (htab != NULL);
3281
3282 global_got_dynindx = 0;
3283 if (htab->global_gotsym != NULL)
3284 global_got_dynindx = htab->global_gotsym->dynindx;
3285
3286 /* Once we determine the global GOT entry with the lowest dynamic
3287 symbol table index, we must put all dynamic symbols with greater
3288 indices into the primary GOT. That makes it easy to calculate the
3289 GOT offset. */
3290 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3291 g = mips_elf_bfd_got (obfd, FALSE);
3292 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3293 * MIPS_ELF_GOT_SIZE (obfd));
3294 BFD_ASSERT (got_index < htab->sgot->size);
3295
3296 return got_index;
3297}
3298
3299/* Return the GOT index for the global symbol indicated by H, which is
3300 referenced by a relocation of type R_TYPE in IBFD. */
3301
3302static bfd_vma
3303mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3304 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3305{
a8028dd0 3306 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3307 struct mips_got_info *g;
3308 struct mips_got_entry lookup, *entry;
3309 bfd_vma gotidx;
b49e97c9 3310
a8028dd0 3311 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3312 BFD_ASSERT (htab != NULL);
3313
6c42ddb9
RS
3314 g = mips_elf_bfd_got (ibfd, FALSE);
3315 BFD_ASSERT (g);
f4416af6 3316
6c42ddb9
RS
3317 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3318 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3319 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3320
6c42ddb9
RS
3321 lookup.abfd = ibfd;
3322 lookup.symndx = -1;
3323 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3324 entry = htab_find (g->got_entries, &lookup);
3325 BFD_ASSERT (entry);
0f20cc35 3326
6c42ddb9
RS
3327 gotidx = entry->gotidx;
3328 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
f4416af6 3329
6c42ddb9 3330 if (lookup.tls_type)
0f20cc35 3331 {
0f20cc35
DJ
3332 bfd_vma value = MINUS_ONE;
3333
3334 if ((h->root.type == bfd_link_hash_defined
3335 || h->root.type == bfd_link_hash_defweak)
3336 && h->root.u.def.section->output_section)
3337 value = (h->root.u.def.value
3338 + h->root.u.def.section->output_offset
3339 + h->root.u.def.section->output_section->vma);
3340
9ab066b4 3341 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3342 }
6c42ddb9 3343 return gotidx;
b49e97c9
TS
3344}
3345
5c18022e
RS
3346/* Find a GOT page entry that points to within 32KB of VALUE. These
3347 entries are supposed to be placed at small offsets in the GOT, i.e.,
3348 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3349 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3350 offset of the GOT entry from VALUE. */
b49e97c9
TS
3351
3352static bfd_vma
9719ad41 3353mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3354 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3355{
91d6fa6a 3356 bfd_vma page, got_index;
b15e6682 3357 struct mips_got_entry *entry;
b49e97c9 3358
0a44bf69 3359 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3360 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3361 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3362
b15e6682
AO
3363 if (!entry)
3364 return MINUS_ONE;
143d77c5 3365
91d6fa6a 3366 got_index = entry->gotidx;
b49e97c9
TS
3367
3368 if (offsetp)
f4416af6 3369 *offsetp = value - entry->d.address;
b49e97c9 3370
91d6fa6a 3371 return got_index;
b49e97c9
TS
3372}
3373
738e5348 3374/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3375 EXTERNAL is true if the relocation was originally against a global
3376 symbol that binds locally. */
b49e97c9
TS
3377
3378static bfd_vma
9719ad41 3379mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3380 bfd_vma value, bfd_boolean external)
b49e97c9 3381{
b15e6682 3382 struct mips_got_entry *entry;
b49e97c9 3383
0a44bf69
RS
3384 /* GOT16 relocations against local symbols are followed by a LO16
3385 relocation; those against global symbols are not. Thus if the
3386 symbol was originally local, the GOT16 relocation should load the
3387 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3388 if (! external)
0a44bf69 3389 value = mips_elf_high (value) << 16;
b49e97c9 3390
738e5348
RS
3391 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3392 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3393 same in all cases. */
a8028dd0
RS
3394 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3395 NULL, R_MIPS_GOT16);
b15e6682
AO
3396 if (entry)
3397 return entry->gotidx;
3398 else
3399 return MINUS_ONE;
b49e97c9
TS
3400}
3401
3402/* Returns the offset for the entry at the INDEXth position
3403 in the GOT. */
3404
3405static bfd_vma
a8028dd0 3406mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3407 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3408{
a8028dd0 3409 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3410 asection *sgot;
3411 bfd_vma gp;
3412
a8028dd0 3413 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3414 BFD_ASSERT (htab != NULL);
3415
a8028dd0 3416 sgot = htab->sgot;
f4416af6 3417 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3418 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3419
91d6fa6a 3420 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3421}
3422
0a44bf69
RS
3423/* Create and return a local GOT entry for VALUE, which was calculated
3424 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3425 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3426 instead. */
b49e97c9 3427
b15e6682 3428static struct mips_got_entry *
0a44bf69 3429mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3430 bfd *ibfd, bfd_vma value,
5c18022e 3431 unsigned long r_symndx,
0f20cc35
DJ
3432 struct mips_elf_link_hash_entry *h,
3433 int r_type)
b49e97c9 3434{
ebc53538
RS
3435 struct mips_got_entry lookup, *entry;
3436 void **loc;
f4416af6 3437 struct mips_got_info *g;
0a44bf69 3438 struct mips_elf_link_hash_table *htab;
6c42ddb9 3439 bfd_vma gotidx;
0a44bf69
RS
3440
3441 htab = mips_elf_hash_table (info);
4dfe6ac6 3442 BFD_ASSERT (htab != NULL);
b15e6682 3443
d7206569 3444 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3445 if (g == NULL)
3446 {
d7206569 3447 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3448 BFD_ASSERT (g != NULL);
3449 }
b15e6682 3450
020d7251
RS
3451 /* This function shouldn't be called for symbols that live in the global
3452 area of the GOT. */
3453 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3454
ebc53538
RS
3455 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3456 if (lookup.tls_type)
3457 {
3458 lookup.abfd = ibfd;
df58fc94 3459 if (tls_ldm_reloc_p (r_type))
0f20cc35 3460 {
ebc53538
RS
3461 lookup.symndx = 0;
3462 lookup.d.addend = 0;
0f20cc35
DJ
3463 }
3464 else if (h == NULL)
3465 {
ebc53538
RS
3466 lookup.symndx = r_symndx;
3467 lookup.d.addend = 0;
0f20cc35
DJ
3468 }
3469 else
ebc53538
RS
3470 {
3471 lookup.symndx = -1;
3472 lookup.d.h = h;
3473 }
0f20cc35 3474
ebc53538
RS
3475 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3476 BFD_ASSERT (entry);
0f20cc35 3477
6c42ddb9
RS
3478 gotidx = entry->gotidx;
3479 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3480
ebc53538 3481 return entry;
0f20cc35
DJ
3482 }
3483
ebc53538
RS
3484 lookup.abfd = NULL;
3485 lookup.symndx = -1;
3486 lookup.d.address = value;
3487 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3488 if (!loc)
b15e6682 3489 return NULL;
143d77c5 3490
ebc53538
RS
3491 entry = (struct mips_got_entry *) *loc;
3492 if (entry)
3493 return entry;
b15e6682 3494
ebc53538 3495 if (g->assigned_gotno >= g->local_gotno)
b49e97c9
TS
3496 {
3497 /* We didn't allocate enough space in the GOT. */
3498 (*_bfd_error_handler)
3499 (_("not enough GOT space for local GOT entries"));
3500 bfd_set_error (bfd_error_bad_value);
b15e6682 3501 return NULL;
b49e97c9
TS
3502 }
3503
ebc53538
RS
3504 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3505 if (!entry)
3506 return NULL;
3507
3508 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3509 *entry = lookup;
3510 *loc = entry;
3511
3512 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
b15e6682 3513
5c18022e 3514 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3515 if (htab->is_vxworks)
3516 {
3517 Elf_Internal_Rela outrel;
5c18022e 3518 asection *s;
91d6fa6a 3519 bfd_byte *rloc;
0a44bf69 3520 bfd_vma got_address;
0a44bf69
RS
3521
3522 s = mips_elf_rel_dyn_section (info, FALSE);
a8028dd0
RS
3523 got_address = (htab->sgot->output_section->vma
3524 + htab->sgot->output_offset
ebc53538 3525 + entry->gotidx);
0a44bf69 3526
91d6fa6a 3527 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3528 outrel.r_offset = got_address;
5c18022e
RS
3529 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3530 outrel.r_addend = value;
91d6fa6a 3531 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3532 }
3533
ebc53538 3534 return entry;
b49e97c9
TS
3535}
3536
d4596a51
RS
3537/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3538 The number might be exact or a worst-case estimate, depending on how
3539 much information is available to elf_backend_omit_section_dynsym at
3540 the current linking stage. */
3541
3542static bfd_size_type
3543count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3544{
3545 bfd_size_type count;
3546
3547 count = 0;
3548 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3549 {
3550 asection *p;
3551 const struct elf_backend_data *bed;
3552
3553 bed = get_elf_backend_data (output_bfd);
3554 for (p = output_bfd->sections; p ; p = p->next)
3555 if ((p->flags & SEC_EXCLUDE) == 0
3556 && (p->flags & SEC_ALLOC) != 0
3557 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3558 ++count;
3559 }
3560 return count;
3561}
3562
b49e97c9 3563/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3564 appear towards the end. */
b49e97c9 3565
b34976b6 3566static bfd_boolean
d4596a51 3567mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3568{
a8028dd0 3569 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3570 struct mips_elf_hash_sort_data hsd;
3571 struct mips_got_info *g;
b49e97c9 3572
d4596a51
RS
3573 if (elf_hash_table (info)->dynsymcount == 0)
3574 return TRUE;
3575
a8028dd0 3576 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3577 BFD_ASSERT (htab != NULL);
3578
a8028dd0 3579 g = htab->got_info;
d4596a51
RS
3580 if (g == NULL)
3581 return TRUE;
f4416af6 3582
b49e97c9 3583 hsd.low = NULL;
23cc69b6
RS
3584 hsd.max_unref_got_dynindx
3585 = hsd.min_got_dynindx
3586 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
d4596a51 3587 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
b49e97c9
TS
3588 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3589 elf_hash_table (info)),
3590 mips_elf_sort_hash_table_f,
3591 &hsd);
3592
3593 /* There should have been enough room in the symbol table to
44c410de 3594 accommodate both the GOT and non-GOT symbols. */
b49e97c9 3595 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
d4596a51
RS
3596 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3597 == elf_hash_table (info)->dynsymcount);
3598 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3599 == g->global_gotno);
b49e97c9
TS
3600
3601 /* Now we know which dynamic symbol has the lowest dynamic symbol
3602 table index in the GOT. */
d222d210 3603 htab->global_gotsym = hsd.low;
b49e97c9 3604
b34976b6 3605 return TRUE;
b49e97c9
TS
3606}
3607
3608/* If H needs a GOT entry, assign it the highest available dynamic
3609 index. Otherwise, assign it the lowest available dynamic
3610 index. */
3611
b34976b6 3612static bfd_boolean
9719ad41 3613mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3614{
9719ad41 3615 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3616
b49e97c9
TS
3617 /* Symbols without dynamic symbol table entries aren't interesting
3618 at all. */
3619 if (h->root.dynindx == -1)
b34976b6 3620 return TRUE;
b49e97c9 3621
634835ae 3622 switch (h->global_got_area)
f4416af6 3623 {
634835ae
RS
3624 case GGA_NONE:
3625 h->root.dynindx = hsd->max_non_got_dynindx++;
3626 break;
0f20cc35 3627
634835ae 3628 case GGA_NORMAL:
b49e97c9
TS
3629 h->root.dynindx = --hsd->min_got_dynindx;
3630 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3631 break;
3632
3633 case GGA_RELOC_ONLY:
634835ae
RS
3634 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3635 hsd->low = (struct elf_link_hash_entry *) h;
3636 h->root.dynindx = hsd->max_unref_got_dynindx++;
3637 break;
b49e97c9
TS
3638 }
3639
b34976b6 3640 return TRUE;
b49e97c9
TS
3641}
3642
ee227692
RS
3643/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3644 (which is owned by the caller and shouldn't be added to the
3645 hash table directly). */
3646
3647static bfd_boolean
3648mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3649 struct mips_got_entry *lookup)
3650{
3651 struct mips_elf_link_hash_table *htab;
3652 struct mips_got_entry *entry;
3653 struct mips_got_info *g;
3654 void **loc, **bfd_loc;
3655
3656 /* Make sure there's a slot for this entry in the master GOT. */
3657 htab = mips_elf_hash_table (info);
3658 g = htab->got_info;
3659 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3660 if (!loc)
3661 return FALSE;
3662
3663 /* Populate the entry if it isn't already. */
3664 entry = (struct mips_got_entry *) *loc;
3665 if (!entry)
3666 {
3667 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3668 if (!entry)
3669 return FALSE;
3670
9ab066b4 3671 lookup->tls_initialized = FALSE;
ee227692
RS
3672 lookup->gotidx = -1;
3673 *entry = *lookup;
3674 *loc = entry;
3675 }
3676
3677 /* Reuse the same GOT entry for the BFD's GOT. */
3678 g = mips_elf_bfd_got (abfd, TRUE);
3679 if (!g)
3680 return FALSE;
3681
3682 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3683 if (!bfd_loc)
3684 return FALSE;
3685
3686 if (!*bfd_loc)
3687 *bfd_loc = entry;
3688 return TRUE;
3689}
3690
e641e783
RS
3691/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3692 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3693 using the GOT entry for calls. */
b49e97c9 3694
b34976b6 3695static bfd_boolean
9719ad41
RS
3696mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3697 bfd *abfd, struct bfd_link_info *info,
e641e783 3698 bfd_boolean for_call, int r_type)
b49e97c9 3699{
a8028dd0 3700 struct mips_elf_link_hash_table *htab;
634835ae 3701 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3702 struct mips_got_entry entry;
3703 unsigned char tls_type;
a8028dd0
RS
3704
3705 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3706 BFD_ASSERT (htab != NULL);
3707
634835ae 3708 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3709 if (!for_call)
3710 hmips->got_only_for_calls = FALSE;
f4416af6 3711
b49e97c9
TS
3712 /* A global symbol in the GOT must also be in the dynamic symbol
3713 table. */
7c5fcef7
L
3714 if (h->dynindx == -1)
3715 {
3716 switch (ELF_ST_VISIBILITY (h->other))
3717 {
3718 case STV_INTERNAL:
3719 case STV_HIDDEN:
33bb52fb 3720 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3721 break;
3722 }
c152c796 3723 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3724 return FALSE;
7c5fcef7 3725 }
b49e97c9 3726
ee227692 3727 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3728 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3729 hmips->global_got_area = GGA_NORMAL;
86324f90 3730
f4416af6
AO
3731 entry.abfd = abfd;
3732 entry.symndx = -1;
3733 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
3734 entry.tls_type = tls_type;
3735 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 3736}
f4416af6 3737
e641e783
RS
3738/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3739 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
3740
3741static bfd_boolean
9719ad41 3742mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 3743 struct bfd_link_info *info, int r_type)
f4416af6 3744{
a8028dd0
RS
3745 struct mips_elf_link_hash_table *htab;
3746 struct mips_got_info *g;
ee227692 3747 struct mips_got_entry entry;
f4416af6 3748
a8028dd0 3749 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3750 BFD_ASSERT (htab != NULL);
3751
a8028dd0
RS
3752 g = htab->got_info;
3753 BFD_ASSERT (g != NULL);
3754
f4416af6
AO
3755 entry.abfd = abfd;
3756 entry.symndx = symndx;
3757 entry.d.addend = addend;
e641e783 3758 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 3759 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 3760}
c224138d 3761
13db6b44
RS
3762/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3763 H is the symbol's hash table entry, or null if SYMNDX is local
3764 to ABFD. */
c224138d
RS
3765
3766static bfd_boolean
13db6b44
RS
3767mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3768 long symndx, struct elf_link_hash_entry *h,
3769 bfd_signed_vma addend)
c224138d 3770{
a8028dd0 3771 struct mips_elf_link_hash_table *htab;
ee227692 3772 struct mips_got_info *g1, *g2;
13db6b44 3773 struct mips_got_page_ref lookup, *entry;
ee227692 3774 void **loc, **bfd_loc;
c224138d 3775
a8028dd0 3776 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3777 BFD_ASSERT (htab != NULL);
3778
ee227692
RS
3779 g1 = htab->got_info;
3780 BFD_ASSERT (g1 != NULL);
a8028dd0 3781
13db6b44
RS
3782 if (h)
3783 {
3784 lookup.symndx = -1;
3785 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3786 }
3787 else
3788 {
3789 lookup.symndx = symndx;
3790 lookup.u.abfd = abfd;
3791 }
3792 lookup.addend = addend;
3793 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
3794 if (loc == NULL)
3795 return FALSE;
3796
13db6b44 3797 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
3798 if (!entry)
3799 {
3800 entry = bfd_alloc (abfd, sizeof (*entry));
3801 if (!entry)
3802 return FALSE;
3803
13db6b44 3804 *entry = lookup;
c224138d
RS
3805 *loc = entry;
3806 }
3807
ee227692
RS
3808 /* Add the same entry to the BFD's GOT. */
3809 g2 = mips_elf_bfd_got (abfd, TRUE);
3810 if (!g2)
3811 return FALSE;
3812
13db6b44 3813 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
3814 if (!bfd_loc)
3815 return FALSE;
3816
3817 if (!*bfd_loc)
3818 *bfd_loc = entry;
3819
c224138d
RS
3820 return TRUE;
3821}
33bb52fb
RS
3822
3823/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3824
3825static void
3826mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3827 unsigned int n)
3828{
3829 asection *s;
3830 struct mips_elf_link_hash_table *htab;
3831
3832 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3833 BFD_ASSERT (htab != NULL);
3834
33bb52fb
RS
3835 s = mips_elf_rel_dyn_section (info, FALSE);
3836 BFD_ASSERT (s != NULL);
3837
3838 if (htab->is_vxworks)
3839 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3840 else
3841 {
3842 if (s->size == 0)
3843 {
3844 /* Make room for a null element. */
3845 s->size += MIPS_ELF_REL_SIZE (abfd);
3846 ++s->reloc_count;
3847 }
3848 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3849 }
3850}
3851\f
476366af
RS
3852/* A htab_traverse callback for GOT entries, with DATA pointing to a
3853 mips_elf_traverse_got_arg structure. Count the number of GOT
3854 entries and TLS relocs. Set DATA->value to true if we need
3855 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
3856
3857static int
3858mips_elf_check_recreate_got (void **entryp, void *data)
3859{
3860 struct mips_got_entry *entry;
476366af 3861 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3862
3863 entry = (struct mips_got_entry *) *entryp;
476366af 3864 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
3865 if (entry->abfd != NULL && entry->symndx == -1)
3866 {
3867 struct mips_elf_link_hash_entry *h;
3868
3869 h = entry->d.h;
3870 if (h->root.root.type == bfd_link_hash_indirect
3871 || h->root.root.type == bfd_link_hash_warning)
3872 {
476366af 3873 arg->value = TRUE;
33bb52fb
RS
3874 return 0;
3875 }
3876 }
476366af 3877 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
3878 return 1;
3879}
3880
476366af
RS
3881/* A htab_traverse callback for GOT entries, with DATA pointing to a
3882 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3883 converting entries for indirect and warning symbols into entries
3884 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
3885
3886static int
3887mips_elf_recreate_got (void **entryp, void *data)
3888{
72e7511a 3889 struct mips_got_entry new_entry, *entry;
476366af 3890 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
3891 void **slot;
3892
33bb52fb 3893 entry = (struct mips_got_entry *) *entryp;
476366af 3894 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
3895 if (entry->abfd != NULL
3896 && entry->symndx == -1
3897 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3898 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
3899 {
3900 struct mips_elf_link_hash_entry *h;
3901
72e7511a
RS
3902 new_entry = *entry;
3903 entry = &new_entry;
33bb52fb 3904 h = entry->d.h;
72e7511a 3905 do
634835ae
RS
3906 {
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3909 }
72e7511a
RS
3910 while (h->root.root.type == bfd_link_hash_indirect
3911 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
3912 entry->d.h = h;
3913 }
476366af 3914 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
3915 if (slot == NULL)
3916 {
476366af 3917 arg->g = NULL;
33bb52fb
RS
3918 return 0;
3919 }
3920 if (*slot == NULL)
72e7511a
RS
3921 {
3922 if (entry == &new_entry)
3923 {
3924 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3925 if (!entry)
3926 {
476366af 3927 arg->g = NULL;
72e7511a
RS
3928 return 0;
3929 }
3930 *entry = new_entry;
3931 }
3932 *slot = entry;
476366af 3933 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 3934 }
33bb52fb
RS
3935 return 1;
3936}
3937
13db6b44
RS
3938/* Return the maximum number of GOT page entries required for RANGE. */
3939
3940static bfd_vma
3941mips_elf_pages_for_range (const struct mips_got_page_range *range)
3942{
3943 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3944}
3945
3946/* Record that G requires a page entry that can reach SEC + ADDEND. */
3947
3948static bfd_boolean
3949mips_elf_record_got_page_entry (struct mips_got_info *g,
3950 asection *sec, bfd_signed_vma addend)
3951{
3952 struct mips_got_page_entry lookup, *entry;
3953 struct mips_got_page_range **range_ptr, *range;
3954 bfd_vma old_pages, new_pages;
3955 void **loc;
3956
3957 /* Find the mips_got_page_entry hash table entry for this section. */
3958 lookup.sec = sec;
3959 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3960 if (loc == NULL)
3961 return FALSE;
3962
3963 /* Create a mips_got_page_entry if this is the first time we've
3964 seen the section. */
3965 entry = (struct mips_got_page_entry *) *loc;
3966 if (!entry)
3967 {
3968 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3969 if (!entry)
3970 return FALSE;
3971
3972 entry->sec = sec;
3973 *loc = entry;
3974 }
3975
3976 /* Skip over ranges whose maximum extent cannot share a page entry
3977 with ADDEND. */
3978 range_ptr = &entry->ranges;
3979 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3980 range_ptr = &(*range_ptr)->next;
3981
3982 /* If we scanned to the end of the list, or found a range whose
3983 minimum extent cannot share a page entry with ADDEND, create
3984 a new singleton range. */
3985 range = *range_ptr;
3986 if (!range || addend < range->min_addend - 0xffff)
3987 {
3988 range = bfd_zalloc (sec->owner, sizeof (*range));
3989 if (!range)
3990 return FALSE;
3991
3992 range->next = *range_ptr;
3993 range->min_addend = addend;
3994 range->max_addend = addend;
3995
3996 *range_ptr = range;
3997 entry->num_pages++;
3998 g->page_gotno++;
3999 return TRUE;
4000 }
4001
4002 /* Remember how many pages the old range contributed. */
4003 old_pages = mips_elf_pages_for_range (range);
4004
4005 /* Update the ranges. */
4006 if (addend < range->min_addend)
4007 range->min_addend = addend;
4008 else if (addend > range->max_addend)
4009 {
4010 if (range->next && addend >= range->next->min_addend - 0xffff)
4011 {
4012 old_pages += mips_elf_pages_for_range (range->next);
4013 range->max_addend = range->next->max_addend;
4014 range->next = range->next->next;
4015 }
4016 else
4017 range->max_addend = addend;
4018 }
4019
4020 /* Record any change in the total estimate. */
4021 new_pages = mips_elf_pages_for_range (range);
4022 if (old_pages != new_pages)
4023 {
4024 entry->num_pages += new_pages - old_pages;
4025 g->page_gotno += new_pages - old_pages;
4026 }
4027
4028 return TRUE;
4029}
4030
4031/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4032 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4033 whether the page reference described by *REFP needs a GOT page entry,
4034 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4035
4036static bfd_boolean
4037mips_elf_resolve_got_page_ref (void **refp, void *data)
4038{
4039 struct mips_got_page_ref *ref;
4040 struct mips_elf_traverse_got_arg *arg;
4041 struct mips_elf_link_hash_table *htab;
4042 asection *sec;
4043 bfd_vma addend;
4044
4045 ref = (struct mips_got_page_ref *) *refp;
4046 arg = (struct mips_elf_traverse_got_arg *) data;
4047 htab = mips_elf_hash_table (arg->info);
4048
4049 if (ref->symndx < 0)
4050 {
4051 struct mips_elf_link_hash_entry *h;
4052
4053 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4054 h = ref->u.h;
4055 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4056 return 1;
4057
4058 /* Ignore undefined symbols; we'll issue an error later if
4059 appropriate. */
4060 if (!((h->root.root.type == bfd_link_hash_defined
4061 || h->root.root.type == bfd_link_hash_defweak)
4062 && h->root.root.u.def.section))
4063 return 1;
4064
4065 sec = h->root.root.u.def.section;
4066 addend = h->root.root.u.def.value + ref->addend;
4067 }
4068 else
4069 {
4070 Elf_Internal_Sym *isym;
4071
4072 /* Read in the symbol. */
4073 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4074 ref->symndx);
4075 if (isym == NULL)
4076 {
4077 arg->g = NULL;
4078 return 0;
4079 }
4080
4081 /* Get the associated input section. */
4082 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4083 if (sec == NULL)
4084 {
4085 arg->g = NULL;
4086 return 0;
4087 }
4088
4089 /* If this is a mergable section, work out the section and offset
4090 of the merged data. For section symbols, the addend specifies
4091 of the offset _of_ the first byte in the data, otherwise it
4092 specifies the offset _from_ the first byte. */
4093 if (sec->flags & SEC_MERGE)
4094 {
4095 void *secinfo;
4096
4097 secinfo = elf_section_data (sec)->sec_info;
4098 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4099 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4100 isym->st_value + ref->addend);
4101 else
4102 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4103 isym->st_value) + ref->addend;
4104 }
4105 else
4106 addend = isym->st_value + ref->addend;
4107 }
4108 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4109 {
4110 arg->g = NULL;
4111 return 0;
4112 }
4113 return 1;
4114}
4115
33bb52fb 4116/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4117 replace them with entries for the target symbol. Convert g->got_page_refs
4118 into got_page_entry structures and estimate the number of page entries
4119 that they require. */
33bb52fb
RS
4120
4121static bfd_boolean
476366af
RS
4122mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4123 struct mips_got_info *g)
33bb52fb 4124{
476366af
RS
4125 struct mips_elf_traverse_got_arg tga;
4126 struct mips_got_info oldg;
4127
4128 oldg = *g;
33bb52fb 4129
476366af
RS
4130 tga.info = info;
4131 tga.g = g;
4132 tga.value = FALSE;
4133 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4134 if (tga.value)
33bb52fb 4135 {
476366af
RS
4136 *g = oldg;
4137 g->got_entries = htab_create (htab_size (oldg.got_entries),
4138 mips_elf_got_entry_hash,
4139 mips_elf_got_entry_eq, NULL);
4140 if (!g->got_entries)
33bb52fb
RS
4141 return FALSE;
4142
476366af
RS
4143 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4144 if (!tga.g)
4145 return FALSE;
4146
4147 htab_delete (oldg.got_entries);
33bb52fb 4148 }
13db6b44
RS
4149
4150 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4151 mips_got_page_entry_eq, NULL);
4152 if (g->got_page_entries == NULL)
4153 return FALSE;
4154
4155 tga.info = info;
4156 tga.g = g;
4157 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4158
33bb52fb
RS
4159 return TRUE;
4160}
4161
6c42ddb9
RS
4162/* A mips_elf_link_hash_traverse callback for which DATA points to the
4163 link_info structure. Decide whether the hash entry needs an entry in
4164 the global part of the primary GOT, setting global_got_area accordingly.
4165 Count the number of global symbols that are in the primary GOT only
4166 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4167
4168static int
d4596a51 4169mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4170{
020d7251 4171 struct bfd_link_info *info;
6ccf4795 4172 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4173 struct mips_got_info *g;
4174
020d7251 4175 info = (struct bfd_link_info *) data;
6ccf4795
RS
4176 htab = mips_elf_hash_table (info);
4177 g = htab->got_info;
d4596a51 4178 if (h->global_got_area != GGA_NONE)
33bb52fb 4179 {
020d7251
RS
4180 /* Make a final decision about whether the symbol belongs in the
4181 local or global GOT. Symbols that bind locally can (and in the
4182 case of forced-local symbols, must) live in the local GOT.
4183 Those that are aren't in the dynamic symbol table must also
4184 live in the local GOT.
4185
4186 Note that the former condition does not always imply the
4187 latter: symbols do not bind locally if they are completely
4188 undefined. We'll report undefined symbols later if appropriate. */
6ccf4795
RS
4189 if (h->root.dynindx == -1
4190 || (h->got_only_for_calls
4191 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4192 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
6c42ddb9
RS
4193 /* The symbol belongs in the local GOT. We no longer need this
4194 entry if it was only used for relocations; those relocations
4195 will be against the null or section symbol instead of H. */
4196 h->global_got_area = GGA_NONE;
6ccf4795
RS
4197 else if (htab->is_vxworks
4198 && h->got_only_for_calls
4199 && h->root.plt.offset != MINUS_ONE)
4200 /* On VxWorks, calls can refer directly to the .got.plt entry;
4201 they don't need entries in the regular GOT. .got.plt entries
4202 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4203 h->global_got_area = GGA_NONE;
6c42ddb9 4204 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4205 {
6c42ddb9 4206 g->reloc_only_gotno++;
23cc69b6 4207 g->global_gotno++;
23cc69b6 4208 }
33bb52fb
RS
4209 }
4210 return 1;
4211}
f4416af6 4212\f
d7206569
RS
4213/* A htab_traverse callback for GOT entries. Add each one to the GOT
4214 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4215
4216static int
d7206569 4217mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4218{
d7206569
RS
4219 struct mips_got_entry *entry;
4220 struct mips_elf_traverse_got_arg *arg;
4221 void **slot;
f4416af6 4222
d7206569
RS
4223 entry = (struct mips_got_entry *) *entryp;
4224 arg = (struct mips_elf_traverse_got_arg *) data;
4225 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4226 if (!slot)
f4416af6 4227 {
d7206569
RS
4228 arg->g = NULL;
4229 return 0;
f4416af6 4230 }
d7206569 4231 if (!*slot)
c224138d 4232 {
d7206569
RS
4233 *slot = entry;
4234 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4235 }
f4416af6
AO
4236 return 1;
4237}
4238
d7206569
RS
4239/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4240 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4241
4242static int
d7206569 4243mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4244{
d7206569
RS
4245 struct mips_got_page_entry *entry;
4246 struct mips_elf_traverse_got_arg *arg;
4247 void **slot;
c224138d 4248
d7206569
RS
4249 entry = (struct mips_got_page_entry *) *entryp;
4250 arg = (struct mips_elf_traverse_got_arg *) data;
4251 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4252 if (!slot)
c224138d 4253 {
d7206569 4254 arg->g = NULL;
c224138d
RS
4255 return 0;
4256 }
d7206569
RS
4257 if (!*slot)
4258 {
4259 *slot = entry;
4260 arg->g->page_gotno += entry->num_pages;
4261 }
c224138d
RS
4262 return 1;
4263}
4264
d7206569
RS
4265/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4266 this would lead to overflow, 1 if they were merged successfully,
4267 and 0 if a merge failed due to lack of memory. (These values are chosen
4268 so that nonnegative return values can be returned by a htab_traverse
4269 callback.) */
c224138d
RS
4270
4271static int
d7206569 4272mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4273 struct mips_got_info *to,
4274 struct mips_elf_got_per_bfd_arg *arg)
4275{
d7206569 4276 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4277 unsigned int estimate;
4278
4279 /* Work out how many page entries we would need for the combined GOT. */
4280 estimate = arg->max_pages;
4281 if (estimate >= from->page_gotno + to->page_gotno)
4282 estimate = from->page_gotno + to->page_gotno;
4283
e2ece73c 4284 /* And conservatively estimate how many local and TLS entries
c224138d 4285 would be needed. */
e2ece73c
RS
4286 estimate += from->local_gotno + to->local_gotno;
4287 estimate += from->tls_gotno + to->tls_gotno;
4288
17214937
RS
4289 /* If we're merging with the primary got, any TLS relocations will
4290 come after the full set of global entries. Otherwise estimate those
e2ece73c 4291 conservatively as well. */
17214937 4292 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4293 estimate += arg->global_count;
4294 else
4295 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4296
4297 /* Bail out if the combined GOT might be too big. */
4298 if (estimate > arg->max_count)
4299 return -1;
4300
c224138d 4301 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4302 tga.info = arg->info;
4303 tga.g = to;
4304 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4305 if (!tga.g)
c224138d
RS
4306 return 0;
4307
d7206569
RS
4308 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4309 if (!tga.g)
c224138d
RS
4310 return 0;
4311
d7206569 4312 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4313 return 1;
4314}
4315
d7206569 4316/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4317 as possible of the primary got, since it doesn't require explicit
4318 dynamic relocations, but don't use bfds that would reference global
4319 symbols out of the addressable range. Failing the primary got,
4320 attempt to merge with the current got, or finish the current got
4321 and then make make the new got current. */
4322
d7206569
RS
4323static bfd_boolean
4324mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4325 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4326{
c224138d
RS
4327 unsigned int estimate;
4328 int result;
4329
476366af 4330 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4331 return FALSE;
4332
c224138d
RS
4333 /* Work out the number of page, local and TLS entries. */
4334 estimate = arg->max_pages;
4335 if (estimate > g->page_gotno)
4336 estimate = g->page_gotno;
4337 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4338
4339 /* We place TLS GOT entries after both locals and globals. The globals
4340 for the primary GOT may overflow the normal GOT size limit, so be
4341 sure not to merge a GOT which requires TLS with the primary GOT in that
4342 case. This doesn't affect non-primary GOTs. */
c224138d 4343 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4344
c224138d 4345 if (estimate <= arg->max_count)
f4416af6 4346 {
c224138d
RS
4347 /* If we don't have a primary GOT, use it as
4348 a starting point for the primary GOT. */
4349 if (!arg->primary)
4350 {
d7206569
RS
4351 arg->primary = g;
4352 return TRUE;
c224138d 4353 }
f4416af6 4354
c224138d 4355 /* Try merging with the primary GOT. */
d7206569 4356 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4357 if (result >= 0)
4358 return result;
f4416af6 4359 }
c224138d 4360
f4416af6 4361 /* If we can merge with the last-created got, do it. */
c224138d 4362 if (arg->current)
f4416af6 4363 {
d7206569 4364 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4365 if (result >= 0)
4366 return result;
f4416af6 4367 }
c224138d 4368
f4416af6
AO
4369 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4370 fits; if it turns out that it doesn't, we'll get relocation
4371 overflows anyway. */
c224138d
RS
4372 g->next = arg->current;
4373 arg->current = g;
0f20cc35 4374
d7206569 4375 return TRUE;
0f20cc35
DJ
4376}
4377
72e7511a
RS
4378/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4379 to GOTIDX, duplicating the entry if it has already been assigned
4380 an index in a different GOT. */
4381
4382static bfd_boolean
4383mips_elf_set_gotidx (void **entryp, long gotidx)
4384{
4385 struct mips_got_entry *entry;
4386
4387 entry = (struct mips_got_entry *) *entryp;
4388 if (entry->gotidx > 0)
4389 {
4390 struct mips_got_entry *new_entry;
4391
4392 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4393 if (!new_entry)
4394 return FALSE;
4395
4396 *new_entry = *entry;
4397 *entryp = new_entry;
4398 entry = new_entry;
4399 }
4400 entry->gotidx = gotidx;
4401 return TRUE;
4402}
4403
4404/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4405 mips_elf_traverse_got_arg in which DATA->value is the size of one
4406 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4407
4408static int
72e7511a 4409mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4410{
72e7511a
RS
4411 struct mips_got_entry *entry;
4412 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4413
4414 /* We're only interested in TLS symbols. */
72e7511a 4415 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4416 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4417 return 1;
4418
72e7511a 4419 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4420 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4421 {
6c42ddb9
RS
4422 arg->g = NULL;
4423 return 0;
f4416af6
AO
4424 }
4425
ead49a57 4426 /* Account for the entries we've just allocated. */
9ab066b4 4427 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4428 return 1;
4429}
4430
ab361d49
RS
4431/* A htab_traverse callback for GOT entries, where DATA points to a
4432 mips_elf_traverse_got_arg. Set the global_got_area of each global
4433 symbol to DATA->value. */
f4416af6 4434
f4416af6 4435static int
ab361d49 4436mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4437{
ab361d49
RS
4438 struct mips_got_entry *entry;
4439 struct mips_elf_traverse_got_arg *arg;
f4416af6 4440
ab361d49
RS
4441 entry = (struct mips_got_entry *) *entryp;
4442 arg = (struct mips_elf_traverse_got_arg *) data;
4443 if (entry->abfd != NULL
4444 && entry->symndx == -1
4445 && entry->d.h->global_got_area != GGA_NONE)
4446 entry->d.h->global_got_area = arg->value;
4447 return 1;
4448}
4449
4450/* A htab_traverse callback for secondary GOT entries, where DATA points
4451 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4452 and record the number of relocations they require. DATA->value is
72e7511a 4453 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4454
4455static int
4456mips_elf_set_global_gotidx (void **entryp, void *data)
4457{
4458 struct mips_got_entry *entry;
4459 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4460
ab361d49
RS
4461 entry = (struct mips_got_entry *) *entryp;
4462 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4466 {
72e7511a
RS
4467 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4468 {
4469 arg->g = NULL;
4470 return 0;
4471 }
4472 arg->g->assigned_gotno += 1;
4473
ab361d49
RS
4474 if (arg->info->shared
4475 || (elf_hash_table (arg->info)->dynamic_sections_created
4476 && entry->d.h->root.def_dynamic
4477 && !entry->d.h->root.def_regular))
4478 arg->g->relocs += 1;
f4416af6
AO
4479 }
4480
4481 return 1;
4482}
4483
33bb52fb
RS
4484/* A htab_traverse callback for GOT entries for which DATA is the
4485 bfd_link_info. Forbid any global symbols from having traditional
4486 lazy-binding stubs. */
4487
0626d451 4488static int
33bb52fb 4489mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4490{
33bb52fb
RS
4491 struct bfd_link_info *info;
4492 struct mips_elf_link_hash_table *htab;
4493 struct mips_got_entry *entry;
0626d451 4494
33bb52fb
RS
4495 entry = (struct mips_got_entry *) *entryp;
4496 info = (struct bfd_link_info *) data;
4497 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4498 BFD_ASSERT (htab != NULL);
4499
0626d451
RS
4500 if (entry->abfd != NULL
4501 && entry->symndx == -1
33bb52fb 4502 && entry->d.h->needs_lazy_stub)
f4416af6 4503 {
33bb52fb
RS
4504 entry->d.h->needs_lazy_stub = FALSE;
4505 htab->lazy_stub_count--;
f4416af6 4506 }
143d77c5 4507
f4416af6
AO
4508 return 1;
4509}
4510
f4416af6
AO
4511/* Return the offset of an input bfd IBFD's GOT from the beginning of
4512 the primary GOT. */
4513static bfd_vma
9719ad41 4514mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4515{
d7206569 4516 if (!g->next)
f4416af6
AO
4517 return 0;
4518
d7206569 4519 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4520 if (! g)
4521 return 0;
4522
4523 BFD_ASSERT (g->next);
4524
4525 g = g->next;
143d77c5 4526
0f20cc35
DJ
4527 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4528 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4529}
4530
4531/* Turn a single GOT that is too big for 16-bit addressing into
4532 a sequence of GOTs, each one 16-bit addressable. */
4533
4534static bfd_boolean
9719ad41 4535mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4536 asection *got, bfd_size_type pages)
f4416af6 4537{
a8028dd0 4538 struct mips_elf_link_hash_table *htab;
f4416af6 4539 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4540 struct mips_elf_traverse_got_arg tga;
a8028dd0 4541 struct mips_got_info *g, *gg;
33bb52fb 4542 unsigned int assign, needed_relocs;
d7206569 4543 bfd *dynobj, *ibfd;
f4416af6 4544
33bb52fb 4545 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4546 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4547 BFD_ASSERT (htab != NULL);
4548
a8028dd0 4549 g = htab->got_info;
f4416af6 4550
f4416af6
AO
4551 got_per_bfd_arg.obfd = abfd;
4552 got_per_bfd_arg.info = info;
f4416af6
AO
4553 got_per_bfd_arg.current = NULL;
4554 got_per_bfd_arg.primary = NULL;
0a44bf69 4555 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4556 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4557 - htab->reserved_gotno);
c224138d 4558 got_per_bfd_arg.max_pages = pages;
0f20cc35 4559 /* The number of globals that will be included in the primary GOT.
ab361d49 4560 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4561 information. */
4562 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4563
4564 /* Try to merge the GOTs of input bfds together, as long as they
4565 don't seem to exceed the maximum GOT size, choosing one of them
4566 to be the primary GOT. */
d7206569
RS
4567 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4568 {
4569 gg = mips_elf_bfd_got (ibfd, FALSE);
4570 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4571 return FALSE;
4572 }
f4416af6 4573
0f20cc35 4574 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4575 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4576 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
d7206569 4590 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4591
634835ae
RS
4592 /* Every symbol that is referenced in a dynamic relocation must be
4593 present in the primary GOT, so arrange for them to appear after
4594 those that are actually referenced. */
23cc69b6 4595 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4596 g->global_gotno = gg->global_gotno;
f4416af6 4597
ab361d49
RS
4598 tga.info = info;
4599 tga.value = GGA_RELOC_ONLY;
4600 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4601 tga.value = GGA_NORMAL;
4602 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4603
4604 /* Now go through the GOTs assigning them offset ranges.
