Fix spelling typos.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
CommitLineData
b49e97c9 1/* MIPS-specific support for ELF
2571583a 2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
b49e97c9
TS
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
ae9a127f 11 This file is part of BFD, the Binary File Descriptor library.
b49e97c9 12
ae9a127f
NC
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
cd123cb7 15 the Free Software Foundation; either version 3 of the License, or
ae9a127f 16 (at your option) any later version.
b49e97c9 17
ae9a127f
NC
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
b49e97c9 22
ae9a127f
NC
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
cd123cb7
NC
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
b49e97c9
TS
28
29/* This file handles functionality common to the different MIPS ABI's. */
30
b49e97c9 31#include "sysdep.h"
3db64b00 32#include "bfd.h"
b49e97c9 33#include "libbfd.h"
64543e1a 34#include "libiberty.h"
b49e97c9
TS
35#include "elf-bfd.h"
36#include "elfxx-mips.h"
37#include "elf/mips.h"
0a44bf69 38#include "elf-vxworks.h"
2f0c68f2 39#include "dwarf2.h"
b49e97c9
TS
40
41/* Get the ECOFF swapping routines. */
42#include "coff/sym.h"
43#include "coff/symconst.h"
44#include "coff/ecoff.h"
45#include "coff/mips.h"
46
b15e6682
AO
47#include "hashtab.h"
48
9ab066b4
RS
49/* Types of TLS GOT entry. */
50enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55};
56
ead49a57 57/* This structure is used to hold information about one GOT entry.
3dff0dd1
RS
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
b15e6682
AO
75struct mips_got_entry
76{
3dff0dd1 77 /* One input bfd that needs the GOT entry. */
b15e6682 78 bfd *abfd;
f4416af6
AO
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
3dff0dd1 90 corresponding to a symbol in the GOT. The symbol's entry
020d7251
RS
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
f4416af6
AO
93 struct mips_elf_link_hash_entry *h;
94 } d;
0f20cc35 95
9ab066b4
RS
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
0f20cc35
DJ
98 unsigned char tls_type;
99
9ab066b4
RS
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
b15e6682 104 /* The offset from the beginning of the .got section to the entry
f4416af6
AO
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
b15e6682
AO
108};
109
13db6b44
RS
110/* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120struct mips_got_page_ref
121{
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129};
130
c224138d
RS
131/* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134struct mips_got_page_range
135{
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139};
140
141/* This structure describes the range of addends that are applied to page
13db6b44 142 relocations against a given section. */
c224138d
RS
143struct mips_got_page_entry
144{
13db6b44
RS
145 /* The section that these entries are based on. */
146 asection *sec;
c224138d
RS
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151};
152
f0abc2a1 153/* This structure is used to hold .got information when linking. */
b49e97c9
TS
154
155struct mips_got_info
156{
b49e97c9
TS
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
23cc69b6
RS
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
0f20cc35
DJ
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
c224138d 166 /* The number of local .got entries, eventually including page entries. */
b49e97c9 167 unsigned int local_gotno;
c224138d
RS
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
ab361d49
RS
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
cb22ccf4
KCY
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
b15e6682
AO
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
13db6b44
RS
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
c224138d
RS
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
f4416af6
AO
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185};
186
d7206569 187/* Structure passed when merging bfds' gots. */
f4416af6
AO
188
189struct mips_elf_got_per_bfd_arg
190{
f4416af6
AO
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
c224138d
RS
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
0f20cc35
DJ
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
f4416af6
AO
212};
213
ab361d49
RS
214/* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
f4416af6 216
ab361d49 217struct mips_elf_traverse_got_arg
f4416af6 218{
ab361d49 219 struct bfd_link_info *info;
f4416af6
AO
220 struct mips_got_info *g;
221 int value;
0f20cc35
DJ
222};
223
f0abc2a1
AM
224struct _mips_elf_section_data
225{
226 struct bfd_elf_section_data elf;
227 union
228 {
f0abc2a1
AM
229 bfd_byte *tdata;
230 } u;
231};
232
233#define mips_elf_section_data(sec) \
68bfbfcc 234 ((struct _mips_elf_section_data *) elf_section_data (sec))
f0abc2a1 235
d5eaccd7
RS
236#define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
4dfe6ac6 239 && elf_object_id (bfd) == MIPS_ELF_DATA)
d5eaccd7 240
634835ae
RS