4605 [assigned_gotno, local_gotno[ will be set to the range of local
4606 entries in each GOT. We can then compute the end of a GOT by
4607 adding local_gotno to global_gotno. We reverse the list and make
4608 it circular since then we'll be able to quickly compute the
4609 beginning of a GOT, by computing the end of its predecessor. To
4610 avoid special cases for the primary GOT, while still preserving
4611 assertions that are valid for both single- and multi-got links,
4612 we arrange for the main got struct to have the right number of
4613 global entries, but set its local_gotno such that the initial
4614 offset of the primary GOT is zero. Remember that the primary GOT
4615 will become the last item in the circular linked list, so it
4616 points back to the master GOT. */
4617 gg->local_gotno = -g->global_gotno;
4618 gg->global_gotno = g->global_gotno;
0f20cc35 4619 gg->tls_gotno = 0;
f4416af6
AO
4620 assign = 0;
4621 gg->next = gg;
4622
4623 do
4624 {
4625 struct mips_got_info *gn;
4626
861fb55a 4627 assign += htab->reserved_gotno;
f4416af6 4628 g->assigned_gotno = assign;
c224138d
RS
4629 g->local_gotno += assign;
4630 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
0f20cc35
DJ
4631 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4632
ead49a57
RS
4633 /* Take g out of the direct list, and push it onto the reversed
4634 list that gg points to. g->next is guaranteed to be nonnull after
4635 this operation, as required by mips_elf_initialize_tls_index. */
4636 gn = g->next;
4637 g->next = gg->next;
4638 gg->next = g;
4639
0f20cc35
DJ
4640 /* Set up any TLS entries. We always place the TLS entries after
4641 all non-TLS entries. */
4642 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4643 tga.g = g;
4644 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4645 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4646 if (!tga.g)
4647 return FALSE;
1fd20d70 4648 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4649
ead49a57 4650 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4651 g = gn;
0626d451 4652
33bb52fb
RS
4653 /* Forbid global symbols in every non-primary GOT from having
4654 lazy-binding stubs. */
0626d451 4655 if (g)
33bb52fb 4656 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4657 }
4658 while (g);
4659
59b08994 4660 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4661
4662 needed_relocs = 0;
33bb52fb
RS
4663 for (g = gg->next; g && g->next != gg; g = g->next)
4664 {
4665 unsigned int save_assign;
4666
ab361d49
RS
4667 /* Assign offsets to global GOT entries and count how many
4668 relocations they need. */
33bb52fb
RS
4669 save_assign = g->assigned_gotno;
4670 g->assigned_gotno = g->local_gotno;
ab361d49
RS
4671 tga.info = info;
4672 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4673 tga.g = g;
4674 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4675 if (!tga.g)
4676 return FALSE;
4677 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
33bb52fb 4678 g->assigned_gotno = save_assign;
72e7511a 4679
33bb52fb
RS
4680 if (info->shared)
4681 {
ab361d49 4682 g->relocs += g->local_gotno - g->assigned_gotno;
33bb52fb
RS
4683 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4684 + g->next->global_gotno
4685 + g->next->tls_gotno
861fb55a 4686 + htab->reserved_gotno);
33bb52fb 4687 }
ab361d49 4688 needed_relocs += g->relocs;
33bb52fb 4689 }
ab361d49 4690 needed_relocs += g->relocs;
33bb52fb
RS
4691
4692 if (needed_relocs)
4693 mips_elf_allocate_dynamic_relocations (dynobj, info,
4694 needed_relocs);
143d77c5 4695
f4416af6
AO
4696 return TRUE;
4697}
143d77c5 4698
b49e97c9
TS
4699\f
4700/* Returns the first relocation of type r_type found, beginning with
4701 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4702
4703static const Elf_Internal_Rela *
9719ad41
RS
4704mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4705 const Elf_Internal_Rela *relocation,
4706 const Elf_Internal_Rela *relend)
b49e97c9 4707{
c000e262
TS
4708 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4709
b49e97c9
TS
4710 while (relocation < relend)
4711 {
c000e262
TS
4712 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4713 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
4714 return relocation;
4715
4716 ++relocation;
4717 }
4718
4719 /* We didn't find it. */
b49e97c9
TS
4720 return NULL;
4721}
4722
020d7251 4723/* Return whether an input relocation is against a local symbol. */
b49e97c9 4724
b34976b6 4725static bfd_boolean
9719ad41
RS
4726mips_elf_local_relocation_p (bfd *input_bfd,
4727 const Elf_Internal_Rela *relocation,
020d7251 4728 asection **local_sections)
b49e97c9
TS
4729{
4730 unsigned long r_symndx;
4731 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
4732 size_t extsymoff;
4733
4734 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4736 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4737
4738 if (r_symndx < extsymoff)
b34976b6 4739 return TRUE;
b49e97c9 4740 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 4741 return TRUE;
b49e97c9 4742
b34976b6 4743 return FALSE;
b49e97c9
TS
4744}
4745\f
4746/* Sign-extend VALUE, which has the indicated number of BITS. */
4747
a7ebbfdf 4748bfd_vma
9719ad41 4749_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
4750{
4751 if (value & ((bfd_vma) 1 << (bits - 1)))
4752 /* VALUE is negative. */
4753 value |= ((bfd_vma) - 1) << bits;
4754
4755 return value;
4756}
4757
4758/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 4759 range expressible by a signed number with the indicated number of
b49e97c9
TS
4760 BITS. */
4761
b34976b6 4762static bfd_boolean
9719ad41 4763mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
4764{
4765 bfd_signed_vma svalue = (bfd_signed_vma) value;
4766
4767 if (svalue > (1 << (bits - 1)) - 1)
4768 /* The value is too big. */
b34976b6 4769 return TRUE;
b49e97c9
TS
4770 else if (svalue < -(1 << (bits - 1)))
4771 /* The value is too small. */
b34976b6 4772 return TRUE;
b49e97c9
TS
4773
4774 /* All is well. */
b34976b6 4775 return FALSE;
b49e97c9
TS
4776}
4777
4778/* Calculate the %high function. */
4779
4780static bfd_vma
9719ad41 4781mips_elf_high (bfd_vma value)
b49e97c9
TS
4782{
4783 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4784}
4785
4786/* Calculate the %higher function. */
4787
4788static bfd_vma
9719ad41 4789mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4790{
4791#ifdef BFD64
4792 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4793#else
4794 abort ();
c5ae1840 4795 return MINUS_ONE;
b49e97c9
TS
4796#endif
4797}
4798
4799/* Calculate the %highest function. */
4800
4801static bfd_vma
9719ad41 4802mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
4803{
4804#ifdef BFD64
b15e6682 4805 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
4806#else
4807 abort ();
c5ae1840 4808 return MINUS_ONE;
b49e97c9
TS
4809#endif
4810}
4811\f
4812/* Create the .compact_rel section. */
4813
b34976b6 4814static bfd_boolean
9719ad41
RS
4815mips_elf_create_compact_rel_section
4816 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
4817{
4818 flagword flags;
4819 register asection *s;
4820
3d4d4302 4821 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
4822 {
4823 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4824 | SEC_READONLY);
4825
3d4d4302 4826 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 4827 if (s == NULL
b49e97c9
TS
4828 || ! bfd_set_section_alignment (abfd, s,
4829 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 4830 return FALSE;
b49e97c9 4831
eea6121a 4832 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
4833 }
4834
b34976b6 4835 return TRUE;
b49e97c9
TS
4836}
4837
4838/* Create the .got section to hold the global offset table. */
4839
b34976b6 4840static bfd_boolean
23cc69b6 4841mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
4842{
4843 flagword flags;
4844 register asection *s;
4845 struct elf_link_hash_entry *h;
14a793b2 4846 struct bfd_link_hash_entry *bh;
0a44bf69
RS
4847 struct mips_elf_link_hash_table *htab;
4848
4849 htab = mips_elf_hash_table (info);
4dfe6ac6 4850 BFD_ASSERT (htab != NULL);
b49e97c9
TS
4851
4852 /* This function may be called more than once. */
23cc69b6
RS
4853 if (htab->sgot)
4854 return TRUE;
b49e97c9
TS
4855
4856 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4857 | SEC_LINKER_CREATED);
4858
72b4917c
TS
4859 /* We have to use an alignment of 2**4 here because this is hardcoded
4860 in the function stub generation and in the linker script. */
87e0a731 4861 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 4862 if (s == NULL
72b4917c 4863 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 4864 return FALSE;
a8028dd0 4865 htab->sgot = s;
b49e97c9
TS
4866
4867 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4868 linker script because we don't want to define the symbol if we
4869 are not creating a global offset table. */
14a793b2 4870 bh = NULL;
b49e97c9
TS
4871 if (! (_bfd_generic_link_add_one_symbol
4872 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 4873 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 4874 return FALSE;
14a793b2
AM
4875
4876 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
4877 h->non_elf = 0;
4878 h->def_regular = 1;
b49e97c9 4879 h->type = STT_OBJECT;
d329bcd1 4880 elf_hash_table (info)->hgot = h;
b49e97c9
TS
4881
4882 if (info->shared
c152c796 4883 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 4884 return FALSE;
b49e97c9 4885
3dff0dd1 4886 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 4887 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
4888 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4889
861fb55a 4890 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
4891 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4892 SEC_ALLOC | SEC_LOAD
4893 | SEC_HAS_CONTENTS
4894 | SEC_IN_MEMORY
4895 | SEC_LINKER_CREATED);
861fb55a
DJ
4896 if (s == NULL)
4897 return FALSE;
4898 htab->sgotplt = s;
0a44bf69 4899
b34976b6 4900 return TRUE;
b49e97c9 4901}
b49e97c9 4902\f
0a44bf69
RS
4903/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4904 __GOTT_INDEX__ symbols. These symbols are only special for
4905 shared objects; they are not used in executables. */
4906
4907static bfd_boolean
4908is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4909{
4910 return (mips_elf_hash_table (info)->is_vxworks
4911 && info->shared
4912 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4913 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4914}
861fb55a
DJ
4915
4916/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4917 require an la25 stub. See also mips_elf_local_pic_function_p,
4918 which determines whether the destination function ever requires a
4919 stub. */
4920
4921static bfd_boolean
8f0c309a
CLT
4922mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4923 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
4924{
4925 /* We specifically ignore branches and jumps from EF_PIC objects,
4926 where the onus is on the compiler or programmer to perform any
4927 necessary initialization of $25. Sometimes such initialization
4928 is unnecessary; for example, -mno-shared functions do not use
4929 the incoming value of $25, and may therefore be called directly. */
4930 if (PIC_OBJECT_P (input_bfd))
4931 return FALSE;
4932
4933 switch (r_type)
4934 {
4935 case R_MIPS_26:
4936 case R_MIPS_PC16:
df58fc94
RS
4937 case R_MICROMIPS_26_S1:
4938 case R_MICROMIPS_PC7_S1:
4939 case R_MICROMIPS_PC10_S1:
4940 case R_MICROMIPS_PC16_S1:
4941 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
4942 return TRUE;
4943
8f0c309a
CLT
4944 case R_MIPS16_26:
4945 return !target_is_16_bit_code_p;
4946
861fb55a
DJ
4947 default:
4948 return FALSE;
4949 }
4950}
0a44bf69 4951\f
b49e97c9
TS
4952/* Calculate the value produced by the RELOCATION (which comes from
4953 the INPUT_BFD). The ADDEND is the addend to use for this
4954 RELOCATION; RELOCATION->R_ADDEND is ignored.
4955
4956 The result of the relocation calculation is stored in VALUEP.
38a7df63 4957 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 4958 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
4959
4960 This function returns bfd_reloc_continue if the caller need take no
4961 further action regarding this relocation, bfd_reloc_notsupported if
4962 something goes dramatically wrong, bfd_reloc_overflow if an
4963 overflow occurs, and bfd_reloc_ok to indicate success. */
4964
4965static bfd_reloc_status_type
9719ad41
RS
4966mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4967 asection *input_section,
4968 struct bfd_link_info *info,
4969 const Elf_Internal_Rela *relocation,
4970 bfd_vma addend, reloc_howto_type *howto,
4971 Elf_Internal_Sym *local_syms,
4972 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
4973 const char **namep,
4974 bfd_boolean *cross_mode_jump_p,
9719ad41 4975 bfd_boolean save_addend)
b49e97c9
TS
4976{
4977 /* The eventual value we will return. */
4978 bfd_vma value;
4979 /* The address of the symbol against which the relocation is
4980 occurring. */
4981 bfd_vma symbol = 0;
4982 /* The final GP value to be used for the relocatable, executable, or
4983 shared object file being produced. */
0a61c8c2 4984 bfd_vma gp;
b49e97c9
TS
4985 /* The place (section offset or address) of the storage unit being
4986 relocated. */
4987 bfd_vma p;
4988 /* The value of GP used to create the relocatable object. */
0a61c8c2 4989 bfd_vma gp0;
b49e97c9
TS
4990 /* The offset into the global offset table at which the address of
4991 the relocation entry symbol, adjusted by the addend, resides
4992 during execution. */
4993 bfd_vma g = MINUS_ONE;
4994 /* The section in which the symbol referenced by the relocation is
4995 located. */
4996 asection *sec = NULL;
4997 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 4998 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 4999 symbol. */
b34976b6
AM
5000 bfd_boolean local_p, was_local_p;
5001 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5002 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5003 /* TRUE if the symbol referred to by this relocation is
5004 "__gnu_local_gp". */
5005 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5006 Elf_Internal_Shdr *symtab_hdr;
5007 size_t extsymoff;
5008 unsigned long r_symndx;
5009 int r_type;
b34976b6 5010 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5011 relocation value. */
b34976b6
AM
5012 bfd_boolean overflowed_p;
5013 /* TRUE if this relocation refers to a MIPS16 function. */
5014 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5015 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5016 struct mips_elf_link_hash_table *htab;
5017 bfd *dynobj;
5018
5019 dynobj = elf_hash_table (info)->dynobj;
5020 htab = mips_elf_hash_table (info);
4dfe6ac6 5021 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5022
5023 /* Parse the relocation. */
5024 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5025 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5026 p = (input_section->output_section->vma
5027 + input_section->output_offset
5028 + relocation->r_offset);
5029
5030 /* Assume that there will be no overflow. */
b34976b6 5031 overflowed_p = FALSE;
b49e97c9
TS
5032
5033 /* Figure out whether or not the symbol is local, and get the offset
5034 used in the array of hash table entries. */
5035 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5036 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5037 local_sections);
bce03d3d 5038 was_local_p = local_p;
b49e97c9
TS
5039 if (! elf_bad_symtab (input_bfd))
5040 extsymoff = symtab_hdr->sh_info;
5041 else
5042 {
5043 /* The symbol table does not follow the rule that local symbols
5044 must come before globals. */
5045 extsymoff = 0;
5046 }
5047
5048 /* Figure out the value of the symbol. */
5049 if (local_p)
5050 {
5051 Elf_Internal_Sym *sym;
5052
5053 sym = local_syms + r_symndx;
5054 sec = local_sections[r_symndx];
5055
5056 symbol = sec->output_section->vma + sec->output_offset;
d4df96e6
L
5057 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5058 || (sec->flags & SEC_MERGE))
b49e97c9 5059 symbol += sym->st_value;
d4df96e6
L
5060 if ((sec->flags & SEC_MERGE)
5061 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5062 {
5063 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5064 addend -= symbol;
5065 addend += sec->output_section->vma + sec->output_offset;
5066 }
b49e97c9 5067
df58fc94
RS
5068 /* MIPS16/microMIPS text labels should be treated as odd. */
5069 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5070 ++symbol;
5071
5072 /* Record the name of this symbol, for our caller. */
5073 *namep = bfd_elf_string_from_elf_section (input_bfd,
5074 symtab_hdr->sh_link,
5075 sym->st_name);
5076 if (*namep == '\0')
5077 *namep = bfd_section_name (input_bfd, sec);
5078
30c09090 5079 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
df58fc94 5080 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
b49e97c9
TS
5081 }
5082 else
5083 {
560e09e9
NC
5084 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5085
b49e97c9
TS
5086 /* For global symbols we look up the symbol in the hash-table. */
5087 h = ((struct mips_elf_link_hash_entry *)
5088 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5089 /* Find the real hash-table entry for this symbol. */
5090 while (h->root.root.type == bfd_link_hash_indirect
5091 || h->root.root.type == bfd_link_hash_warning)
5092 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5093
5094 /* Record the name of this symbol, for our caller. */
5095 *namep = h->root.root.root.string;
5096
5097 /* See if this is the special _gp_disp symbol. Note that such a
5098 symbol must always be a global symbol. */
560e09e9 5099 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5100 && ! NEWABI_P (input_bfd))
5101 {
5102 /* Relocations against _gp_disp are permitted only with
5103 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5104 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5105 return bfd_reloc_notsupported;
5106
b34976b6 5107 gp_disp_p = TRUE;
b49e97c9 5108 }
bbe506e8
TS
5109 /* See if this is the special _gp symbol. Note that such a
5110 symbol must always be a global symbol. */
5111 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5112 gnu_local_gp_p = TRUE;
5113
5114
b49e97c9
TS
5115 /* If this symbol is defined, calculate its address. Note that
5116 _gp_disp is a magic symbol, always implicitly defined by the
5117 linker, so it's inappropriate to check to see whether or not
5118 its defined. */
5119 else if ((h->root.root.type == bfd_link_hash_defined
5120 || h->root.root.type == bfd_link_hash_defweak)
5121 && h->root.root.u.def.section)
5122 {
5123 sec = h->root.root.u.def.section;
5124 if (sec->output_section)
5125 symbol = (h->root.root.u.def.value
5126 + sec->output_section->vma
5127 + sec->output_offset);
5128 else
5129 symbol = h->root.root.u.def.value;
5130 }
5131 else if (h->root.root.type == bfd_link_hash_undefweak)
5132 /* We allow relocations against undefined weak symbols, giving
5133 it the value zero, so that you can undefined weak functions
5134 and check to see if they exist by looking at their
5135 addresses. */
5136 symbol = 0;
59c2e50f 5137 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5138 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5139 symbol = 0;
a4d0f181
TS
5140 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5141 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5142 {
5143 /* If this is a dynamic link, we should have created a
5144 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5145 in in _bfd_mips_elf_create_dynamic_sections.
5146 Otherwise, we should define the symbol with a value of 0.
5147 FIXME: It should probably get into the symbol table
5148 somehow as well. */
5149 BFD_ASSERT (! info->shared);
5150 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5151 symbol = 0;
5152 }
5e2b0d47
NC
5153 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5154 {
5155 /* This is an optional symbol - an Irix specific extension to the
5156 ELF spec. Ignore it for now.
5157 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5158 than simply ignoring them, but we do not handle this for now.
5159 For information see the "64-bit ELF Object File Specification"
5160 which is available from here:
5161 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5162 symbol = 0;
5163 }
e7e2196d
MR
5164 else if ((*info->callbacks->undefined_symbol)
5165 (info, h->root.root.root.string, input_bfd,
5166 input_section, relocation->r_offset,
5167 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5168 || ELF_ST_VISIBILITY (h->root.other)))
5169 {
5170 return bfd_reloc_undefined;
5171 }
b49e97c9
TS
5172 else
5173 {
e7e2196d 5174 return bfd_reloc_notsupported;
b49e97c9
TS
5175 }
5176
30c09090 5177 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
df58fc94
RS
5178 /* If the output section is the PLT section,
5179 then the target is not microMIPS. */
5180 target_is_micromips_code_p = (htab->splt != sec
5181 && ELF_ST_IS_MICROMIPS (h->root.other));
b49e97c9
TS
5182 }
5183
738e5348
RS
5184 /* If this is a reference to a 16-bit function with a stub, we need
5185 to redirect the relocation to the stub unless:
5186
5187 (a) the relocation is for a MIPS16 JAL;
5188
5189 (b) the relocation is for a MIPS16 PIC call, and there are no
5190 non-MIPS16 uses of the GOT slot; or
5191
5192 (c) the section allows direct references to MIPS16 functions. */
5193 if (r_type != R_MIPS16_26
5194 && !info->relocatable
5195 && ((h != NULL
5196 && h->fn_stub != NULL
5197 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5198 || (local_p
698600e4
AM
5199 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5200 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5201 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5202 {
5203 /* This is a 32- or 64-bit call to a 16-bit function. We should
5204 have already noticed that we were going to need the
5205 stub. */
5206 if (local_p)
8f0c309a 5207 {
698600e4 5208 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5209 value = 0;
5210 }
b49e97c9
TS
5211 else
5212 {
5213 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5214 if (h->la25_stub)
5215 {
5216 /* If a LA25 header for the stub itself exists, point to the
5217 prepended LUI/ADDIU sequence. */
5218 sec = h->la25_stub->stub_section;
5219 value = h->la25_stub->offset;
5220 }
5221 else
5222 {
5223 sec = h->fn_stub;
5224 value = 0;
5225 }
b49e97c9
TS
5226 }
5227
8f0c309a 5228 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5229 /* The target is 16-bit, but the stub isn't. */
5230 target_is_16_bit_code_p = FALSE;
b49e97c9
TS
5231 }
5232 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
738e5348
RS
5233 need to redirect the call to the stub. Note that we specifically
5234 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5235 use an indirect stub instead. */
1049f94e 5236 else if (r_type == R_MIPS16_26 && !info->relocatable
b314ec0e 5237 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5238 || (local_p
698600e4
AM
5239 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5240 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
b49e97c9
TS
5241 && !target_is_16_bit_code_p)
5242 {
b9d58d71 5243 if (local_p)
698600e4 5244 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5245 else
b49e97c9 5246 {
b9d58d71
TS
5247 /* If both call_stub and call_fp_stub are defined, we can figure
5248 out which one to use by checking which one appears in the input
5249 file. */
5250 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5251 {
b9d58d71 5252 asection *o;
68ffbac6 5253
b9d58d71
TS
5254 sec = NULL;
5255 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5256 {
b9d58d71
TS
5257 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5258 {
5259 sec = h->call_fp_stub;
5260 break;
5261 }
b49e97c9 5262 }
b9d58d71
TS
5263 if (sec == NULL)
5264 sec = h->call_stub;
b49e97c9 5265 }
b9d58d71 5266 else if (h->call_stub != NULL)
b49e97c9 5267 sec = h->call_stub;
b9d58d71
TS
5268 else
5269 sec = h->call_fp_stub;
5270 }
b49e97c9 5271
eea6121a 5272 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5273 symbol = sec->output_section->vma + sec->output_offset;
5274 }
861fb55a
DJ
5275 /* If this is a direct call to a PIC function, redirect to the
5276 non-PIC stub. */
5277 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5278 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5279 target_is_16_bit_code_p))
861fb55a
DJ
5280 symbol = (h->la25_stub->stub_section->output_section->vma
5281 + h->la25_stub->stub_section->output_offset
5282 + h->la25_stub->offset);
b49e97c9 5283
df58fc94
RS
5284 /* Make sure MIPS16 and microMIPS are not used together. */
5285 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5286 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5287 {
5288 (*_bfd_error_handler)
5289 (_("MIPS16 and microMIPS functions cannot call each other"));
5290 return bfd_reloc_notsupported;
5291 }
5292
b49e97c9 5293 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5294 mode change. However, we can ignore calls to undefined weak symbols,
5295 which should never be executed at runtime. This exception is important
5296 because the assembly writer may have "known" that any definition of the
5297 symbol would be 16-bit code, and that direct jumps were therefore
5298 acceptable. */
5299 *cross_mode_jump_p = (!info->relocatable
5300 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5301 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5302 || (r_type == R_MICROMIPS_26_S1
5303 && !target_is_micromips_code_p)
5304 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5305 && (target_is_16_bit_code_p
5306 || target_is_micromips_code_p))));
b49e97c9 5307
9f1a453e
MR
5308 local_p = (h == NULL
5309 || (h->got_only_for_calls
5310 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5311 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
b49e97c9 5312
0a61c8c2
RS
5313 gp0 = _bfd_get_gp_value (input_bfd);
5314 gp = _bfd_get_gp_value (abfd);
23cc69b6 5315 if (htab->got_info)
a8028dd0 5316 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5317
5318 if (gnu_local_gp_p)
5319 symbol = gp;
5320
df58fc94
RS
5321 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5322 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5323 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5324 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5325 {
df58fc94
RS
5326 r_type = (micromips_reloc_p (r_type)
5327 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5328 addend = 0;
5329 }
5330
e77760d2 5331 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5332 to need it, get it now. */
b49e97c9
TS
5333 switch (r_type)
5334 {
738e5348
RS
5335 case R_MIPS16_CALL16:
5336 case R_MIPS16_GOT16:
b49e97c9
TS
5337 case R_MIPS_CALL16:
5338 case R_MIPS_GOT16:
5339 case R_MIPS_GOT_DISP:
5340 case R_MIPS_GOT_HI16:
5341 case R_MIPS_CALL_HI16:
5342 case R_MIPS_GOT_LO16:
5343 case R_MIPS_CALL_LO16:
df58fc94
RS
5344 case R_MICROMIPS_CALL16:
5345 case R_MICROMIPS_GOT16:
5346 case R_MICROMIPS_GOT_DISP:
5347 case R_MICROMIPS_GOT_HI16:
5348 case R_MICROMIPS_CALL_HI16:
5349 case R_MICROMIPS_GOT_LO16:
5350 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5351 case R_MIPS_TLS_GD:
5352 case R_MIPS_TLS_GOTTPREL:
5353 case R_MIPS_TLS_LDM:
d0f13682
CLT
5354 case R_MIPS16_TLS_GD:
5355 case R_MIPS16_TLS_GOTTPREL:
5356 case R_MIPS16_TLS_LDM:
df58fc94
RS
5357 case R_MICROMIPS_TLS_GD:
5358 case R_MICROMIPS_TLS_GOTTPREL:
5359 case R_MICROMIPS_TLS_LDM:
b49e97c9 5360 /* Find the index into the GOT where this value is located. */
df58fc94 5361 if (tls_ldm_reloc_p (r_type))
0f20cc35 5362 {
0a44bf69 5363 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5364 0, 0, NULL, r_type);
0f20cc35
DJ
5365 if (g == MINUS_ONE)
5366 return bfd_reloc_outofrange;
5367 }
5368 else if (!local_p)
b49e97c9 5369 {
0a44bf69
RS
5370 /* On VxWorks, CALL relocations should refer to the .got.plt
5371 entry, which is initialized to point at the PLT stub. */
5372 if (htab->is_vxworks
df58fc94
RS
5373 && (call_hi16_reloc_p (r_type)
5374 || call_lo16_reloc_p (r_type)
738e5348 5375 || call16_reloc_p (r_type)))
0a44bf69
RS
5376 {
5377 BFD_ASSERT (addend == 0);
5378 BFD_ASSERT (h->root.needs_plt);
5379 g = mips_elf_gotplt_index (info, &h->root);
5380 }
5381 else
b49e97c9 5382 {
020d7251 5383 BFD_ASSERT (addend == 0);
13fbec83
RS
5384 g = mips_elf_global_got_index (abfd, info, input_bfd,
5385 &h->root, r_type);
e641e783 5386 if (!TLS_RELOC_P (r_type)
020d7251
RS
5387 && !elf_hash_table (info)->dynamic_sections_created)
5388 /* This is a static link. We must initialize the GOT entry. */
a8028dd0 5389 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
b49e97c9
TS
5390 }
5391 }
0a44bf69 5392 else if (!htab->is_vxworks
738e5348 5393 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5394 /* The calculation below does not involve "g". */
b49e97c9
TS
5395 break;
5396 else
5397 {
5c18022e 5398 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5399 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5400 if (g == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 }
5403
5404 /* Convert GOT indices to actual offsets. */
a8028dd0 5405 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5406 break;
b49e97c9
TS
5407 }
5408
0a44bf69
RS
5409 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5410 symbols are resolved by the loader. Add them to .rela.dyn. */
5411 if (h != NULL && is_gott_symbol (info, &h->root))
5412 {
5413 Elf_Internal_Rela outrel;
5414 bfd_byte *loc;
5415 asection *s;
5416
5417 s = mips_elf_rel_dyn_section (info, FALSE);
5418 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5419
5420 outrel.r_offset = (input_section->output_section->vma
5421 + input_section->output_offset
5422 + relocation->r_offset);
5423 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5424 outrel.r_addend = addend;
5425 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5426
5427 /* If we've written this relocation for a readonly section,
5428 we need to set DF_TEXTREL again, so that we do not delete the
5429 DT_TEXTREL tag. */
5430 if (MIPS_ELF_READONLY_SECTION (input_section))
5431 info->flags |= DF_TEXTREL;
5432
0a44bf69
RS
5433 *valuep = 0;
5434 return bfd_reloc_ok;
5435 }
5436
b49e97c9
TS
5437 /* Figure out what kind of relocation is being performed. */
5438 switch (r_type)
5439 {
5440 case R_MIPS_NONE:
5441 return bfd_reloc_continue;
5442
5443 case R_MIPS_16:
a7ebbfdf 5444 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
b49e97c9
TS
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447
5448 case R_MIPS_32:
5449 case R_MIPS_REL32:
5450 case R_MIPS_64:
5451 if ((info->shared
861fb55a 5452 || (htab->root.dynamic_sections_created
b49e97c9 5453 && h != NULL
f5385ebf 5454 && h->root.def_dynamic
861fb55a
DJ
5455 && !h->root.def_regular
5456 && !h->has_static_relocs))
cf35638d 5457 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5458 && (h == NULL
5459 || h->root.root.type != bfd_link_hash_undefweak
5460 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5461 && (input_section->flags & SEC_ALLOC) != 0)
5462 {
861fb55a 5463 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5464 where the symbol will end up. So, we create a relocation
5465 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5466 linker. We must do the same for executable references to
5467 shared library symbols, unless we've decided to use copy
5468 relocs or PLTs instead. */
b49e97c9
TS
5469 value = addend;
5470 if (!mips_elf_create_dynamic_relocation (abfd,
5471 info,
5472 relocation,
5473 h,
5474 sec,
5475 symbol,
5476 &value,
5477 input_section))
5478 return bfd_reloc_undefined;
5479 }
5480 else
5481 {
5482 if (r_type != R_MIPS_REL32)
5483 value = symbol + addend;
5484 else
5485 value = addend;
5486 }
5487 value &= howto->dst_mask;
092dcd75
CD
5488 break;
5489
5490 case R_MIPS_PC32:
5491 value = symbol + addend - p;
5492 value &= howto->dst_mask;
b49e97c9
TS
5493 break;
5494
b49e97c9
TS
5495 case R_MIPS16_26:
5496 /* The calculation for R_MIPS16_26 is just the same as for an
5497 R_MIPS_26. It's only the storage of the relocated field into
5498 the output file that's different. That's handled in
5499 mips_elf_perform_relocation. So, we just fall through to the
5500 R_MIPS_26 case here. */
5501 case R_MIPS_26:
df58fc94
RS
5502 case R_MICROMIPS_26_S1:
5503 {
5504 unsigned int shift;
5505
5506 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5507 the correct ISA mode selector and bit 1 must be 0. */
5508 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5509 return bfd_reloc_outofrange;
5510
5511 /* Shift is 2, unusually, for microMIPS JALX. */
5512 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5513
5514 if (was_local_p)
5515 value = addend | ((p + 4) & (0xfc000000 << shift));
5516 else
5517 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5518 value = (value + symbol) >> shift;
5519 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5520 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5521 value &= howto->dst_mask;
5522 }
b49e97c9
TS
5523 break;
5524
0f20cc35 5525 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5526 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5527 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5528 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5529 & howto->dst_mask);
5530 break;
5531
5532 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5533 case R_MIPS_TLS_DTPREL32:
5534 case R_MIPS_TLS_DTPREL64:
d0f13682 5535 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5536 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5537 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5538 break;
5539
5540 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5541 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5542 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5543 value = (mips_elf_high (addend + symbol - tprel_base (info))
5544 & howto->dst_mask);
5545 break;
5546
5547 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5548 case R_MIPS_TLS_TPREL32:
5549 case R_MIPS_TLS_TPREL64:
5550 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5551 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5552 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5553 break;
5554
b49e97c9 5555 case R_MIPS_HI16:
d6f16593 5556 case R_MIPS16_HI16:
df58fc94 5557 case R_MICROMIPS_HI16:
b49e97c9
TS
5558 if (!gp_disp_p)
5559 {
5560 value = mips_elf_high (addend + symbol);
5561 value &= howto->dst_mask;
5562 }
5563 else
5564 {
d6f16593
MR
5565 /* For MIPS16 ABI code we generate this sequence
5566 0: li $v0,%hi(_gp_disp)
5567 4: addiupc $v1,%lo(_gp_disp)
5568 8: sll $v0,16
5569 12: addu $v0,$v1
5570 14: move $gp,$v0
5571 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5572 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5573 ADDIUPC clears the low two bits of the instruction address,
5574 so the base is ($t9 + 4) & ~3. */
d6f16593 5575 if (r_type == R_MIPS16_HI16)
888b9c01 5576 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5577 /* The microMIPS .cpload sequence uses the same assembly
5578 instructions as the traditional psABI version, but the
5579 incoming $t9 has the low bit set. */
5580 else if (r_type == R_MICROMIPS_HI16)
5581 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5582 else
5583 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5584 overflowed_p = mips_elf_overflow_p (value, 16);
5585 }
5586 break;
5587
5588 case R_MIPS_LO16:
d6f16593 5589 case R_MIPS16_LO16:
df58fc94
RS
5590 case R_MICROMIPS_LO16:
5591 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5592 if (!gp_disp_p)
5593 value = (symbol + addend) & howto->dst_mask;
5594 else
5595 {
d6f16593
MR
5596 /* See the comment for R_MIPS16_HI16 above for the reason
5597 for this conditional. */
5598 if (r_type == R_MIPS16_LO16)
888b9c01 5599 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5600 else if (r_type == R_MICROMIPS_LO16
5601 || r_type == R_MICROMIPS_HI0_LO16)
5602 value = addend + gp - p + 3;
d6f16593
MR
5603 else
5604 value = addend + gp - p + 4;
b49e97c9 5605 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5606 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5607 _gp_disp are normally generated from the .cpload
5608 pseudo-op. It generates code that normally looks like
5609 this:
5610
5611 lui $gp,%hi(_gp_disp)
5612 addiu $gp,$gp,%lo(_gp_disp)
5613 addu $gp,$gp,$t9
5614
5615 Here $t9 holds the address of the function being called,
5616 as required by the MIPS ELF ABI. The R_MIPS_LO16
5617 relocation can easily overflow in this situation, but the
5618 R_MIPS_HI16 relocation will handle the overflow.
5619 Therefore, we consider this a bug in the MIPS ABI, and do
5620 not check for overflow here. */
5621 }
5622 break;
5623
5624 case R_MIPS_LITERAL:
df58fc94 5625 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5626 /* Because we don't merge literal sections, we can handle this
5627 just like R_MIPS_GPREL16. In the long run, we should merge
5628 shared literals, and then we will need to additional work
5629 here. */
5630
5631 /* Fall through. */
5632
5633 case R_MIPS16_GPREL:
5634 /* The R_MIPS16_GPREL performs the same calculation as
5635 R_MIPS_GPREL16, but stores the relocated bits in a different
5636 order. We don't need to do anything special here; the
5637 differences are handled in mips_elf_perform_relocation. */
5638 case R_MIPS_GPREL16:
df58fc94
RS
5639 case R_MICROMIPS_GPREL7_S2:
5640 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5641 /* Only sign-extend the addend if it was extracted from the
5642 instruction. If the addend was separate, leave it alone,
5643 otherwise we may lose significant bits. */
5644 if (howto->partial_inplace)
a7ebbfdf 5645 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5646 value = symbol + addend - gp;
5647 /* If the symbol was local, any earlier relocatable links will
5648 have adjusted its addend with the gp offset, so compensate
5649 for that now. Don't do it for symbols forced local in this
5650 link, though, since they won't have had the gp offset applied
5651 to them before. */
5652 if (was_local_p)
5653 value += gp0;
b49e97c9
TS
5654 overflowed_p = mips_elf_overflow_p (value, 16);
5655 break;
5656
738e5348
RS
5657 case R_MIPS16_GOT16:
5658 case R_MIPS16_CALL16:
b49e97c9
TS
5659 case R_MIPS_GOT16:
5660 case R_MIPS_CALL16:
df58fc94
RS
5661 case R_MICROMIPS_GOT16:
5662 case R_MICROMIPS_CALL16:
0a44bf69 5663 /* VxWorks does not have separate local and global semantics for
738e5348 5664 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 5665 if (!htab->is_vxworks && local_p)
b49e97c9 5666 {
5c18022e 5667 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 5668 symbol + addend, !was_local_p);
b49e97c9
TS
5669 if (value == MINUS_ONE)
5670 return bfd_reloc_outofrange;
5671 value
a8028dd0 5672 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5673 overflowed_p = mips_elf_overflow_p (value, 16);
5674 break;
5675 }
5676
5677 /* Fall through. */
5678
0f20cc35
DJ
5679 case R_MIPS_TLS_GD:
5680 case R_MIPS_TLS_GOTTPREL:
5681 case R_MIPS_TLS_LDM:
b49e97c9 5682 case R_MIPS_GOT_DISP:
d0f13682
CLT
5683 case R_MIPS16_TLS_GD:
5684 case R_MIPS16_TLS_GOTTPREL:
5685 case R_MIPS16_TLS_LDM:
df58fc94
RS
5686 case R_MICROMIPS_TLS_GD:
5687 case R_MICROMIPS_TLS_GOTTPREL:
5688 case R_MICROMIPS_TLS_LDM:
5689 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
5690 value = g;
5691 overflowed_p = mips_elf_overflow_p (value, 16);
5692 break;
5693
5694 case R_MIPS_GPREL32:
bce03d3d
AO
5695 value = (addend + symbol + gp0 - gp);
5696 if (!save_addend)
5697 value &= howto->dst_mask;
b49e97c9
TS
5698 break;
5699
5700 case R_MIPS_PC16:
bad36eac
DJ
5701 case R_MIPS_GNU_REL16_S2:
5702 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5703 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
5704 value >>= howto->rightshift;
5705 value &= howto->dst_mask;
b49e97c9
TS
5706 break;
5707
df58fc94
RS
5708 case R_MICROMIPS_PC7_S1:
5709 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5710 overflowed_p = mips_elf_overflow_p (value, 8);
5711 value >>= howto->rightshift;
5712 value &= howto->dst_mask;
5713 break;
5714
5715 case R_MICROMIPS_PC10_S1:
5716 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5717 overflowed_p = mips_elf_overflow_p (value, 11);
5718 value >>= howto->rightshift;
5719 value &= howto->dst_mask;
5720 break;
5721
5722 case R_MICROMIPS_PC16_S1:
5723 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5724 overflowed_p = mips_elf_overflow_p (value, 17);
5725 value >>= howto->rightshift;
5726 value &= howto->dst_mask;
5727 break;
5728
5729 case R_MICROMIPS_PC23_S2:
5730 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5731 overflowed_p = mips_elf_overflow_p (value, 25);
5732 value >>= howto->rightshift;
5733 value &= howto->dst_mask;
5734 break;
5735
b49e97c9
TS
5736 case R_MIPS_GOT_HI16:
5737 case R_MIPS_CALL_HI16:
df58fc94
RS
5738 case R_MICROMIPS_GOT_HI16:
5739 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
5740 /* We're allowed to handle these two relocations identically.
5741 The dynamic linker is allowed to handle the CALL relocations
5742 differently by creating a lazy evaluation stub. */
5743 value = g;
5744 value = mips_elf_high (value);
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MIPS_GOT_LO16:
5749 case R_MIPS_CALL_LO16:
df58fc94
RS
5750 case R_MICROMIPS_GOT_LO16:
5751 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
5752 value = g & howto->dst_mask;
5753 break;
5754
5755 case R_MIPS_GOT_PAGE:
df58fc94 5756 case R_MICROMIPS_GOT_PAGE:
5c18022e 5757 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
5758 if (value == MINUS_ONE)
5759 return bfd_reloc_outofrange;
a8028dd0 5760 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
5761 overflowed_p = mips_elf_overflow_p (value, 16);
5762 break;
5763
5764 case R_MIPS_GOT_OFST:
df58fc94 5765 case R_MICROMIPS_GOT_OFST:
93a2b7ae 5766 if (local_p)
5c18022e 5767 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
5768 else
5769 value = addend;
b49e97c9
TS
5770 overflowed_p = mips_elf_overflow_p (value, 16);
5771 break;
5772
5773 case R_MIPS_SUB:
df58fc94 5774 case R_MICROMIPS_SUB:
b49e97c9
TS
5775 value = symbol - addend;
5776 value &= howto->dst_mask;
5777 break;
5778
5779 case R_MIPS_HIGHER:
df58fc94 5780 case R_MICROMIPS_HIGHER:
b49e97c9
TS
5781 value = mips_elf_higher (addend + symbol);
5782 value &= howto->dst_mask;
5783 break;
5784
5785 case R_MIPS_HIGHEST:
df58fc94 5786 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
5787 value = mips_elf_highest (addend + symbol);
5788 value &= howto->dst_mask;
5789 break;
5790
5791 case R_MIPS_SCN_DISP:
df58fc94 5792 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
5793 value = symbol + addend - sec->output_offset;
5794 value &= howto->dst_mask;
5795 break;
5796
b49e97c9 5797 case R_MIPS_JALR:
df58fc94 5798 case R_MICROMIPS_JALR:
1367d393
ILT
5799 /* This relocation is only a hint. In some cases, we optimize
5800 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
5801 when the symbol does not resolve locally. */
5802 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393
ILT
5803 return bfd_reloc_continue;
5804 value = symbol + addend;
5805 break;
b49e97c9 5806
1367d393 5807 case R_MIPS_PJUMP:
b49e97c9
TS
5808 case R_MIPS_GNU_VTINHERIT:
5809 case R_MIPS_GNU_VTENTRY:
5810 /* We don't do anything with these at present. */
5811 return bfd_reloc_continue;
5812
5813 default:
5814 /* An unrecognized relocation type. */
5815 return bfd_reloc_notsupported;
5816 }
5817
5818 /* Store the VALUE for our caller. */
5819 *valuep = value;
5820 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5821}
5822
5823/* Obtain the field relocated by RELOCATION. */
5824
5825static bfd_vma
9719ad41
RS
5826mips_elf_obtain_contents (reloc_howto_type *howto,
5827 const Elf_Internal_Rela *relocation,
5828 bfd *input_bfd, bfd_byte *contents)
b49e97c9
TS
5829{
5830 bfd_vma x;
5831 bfd_byte *location = contents + relocation->r_offset;
5832
5833 /* Obtain the bytes. */
5834 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5835
b49e97c9
TS
5836 return x;
5837}
5838
5839/* It has been determined that the result of the RELOCATION is the
5840 VALUE. Use HOWTO to place VALUE into the output file at the
5841 appropriate position. The SECTION is the section to which the
68ffbac6 5842 relocation applies.
38a7df63 5843 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 5844 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 5845
b34976b6 5846 Returns FALSE if anything goes wrong. */
b49e97c9 5847
b34976b6 5848static bfd_boolean
9719ad41
RS
5849mips_elf_perform_relocation (struct bfd_link_info *info,
5850 reloc_howto_type *howto,
5851 const Elf_Internal_Rela *relocation,
5852 bfd_vma value, bfd *input_bfd,
5853 asection *input_section, bfd_byte *contents,
38a7df63 5854 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
5855{
5856 bfd_vma x;
5857 bfd_byte *location;
5858 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5859
5860 /* Figure out where the relocation is occurring. */
5861 location = contents + relocation->r_offset;
5862
df58fc94 5863 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 5864
b49e97c9
TS
5865 /* Obtain the current value. */
5866 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5867
5868 /* Clear the field we are setting. */
5869 x &= ~howto->dst_mask;
5870
b49e97c9
TS
5871 /* Set the field. */
5872 x |= (value & howto->dst_mask);
5873
5874 /* If required, turn JAL into JALX. */
38a7df63 5875 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 5876 {
b34976b6 5877 bfd_boolean ok;
b49e97c9
TS
5878 bfd_vma opcode = x >> 26;
5879 bfd_vma jalx_opcode;
5880
5881 /* Check to see if the opcode is already JAL or JALX. */
5882 if (r_type == R_MIPS16_26)
5883 {
5884 ok = ((opcode == 0x6) || (opcode == 0x7));
5885 jalx_opcode = 0x7;
5886 }
df58fc94
RS
5887 else if (r_type == R_MICROMIPS_26_S1)
5888 {
5889 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5890 jalx_opcode = 0x3c;
5891 }
b49e97c9
TS
5892 else
5893 {
5894 ok = ((opcode == 0x3) || (opcode == 0x1d));
5895 jalx_opcode = 0x1d;
5896 }
5897
3bdf9505
MR
5898 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5899 convert J or JALS to JALX. */
b49e97c9
TS
5900 if (!ok)
5901 {
5902 (*_bfd_error_handler)
3bdf9505 5903 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
d003868e
AM
5904 input_bfd,
5905 input_section,
b49e97c9
TS
5906 (unsigned long) relocation->r_offset);
5907 bfd_set_error (bfd_error_bad_value);
b34976b6 5908 return FALSE;
b49e97c9
TS
5909 }
5910
5911 /* Make this the JALX opcode. */
5912 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5913 }
5914
38a7df63
CF
5915 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5916 range. */
cd8d5a82 5917 if (!info->relocatable
38a7df63 5918 && !cross_mode_jump_p
cd8d5a82
CF
5919 && ((JAL_TO_BAL_P (input_bfd)
5920 && r_type == R_MIPS_26
5921 && (x >> 26) == 0x3) /* jal addr */
5922 || (JALR_TO_BAL_P (input_bfd)
5923 && r_type == R_MIPS_JALR
38a7df63
CF
5924 && x == 0x0320f809) /* jalr t9 */
5925 || (JR_TO_B_P (input_bfd)
5926 && r_type == R_MIPS_JALR
5927 && x == 0x03200008))) /* jr t9 */
1367d393
ILT
5928 {
5929 bfd_vma addr;
5930 bfd_vma dest;
5931 bfd_signed_vma off;
5932
5933 addr = (input_section->output_section->vma
5934 + input_section->output_offset
5935 + relocation->r_offset
5936 + 4);
5937 if (r_type == R_MIPS_26)
5938 dest = (value << 2) | ((addr >> 28) << 28);
5939 else
5940 dest = value;
5941 off = dest - addr;
5942 if (off <= 0x1ffff && off >= -0x20000)
38a7df63
CF
5943 {
5944 if (x == 0x03200008) /* jr t9 */
5945 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5946 else
5947 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5948 }
1367d393
ILT
5949 }
5950
b49e97c9
TS
5951 /* Put the value into the output. */
5952 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
d6f16593 5953
df58fc94
RS
5954 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5955 location);
d6f16593 5956
b34976b6 5957 return TRUE;
b49e97c9 5958}
b49e97c9 5959\f
b49e97c9
TS
5960/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5961 is the original relocation, which is now being transformed into a
5962 dynamic relocation. The ADDENDP is adjusted if necessary; the
5963 caller should store the result in place of the original addend. */
5964
b34976b6 5965static bfd_boolean
9719ad41
RS
5966mips_elf_create_dynamic_relocation (bfd *output_bfd,
5967 struct bfd_link_info *info,
5968 const Elf_Internal_Rela *rel,
5969 struct mips_elf_link_hash_entry *h,
5970 asection *sec, bfd_vma symbol,
5971 bfd_vma *addendp, asection *input_section)
b49e97c9 5972{
947216bf 5973 Elf_Internal_Rela outrel[3];
b49e97c9
TS
5974 asection *sreloc;
5975 bfd *dynobj;
5976 int r_type;
5d41f0b6
RS
5977 long indx;
5978 bfd_boolean defined_p;
0a44bf69 5979 struct mips_elf_link_hash_table *htab;
b49e97c9 5980
0a44bf69 5981 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
5982 BFD_ASSERT (htab != NULL);
5983
b49e97c9
TS
5984 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5985 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 5986 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
5987 BFD_ASSERT (sreloc != NULL);
5988 BFD_ASSERT (sreloc->contents != NULL);
5989 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 5990 < sreloc->size);
b49e97c9 5991
b49e97c9
TS
5992 outrel[0].r_offset =
5993 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
5994 if (ABI_64_P (output_bfd))
5995 {
5996 outrel[1].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5998 outrel[2].r_offset =
5999 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6000 }
b49e97c9 6001
c5ae1840 6002 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6003 /* The relocation field has been deleted. */
5d41f0b6
RS
6004 return TRUE;
6005
6006 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6007 {
6008 /* The relocation field has been converted into a relative value of
6009 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6010 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6011 *addendp += symbol;
5d41f0b6 6012 return TRUE;
0d591ff7 6013 }
b49e97c9 6014
5d41f0b6
RS
6015 /* We must now calculate the dynamic symbol table index to use
6016 in the relocation. */
d4a77f3f 6017 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6018 {
020d7251 6019 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6020 indx = h->root.dynindx;
6021 if (SGI_COMPAT (output_bfd))
6022 defined_p = h->root.def_regular;
6023 else
6024 /* ??? glibc's ld.so just adds the final GOT entry to the
6025 relocation field. It therefore treats relocs against
6026 defined symbols in the same way as relocs against
6027 undefined symbols. */
6028 defined_p = FALSE;
6029 }
b49e97c9
TS
6030 else
6031 {
5d41f0b6
RS
6032 if (sec != NULL && bfd_is_abs_section (sec))
6033 indx = 0;
6034 else if (sec == NULL || sec->owner == NULL)
fdd07405 6035 {
5d41f0b6
RS
6036 bfd_set_error (bfd_error_bad_value);
6037 return FALSE;
b49e97c9
TS
6038 }
6039 else
6040 {
5d41f0b6 6041 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6042 if (indx == 0)
6043 {
6044 asection *osec = htab->root.text_index_section;
6045 indx = elf_section_data (osec)->dynindx;
6046 }
5d41f0b6
RS
6047 if (indx == 0)
6048 abort ();
b49e97c9
TS
6049 }
6050
5d41f0b6
RS
6051 /* Instead of generating a relocation using the section
6052 symbol, we may as well make it a fully relative
6053 relocation. We want to avoid generating relocations to
6054 local symbols because we used to generate them
6055 incorrectly, without adding the original symbol value,
6056 which is mandated by the ABI for section symbols. In
6057 order to give dynamic loaders and applications time to
6058 phase out the incorrect use, we refrain from emitting
6059 section-relative relocations. It's not like they're
6060 useful, after all. This should be a bit more efficient
6061 as well. */
6062 /* ??? Although this behavior is compatible with glibc's ld.so,
6063 the ABI says that relocations against STN_UNDEF should have
6064 a symbol value of 0. Irix rld honors this, so relocations
6065 against STN_UNDEF have no effect. */
6066 if (!SGI_COMPAT (output_bfd))
6067 indx = 0;
6068 defined_p = TRUE;
b49e97c9
TS
6069 }
6070
5d41f0b6
RS
6071 /* If the relocation was previously an absolute relocation and
6072 this symbol will not be referred to by the relocation, we must
6073 adjust it by the value we give it in the dynamic symbol table.
6074 Otherwise leave the job up to the dynamic linker. */
6075 if (defined_p && r_type != R_MIPS_REL32)
6076 *addendp += symbol;
6077
0a44bf69
RS
6078 if (htab->is_vxworks)
6079 /* VxWorks uses non-relative relocations for this. */
6080 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6081 else
6082 /* The relocation is always an REL32 relocation because we don't
6083 know where the shared library will wind up at load-time. */
6084 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6085 R_MIPS_REL32);
6086
5d41f0b6
RS
6087 /* For strict adherence to the ABI specification, we should
6088 generate a R_MIPS_64 relocation record by itself before the
6089 _REL32/_64 record as well, such that the addend is read in as
6090 a 64-bit value (REL32 is a 32-bit relocation, after all).
6091 However, since none of the existing ELF64 MIPS dynamic
6092 loaders seems to care, we don't waste space with these
6093 artificial relocations. If this turns out to not be true,
6094 mips_elf_allocate_dynamic_relocation() should be tweaked so
6095 as to make room for a pair of dynamic relocations per
6096 invocation if ABI_64_P, and here we should generate an
6097 additional relocation record with R_MIPS_64 by itself for a
6098 NULL symbol before this relocation record. */
6099 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6100 ABI_64_P (output_bfd)
6101 ? R_MIPS_64
6102 : R_MIPS_NONE);
6103 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6104
6105 /* Adjust the output offset of the relocation to reference the
6106 correct location in the output file. */
6107 outrel[0].r_offset += (input_section->output_section->vma
6108 + input_section->output_offset);
6109 outrel[1].r_offset += (input_section->output_section->vma
6110 + input_section->output_offset);
6111 outrel[2].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113
b49e97c9
TS
6114 /* Put the relocation back out. We have to use the special
6115 relocation outputter in the 64-bit case since the 64-bit
6116 relocation format is non-standard. */
6117 if (ABI_64_P (output_bfd))
6118 {
6119 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6120 (output_bfd, &outrel[0],
6121 (sreloc->contents
6122 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6123 }
0a44bf69
RS
6124 else if (htab->is_vxworks)
6125 {
6126 /* VxWorks uses RELA rather than REL dynamic relocations. */
6127 outrel[0].r_addend = *addendp;
6128 bfd_elf32_swap_reloca_out
6129 (output_bfd, &outrel[0],
6130 (sreloc->contents
6131 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6132 }
b49e97c9 6133 else
947216bf
AM
6134 bfd_elf32_swap_reloc_out
6135 (output_bfd, &outrel[0],
6136 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6137
b49e97c9
TS
6138 /* We've now added another relocation. */
6139 ++sreloc->reloc_count;
6140
6141 /* Make sure the output section is writable. The dynamic linker
6142 will be writing to it. */
6143 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6144 |= SHF_WRITE;
6145
6146 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6147 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6148 {
3d4d4302 6149 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6150 bfd_byte *cr;
6151
6152 if (scpt)
6153 {
6154 Elf32_crinfo cptrel;
6155
6156 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6157 cptrel.vaddr = (rel->r_offset
6158 + input_section->output_section->vma
6159 + input_section->output_offset);
6160 if (r_type == R_MIPS_REL32)
6161 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6162 else
6163 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6164 mips_elf_set_cr_dist2to (cptrel, 0);
6165 cptrel.konst = *addendp;
6166
6167 cr = (scpt->contents
6168 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6169 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6170 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6171 ((Elf32_External_crinfo *) cr
6172 + scpt->reloc_count));
6173 ++scpt->reloc_count;
6174 }
6175 }
6176
943284cc
DJ
6177 /* If we've written this relocation for a readonly section,
6178 we need to set DF_TEXTREL again, so that we do not delete the
6179 DT_TEXTREL tag. */
6180 if (MIPS_ELF_READONLY_SECTION (input_section))
6181 info->flags |= DF_TEXTREL;
6182
b34976b6 6183 return TRUE;
b49e97c9
TS
6184}
6185\f
b49e97c9
TS
6186/* Return the MACH for a MIPS e_flags value. */
6187
6188unsigned long
9719ad41 6189_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6190{
6191 switch (flags & EF_MIPS_MACH)
6192 {
6193 case E_MIPS_MACH_3900:
6194 return bfd_mach_mips3900;
6195
6196 case E_MIPS_MACH_4010:
6197 return bfd_mach_mips4010;
6198
6199 case E_MIPS_MACH_4100:
6200 return bfd_mach_mips4100;
6201
6202 case E_MIPS_MACH_4111:
6203 return bfd_mach_mips4111;
6204
00707a0e
RS
6205 case E_MIPS_MACH_4120:
6206 return bfd_mach_mips4120;
6207
b49e97c9
TS
6208 case E_MIPS_MACH_4650:
6209 return bfd_mach_mips4650;
6210
00707a0e
RS
6211 case E_MIPS_MACH_5400:
6212 return bfd_mach_mips5400;
6213
6214 case E_MIPS_MACH_5500:
6215 return bfd_mach_mips5500;
6216
e407c74b
NC
6217 case E_MIPS_MACH_5900:
6218 return bfd_mach_mips5900;
6219
0d2e43ed
ILT
6220 case E_MIPS_MACH_9000:
6221 return bfd_mach_mips9000;
6222
b49e97c9
TS
6223 case E_MIPS_MACH_SB1:
6224 return bfd_mach_mips_sb1;
6225
350cc38d
MS
6226 case E_MIPS_MACH_LS2E:
6227 return bfd_mach_mips_loongson_2e;
6228
6229 case E_MIPS_MACH_LS2F:
6230 return bfd_mach_mips_loongson_2f;
6231
fd503541
NC
6232 case E_MIPS_MACH_LS3A:
6233 return bfd_mach_mips_loongson_3a;
6234
432233b3
AP
6235 case E_MIPS_MACH_OCTEON2:
6236 return bfd_mach_mips_octeon2;
6237
6f179bd0
AN
6238 case E_MIPS_MACH_OCTEON:
6239 return bfd_mach_mips_octeon;
6240
52b6b6b9
JM
6241 case E_MIPS_MACH_XLR:
6242 return bfd_mach_mips_xlr;
6243
b49e97c9
TS
6244 default:
6245 switch (flags & EF_MIPS_ARCH)
6246 {
6247 default:
6248 case E_MIPS_ARCH_1:
6249 return bfd_mach_mips3000;
b49e97c9
TS
6250
6251 case E_MIPS_ARCH_2:
6252 return bfd_mach_mips6000;
b49e97c9
TS
6253
6254 case E_MIPS_ARCH_3:
6255 return bfd_mach_mips4000;
b49e97c9
TS
6256
6257 case E_MIPS_ARCH_4:
6258 return bfd_mach_mips8000;
b49e97c9
TS
6259
6260 case E_MIPS_ARCH_5:
6261 return bfd_mach_mips5;
b49e97c9
TS
6262
6263 case E_MIPS_ARCH_32:
6264 return bfd_mach_mipsisa32;
b49e97c9
TS
6265
6266 case E_MIPS_ARCH_64:
6267 return bfd_mach_mipsisa64;
af7ee8bf
CD
6268
6269 case E_MIPS_ARCH_32R2:
6270 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6271
6272 case E_MIPS_ARCH_64R2:
6273 return bfd_mach_mipsisa64r2;
b49e97c9
TS
6274 }
6275 }
6276
6277 return 0;
6278}
6279
6280/* Return printable name for ABI. */
6281
6282static INLINE char *
9719ad41 6283elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6284{
6285 flagword flags;
6286
6287 flags = elf_elfheader (abfd)->e_flags;
6288 switch (flags & EF_MIPS_ABI)
6289 {
6290 case 0:
6291 if (ABI_N32_P (abfd))
6292 return "N32";
6293 else if (ABI_64_P (abfd))
6294 return "64";
6295 else
6296 return "none";
6297 case E_MIPS_ABI_O32:
6298 return "O32";
6299 case E_MIPS_ABI_O64:
6300 return "O64";
6301 case E_MIPS_ABI_EABI32:
6302 return "EABI32";
6303 case E_MIPS_ABI_EABI64:
6304 return "EABI64";
6305 default:
6306 return "unknown abi";
6307 }
6308}
6309\f
6310/* MIPS ELF uses two common sections. One is the usual one, and the
6311 other is for small objects. All the small objects are kept
6312 together, and then referenced via the gp pointer, which yields
6313 faster assembler code. This is what we use for the small common
6314 section. This approach is copied from ecoff.c. */
6315static asection mips_elf_scom_section;
6316static asymbol mips_elf_scom_symbol;
6317static asymbol *mips_elf_scom_symbol_ptr;
6318
6319/* MIPS ELF also uses an acommon section, which represents an
6320 allocated common symbol which may be overridden by a
6321 definition in a shared library. */
6322static asection mips_elf_acom_section;
6323static asymbol mips_elf_acom_symbol;
6324static asymbol *mips_elf_acom_symbol_ptr;
6325
738e5348 6326/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6327
6328void
9719ad41 6329_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6330{
6331 elf_symbol_type *elfsym;
6332
738e5348 6333 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6334 elfsym = (elf_symbol_type *) asym;
6335 switch (elfsym->internal_elf_sym.st_shndx)
6336 {
6337 case SHN_MIPS_ACOMMON:
6338 /* This section is used in a dynamically linked executable file.
6339 It is an allocated common section. The dynamic linker can
6340 either resolve these symbols to something in a shared
6341 library, or it can just leave them here. For our purposes,
6342 we can consider these symbols to be in a new section. */
6343 if (mips_elf_acom_section.name == NULL)
6344 {
6345 /* Initialize the acommon section. */
6346 mips_elf_acom_section.name = ".acommon";
6347 mips_elf_acom_section.flags = SEC_ALLOC;
6348 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6349 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6350 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6351 mips_elf_acom_symbol.name = ".acommon";
6352 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6353 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6354 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6355 }
6356 asym->section = &mips_elf_acom_section;
6357 break;
6358
6359 case SHN_COMMON:
6360 /* Common symbols less than the GP size are automatically
6361 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6362 if (asym->value > elf_gp_size (abfd)
b59eed79 6363 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6364 || IRIX_COMPAT (abfd) == ict_irix6)
6365 break;
6366 /* Fall through. */
6367 case SHN_MIPS_SCOMMON:
6368 if (mips_elf_scom_section.name == NULL)
6369 {
6370 /* Initialize the small common section. */
6371 mips_elf_scom_section.name = ".scommon";
6372 mips_elf_scom_section.flags = SEC_IS_COMMON;
6373 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6374 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6375 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6376 mips_elf_scom_symbol.name = ".scommon";
6377 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6378 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6379 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6380 }
6381 asym->section = &mips_elf_scom_section;
6382 asym->value = elfsym->internal_elf_sym.st_size;
6383 break;
6384
6385 case SHN_MIPS_SUNDEFINED:
6386 asym->section = bfd_und_section_ptr;
6387 break;
6388
b49e97c9 6389 case SHN_MIPS_TEXT:
00b4930b
TS
6390 {
6391 asection *section = bfd_get_section_by_name (abfd, ".text");
6392
00b4930b
TS
6393 if (section != NULL)
6394 {
6395 asym->section = section;
6396 /* MIPS_TEXT is a bit special, the address is not an offset
6397 to the base of the .text section. So substract the section
6398 base address to make it an offset. */
6399 asym->value -= section->vma;
6400 }
6401 }
b49e97c9
TS
6402 break;
6403
6404 case SHN_MIPS_DATA:
00b4930b
TS
6405 {
6406 asection *section = bfd_get_section_by_name (abfd, ".data");
6407
00b4930b
TS
6408 if (section != NULL)
6409 {
6410 asym->section = section;
6411 /* MIPS_DATA is a bit special, the address is not an offset
6412 to the base of the .data section. So substract the section
6413 base address to make it an offset. */
6414 asym->value -= section->vma;
6415 }
6416 }
b49e97c9 6417 break;
b49e97c9 6418 }
738e5348 6419
df58fc94
RS
6420 /* If this is an odd-valued function symbol, assume it's a MIPS16
6421 or microMIPS one. */
738e5348
RS
6422 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6423 && (asym->value & 1) != 0)
6424 {
6425 asym->value--;
df58fc94
RS
6426 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6427 elfsym->internal_elf_sym.st_other
6428 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6429 else
6430 elfsym->internal_elf_sym.st_other
6431 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6432 }
b49e97c9
TS
6433}
6434\f
8c946ed5
RS
6435/* Implement elf_backend_eh_frame_address_size. This differs from
6436 the default in the way it handles EABI64.
6437
6438 EABI64 was originally specified as an LP64 ABI, and that is what
6439 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6440 historically accepted the combination of -mabi=eabi and -mlong32,
6441 and this ILP32 variation has become semi-official over time.
6442 Both forms use elf32 and have pointer-sized FDE addresses.
6443
6444 If an EABI object was generated by GCC 4.0 or above, it will have
6445 an empty .gcc_compiled_longXX section, where XX is the size of longs
6446 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6447 have no special marking to distinguish them from LP64 objects.
6448
6449 We don't want users of the official LP64 ABI to be punished for the
6450 existence of the ILP32 variant, but at the same time, we don't want
6451 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6452 We therefore take the following approach:
6453
6454 - If ABFD contains a .gcc_compiled_longXX section, use it to
6455 determine the pointer size.
6456
6457 - Otherwise check the type of the first relocation. Assume that
6458 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6459
6460 - Otherwise punt.
6461
6462 The second check is enough to detect LP64 objects generated by pre-4.0
6463 compilers because, in the kind of output generated by those compilers,
6464 the first relocation will be associated with either a CIE personality
6465 routine or an FDE start address. Furthermore, the compilers never
6466 used a special (non-pointer) encoding for this ABI.
6467
6468 Checking the relocation type should also be safe because there is no
6469 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6470 did so. */
6471
6472unsigned int
6473_bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6474{
6475 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6476 return 8;
6477 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6478 {
6479 bfd_boolean long32_p, long64_p;
6480
6481 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6482 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6483 if (long32_p && long64_p)
6484 return 0;
6485 if (long32_p)
6486 return 4;
6487 if (long64_p)
6488 return 8;
6489
6490 if (sec->reloc_count > 0
6491 && elf_section_data (sec)->relocs != NULL
6492 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6493 == R_MIPS_64))
6494 return 8;
6495
6496 return 0;
6497 }
6498 return 4;
6499}
6500\f
174fd7f9
RS
6501/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6502 relocations against two unnamed section symbols to resolve to the
6503 same address. For example, if we have code like:
6504
6505 lw $4,%got_disp(.data)($gp)
6506 lw $25,%got_disp(.text)($gp)
6507 jalr $25
6508
6509 then the linker will resolve both relocations to .data and the program
6510 will jump there rather than to .text.
6511
6512 We can work around this problem by giving names to local section symbols.
6513 This is also what the MIPSpro tools do. */
6514
6515bfd_boolean
6516_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6517{
6518 return SGI_COMPAT (abfd);
6519}
6520\f
b49e97c9
TS
6521/* Work over a section just before writing it out. This routine is
6522 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6523 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6524 a better way. */
6525
b34976b6 6526bfd_boolean
9719ad41 6527_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
6528{
6529 if (hdr->sh_type == SHT_MIPS_REGINFO
6530 && hdr->sh_size > 0)
6531 {
6532 bfd_byte buf[4];
6533
6534 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6535 BFD_ASSERT (hdr->contents == NULL);
6536
6537 if (bfd_seek (abfd,
6538 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6539 SEEK_SET) != 0)
b34976b6 6540 return FALSE;
b49e97c9 6541 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6542 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6543 return FALSE;
b49e97c9
TS
6544 }
6545
6546 if (hdr->sh_type == SHT_MIPS_OPTIONS
6547 && hdr->bfd_section != NULL
f0abc2a1
AM
6548 && mips_elf_section_data (hdr->bfd_section) != NULL
6549 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
6550 {
6551 bfd_byte *contents, *l, *lend;
6552
f0abc2a1
AM
6553 /* We stored the section contents in the tdata field in the
6554 set_section_contents routine. We save the section contents
6555 so that we don't have to read them again.
b49e97c9
TS
6556 At this point we know that elf_gp is set, so we can look
6557 through the section contents to see if there is an
6558 ODK_REGINFO structure. */
6559
f0abc2a1 6560 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
6561 l = contents;
6562 lend = contents + hdr->sh_size;
6563 while (l + sizeof (Elf_External_Options) <= lend)
6564 {
6565 Elf_Internal_Options intopt;
6566
6567 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6568 &intopt);
1bc8074d
MR
6569 if (intopt.size < sizeof (Elf_External_Options))
6570 {
6571 (*_bfd_error_handler)
6572 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6573 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6574 break;
6575 }
b49e97c9
TS
6576 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6577 {
6578 bfd_byte buf[8];
6579
6580 if (bfd_seek (abfd,
6581 (hdr->sh_offset
6582 + (l - contents)
6583 + sizeof (Elf_External_Options)
6584 + (sizeof (Elf64_External_RegInfo) - 8)),
6585 SEEK_SET) != 0)
b34976b6 6586 return FALSE;
b49e97c9 6587 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 6588 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 6589 return FALSE;
b49e97c9
TS
6590 }
6591 else if (intopt.kind == ODK_REGINFO)
6592 {
6593 bfd_byte buf[4];
6594
6595 if (bfd_seek (abfd,
6596 (hdr->sh_offset
6597 + (l - contents)
6598 + sizeof (Elf_External_Options)
6599 + (sizeof (Elf32_External_RegInfo) - 4)),
6600 SEEK_SET) != 0)
b34976b6 6601 return FALSE;
b49e97c9 6602 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 6603 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 6604 return FALSE;
b49e97c9
TS
6605 }
6606 l += intopt.size;
6607 }
6608 }
6609
6610 if (hdr->bfd_section != NULL)
6611 {
6612 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6613
2d0f9ad9
JM
6614 /* .sbss is not handled specially here because the GNU/Linux
6615 prelinker can convert .sbss from NOBITS to PROGBITS and
6616 changing it back to NOBITS breaks the binary. The entry in
6617 _bfd_mips_elf_special_sections will ensure the correct flags
6618 are set on .sbss if BFD creates it without reading it from an
6619 input file, and without special handling here the flags set
6620 on it in an input file will be followed. */
b49e97c9
TS
6621 if (strcmp (name, ".sdata") == 0
6622 || strcmp (name, ".lit8") == 0
6623 || strcmp (name, ".lit4") == 0)
6624 {
6625 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6626 hdr->sh_type = SHT_PROGBITS;
6627 }
b49e97c9
TS
6628 else if (strcmp (name, ".srdata") == 0)
6629 {
6630 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6631 hdr->sh_type = SHT_PROGBITS;
6632 }
6633 else if (strcmp (name, ".compact_rel") == 0)
6634 {
6635 hdr->sh_flags = 0;
6636 hdr->sh_type = SHT_PROGBITS;
6637 }
6638 else if (strcmp (name, ".rtproc") == 0)
6639 {
6640 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6641 {
6642 unsigned int adjust;
6643
6644 adjust = hdr->sh_size % hdr->sh_addralign;
6645 if (adjust != 0)
6646 hdr->sh_size += hdr->sh_addralign - adjust;
6647 }
6648 }
6649 }
6650
b34976b6 6651 return TRUE;
b49e97c9
TS
6652}
6653
6654/* Handle a MIPS specific section when reading an object file. This
6655 is called when elfcode.h finds a section with an unknown type.
6656 This routine supports both the 32-bit and 64-bit ELF ABI.
6657
6658 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6659 how to. */
6660
b34976b6 6661bfd_boolean
6dc132d9
L
6662_bfd_mips_elf_section_from_shdr (bfd *abfd,
6663 Elf_Internal_Shdr *hdr,
6664 const char *name,
6665 int shindex)
b49e97c9
TS
6666{
6667 flagword flags = 0;
6668
6669 /* There ought to be a place to keep ELF backend specific flags, but
6670 at the moment there isn't one. We just keep track of the
6671 sections by their name, instead. Fortunately, the ABI gives
6672 suggested names for all the MIPS specific sections, so we will
6673 probably get away with this. */
6674 switch (hdr->sh_type)
6675 {
6676 case SHT_MIPS_LIBLIST:
6677 if (strcmp (name, ".liblist") != 0)
b34976b6 6678 return FALSE;
b49e97c9
TS
6679 break;
6680 case SHT_MIPS_MSYM:
6681 if (strcmp (name, ".msym") != 0)
b34976b6 6682 return FALSE;
b49e97c9
TS
6683 break;
6684 case SHT_MIPS_CONFLICT:
6685 if (strcmp (name, ".conflict") != 0)
b34976b6 6686 return FALSE;
b49e97c9
TS
6687 break;
6688 case SHT_MIPS_GPTAB:
0112cd26 6689 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 6690 return FALSE;
b49e97c9
TS
6691 break;
6692 case SHT_MIPS_UCODE:
6693 if (strcmp (name, ".ucode") != 0)
b34976b6 6694 return FALSE;
b49e97c9
TS
6695 break;
6696 case SHT_MIPS_DEBUG:
6697 if (strcmp (name, ".mdebug") != 0)
b34976b6 6698 return FALSE;
b49e97c9
TS
6699 flags = SEC_DEBUGGING;
6700 break;
6701 case SHT_MIPS_REGINFO:
6702 if (strcmp (name, ".reginfo") != 0
6703 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 6704 return FALSE;
b49e97c9
TS
6705 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6706 break;
6707 case SHT_MIPS_IFACE:
6708 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 6709 return FALSE;
b49e97c9
TS
6710 break;
6711 case SHT_MIPS_CONTENT:
0112cd26 6712 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 6713 return FALSE;
b49e97c9
TS
6714 break;
6715 case SHT_MIPS_OPTIONS:
cc2e31b9 6716 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 6717 return FALSE;
b49e97c9
TS
6718 break;
6719 case SHT_MIPS_DWARF:
1b315056 6720 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 6721 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 6722 return FALSE;
b49e97c9
TS
6723 break;
6724 case SHT_MIPS_SYMBOL_LIB:
6725 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 6726 return FALSE;
b49e97c9
TS
6727 break;
6728 case SHT_MIPS_EVENTS:
0112cd26
NC
6729 if (! CONST_STRNEQ (name, ".MIPS.events")
6730 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 6731 return FALSE;
b49e97c9
TS
6732 break;
6733 default:
cc2e31b9 6734 break;
b49e97c9
TS
6735 }
6736
6dc132d9 6737 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 6738 return FALSE;
b49e97c9
TS
6739
6740 if (flags)
6741 {
6742 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6743 (bfd_get_section_flags (abfd,
6744 hdr->bfd_section)
6745 | flags)))
b34976b6 6746 return FALSE;
b49e97c9
TS
6747 }
6748
6749 /* FIXME: We should record sh_info for a .gptab section. */
6750
6751 /* For a .reginfo section, set the gp value in the tdata information
6752 from the contents of this section. We need the gp value while
6753 processing relocs, so we just get it now. The .reginfo section
6754 is not used in the 64-bit MIPS ELF ABI. */
6755 if (hdr->sh_type == SHT_MIPS_REGINFO)
6756 {
6757 Elf32_External_RegInfo ext;
6758 Elf32_RegInfo s;
6759
9719ad41
RS
6760 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6761 &ext, 0, sizeof ext))
b34976b6 6762 return FALSE;
b49e97c9
TS
6763 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6764 elf_gp (abfd) = s.ri_gp_value;
6765 }
6766
6767 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6768 set the gp value based on what we find. We may see both
6769 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6770 they should agree. */
6771 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6772 {
6773 bfd_byte *contents, *l, *lend;
6774
9719ad41 6775 contents = bfd_malloc (hdr->sh_size);
b49e97c9 6776 if (contents == NULL)
b34976b6 6777 return FALSE;
b49e97c9 6778 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 6779 0, hdr->sh_size))
b49e97c9
TS
6780 {
6781 free (contents);
b34976b6 6782 return FALSE;
b49e97c9
TS
6783 }
6784 l = contents;
6785 lend = contents + hdr->sh_size;
6786 while (l + sizeof (Elf_External_Options) <= lend)
6787 {
6788 Elf_Internal_Options intopt;
6789
6790 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6791 &intopt);
1bc8074d
MR
6792 if (intopt.size < sizeof (Elf_External_Options))
6793 {
6794 (*_bfd_error_handler)
6795 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6796 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6797 break;
6798 }
b49e97c9
TS
6799 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6800 {
6801 Elf64_Internal_RegInfo intreg;
6802
6803 bfd_mips_elf64_swap_reginfo_in
6804 (abfd,
6805 ((Elf64_External_RegInfo *)
6806 (l + sizeof (Elf_External_Options))),
6807 &intreg);
6808 elf_gp (abfd) = intreg.ri_gp_value;
6809 }
6810 else if (intopt.kind == ODK_REGINFO)
6811 {
6812 Elf32_RegInfo intreg;
6813
6814 bfd_mips_elf32_swap_reginfo_in
6815 (abfd,
6816 ((Elf32_External_RegInfo *)
6817 (l + sizeof (Elf_External_Options))),
6818 &intreg);
6819 elf_gp (abfd) = intreg.ri_gp_value;
6820 }
6821 l += intopt.size;
6822 }
6823 free (contents);
6824 }
6825
b34976b6 6826 return TRUE;
b49e97c9
TS
6827}
6828
6829/* Set the correct type for a MIPS ELF section. We do this by the
6830 section name, which is a hack, but ought to work. This routine is
6831 used by both the 32-bit and the 64-bit ABI. */
6832
b34976b6 6833bfd_boolean
9719ad41 6834_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 6835{
0414f35b 6836 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
6837
6838 if (strcmp (name, ".liblist") == 0)
6839 {
6840 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 6841 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
6842 /* The sh_link field is set in final_write_processing. */
6843 }
6844 else if (strcmp (name, ".conflict") == 0)
6845 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 6846 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
6847 {
6848 hdr->sh_type = SHT_MIPS_GPTAB;
6849 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6850 /* The sh_info field is set in final_write_processing. */
6851 }
6852 else if (strcmp (name, ".ucode") == 0)
6853 hdr->sh_type = SHT_MIPS_UCODE;
6854 else if (strcmp (name, ".mdebug") == 0)
6855 {
6856 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 6857 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
6858 entsize of 0. FIXME: Does this matter? */
6859 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6860 hdr->sh_entsize = 0;
6861 else
6862 hdr->sh_entsize = 1;
6863 }
6864 else if (strcmp (name, ".reginfo") == 0)
6865 {
6866 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 6867 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
6868 entsize of 0x18. FIXME: Does this matter? */
6869 if (SGI_COMPAT (abfd))
6870 {
6871 if ((abfd->flags & DYNAMIC) != 0)
6872 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6873 else
6874 hdr->sh_entsize = 1;
6875 }
6876 else
6877 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6878 }
6879 else if (SGI_COMPAT (abfd)
6880 && (strcmp (name, ".hash") == 0
6881 || strcmp (name, ".dynamic") == 0
6882 || strcmp (name, ".dynstr") == 0))
6883 {
6884 if (SGI_COMPAT (abfd))
6885 hdr->sh_entsize = 0;
6886#if 0
8dc1a139 6887 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
6888 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6889#endif
6890 }
6891 else if (strcmp (name, ".got") == 0
6892 || strcmp (name, ".srdata") == 0
6893 || strcmp (name, ".sdata") == 0
6894 || strcmp (name, ".sbss") == 0
6895 || strcmp (name, ".lit4") == 0
6896 || strcmp (name, ".lit8") == 0)
6897 hdr->sh_flags |= SHF_MIPS_GPREL;
6898 else if (strcmp (name, ".MIPS.interfaces") == 0)
6899 {
6900 hdr->sh_type = SHT_MIPS_IFACE;
6901 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6902 }
0112cd26 6903 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
6904 {
6905 hdr->sh_type = SHT_MIPS_CONTENT;
6906 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6907 /* The sh_info field is set in final_write_processing. */
6908 }
cc2e31b9 6909 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
6910 {
6911 hdr->sh_type = SHT_MIPS_OPTIONS;
6912 hdr->sh_entsize = 1;
6913 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6914 }
1b315056
CS
6915 else if (CONST_STRNEQ (name, ".debug_")
6916 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
6917 {
6918 hdr->sh_type = SHT_MIPS_DWARF;
6919
6920 /* Irix facilities such as libexc expect a single .debug_frame
6921 per executable, the system ones have NOSTRIP set and the linker
6922 doesn't merge sections with different flags so ... */
6923 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6924 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6925 }
b49e97c9
TS
6926 else if (strcmp (name, ".MIPS.symlib") == 0)
6927 {
6928 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6929 /* The sh_link and sh_info fields are set in
6930 final_write_processing. */
6931 }
0112cd26
NC
6932 else if (CONST_STRNEQ (name, ".MIPS.events")
6933 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
6934 {
6935 hdr->sh_type = SHT_MIPS_EVENTS;
6936 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6937 /* The sh_link field is set in final_write_processing. */
6938 }
6939 else if (strcmp (name, ".msym") == 0)
6940 {
6941 hdr->sh_type = SHT_MIPS_MSYM;
6942 hdr->sh_flags |= SHF_ALLOC;
6943 hdr->sh_entsize = 8;
6944 }
6945
7a79a000
TS
6946 /* The generic elf_fake_sections will set up REL_HDR using the default
6947 kind of relocations. We used to set up a second header for the
6948 non-default kind of relocations here, but only NewABI would use
6949 these, and the IRIX ld doesn't like resulting empty RELA sections.
6950 Thus we create those header only on demand now. */
b49e97c9 6951
b34976b6 6952 return TRUE;
b49e97c9
TS
6953}
6954
6955/* Given a BFD section, try to locate the corresponding ELF section
6956 index. This is used by both the 32-bit and the 64-bit ABI.
6957 Actually, it's not clear to me that the 64-bit ABI supports these,
6958 but for non-PIC objects we will certainly want support for at least
6959 the .scommon section. */
6960
b34976b6 6961bfd_boolean
9719ad41
RS
6962_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6963 asection *sec, int *retval)
b49e97c9
TS
6964{
6965 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6966 {
6967 *retval = SHN_MIPS_SCOMMON;
b34976b6 6968 return TRUE;
b49e97c9
TS
6969 }
6970 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6971 {
6972 *retval = SHN_MIPS_ACOMMON;
b34976b6 6973 return TRUE;
b49e97c9 6974 }
b34976b6 6975 return FALSE;
b49e97c9
TS
6976}
6977\f
6978/* Hook called by the linker routine which adds symbols from an object
6979 file. We must handle the special MIPS section numbers here. */
6980
b34976b6 6981bfd_boolean
9719ad41 6982_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 6983 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
6984 flagword *flagsp ATTRIBUTE_UNUSED,
6985 asection **secp, bfd_vma *valp)
b49e97c9
TS
6986{
6987 if (SGI_COMPAT (abfd)
6988 && (abfd->flags & DYNAMIC) != 0
6989 && strcmp (*namep, "_rld_new_interface") == 0)
6990 {
8dc1a139 6991 /* Skip IRIX5 rld entry name. */
b49e97c9 6992 *namep = NULL;
b34976b6 6993 return TRUE;
b49e97c9
TS
6994 }
6995
eedecc07
DD
6996 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6997 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6998 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6999 a magic symbol resolved by the linker, we ignore this bogus definition
7000 of _gp_disp. New ABI objects do not suffer from this problem so this
7001 is not done for them. */
7002 if (!NEWABI_P(abfd)
7003 && (sym->st_shndx == SHN_ABS)
7004 && (strcmp (*namep, "_gp_disp") == 0))
7005 {
7006 *namep = NULL;
7007 return TRUE;
7008 }
7009
b49e97c9
TS
7010 switch (sym->st_shndx)
7011 {
7012 case SHN_COMMON:
7013 /* Common symbols less than the GP size are automatically
7014 treated as SHN_MIPS_SCOMMON symbols. */
7015 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7016 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7017 || IRIX_COMPAT (abfd) == ict_irix6)
7018 break;
7019 /* Fall through. */
7020 case SHN_MIPS_SCOMMON:
7021 *secp = bfd_make_section_old_way (abfd, ".scommon");
7022 (*secp)->flags |= SEC_IS_COMMON;
7023 *valp = sym->st_size;
7024 break;
7025
7026 case SHN_MIPS_TEXT:
7027 /* This section is used in a shared object. */
698600e4 7028 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7029 {
7030 asymbol *elf_text_symbol;
7031 asection *elf_text_section;
7032 bfd_size_type amt = sizeof (asection);
7033
7034 elf_text_section = bfd_zalloc (abfd, amt);
7035 if (elf_text_section == NULL)
b34976b6 7036 return FALSE;
b49e97c9
TS
7037
7038 amt = sizeof (asymbol);
7039 elf_text_symbol = bfd_zalloc (abfd, amt);
7040 if (elf_text_symbol == NULL)
b34976b6 7041 return FALSE;
b49e97c9
TS
7042
7043 /* Initialize the section. */
7044
698600e4
AM
7045 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7046 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7047
7048 elf_text_section->symbol = elf_text_symbol;
698600e4 7049 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7050
7051 elf_text_section->name = ".text";
7052 elf_text_section->flags = SEC_NO_FLAGS;
7053 elf_text_section->output_section = NULL;
7054 elf_text_section->owner = abfd;
7055 elf_text_symbol->name = ".text";
7056 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7057 elf_text_symbol->section = elf_text_section;
7058 }
7059 /* This code used to do *secp = bfd_und_section_ptr if
7060 info->shared. I don't know why, and that doesn't make sense,
7061 so I took it out. */
698600e4 7062 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7063 break;
7064
7065 case SHN_MIPS_ACOMMON:
7066 /* Fall through. XXX Can we treat this as allocated data? */
7067 case SHN_MIPS_DATA:
7068 /* This section is used in a shared object. */
698600e4 7069 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7070 {
7071 asymbol *elf_data_symbol;
7072 asection *elf_data_section;
7073 bfd_size_type amt = sizeof (asection);
7074
7075 elf_data_section = bfd_zalloc (abfd, amt);
7076 if (elf_data_section == NULL)
b34976b6 7077 return FALSE;
b49e97c9
TS
7078
7079 amt = sizeof (asymbol);
7080 elf_data_symbol = bfd_zalloc (abfd, amt);
7081 if (elf_data_symbol == NULL)
b34976b6 7082 return FALSE;
b49e97c9
TS
7083
7084 /* Initialize the section. */
7085
698600e4
AM
7086 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7087 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7088
7089 elf_data_section->symbol = elf_data_symbol;
698600e4 7090 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7091
7092 elf_data_section->name = ".data";
7093 elf_data_section->flags = SEC_NO_FLAGS;
7094 elf_data_section->output_section = NULL;
7095 elf_data_section->owner = abfd;
7096 elf_data_symbol->name = ".data";
7097 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7098 elf_data_symbol->section = elf_data_section;
7099 }
7100 /* This code used to do *secp = bfd_und_section_ptr if
7101 info->shared. I don't know why, and that doesn't make sense,
7102 so I took it out. */
698600e4 7103 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7104 break;
7105
7106 case SHN_MIPS_SUNDEFINED:
7107 *secp = bfd_und_section_ptr;
7108 break;
7109 }
7110
7111 if (SGI_COMPAT (abfd)
7112 && ! info->shared
f13a99db 7113 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7114 && strcmp (*namep, "__rld_obj_head") == 0)
7115 {
7116 struct elf_link_hash_entry *h;
14a793b2 7117 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7118
7119 /* Mark __rld_obj_head as dynamic. */
14a793b2 7120 bh = NULL;
b49e97c9 7121 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7122 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7123 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7124 return FALSE;
14a793b2
AM
7125
7126 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7127 h->non_elf = 0;
7128 h->def_regular = 1;
b49e97c9
TS
7129 h->type = STT_OBJECT;
7130
c152c796 7131 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7132 return FALSE;
b49e97c9 7133
b34976b6 7134 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7135 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7136 }
7137
7138 /* If this is a mips16 text symbol, add 1 to the value to make it
7139 odd. This will cause something like .word SYM to come up with
7140 the right value when it is loaded into the PC. */
df58fc94 7141 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7142 ++*valp;
7143
b34976b6 7144 return TRUE;
b49e97c9
TS
7145}
7146
7147/* This hook function is called before the linker writes out a global
7148 symbol. We mark symbols as small common if appropriate. This is
7149 also where we undo the increment of the value for a mips16 symbol. */
7150
6e0b88f1 7151int
9719ad41
RS
7152_bfd_mips_elf_link_output_symbol_hook
7153 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7154 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7155 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7156{
7157 /* If we see a common symbol, which implies a relocatable link, then
7158 if a symbol was small common in an input file, mark it as small
7159 common in the output file. */
7160 if (sym->st_shndx == SHN_COMMON
7161 && strcmp (input_sec->name, ".scommon") == 0)
7162 sym->st_shndx = SHN_MIPS_SCOMMON;
7163
df58fc94 7164 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7165 sym->st_value &= ~1;
b49e97c9 7166
6e0b88f1 7167 return 1;
b49e97c9
TS
7168}
7169\f
7170/* Functions for the dynamic linker. */
7171
7172/* Create dynamic sections when linking against a dynamic object. */
7173
b34976b6 7174bfd_boolean
9719ad41 7175_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7176{
7177 struct elf_link_hash_entry *h;
14a793b2 7178 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7179 flagword flags;
7180 register asection *s;
7181 const char * const *namep;
0a44bf69 7182 struct mips_elf_link_hash_table *htab;
b49e97c9 7183
0a44bf69 7184 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7185 BFD_ASSERT (htab != NULL);
7186
b49e97c9
TS
7187 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7188 | SEC_LINKER_CREATED | SEC_READONLY);
7189
0a44bf69
RS
7190 /* The psABI requires a read-only .dynamic section, but the VxWorks
7191 EABI doesn't. */
7192 if (!htab->is_vxworks)
b49e97c9 7193 {
3d4d4302 7194 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7195 if (s != NULL)
7196 {
7197 if (! bfd_set_section_flags (abfd, s, flags))
7198 return FALSE;
7199 }
b49e97c9
TS
7200 }
7201
7202 /* We need to create .got section. */
23cc69b6 7203 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7204 return FALSE;
7205
0a44bf69 7206 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7207 return FALSE;
b49e97c9 7208
b49e97c9 7209 /* Create .stub section. */
3d4d4302
AM
7210 s = bfd_make_section_anyway_with_flags (abfd,
7211 MIPS_ELF_STUB_SECTION_NAME (abfd),
7212 flags | SEC_CODE);
4e41d0d7
RS
7213 if (s == NULL
7214 || ! bfd_set_section_alignment (abfd, s,
7215 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7216 return FALSE;
7217 htab->sstubs = s;
b49e97c9 7218
e6aea42d 7219 if (!mips_elf_hash_table (info)->use_rld_obj_head
b49e97c9 7220 && !info->shared
3d4d4302 7221 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7222 {
3d4d4302
AM
7223 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7224 flags &~ (flagword) SEC_READONLY);
b49e97c9 7225 if (s == NULL
b49e97c9
TS
7226 || ! bfd_set_section_alignment (abfd, s,
7227 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7228 return FALSE;
b49e97c9
TS
7229 }
7230
7231 /* On IRIX5, we adjust add some additional symbols and change the
7232 alignments of several sections. There is no ABI documentation
7233 indicating that this is necessary on IRIX6, nor any evidence that
7234 the linker takes such action. */
7235 if (IRIX_COMPAT (abfd) == ict_irix5)
7236 {
7237 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7238 {
14a793b2 7239 bh = NULL;
b49e97c9 7240 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7241 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7242 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7243 return FALSE;
14a793b2
AM
7244
7245 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7246 h->non_elf = 0;
7247 h->def_regular = 1;
b49e97c9
TS
7248 h->type = STT_SECTION;
7249
c152c796 7250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7251 return FALSE;
b49e97c9
TS
7252 }
7253
7254 /* We need to create a .compact_rel section. */
7255 if (SGI_COMPAT (abfd))
7256 {
7257 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7258 return FALSE;
b49e97c9
TS
7259 }
7260
44c410de 7261 /* Change alignments of some sections. */
3d4d4302 7262 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7263 if (s != NULL)
d80dcc6a 7264 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7265 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7266 if (s != NULL)
d80dcc6a 7267 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7268 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7269 if (s != NULL)
d80dcc6a 7270 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7271 /* ??? */
b49e97c9
TS
7272 s = bfd_get_section_by_name (abfd, ".reginfo");
7273 if (s != NULL)
d80dcc6a 7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
3d4d4302 7275 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7276 if (s != NULL)
d80dcc6a 7277 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7278 }
7279
7280 if (!info->shared)
7281 {
14a793b2
AM
7282 const char *name;
7283
7284 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7285 bh = NULL;
7286 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7287 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7288 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7289 return FALSE;
14a793b2
AM
7290
7291 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7292 h->non_elf = 0;
7293 h->def_regular = 1;
b49e97c9
TS
7294 h->type = STT_SECTION;
7295
c152c796 7296 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7297 return FALSE;
b49e97c9
TS
7298
7299 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7300 {
7301 /* __rld_map is a four byte word located in the .data section
7302 and is filled in by the rtld to contain a pointer to
7303 the _r_debug structure. Its symbol value will be set in
7304 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7305 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7306 BFD_ASSERT (s != NULL);
14a793b2 7307
0abfb97a
L
7308 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7309 bh = NULL;
7310 if (!(_bfd_generic_link_add_one_symbol
7311 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7312 get_elf_backend_data (abfd)->collect, &bh)))
7313 return FALSE;
b49e97c9 7314
0abfb97a
L
7315 h = (struct elf_link_hash_entry *) bh;
7316 h->non_elf = 0;
7317 h->def_regular = 1;
7318 h->type = STT_OBJECT;
7319
7320 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7321 return FALSE;
b4082c70 7322 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7323 }
7324 }
7325
861fb55a 7326 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7327 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7328 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7329 return FALSE;
7330
7331 /* Cache the sections created above. */
3d4d4302
AM
7332 htab->splt = bfd_get_linker_section (abfd, ".plt");
7333 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
0a44bf69
RS
7334 if (htab->is_vxworks)
7335 {
3d4d4302
AM
7336 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7337 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
861fb55a
DJ
7338 }
7339 else
3d4d4302 7340 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
861fb55a
DJ
7341 if (!htab->sdynbss
7342 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7343 || !htab->srelplt
7344 || !htab->splt)
7345 abort ();
0a44bf69 7346
861fb55a
DJ
7347 if (htab->is_vxworks)
7348 {
0a44bf69
RS
7349 /* Do the usual VxWorks handling. */
7350 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7351 return FALSE;
7352
7353 /* Work out the PLT sizes. */
7354 if (info->shared)
7355 {
7356 htab->plt_header_size
7357 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7358 htab->plt_entry_size
7359 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7360 }
7361 else
7362 {
7363 htab->plt_header_size
7364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7365 htab->plt_entry_size
7366 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7367 }
7368 }
861fb55a
DJ
7369 else if (!info->shared)
7370 {
7371 /* All variants of the plt0 entry are the same size. */
7372 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7373 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7374 }
0a44bf69 7375
b34976b6 7376 return TRUE;
b49e97c9
TS
7377}
7378\f
c224138d
RS
7379/* Return true if relocation REL against section SEC is a REL rather than
7380 RELA relocation. RELOCS is the first relocation in the section and
7381 ABFD is the bfd that contains SEC. */
7382
7383static bfd_boolean
7384mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7385 const Elf_Internal_Rela *relocs,
7386 const Elf_Internal_Rela *rel)
7387{
7388 Elf_Internal_Shdr *rel_hdr;
7389 const struct elf_backend_data *bed;
7390
d4730f92
BS
7391 /* To determine which flavor of relocation this is, we depend on the
7392 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7393 rel_hdr = elf_section_data (sec)->rel.hdr;
7394 if (rel_hdr == NULL)
7395 return FALSE;
c224138d 7396 bed = get_elf_backend_data (abfd);
d4730f92
BS
7397 return ((size_t) (rel - relocs)
7398 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7399}
7400
7401/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7402 HOWTO is the relocation's howto and CONTENTS points to the contents
7403 of the section that REL is against. */
7404
7405static bfd_vma
7406mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7407 reloc_howto_type *howto, bfd_byte *contents)
7408{
7409 bfd_byte *location;
7410 unsigned int r_type;
7411 bfd_vma addend;
7412
7413 r_type = ELF_R_TYPE (abfd, rel->r_info);
7414 location = contents + rel->r_offset;
7415
7416 /* Get the addend, which is stored in the input file. */
df58fc94 7417 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
c224138d 7418 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7419 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d
RS
7420
7421 return addend & howto->src_mask;
7422}
7423
7424/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7425 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7426 and update *ADDEND with the final addend. Return true on success
7427 or false if the LO16 could not be found. RELEND is the exclusive
7428 upper bound on the relocations for REL's section. */
7429
7430static bfd_boolean
7431mips_elf_add_lo16_rel_addend (bfd *abfd,
7432 const Elf_Internal_Rela *rel,
7433 const Elf_Internal_Rela *relend,
7434 bfd_byte *contents, bfd_vma *addend)
7435{
7436 unsigned int r_type, lo16_type;
7437 const Elf_Internal_Rela *lo16_relocation;
7438 reloc_howto_type *lo16_howto;
7439 bfd_vma l;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7442 if (mips16_reloc_p (r_type))
c224138d 7443 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7444 else if (micromips_reloc_p (r_type))
7445 lo16_type = R_MICROMIPS_LO16;
c224138d
RS
7446 else
7447 lo16_type = R_MIPS_LO16;
7448
7449 /* The combined value is the sum of the HI16 addend, left-shifted by
7450 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7451 code does a `lui' of the HI16 value, and then an `addiu' of the
7452 LO16 value.)
7453
7454 Scan ahead to find a matching LO16 relocation.
7455
7456 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7457 be immediately following. However, for the IRIX6 ABI, the next
7458 relocation may be a composed relocation consisting of several
7459 relocations for the same address. In that case, the R_MIPS_LO16
7460 relocation may occur as one of these. We permit a similar
7461 extension in general, as that is useful for GCC.
7462
7463 In some cases GCC dead code elimination removes the LO16 but keeps
7464 the corresponding HI16. This is strictly speaking a violation of
7465 the ABI but not immediately harmful. */
7466 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7467 if (lo16_relocation == NULL)
7468 return FALSE;
7469
7470 /* Obtain the addend kept there. */
7471 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7472 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7473
7474 l <<= lo16_howto->rightshift;
7475 l = _bfd_mips_elf_sign_extend (l, 16);
7476
7477 *addend <<= 16;
7478 *addend += l;
7479 return TRUE;
7480}
7481
7482/* Try to read the contents of section SEC in bfd ABFD. Return true and
7483 store the contents in *CONTENTS on success. Assume that *CONTENTS
7484 already holds the contents if it is nonull on entry. */
7485
7486static bfd_boolean
7487mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7488{
7489 if (*contents)
7490 return TRUE;
7491
7492 /* Get cached copy if it exists. */
7493 if (elf_section_data (sec)->this_hdr.contents != NULL)
7494 {
7495 *contents = elf_section_data (sec)->this_hdr.contents;
7496 return TRUE;
7497 }
7498
7499 return bfd_malloc_and_get_section (abfd, sec, contents);
7500}
7501
b49e97c9
TS
7502/* Look through the relocs for a section during the first phase, and
7503 allocate space in the global offset table. */
7504
b34976b6 7505bfd_boolean
9719ad41
RS
7506_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7507 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
7508{
7509 const char *name;
7510 bfd *dynobj;
7511 Elf_Internal_Shdr *symtab_hdr;
7512 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
7513 size_t extsymoff;
7514 const Elf_Internal_Rela *rel;
7515 const Elf_Internal_Rela *rel_end;
b49e97c9 7516 asection *sreloc;
9c5bfbb7 7517 const struct elf_backend_data *bed;
0a44bf69 7518 struct mips_elf_link_hash_table *htab;
c224138d
RS
7519 bfd_byte *contents;
7520 bfd_vma addend;
7521 reloc_howto_type *howto;
b49e97c9 7522
1049f94e 7523 if (info->relocatable)
b34976b6 7524 return TRUE;
b49e97c9 7525
0a44bf69 7526 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7527 BFD_ASSERT (htab != NULL);
7528
b49e97c9
TS
7529 dynobj = elf_hash_table (info)->dynobj;
7530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7531 sym_hashes = elf_sym_hashes (abfd);
7532 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7533
738e5348
RS
7534 bed = get_elf_backend_data (abfd);
7535 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7536
b49e97c9
TS
7537 /* Check for the mips16 stub sections. */
7538
7539 name = bfd_get_section_name (abfd, sec);
b9d58d71 7540 if (FN_STUB_P (name))
b49e97c9
TS
7541 {
7542 unsigned long r_symndx;
7543
7544 /* Look at the relocation information to figure out which symbol
7545 this is for. */
7546
cb4437b8 7547 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7548 if (r_symndx == 0)
7549 {
7550 (*_bfd_error_handler)
7551 (_("%B: Warning: cannot determine the target function for"
7552 " stub section `%s'"),
7553 abfd, name);
7554 bfd_set_error (bfd_error_bad_value);
7555 return FALSE;
7556 }
b49e97c9
TS
7557
7558 if (r_symndx < extsymoff
7559 || sym_hashes[r_symndx - extsymoff] == NULL)
7560 {
7561 asection *o;
7562
7563 /* This stub is for a local symbol. This stub will only be
7564 needed if there is some relocation in this BFD, other
7565 than a 16 bit function call, which refers to this symbol. */
7566 for (o = abfd->sections; o != NULL; o = o->next)
7567 {
7568 Elf_Internal_Rela *sec_relocs;
7569 const Elf_Internal_Rela *r, *rend;
7570
7571 /* We can ignore stub sections when looking for relocs. */
7572 if ((o->flags & SEC_RELOC) == 0
7573 || o->reloc_count == 0
738e5348 7574 || section_allows_mips16_refs_p (o))
b49e97c9
TS
7575 continue;
7576
45d6a902 7577 sec_relocs
9719ad41 7578 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 7579 info->keep_memory);
b49e97c9 7580 if (sec_relocs == NULL)
b34976b6 7581 return FALSE;
b49e97c9
TS
7582
7583 rend = sec_relocs + o->reloc_count;
7584 for (r = sec_relocs; r < rend; r++)
7585 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 7586 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
7587 break;
7588
6cdc0ccc 7589 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
7590 free (sec_relocs);
7591
7592 if (r < rend)
7593 break;
7594 }
7595
7596 if (o == NULL)
7597 {
7598 /* There is no non-call reloc for this stub, so we do
7599 not need it. Since this function is called before
7600 the linker maps input sections to output sections, we
7601 can easily discard it by setting the SEC_EXCLUDE
7602 flag. */
7603 sec->flags |= SEC_EXCLUDE;
b34976b6 7604 return TRUE;
b49e97c9
TS
7605 }
7606
7607 /* Record this stub in an array of local symbol stubs for
7608 this BFD. */
698600e4 7609 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
7610 {
7611 unsigned long symcount;
7612 asection **n;
7613 bfd_size_type amt;
7614
7615 if (elf_bad_symtab (abfd))
7616 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7617 else
7618 symcount = symtab_hdr->sh_info;
7619 amt = symcount * sizeof (asection *);
9719ad41 7620 n = bfd_zalloc (abfd, amt);
b49e97c9 7621 if (n == NULL)
b34976b6 7622 return FALSE;
698600e4 7623 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
7624 }
7625
b9d58d71 7626 sec->flags |= SEC_KEEP;
698600e4 7627 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
7628
7629 /* We don't need to set mips16_stubs_seen in this case.
7630 That flag is used to see whether we need to look through
7631 the global symbol table for stubs. We don't need to set
7632 it here, because we just have a local stub. */
7633 }
7634 else
7635 {
7636 struct mips_elf_link_hash_entry *h;
7637
7638 h = ((struct mips_elf_link_hash_entry *)
7639 sym_hashes[r_symndx - extsymoff]);
7640
973a3492
L
7641 while (h->root.root.type == bfd_link_hash_indirect
7642 || h->root.root.type == bfd_link_hash_warning)
7643 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7644
b49e97c9
TS
7645 /* H is the symbol this stub is for. */
7646
b9d58d71
TS
7647 /* If we already have an appropriate stub for this function, we
7648 don't need another one, so we can discard this one. Since
7649 this function is called before the linker maps input sections
7650 to output sections, we can easily discard it by setting the
7651 SEC_EXCLUDE flag. */
7652 if (h->fn_stub != NULL)
7653 {
7654 sec->flags |= SEC_EXCLUDE;
7655 return TRUE;
7656 }
7657
7658 sec->flags |= SEC_KEEP;
b49e97c9 7659 h->fn_stub = sec;
b34976b6 7660 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
7661 }
7662 }
b9d58d71 7663 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
7664 {
7665 unsigned long r_symndx;
7666 struct mips_elf_link_hash_entry *h;
7667 asection **loc;
7668
7669 /* Look at the relocation information to figure out which symbol
7670 this is for. */
7671
cb4437b8 7672 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
7673 if (r_symndx == 0)
7674 {
7675 (*_bfd_error_handler)
7676 (_("%B: Warning: cannot determine the target function for"
7677 " stub section `%s'"),
7678 abfd, name);
7679 bfd_set_error (bfd_error_bad_value);
7680 return FALSE;
7681 }
b49e97c9
TS
7682
7683 if (r_symndx < extsymoff
7684 || sym_hashes[r_symndx - extsymoff] == NULL)
7685 {
b9d58d71 7686 asection *o;
b49e97c9 7687
b9d58d71
TS
7688 /* This stub is for a local symbol. This stub will only be
7689 needed if there is some relocation (R_MIPS16_26) in this BFD
7690 that refers to this symbol. */
7691 for (o = abfd->sections; o != NULL; o = o->next)
7692 {
7693 Elf_Internal_Rela *sec_relocs;
7694 const Elf_Internal_Rela *r, *rend;
7695
7696 /* We can ignore stub sections when looking for relocs. */
7697 if ((o->flags & SEC_RELOC) == 0
7698 || o->reloc_count == 0
738e5348 7699 || section_allows_mips16_refs_p (o))
b9d58d71
TS
7700 continue;
7701
7702 sec_relocs
7703 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7704 info->keep_memory);
7705 if (sec_relocs == NULL)
7706 return FALSE;
7707
7708 rend = sec_relocs + o->reloc_count;
7709 for (r = sec_relocs; r < rend; r++)
7710 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7711 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7712 break;
7713
7714 if (elf_section_data (o)->relocs != sec_relocs)
7715 free (sec_relocs);
7716
7717 if (r < rend)
7718 break;
7719 }
7720
7721 if (o == NULL)
7722 {
7723 /* There is no non-call reloc for this stub, so we do
7724 not need it. Since this function is called before
7725 the linker maps input sections to output sections, we
7726 can easily discard it by setting the SEC_EXCLUDE
7727 flag. */
7728 sec->flags |= SEC_EXCLUDE;
7729 return TRUE;
7730 }
7731
7732 /* Record this stub in an array of local symbol call_stubs for
7733 this BFD. */
698600e4 7734 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
7735 {
7736 unsigned long symcount;
7737 asection **n;
7738 bfd_size_type amt;
7739
7740 if (elf_bad_symtab (abfd))
7741 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7742 else
7743 symcount = symtab_hdr->sh_info;
7744 amt = symcount * sizeof (asection *);
7745 n = bfd_zalloc (abfd, amt);
7746 if (n == NULL)
7747 return FALSE;
698600e4 7748 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 7749 }
b49e97c9 7750
b9d58d71 7751 sec->flags |= SEC_KEEP;
698600e4 7752 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 7753
b9d58d71
TS
7754 /* We don't need to set mips16_stubs_seen in this case.
7755 That flag is used to see whether we need to look through
7756 the global symbol table for stubs. We don't need to set
7757 it here, because we just have a local stub. */
7758 }
b49e97c9 7759 else
b49e97c9 7760 {
b9d58d71
TS
7761 h = ((struct mips_elf_link_hash_entry *)
7762 sym_hashes[r_symndx - extsymoff]);
68ffbac6 7763
b9d58d71 7764 /* H is the symbol this stub is for. */
68ffbac6 7765
b9d58d71
TS
7766 if (CALL_FP_STUB_P (name))
7767 loc = &h->call_fp_stub;
7768 else
7769 loc = &h->call_stub;
68ffbac6 7770
b9d58d71
TS
7771 /* If we already have an appropriate stub for this function, we
7772 don't need another one, so we can discard this one. Since
7773 this function is called before the linker maps input sections
7774 to output sections, we can easily discard it by setting the
7775 SEC_EXCLUDE flag. */
7776 if (*loc != NULL)
7777 {
7778 sec->flags |= SEC_EXCLUDE;
7779 return TRUE;
7780 }
b49e97c9 7781
b9d58d71
TS
7782 sec->flags |= SEC_KEEP;
7783 *loc = sec;
7784 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7785 }
b49e97c9
TS
7786 }
7787
b49e97c9 7788 sreloc = NULL;
c224138d 7789 contents = NULL;
b49e97c9
TS
7790 for (rel = relocs; rel < rel_end; ++rel)
7791 {
7792 unsigned long r_symndx;
7793 unsigned int r_type;
7794 struct elf_link_hash_entry *h;
861fb55a 7795 bfd_boolean can_make_dynamic_p;
b49e97c9
TS
7796
7797 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7798 r_type = ELF_R_TYPE (abfd, rel->r_info);
7799
7800 if (r_symndx < extsymoff)
7801 h = NULL;
7802 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7803 {
7804 (*_bfd_error_handler)
d003868e
AM
7805 (_("%B: Malformed reloc detected for section %s"),
7806 abfd, name);
b49e97c9 7807 bfd_set_error (bfd_error_bad_value);
b34976b6 7808 return FALSE;
b49e97c9
TS
7809 }
7810 else
7811 {
7812 h = sym_hashes[r_symndx - extsymoff];
3e08fb72
NC
7813 while (h != NULL
7814 && (h->root.type == bfd_link_hash_indirect
7815 || h->root.type == bfd_link_hash_warning))
861fb55a
DJ
7816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7817 }
b49e97c9 7818
861fb55a
DJ
7819 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7820 relocation into a dynamic one. */
7821 can_make_dynamic_p = FALSE;
7822 switch (r_type)
7823 {
861fb55a
DJ
7824 case R_MIPS_GOT16:
7825 case R_MIPS_CALL16:
7826 case R_MIPS_CALL_HI16:
7827 case R_MIPS_CALL_LO16:
7828 case R_MIPS_GOT_HI16:
7829 case R_MIPS_GOT_LO16:
7830 case R_MIPS_GOT_PAGE:
7831 case R_MIPS_GOT_OFST:
7832 case R_MIPS_GOT_DISP:
7833 case R_MIPS_TLS_GOTTPREL:
7834 case R_MIPS_TLS_GD:
7835 case R_MIPS_TLS_LDM:
d0f13682
CLT
7836 case R_MIPS16_GOT16:
7837 case R_MIPS16_CALL16:
7838 case R_MIPS16_TLS_GOTTPREL:
7839 case R_MIPS16_TLS_GD:
7840 case R_MIPS16_TLS_LDM:
df58fc94
RS
7841 case R_MICROMIPS_GOT16:
7842 case R_MICROMIPS_CALL16:
7843 case R_MICROMIPS_CALL_HI16:
7844 case R_MICROMIPS_CALL_LO16:
7845 case R_MICROMIPS_GOT_HI16:
7846 case R_MICROMIPS_GOT_LO16:
7847 case R_MICROMIPS_GOT_PAGE:
7848 case R_MICROMIPS_GOT_OFST:
7849 case R_MICROMIPS_GOT_DISP:
7850 case R_MICROMIPS_TLS_GOTTPREL:
7851 case R_MICROMIPS_TLS_GD:
7852 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
7853 if (dynobj == NULL)
7854 elf_hash_table (info)->dynobj = dynobj = abfd;
7855 if (!mips_elf_create_got_section (dynobj, info))
7856 return FALSE;
7857 if (htab->is_vxworks && !info->shared)
b49e97c9 7858 {
861fb55a
DJ
7859 (*_bfd_error_handler)
7860 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7861 abfd, (unsigned long) rel->r_offset);
7862 bfd_set_error (bfd_error_bad_value);
7863 return FALSE;
b49e97c9 7864 }
861fb55a 7865 break;
b49e97c9 7866
99da6b5f
AN
7867 /* This is just a hint; it can safely be ignored. Don't set
7868 has_static_relocs for the corresponding symbol. */
7869 case R_MIPS_JALR:
df58fc94 7870 case R_MICROMIPS_JALR:
99da6b5f
AN
7871 break;
7872
861fb55a
DJ
7873 case R_MIPS_32:
7874 case R_MIPS_REL32:
7875 case R_MIPS_64:
7876 /* In VxWorks executables, references to external symbols
7877 must be handled using copy relocs or PLT entries; it is not
7878 possible to convert this relocation into a dynamic one.
7879
7880 For executables that use PLTs and copy-relocs, we have a
7881 choice between converting the relocation into a dynamic
7882 one or using copy relocations or PLT entries. It is
7883 usually better to do the former, unless the relocation is
7884 against a read-only section. */
7885 if ((info->shared
7886 || (h != NULL
7887 && !htab->is_vxworks
7888 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7889 && !(!info->nocopyreloc
7890 && !PIC_OBJECT_P (abfd)
7891 && MIPS_ELF_READONLY_SECTION (sec))))
7892 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 7893 {
861fb55a 7894 can_make_dynamic_p = TRUE;
b49e97c9
TS
7895 if (dynobj == NULL)
7896 elf_hash_table (info)->dynobj = dynobj = abfd;
b49e97c9 7897 break;
861fb55a 7898 }
21d790b9
MR
7899 /* For sections that are not SEC_ALLOC a copy reloc would be
7900 output if possible (implying questionable semantics for
7901 read-only data objects) or otherwise the final link would
7902 fail as ld.so will not process them and could not therefore
7903 handle any outstanding dynamic relocations.
7904
7905 For such sections that are also SEC_DEBUGGING, we can avoid
7906 these problems by simply ignoring any relocs as these
7907 sections have a predefined use and we know it is safe to do
7908 so.
7909
7910 This is needed in cases such as a global symbol definition
7911 in a shared library causing a common symbol from an object
7912 file to be converted to an undefined reference. If that
7913 happens, then all the relocations against this symbol from
7914 SEC_DEBUGGING sections in the object file will resolve to
7915 nil. */
7916 if ((sec->flags & SEC_DEBUGGING) != 0)
7917 break;
861fb55a 7918 /* Fall through. */
b49e97c9 7919
861fb55a
DJ
7920 default:
7921 /* Most static relocations require pointer equality, except
7922 for branches. */
7923 if (h)
7924 h->pointer_equality_needed = TRUE;
7925 /* Fall through. */
b49e97c9 7926
861fb55a
DJ
7927 case R_MIPS_26:
7928 case R_MIPS_PC16:
7929 case R_MIPS16_26:
df58fc94
RS
7930 case R_MICROMIPS_26_S1:
7931 case R_MICROMIPS_PC7_S1:
7932 case R_MICROMIPS_PC10_S1:
7933 case R_MICROMIPS_PC16_S1:
7934 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
7935 if (h)
7936 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7937 break;
b49e97c9
TS
7938 }
7939
0a44bf69
RS
7940 if (h)
7941 {
0a44bf69
RS
7942 /* Relocations against the special VxWorks __GOTT_BASE__ and
7943 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7944 room for them in .rela.dyn. */
7945 if (is_gott_symbol (info, h))
7946 {
7947 if (sreloc == NULL)
7948 {
7949 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7950 if (sreloc == NULL)
7951 return FALSE;
7952 }
7953 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
7954 if (MIPS_ELF_READONLY_SECTION (sec))
7955 /* We tell the dynamic linker that there are
7956 relocations against the text segment. */
7957 info->flags |= DF_TEXTREL;
0a44bf69
RS
7958 }
7959 }
df58fc94
RS
7960 else if (call_lo16_reloc_p (r_type)
7961 || got_lo16_reloc_p (r_type)
7962 || got_disp_reloc_p (r_type)
738e5348 7963 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
7964 {
7965 /* We may need a local GOT entry for this relocation. We
7966 don't count R_MIPS_GOT_PAGE because we can estimate the
7967 maximum number of pages needed by looking at the size of
738e5348
RS
7968 the segment. Similar comments apply to R_MIPS*_GOT16 and
7969 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 7970 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 7971 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 7972 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 7973 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 7974 rel->r_addend, info, r_type))
f4416af6 7975 return FALSE;
b49e97c9
TS
7976 }
7977
8f0c309a
CLT
7978 if (h != NULL
7979 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7980 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
7981 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7982
b49e97c9
TS
7983 switch (r_type)
7984 {
7985 case R_MIPS_CALL16:
738e5348 7986 case R_MIPS16_CALL16:
df58fc94 7987 case R_MICROMIPS_CALL16:
b49e97c9
TS
7988 if (h == NULL)
7989 {
7990 (*_bfd_error_handler)
d003868e
AM
7991 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7992 abfd, (unsigned long) rel->r_offset);
b49e97c9 7993 bfd_set_error (bfd_error_bad_value);
b34976b6 7994 return FALSE;
b49e97c9
TS
7995 }
7996 /* Fall through. */
7997
7998 case R_MIPS_CALL_HI16:
7999 case R_MIPS_CALL_LO16:
df58fc94
RS
8000 case R_MICROMIPS_CALL_HI16:
8001 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8002 if (h != NULL)
8003 {
6ccf4795
RS
8004 /* Make sure there is room in the regular GOT to hold the
8005 function's address. We may eliminate it in favour of
8006 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8007 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8008 r_type))
b34976b6 8009 return FALSE;
b49e97c9
TS
8010
8011 /* We need a stub, not a plt entry for the undefined
8012 function. But we record it as if it needs plt. See
c152c796 8013 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8014 h->needs_plt = 1;
b49e97c9
TS
8015 h->type = STT_FUNC;
8016 }
8017 break;
8018
0fdc1bf1 8019 case R_MIPS_GOT_PAGE:
df58fc94 8020 case R_MICROMIPS_GOT_PAGE:
738e5348 8021 case R_MIPS16_GOT16:
b49e97c9
TS
8022 case R_MIPS_GOT16:
8023 case R_MIPS_GOT_HI16:
8024 case R_MIPS_GOT_LO16:
df58fc94
RS
8025 case R_MICROMIPS_GOT16:
8026 case R_MICROMIPS_GOT_HI16:
8027 case R_MICROMIPS_GOT_LO16:
8028 if (!h || got_page_reloc_p (r_type))
c224138d 8029 {
3a3b6725
DJ
8030 /* This relocation needs (or may need, if h != NULL) a
8031 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8032 know for sure until we know whether the symbol is
8033 preemptible. */
c224138d
RS
8034 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8035 {
8036 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8037 return FALSE;
8038 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8039 addend = mips_elf_read_rel_addend (abfd, rel,
8040 howto, contents);
9684f078 8041 if (got16_reloc_p (r_type))
c224138d
RS
8042 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8043 contents, &addend);
8044 else
8045 addend <<= howto->rightshift;
8046 }
8047 else
8048 addend = rel->r_addend;
13db6b44
RS
8049 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8050 h, addend))
c224138d 8051 return FALSE;
13db6b44
RS
8052
8053 if (h)
8054 {
8055 struct mips_elf_link_hash_entry *hmips =
8056 (struct mips_elf_link_hash_entry *) h;
8057
8058 /* This symbol is definitely not overridable. */
8059 if (hmips->root.def_regular
8060 && ! (info->shared && ! info->symbolic
8061 && ! hmips->root.forced_local))
8062 h = NULL;
8063 }
c224138d 8064 }
13db6b44
RS
8065 /* If this is a global, overridable symbol, GOT_PAGE will
8066 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8067 /* Fall through. */
8068
b49e97c9 8069 case R_MIPS_GOT_DISP:
df58fc94 8070 case R_MICROMIPS_GOT_DISP:
6ccf4795 8071 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8072 FALSE, r_type))
b34976b6 8073 return FALSE;
b49e97c9
TS
8074 break;
8075
0f20cc35 8076 case R_MIPS_TLS_GOTTPREL:
d0f13682 8077 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8078 case R_MICROMIPS_TLS_GOTTPREL:
0f20cc35
DJ
8079 if (info->shared)
8080 info->flags |= DF_STATIC_TLS;
8081 /* Fall through */
8082
8083 case R_MIPS_TLS_LDM:
d0f13682 8084 case R_MIPS16_TLS_LDM:
df58fc94
RS
8085 case R_MICROMIPS_TLS_LDM:
8086 if (tls_ldm_reloc_p (r_type))
0f20cc35 8087 {
cf35638d 8088 r_symndx = STN_UNDEF;
0f20cc35
DJ
8089 h = NULL;
8090 }
8091 /* Fall through */
8092
8093 case R_MIPS_TLS_GD:
d0f13682 8094 case R_MIPS16_TLS_GD:
df58fc94 8095 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8096 /* This symbol requires a global offset table entry, or two
8097 for TLS GD relocations. */
e641e783
RS
8098 if (h != NULL)
8099 {
8100 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8101 FALSE, r_type))
8102 return FALSE;
8103 }
8104 else
8105 {
8106 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8107 rel->r_addend,
8108 info, r_type))
8109 return FALSE;
8110 }
0f20cc35
DJ
8111 break;
8112
b49e97c9
TS
8113 case R_MIPS_32:
8114 case R_MIPS_REL32:
8115 case R_MIPS_64:
0a44bf69
RS
8116 /* In VxWorks executables, references to external symbols
8117 are handled using copy relocs or PLT stubs, so there's
8118 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8119 if (can_make_dynamic_p)
b49e97c9
TS
8120 {
8121 if (sreloc == NULL)
8122 {
0a44bf69 8123 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8124 if (sreloc == NULL)
f4416af6 8125 return FALSE;
b49e97c9 8126 }
9a59ad6b 8127 if (info->shared && h == NULL)
82f0cfbd
EC
8128 {
8129 /* When creating a shared object, we must copy these
8130 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8131 relocs. Make room for this reloc in .rel(a).dyn. */
8132 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8133 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8134 /* We tell the dynamic linker that there are
8135 relocations against the text segment. */
8136 info->flags |= DF_TEXTREL;
8137 }
b49e97c9
TS
8138 else
8139 {
8140 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8141
9a59ad6b
DJ
8142 /* For a shared object, we must copy this relocation
8143 unless the symbol turns out to be undefined and
8144 weak with non-default visibility, in which case
8145 it will be left as zero.
8146
8147 We could elide R_MIPS_REL32 for locally binding symbols
8148 in shared libraries, but do not yet do so.
8149
8150 For an executable, we only need to copy this
8151 reloc if the symbol is defined in a dynamic
8152 object. */
b49e97c9
TS
8153 hmips = (struct mips_elf_link_hash_entry *) h;
8154 ++hmips->possibly_dynamic_relocs;
943284cc 8155 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8156 /* We need it to tell the dynamic linker if there
8157 are relocations against the text segment. */
8158 hmips->readonly_reloc = TRUE;
b49e97c9 8159 }
b49e97c9
TS
8160 }
8161
8162 if (SGI_COMPAT (abfd))
8163 mips_elf_hash_table (info)->compact_rel_size +=
8164 sizeof (Elf32_External_crinfo);
8165 break;
8166
8167 case R_MIPS_26:
8168 case R_MIPS_GPREL16:
8169 case R_MIPS_LITERAL:
8170 case R_MIPS_GPREL32:
df58fc94
RS
8171 case R_MICROMIPS_26_S1:
8172 case R_MICROMIPS_GPREL16:
8173 case R_MICROMIPS_LITERAL:
8174 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8175 if (SGI_COMPAT (abfd))
8176 mips_elf_hash_table (info)->compact_rel_size +=
8177 sizeof (Elf32_External_crinfo);
8178 break;
8179
8180 /* This relocation describes the C++ object vtable hierarchy.
8181 Reconstruct it for later use during GC. */
8182 case R_MIPS_GNU_VTINHERIT:
c152c796 8183 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8184 return FALSE;
b49e97c9
TS
8185 break;
8186
8187 /* This relocation describes which C++ vtable entries are actually
8188 used. Record for later use during GC. */
8189 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8190 BFD_ASSERT (h != NULL);
8191 if (h != NULL
8192 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8193 return FALSE;
b49e97c9
TS
8194 break;
8195
8196 default:
8197 break;
8198 }
8199
8200 /* We must not create a stub for a symbol that has relocations
0a44bf69
RS
8201 related to taking the function's address. This doesn't apply to
8202 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8203 a normal .got entry. */
8204 if (!htab->is_vxworks && h != NULL)
8205 switch (r_type)
8206 {
8207 default:
8208 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8209 break;
738e5348 8210 case R_MIPS16_CALL16:
0a44bf69
RS
8211 case R_MIPS_CALL16:
8212 case R_MIPS_CALL_HI16:
8213 case R_MIPS_CALL_LO16:
8214 case R_MIPS_JALR:
df58fc94
RS
8215 case R_MICROMIPS_CALL16:
8216 case R_MICROMIPS_CALL_HI16:
8217 case R_MICROMIPS_CALL_LO16:
8218 case R_MICROMIPS_JALR:
0a44bf69
RS
8219 break;
8220 }
b49e97c9 8221
738e5348
RS
8222 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8223 if there is one. We only need to handle global symbols here;
8224 we decide whether to keep or delete stubs for local symbols
8225 when processing the stub's relocations. */
b49e97c9 8226 if (h != NULL
738e5348
RS
8227 && !mips16_call_reloc_p (r_type)
8228 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8229 {
8230 struct mips_elf_link_hash_entry *mh;
8231
8232 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8233 mh->need_fn_stub = TRUE;
b49e97c9 8234 }
861fb55a
DJ
8235
8236 /* Refuse some position-dependent relocations when creating a
8237 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8238 not PIC, but we can create dynamic relocations and the result
8239 will be fine. Also do not refuse R_MIPS_LO16, which can be
8240 combined with R_MIPS_GOT16. */
8241 if (info->shared)
8242 {
8243 switch (r_type)
8244 {
8245 case R_MIPS16_HI16:
8246 case R_MIPS_HI16:
8247 case R_MIPS_HIGHER:
8248 case R_MIPS_HIGHEST:
df58fc94
RS
8249 case R_MICROMIPS_HI16:
8250 case R_MICROMIPS_HIGHER:
8251 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8252 /* Don't refuse a high part relocation if it's against
8253 no symbol (e.g. part of a compound relocation). */
cf35638d 8254 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8255 break;
8256
8257 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8258 and has a special meaning. */
8259 if (!NEWABI_P (abfd) && h != NULL
8260 && strcmp (h->root.root.string, "_gp_disp") == 0)
8261 break;
8262
0fc1eb3c
RS
8263 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8264 if (is_gott_symbol (info, h))
8265 break;
8266
861fb55a
DJ
8267 /* FALLTHROUGH */
8268
8269 case R_MIPS16_26:
8270 case R_MIPS_26:
df58fc94 8271 case R_MICROMIPS_26_S1:
861fb55a
DJ
8272 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8273 (*_bfd_error_handler)
8274 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8275 abfd, howto->name,
8276 (h) ? h->root.root.string : "a local symbol");
8277 bfd_set_error (bfd_error_bad_value);
8278 return FALSE;
8279 default:
8280 break;
8281 }
8282 }
b49e97c9
TS
8283 }
8284
b34976b6 8285 return TRUE;
b49e97c9
TS
8286}
8287\f
d0647110 8288bfd_boolean
9719ad41
RS
8289_bfd_mips_relax_section (bfd *abfd, asection *sec,
8290 struct bfd_link_info *link_info,
8291 bfd_boolean *again)
d0647110
AO
8292{
8293 Elf_Internal_Rela *internal_relocs;
8294 Elf_Internal_Rela *irel, *irelend;
8295 Elf_Internal_Shdr *symtab_hdr;
8296 bfd_byte *contents = NULL;
d0647110
AO
8297 size_t extsymoff;
8298 bfd_boolean changed_contents = FALSE;
8299 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8300 Elf_Internal_Sym *isymbuf = NULL;
8301
8302 /* We are not currently changing any sizes, so only one pass. */
8303 *again = FALSE;
8304
1049f94e 8305 if (link_info->relocatable)
d0647110
AO
8306 return TRUE;
8307
9719ad41 8308 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
45d6a902 8309 link_info->keep_memory);
d0647110
AO
8310 if (internal_relocs == NULL)
8311 return TRUE;
8312
8313 irelend = internal_relocs + sec->reloc_count
8314 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8315 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8316 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8317
8318 for (irel = internal_relocs; irel < irelend; irel++)
8319 {
8320 bfd_vma symval;
8321 bfd_signed_vma sym_offset;
8322 unsigned int r_type;
8323 unsigned long r_symndx;
8324 asection *sym_sec;
8325 unsigned long instruction;
8326
8327 /* Turn jalr into bgezal, and jr into beq, if they're marked
8328 with a JALR relocation, that indicate where they jump to.
8329 This saves some pipeline bubbles. */
8330 r_type = ELF_R_TYPE (abfd, irel->r_info);
8331 if (r_type != R_MIPS_JALR)
8332 continue;
8333
8334 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8335 /* Compute the address of the jump target. */
8336 if (r_symndx >= extsymoff)
8337 {
8338 struct mips_elf_link_hash_entry *h
8339 = ((struct mips_elf_link_hash_entry *)
8340 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8341
8342 while (h->root.root.type == bfd_link_hash_indirect
8343 || h->root.root.type == bfd_link_hash_warning)
8344 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
143d77c5 8345
d0647110
AO
8346 /* If a symbol is undefined, or if it may be overridden,
8347 skip it. */
8348 if (! ((h->root.root.type == bfd_link_hash_defined
8349 || h->root.root.type == bfd_link_hash_defweak)
8350 && h->root.root.u.def.section)
8351 || (link_info->shared && ! link_info->symbolic
f5385ebf 8352 && !h->root.forced_local))
d0647110
AO
8353 continue;
8354
8355 sym_sec = h->root.root.u.def.section;
8356 if (sym_sec->output_section)
8357 symval = (h->root.root.u.def.value
8358 + sym_sec->output_section->vma
8359 + sym_sec->output_offset);
8360 else
8361 symval = h->root.root.u.def.value;
8362 }
8363 else
8364 {
8365 Elf_Internal_Sym *isym;
8366
8367 /* Read this BFD's symbols if we haven't done so already. */
8368 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8369 {
8370 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8371 if (isymbuf == NULL)
8372 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8373 symtab_hdr->sh_info, 0,
8374 NULL, NULL, NULL);
8375 if (isymbuf == NULL)
8376 goto relax_return;
8377 }
8378
8379 isym = isymbuf + r_symndx;
8380 if (isym->st_shndx == SHN_UNDEF)
8381 continue;
8382 else if (isym->st_shndx == SHN_ABS)
8383 sym_sec = bfd_abs_section_ptr;
8384 else if (isym->st_shndx == SHN_COMMON)
8385 sym_sec = bfd_com_section_ptr;
8386 else
8387 sym_sec
8388 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8389 symval = isym->st_value
8390 + sym_sec->output_section->vma
8391 + sym_sec->output_offset;
8392 }
8393
8394 /* Compute branch offset, from delay slot of the jump to the
8395 branch target. */
8396 sym_offset = (symval + irel->r_addend)
8397 - (sec_start + irel->r_offset + 4);
8398
8399 /* Branch offset must be properly aligned. */
8400 if ((sym_offset & 3) != 0)
8401 continue;
8402
8403 sym_offset >>= 2;
8404
8405 /* Check that it's in range. */
8406 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8407 continue;
143d77c5 8408
d0647110 8409 /* Get the section contents if we haven't done so already. */
c224138d
RS
8410 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8411 goto relax_return;
d0647110
AO
8412
8413 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8414
8415 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8416 if ((instruction & 0xfc1fffff) == 0x0000f809)
8417 instruction = 0x04110000;
8418 /* If it was jr <reg>, turn it into b <target>. */
8419 else if ((instruction & 0xfc1fffff) == 0x00000008)
8420 instruction = 0x10000000;
8421 else
8422 continue;
8423
8424 instruction |= (sym_offset & 0xffff);
8425 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8426 changed_contents = TRUE;
8427 }
8428
8429 if (contents != NULL
8430 && elf_section_data (sec)->this_hdr.contents != contents)
8431 {
8432 if (!changed_contents && !link_info->keep_memory)
8433 free (contents);
8434 else
8435 {
8436 /* Cache the section contents for elf_link_input_bfd. */
8437 elf_section_data (sec)->this_hdr.contents = contents;
8438 }
8439 }
8440 return TRUE;
8441
143d77c5 8442 relax_return:
eea6121a
AM
8443 if (contents != NULL
8444 && elf_section_data (sec)->this_hdr.contents != contents)
8445 free (contents);
d0647110
AO
8446 return FALSE;
8447}
8448\f
9a59ad6b
DJ
8449/* Allocate space for global sym dynamic relocs. */
8450
8451static bfd_boolean
8452allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8453{
8454 struct bfd_link_info *info = inf;
8455 bfd *dynobj;
8456 struct mips_elf_link_hash_entry *hmips;
8457 struct mips_elf_link_hash_table *htab;
8458
8459 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8460 BFD_ASSERT (htab != NULL);
8461
9a59ad6b
DJ
8462 dynobj = elf_hash_table (info)->dynobj;
8463 hmips = (struct mips_elf_link_hash_entry *) h;
8464
8465 /* VxWorks executables are handled elsewhere; we only need to
8466 allocate relocations in shared objects. */
8467 if (htab->is_vxworks && !info->shared)
8468 return TRUE;
8469
7686d77d
AM
8470 /* Ignore indirect symbols. All relocations against such symbols
8471 will be redirected to the target symbol. */
8472 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8473 return TRUE;
8474
9a59ad6b
DJ
8475 /* If this symbol is defined in a dynamic object, or we are creating
8476 a shared library, we will need to copy any R_MIPS_32 or
8477 R_MIPS_REL32 relocs against it into the output file. */
8478 if (! info->relocatable
8479 && hmips->possibly_dynamic_relocs != 0
8480 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8481 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9a59ad6b
DJ
8482 || info->shared))
8483 {
8484 bfd_boolean do_copy = TRUE;
8485
8486 if (h->root.type == bfd_link_hash_undefweak)
8487 {
8488 /* Do not copy relocations for undefined weak symbols with
8489 non-default visibility. */
8490 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8491 do_copy = FALSE;
8492
8493 /* Make sure undefined weak symbols are output as a dynamic
8494 symbol in PIEs. */
8495 else if (h->dynindx == -1 && !h->forced_local)
8496 {
8497 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8498 return FALSE;
8499 }
8500 }
8501
8502 if (do_copy)
8503 {
aff469fa 8504 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8505 the SVR4 psABI requires it to have a dynamic symbol table
8506 index greater that DT_MIPS_GOTSYM if there are dynamic
8507 relocations against it.
8508
8509 VxWorks does not enforce the same mapping between the GOT
8510 and the symbol table, so the same requirement does not
8511 apply there. */
6ccf4795
RS
8512 if (!htab->is_vxworks)
8513 {
8514 if (hmips->global_got_area > GGA_RELOC_ONLY)
8515 hmips->global_got_area = GGA_RELOC_ONLY;
8516 hmips->got_only_for_calls = FALSE;
8517 }
aff469fa 8518
9a59ad6b
DJ
8519 mips_elf_allocate_dynamic_relocations
8520 (dynobj, info, hmips->possibly_dynamic_relocs);
8521 if (hmips->readonly_reloc)
8522 /* We tell the dynamic linker that there are relocations
8523 against the text segment. */
8524 info->flags |= DF_TEXTREL;
8525 }
8526 }
8527
8528 return TRUE;
8529}
8530
b49e97c9
TS
8531/* Adjust a symbol defined by a dynamic object and referenced by a
8532 regular object. The current definition is in some section of the
8533 dynamic object, but we're not including those sections. We have to
8534 change the definition to something the rest of the link can
8535 understand. */
8536
b34976b6 8537bfd_boolean
9719ad41
RS
8538_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8539 struct elf_link_hash_entry *h)
b49e97c9
TS
8540{
8541 bfd *dynobj;
8542 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8543 struct mips_elf_link_hash_table *htab;
b49e97c9 8544
5108fc1b 8545 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8546 BFD_ASSERT (htab != NULL);
8547
b49e97c9 8548 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8549 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
8550
8551 /* Make sure we know what is going on here. */
8552 BFD_ASSERT (dynobj != NULL
f5385ebf 8553 && (h->needs_plt
f6e332e6 8554 || h->u.weakdef != NULL
f5385ebf
AM
8555 || (h->def_dynamic
8556 && h->ref_regular
8557 && !h->def_regular)));
b49e97c9 8558
b49e97c9 8559 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 8560
861fb55a
DJ
8561 /* If there are call relocations against an externally-defined symbol,
8562 see whether we can create a MIPS lazy-binding stub for it. We can
8563 only do this if all references to the function are through call
8564 relocations, and in that case, the traditional lazy-binding stubs
8565 are much more efficient than PLT entries.
8566
8567 Traditional stubs are only available on SVR4 psABI-based systems;
8568 VxWorks always uses PLTs instead. */
8569 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
8570 {
8571 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 8572 return TRUE;
b49e97c9
TS
8573
8574 /* If this symbol is not defined in a regular file, then set
8575 the symbol to the stub location. This is required to make
8576 function pointers compare as equal between the normal
8577 executable and the shared library. */
f5385ebf 8578 if (!h->def_regular)
b49e97c9 8579 {
33bb52fb
RS
8580 hmips->needs_lazy_stub = TRUE;
8581 htab->lazy_stub_count++;
b34976b6 8582 return TRUE;
b49e97c9
TS
8583 }
8584 }
861fb55a
DJ
8585 /* As above, VxWorks requires PLT entries for externally-defined
8586 functions that are only accessed through call relocations.
b49e97c9 8587
861fb55a
DJ
8588 Both VxWorks and non-VxWorks targets also need PLT entries if there
8589 are static-only relocations against an externally-defined function.
8590 This can technically occur for shared libraries if there are
8591 branches to the symbol, although it is unlikely that this will be
8592 used in practice due to the short ranges involved. It can occur
8593 for any relative or absolute relocation in executables; in that
8594 case, the PLT entry becomes the function's canonical address. */
8595 else if (((h->needs_plt && !hmips->no_fn_stub)
8596 || (h->type == STT_FUNC && hmips->has_static_relocs))
8597 && htab->use_plts_and_copy_relocs
8598 && !SYMBOL_CALLS_LOCAL (info, h)
8599 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8600 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 8601 {
861fb55a
DJ
8602 /* If this is the first symbol to need a PLT entry, allocate room
8603 for the header. */
8604 if (htab->splt->size == 0)
8605 {
8606 BFD_ASSERT (htab->sgotplt->size == 0);
0a44bf69 8607
861fb55a
DJ
8608 /* If we're using the PLT additions to the psABI, each PLT
8609 entry is 16 bytes and the PLT0 entry is 32 bytes.
8610 Encourage better cache usage by aligning. We do this
8611 lazily to avoid pessimizing traditional objects. */
8612 if (!htab->is_vxworks
8613 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8614 return FALSE;
0a44bf69 8615
861fb55a
DJ
8616 /* Make sure that .got.plt is word-aligned. We do this lazily
8617 for the same reason as above. */
8618 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8619 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8620 return FALSE;
0a44bf69 8621
861fb55a 8622 htab->splt->size += htab->plt_header_size;
0a44bf69 8623
861fb55a
DJ
8624 /* On non-VxWorks targets, the first two entries in .got.plt
8625 are reserved. */
8626 if (!htab->is_vxworks)
a44acb1e
MR
8627 htab->sgotplt->size
8628 += get_elf_backend_data (dynobj)->got_header_size;
0a44bf69 8629
861fb55a
DJ
8630 /* On VxWorks, also allocate room for the header's
8631 .rela.plt.unloaded entries. */
8632 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8633 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8634 }
8635
8636 /* Assign the next .plt entry to this symbol. */
8637 h->plt.offset = htab->splt->size;
8638 htab->splt->size += htab->plt_entry_size;
8639
8640 /* If the output file has no definition of the symbol, set the
861fb55a 8641 symbol's value to the address of the stub. */
131eb6b7 8642 if (!info->shared && !h->def_regular)
0a44bf69
RS
8643 {
8644 h->root.u.def.section = htab->splt;
8645 h->root.u.def.value = h->plt.offset;
861fb55a
DJ
8646 /* For VxWorks, point at the PLT load stub rather than the
8647 lazy resolution stub; this stub will become the canonical
8648 function address. */
8649 if (htab->is_vxworks)
8650 h->root.u.def.value += 8;
0a44bf69
RS
8651 }
8652
861fb55a
DJ
8653 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8654 relocation. */
8655 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8656 htab->srelplt->size += (htab->is_vxworks
8657 ? MIPS_ELF_RELA_SIZE (dynobj)
8658 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
8659
8660 /* Make room for the .rela.plt.unloaded relocations. */
861fb55a 8661 if (htab->is_vxworks && !info->shared)
0a44bf69
RS
8662 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8663
861fb55a
DJ
8664 /* All relocations against this symbol that could have been made
8665 dynamic will now refer to the PLT entry instead. */
8666 hmips->possibly_dynamic_relocs = 0;
0a44bf69 8667
0a44bf69
RS
8668 return TRUE;
8669 }
8670
8671 /* If this is a weak symbol, and there is a real definition, the
8672 processor independent code will have arranged for us to see the
8673 real definition first, and we can just use the same value. */
8674 if (h->u.weakdef != NULL)
8675 {
8676 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8677 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8678 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8679 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8680 return TRUE;
8681 }
8682
861fb55a
DJ
8683 /* Otherwise, there is nothing further to do for symbols defined
8684 in regular objects. */
8685 if (h->def_regular)
0a44bf69
RS
8686 return TRUE;
8687
861fb55a
DJ
8688 /* There's also nothing more to do if we'll convert all relocations
8689 against this symbol into dynamic relocations. */
8690 if (!hmips->has_static_relocs)
8691 return TRUE;
8692
8693 /* We're now relying on copy relocations. Complain if we have
8694 some that we can't convert. */
8695 if (!htab->use_plts_and_copy_relocs || info->shared)
8696 {
8697 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8698 "dynamic symbol %s"),
8699 h->root.root.string);
8700 bfd_set_error (bfd_error_bad_value);
8701 return FALSE;
8702 }
8703
0a44bf69
RS
8704 /* We must allocate the symbol in our .dynbss section, which will
8705 become part of the .bss section of the executable. There will be
8706 an entry for this symbol in the .dynsym section. The dynamic
8707 object will contain position independent code, so all references
8708 from the dynamic object to this symbol will go through the global
8709 offset table. The dynamic linker will use the .dynsym entry to
8710 determine the address it must put in the global offset table, so
8711 both the dynamic object and the regular object will refer to the
8712 same memory location for the variable. */
8713
8714 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8715 {
861fb55a
DJ
8716 if (htab->is_vxworks)
8717 htab->srelbss->size += sizeof (Elf32_External_Rela);
8718 else
8719 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
8720 h->needs_copy = 1;
8721 }
8722
861fb55a
DJ
8723 /* All relocations against this symbol that could have been made
8724 dynamic will now refer to the local copy instead. */
8725 hmips->possibly_dynamic_relocs = 0;
8726
027297b7 8727 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
0a44bf69 8728}
b49e97c9
TS
8729\f
8730/* This function is called after all the input files have been read,
8731 and the input sections have been assigned to output sections. We
8732 check for any mips16 stub sections that we can discard. */
8733
b34976b6 8734bfd_boolean
9719ad41
RS
8735_bfd_mips_elf_always_size_sections (bfd *output_bfd,
8736 struct bfd_link_info *info)
b49e97c9
TS
8737{
8738 asection *ri;
0a44bf69 8739 struct mips_elf_link_hash_table *htab;
861fb55a 8740 struct mips_htab_traverse_info hti;
0a44bf69
RS
8741
8742 htab = mips_elf_hash_table (info);
4dfe6ac6 8743 BFD_ASSERT (htab != NULL);
f4416af6 8744
b49e97c9
TS
8745 /* The .reginfo section has a fixed size. */
8746 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8747 if (ri != NULL)
9719ad41 8748 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
b49e97c9 8749
861fb55a
DJ
8750 hti.info = info;
8751 hti.output_bfd = output_bfd;
8752 hti.error = FALSE;
8753 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8754 mips_elf_check_symbols, &hti);
8755 if (hti.error)
8756 return FALSE;
f4416af6 8757
33bb52fb
RS
8758 return TRUE;
8759}
8760
8761/* If the link uses a GOT, lay it out and work out its size. */
8762
8763static bfd_boolean
8764mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8765{
8766 bfd *dynobj;
8767 asection *s;
8768 struct mips_got_info *g;
33bb52fb
RS
8769 bfd_size_type loadable_size = 0;
8770 bfd_size_type page_gotno;
d7206569 8771 bfd *ibfd;
ab361d49 8772 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
8773 struct mips_elf_link_hash_table *htab;
8774
8775 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8776 BFD_ASSERT (htab != NULL);
8777
a8028dd0 8778 s = htab->sgot;
f4416af6 8779 if (s == NULL)
b34976b6 8780 return TRUE;
b49e97c9 8781
33bb52fb 8782 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
8783 g = htab->got_info;
8784
861fb55a
DJ
8785 /* Allocate room for the reserved entries. VxWorks always reserves
8786 3 entries; other objects only reserve 2 entries. */
8787 BFD_ASSERT (g->assigned_gotno == 0);
8788 if (htab->is_vxworks)
8789 htab->reserved_gotno = 3;
8790 else
8791 htab->reserved_gotno = 2;
8792 g->local_gotno += htab->reserved_gotno;
8793 g->assigned_gotno = htab->reserved_gotno;
8794
6c42ddb9
RS
8795 /* Decide which symbols need to go in the global part of the GOT and
8796 count the number of reloc-only GOT symbols. */
020d7251 8797 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 8798
13db6b44
RS
8799 if (!mips_elf_resolve_final_got_entries (info, g))
8800 return FALSE;
8801
33bb52fb
RS
8802 /* Calculate the total loadable size of the output. That
8803 will give us the maximum number of GOT_PAGE entries
8804 required. */
d7206569 8805 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
33bb52fb
RS
8806 {
8807 asection *subsection;
5108fc1b 8808
d7206569 8809 for (subsection = ibfd->sections;
33bb52fb
RS
8810 subsection;
8811 subsection = subsection->next)
8812 {
8813 if ((subsection->flags & SEC_ALLOC) == 0)
8814 continue;
8815 loadable_size += ((subsection->size + 0xf)
8816 &~ (bfd_size_type) 0xf);
8817 }
8818 }
f4416af6 8819
0a44bf69 8820 if (htab->is_vxworks)
738e5348 8821 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
8822 relocations against local symbols evaluate to "G", and the EABI does
8823 not include R_MIPS_GOT_PAGE. */
c224138d 8824 page_gotno = 0;
0a44bf69
RS
8825 else
8826 /* Assume there are two loadable segments consisting of contiguous
8827 sections. Is 5 enough? */
c224138d
RS
8828 page_gotno = (loadable_size >> 16) + 5;
8829
13db6b44 8830 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
8831 conservative. */
8832 if (page_gotno > g->page_gotno)
8833 page_gotno = g->page_gotno;
f4416af6 8834
c224138d 8835 g->local_gotno += page_gotno;
ab361d49 8836
ab361d49
RS
8837 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8838 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
8839 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8840
0a44bf69
RS
8841 /* VxWorks does not support multiple GOTs. It initializes $gp to
8842 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8843 dynamic loader. */
57093f5e 8844 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 8845 {
a8028dd0 8846 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
8847 return FALSE;
8848 }
8849 else
8850 {
d7206569
RS
8851 /* Record that all bfds use G. This also has the effect of freeing
8852 the per-bfd GOTs, which we no longer need. */
8853 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8854 if (mips_elf_bfd_got (ibfd, FALSE))
8855 mips_elf_replace_bfd_got (ibfd, g);
8856 mips_elf_replace_bfd_got (output_bfd, g);
8857
33bb52fb 8858 /* Set up TLS entries. */
0f20cc35 8859 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
8860 tga.info = info;
8861 tga.g = g;
8862 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8863 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8864 if (!tga.g)
8865 return FALSE;
1fd20d70
RS
8866 BFD_ASSERT (g->tls_assigned_gotno
8867 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 8868
57093f5e
RS
8869 /* Each VxWorks GOT entry needs an explicit relocation. */
8870 if (htab->is_vxworks && info->shared)
8871 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8872
33bb52fb 8873 /* Allocate room for the TLS relocations. */
ab361d49
RS
8874 if (g->relocs)
8875 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 8876 }
b49e97c9 8877
b34976b6 8878 return TRUE;
b49e97c9
TS
8879}
8880
33bb52fb
RS
8881/* Estimate the size of the .MIPS.stubs section. */
8882
8883static void
8884mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8885{
8886 struct mips_elf_link_hash_table *htab;
8887 bfd_size_type dynsymcount;
8888
8889 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8890 BFD_ASSERT (htab != NULL);
8891
33bb52fb
RS
8892 if (htab->lazy_stub_count == 0)
8893 return;
8894
8895 /* IRIX rld assumes that a function stub isn't at the end of the .text
8896 section, so add a dummy entry to the end. */
8897 htab->lazy_stub_count++;
8898
8899 /* Get a worst-case estimate of the number of dynamic symbols needed.
8900 At this point, dynsymcount does not account for section symbols
8901 and count_section_dynsyms may overestimate the number that will
8902 be needed. */
8903 dynsymcount = (elf_hash_table (info)->dynsymcount
8904 + count_section_dynsyms (output_bfd, info));
8905
8906 /* Determine the size of one stub entry. */
8907 htab->function_stub_size = (dynsymcount > 0x10000
8908 ? MIPS_FUNCTION_STUB_BIG_SIZE
8909 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8910
8911 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8912}
8913
8914/* A mips_elf_link_hash_traverse callback for which DATA points to the
8915 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8916 allocate an entry in the stubs section. */
8917
8918static bfd_boolean
8919mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8920{
8921 struct mips_elf_link_hash_table *htab;
8922
8923 htab = (struct mips_elf_link_hash_table *) data;
8924 if (h->needs_lazy_stub)
8925 {
8926 h->root.root.u.def.section = htab->sstubs;
8927 h->root.root.u.def.value = htab->sstubs->size;
8928 h->root.plt.offset = htab->sstubs->size;
8929 htab->sstubs->size += htab->function_stub_size;
8930 }
8931 return TRUE;
8932}
8933
8934/* Allocate offsets in the stubs section to each symbol that needs one.
8935 Set the final size of the .MIPS.stub section. */
8936
8937static void
8938mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8939{
8940 struct mips_elf_link_hash_table *htab;
8941
8942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8943 BFD_ASSERT (htab != NULL);
8944
33bb52fb
RS
8945 if (htab->lazy_stub_count == 0)
8946 return;
8947
8948 htab->sstubs->size = 0;
4dfe6ac6 8949 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
33bb52fb
RS
8950 htab->sstubs->size += htab->function_stub_size;
8951 BFD_ASSERT (htab->sstubs->size
8952 == htab->lazy_stub_count * htab->function_stub_size);
8953}
8954
b49e97c9
TS
8955/* Set the sizes of the dynamic sections. */
8956
b34976b6 8957bfd_boolean
9719ad41
RS
8958_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8959 struct bfd_link_info *info)
b49e97c9
TS
8960{
8961 bfd *dynobj;
861fb55a 8962 asection *s, *sreldyn;
b34976b6 8963 bfd_boolean reltext;
0a44bf69 8964 struct mips_elf_link_hash_table *htab;
b49e97c9 8965
0a44bf69 8966 htab = mips_elf_hash_table (info);
4dfe6ac6 8967 BFD_ASSERT (htab != NULL);
b49e97c9
TS
8968 dynobj = elf_hash_table (info)->dynobj;
8969 BFD_ASSERT (dynobj != NULL);
8970
8971 if (elf_hash_table (info)->dynamic_sections_created)
8972 {
8973 /* Set the contents of the .interp section to the interpreter. */
893c4fe2 8974 if (info->executable)
b49e97c9 8975 {
3d4d4302 8976 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 8977 BFD_ASSERT (s != NULL);
eea6121a 8978 s->size
b49e97c9
TS
8979 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8980 s->contents
8981 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8982 }
861fb55a
DJ
8983
8984 /* Create a symbol for the PLT, if we know that we are using it. */
8985 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8986 {
8987 struct elf_link_hash_entry *h;
8988
8989 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8990
8991 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8992 "_PROCEDURE_LINKAGE_TABLE_");
8993 htab->root.hplt = h;
8994 if (h == NULL)
8995 return FALSE;
8996 h->type = STT_FUNC;
8997 }
8998 }
4e41d0d7 8999
9a59ad6b 9000 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9001 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9002
33bb52fb
RS
9003 mips_elf_estimate_stub_size (output_bfd, info);
9004
9005 if (!mips_elf_lay_out_got (output_bfd, info))
9006 return FALSE;
9007
9008 mips_elf_lay_out_lazy_stubs (info);
9009
b49e97c9
TS
9010 /* The check_relocs and adjust_dynamic_symbol entry points have
9011 determined the sizes of the various dynamic sections. Allocate
9012 memory for them. */
b34976b6 9013 reltext = FALSE;
b49e97c9
TS
9014 for (s = dynobj->sections; s != NULL; s = s->next)
9015 {
9016 const char *name;
b49e97c9
TS
9017
9018 /* It's OK to base decisions on the section name, because none
9019 of the dynobj section names depend upon the input files. */
9020 name = bfd_get_section_name (dynobj, s);
9021
9022 if ((s->flags & SEC_LINKER_CREATED) == 0)
9023 continue;
9024
0112cd26 9025 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9026 {
c456f082 9027 if (s->size != 0)
b49e97c9
TS
9028 {
9029 const char *outname;
9030 asection *target;
9031
9032 /* If this relocation section applies to a read only
9033 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9034 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9035 assert a DT_TEXTREL entry rather than testing whether
9036 there exists a relocation to a read only section or
9037 not. */
9038 outname = bfd_get_section_name (output_bfd,
9039 s->output_section);
9040 target = bfd_get_section_by_name (output_bfd, outname + 4);
9041 if ((target != NULL
9042 && (target->flags & SEC_READONLY) != 0
9043 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9044 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9045 reltext = TRUE;
b49e97c9
TS
9046
9047 /* We use the reloc_count field as a counter if we need
9048 to copy relocs into the output file. */
0a44bf69 9049 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9050 s->reloc_count = 0;
f4416af6
AO
9051
9052 /* If combreloc is enabled, elf_link_sort_relocs() will
9053 sort relocations, but in a different way than we do,
9054 and before we're done creating relocations. Also, it
9055 will move them around between input sections'
9056 relocation's contents, so our sorting would be
9057 broken, so don't let it run. */
9058 info->combreloc = 0;
b49e97c9
TS
9059 }
9060 }
b49e97c9
TS
9061 else if (! info->shared
9062 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9063 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9064 {
5108fc1b 9065 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9066 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9067 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9068 }
9069 else if (SGI_COMPAT (output_bfd)
0112cd26 9070 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9071 s->size += mips_elf_hash_table (info)->compact_rel_size;
861fb55a
DJ
9072 else if (s == htab->splt)
9073 {
9074 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9075 room for an extra nop to fill the delay slot. This is
9076 for CPUs without load interlocking. */
9077 if (! LOAD_INTERLOCKS_P (output_bfd)
9078 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9079 s->size += 4;
9080 }
0112cd26 9081 else if (! CONST_STRNEQ (name, ".init")
33bb52fb 9082 && s != htab->sgot
0a44bf69 9083 && s != htab->sgotplt
861fb55a
DJ
9084 && s != htab->sstubs
9085 && s != htab->sdynbss)
b49e97c9
TS
9086 {
9087 /* It's not one of our sections, so don't allocate space. */
9088 continue;
9089 }
9090
c456f082 9091 if (s->size == 0)
b49e97c9 9092 {
8423293d 9093 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9094 continue;
9095 }
9096
c456f082
AM
9097 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9098 continue;
9099
b49e97c9 9100 /* Allocate memory for the section contents. */
eea6121a 9101 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9102 if (s->contents == NULL)
b49e97c9
TS
9103 {
9104 bfd_set_error (bfd_error_no_memory);
b34976b6 9105 return FALSE;
b49e97c9
TS
9106 }
9107 }
9108
9109 if (elf_hash_table (info)->dynamic_sections_created)
9110 {
9111 /* Add some entries to the .dynamic section. We fill in the
9112 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9113 must add the entries now so that we get the correct size for
5750dcec 9114 the .dynamic section. */
af5978fb
RS
9115
9116 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9117 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9118 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9119 may only look at the first one they see. */
af5978fb
RS
9120 if (!info->shared
9121 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9122 return FALSE;
b49e97c9 9123
5750dcec
DJ
9124 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9125 used by the debugger. */
9126 if (info->executable
9127 && !SGI_COMPAT (output_bfd)
9128 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9129 return FALSE;
9130
0a44bf69 9131 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9132 info->flags |= DF_TEXTREL;
9133
9134 if ((info->flags & DF_TEXTREL) != 0)
9135 {
9136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9137 return FALSE;
943284cc
DJ
9138
9139 /* Clear the DF_TEXTREL flag. It will be set again if we
9140 write out an actual text relocation; we may not, because
9141 at this point we do not know whether e.g. any .eh_frame
9142 absolute relocations have been converted to PC-relative. */
9143 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9144 }
9145
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9147 return FALSE;
b49e97c9 9148
861fb55a 9149 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9150 if (htab->is_vxworks)
b49e97c9 9151 {
0a44bf69
RS
9152 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9153 use any of the DT_MIPS_* tags. */
861fb55a 9154 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9155 {
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9157 return FALSE;
b49e97c9 9158
0a44bf69
RS
9159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9160 return FALSE;
b49e97c9 9161
0a44bf69
RS
9162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9163 return FALSE;
9164 }
b49e97c9 9165 }
0a44bf69
RS
9166 else
9167 {
861fb55a 9168 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9169 {
9170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9171 return FALSE;
b49e97c9 9172
0a44bf69
RS
9173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9174 return FALSE;
b49e97c9 9175
0a44bf69
RS
9176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9177 return FALSE;
9178 }
b49e97c9 9179
0a44bf69
RS
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9181 return FALSE;
b49e97c9 9182
0a44bf69
RS
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9184 return FALSE;
b49e97c9 9185
0a44bf69
RS
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9187 return FALSE;
b49e97c9 9188
0a44bf69
RS
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9190 return FALSE;
b49e97c9 9191
0a44bf69
RS
9192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9193 return FALSE;
b49e97c9 9194
0a44bf69
RS
9195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9196 return FALSE;
b49e97c9 9197
0a44bf69
RS
9198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9199 return FALSE;
9200
9201 if (IRIX_COMPAT (dynobj) == ict_irix5
9202 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9203 return FALSE;
9204
9205 if (IRIX_COMPAT (dynobj) == ict_irix6
9206 && (bfd_get_section_by_name
af0edeb8 9207 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9208 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9209 return FALSE;
9210 }
861fb55a
DJ
9211 if (htab->splt->size > 0)
9212 {
9213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9214 return FALSE;
9215
9216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9217 return FALSE;
9218
9219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9220 return FALSE;
9221
9222 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9223 return FALSE;
9224 }
7a2b07ff
NS
9225 if (htab->is_vxworks
9226 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9227 return FALSE;
b49e97c9
TS
9228 }
9229
b34976b6 9230 return TRUE;
b49e97c9
TS
9231}
9232\f
81d43bff
RS
9233/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9234 Adjust its R_ADDEND field so that it is correct for the output file.
9235 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9236 and sections respectively; both use symbol indexes. */
9237
9238static void
9239mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9240 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9241 asection **local_sections, Elf_Internal_Rela *rel)
9242{
9243 unsigned int r_type, r_symndx;
9244 Elf_Internal_Sym *sym;
9245 asection *sec;
9246
020d7251 9247 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9248 {
9249 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9250 if (gprel16_reloc_p (r_type)
81d43bff 9251 || r_type == R_MIPS_GPREL32
df58fc94 9252 || literal_reloc_p (r_type))
81d43bff
RS
9253 {
9254 rel->r_addend += _bfd_get_gp_value (input_bfd);
9255 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9256 }
9257
9258 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9259 sym = local_syms + r_symndx;
9260
9261 /* Adjust REL's addend to account for section merging. */
9262 if (!info->relocatable)
9263 {
9264 sec = local_sections[r_symndx];
9265 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9266 }
9267
9268 /* This would normally be done by the rela_normal code in elflink.c. */
9269 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9270 rel->r_addend += local_sections[r_symndx]->output_offset;
9271 }
9272}
9273
545fd46b
MR
9274/* Handle relocations against symbols from removed linkonce sections,
9275 or sections discarded by a linker script. We use this wrapper around
9276 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9277 on 64-bit ELF targets. In this case for any relocation handled, which
9278 always be the first in a triplet, the remaining two have to be processed
9279 together with the first, even if they are R_MIPS_NONE. It is the symbol
9280 index referred by the first reloc that applies to all the three and the
9281 remaining two never refer to an object symbol. And it is the final
9282 relocation (the last non-null one) that determines the output field of
9283 the whole relocation so retrieve the corresponding howto structure for
9284 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9285
9286 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9287 and therefore requires to be pasted in a loop. It also defines a block
9288 and does not protect any of its arguments, hence the extra brackets. */
9289
9290static void
9291mips_reloc_against_discarded_section (bfd *output_bfd,
9292 struct bfd_link_info *info,
9293 bfd *input_bfd, asection *input_section,
9294 Elf_Internal_Rela **rel,
9295 const Elf_Internal_Rela **relend,
9296 bfd_boolean rel_reloc,
9297 reloc_howto_type *howto,
9298 bfd_byte *contents)
9299{
9300 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9301 int count = bed->s->int_rels_per_ext_rel;
9302 unsigned int r_type;
9303 int i;
9304
9305 for (i = count - 1; i > 0; i--)
9306 {
9307 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9308 if (r_type != R_MIPS_NONE)
9309 {
9310 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9311 break;
9312 }
9313 }
9314 do
9315 {
9316 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9317 (*rel), count, (*relend),
9318 howto, i, contents);
9319 }
9320 while (0);
9321}
9322
b49e97c9
TS
9323/* Relocate a MIPS ELF section. */
9324
b34976b6 9325bfd_boolean
9719ad41
RS
9326_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9327 bfd *input_bfd, asection *input_section,
9328 bfd_byte *contents, Elf_Internal_Rela *relocs,
9329 Elf_Internal_Sym *local_syms,
9330 asection **local_sections)
b49e97c9
TS
9331{
9332 Elf_Internal_Rela *rel;
9333 const Elf_Internal_Rela *relend;
9334 bfd_vma addend = 0;
b34976b6 9335 bfd_boolean use_saved_addend_p = FALSE;
9c5bfbb7 9336 const struct elf_backend_data *bed;
b49e97c9
TS
9337
9338 bed = get_elf_backend_data (output_bfd);
9339 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9340 for (rel = relocs; rel < relend; ++rel)
9341 {
9342 const char *name;
c9adbffe 9343 bfd_vma value = 0;
b49e97c9 9344 reloc_howto_type *howto;
38a7df63 9345 bfd_boolean cross_mode_jump_p;
b34976b6 9346 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 9347 REL relocation. */
b34976b6 9348 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 9349 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 9350 const char *msg;
ab96bf03
AM
9351 unsigned long r_symndx;
9352 asection *sec;
749b8d9d
L
9353 Elf_Internal_Shdr *symtab_hdr;
9354 struct elf_link_hash_entry *h;
d4730f92 9355 bfd_boolean rel_reloc;
b49e97c9 9356
d4730f92
BS
9357 rel_reloc = (NEWABI_P (input_bfd)
9358 && mips_elf_rel_relocation_p (input_bfd, input_section,
9359 relocs, rel));
b49e97c9 9360 /* Find the relocation howto for this relocation. */
d4730f92 9361 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
9362
9363 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 9364 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 9365 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
9366 {
9367 sec = local_sections[r_symndx];
9368 h = NULL;
9369 }
ab96bf03
AM
9370 else
9371 {
ab96bf03 9372 unsigned long extsymoff;
ab96bf03 9373
ab96bf03
AM
9374 extsymoff = 0;
9375 if (!elf_bad_symtab (input_bfd))
9376 extsymoff = symtab_hdr->sh_info;
9377 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9378 while (h->root.type == bfd_link_hash_indirect
9379 || h->root.type == bfd_link_hash_warning)
9380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9381
9382 sec = NULL;
9383 if (h->root.type == bfd_link_hash_defined
9384 || h->root.type == bfd_link_hash_defweak)
9385 sec = h->root.u.def.section;
9386 }
9387
dbaa2011 9388 if (sec != NULL && discarded_section (sec))
545fd46b
MR
9389 {
9390 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9391 input_section, &rel, &relend,
9392 rel_reloc, howto, contents);
9393 continue;
9394 }
ab96bf03 9395
4a14403c 9396 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
9397 {
9398 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9399 64-bit code, but make sure all their addresses are in the
9400 lowermost or uppermost 32-bit section of the 64-bit address
9401 space. Thus, when they use an R_MIPS_64 they mean what is
9402 usually meant by R_MIPS_32, with the exception that the
9403 stored value is sign-extended to 64 bits. */
b34976b6 9404 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
9405
9406 /* On big-endian systems, we need to lie about the position
9407 of the reloc. */
9408 if (bfd_big_endian (input_bfd))
9409 rel->r_offset += 4;
9410 }
b49e97c9
TS
9411
9412 if (!use_saved_addend_p)
9413 {
b49e97c9
TS
9414 /* If these relocations were originally of the REL variety,
9415 we must pull the addend out of the field that will be
9416 relocated. Otherwise, we simply use the contents of the
c224138d
RS
9417 RELA relocation. */
9418 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9419 relocs, rel))
b49e97c9 9420 {
b34976b6 9421 rela_relocation_p = FALSE;
c224138d
RS
9422 addend = mips_elf_read_rel_addend (input_bfd, rel,
9423 howto, contents);
738e5348
RS
9424 if (hi16_reloc_p (r_type)
9425 || (got16_reloc_p (r_type)
b49e97c9 9426 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 9427 local_sections)))
b49e97c9 9428 {
c224138d
RS
9429 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9430 contents, &addend))
749b8d9d 9431 {
749b8d9d
L
9432 if (h)
9433 name = h->root.root.string;
9434 else
9435 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9436 local_syms + r_symndx,
9437 sec);
9438 (*_bfd_error_handler)
9439 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9440 input_bfd, input_section, name, howto->name,
9441 rel->r_offset);
749b8d9d 9442 }
b49e97c9 9443 }
30ac9238
RS
9444 else
9445 addend <<= howto->rightshift;
b49e97c9
TS
9446 }
9447 else
9448 addend = rel->r_addend;
81d43bff
RS
9449 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9450 local_syms, local_sections, rel);
b49e97c9
TS
9451 }
9452
1049f94e 9453 if (info->relocatable)
b49e97c9 9454 {
4a14403c 9455 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
9456 && bfd_big_endian (input_bfd))
9457 rel->r_offset -= 4;
9458
81d43bff 9459 if (!rela_relocation_p && rel->r_addend)
5a659663 9460 {
81d43bff 9461 addend += rel->r_addend;
738e5348 9462 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
9463 addend = mips_elf_high (addend);
9464 else if (r_type == R_MIPS_HIGHER)
9465 addend = mips_elf_higher (addend);
9466 else if (r_type == R_MIPS_HIGHEST)
9467 addend = mips_elf_highest (addend);
30ac9238
RS
9468 else
9469 addend >>= howto->rightshift;
b49e97c9 9470
30ac9238
RS
9471 /* We use the source mask, rather than the destination
9472 mask because the place to which we are writing will be
9473 source of the addend in the final link. */
b49e97c9
TS
9474 addend &= howto->src_mask;
9475
5a659663 9476 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9477 /* See the comment above about using R_MIPS_64 in the 32-bit
9478 ABI. Here, we need to update the addend. It would be
9479 possible to get away with just using the R_MIPS_32 reloc
9480 but for endianness. */
9481 {
9482 bfd_vma sign_bits;
9483 bfd_vma low_bits;
9484 bfd_vma high_bits;
9485
9486 if (addend & ((bfd_vma) 1 << 31))
9487#ifdef BFD64
9488 sign_bits = ((bfd_vma) 1 << 32) - 1;
9489#else
9490 sign_bits = -1;
9491#endif
9492 else
9493 sign_bits = 0;
9494
9495 /* If we don't know that we have a 64-bit type,
9496 do two separate stores. */
9497 if (bfd_big_endian (input_bfd))
9498 {
9499 /* Store the sign-bits (which are most significant)
9500 first. */
9501 low_bits = sign_bits;
9502 high_bits = addend;
9503 }
9504 else
9505 {
9506 low_bits = addend;
9507 high_bits = sign_bits;
9508 }
9509 bfd_put_32 (input_bfd, low_bits,
9510 contents + rel->r_offset);
9511 bfd_put_32 (input_bfd, high_bits,
9512 contents + rel->r_offset + 4);
9513 continue;
9514 }
9515
9516 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9517 input_bfd, input_section,
b34976b6
AM
9518 contents, FALSE))
9519 return FALSE;
b49e97c9
TS
9520 }
9521
9522 /* Go on to the next relocation. */
9523 continue;
9524 }
9525
9526 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9527 relocations for the same offset. In that case we are
9528 supposed to treat the output of each relocation as the addend
9529 for the next. */
9530 if (rel + 1 < relend
9531 && rel->r_offset == rel[1].r_offset
9532 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 9533 use_saved_addend_p = TRUE;
b49e97c9 9534 else
b34976b6 9535 use_saved_addend_p = FALSE;
b49e97c9
TS
9536
9537 /* Figure out what value we are supposed to relocate. */
9538 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9539 input_section, info, rel,
9540 addend, howto, local_syms,
9541 local_sections, &value,
38a7df63 9542 &name, &cross_mode_jump_p,
bce03d3d 9543 use_saved_addend_p))
b49e97c9
TS
9544 {
9545 case bfd_reloc_continue:
9546 /* There's nothing to do. */
9547 continue;
9548
9549 case bfd_reloc_undefined:
9550 /* mips_elf_calculate_relocation already called the
9551 undefined_symbol callback. There's no real point in
9552 trying to perform the relocation at this point, so we
9553 just skip ahead to the next relocation. */
9554 continue;
9555
9556 case bfd_reloc_notsupported:
9557 msg = _("internal error: unsupported relocation error");
9558 info->callbacks->warning
9559 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 9560 return FALSE;
b49e97c9
TS
9561
9562 case bfd_reloc_overflow:
9563 if (use_saved_addend_p)
9564 /* Ignore overflow until we reach the last relocation for
9565 a given location. */
9566 ;
9567 else
9568 {
0e53d9da
AN
9569 struct mips_elf_link_hash_table *htab;
9570
9571 htab = mips_elf_hash_table (info);
4dfe6ac6 9572 BFD_ASSERT (htab != NULL);
b49e97c9 9573 BFD_ASSERT (name != NULL);
0e53d9da 9574 if (!htab->small_data_overflow_reported
9684f078 9575 && (gprel16_reloc_p (howto->type)
df58fc94 9576 || literal_reloc_p (howto->type)))
0e53d9da 9577 {
91d6fa6a
NC
9578 msg = _("small-data section exceeds 64KB;"
9579 " lower small-data size limit (see option -G)");
0e53d9da
AN
9580
9581 htab->small_data_overflow_reported = TRUE;
9582 (*info->callbacks->einfo) ("%P: %s\n", msg);
9583 }
b49e97c9 9584 if (! ((*info->callbacks->reloc_overflow)
dfeffb9f 9585 (info, NULL, name, howto->name, (bfd_vma) 0,
b49e97c9 9586 input_bfd, input_section, rel->r_offset)))
b34976b6 9587 return FALSE;
b49e97c9
TS
9588 }
9589 break;
9590
9591 case bfd_reloc_ok:
9592 break;
9593
df58fc94
RS
9594 case bfd_reloc_outofrange:
9595 if (jal_reloc_p (howto->type))
9596 {
9597 msg = _("JALX to a non-word-aligned address");
9598 info->callbacks->warning
9599 (info, msg, name, input_bfd, input_section, rel->r_offset);
9600 return FALSE;
9601 }
9602 /* Fall through. */
9603
b49e97c9
TS
9604 default:
9605 abort ();
9606 break;
9607 }
9608
9609 /* If we've got another relocation for the address, keep going
9610 until we reach the last one. */
9611 if (use_saved_addend_p)
9612 {
9613 addend = value;
9614 continue;
9615 }
9616
4a14403c 9617 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
9618 /* See the comment above about using R_MIPS_64 in the 32-bit
9619 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9620 that calculated the right value. Now, however, we
9621 sign-extend the 32-bit result to 64-bits, and store it as a
9622 64-bit value. We are especially generous here in that we
9623 go to extreme lengths to support this usage on systems with
9624 only a 32-bit VMA. */
9625 {
9626 bfd_vma sign_bits;
9627 bfd_vma low_bits;
9628 bfd_vma high_bits;
9629
9630 if (value & ((bfd_vma) 1 << 31))
9631#ifdef BFD64
9632 sign_bits = ((bfd_vma) 1 << 32) - 1;
9633#else
9634 sign_bits = -1;
9635#endif
9636 else
9637 sign_bits = 0;
9638
9639 /* If we don't know that we have a 64-bit type,
9640 do two separate stores. */
9641 if (bfd_big_endian (input_bfd))
9642 {
9643 /* Undo what we did above. */
9644 rel->r_offset -= 4;
9645 /* Store the sign-bits (which are most significant)
9646 first. */
9647 low_bits = sign_bits;
9648 high_bits = value;
9649 }
9650 else
9651 {
9652 low_bits = value;
9653 high_bits = sign_bits;
9654 }
9655 bfd_put_32 (input_bfd, low_bits,
9656 contents + rel->r_offset);
9657 bfd_put_32 (input_bfd, high_bits,
9658 contents + rel->r_offset + 4);
9659 continue;
9660 }
9661
9662 /* Actually perform the relocation. */
9663 if (! mips_elf_perform_relocation (info, howto, rel, value,
9664 input_bfd, input_section,
38a7df63 9665 contents, cross_mode_jump_p))
b34976b6 9666 return FALSE;
b49e97c9
TS
9667 }
9668
b34976b6 9669 return TRUE;
b49e97c9
TS
9670}
9671\f
861fb55a
DJ
9672/* A function that iterates over each entry in la25_stubs and fills
9673 in the code for each one. DATA points to a mips_htab_traverse_info. */
9674
9675static int
9676mips_elf_create_la25_stub (void **slot, void *data)
9677{
9678 struct mips_htab_traverse_info *hti;
9679 struct mips_elf_link_hash_table *htab;
9680 struct mips_elf_la25_stub *stub;
9681 asection *s;
9682 bfd_byte *loc;
9683 bfd_vma offset, target, target_high, target_low;
9684
9685 stub = (struct mips_elf_la25_stub *) *slot;
9686 hti = (struct mips_htab_traverse_info *) data;
9687 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 9688 BFD_ASSERT (htab != NULL);
861fb55a
DJ
9689
9690 /* Create the section contents, if we haven't already. */
9691 s = stub->stub_section;
9692 loc = s->contents;
9693 if (loc == NULL)
9694 {
9695 loc = bfd_malloc (s->size);
9696 if (loc == NULL)
9697 {
9698 hti->error = TRUE;
9699 return FALSE;
9700 }
9701 s->contents = loc;
9702 }
9703
9704 /* Work out where in the section this stub should go. */
9705 offset = stub->offset;
9706
9707 /* Work out the target address. */
8f0c309a
CLT
9708 target = mips_elf_get_la25_target (stub, &s);
9709 target += s->output_section->vma + s->output_offset;
9710
861fb55a
DJ
9711 target_high = ((target + 0x8000) >> 16) & 0xffff;
9712 target_low = (target & 0xffff);
9713
9714 if (stub->stub_section != htab->strampoline)
9715 {
df58fc94 9716 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
9717 of the section and write the two instructions at the end. */
9718 memset (loc, 0, offset);
9719 loc += offset;
df58fc94
RS
9720 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9721 {
d21911ea
MR
9722 bfd_put_micromips_32 (hti->output_bfd,
9723 LA25_LUI_MICROMIPS (target_high),
9724 loc);
9725 bfd_put_micromips_32 (hti->output_bfd,
9726 LA25_ADDIU_MICROMIPS (target_low),
9727 loc + 4);
df58fc94
RS
9728 }
9729 else
9730 {
9731 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9732 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9733 }
861fb55a
DJ
9734 }
9735 else
9736 {
9737 /* This is trampoline. */
9738 loc += offset;
df58fc94
RS
9739 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9740 {
d21911ea
MR
9741 bfd_put_micromips_32 (hti->output_bfd,
9742 LA25_LUI_MICROMIPS (target_high), loc);
9743 bfd_put_micromips_32 (hti->output_bfd,
9744 LA25_J_MICROMIPS (target), loc + 4);
9745 bfd_put_micromips_32 (hti->output_bfd,
9746 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
9747 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9748 }
9749 else
9750 {
9751 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9752 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9753 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9754 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9755 }
861fb55a
DJ
9756 }
9757 return TRUE;
9758}
9759
b49e97c9
TS
9760/* If NAME is one of the special IRIX6 symbols defined by the linker,
9761 adjust it appropriately now. */
9762
9763static void
9719ad41
RS
9764mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9765 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
9766{
9767 /* The linker script takes care of providing names and values for
9768 these, but we must place them into the right sections. */
9769 static const char* const text_section_symbols[] = {
9770 "_ftext",
9771 "_etext",
9772 "__dso_displacement",
9773 "__elf_header",
9774 "__program_header_table",
9775 NULL
9776 };
9777
9778 static const char* const data_section_symbols[] = {
9779 "_fdata",
9780 "_edata",
9781 "_end",
9782 "_fbss",
9783 NULL
9784 };
9785
9786 const char* const *p;
9787 int i;
9788
9789 for (i = 0; i < 2; ++i)
9790 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9791 *p;
9792 ++p)
9793 if (strcmp (*p, name) == 0)
9794 {
9795 /* All of these symbols are given type STT_SECTION by the
9796 IRIX6 linker. */
9797 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 9798 sym->st_other = STO_PROTECTED;
b49e97c9
TS
9799
9800 /* The IRIX linker puts these symbols in special sections. */
9801 if (i == 0)
9802 sym->st_shndx = SHN_MIPS_TEXT;
9803 else
9804 sym->st_shndx = SHN_MIPS_DATA;
9805
9806 break;
9807 }
9808}
9809
9810/* Finish up dynamic symbol handling. We set the contents of various
9811 dynamic sections here. */
9812
b34976b6 9813bfd_boolean
9719ad41
RS
9814_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9815 struct bfd_link_info *info,
9816 struct elf_link_hash_entry *h,
9817 Elf_Internal_Sym *sym)
b49e97c9
TS
9818{
9819 bfd *dynobj;
b49e97c9 9820 asection *sgot;
f4416af6 9821 struct mips_got_info *g, *gg;
b49e97c9 9822 const char *name;
3d6746ca 9823 int idx;
5108fc1b 9824 struct mips_elf_link_hash_table *htab;
738e5348 9825 struct mips_elf_link_hash_entry *hmips;
b49e97c9 9826
5108fc1b 9827 htab = mips_elf_hash_table (info);
4dfe6ac6 9828 BFD_ASSERT (htab != NULL);
b49e97c9 9829 dynobj = elf_hash_table (info)->dynobj;
738e5348 9830 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9831
861fb55a
DJ
9832 BFD_ASSERT (!htab->is_vxworks);
9833
9834 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9835 {
9836 /* We've decided to create a PLT entry for this symbol. */
9837 bfd_byte *loc;
9838 bfd_vma header_address, plt_index, got_address;
9839 bfd_vma got_address_high, got_address_low, load;
9840 const bfd_vma *plt_entry;
9841
9842 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9843 BFD_ASSERT (h->dynindx != -1);
9844 BFD_ASSERT (htab->splt != NULL);
9845 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9846 BFD_ASSERT (!h->def_regular);
9847
9848 /* Calculate the address of the PLT header. */
9849 header_address = (htab->splt->output_section->vma
9850 + htab->splt->output_offset);
9851
9852 /* Calculate the index of the entry. */
9853 plt_index = ((h->plt.offset - htab->plt_header_size)
9854 / htab->plt_entry_size);
9855
9856 /* Calculate the address of the .got.plt entry. */
9857 got_address = (htab->sgotplt->output_section->vma
9858 + htab->sgotplt->output_offset
9859 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9860 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9861 got_address_low = got_address & 0xffff;
9862
9863 /* Initially point the .got.plt entry at the PLT header. */
9864 loc = (htab->sgotplt->contents
9865 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9866 if (ABI_64_P (output_bfd))
9867 bfd_put_64 (output_bfd, header_address, loc);
9868 else
9869 bfd_put_32 (output_bfd, header_address, loc);
9870
9871 /* Find out where the .plt entry should go. */
9872 loc = htab->splt->contents + h->plt.offset;
9873
9874 /* Pick the load opcode. */
9875 load = MIPS_ELF_LOAD_WORD (output_bfd);
9876
9877 /* Fill in the PLT entry itself. */
9878 plt_entry = mips_exec_plt_entry;
9879 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9880 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
6d30f5b2
NC
9881
9882 if (! LOAD_INTERLOCKS_P (output_bfd))
9883 {
9884 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9885 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9886 }
9887 else
9888 {
9889 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9890 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9891 }
861fb55a
DJ
9892
9893 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9894 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9895 plt_index, h->dynindx,
9896 R_MIPS_JUMP_SLOT, got_address);
9897
9898 /* We distinguish between PLT entries and lazy-binding stubs by
9899 giving the former an st_other value of STO_MIPS_PLT. Set the
9900 flag and leave the value if there are any relocations in the
9901 binary where pointer equality matters. */
9902 sym->st_shndx = SHN_UNDEF;
9903 if (h->pointer_equality_needed)
9904 sym->st_other = STO_MIPS_PLT;
9905 else
9906 sym->st_value = 0;
9907 }
9908 else if (h->plt.offset != MINUS_ONE)
b49e97c9 9909 {
861fb55a 9910 /* We've decided to create a lazy-binding stub. */
5108fc1b 9911 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
b49e97c9
TS
9912
9913 /* This symbol has a stub. Set it up. */
9914
9915 BFD_ASSERT (h->dynindx != -1);
9916
5108fc1b
RS
9917 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9918 || (h->dynindx <= 0xffff));
3d6746ca
DD
9919
9920 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
9921 sign extension at runtime in the stub, resulting in a negative
9922 index value. */
9923 if (h->dynindx & ~0x7fffffff)
b34976b6 9924 return FALSE;
b49e97c9
TS
9925
9926 /* Fill the stub. */
3d6746ca
DD
9927 idx = 0;
9928 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9929 idx += 4;
9930 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9931 idx += 4;
5108fc1b 9932 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
3d6746ca 9933 {
5108fc1b 9934 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
3d6746ca
DD
9935 stub + idx);
9936 idx += 4;
9937 }
9938 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9939 idx += 4;
b49e97c9 9940
3d6746ca
DD
9941 /* If a large stub is not required and sign extension is not a
9942 problem, then use legacy code in the stub. */
5108fc1b
RS
9943 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9944 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9945 else if (h->dynindx & ~0x7fff)
3d6746ca
DD
9946 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9947 else
5108fc1b
RS
9948 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9949 stub + idx);
9950
4e41d0d7
RS
9951 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9952 memcpy (htab->sstubs->contents + h->plt.offset,
9953 stub, htab->function_stub_size);
b49e97c9
TS
9954
9955 /* Mark the symbol as undefined. plt.offset != -1 occurs
9956 only for the referenced symbol. */
9957 sym->st_shndx = SHN_UNDEF;
9958
9959 /* The run-time linker uses the st_value field of the symbol
9960 to reset the global offset table entry for this external
9961 to its stub address when unlinking a shared object. */
4e41d0d7
RS
9962 sym->st_value = (htab->sstubs->output_section->vma
9963 + htab->sstubs->output_offset
c5ae1840 9964 + h->plt.offset);
b49e97c9
TS
9965 }
9966
738e5348
RS
9967 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9968 refer to the stub, since only the stub uses the standard calling
9969 conventions. */
9970 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9971 {
9972 BFD_ASSERT (hmips->need_fn_stub);
9973 sym->st_value = (hmips->fn_stub->output_section->vma
9974 + hmips->fn_stub->output_offset);
9975 sym->st_size = hmips->fn_stub->size;
9976 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9977 }
9978
b49e97c9 9979 BFD_ASSERT (h->dynindx != -1
f5385ebf 9980 || h->forced_local);
b49e97c9 9981
23cc69b6 9982 sgot = htab->sgot;
a8028dd0 9983 g = htab->got_info;
b49e97c9
TS
9984 BFD_ASSERT (g != NULL);
9985
9986 /* Run through the global symbol table, creating GOT entries for all
9987 the symbols that need them. */
020d7251 9988 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
9989 {
9990 bfd_vma offset;
9991 bfd_vma value;
9992
6eaa6adc 9993 value = sym->st_value;
13fbec83 9994 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
9995 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9996 }
9997
e641e783 9998 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
9999 {
10000 struct mips_got_entry e, *p;
0626d451 10001 bfd_vma entry;
f4416af6 10002 bfd_vma offset;
f4416af6
AO
10003
10004 gg = g;
10005
10006 e.abfd = output_bfd;
10007 e.symndx = -1;
738e5348 10008 e.d.h = hmips;
9ab066b4 10009 e.tls_type = GOT_TLS_NONE;
143d77c5 10010
f4416af6
AO
10011 for (g = g->next; g->next != gg; g = g->next)
10012 {
10013 if (g->got_entries
10014 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10015 &e)))
10016 {
10017 offset = p->gotidx;
6c42ddb9 10018 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
0626d451
RS
10019 if (info->shared
10020 || (elf_hash_table (info)->dynamic_sections_created
10021 && p->d.h != NULL
f5385ebf
AM
10022 && p->d.h->root.def_dynamic
10023 && !p->d.h->root.def_regular))
0626d451
RS
10024 {
10025 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10026 the various compatibility problems, it's easier to mock
10027 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10028 mips_elf_create_dynamic_relocation to calculate the
10029 appropriate addend. */
10030 Elf_Internal_Rela rel[3];
10031
10032 memset (rel, 0, sizeof (rel));
10033 if (ABI_64_P (output_bfd))
10034 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10035 else
10036 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10037 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10038
10039 entry = 0;
10040 if (! (mips_elf_create_dynamic_relocation
10041 (output_bfd, info, rel,
10042 e.d.h, NULL, sym->st_value, &entry, sgot)))
10043 return FALSE;
10044 }
10045 else
10046 entry = sym->st_value;
10047 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10048 }
10049 }
10050 }
10051
b49e97c9
TS
10052 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10053 name = h->root.root.string;
9637f6ef 10054 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10055 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10056 sym->st_shndx = SHN_ABS;
10057 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10058 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10059 {
10060 sym->st_shndx = SHN_ABS;
10061 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10062 sym->st_value = 1;
10063 }
4a14403c 10064 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10065 {
10066 sym->st_shndx = SHN_ABS;
10067 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10068 sym->st_value = elf_gp (output_bfd);
10069 }
10070 else if (SGI_COMPAT (output_bfd))
10071 {
10072 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10073 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10074 {
10075 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10076 sym->st_other = STO_PROTECTED;
10077 sym->st_value = 0;
10078 sym->st_shndx = SHN_MIPS_DATA;
10079 }
10080 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10081 {
10082 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10083 sym->st_other = STO_PROTECTED;
10084 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10085 sym->st_shndx = SHN_ABS;
10086 }
10087 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10088 {
10089 if (h->type == STT_FUNC)
10090 sym->st_shndx = SHN_MIPS_TEXT;
10091 else if (h->type == STT_OBJECT)
10092 sym->st_shndx = SHN_MIPS_DATA;
10093 }
10094 }
10095
861fb55a
DJ
10096 /* Emit a copy reloc, if needed. */
10097 if (h->needs_copy)
10098 {
10099 asection *s;
10100 bfd_vma symval;
10101
10102 BFD_ASSERT (h->dynindx != -1);
10103 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10104
10105 s = mips_elf_rel_dyn_section (info, FALSE);
10106 symval = (h->root.u.def.section->output_section->vma
10107 + h->root.u.def.section->output_offset
10108 + h->root.u.def.value);
10109 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10110 h->dynindx, R_MIPS_COPY, symval);
10111 }
10112
b49e97c9
TS
10113 /* Handle the IRIX6-specific symbols. */
10114 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10115 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10116
738e5348
RS
10117 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10118 treat MIPS16 symbols like any other. */
30c09090 10119 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
10120 {
10121 BFD_ASSERT (sym->st_value & 1);
10122 sym->st_other -= STO_MIPS16;
10123 }
b49e97c9 10124
b34976b6 10125 return TRUE;
b49e97c9
TS
10126}
10127
0a44bf69
RS
10128/* Likewise, for VxWorks. */
10129
10130bfd_boolean
10131_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 struct elf_link_hash_entry *h,
10134 Elf_Internal_Sym *sym)
10135{
10136 bfd *dynobj;
10137 asection *sgot;
10138 struct mips_got_info *g;
10139 struct mips_elf_link_hash_table *htab;
020d7251 10140 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
10141
10142 htab = mips_elf_hash_table (info);
4dfe6ac6 10143 BFD_ASSERT (htab != NULL);
0a44bf69 10144 dynobj = elf_hash_table (info)->dynobj;
020d7251 10145 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69
RS
10146
10147 if (h->plt.offset != (bfd_vma) -1)
10148 {
6d79d2ed 10149 bfd_byte *loc;
0a44bf69
RS
10150 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10151 Elf_Internal_Rela rel;
10152 static const bfd_vma *plt_entry;
10153
10154 BFD_ASSERT (h->dynindx != -1);
10155 BFD_ASSERT (htab->splt != NULL);
10156 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10157
10158 /* Calculate the address of the .plt entry. */
10159 plt_address = (htab->splt->output_section->vma
10160 + htab->splt->output_offset
10161 + h->plt.offset);
10162
10163 /* Calculate the index of the entry. */
10164 plt_index = ((h->plt.offset - htab->plt_header_size)
10165 / htab->plt_entry_size);
10166
10167 /* Calculate the address of the .got.plt entry. */
10168 got_address = (htab->sgotplt->output_section->vma
10169 + htab->sgotplt->output_offset
10170 + plt_index * 4);
10171
10172 /* Calculate the offset of the .got.plt entry from
10173 _GLOBAL_OFFSET_TABLE_. */
10174 got_offset = mips_elf_gotplt_index (info, h);
10175
10176 /* Calculate the offset for the branch at the start of the PLT
10177 entry. The branch jumps to the beginning of .plt. */
10178 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10179
10180 /* Fill in the initial value of the .got.plt entry. */
10181 bfd_put_32 (output_bfd, plt_address,
10182 htab->sgotplt->contents + plt_index * 4);
10183
10184 /* Find out where the .plt entry should go. */
10185 loc = htab->splt->contents + h->plt.offset;
10186
10187 if (info->shared)
10188 {
10189 plt_entry = mips_vxworks_shared_plt_entry;
10190 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10191 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10192 }
10193 else
10194 {
10195 bfd_vma got_address_high, got_address_low;
10196
10197 plt_entry = mips_vxworks_exec_plt_entry;
10198 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10199 got_address_low = got_address & 0xffff;
10200
10201 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10202 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10203 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10204 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10205 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10206 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10207 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10208 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10209
10210 loc = (htab->srelplt2->contents
10211 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10212
10213 /* Emit a relocation for the .got.plt entry. */
10214 rel.r_offset = got_address;
10215 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10216 rel.r_addend = h->plt.offset;
10217 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10218
10219 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10220 loc += sizeof (Elf32_External_Rela);
10221 rel.r_offset = plt_address + 8;
10222 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10223 rel.r_addend = got_offset;
10224 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10225
10226 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10227 loc += sizeof (Elf32_External_Rela);
10228 rel.r_offset += 4;
10229 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10230 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10231 }
10232
10233 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10234 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10235 rel.r_offset = got_address;
10236 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10237 rel.r_addend = 0;
10238 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10239
10240 if (!h->def_regular)
10241 sym->st_shndx = SHN_UNDEF;
10242 }
10243
10244 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10245
23cc69b6 10246 sgot = htab->sgot;
a8028dd0 10247 g = htab->got_info;
0a44bf69
RS
10248 BFD_ASSERT (g != NULL);
10249
10250 /* See if this symbol has an entry in the GOT. */
020d7251 10251 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
10252 {
10253 bfd_vma offset;
10254 Elf_Internal_Rela outrel;
10255 bfd_byte *loc;
10256 asection *s;
10257
10258 /* Install the symbol value in the GOT. */
13fbec83 10259 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
10260 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10261
10262 /* Add a dynamic relocation for it. */
10263 s = mips_elf_rel_dyn_section (info, FALSE);
10264 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10265 outrel.r_offset = (sgot->output_section->vma
10266 + sgot->output_offset
10267 + offset);
10268 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10269 outrel.r_addend = 0;
10270 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10271 }
10272
10273 /* Emit a copy reloc, if needed. */
10274 if (h->needs_copy)
10275 {
10276 Elf_Internal_Rela rel;
10277
10278 BFD_ASSERT (h->dynindx != -1);
10279
10280 rel.r_offset = (h->root.u.def.section->output_section->vma
10281 + h->root.u.def.section->output_offset
10282 + h->root.u.def.value);
10283 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10284 rel.r_addend = 0;
10285 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10286 htab->srelbss->contents
10287 + (htab->srelbss->reloc_count
10288 * sizeof (Elf32_External_Rela)));
10289 ++htab->srelbss->reloc_count;
10290 }
10291
df58fc94
RS
10292 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10293 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
10294 sym->st_value &= ~1;
10295
10296 return TRUE;
10297}
10298
861fb55a
DJ
10299/* Write out a plt0 entry to the beginning of .plt. */
10300
10301static void
10302mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10303{
10304 bfd_byte *loc;
10305 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10306 static const bfd_vma *plt_entry;
10307 struct mips_elf_link_hash_table *htab;
10308
10309 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10310 BFD_ASSERT (htab != NULL);
10311
861fb55a
DJ
10312 if (ABI_64_P (output_bfd))
10313 plt_entry = mips_n64_exec_plt0_entry;
10314 else if (ABI_N32_P (output_bfd))
10315 plt_entry = mips_n32_exec_plt0_entry;
10316 else
10317 plt_entry = mips_o32_exec_plt0_entry;
10318
10319 /* Calculate the value of .got.plt. */
10320 gotplt_value = (htab->sgotplt->output_section->vma
10321 + htab->sgotplt->output_offset);
10322 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10323 gotplt_value_low = gotplt_value & 0xffff;
10324
10325 /* The PLT sequence is not safe for N64 if .got.plt's address can
10326 not be loaded in two instructions. */
10327 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10328 || ~(gotplt_value | 0x7fffffff) == 0);
10329
10330 /* Install the PLT header. */
10331 loc = htab->splt->contents;
10332 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10333 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10334 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10335 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10336 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10337 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10338 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10339 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10340}
10341
0a44bf69
RS
10342/* Install the PLT header for a VxWorks executable and finalize the
10343 contents of .rela.plt.unloaded. */
10344
10345static void
10346mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10347{
10348 Elf_Internal_Rela rela;
10349 bfd_byte *loc;
10350 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10351 static const bfd_vma *plt_entry;
10352 struct mips_elf_link_hash_table *htab;
10353
10354 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10355 BFD_ASSERT (htab != NULL);
10356
0a44bf69
RS
10357 plt_entry = mips_vxworks_exec_plt0_entry;
10358
10359 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10360 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10361 + htab->root.hgot->root.u.def.section->output_offset
10362 + htab->root.hgot->root.u.def.value);
10363
10364 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10365 got_value_low = got_value & 0xffff;
10366
10367 /* Calculate the address of the PLT header. */
10368 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10369
10370 /* Install the PLT header. */
10371 loc = htab->splt->contents;
10372 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10373 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10374 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10375 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10376 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10377 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10378
10379 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10380 loc = htab->srelplt2->contents;
10381 rela.r_offset = plt_address;
10382 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10383 rela.r_addend = 0;
10384 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10385 loc += sizeof (Elf32_External_Rela);
10386
10387 /* Output the relocation for the following addiu of
10388 %lo(_GLOBAL_OFFSET_TABLE_). */
10389 rela.r_offset += 4;
10390 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10391 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10392 loc += sizeof (Elf32_External_Rela);
10393
10394 /* Fix up the remaining relocations. They may have the wrong
10395 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10396 in which symbols were output. */
10397 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10398 {
10399 Elf_Internal_Rela rel;
10400
10401 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10402 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10403 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10404 loc += sizeof (Elf32_External_Rela);
10405
10406 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10407 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10408 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10409 loc += sizeof (Elf32_External_Rela);
10410
10411 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10413 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10414 loc += sizeof (Elf32_External_Rela);
10415 }
10416}
10417
10418/* Install the PLT header for a VxWorks shared library. */
10419
10420static void
10421mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10422{
10423 unsigned int i;
10424 struct mips_elf_link_hash_table *htab;
10425
10426 htab = mips_elf_hash_table (info);
4dfe6ac6 10427 BFD_ASSERT (htab != NULL);
0a44bf69
RS
10428
10429 /* We just need to copy the entry byte-by-byte. */
10430 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10431 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10432 htab->splt->contents + i * 4);
10433}
10434
b49e97c9
TS
10435/* Finish up the dynamic sections. */
10436
b34976b6 10437bfd_boolean
9719ad41
RS
10438_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10439 struct bfd_link_info *info)
b49e97c9
TS
10440{
10441 bfd *dynobj;
10442 asection *sdyn;
10443 asection *sgot;
f4416af6 10444 struct mips_got_info *gg, *g;
0a44bf69 10445 struct mips_elf_link_hash_table *htab;
b49e97c9 10446
0a44bf69 10447 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
10448 BFD_ASSERT (htab != NULL);
10449
b49e97c9
TS
10450 dynobj = elf_hash_table (info)->dynobj;
10451
3d4d4302 10452 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 10453
23cc69b6
RS
10454 sgot = htab->sgot;
10455 gg = htab->got_info;
b49e97c9
TS
10456
10457 if (elf_hash_table (info)->dynamic_sections_created)
10458 {
10459 bfd_byte *b;
943284cc 10460 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
10461
10462 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
10463 BFD_ASSERT (gg != NULL);
10464
d7206569 10465 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
10466 BFD_ASSERT (g != NULL);
10467
10468 for (b = sdyn->contents;
eea6121a 10469 b < sdyn->contents + sdyn->size;
b49e97c9
TS
10470 b += MIPS_ELF_DYN_SIZE (dynobj))
10471 {
10472 Elf_Internal_Dyn dyn;
10473 const char *name;
10474 size_t elemsize;
10475 asection *s;
b34976b6 10476 bfd_boolean swap_out_p;
b49e97c9
TS
10477
10478 /* Read in the current dynamic entry. */
10479 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10480
10481 /* Assume that we're going to modify it and write it out. */
b34976b6 10482 swap_out_p = TRUE;
b49e97c9
TS
10483
10484 switch (dyn.d_tag)
10485 {
10486 case DT_RELENT:
b49e97c9
TS
10487 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10488 break;
10489
0a44bf69
RS
10490 case DT_RELAENT:
10491 BFD_ASSERT (htab->is_vxworks);
10492 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10493 break;
10494
b49e97c9
TS
10495 case DT_STRSZ:
10496 /* Rewrite DT_STRSZ. */
10497 dyn.d_un.d_val =
10498 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10499 break;
10500
10501 case DT_PLTGOT:
861fb55a
DJ
10502 s = htab->sgot;
10503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10504 break;
10505
10506 case DT_MIPS_PLTGOT:
10507 s = htab->sgotplt;
10508 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
10509 break;
10510
10511 case DT_MIPS_RLD_VERSION:
10512 dyn.d_un.d_val = 1; /* XXX */
10513 break;
10514
10515 case DT_MIPS_FLAGS:
10516 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10517 break;
10518
b49e97c9 10519 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
10520 {
10521 time_t t;
10522 time (&t);
10523 dyn.d_un.d_val = t;
10524 }
b49e97c9
TS
10525 break;
10526
10527 case DT_MIPS_ICHECKSUM:
10528 /* XXX FIXME: */
b34976b6 10529 swap_out_p = FALSE;
b49e97c9
TS
10530 break;
10531
10532 case DT_MIPS_IVERSION:
10533 /* XXX FIXME: */
b34976b6 10534 swap_out_p = FALSE;
b49e97c9
TS
10535 break;
10536
10537 case DT_MIPS_BASE_ADDRESS:
10538 s = output_bfd->sections;
10539 BFD_ASSERT (s != NULL);
10540 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10541 break;
10542
10543 case DT_MIPS_LOCAL_GOTNO:
10544 dyn.d_un.d_val = g->local_gotno;
10545 break;
10546
10547 case DT_MIPS_UNREFEXTNO:
10548 /* The index into the dynamic symbol table which is the
10549 entry of the first external symbol that is not
10550 referenced within the same object. */
10551 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10552 break;
10553
10554 case DT_MIPS_GOTSYM:
d222d210 10555 if (htab->global_gotsym)
b49e97c9 10556 {
d222d210 10557 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
10558 break;
10559 }
10560 /* In case if we don't have global got symbols we default
10561 to setting DT_MIPS_GOTSYM to the same value as
10562 DT_MIPS_SYMTABNO, so we just fall through. */
10563
10564 case DT_MIPS_SYMTABNO:
10565 name = ".dynsym";
10566 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10567 s = bfd_get_section_by_name (output_bfd, name);
10568 BFD_ASSERT (s != NULL);
10569
eea6121a 10570 dyn.d_un.d_val = s->size / elemsize;
b49e97c9
TS
10571 break;
10572
10573 case DT_MIPS_HIPAGENO:
861fb55a 10574 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
10575 break;
10576
10577 case DT_MIPS_RLD_MAP:
b4082c70
DD
10578 {
10579 struct elf_link_hash_entry *h;
10580 h = mips_elf_hash_table (info)->rld_symbol;
10581 if (!h)
10582 {
10583 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10584 swap_out_p = FALSE;
10585 break;
10586 }
10587 s = h->root.u.def.section;
10588 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10589 + h->root.u.def.value);
10590 }
b49e97c9
TS
10591 break;
10592
10593 case DT_MIPS_OPTIONS:
10594 s = (bfd_get_section_by_name
10595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10596 dyn.d_un.d_ptr = s->vma;
10597 break;
10598
0a44bf69
RS
10599 case DT_RELASZ:
10600 BFD_ASSERT (htab->is_vxworks);
10601 /* The count does not include the JUMP_SLOT relocations. */
10602 if (htab->srelplt)
10603 dyn.d_un.d_val -= htab->srelplt->size;
10604 break;
10605
10606 case DT_PLTREL:
861fb55a
DJ
10607 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10608 if (htab->is_vxworks)
10609 dyn.d_un.d_val = DT_RELA;
10610 else
10611 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
10612 break;
10613
10614 case DT_PLTRELSZ:
861fb55a 10615 BFD_ASSERT (htab->use_plts_and_copy_relocs);
0a44bf69
RS
10616 dyn.d_un.d_val = htab->srelplt->size;
10617 break;
10618
10619 case DT_JMPREL:
861fb55a
DJ
10620 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10621 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
0a44bf69
RS
10622 + htab->srelplt->output_offset);
10623 break;
10624
943284cc
DJ
10625 case DT_TEXTREL:
10626 /* If we didn't need any text relocations after all, delete
10627 the dynamic tag. */
10628 if (!(info->flags & DF_TEXTREL))
10629 {
10630 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10631 swap_out_p = FALSE;
10632 }
10633 break;
10634
10635 case DT_FLAGS:
10636 /* If we didn't need any text relocations after all, clear
10637 DF_TEXTREL from DT_FLAGS. */
10638 if (!(info->flags & DF_TEXTREL))
10639 dyn.d_un.d_val &= ~DF_TEXTREL;
10640 else
10641 swap_out_p = FALSE;
10642 break;
10643
b49e97c9 10644 default:
b34976b6 10645 swap_out_p = FALSE;
7a2b07ff
NS
10646 if (htab->is_vxworks
10647 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10648 swap_out_p = TRUE;
b49e97c9
TS
10649 break;
10650 }
10651
943284cc 10652 if (swap_out_p || dyn_skipped)
b49e97c9 10653 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
10654 (dynobj, &dyn, b - dyn_skipped);
10655
10656 if (dyn_to_skip)
10657 {
10658 dyn_skipped += dyn_to_skip;
10659 dyn_to_skip = 0;
10660 }
b49e97c9 10661 }
943284cc
DJ
10662
10663 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10664 if (dyn_skipped > 0)
10665 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
10666 }
10667
b55fd4d4
DJ
10668 if (sgot != NULL && sgot->size > 0
10669 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 10670 {
0a44bf69
RS
10671 if (htab->is_vxworks)
10672 {
10673 /* The first entry of the global offset table points to the
10674 ".dynamic" section. The second is initialized by the
10675 loader and contains the shared library identifier.
10676 The third is also initialized by the loader and points
10677 to the lazy resolution stub. */
10678 MIPS_ELF_PUT_WORD (output_bfd,
10679 sdyn->output_offset + sdyn->output_section->vma,
10680 sgot->contents);
10681 MIPS_ELF_PUT_WORD (output_bfd, 0,
10682 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10683 MIPS_ELF_PUT_WORD (output_bfd, 0,
10684 sgot->contents
10685 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10686 }
10687 else
10688 {
10689 /* The first entry of the global offset table will be filled at
10690 runtime. The second entry will be used by some runtime loaders.
10691 This isn't the case of IRIX rld. */
10692 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 10693 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
10694 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10695 }
b49e97c9 10696
54938e2a
TS
10697 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10698 = MIPS_ELF_GOT_SIZE (output_bfd);
10699 }
b49e97c9 10700
f4416af6
AO
10701 /* Generate dynamic relocations for the non-primary gots. */
10702 if (gg != NULL && gg->next)
10703 {
10704 Elf_Internal_Rela rel[3];
10705 bfd_vma addend = 0;
10706
10707 memset (rel, 0, sizeof (rel));
10708 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10709
10710 for (g = gg->next; g->next != gg; g = g->next)
10711 {
91d6fa6a 10712 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 10713 + g->next->tls_gotno;
f4416af6 10714
9719ad41 10715 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 10716 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
10717 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10718 sgot->contents
91d6fa6a 10719 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6
AO
10720
10721 if (! info->shared)
10722 continue;
10723
91d6fa6a 10724 while (got_index < g->assigned_gotno)
f4416af6
AO
10725 {
10726 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
91d6fa6a 10727 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
10728 if (!(mips_elf_create_dynamic_relocation
10729 (output_bfd, info, rel, NULL,
10730 bfd_abs_section_ptr,
10731 0, &addend, sgot)))
10732 return FALSE;
10733 BFD_ASSERT (addend == 0);
10734 }
10735 }
10736 }
10737
3133ddbf
DJ
10738 /* The generation of dynamic relocations for the non-primary gots
10739 adds more dynamic relocations. We cannot count them until
10740 here. */
10741
10742 if (elf_hash_table (info)->dynamic_sections_created)
10743 {
10744 bfd_byte *b;
10745 bfd_boolean swap_out_p;
10746
10747 BFD_ASSERT (sdyn != NULL);
10748
10749 for (b = sdyn->contents;
10750 b < sdyn->contents + sdyn->size;
10751 b += MIPS_ELF_DYN_SIZE (dynobj))
10752 {
10753 Elf_Internal_Dyn dyn;
10754 asection *s;
10755
10756 /* Read in the current dynamic entry. */
10757 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10758
10759 /* Assume that we're going to modify it and write it out. */
10760 swap_out_p = TRUE;
10761
10762 switch (dyn.d_tag)
10763 {
10764 case DT_RELSZ:
10765 /* Reduce DT_RELSZ to account for any relocations we
10766 decided not to make. This is for the n64 irix rld,
10767 which doesn't seem to apply any relocations if there
10768 are trailing null entries. */
0a44bf69 10769 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
10770 dyn.d_un.d_val = (s->reloc_count
10771 * (ABI_64_P (output_bfd)
10772 ? sizeof (Elf64_Mips_External_Rel)
10773 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
10774 /* Adjust the section size too. Tools like the prelinker
10775 can reasonably expect the values to the same. */
10776 elf_section_data (s->output_section)->this_hdr.sh_size
10777 = dyn.d_un.d_val;
3133ddbf
DJ
10778 break;
10779
10780 default:
10781 swap_out_p = FALSE;
10782 break;
10783 }
10784
10785 if (swap_out_p)
10786 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10787 (dynobj, &dyn, b);
10788 }
10789 }
10790
b49e97c9 10791 {
b49e97c9
TS
10792 asection *s;
10793 Elf32_compact_rel cpt;
10794
b49e97c9
TS
10795 if (SGI_COMPAT (output_bfd))
10796 {
10797 /* Write .compact_rel section out. */
3d4d4302 10798 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
10799 if (s != NULL)
10800 {
10801 cpt.id1 = 1;
10802 cpt.num = s->reloc_count;
10803 cpt.id2 = 2;
10804 cpt.offset = (s->output_section->filepos
10805 + sizeof (Elf32_External_compact_rel));
10806 cpt.reserved0 = 0;
10807 cpt.reserved1 = 0;
10808 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10809 ((Elf32_External_compact_rel *)
10810 s->contents));
10811
10812 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 10813 if (htab->sstubs != NULL)
b49e97c9
TS
10814 {
10815 file_ptr dummy_offset;
10816
4e41d0d7
RS
10817 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10818 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10819 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 10820 htab->function_stub_size);
b49e97c9
TS
10821 }
10822 }
10823 }
10824
0a44bf69
RS
10825 /* The psABI says that the dynamic relocations must be sorted in
10826 increasing order of r_symndx. The VxWorks EABI doesn't require
10827 this, and because the code below handles REL rather than RELA
10828 relocations, using it for VxWorks would be outright harmful. */
10829 if (!htab->is_vxworks)
b49e97c9 10830 {
0a44bf69
RS
10831 s = mips_elf_rel_dyn_section (info, FALSE);
10832 if (s != NULL
10833 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10834 {
10835 reldyn_sorting_bfd = output_bfd;
b49e97c9 10836
0a44bf69
RS
10837 if (ABI_64_P (output_bfd))
10838 qsort ((Elf64_External_Rel *) s->contents + 1,
10839 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10840 sort_dynamic_relocs_64);
10841 else
10842 qsort ((Elf32_External_Rel *) s->contents + 1,
10843 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10844 sort_dynamic_relocs);
10845 }
b49e97c9 10846 }
b49e97c9
TS
10847 }
10848
861fb55a 10849 if (htab->splt && htab->splt->size > 0)
0a44bf69 10850 {
861fb55a
DJ
10851 if (htab->is_vxworks)
10852 {
10853 if (info->shared)
10854 mips_vxworks_finish_shared_plt (output_bfd, info);
10855 else
10856 mips_vxworks_finish_exec_plt (output_bfd, info);
10857 }
0a44bf69 10858 else
861fb55a
DJ
10859 {
10860 BFD_ASSERT (!info->shared);
10861 mips_finish_exec_plt (output_bfd, info);
10862 }
0a44bf69 10863 }
b34976b6 10864 return TRUE;
b49e97c9
TS
10865}
10866
b49e97c9 10867
64543e1a
RS
10868/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10869
10870static void
9719ad41 10871mips_set_isa_flags (bfd *abfd)
b49e97c9 10872{
64543e1a 10873 flagword val;
b49e97c9
TS
10874
10875 switch (bfd_get_mach (abfd))
10876 {
10877 default:
10878 case bfd_mach_mips3000:
10879 val = E_MIPS_ARCH_1;
10880 break;
10881
10882 case bfd_mach_mips3900:
10883 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10884 break;
10885
10886 case bfd_mach_mips6000:
10887 val = E_MIPS_ARCH_2;
10888 break;
10889
10890 case bfd_mach_mips4000:
10891 case bfd_mach_mips4300:
10892 case bfd_mach_mips4400:
10893 case bfd_mach_mips4600:
10894 val = E_MIPS_ARCH_3;
10895 break;
10896
10897 case bfd_mach_mips4010:
10898 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10899 break;
10900
10901 case bfd_mach_mips4100:
10902 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10903 break;
10904
10905 case bfd_mach_mips4111:
10906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10907 break;
10908
00707a0e
RS
10909 case bfd_mach_mips4120:
10910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10911 break;
10912
b49e97c9
TS
10913 case bfd_mach_mips4650:
10914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10915 break;
10916
00707a0e
RS
10917 case bfd_mach_mips5400:
10918 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10919 break;
10920
10921 case bfd_mach_mips5500:
10922 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10923 break;
10924
e407c74b
NC
10925 case bfd_mach_mips5900:
10926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10927 break;
10928
0d2e43ed
ILT
10929 case bfd_mach_mips9000:
10930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10931 break;
10932
b49e97c9 10933 case bfd_mach_mips5000:
5a7ea749 10934 case bfd_mach_mips7000:
b49e97c9
TS
10935 case bfd_mach_mips8000:
10936 case bfd_mach_mips10000:
10937 case bfd_mach_mips12000:
3aa3176b
TS
10938 case bfd_mach_mips14000:
10939 case bfd_mach_mips16000:
b49e97c9
TS
10940 val = E_MIPS_ARCH_4;
10941 break;
10942
10943 case bfd_mach_mips5:
10944 val = E_MIPS_ARCH_5;
10945 break;
10946
350cc38d
MS
10947 case bfd_mach_mips_loongson_2e:
10948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10949 break;
10950
10951 case bfd_mach_mips_loongson_2f:
10952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10953 break;
10954
b49e97c9
TS
10955 case bfd_mach_mips_sb1:
10956 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10957 break;
10958
d051516a
NC
10959 case bfd_mach_mips_loongson_3a:
10960 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10961 break;
10962
6f179bd0 10963 case bfd_mach_mips_octeon:
dd6a37e7 10964 case bfd_mach_mips_octeonp:
6f179bd0
AN
10965 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10966 break;
10967
52b6b6b9
JM
10968 case bfd_mach_mips_xlr:
10969 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10970 break;
10971
432233b3
AP
10972 case bfd_mach_mips_octeon2:
10973 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10974 break;
10975
b49e97c9
TS
10976 case bfd_mach_mipsisa32:
10977 val = E_MIPS_ARCH_32;
10978 break;
10979
10980 case bfd_mach_mipsisa64:
10981 val = E_MIPS_ARCH_64;
af7ee8bf
CD
10982 break;
10983
10984 case bfd_mach_mipsisa32r2:
10985 val = E_MIPS_ARCH_32R2;
10986 break;
5f74bc13
CD
10987
10988 case bfd_mach_mipsisa64r2:
10989 val = E_MIPS_ARCH_64R2;
10990 break;
b49e97c9 10991 }
b49e97c9
TS
10992 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10993 elf_elfheader (abfd)->e_flags |= val;
10994
64543e1a
RS
10995}
10996
10997
10998/* The final processing done just before writing out a MIPS ELF object
10999 file. This gets the MIPS architecture right based on the machine
11000 number. This is used by both the 32-bit and the 64-bit ABI. */
11001
11002void
9719ad41
RS
11003_bfd_mips_elf_final_write_processing (bfd *abfd,
11004 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
11005{
11006 unsigned int i;
11007 Elf_Internal_Shdr **hdrpp;
11008 const char *name;
11009 asection *sec;
11010
11011 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11012 is nonzero. This is for compatibility with old objects, which used
11013 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11014 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11015 mips_set_isa_flags (abfd);
11016
b49e97c9
TS
11017 /* Set the sh_info field for .gptab sections and other appropriate
11018 info for each special section. */
11019 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11020 i < elf_numsections (abfd);
11021 i++, hdrpp++)
11022 {
11023 switch ((*hdrpp)->sh_type)
11024 {
11025 case SHT_MIPS_MSYM:
11026 case SHT_MIPS_LIBLIST:
11027 sec = bfd_get_section_by_name (abfd, ".dynstr");
11028 if (sec != NULL)
11029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11030 break;
11031
11032 case SHT_MIPS_GPTAB:
11033 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11034 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11035 BFD_ASSERT (name != NULL
0112cd26 11036 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
11037 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11038 BFD_ASSERT (sec != NULL);
11039 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11040 break;
11041
11042 case SHT_MIPS_CONTENT:
11043 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11044 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11045 BFD_ASSERT (name != NULL
0112cd26 11046 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
11047 sec = bfd_get_section_by_name (abfd,
11048 name + sizeof ".MIPS.content" - 1);
11049 BFD_ASSERT (sec != NULL);
11050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11051 break;
11052
11053 case SHT_MIPS_SYMBOL_LIB:
11054 sec = bfd_get_section_by_name (abfd, ".dynsym");
11055 if (sec != NULL)
11056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11057 sec = bfd_get_section_by_name (abfd, ".liblist");
11058 if (sec != NULL)
11059 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_EVENTS:
11063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11065 BFD_ASSERT (name != NULL);
0112cd26 11066 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
11067 sec = bfd_get_section_by_name (abfd,
11068 name + sizeof ".MIPS.events" - 1);
11069 else
11070 {
0112cd26 11071 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
11072 sec = bfd_get_section_by_name (abfd,
11073 (name
11074 + sizeof ".MIPS.post_rel" - 1));
11075 }
11076 BFD_ASSERT (sec != NULL);
11077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11078 break;
11079
11080 }
11081 }
11082}
11083\f
8dc1a139 11084/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
11085 segments. */
11086
11087int
a6b96beb
AM
11088_bfd_mips_elf_additional_program_headers (bfd *abfd,
11089 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
11090{
11091 asection *s;
11092 int ret = 0;
11093
11094 /* See if we need a PT_MIPS_REGINFO segment. */
11095 s = bfd_get_section_by_name (abfd, ".reginfo");
11096 if (s && (s->flags & SEC_LOAD))
11097 ++ret;
11098
11099 /* See if we need a PT_MIPS_OPTIONS segment. */
11100 if (IRIX_COMPAT (abfd) == ict_irix6
11101 && bfd_get_section_by_name (abfd,
11102 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11103 ++ret;
11104
11105 /* See if we need a PT_MIPS_RTPROC segment. */
11106 if (IRIX_COMPAT (abfd) == ict_irix5
11107 && bfd_get_section_by_name (abfd, ".dynamic")
11108 && bfd_get_section_by_name (abfd, ".mdebug"))
11109 ++ret;
11110
98c904a8
RS
11111 /* Allocate a PT_NULL header in dynamic objects. See
11112 _bfd_mips_elf_modify_segment_map for details. */
11113 if (!SGI_COMPAT (abfd)
11114 && bfd_get_section_by_name (abfd, ".dynamic"))
11115 ++ret;
11116
b49e97c9
TS
11117 return ret;
11118}
11119
8dc1a139 11120/* Modify the segment map for an IRIX5 executable. */
b49e97c9 11121
b34976b6 11122bfd_boolean
9719ad41 11123_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 11124 struct bfd_link_info *info)
b49e97c9
TS
11125{
11126 asection *s;
11127 struct elf_segment_map *m, **pm;
11128 bfd_size_type amt;
11129
11130 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11131 segment. */
11132 s = bfd_get_section_by_name (abfd, ".reginfo");
11133 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11134 {
11135 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11136 if (m->p_type == PT_MIPS_REGINFO)
11137 break;
11138 if (m == NULL)
11139 {
11140 amt = sizeof *m;
9719ad41 11141 m = bfd_zalloc (abfd, amt);
b49e97c9 11142 if (m == NULL)
b34976b6 11143 return FALSE;
b49e97c9
TS
11144
11145 m->p_type = PT_MIPS_REGINFO;
11146 m->count = 1;
11147 m->sections[0] = s;
11148
11149 /* We want to put it after the PHDR and INTERP segments. */
11150 pm = &elf_tdata (abfd)->segment_map;
11151 while (*pm != NULL
11152 && ((*pm)->p_type == PT_PHDR
11153 || (*pm)->p_type == PT_INTERP))
11154 pm = &(*pm)->next;
11155
11156 m->next = *pm;
11157 *pm = m;
11158 }
11159 }
11160
11161 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11162 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 11163 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 11164 table. */
c1fd6598
AO
11165 if (NEWABI_P (abfd)
11166 /* On non-IRIX6 new abi, we'll have already created a segment
11167 for this section, so don't create another. I'm not sure this
11168 is not also the case for IRIX 6, but I can't test it right
11169 now. */
11170 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
11171 {
11172 for (s = abfd->sections; s; s = s->next)
11173 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11174 break;
11175
11176 if (s)
11177 {
11178 struct elf_segment_map *options_segment;
11179
98a8deaf
RS
11180 pm = &elf_tdata (abfd)->segment_map;
11181 while (*pm != NULL
11182 && ((*pm)->p_type == PT_PHDR
11183 || (*pm)->p_type == PT_INTERP))
11184 pm = &(*pm)->next;
b49e97c9 11185
8ded5a0f
AM
11186 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11187 {
11188 amt = sizeof (struct elf_segment_map);
11189 options_segment = bfd_zalloc (abfd, amt);
11190 options_segment->next = *pm;
11191 options_segment->p_type = PT_MIPS_OPTIONS;
11192 options_segment->p_flags = PF_R;
11193 options_segment->p_flags_valid = TRUE;
11194 options_segment->count = 1;
11195 options_segment->sections[0] = s;
11196 *pm = options_segment;
11197 }
b49e97c9
TS
11198 }
11199 }
11200 else
11201 {
11202 if (IRIX_COMPAT (abfd) == ict_irix5)
11203 {
11204 /* If there are .dynamic and .mdebug sections, we make a room
11205 for the RTPROC header. FIXME: Rewrite without section names. */
11206 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11207 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11208 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11209 {
11210 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11211 if (m->p_type == PT_MIPS_RTPROC)
11212 break;
11213 if (m == NULL)
11214 {
11215 amt = sizeof *m;
9719ad41 11216 m = bfd_zalloc (abfd, amt);
b49e97c9 11217 if (m == NULL)
b34976b6 11218 return FALSE;
b49e97c9
TS
11219
11220 m->p_type = PT_MIPS_RTPROC;
11221
11222 s = bfd_get_section_by_name (abfd, ".rtproc");
11223 if (s == NULL)
11224 {
11225 m->count = 0;
11226 m->p_flags = 0;
11227 m->p_flags_valid = 1;
11228 }
11229 else
11230 {
11231 m->count = 1;
11232 m->sections[0] = s;
11233 }
11234
11235 /* We want to put it after the DYNAMIC segment. */
11236 pm = &elf_tdata (abfd)->segment_map;
11237 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11238 pm = &(*pm)->next;
11239 if (*pm != NULL)
11240 pm = &(*pm)->next;
11241
11242 m->next = *pm;
11243 *pm = m;
11244 }
11245 }
11246 }
8dc1a139 11247 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
11248 .dynstr, .dynsym, and .hash sections, and everything in
11249 between. */
11250 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11251 pm = &(*pm)->next)
11252 if ((*pm)->p_type == PT_DYNAMIC)
11253 break;
11254 m = *pm;
11255 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11256 {
11257 /* For a normal mips executable the permissions for the PT_DYNAMIC
11258 segment are read, write and execute. We do that here since
11259 the code in elf.c sets only the read permission. This matters
11260 sometimes for the dynamic linker. */
11261 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11262 {
11263 m->p_flags = PF_R | PF_W | PF_X;
11264 m->p_flags_valid = 1;
11265 }
11266 }
f6f62d6f
RS
11267 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11268 glibc's dynamic linker has traditionally derived the number of
11269 tags from the p_filesz field, and sometimes allocates stack
11270 arrays of that size. An overly-big PT_DYNAMIC segment can
11271 be actively harmful in such cases. Making PT_DYNAMIC contain
11272 other sections can also make life hard for the prelinker,
11273 which might move one of the other sections to a different
11274 PT_LOAD segment. */
11275 if (SGI_COMPAT (abfd)
11276 && m != NULL
11277 && m->count == 1
11278 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
11279 {
11280 static const char *sec_names[] =
11281 {
11282 ".dynamic", ".dynstr", ".dynsym", ".hash"
11283 };
11284 bfd_vma low, high;
11285 unsigned int i, c;
11286 struct elf_segment_map *n;
11287
792b4a53 11288 low = ~(bfd_vma) 0;
b49e97c9
TS
11289 high = 0;
11290 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11291 {
11292 s = bfd_get_section_by_name (abfd, sec_names[i]);
11293 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11294 {
11295 bfd_size_type sz;
11296
11297 if (low > s->vma)
11298 low = s->vma;
eea6121a 11299 sz = s->size;
b49e97c9
TS
11300 if (high < s->vma + sz)
11301 high = s->vma + sz;
11302 }
11303 }
11304
11305 c = 0;
11306 for (s = abfd->sections; s != NULL; s = s->next)
11307 if ((s->flags & SEC_LOAD) != 0
11308 && s->vma >= low
eea6121a 11309 && s->vma + s->size <= high)
b49e97c9
TS
11310 ++c;
11311
11312 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 11313 n = bfd_zalloc (abfd, amt);
b49e97c9 11314 if (n == NULL)
b34976b6 11315 return FALSE;
b49e97c9
TS
11316 *n = *m;
11317 n->count = c;
11318
11319 i = 0;
11320 for (s = abfd->sections; s != NULL; s = s->next)
11321 {
11322 if ((s->flags & SEC_LOAD) != 0
11323 && s->vma >= low
eea6121a 11324 && s->vma + s->size <= high)
b49e97c9
TS
11325 {
11326 n->sections[i] = s;
11327 ++i;
11328 }
11329 }
11330
11331 *pm = n;
11332 }
11333 }
11334
98c904a8
RS
11335 /* Allocate a spare program header in dynamic objects so that tools
11336 like the prelinker can add an extra PT_LOAD entry.
11337
11338 If the prelinker needs to make room for a new PT_LOAD entry, its
11339 standard procedure is to move the first (read-only) sections into
11340 the new (writable) segment. However, the MIPS ABI requires
11341 .dynamic to be in a read-only segment, and the section will often
11342 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11343
11344 Although the prelinker could in principle move .dynamic to a
11345 writable segment, it seems better to allocate a spare program
11346 header instead, and avoid the need to move any sections.
11347 There is a long tradition of allocating spare dynamic tags,
11348 so allocating a spare program header seems like a natural
7c8b76cc
JM
11349 extension.
11350
11351 If INFO is NULL, we may be copying an already prelinked binary
11352 with objcopy or strip, so do not add this header. */
11353 if (info != NULL
11354 && !SGI_COMPAT (abfd)
98c904a8
RS
11355 && bfd_get_section_by_name (abfd, ".dynamic"))
11356 {
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11358 if ((*pm)->p_type == PT_NULL)
11359 break;
11360 if (*pm == NULL)
11361 {
11362 m = bfd_zalloc (abfd, sizeof (*m));
11363 if (m == NULL)
11364 return FALSE;
11365
11366 m->p_type = PT_NULL;
11367 *pm = m;
11368 }
11369 }
11370
b34976b6 11371 return TRUE;
b49e97c9
TS
11372}
11373\f
11374/* Return the section that should be marked against GC for a given
11375 relocation. */
11376
11377asection *
9719ad41 11378_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 11379 struct bfd_link_info *info,
9719ad41
RS
11380 Elf_Internal_Rela *rel,
11381 struct elf_link_hash_entry *h,
11382 Elf_Internal_Sym *sym)
b49e97c9
TS
11383{
11384 /* ??? Do mips16 stub sections need to be handled special? */
11385
11386 if (h != NULL)
07adf181
AM
11387 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11388 {
11389 case R_MIPS_GNU_VTINHERIT:
11390 case R_MIPS_GNU_VTENTRY:
11391 return NULL;
11392 }
b49e97c9 11393
07adf181 11394 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
11395}
11396
11397/* Update the got entry reference counts for the section being removed. */
11398
b34976b6 11399bfd_boolean
9719ad41
RS
11400_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11401 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11402 asection *sec ATTRIBUTE_UNUSED,
11403 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
11404{
11405#if 0
11406 Elf_Internal_Shdr *symtab_hdr;
11407 struct elf_link_hash_entry **sym_hashes;
11408 bfd_signed_vma *local_got_refcounts;
11409 const Elf_Internal_Rela *rel, *relend;
11410 unsigned long r_symndx;
11411 struct elf_link_hash_entry *h;
11412
7dda2462
TG
11413 if (info->relocatable)
11414 return TRUE;
11415
b49e97c9
TS
11416 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11417 sym_hashes = elf_sym_hashes (abfd);
11418 local_got_refcounts = elf_local_got_refcounts (abfd);
11419
11420 relend = relocs + sec->reloc_count;
11421 for (rel = relocs; rel < relend; rel++)
11422 switch (ELF_R_TYPE (abfd, rel->r_info))
11423 {
738e5348
RS
11424 case R_MIPS16_GOT16:
11425 case R_MIPS16_CALL16:
b49e97c9
TS
11426 case R_MIPS_GOT16:
11427 case R_MIPS_CALL16:
11428 case R_MIPS_CALL_HI16:
11429 case R_MIPS_CALL_LO16:
11430 case R_MIPS_GOT_HI16:
11431 case R_MIPS_GOT_LO16:
4a14403c
TS
11432 case R_MIPS_GOT_DISP:
11433 case R_MIPS_GOT_PAGE:
11434 case R_MIPS_GOT_OFST:
df58fc94
RS
11435 case R_MICROMIPS_GOT16:
11436 case R_MICROMIPS_CALL16:
11437 case R_MICROMIPS_CALL_HI16:
11438 case R_MICROMIPS_CALL_LO16:
11439 case R_MICROMIPS_GOT_HI16:
11440 case R_MICROMIPS_GOT_LO16:
11441 case R_MICROMIPS_GOT_DISP:
11442 case R_MICROMIPS_GOT_PAGE:
11443 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
11444 /* ??? It would seem that the existing MIPS code does no sort
11445 of reference counting or whatnot on its GOT and PLT entries,
11446 so it is not possible to garbage collect them at this time. */
11447 break;
11448
11449 default:
11450 break;
11451 }
11452#endif
11453
b34976b6 11454 return TRUE;
b49e97c9
TS
11455}
11456\f
11457/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11458 hiding the old indirect symbol. Process additional relocation
11459 information. Also called for weakdefs, in which case we just let
11460 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11461
11462void
fcfa13d2 11463_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
11464 struct elf_link_hash_entry *dir,
11465 struct elf_link_hash_entry *ind)
b49e97c9
TS
11466{
11467 struct mips_elf_link_hash_entry *dirmips, *indmips;
11468
fcfa13d2 11469 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 11470
861fb55a
DJ
11471 dirmips = (struct mips_elf_link_hash_entry *) dir;
11472 indmips = (struct mips_elf_link_hash_entry *) ind;
11473 /* Any absolute non-dynamic relocations against an indirect or weak
11474 definition will be against the target symbol. */
11475 if (indmips->has_static_relocs)
11476 dirmips->has_static_relocs = TRUE;
11477
b49e97c9
TS
11478 if (ind->root.type != bfd_link_hash_indirect)
11479 return;
11480
b49e97c9
TS
11481 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11482 if (indmips->readonly_reloc)
b34976b6 11483 dirmips->readonly_reloc = TRUE;
b49e97c9 11484 if (indmips->no_fn_stub)
b34976b6 11485 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
11486 if (indmips->fn_stub)
11487 {
11488 dirmips->fn_stub = indmips->fn_stub;
11489 indmips->fn_stub = NULL;
11490 }
11491 if (indmips->need_fn_stub)
11492 {
11493 dirmips->need_fn_stub = TRUE;
11494 indmips->need_fn_stub = FALSE;
11495 }
11496 if (indmips->call_stub)
11497 {
11498 dirmips->call_stub = indmips->call_stub;
11499 indmips->call_stub = NULL;
11500 }
11501 if (indmips->call_fp_stub)
11502 {
11503 dirmips->call_fp_stub = indmips->call_fp_stub;
11504 indmips->call_fp_stub = NULL;
11505 }
634835ae
RS
11506 if (indmips->global_got_area < dirmips->global_got_area)
11507 dirmips->global_got_area = indmips->global_got_area;
11508 if (indmips->global_got_area < GGA_NONE)
11509 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
11510 if (indmips->has_nonpic_branches)
11511 dirmips->has_nonpic_branches = TRUE;
b49e97c9 11512}
b49e97c9 11513\f
d01414a5
TS
11514#define PDR_SIZE 32
11515
b34976b6 11516bfd_boolean
9719ad41
RS
11517_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11518 struct bfd_link_info *info)
d01414a5
TS
11519{
11520 asection *o;
b34976b6 11521 bfd_boolean ret = FALSE;
d01414a5
TS
11522 unsigned char *tdata;
11523 size_t i, skip;
11524
11525 o = bfd_get_section_by_name (abfd, ".pdr");
11526 if (! o)
b34976b6 11527 return FALSE;
eea6121a 11528 if (o->size == 0)
b34976b6 11529 return FALSE;
eea6121a 11530 if (o->size % PDR_SIZE != 0)
b34976b6 11531 return FALSE;
d01414a5
TS
11532 if (o->output_section != NULL
11533 && bfd_is_abs_section (o->output_section))
b34976b6 11534 return FALSE;
d01414a5 11535
eea6121a 11536 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 11537 if (! tdata)
b34976b6 11538 return FALSE;
d01414a5 11539
9719ad41 11540 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 11541 info->keep_memory);
d01414a5
TS
11542 if (!cookie->rels)
11543 {
11544 free (tdata);
b34976b6 11545 return FALSE;
d01414a5
TS
11546 }
11547
11548 cookie->rel = cookie->rels;
11549 cookie->relend = cookie->rels + o->reloc_count;
11550
eea6121a 11551 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 11552 {
c152c796 11553 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
11554 {
11555 tdata[i] = 1;
11556 skip ++;
11557 }
11558 }
11559
11560 if (skip != 0)
11561 {
f0abc2a1 11562 mips_elf_section_data (o)->u.tdata = tdata;
eea6121a 11563 o->size -= skip * PDR_SIZE;
b34976b6 11564 ret = TRUE;
d01414a5
TS
11565 }
11566 else
11567 free (tdata);
11568
11569 if (! info->keep_memory)
11570 free (cookie->rels);
11571
11572 return ret;
11573}
11574
b34976b6 11575bfd_boolean
9719ad41 11576_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
11577{
11578 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
11579 return TRUE;
11580 return FALSE;
53bfd6b4 11581}
d01414a5 11582
b34976b6 11583bfd_boolean
c7b8f16e
JB
11584_bfd_mips_elf_write_section (bfd *output_bfd,
11585 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11586 asection *sec, bfd_byte *contents)
d01414a5
TS
11587{
11588 bfd_byte *to, *from, *end;
11589 int i;
11590
11591 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 11592 return FALSE;
d01414a5 11593
f0abc2a1 11594 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 11595 return FALSE;
d01414a5
TS
11596
11597 to = contents;
eea6121a 11598 end = contents + sec->size;
d01414a5
TS
11599 for (from = contents, i = 0;
11600 from < end;
11601 from += PDR_SIZE, i++)
11602 {
f0abc2a1 11603 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
11604 continue;
11605 if (to != from)
11606 memcpy (to, from, PDR_SIZE);
11607 to += PDR_SIZE;
11608 }
11609 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 11610 sec->output_offset, sec->size);
b34976b6 11611 return TRUE;
d01414a5 11612}
53bfd6b4 11613\f
df58fc94
RS
11614/* microMIPS code retains local labels for linker relaxation. Omit them
11615 from output by default for clarity. */
11616
11617bfd_boolean
11618_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11619{
11620 return _bfd_elf_is_local_label_name (abfd, sym->name);
11621}
11622
b49e97c9
TS
11623/* MIPS ELF uses a special find_nearest_line routine in order the
11624 handle the ECOFF debugging information. */
11625
11626struct mips_elf_find_line
11627{
11628 struct ecoff_debug_info d;
11629 struct ecoff_find_line i;
11630};
11631
b34976b6 11632bfd_boolean
9719ad41
RS
11633_bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11634 asymbol **symbols, bfd_vma offset,
11635 const char **filename_ptr,
11636 const char **functionname_ptr,
11637 unsigned int *line_ptr)
b49e97c9
TS
11638{
11639 asection *msec;
11640
11641 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11642 filename_ptr, functionname_ptr,
11643 line_ptr))
b34976b6 11644 return TRUE;
b49e97c9 11645
fc28f9aa
TG
11646 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11647 section, symbols, offset,
b49e97c9 11648 filename_ptr, functionname_ptr,
9b8d1a36 11649 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
b49e97c9 11650 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 11651 return TRUE;
b49e97c9
TS
11652
11653 msec = bfd_get_section_by_name (abfd, ".mdebug");
11654 if (msec != NULL)
11655 {
11656 flagword origflags;
11657 struct mips_elf_find_line *fi;
11658 const struct ecoff_debug_swap * const swap =
11659 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11660
11661 /* If we are called during a link, mips_elf_final_link may have
11662 cleared the SEC_HAS_CONTENTS field. We force it back on here
11663 if appropriate (which it normally will be). */
11664 origflags = msec->flags;
11665 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11666 msec->flags |= SEC_HAS_CONTENTS;
11667
698600e4 11668 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
11669 if (fi == NULL)
11670 {
11671 bfd_size_type external_fdr_size;
11672 char *fraw_src;
11673 char *fraw_end;
11674 struct fdr *fdr_ptr;
11675 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11676
9719ad41 11677 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
11678 if (fi == NULL)
11679 {
11680 msec->flags = origflags;
b34976b6 11681 return FALSE;
b49e97c9
TS
11682 }
11683
11684 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11685 {
11686 msec->flags = origflags;
b34976b6 11687 return FALSE;
b49e97c9
TS
11688 }
11689
11690 /* Swap in the FDR information. */
11691 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 11692 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
11693 if (fi->d.fdr == NULL)
11694 {
11695 msec->flags = origflags;
b34976b6 11696 return FALSE;
b49e97c9
TS
11697 }
11698 external_fdr_size = swap->external_fdr_size;
11699 fdr_ptr = fi->d.fdr;
11700 fraw_src = (char *) fi->d.external_fdr;
11701 fraw_end = (fraw_src
11702 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11703 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 11704 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 11705
698600e4 11706 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
11707
11708 /* Note that we don't bother to ever free this information.
11709 find_nearest_line is either called all the time, as in
11710 objdump -l, so the information should be saved, or it is
11711 rarely called, as in ld error messages, so the memory
11712 wasted is unimportant. Still, it would probably be a
11713 good idea for free_cached_info to throw it away. */
11714 }
11715
11716 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11717 &fi->i, filename_ptr, functionname_ptr,
11718 line_ptr))
11719 {
11720 msec->flags = origflags;
b34976b6 11721 return TRUE;
b49e97c9
TS
11722 }
11723
11724 msec->flags = origflags;
11725 }
11726
11727 /* Fall back on the generic ELF find_nearest_line routine. */
11728
11729 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11730 filename_ptr, functionname_ptr,
11731 line_ptr);
11732}
4ab527b0
FF
11733
11734bfd_boolean
11735_bfd_mips_elf_find_inliner_info (bfd *abfd,
11736 const char **filename_ptr,
11737 const char **functionname_ptr,
11738 unsigned int *line_ptr)
11739{
11740 bfd_boolean found;
11741 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11742 functionname_ptr, line_ptr,
11743 & elf_tdata (abfd)->dwarf2_find_line_info);
11744 return found;
11745}
11746
b49e97c9
TS
11747\f
11748/* When are writing out the .options or .MIPS.options section,
11749 remember the bytes we are writing out, so that we can install the
11750 GP value in the section_processing routine. */
11751
b34976b6 11752bfd_boolean
9719ad41
RS
11753_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11754 const void *location,
11755 file_ptr offset, bfd_size_type count)
b49e97c9 11756{
cc2e31b9 11757 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
11758 {
11759 bfd_byte *c;
11760
11761 if (elf_section_data (section) == NULL)
11762 {
11763 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 11764 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 11765 if (elf_section_data (section) == NULL)
b34976b6 11766 return FALSE;
b49e97c9 11767 }
f0abc2a1 11768 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
11769 if (c == NULL)
11770 {
eea6121a 11771 c = bfd_zalloc (abfd, section->size);
b49e97c9 11772 if (c == NULL)
b34976b6 11773 return FALSE;
f0abc2a1 11774 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
11775 }
11776
9719ad41 11777 memcpy (c + offset, location, count);
b49e97c9
TS
11778 }
11779
11780 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11781 count);
11782}
11783
11784/* This is almost identical to bfd_generic_get_... except that some
11785 MIPS relocations need to be handled specially. Sigh. */
11786
11787bfd_byte *
9719ad41
RS
11788_bfd_elf_mips_get_relocated_section_contents
11789 (bfd *abfd,
11790 struct bfd_link_info *link_info,
11791 struct bfd_link_order *link_order,
11792 bfd_byte *data,
11793 bfd_boolean relocatable,
11794 asymbol **symbols)
b49e97c9
TS
11795{
11796 /* Get enough memory to hold the stuff */
11797 bfd *input_bfd = link_order->u.indirect.section->owner;
11798 asection *input_section = link_order->u.indirect.section;
eea6121a 11799 bfd_size_type sz;
b49e97c9
TS
11800
11801 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11802 arelent **reloc_vector = NULL;
11803 long reloc_count;
11804
11805 if (reloc_size < 0)
11806 goto error_return;
11807
9719ad41 11808 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
11809 if (reloc_vector == NULL && reloc_size != 0)
11810 goto error_return;
11811
11812 /* read in the section */
eea6121a
AM
11813 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11814 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
11815 goto error_return;
11816
b49e97c9
TS
11817 reloc_count = bfd_canonicalize_reloc (input_bfd,
11818 input_section,
11819 reloc_vector,
11820 symbols);
11821 if (reloc_count < 0)
11822 goto error_return;
11823
11824 if (reloc_count > 0)
11825 {
11826 arelent **parent;
11827 /* for mips */
11828 int gp_found;
11829 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11830
11831 {
11832 struct bfd_hash_entry *h;
11833 struct bfd_link_hash_entry *lh;
11834 /* Skip all this stuff if we aren't mixing formats. */
11835 if (abfd && input_bfd
11836 && abfd->xvec == input_bfd->xvec)
11837 lh = 0;
11838 else
11839 {
b34976b6 11840 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
11841 lh = (struct bfd_link_hash_entry *) h;
11842 }
11843 lookup:
11844 if (lh)
11845 {
11846 switch (lh->type)
11847 {
11848 case bfd_link_hash_undefined:
11849 case bfd_link_hash_undefweak:
11850 case bfd_link_hash_common:
11851 gp_found = 0;
11852 break;
11853 case bfd_link_hash_defined:
11854 case bfd_link_hash_defweak:
11855 gp_found = 1;
11856 gp = lh->u.def.value;
11857 break;
11858 case bfd_link_hash_indirect:
11859 case bfd_link_hash_warning:
11860 lh = lh->u.i.link;
11861 /* @@FIXME ignoring warning for now */
11862 goto lookup;
11863 case bfd_link_hash_new:
11864 default:
11865 abort ();
11866 }
11867 }
11868 else
11869 gp_found = 0;
11870 }
11871 /* end mips */
9719ad41 11872 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 11873 {
9719ad41 11874 char *error_message = NULL;
b49e97c9
TS
11875 bfd_reloc_status_type r;
11876
11877 /* Specific to MIPS: Deal with relocation types that require
11878 knowing the gp of the output bfd. */
11879 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 11880
8236346f
EC
11881 /* If we've managed to find the gp and have a special
11882 function for the relocation then go ahead, else default
11883 to the generic handling. */
11884 if (gp_found
11885 && (*parent)->howto->special_function
11886 == _bfd_mips_elf32_gprel16_reloc)
11887 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11888 input_section, relocatable,
11889 data, gp);
11890 else
86324f90 11891 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
11892 input_section,
11893 relocatable ? abfd : NULL,
11894 &error_message);
b49e97c9 11895
1049f94e 11896 if (relocatable)
b49e97c9
TS
11897 {
11898 asection *os = input_section->output_section;
11899
11900 /* A partial link, so keep the relocs */
11901 os->orelocation[os->reloc_count] = *parent;
11902 os->reloc_count++;
11903 }
11904
11905 if (r != bfd_reloc_ok)
11906 {
11907 switch (r)
11908 {
11909 case bfd_reloc_undefined:
11910 if (!((*link_info->callbacks->undefined_symbol)
11911 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5e2b0d47 11912 input_bfd, input_section, (*parent)->address, TRUE)))
b49e97c9
TS
11913 goto error_return;
11914 break;
11915 case bfd_reloc_dangerous:
9719ad41 11916 BFD_ASSERT (error_message != NULL);
b49e97c9
TS
11917 if (!((*link_info->callbacks->reloc_dangerous)
11918 (link_info, error_message, input_bfd, input_section,
11919 (*parent)->address)))
11920 goto error_return;
11921 break;
11922 case bfd_reloc_overflow:
11923 if (!((*link_info->callbacks->reloc_overflow)
dfeffb9f
L
11924 (link_info, NULL,
11925 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
b49e97c9
TS
11926 (*parent)->howto->name, (*parent)->addend,
11927 input_bfd, input_section, (*parent)->address)))
11928 goto error_return;
11929 break;
11930 case bfd_reloc_outofrange:
11931 default:
11932 abort ();
11933 break;
11934 }
11935
11936 }
11937 }
11938 }
11939 if (reloc_vector != NULL)
11940 free (reloc_vector);
11941 return data;
11942
11943error_return:
11944 if (reloc_vector != NULL)
11945 free (reloc_vector);
11946 return NULL;
11947}
11948\f
df58fc94
RS
11949static bfd_boolean
11950mips_elf_relax_delete_bytes (bfd *abfd,
11951 asection *sec, bfd_vma addr, int count)
11952{
11953 Elf_Internal_Shdr *symtab_hdr;
11954 unsigned int sec_shndx;
11955 bfd_byte *contents;
11956 Elf_Internal_Rela *irel, *irelend;
11957 Elf_Internal_Sym *isym;
11958 Elf_Internal_Sym *isymend;
11959 struct elf_link_hash_entry **sym_hashes;
11960 struct elf_link_hash_entry **end_hashes;
11961 struct elf_link_hash_entry **start_hashes;
11962 unsigned int symcount;
11963
11964 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11965 contents = elf_section_data (sec)->this_hdr.contents;
11966
11967 irel = elf_section_data (sec)->relocs;
11968 irelend = irel + sec->reloc_count;
11969
11970 /* Actually delete the bytes. */
11971 memmove (contents + addr, contents + addr + count,
11972 (size_t) (sec->size - addr - count));
11973 sec->size -= count;
11974
11975 /* Adjust all the relocs. */
11976 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11977 {
11978 /* Get the new reloc address. */
11979 if (irel->r_offset > addr)
11980 irel->r_offset -= count;
11981 }
11982
11983 BFD_ASSERT (addr % 2 == 0);
11984 BFD_ASSERT (count % 2 == 0);
11985
11986 /* Adjust the local symbols defined in this section. */
11987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11988 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11989 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 11990 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
11991 isym->st_value -= count;
11992
11993 /* Now adjust the global symbols defined in this section. */
11994 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11995 - symtab_hdr->sh_info);
11996 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11997 end_hashes = sym_hashes + symcount;
11998
11999 for (; sym_hashes < end_hashes; sym_hashes++)
12000 {
12001 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12002
12003 if ((sym_hash->root.type == bfd_link_hash_defined
12004 || sym_hash->root.type == bfd_link_hash_defweak)
12005 && sym_hash->root.u.def.section == sec)
12006 {
2309ddf2 12007 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 12008
df58fc94
RS
12009 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12010 value &= MINUS_TWO;
12011 if (value > addr)
12012 sym_hash->root.u.def.value -= count;
12013 }
12014 }
12015
12016 return TRUE;
12017}
12018
12019
12020/* Opcodes needed for microMIPS relaxation as found in
12021 opcodes/micromips-opc.c. */
12022
12023struct opcode_descriptor {
12024 unsigned long match;
12025 unsigned long mask;
12026};
12027
12028/* The $ra register aka $31. */
12029
12030#define RA 31
12031
12032/* 32-bit instruction format register fields. */
12033
12034#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12035#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12036
12037/* Check if a 5-bit register index can be abbreviated to 3 bits. */
12038
12039#define OP16_VALID_REG(r) \
12040 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12041
12042
12043/* 32-bit and 16-bit branches. */
12044
12045static const struct opcode_descriptor b_insns_32[] = {
12046 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12047 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12048 { 0, 0 } /* End marker for find_match(). */
12049};
12050
12051static const struct opcode_descriptor bc_insn_32 =
12052 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12053
12054static const struct opcode_descriptor bz_insn_32 =
12055 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12056
12057static const struct opcode_descriptor bzal_insn_32 =
12058 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12059
12060static const struct opcode_descriptor beq_insn_32 =
12061 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12062
12063static const struct opcode_descriptor b_insn_16 =
12064 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12065
12066static const struct opcode_descriptor bz_insn_16 =
c088dedf 12067 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
12068
12069
12070/* 32-bit and 16-bit branch EQ and NE zero. */
12071
12072/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12073 eq and second the ne. This convention is used when replacing a
12074 32-bit BEQ/BNE with the 16-bit version. */
12075
12076#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12077
12078static const struct opcode_descriptor bz_rs_insns_32[] = {
12079 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12080 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12081 { 0, 0 } /* End marker for find_match(). */
12082};
12083
12084static const struct opcode_descriptor bz_rt_insns_32[] = {
12085 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12086 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12087 { 0, 0 } /* End marker for find_match(). */
12088};
12089
12090static const struct opcode_descriptor bzc_insns_32[] = {
12091 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12092 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12093 { 0, 0 } /* End marker for find_match(). */
12094};
12095
12096static const struct opcode_descriptor bz_insns_16[] = {
12097 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12098 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12099 { 0, 0 } /* End marker for find_match(). */
12100};
12101
12102/* Switch between a 5-bit register index and its 3-bit shorthand. */
12103
12104#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12105#define BZ16_REG_FIELD(r) \
12106 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12107
12108
12109/* 32-bit instructions with a delay slot. */
12110
12111static const struct opcode_descriptor jal_insn_32_bd16 =
12112 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12113
12114static const struct opcode_descriptor jal_insn_32_bd32 =
12115 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12116
12117static const struct opcode_descriptor jal_x_insn_32_bd32 =
12118 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12119
12120static const struct opcode_descriptor j_insn_32 =
12121 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12122
12123static const struct opcode_descriptor jalr_insn_32 =
12124 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12125
12126/* This table can be compacted, because no opcode replacement is made. */
12127
12128static const struct opcode_descriptor ds_insns_32_bd16[] = {
12129 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12130
12131 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12132 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12133
12134 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12135 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12136 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12137 { 0, 0 } /* End marker for find_match(). */
12138};
12139
12140/* This table can be compacted, because no opcode replacement is made. */
12141
12142static const struct opcode_descriptor ds_insns_32_bd32[] = {
12143 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12144
12145 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12146 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12147 { 0, 0 } /* End marker for find_match(). */
12148};
12149
12150
12151/* 16-bit instructions with a delay slot. */
12152
12153static const struct opcode_descriptor jalr_insn_16_bd16 =
12154 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12155
12156static const struct opcode_descriptor jalr_insn_16_bd32 =
12157 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12158
12159static const struct opcode_descriptor jr_insn_16 =
12160 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12161
12162#define JR16_REG(opcode) ((opcode) & 0x1f)
12163
12164/* This table can be compacted, because no opcode replacement is made. */
12165
12166static const struct opcode_descriptor ds_insns_16_bd16[] = {
12167 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12168
12169 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12170 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12171 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12172 { 0, 0 } /* End marker for find_match(). */
12173};
12174
12175
12176/* LUI instruction. */
12177
12178static const struct opcode_descriptor lui_insn =
12179 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12180
12181
12182/* ADDIU instruction. */
12183
12184static const struct opcode_descriptor addiu_insn =
12185 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12186
12187static const struct opcode_descriptor addiupc_insn =
12188 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12189
12190#define ADDIUPC_REG_FIELD(r) \
12191 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12192
12193
12194/* Relaxable instructions in a JAL delay slot: MOVE. */
12195
12196/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12197 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12198#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12199#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12200
12201#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12202#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12203
12204static const struct opcode_descriptor move_insns_32[] = {
12205 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12206 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12207 { 0, 0 } /* End marker for find_match(). */
12208};
12209
12210static const struct opcode_descriptor move_insn_16 =
12211 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12212
12213
12214/* NOP instructions. */
12215
12216static const struct opcode_descriptor nop_insn_32 =
12217 { /* "nop", "", */ 0x00000000, 0xffffffff };
12218
12219static const struct opcode_descriptor nop_insn_16 =
12220 { /* "nop", "", */ 0x0c00, 0xffff };
12221
12222
12223/* Instruction match support. */
12224
12225#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12226
12227static int
12228find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12229{
12230 unsigned long indx;
12231
12232 for (indx = 0; insn[indx].mask != 0; indx++)
12233 if (MATCH (opcode, insn[indx]))
12234 return indx;
12235
12236 return -1;
12237}
12238
12239
12240/* Branch and delay slot decoding support. */
12241
12242/* If PTR points to what *might* be a 16-bit branch or jump, then
12243 return the minimum length of its delay slot, otherwise return 0.
12244 Non-zero results are not definitive as we might be checking against
12245 the second half of another instruction. */
12246
12247static int
12248check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12249{
12250 unsigned long opcode;
12251 int bdsize;
12252
12253 opcode = bfd_get_16 (abfd, ptr);
12254 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12255 /* 16-bit branch/jump with a 32-bit delay slot. */
12256 bdsize = 4;
12257 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12258 || find_match (opcode, ds_insns_16_bd16) >= 0)
12259 /* 16-bit branch/jump with a 16-bit delay slot. */
12260 bdsize = 2;
12261 else
12262 /* No delay slot. */
12263 bdsize = 0;
12264
12265 return bdsize;
12266}
12267
12268/* If PTR points to what *might* be a 32-bit branch or jump, then
12269 return the minimum length of its delay slot, otherwise return 0.
12270 Non-zero results are not definitive as we might be checking against
12271 the second half of another instruction. */
12272
12273static int
12274check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12275{
12276 unsigned long opcode;
12277 int bdsize;
12278
d21911ea 12279 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12280 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12281 /* 32-bit branch/jump with a 32-bit delay slot. */
12282 bdsize = 4;
12283 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12284 /* 32-bit branch/jump with a 16-bit delay slot. */
12285 bdsize = 2;
12286 else
12287 /* No delay slot. */
12288 bdsize = 0;
12289
12290 return bdsize;
12291}
12292
12293/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12294 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12295
12296static bfd_boolean
12297check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12298{
12299 unsigned long opcode;
12300
12301 opcode = bfd_get_16 (abfd, ptr);
12302 if (MATCH (opcode, b_insn_16)
12303 /* B16 */
12304 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12305 /* JR16 */
12306 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12307 /* BEQZ16, BNEZ16 */
12308 || (MATCH (opcode, jalr_insn_16_bd32)
12309 /* JALR16 */
12310 && reg != JR16_REG (opcode) && reg != RA))
12311 return TRUE;
12312
12313 return FALSE;
12314}
12315
12316/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12317 then return TRUE, otherwise FALSE. */
12318
f41e5fcc 12319static bfd_boolean
df58fc94
RS
12320check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12321{
12322 unsigned long opcode;
12323
d21911ea 12324 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12325 if (MATCH (opcode, j_insn_32)
12326 /* J */
12327 || MATCH (opcode, bc_insn_32)
12328 /* BC1F, BC1T, BC2F, BC2T */
12329 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12330 /* JAL, JALX */
12331 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12332 /* BGEZ, BGTZ, BLEZ, BLTZ */
12333 || (MATCH (opcode, bzal_insn_32)
12334 /* BGEZAL, BLTZAL */
12335 && reg != OP32_SREG (opcode) && reg != RA)
12336 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12337 /* JALR, JALR.HB, BEQ, BNE */
12338 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12339 return TRUE;
12340
12341 return FALSE;
12342}
12343
80cab405
MR
12344/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12345 IRELEND) at OFFSET indicate that there must be a compact branch there,
12346 then return TRUE, otherwise FALSE. */
df58fc94
RS
12347
12348static bfd_boolean
80cab405
MR
12349check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12350 const Elf_Internal_Rela *internal_relocs,
12351 const Elf_Internal_Rela *irelend)
df58fc94 12352{
80cab405
MR
12353 const Elf_Internal_Rela *irel;
12354 unsigned long opcode;
12355
d21911ea 12356 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
12357 if (find_match (opcode, bzc_insns_32) < 0)
12358 return FALSE;
df58fc94
RS
12359
12360 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
12361 if (irel->r_offset == offset
12362 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12363 return TRUE;
12364
df58fc94
RS
12365 return FALSE;
12366}
80cab405
MR
12367
12368/* Bitsize checking. */
12369#define IS_BITSIZE(val, N) \
12370 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12371 - (1ULL << ((N) - 1))) == (val))
12372
df58fc94
RS
12373\f
12374bfd_boolean
12375_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12376 struct bfd_link_info *link_info,
12377 bfd_boolean *again)
12378{
12379 Elf_Internal_Shdr *symtab_hdr;
12380 Elf_Internal_Rela *internal_relocs;
12381 Elf_Internal_Rela *irel, *irelend;
12382 bfd_byte *contents = NULL;
12383 Elf_Internal_Sym *isymbuf = NULL;
12384
12385 /* Assume nothing changes. */
12386 *again = FALSE;
12387
12388 /* We don't have to do anything for a relocatable link, if
12389 this section does not have relocs, or if this is not a
12390 code section. */
12391
12392 if (link_info->relocatable
12393 || (sec->flags & SEC_RELOC) == 0
12394 || sec->reloc_count == 0
12395 || (sec->flags & SEC_CODE) == 0)
12396 return TRUE;
12397
12398 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12399
12400 /* Get a copy of the native relocations. */
12401 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 12402 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
12403 link_info->keep_memory));
12404 if (internal_relocs == NULL)
12405 goto error_return;
12406
12407 /* Walk through them looking for relaxing opportunities. */
12408 irelend = internal_relocs + sec->reloc_count;
12409 for (irel = internal_relocs; irel < irelend; irel++)
12410 {
12411 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12412 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12413 bfd_boolean target_is_micromips_code_p;
12414 unsigned long opcode;
12415 bfd_vma symval;
12416 bfd_vma pcrval;
2309ddf2 12417 bfd_byte *ptr;
df58fc94
RS
12418 int fndopc;
12419
12420 /* The number of bytes to delete for relaxation and from where
12421 to delete these bytes starting at irel->r_offset. */
12422 int delcnt = 0;
12423 int deloff = 0;
12424
12425 /* If this isn't something that can be relaxed, then ignore
12426 this reloc. */
12427 if (r_type != R_MICROMIPS_HI16
12428 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 12429 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
12430 continue;
12431
12432 /* Get the section contents if we haven't done so already. */
12433 if (contents == NULL)
12434 {
12435 /* Get cached copy if it exists. */
12436 if (elf_section_data (sec)->this_hdr.contents != NULL)
12437 contents = elf_section_data (sec)->this_hdr.contents;
12438 /* Go get them off disk. */
12439 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12440 goto error_return;
12441 }
2309ddf2 12442 ptr = contents + irel->r_offset;
df58fc94
RS
12443
12444 /* Read this BFD's local symbols if we haven't done so already. */
12445 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12446 {
12447 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12448 if (isymbuf == NULL)
12449 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12450 symtab_hdr->sh_info, 0,
12451 NULL, NULL, NULL);
12452 if (isymbuf == NULL)
12453 goto error_return;
12454 }
12455
12456 /* Get the value of the symbol referred to by the reloc. */
12457 if (r_symndx < symtab_hdr->sh_info)
12458 {
12459 /* A local symbol. */
12460 Elf_Internal_Sym *isym;
12461 asection *sym_sec;
12462
12463 isym = isymbuf + r_symndx;
12464 if (isym->st_shndx == SHN_UNDEF)
12465 sym_sec = bfd_und_section_ptr;
12466 else if (isym->st_shndx == SHN_ABS)
12467 sym_sec = bfd_abs_section_ptr;
12468 else if (isym->st_shndx == SHN_COMMON)
12469 sym_sec = bfd_com_section_ptr;
12470 else
12471 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12472 symval = (isym->st_value
12473 + sym_sec->output_section->vma
12474 + sym_sec->output_offset);
12475 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12476 }
12477 else
12478 {
12479 unsigned long indx;
12480 struct elf_link_hash_entry *h;
12481
12482 /* An external symbol. */
12483 indx = r_symndx - symtab_hdr->sh_info;
12484 h = elf_sym_hashes (abfd)[indx];
12485 BFD_ASSERT (h != NULL);
12486
12487 if (h->root.type != bfd_link_hash_defined
12488 && h->root.type != bfd_link_hash_defweak)
12489 /* This appears to be a reference to an undefined
12490 symbol. Just ignore it -- it will be caught by the
12491 regular reloc processing. */
12492 continue;
12493
12494 symval = (h->root.u.def.value
12495 + h->root.u.def.section->output_section->vma
12496 + h->root.u.def.section->output_offset);
12497 target_is_micromips_code_p = (!h->needs_plt
12498 && ELF_ST_IS_MICROMIPS (h->other));
12499 }
12500
12501
12502 /* For simplicity of coding, we are going to modify the
12503 section contents, the section relocs, and the BFD symbol
12504 table. We must tell the rest of the code not to free up this
12505 information. It would be possible to instead create a table
12506 of changes which have to be made, as is done in coff-mips.c;
12507 that would be more work, but would require less memory when
12508 the linker is run. */
12509
12510 /* Only 32-bit instructions relaxed. */
12511 if (irel->r_offset + 4 > sec->size)
12512 continue;
12513
d21911ea 12514 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
12515
12516 /* This is the pc-relative distance from the instruction the
12517 relocation is applied to, to the symbol referred. */
12518 pcrval = (symval
12519 - (sec->output_section->vma + sec->output_offset)
12520 - irel->r_offset);
12521
12522 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12523 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12524 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12525
12526 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12527
12528 where pcrval has first to be adjusted to apply against the LO16
12529 location (we make the adjustment later on, when we have figured
12530 out the offset). */
12531 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12532 {
80cab405 12533 bfd_boolean bzc = FALSE;
df58fc94
RS
12534 unsigned long nextopc;
12535 unsigned long reg;
12536 bfd_vma offset;
12537
12538 /* Give up if the previous reloc was a HI16 against this symbol
12539 too. */
12540 if (irel > internal_relocs
12541 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12542 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12543 continue;
12544
12545 /* Or if the next reloc is not a LO16 against this symbol. */
12546 if (irel + 1 >= irelend
12547 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12548 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12549 continue;
12550
12551 /* Or if the second next reloc is a LO16 against this symbol too. */
12552 if (irel + 2 >= irelend
12553 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12554 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12555 continue;
12556
80cab405
MR
12557 /* See if the LUI instruction *might* be in a branch delay slot.
12558 We check whether what looks like a 16-bit branch or jump is
12559 actually an immediate argument to a compact branch, and let
12560 it through if so. */
df58fc94 12561 if (irel->r_offset >= 2
2309ddf2 12562 && check_br16_dslot (abfd, ptr - 2)
df58fc94 12563 && !(irel->r_offset >= 4
80cab405
MR
12564 && (bzc = check_relocated_bzc (abfd,
12565 ptr - 4, irel->r_offset - 4,
12566 internal_relocs, irelend))))
df58fc94
RS
12567 continue;
12568 if (irel->r_offset >= 4
80cab405 12569 && !bzc
2309ddf2 12570 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
12571 continue;
12572
12573 reg = OP32_SREG (opcode);
12574
12575 /* We only relax adjacent instructions or ones separated with
12576 a branch or jump that has a delay slot. The branch or jump
12577 must not fiddle with the register used to hold the address.
12578 Subtract 4 for the LUI itself. */
12579 offset = irel[1].r_offset - irel[0].r_offset;
12580 switch (offset - 4)
12581 {
12582 case 0:
12583 break;
12584 case 2:
2309ddf2 12585 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
12586 break;
12587 continue;
12588 case 4:
2309ddf2 12589 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
12590 break;
12591 continue;
12592 default:
12593 continue;
12594 }
12595
d21911ea 12596 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
12597
12598 /* Give up unless the same register is used with both
12599 relocations. */
12600 if (OP32_SREG (nextopc) != reg)
12601 continue;
12602
12603 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12604 and rounding up to take masking of the two LSBs into account. */
12605 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12606
12607 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12608 if (IS_BITSIZE (symval, 16))
12609 {
12610 /* Fix the relocation's type. */
12611 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12612
12613 /* Instructions using R_MICROMIPS_LO16 have the base or
12614 source register in bits 20:16. This register becomes $0
12615 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12616 nextopc &= ~0x001f0000;
12617 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12618 contents + irel[1].r_offset);
12619 }
12620
12621 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12622 We add 4 to take LUI deletion into account while checking
12623 the PC-relative distance. */
12624 else if (symval % 4 == 0
12625 && IS_BITSIZE (pcrval + 4, 25)
12626 && MATCH (nextopc, addiu_insn)
12627 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12628 && OP16_VALID_REG (OP32_TREG (nextopc)))
12629 {
12630 /* Fix the relocation's type. */
12631 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12632
12633 /* Replace ADDIU with the ADDIUPC version. */
12634 nextopc = (addiupc_insn.match
12635 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12636
d21911ea
MR
12637 bfd_put_micromips_32 (abfd, nextopc,
12638 contents + irel[1].r_offset);
df58fc94
RS
12639 }
12640
12641 /* Can't do anything, give up, sigh... */
12642 else
12643 continue;
12644
12645 /* Fix the relocation's type. */
12646 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12647
12648 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12649 delcnt = 4;
12650 deloff = 0;
12651 }
12652
12653 /* Compact branch relaxation -- due to the multitude of macros
12654 employed by the compiler/assembler, compact branches are not
12655 always generated. Obviously, this can/will be fixed elsewhere,
12656 but there is no drawback in double checking it here. */
12657 else if (r_type == R_MICROMIPS_PC16_S1
12658 && irel->r_offset + 5 < sec->size
12659 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12660 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
2309ddf2 12661 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
df58fc94
RS
12662 {
12663 unsigned long reg;
12664
12665 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12666
12667 /* Replace BEQZ/BNEZ with the compact version. */
12668 opcode = (bzc_insns_32[fndopc].match
12669 | BZC32_REG_FIELD (reg)
12670 | (opcode & 0xffff)); /* Addend value. */
12671
d21911ea 12672 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94
RS
12673
12674 /* Delete the 16-bit delay slot NOP: two bytes from
12675 irel->offset + 4. */
12676 delcnt = 2;
12677 deloff = 4;
12678 }
12679
12680 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12681 to check the distance from the next instruction, so subtract 2. */
12682 else if (r_type == R_MICROMIPS_PC16_S1
12683 && IS_BITSIZE (pcrval - 2, 11)
12684 && find_match (opcode, b_insns_32) >= 0)
12685 {
12686 /* Fix the relocation's type. */
12687 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12688
a8685210 12689 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12690 bfd_put_16 (abfd,
12691 (b_insn_16.match
12692 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 12693 ptr);
df58fc94
RS
12694
12695 /* Delete 2 bytes from irel->r_offset + 2. */
12696 delcnt = 2;
12697 deloff = 2;
12698 }
12699
12700 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12701 to check the distance from the next instruction, so subtract 2. */
12702 else if (r_type == R_MICROMIPS_PC16_S1
12703 && IS_BITSIZE (pcrval - 2, 8)
12704 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12705 && OP16_VALID_REG (OP32_SREG (opcode)))
12706 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12707 && OP16_VALID_REG (OP32_TREG (opcode)))))
12708 {
12709 unsigned long reg;
12710
12711 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12712
12713 /* Fix the relocation's type. */
12714 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12715
a8685210 12716 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
12717 bfd_put_16 (abfd,
12718 (bz_insns_16[fndopc].match
12719 | BZ16_REG_FIELD (reg)
12720 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 12721 ptr);
df58fc94
RS
12722
12723 /* Delete 2 bytes from irel->r_offset + 2. */
12724 delcnt = 2;
12725 deloff = 2;
12726 }
12727
12728 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12729 else if (r_type == R_MICROMIPS_26_S1
12730 && target_is_micromips_code_p
12731 && irel->r_offset + 7 < sec->size
12732 && MATCH (opcode, jal_insn_32_bd32))
12733 {
12734 unsigned long n32opc;
12735 bfd_boolean relaxed = FALSE;
12736
d21911ea 12737 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
12738
12739 if (MATCH (n32opc, nop_insn_32))
12740 {
12741 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 12742 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
12743
12744 relaxed = TRUE;
12745 }
12746 else if (find_match (n32opc, move_insns_32) >= 0)
12747 {
12748 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12749 bfd_put_16 (abfd,
12750 (move_insn_16.match
12751 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12752 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 12753 ptr + 4);
df58fc94
RS
12754
12755 relaxed = TRUE;
12756 }
12757 /* Other 32-bit instructions relaxable to 16-bit
12758 instructions will be handled here later. */
12759
12760 if (relaxed)
12761 {
12762 /* JAL with 32-bit delay slot that is changed to a JALS
12763 with 16-bit delay slot. */
d21911ea 12764 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
12765
12766 /* Delete 2 bytes from irel->r_offset + 6. */
12767 delcnt = 2;
12768 deloff = 6;
12769 }
12770 }
12771
12772 if (delcnt != 0)
12773 {
12774 /* Note that we've changed the relocs, section contents, etc. */
12775 elf_section_data (sec)->relocs = internal_relocs;
12776 elf_section_data (sec)->this_hdr.contents = contents;
12777 symtab_hdr->contents = (unsigned char *) isymbuf;
12778
12779 /* Delete bytes depending on the delcnt and deloff. */
12780 if (!mips_elf_relax_delete_bytes (abfd, sec,
12781 irel->r_offset + deloff, delcnt))
12782 goto error_return;
12783
12784 /* That will change things, so we should relax again.
12785 Note that this is not required, and it may be slow. */
12786 *again = TRUE;
12787 }
12788 }
12789
12790 if (isymbuf != NULL
12791 && symtab_hdr->contents != (unsigned char *) isymbuf)
12792 {
12793 if (! link_info->keep_memory)
12794 free (isymbuf);
12795 else
12796 {
12797 /* Cache the symbols for elf_link_input_bfd. */
12798 symtab_hdr->contents = (unsigned char *) isymbuf;
12799 }
12800 }
12801
12802 if (contents != NULL
12803 && elf_section_data (sec)->this_hdr.contents != contents)
12804 {
12805 if (! link_info->keep_memory)
12806 free (contents);
12807 else
12808 {
12809 /* Cache the section contents for elf_link_input_bfd. */
12810 elf_section_data (sec)->this_hdr.contents = contents;
12811 }
12812 }
12813
12814 if (internal_relocs != NULL
12815 && elf_section_data (sec)->relocs != internal_relocs)
12816 free (internal_relocs);
12817
12818 return TRUE;
12819
12820 error_return:
12821 if (isymbuf != NULL
12822 && symtab_hdr->contents != (unsigned char *) isymbuf)
12823 free (isymbuf);
12824 if (contents != NULL
12825 && elf_section_data (sec)->this_hdr.contents != contents)
12826 free (contents);
12827 if (internal_relocs != NULL
12828 && elf_section_data (sec)->relocs != internal_relocs)
12829 free (internal_relocs);
12830
12831 return FALSE;
12832}
12833\f
b49e97c9
TS
12834/* Create a MIPS ELF linker hash table. */
12835
12836struct bfd_link_hash_table *
9719ad41 12837_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
12838{
12839 struct mips_elf_link_hash_table *ret;
12840 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12841
7bf52ea2 12842 ret = bfd_zmalloc (amt);
9719ad41 12843 if (ret == NULL)
b49e97c9
TS
12844 return NULL;
12845
66eb6687
AM
12846 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12847 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
12848 sizeof (struct mips_elf_link_hash_entry),
12849 MIPS_ELF_DATA))
b49e97c9 12850 {
e2d34d7d 12851 free (ret);
b49e97c9
TS
12852 return NULL;
12853 }
12854
b49e97c9
TS
12855 return &ret->root.root;
12856}
0a44bf69
RS
12857
12858/* Likewise, but indicate that the target is VxWorks. */
12859
12860struct bfd_link_hash_table *
12861_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12862{
12863 struct bfd_link_hash_table *ret;
12864
12865 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12866 if (ret)
12867 {
12868 struct mips_elf_link_hash_table *htab;
12869
12870 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
12871 htab->use_plts_and_copy_relocs = TRUE;
12872 htab->is_vxworks = TRUE;
0a44bf69
RS
12873 }
12874 return ret;
12875}
861fb55a
DJ
12876
12877/* A function that the linker calls if we are allowed to use PLTs
12878 and copy relocs. */
12879
12880void
12881_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12882{
12883 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12884}
b49e97c9
TS
12885\f
12886/* We need to use a special link routine to handle the .reginfo and
12887 the .mdebug sections. We need to merge all instances of these
12888 sections together, not write them all out sequentially. */
12889
b34976b6 12890bfd_boolean
9719ad41 12891_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 12892{
b49e97c9
TS
12893 asection *o;
12894 struct bfd_link_order *p;
12895 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12896 asection *rtproc_sec;
12897 Elf32_RegInfo reginfo;
12898 struct ecoff_debug_info debug;
861fb55a 12899 struct mips_htab_traverse_info hti;
7a2a6943
NC
12900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12901 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 12902 HDRR *symhdr = &debug.symbolic_header;
9719ad41 12903 void *mdebug_handle = NULL;
b49e97c9
TS
12904 asection *s;
12905 EXTR esym;
12906 unsigned int i;
12907 bfd_size_type amt;
0a44bf69 12908 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
12909
12910 static const char * const secname[] =
12911 {
12912 ".text", ".init", ".fini", ".data",
12913 ".rodata", ".sdata", ".sbss", ".bss"
12914 };
12915 static const int sc[] =
12916 {
12917 scText, scInit, scFini, scData,
12918 scRData, scSData, scSBss, scBss
12919 };
12920
d4596a51
RS
12921 /* Sort the dynamic symbols so that those with GOT entries come after
12922 those without. */
0a44bf69 12923 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
12924 BFD_ASSERT (htab != NULL);
12925
d4596a51
RS
12926 if (!mips_elf_sort_hash_table (abfd, info))
12927 return FALSE;
b49e97c9 12928
861fb55a
DJ
12929 /* Create any scheduled LA25 stubs. */
12930 hti.info = info;
12931 hti.output_bfd = abfd;
12932 hti.error = FALSE;
12933 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12934 if (hti.error)
12935 return FALSE;
12936
b49e97c9
TS
12937 /* Get a value for the GP register. */
12938 if (elf_gp (abfd) == 0)
12939 {
12940 struct bfd_link_hash_entry *h;
12941
b34976b6 12942 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 12943 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
12944 elf_gp (abfd) = (h->u.def.value
12945 + h->u.def.section->output_section->vma
12946 + h->u.def.section->output_offset);
0a44bf69
RS
12947 else if (htab->is_vxworks
12948 && (h = bfd_link_hash_lookup (info->hash,
12949 "_GLOBAL_OFFSET_TABLE_",
12950 FALSE, FALSE, TRUE))
12951 && h->type == bfd_link_hash_defined)
12952 elf_gp (abfd) = (h->u.def.section->output_section->vma
12953 + h->u.def.section->output_offset
12954 + h->u.def.value);
1049f94e 12955 else if (info->relocatable)
b49e97c9
TS
12956 {
12957 bfd_vma lo = MINUS_ONE;
12958
12959 /* Find the GP-relative section with the lowest offset. */
9719ad41 12960 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12961 if (o->vma < lo
12962 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12963 lo = o->vma;
12964
12965 /* And calculate GP relative to that. */
0a44bf69 12966 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
12967 }
12968 else
12969 {
12970 /* If the relocate_section function needs to do a reloc
12971 involving the GP value, it should make a reloc_dangerous
12972 callback to warn that GP is not defined. */
12973 }
12974 }
12975
12976 /* Go through the sections and collect the .reginfo and .mdebug
12977 information. */
12978 reginfo_sec = NULL;
12979 mdebug_sec = NULL;
12980 gptab_data_sec = NULL;
12981 gptab_bss_sec = NULL;
9719ad41 12982 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
12983 {
12984 if (strcmp (o->name, ".reginfo") == 0)
12985 {
12986 memset (&reginfo, 0, sizeof reginfo);
12987
12988 /* We have found the .reginfo section in the output file.
12989 Look through all the link_orders comprising it and merge
12990 the information together. */
8423293d 12991 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
12992 {
12993 asection *input_section;
12994 bfd *input_bfd;
12995 Elf32_External_RegInfo ext;
12996 Elf32_RegInfo sub;
12997
12998 if (p->type != bfd_indirect_link_order)
12999 {
13000 if (p->type == bfd_data_link_order)
13001 continue;
13002 abort ();
13003 }
13004
13005 input_section = p->u.indirect.section;
13006 input_bfd = input_section->owner;
13007
b49e97c9 13008 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 13009 &ext, 0, sizeof ext))
b34976b6 13010 return FALSE;
b49e97c9
TS
13011
13012 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13013
13014 reginfo.ri_gprmask |= sub.ri_gprmask;
13015 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13016 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13017 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13018 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13019
13020 /* ri_gp_value is set by the function
13021 mips_elf32_section_processing when the section is
13022 finally written out. */
13023
13024 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13025 elf_link_input_bfd ignores this section. */
13026 input_section->flags &= ~SEC_HAS_CONTENTS;
13027 }
13028
13029 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 13030 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
13031
13032 /* Skip this section later on (I don't think this currently
13033 matters, but someday it might). */
8423293d 13034 o->map_head.link_order = NULL;
b49e97c9
TS
13035
13036 reginfo_sec = o;
13037 }
13038
13039 if (strcmp (o->name, ".mdebug") == 0)
13040 {
13041 struct extsym_info einfo;
13042 bfd_vma last;
13043
13044 /* We have found the .mdebug section in the output file.
13045 Look through all the link_orders comprising it and merge
13046 the information together. */
13047 symhdr->magic = swap->sym_magic;
13048 /* FIXME: What should the version stamp be? */
13049 symhdr->vstamp = 0;
13050 symhdr->ilineMax = 0;
13051 symhdr->cbLine = 0;
13052 symhdr->idnMax = 0;
13053 symhdr->ipdMax = 0;
13054 symhdr->isymMax = 0;
13055 symhdr->ioptMax = 0;
13056 symhdr->iauxMax = 0;
13057 symhdr->issMax = 0;
13058 symhdr->issExtMax = 0;
13059 symhdr->ifdMax = 0;
13060 symhdr->crfd = 0;
13061 symhdr->iextMax = 0;
13062
13063 /* We accumulate the debugging information itself in the
13064 debug_info structure. */
13065 debug.line = NULL;
13066 debug.external_dnr = NULL;
13067 debug.external_pdr = NULL;
13068 debug.external_sym = NULL;
13069 debug.external_opt = NULL;
13070 debug.external_aux = NULL;
13071 debug.ss = NULL;
13072 debug.ssext = debug.ssext_end = NULL;
13073 debug.external_fdr = NULL;
13074 debug.external_rfd = NULL;
13075 debug.external_ext = debug.external_ext_end = NULL;
13076
13077 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 13078 if (mdebug_handle == NULL)
b34976b6 13079 return FALSE;
b49e97c9
TS
13080
13081 esym.jmptbl = 0;
13082 esym.cobol_main = 0;
13083 esym.weakext = 0;
13084 esym.reserved = 0;
13085 esym.ifd = ifdNil;
13086 esym.asym.iss = issNil;
13087 esym.asym.st = stLocal;
13088 esym.asym.reserved = 0;
13089 esym.asym.index = indexNil;
13090 last = 0;
13091 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13092 {
13093 esym.asym.sc = sc[i];
13094 s = bfd_get_section_by_name (abfd, secname[i]);
13095 if (s != NULL)
13096 {
13097 esym.asym.value = s->vma;
eea6121a 13098 last = s->vma + s->size;
b49e97c9
TS
13099 }
13100 else
13101 esym.asym.value = last;
13102 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13103 secname[i], &esym))
b34976b6 13104 return FALSE;
b49e97c9
TS
13105 }
13106
8423293d 13107 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13108 {
13109 asection *input_section;
13110 bfd *input_bfd;
13111 const struct ecoff_debug_swap *input_swap;
13112 struct ecoff_debug_info input_debug;
13113 char *eraw_src;
13114 char *eraw_end;
13115
13116 if (p->type != bfd_indirect_link_order)
13117 {
13118 if (p->type == bfd_data_link_order)
13119 continue;
13120 abort ();
13121 }
13122
13123 input_section = p->u.indirect.section;
13124 input_bfd = input_section->owner;
13125
d5eaccd7 13126 if (!is_mips_elf (input_bfd))
b49e97c9
TS
13127 {
13128 /* I don't know what a non MIPS ELF bfd would be
13129 doing with a .mdebug section, but I don't really
13130 want to deal with it. */
13131 continue;
13132 }
13133
13134 input_swap = (get_elf_backend_data (input_bfd)
13135 ->elf_backend_ecoff_debug_swap);
13136
eea6121a 13137 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
13138
13139 /* The ECOFF linking code expects that we have already
13140 read in the debugging information and set up an
13141 ecoff_debug_info structure, so we do that now. */
13142 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13143 &input_debug))
b34976b6 13144 return FALSE;
b49e97c9
TS
13145
13146 if (! (bfd_ecoff_debug_accumulate
13147 (mdebug_handle, abfd, &debug, swap, input_bfd,
13148 &input_debug, input_swap, info)))
b34976b6 13149 return FALSE;
b49e97c9
TS
13150
13151 /* Loop through the external symbols. For each one with
13152 interesting information, try to find the symbol in
13153 the linker global hash table and save the information
13154 for the output external symbols. */
13155 eraw_src = input_debug.external_ext;
13156 eraw_end = (eraw_src
13157 + (input_debug.symbolic_header.iextMax
13158 * input_swap->external_ext_size));
13159 for (;
13160 eraw_src < eraw_end;
13161 eraw_src += input_swap->external_ext_size)
13162 {
13163 EXTR ext;
13164 const char *name;
13165 struct mips_elf_link_hash_entry *h;
13166
9719ad41 13167 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
13168 if (ext.asym.sc == scNil
13169 || ext.asym.sc == scUndefined
13170 || ext.asym.sc == scSUndefined)
13171 continue;
13172
13173 name = input_debug.ssext + ext.asym.iss;
13174 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 13175 name, FALSE, FALSE, TRUE);
b49e97c9
TS
13176 if (h == NULL || h->esym.ifd != -2)
13177 continue;
13178
13179 if (ext.ifd != -1)
13180 {
13181 BFD_ASSERT (ext.ifd
13182 < input_debug.symbolic_header.ifdMax);
13183 ext.ifd = input_debug.ifdmap[ext.ifd];
13184 }
13185
13186 h->esym = ext;
13187 }
13188
13189 /* Free up the information we just read. */
13190 free (input_debug.line);
13191 free (input_debug.external_dnr);
13192 free (input_debug.external_pdr);
13193 free (input_debug.external_sym);
13194 free (input_debug.external_opt);
13195 free (input_debug.external_aux);
13196 free (input_debug.ss);
13197 free (input_debug.ssext);
13198 free (input_debug.external_fdr);
13199 free (input_debug.external_rfd);
13200 free (input_debug.external_ext);
13201
13202 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13203 elf_link_input_bfd ignores this section. */
13204 input_section->flags &= ~SEC_HAS_CONTENTS;
13205 }
13206
13207 if (SGI_COMPAT (abfd) && info->shared)
13208 {
13209 /* Create .rtproc section. */
87e0a731 13210 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
13211 if (rtproc_sec == NULL)
13212 {
13213 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13214 | SEC_LINKER_CREATED | SEC_READONLY);
13215
87e0a731
AM
13216 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13217 ".rtproc",
13218 flags);
b49e97c9 13219 if (rtproc_sec == NULL
b49e97c9 13220 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 13221 return FALSE;
b49e97c9
TS
13222 }
13223
13224 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13225 info, rtproc_sec,
13226 &debug))
b34976b6 13227 return FALSE;
b49e97c9
TS
13228 }
13229
13230 /* Build the external symbol information. */
13231 einfo.abfd = abfd;
13232 einfo.info = info;
13233 einfo.debug = &debug;
13234 einfo.swap = swap;
b34976b6 13235 einfo.failed = FALSE;
b49e97c9 13236 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 13237 mips_elf_output_extsym, &einfo);
b49e97c9 13238 if (einfo.failed)
b34976b6 13239 return FALSE;
b49e97c9
TS
13240
13241 /* Set the size of the .mdebug section. */
eea6121a 13242 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
13243
13244 /* Skip this section later on (I don't think this currently
13245 matters, but someday it might). */
8423293d 13246 o->map_head.link_order = NULL;
b49e97c9
TS
13247
13248 mdebug_sec = o;
13249 }
13250
0112cd26 13251 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
13252 {
13253 const char *subname;
13254 unsigned int c;
13255 Elf32_gptab *tab;
13256 Elf32_External_gptab *ext_tab;
13257 unsigned int j;
13258
13259 /* The .gptab.sdata and .gptab.sbss sections hold
13260 information describing how the small data area would
13261 change depending upon the -G switch. These sections
13262 not used in executables files. */
1049f94e 13263 if (! info->relocatable)
b49e97c9 13264 {
8423293d 13265 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13266 {
13267 asection *input_section;
13268
13269 if (p->type != bfd_indirect_link_order)
13270 {
13271 if (p->type == bfd_data_link_order)
13272 continue;
13273 abort ();
13274 }
13275
13276 input_section = p->u.indirect.section;
13277
13278 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13279 elf_link_input_bfd ignores this section. */
13280 input_section->flags &= ~SEC_HAS_CONTENTS;
13281 }
13282
13283 /* Skip this section later on (I don't think this
13284 currently matters, but someday it might). */
8423293d 13285 o->map_head.link_order = NULL;
b49e97c9
TS
13286
13287 /* Really remove the section. */
5daa8fe7 13288 bfd_section_list_remove (abfd, o);
b49e97c9
TS
13289 --abfd->section_count;
13290
13291 continue;
13292 }
13293
13294 /* There is one gptab for initialized data, and one for
13295 uninitialized data. */
13296 if (strcmp (o->name, ".gptab.sdata") == 0)
13297 gptab_data_sec = o;
13298 else if (strcmp (o->name, ".gptab.sbss") == 0)
13299 gptab_bss_sec = o;
13300 else
13301 {
13302 (*_bfd_error_handler)
13303 (_("%s: illegal section name `%s'"),
13304 bfd_get_filename (abfd), o->name);
13305 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 13306 return FALSE;
b49e97c9
TS
13307 }
13308
13309 /* The linker script always combines .gptab.data and
13310 .gptab.sdata into .gptab.sdata, and likewise for
13311 .gptab.bss and .gptab.sbss. It is possible that there is
13312 no .sdata or .sbss section in the output file, in which
13313 case we must change the name of the output section. */
13314 subname = o->name + sizeof ".gptab" - 1;
13315 if (bfd_get_section_by_name (abfd, subname) == NULL)
13316 {
13317 if (o == gptab_data_sec)
13318 o->name = ".gptab.data";
13319 else
13320 o->name = ".gptab.bss";
13321 subname = o->name + sizeof ".gptab" - 1;
13322 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13323 }
13324
13325 /* Set up the first entry. */
13326 c = 1;
13327 amt = c * sizeof (Elf32_gptab);
9719ad41 13328 tab = bfd_malloc (amt);
b49e97c9 13329 if (tab == NULL)
b34976b6 13330 return FALSE;
b49e97c9
TS
13331 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13332 tab[0].gt_header.gt_unused = 0;
13333
13334 /* Combine the input sections. */
8423293d 13335 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
13336 {
13337 asection *input_section;
13338 bfd *input_bfd;
13339 bfd_size_type size;
13340 unsigned long last;
13341 bfd_size_type gpentry;
13342
13343 if (p->type != bfd_indirect_link_order)
13344 {
13345 if (p->type == bfd_data_link_order)
13346 continue;
13347 abort ();
13348 }
13349
13350 input_section = p->u.indirect.section;
13351 input_bfd = input_section->owner;
13352
13353 /* Combine the gptab entries for this input section one
13354 by one. We know that the input gptab entries are
13355 sorted by ascending -G value. */
eea6121a 13356 size = input_section->size;
b49e97c9
TS
13357 last = 0;
13358 for (gpentry = sizeof (Elf32_External_gptab);
13359 gpentry < size;
13360 gpentry += sizeof (Elf32_External_gptab))
13361 {
13362 Elf32_External_gptab ext_gptab;
13363 Elf32_gptab int_gptab;
13364 unsigned long val;
13365 unsigned long add;
b34976b6 13366 bfd_boolean exact;
b49e97c9
TS
13367 unsigned int look;
13368
13369 if (! (bfd_get_section_contents
9719ad41
RS
13370 (input_bfd, input_section, &ext_gptab, gpentry,
13371 sizeof (Elf32_External_gptab))))
b49e97c9
TS
13372 {
13373 free (tab);
b34976b6 13374 return FALSE;
b49e97c9
TS
13375 }
13376
13377 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13378 &int_gptab);
13379 val = int_gptab.gt_entry.gt_g_value;
13380 add = int_gptab.gt_entry.gt_bytes - last;
13381
b34976b6 13382 exact = FALSE;
b49e97c9
TS
13383 for (look = 1; look < c; look++)
13384 {
13385 if (tab[look].gt_entry.gt_g_value >= val)
13386 tab[look].gt_entry.gt_bytes += add;
13387
13388 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 13389 exact = TRUE;
b49e97c9
TS
13390 }
13391
13392 if (! exact)
13393 {
13394 Elf32_gptab *new_tab;
13395 unsigned int max;
13396
13397 /* We need a new table entry. */
13398 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 13399 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
13400 if (new_tab == NULL)
13401 {
13402 free (tab);
b34976b6 13403 return FALSE;
b49e97c9
TS
13404 }
13405 tab = new_tab;
13406 tab[c].gt_entry.gt_g_value = val;
13407 tab[c].gt_entry.gt_bytes = add;
13408
13409 /* Merge in the size for the next smallest -G
13410 value, since that will be implied by this new
13411 value. */
13412 max = 0;
13413 for (look = 1; look < c; look++)
13414 {
13415 if (tab[look].gt_entry.gt_g_value < val
13416 && (max == 0
13417 || (tab[look].gt_entry.gt_g_value
13418 > tab[max].gt_entry.gt_g_value)))
13419 max = look;
13420 }
13421 if (max != 0)
13422 tab[c].gt_entry.gt_bytes +=
13423 tab[max].gt_entry.gt_bytes;
13424
13425 ++c;
13426 }
13427
13428 last = int_gptab.gt_entry.gt_bytes;
13429 }
13430
13431 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13432 elf_link_input_bfd ignores this section. */
13433 input_section->flags &= ~SEC_HAS_CONTENTS;
13434 }
13435
13436 /* The table must be sorted by -G value. */
13437 if (c > 2)
13438 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13439
13440 /* Swap out the table. */
13441 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 13442 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
13443 if (ext_tab == NULL)
13444 {
13445 free (tab);
b34976b6 13446 return FALSE;
b49e97c9
TS
13447 }
13448
13449 for (j = 0; j < c; j++)
13450 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13451 free (tab);
13452
eea6121a 13453 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
13454 o->contents = (bfd_byte *) ext_tab;
13455
13456 /* Skip this section later on (I don't think this currently
13457 matters, but someday it might). */
8423293d 13458 o->map_head.link_order = NULL;
b49e97c9
TS
13459 }
13460 }
13461
13462 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 13463 if (!bfd_elf_final_link (abfd, info))
b34976b6 13464 return FALSE;
b49e97c9
TS
13465
13466 /* Now write out the computed sections. */
13467
9719ad41 13468 if (reginfo_sec != NULL)
b49e97c9
TS
13469 {
13470 Elf32_External_RegInfo ext;
13471
13472 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 13473 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 13474 return FALSE;
b49e97c9
TS
13475 }
13476
9719ad41 13477 if (mdebug_sec != NULL)
b49e97c9
TS
13478 {
13479 BFD_ASSERT (abfd->output_has_begun);
13480 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13481 swap, info,
13482 mdebug_sec->filepos))
b34976b6 13483 return FALSE;
b49e97c9
TS
13484
13485 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13486 }
13487
9719ad41 13488 if (gptab_data_sec != NULL)
b49e97c9
TS
13489 {
13490 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13491 gptab_data_sec->contents,
eea6121a 13492 0, gptab_data_sec->size))
b34976b6 13493 return FALSE;
b49e97c9
TS
13494 }
13495
9719ad41 13496 if (gptab_bss_sec != NULL)
b49e97c9
TS
13497 {
13498 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13499 gptab_bss_sec->contents,
eea6121a 13500 0, gptab_bss_sec->size))
b34976b6 13501 return FALSE;
b49e97c9
TS
13502 }
13503
13504 if (SGI_COMPAT (abfd))
13505 {
13506 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13507 if (rtproc_sec != NULL)
13508 {
13509 if (! bfd_set_section_contents (abfd, rtproc_sec,
13510 rtproc_sec->contents,
eea6121a 13511 0, rtproc_sec->size))
b34976b6 13512 return FALSE;
b49e97c9
TS
13513 }
13514 }
13515
b34976b6 13516 return TRUE;
b49e97c9
TS
13517}
13518\f
64543e1a
RS
13519/* Structure for saying that BFD machine EXTENSION extends BASE. */
13520
13521struct mips_mach_extension {
13522 unsigned long extension, base;
13523};
13524
13525
13526/* An array describing how BFD machines relate to one another. The entries
13527 are ordered topologically with MIPS I extensions listed last. */
13528
13529static const struct mips_mach_extension mips_mach_extensions[] = {
6f179bd0 13530 /* MIPS64r2 extensions. */
432233b3 13531 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
dd6a37e7 13532 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
6f179bd0
AN
13533 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13534
64543e1a 13535 /* MIPS64 extensions. */
5f74bc13 13536 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
64543e1a 13537 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
52b6b6b9 13538 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
fd503541 13539 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
64543e1a
RS
13540
13541 /* MIPS V extensions. */
13542 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13543
13544 /* R10000 extensions. */
13545 { bfd_mach_mips12000, bfd_mach_mips10000 },
3aa3176b
TS
13546 { bfd_mach_mips14000, bfd_mach_mips10000 },
13547 { bfd_mach_mips16000, bfd_mach_mips10000 },
64543e1a
RS
13548
13549 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13550 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13551 better to allow vr5400 and vr5500 code to be merged anyway, since
13552 many libraries will just use the core ISA. Perhaps we could add
13553 some sort of ASE flag if this ever proves a problem. */
13554 { bfd_mach_mips5500, bfd_mach_mips5400 },
13555 { bfd_mach_mips5400, bfd_mach_mips5000 },
13556
13557 /* MIPS IV extensions. */
13558 { bfd_mach_mips5, bfd_mach_mips8000 },
13559 { bfd_mach_mips10000, bfd_mach_mips8000 },
13560 { bfd_mach_mips5000, bfd_mach_mips8000 },
5a7ea749 13561 { bfd_mach_mips7000, bfd_mach_mips8000 },
0d2e43ed 13562 { bfd_mach_mips9000, bfd_mach_mips8000 },
64543e1a
RS
13563
13564 /* VR4100 extensions. */
13565 { bfd_mach_mips4120, bfd_mach_mips4100 },
13566 { bfd_mach_mips4111, bfd_mach_mips4100 },
13567
13568 /* MIPS III extensions. */
350cc38d
MS
13569 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13570 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
64543e1a
RS
13571 { bfd_mach_mips8000, bfd_mach_mips4000 },
13572 { bfd_mach_mips4650, bfd_mach_mips4000 },
13573 { bfd_mach_mips4600, bfd_mach_mips4000 },
13574 { bfd_mach_mips4400, bfd_mach_mips4000 },
13575 { bfd_mach_mips4300, bfd_mach_mips4000 },
13576 { bfd_mach_mips4100, bfd_mach_mips4000 },
13577 { bfd_mach_mips4010, bfd_mach_mips4000 },
e407c74b 13578 { bfd_mach_mips5900, bfd_mach_mips4000 },
64543e1a
RS
13579
13580 /* MIPS32 extensions. */
13581 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13582
13583 /* MIPS II extensions. */
13584 { bfd_mach_mips4000, bfd_mach_mips6000 },
13585 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13586
13587 /* MIPS I extensions. */
13588 { bfd_mach_mips6000, bfd_mach_mips3000 },
13589 { bfd_mach_mips3900, bfd_mach_mips3000 }
13590};
13591
13592
13593/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13594
13595static bfd_boolean
9719ad41 13596mips_mach_extends_p (unsigned long base, unsigned long extension)
64543e1a
RS
13597{
13598 size_t i;
13599
c5211a54
RS
13600 if (extension == base)
13601 return TRUE;
13602
13603 if (base == bfd_mach_mipsisa32
13604 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13605 return TRUE;
13606
13607 if (base == bfd_mach_mipsisa32r2
13608 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13609 return TRUE;
13610
13611 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
64543e1a 13612 if (extension == mips_mach_extensions[i].extension)
c5211a54
RS
13613 {
13614 extension = mips_mach_extensions[i].base;
13615 if (extension == base)
13616 return TRUE;
13617 }
64543e1a 13618
c5211a54 13619 return FALSE;
64543e1a
RS
13620}
13621
13622
13623/* Return true if the given ELF header flags describe a 32-bit binary. */
00707a0e 13624
b34976b6 13625static bfd_boolean
9719ad41 13626mips_32bit_flags_p (flagword flags)
00707a0e 13627{
64543e1a
RS
13628 return ((flags & EF_MIPS_32BITMODE) != 0
13629 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13630 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13631 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13632 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13633 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13634 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
00707a0e
RS
13635}
13636
64543e1a 13637
2cf19d5c
JM
13638/* Merge object attributes from IBFD into OBFD. Raise an error if
13639 there are conflicting attributes. */
13640static bfd_boolean
13641mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13642{
13643 obj_attribute *in_attr;
13644 obj_attribute *out_attr;
6ae68ba3
MR
13645 bfd *abi_fp_bfd;
13646
13647 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13648 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13649 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13650 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c
JM
13651
13652 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13653 {
13654 /* This is the first object. Copy the attributes. */
13655 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13656
13657 /* Use the Tag_null value to indicate the attributes have been
13658 initialized. */
13659 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13660
13661 return TRUE;
13662 }
13663
13664 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13665 non-conflicting ones. */
2cf19d5c
JM
13666 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13667 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13668 {
13669 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13670 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13671 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
6ae68ba3 13672 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
2cf19d5c
JM
13673 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13674 {
13675 case 1:
13676 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13677 {
13678 case 2:
13679 _bfd_error_handler
6ae68ba3
MR
13680 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13681 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
51a0dd31 13682 break;
2cf19d5c
JM
13683
13684 case 3:
13685 _bfd_error_handler
6ae68ba3
MR
13686 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13687 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13688 break;
13689
42554f6a
TS
13690 case 4:
13691 _bfd_error_handler
6ae68ba3
MR
13692 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13693 obfd, abi_fp_bfd, ibfd,
13694 "-mdouble-float", "-mips32r2 -mfp64");
42554f6a
TS
13695 break;
13696
2cf19d5c 13697 default:
6ae68ba3
MR
13698 _bfd_error_handler
13699 (_("Warning: %B uses %s (set by %B), "
13700 "%B uses unknown floating point ABI %d"),
13701 obfd, abi_fp_bfd, ibfd,
13702 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13703 break;
2cf19d5c
JM
13704 }
13705 break;
13706
13707 case 2:
13708 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13709 {
13710 case 1:
13711 _bfd_error_handler
6ae68ba3
MR
13712 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13713 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
51a0dd31 13714 break;
2cf19d5c
JM
13715
13716 case 3:
13717 _bfd_error_handler
6ae68ba3
MR
13718 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13719 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
2cf19d5c
JM
13720 break;
13721
42554f6a
TS
13722 case 4:
13723 _bfd_error_handler
6ae68ba3
MR
13724 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13725 obfd, abi_fp_bfd, ibfd,
13726 "-msingle-float", "-mips32r2 -mfp64");
42554f6a
TS
13727 break;
13728
2cf19d5c 13729 default:
6ae68ba3
MR
13730 _bfd_error_handler
13731 (_("Warning: %B uses %s (set by %B), "
13732 "%B uses unknown floating point ABI %d"),
13733 obfd, abi_fp_bfd, ibfd,
13734 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13735 break;
2cf19d5c
JM
13736 }
13737 break;
13738
13739 case 3:
13740 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13741 {
13742 case 1:
13743 case 2:
42554f6a 13744 case 4:
2cf19d5c 13745 _bfd_error_handler
6ae68ba3
MR
13746 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13747 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
2cf19d5c
JM
13748 break;
13749
13750 default:
6ae68ba3
MR
13751 _bfd_error_handler
13752 (_("Warning: %B uses %s (set by %B), "
13753 "%B uses unknown floating point ABI %d"),
13754 obfd, abi_fp_bfd, ibfd,
13755 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13756 break;
2cf19d5c
JM
13757 }
13758 break;
13759
42554f6a
TS
13760 case 4:
13761 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13762 {
13763 case 1:
13764 _bfd_error_handler
6ae68ba3
MR
13765 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13766 obfd, abi_fp_bfd, ibfd,
13767 "-mips32r2 -mfp64", "-mdouble-float");
42554f6a
TS
13768 break;
13769
13770 case 2:
13771 _bfd_error_handler
6ae68ba3
MR
13772 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13773 obfd, abi_fp_bfd, ibfd,
13774 "-mips32r2 -mfp64", "-msingle-float");
42554f6a
TS
13775 break;
13776
13777 case 3:
13778 _bfd_error_handler
6ae68ba3
MR
13779 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13780 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
42554f6a
TS
13781 break;
13782
13783 default:
6ae68ba3
MR
13784 _bfd_error_handler
13785 (_("Warning: %B uses %s (set by %B), "
13786 "%B uses unknown floating point ABI %d"),
13787 obfd, abi_fp_bfd, ibfd,
13788 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13789 break;
42554f6a
TS
13790 }
13791 break;
13792
2cf19d5c 13793 default:
6ae68ba3
MR
13794 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13795 {
13796 case 1:
13797 _bfd_error_handler
13798 (_("Warning: %B uses unknown floating point ABI %d "
13799 "(set by %B), %B uses %s"),
13800 obfd, abi_fp_bfd, ibfd,
13801 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13802 break;
13803
13804 case 2:
13805 _bfd_error_handler
13806 (_("Warning: %B uses unknown floating point ABI %d "
13807 "(set by %B), %B uses %s"),
13808 obfd, abi_fp_bfd, ibfd,
13809 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13810 break;
13811
13812 case 3:
13813 _bfd_error_handler
13814 (_("Warning: %B uses unknown floating point ABI %d "
13815 "(set by %B), %B uses %s"),
13816 obfd, abi_fp_bfd, ibfd,
13817 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13818 break;
13819
13820 case 4:
13821 _bfd_error_handler
13822 (_("Warning: %B uses unknown floating point ABI %d "
13823 "(set by %B), %B uses %s"),
13824 obfd, abi_fp_bfd, ibfd,
13825 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13826 break;
13827
13828 default:
13829 _bfd_error_handler
13830 (_("Warning: %B uses unknown floating point ABI %d "
13831 "(set by %B), %B uses unknown floating point ABI %d"),
13832 obfd, abi_fp_bfd, ibfd,
13833 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13834 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13835 break;
13836 }
13837 break;
2cf19d5c
JM
13838 }
13839 }
13840
13841 /* Merge Tag_compatibility attributes and any common GNU ones. */
13842 _bfd_elf_merge_object_attributes (ibfd, obfd);
13843
13844 return TRUE;
13845}
13846
b49e97c9
TS
13847/* Merge backend specific data from an object file to the output
13848 object file when linking. */
13849
b34976b6 13850bfd_boolean
9719ad41 13851_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
b49e97c9
TS
13852{
13853 flagword old_flags;
13854 flagword new_flags;
b34976b6
AM
13855 bfd_boolean ok;
13856 bfd_boolean null_input_bfd = TRUE;
b49e97c9
TS
13857 asection *sec;
13858
58238693 13859 /* Check if we have the same endianness. */
82e51918 13860 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
aa701218
AO
13861 {
13862 (*_bfd_error_handler)
d003868e
AM
13863 (_("%B: endianness incompatible with that of the selected emulation"),
13864 ibfd);
aa701218
AO
13865 return FALSE;
13866 }
b49e97c9 13867
d5eaccd7 13868 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 13869 return TRUE;
b49e97c9 13870
aa701218
AO
13871 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13872 {
13873 (*_bfd_error_handler)
d003868e
AM
13874 (_("%B: ABI is incompatible with that of the selected emulation"),
13875 ibfd);
aa701218
AO
13876 return FALSE;
13877 }
13878
2cf19d5c
JM
13879 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13880 return FALSE;
13881
b49e97c9
TS
13882 new_flags = elf_elfheader (ibfd)->e_flags;
13883 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13884 old_flags = elf_elfheader (obfd)->e_flags;
13885
13886 if (! elf_flags_init (obfd))
13887 {
b34976b6 13888 elf_flags_init (obfd) = TRUE;
b49e97c9
TS
13889 elf_elfheader (obfd)->e_flags = new_flags;
13890 elf_elfheader (obfd)->e_ident[EI_CLASS]
13891 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13892
13893 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 13894 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 13895 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 13896 bfd_get_mach (ibfd))))
b49e97c9
TS
13897 {
13898 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13899 bfd_get_mach (ibfd)))
b34976b6 13900 return FALSE;
b49e97c9
TS
13901 }
13902
b34976b6 13903 return TRUE;
b49e97c9
TS
13904 }
13905
13906 /* Check flag compatibility. */
13907
13908 new_flags &= ~EF_MIPS_NOREORDER;
13909 old_flags &= ~EF_MIPS_NOREORDER;
13910
f4416af6
AO
13911 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13912 doesn't seem to matter. */
13913 new_flags &= ~EF_MIPS_XGOT;
13914 old_flags &= ~EF_MIPS_XGOT;
13915
98a8deaf
RS
13916 /* MIPSpro generates ucode info in n64 objects. Again, we should
13917 just be able to ignore this. */
13918 new_flags &= ~EF_MIPS_UCODE;
13919 old_flags &= ~EF_MIPS_UCODE;
13920
861fb55a
DJ
13921 /* DSOs should only be linked with CPIC code. */
13922 if ((ibfd->flags & DYNAMIC) != 0)
13923 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
0a44bf69 13924
b49e97c9 13925 if (new_flags == old_flags)
b34976b6 13926 return TRUE;
b49e97c9
TS
13927
13928 /* Check to see if the input BFD actually contains any sections.
13929 If not, its flags may not have been initialised either, but it cannot
13930 actually cause any incompatibility. */
13931 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13932 {
13933 /* Ignore synthetic sections and empty .text, .data and .bss sections
ed88c97e
RS
13934 which are automatically generated by gas. Also ignore fake
13935 (s)common sections, since merely defining a common symbol does
13936 not affect compatibility. */
13937 if ((sec->flags & SEC_IS_COMMON) == 0
13938 && strcmp (sec->name, ".reginfo")
b49e97c9 13939 && strcmp (sec->name, ".mdebug")
eea6121a 13940 && (sec->size != 0
d13d89fa
NS
13941 || (strcmp (sec->name, ".text")
13942 && strcmp (sec->name, ".data")
13943 && strcmp (sec->name, ".bss"))))
b49e97c9 13944 {
b34976b6 13945 null_input_bfd = FALSE;
b49e97c9
TS
13946 break;
13947 }
13948 }
13949 if (null_input_bfd)
b34976b6 13950 return TRUE;
b49e97c9 13951
b34976b6 13952 ok = TRUE;
b49e97c9 13953
143d77c5
EC
13954 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13955 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
b49e97c9 13956 {
b49e97c9 13957 (*_bfd_error_handler)
861fb55a 13958 (_("%B: warning: linking abicalls files with non-abicalls files"),
d003868e 13959 ibfd);
143d77c5 13960 ok = TRUE;
b49e97c9
TS
13961 }
13962
143d77c5
EC
13963 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13964 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13965 if (! (new_flags & EF_MIPS_PIC))
13966 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13967
13968 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13969 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
b49e97c9 13970
64543e1a
RS
13971 /* Compare the ISAs. */
13972 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
b49e97c9 13973 {
64543e1a 13974 (*_bfd_error_handler)
d003868e
AM
13975 (_("%B: linking 32-bit code with 64-bit code"),
13976 ibfd);
64543e1a
RS
13977 ok = FALSE;
13978 }
13979 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13980 {
13981 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13982 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
b49e97c9 13983 {
64543e1a
RS
13984 /* Copy the architecture info from IBFD to OBFD. Also copy
13985 the 32-bit flag (if set) so that we continue to recognise
13986 OBFD as a 32-bit binary. */
13987 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13988 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13989 elf_elfheader (obfd)->e_flags
13990 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13991
13992 /* Copy across the ABI flags if OBFD doesn't use them
13993 and if that was what caused us to treat IBFD as 32-bit. */
13994 if ((old_flags & EF_MIPS_ABI) == 0
13995 && mips_32bit_flags_p (new_flags)
13996 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13997 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
b49e97c9
TS
13998 }
13999 else
14000 {
64543e1a 14001 /* The ISAs aren't compatible. */
b49e97c9 14002 (*_bfd_error_handler)
d003868e
AM
14003 (_("%B: linking %s module with previous %s modules"),
14004 ibfd,
64543e1a
RS
14005 bfd_printable_name (ibfd),
14006 bfd_printable_name (obfd));
b34976b6 14007 ok = FALSE;
b49e97c9 14008 }
b49e97c9
TS
14009 }
14010
64543e1a
RS
14011 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14012 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14013
14014 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
b49e97c9
TS
14015 does set EI_CLASS differently from any 32-bit ABI. */
14016 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14017 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14018 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14019 {
14020 /* Only error if both are set (to different values). */
14021 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14022 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14023 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14024 {
14025 (*_bfd_error_handler)
d003868e
AM
14026 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14027 ibfd,
b49e97c9
TS
14028 elf_mips_abi_name (ibfd),
14029 elf_mips_abi_name (obfd));
b34976b6 14030 ok = FALSE;
b49e97c9
TS
14031 }
14032 new_flags &= ~EF_MIPS_ABI;
14033 old_flags &= ~EF_MIPS_ABI;
14034 }
14035
df58fc94
RS
14036 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14037 and allow arbitrary mixing of the remaining ASEs (retain the union). */
fb39dac1
RS
14038 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14039 {
df58fc94
RS
14040 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14041 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14042 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14043 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14044 int micro_mis = old_m16 && new_micro;
14045 int m16_mis = old_micro && new_m16;
14046
14047 if (m16_mis || micro_mis)
14048 {
14049 (*_bfd_error_handler)
14050 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14051 ibfd,
14052 m16_mis ? "MIPS16" : "microMIPS",
14053 m16_mis ? "microMIPS" : "MIPS16");
14054 ok = FALSE;
14055 }
14056
fb39dac1
RS
14057 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14058
14059 new_flags &= ~ EF_MIPS_ARCH_ASE;
14060 old_flags &= ~ EF_MIPS_ARCH_ASE;
14061 }
14062
b49e97c9
TS
14063 /* Warn about any other mismatches */
14064 if (new_flags != old_flags)
14065 {
14066 (*_bfd_error_handler)
d003868e
AM
14067 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14068 ibfd, (unsigned long) new_flags,
b49e97c9 14069 (unsigned long) old_flags);
b34976b6 14070 ok = FALSE;
b49e97c9
TS
14071 }
14072
14073 if (! ok)
14074 {
14075 bfd_set_error (bfd_error_bad_value);
b34976b6 14076 return FALSE;
b49e97c9
TS
14077 }
14078
b34976b6 14079 return TRUE;
b49e97c9
TS
14080}
14081
14082/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14083
b34976b6 14084bfd_boolean
9719ad41 14085_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
14086{
14087 BFD_ASSERT (!elf_flags_init (abfd)
14088 || elf_elfheader (abfd)->e_flags == flags);
14089
14090 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
14091 elf_flags_init (abfd) = TRUE;
14092 return TRUE;
b49e97c9
TS
14093}
14094
ad9563d6
CM
14095char *
14096_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14097{
14098 switch (dtag)
14099 {
14100 default: return "";
14101 case DT_MIPS_RLD_VERSION:
14102 return "MIPS_RLD_VERSION";
14103 case DT_MIPS_TIME_STAMP:
14104 return "MIPS_TIME_STAMP";
14105 case DT_MIPS_ICHECKSUM:
14106 return "MIPS_ICHECKSUM";
14107 case DT_MIPS_IVERSION:
14108 return "MIPS_IVERSION";
14109 case DT_MIPS_FLAGS:
14110 return "MIPS_FLAGS";
14111 case DT_MIPS_BASE_ADDRESS:
14112 return "MIPS_BASE_ADDRESS";
14113 case DT_MIPS_MSYM:
14114 return "MIPS_MSYM";
14115 case DT_MIPS_CONFLICT:
14116 return "MIPS_CONFLICT";
14117 case DT_MIPS_LIBLIST:
14118 return "MIPS_LIBLIST";
14119 case DT_MIPS_LOCAL_GOTNO:
14120 return "MIPS_LOCAL_GOTNO";
14121 case DT_MIPS_CONFLICTNO:
14122 return "MIPS_CONFLICTNO";
14123 case DT_MIPS_LIBLISTNO:
14124 return "MIPS_LIBLISTNO";
14125 case DT_MIPS_SYMTABNO:
14126 return "MIPS_SYMTABNO";
14127 case DT_MIPS_UNREFEXTNO:
14128 return "MIPS_UNREFEXTNO";
14129 case DT_MIPS_GOTSYM:
14130 return "MIPS_GOTSYM";
14131 case DT_MIPS_HIPAGENO:
14132 return "MIPS_HIPAGENO";
14133 case DT_MIPS_RLD_MAP:
14134 return "MIPS_RLD_MAP";
14135 case DT_MIPS_DELTA_CLASS:
14136 return "MIPS_DELTA_CLASS";
14137 case DT_MIPS_DELTA_CLASS_NO:
14138 return "MIPS_DELTA_CLASS_NO";
14139 case DT_MIPS_DELTA_INSTANCE:
14140 return "MIPS_DELTA_INSTANCE";
14141 case DT_MIPS_DELTA_INSTANCE_NO:
14142 return "MIPS_DELTA_INSTANCE_NO";
14143 case DT_MIPS_DELTA_RELOC:
14144 return "MIPS_DELTA_RELOC";
14145 case DT_MIPS_DELTA_RELOC_NO:
14146 return "MIPS_DELTA_RELOC_NO";
14147 case DT_MIPS_DELTA_SYM:
14148 return "MIPS_DELTA_SYM";
14149 case DT_MIPS_DELTA_SYM_NO:
14150 return "MIPS_DELTA_SYM_NO";
14151 case DT_MIPS_DELTA_CLASSSYM:
14152 return "MIPS_DELTA_CLASSSYM";
14153 case DT_MIPS_DELTA_CLASSSYM_NO:
14154 return "MIPS_DELTA_CLASSSYM_NO";
14155 case DT_MIPS_CXX_FLAGS:
14156 return "MIPS_CXX_FLAGS";
14157 case DT_MIPS_PIXIE_INIT:
14158 return "MIPS_PIXIE_INIT";
14159 case DT_MIPS_SYMBOL_LIB:
14160 return "MIPS_SYMBOL_LIB";
14161 case DT_MIPS_LOCALPAGE_GOTIDX:
14162 return "MIPS_LOCALPAGE_GOTIDX";
14163 case DT_MIPS_LOCAL_GOTIDX:
14164 return "MIPS_LOCAL_GOTIDX";
14165 case DT_MIPS_HIDDEN_GOTIDX:
14166 return "MIPS_HIDDEN_GOTIDX";
14167 case DT_MIPS_PROTECTED_GOTIDX:
14168 return "MIPS_PROTECTED_GOT_IDX";
14169 case DT_MIPS_OPTIONS:
14170 return "MIPS_OPTIONS";
14171 case DT_MIPS_INTERFACE:
14172 return "MIPS_INTERFACE";
14173 case DT_MIPS_DYNSTR_ALIGN:
14174 return "DT_MIPS_DYNSTR_ALIGN";
14175 case DT_MIPS_INTERFACE_SIZE:
14176 return "DT_MIPS_INTERFACE_SIZE";
14177 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14178 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14179 case DT_MIPS_PERF_SUFFIX:
14180 return "DT_MIPS_PERF_SUFFIX";
14181 case DT_MIPS_COMPACT_SIZE:
14182 return "DT_MIPS_COMPACT_SIZE";
14183 case DT_MIPS_GP_VALUE:
14184 return "DT_MIPS_GP_VALUE";
14185 case DT_MIPS_AUX_DYNAMIC:
14186 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
14187 case DT_MIPS_PLTGOT:
14188 return "DT_MIPS_PLTGOT";
14189 case DT_MIPS_RWPLT:
14190 return "DT_MIPS_RWPLT";
ad9563d6
CM
14191 }
14192}
14193
b34976b6 14194bfd_boolean
9719ad41 14195_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 14196{
9719ad41 14197 FILE *file = ptr;
b49e97c9
TS
14198
14199 BFD_ASSERT (abfd != NULL && ptr != NULL);
14200
14201 /* Print normal ELF private data. */
14202 _bfd_elf_print_private_bfd_data (abfd, ptr);
14203
14204 /* xgettext:c-format */
14205 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14206
14207 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14208 fprintf (file, _(" [abi=O32]"));
14209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14210 fprintf (file, _(" [abi=O64]"));
14211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14212 fprintf (file, _(" [abi=EABI32]"));
14213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14214 fprintf (file, _(" [abi=EABI64]"));
14215 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14216 fprintf (file, _(" [abi unknown]"));
14217 else if (ABI_N32_P (abfd))
14218 fprintf (file, _(" [abi=N32]"));
14219 else if (ABI_64_P (abfd))
14220 fprintf (file, _(" [abi=64]"));
14221 else
14222 fprintf (file, _(" [no abi set]"));
14223
14224 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 14225 fprintf (file, " [mips1]");
b49e97c9 14226 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 14227 fprintf (file, " [mips2]");
b49e97c9 14228 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 14229 fprintf (file, " [mips3]");
b49e97c9 14230 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 14231 fprintf (file, " [mips4]");
b49e97c9 14232 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 14233 fprintf (file, " [mips5]");
b49e97c9 14234 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 14235 fprintf (file, " [mips32]");
b49e97c9 14236 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 14237 fprintf (file, " [mips64]");
af7ee8bf 14238 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 14239 fprintf (file, " [mips32r2]");
5f74bc13 14240 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 14241 fprintf (file, " [mips64r2]");
b49e97c9
TS
14242 else
14243 fprintf (file, _(" [unknown ISA]"));
14244
40d32fc6 14245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 14246 fprintf (file, " [mdmx]");
40d32fc6
CD
14247
14248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 14249 fprintf (file, " [mips16]");
40d32fc6 14250
df58fc94
RS
14251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14252 fprintf (file, " [micromips]");
14253
b49e97c9 14254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 14255 fprintf (file, " [32bitmode]");
b49e97c9
TS
14256 else
14257 fprintf (file, _(" [not 32bitmode]"));
14258
c0e3f241 14259 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 14260 fprintf (file, " [noreorder]");
c0e3f241
CD
14261
14262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 14263 fprintf (file, " [PIC]");
c0e3f241
CD
14264
14265 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 14266 fprintf (file, " [CPIC]");
c0e3f241
CD
14267
14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 14269 fprintf (file, " [XGOT]");
c0e3f241
CD
14270
14271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 14272 fprintf (file, " [UCODE]");
c0e3f241 14273
b49e97c9
TS
14274 fputc ('\n', file);
14275
b34976b6 14276 return TRUE;
b49e97c9 14277}
2f89ff8d 14278
b35d266b 14279const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 14280{
0112cd26
NC
14281 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14282 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14283 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14284 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14285 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14286 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14287 { NULL, 0, 0, 0, 0 }
2f89ff8d 14288};
5e2b0d47 14289
8992f0d7
TS
14290/* Merge non visibility st_other attributes. Ensure that the
14291 STO_OPTIONAL flag is copied into h->other, even if this is not a
14292 definiton of the symbol. */
5e2b0d47
NC
14293void
14294_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14295 const Elf_Internal_Sym *isym,
14296 bfd_boolean definition,
14297 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14298{
8992f0d7
TS
14299 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14300 {
14301 unsigned char other;
14302
14303 other = (definition ? isym->st_other : h->other);
14304 other &= ~ELF_ST_VISIBILITY (-1);
14305 h->other = other | ELF_ST_VISIBILITY (h->other);
14306 }
14307
14308 if (!definition
5e2b0d47
NC
14309 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14310 h->other |= STO_OPTIONAL;
14311}
12ac1cf5
NC
14312
14313/* Decide whether an undefined symbol is special and can be ignored.
14314 This is the case for OPTIONAL symbols on IRIX. */
14315bfd_boolean
14316_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14317{
14318 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14319}
e0764319
NC
14320
14321bfd_boolean
14322_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14323{
14324 return (sym->st_shndx == SHN_COMMON
14325 || sym->st_shndx == SHN_MIPS_ACOMMON
14326 || sym->st_shndx == SHN_MIPS_SCOMMON);
14327}
861fb55a
DJ
14328
14329/* Return address for Ith PLT stub in section PLT, for relocation REL
14330 or (bfd_vma) -1 if it should not be included. */
14331
14332bfd_vma
14333_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14334 const arelent *rel ATTRIBUTE_UNUSED)
14335{
14336 return (plt->vma
14337 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14338 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14339}
14340
14341void
14342_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14343{
14344 struct mips_elf_link_hash_table *htab;
14345 Elf_Internal_Ehdr *i_ehdrp;
14346
14347 i_ehdrp = elf_elfheader (abfd);
14348 if (link_info)
14349 {
14350 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
14351 BFD_ASSERT (htab != NULL);
14352
861fb55a
DJ
14353 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14354 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14355 }
14356}
This page took 1.840697 seconds and 4 git commands to generate.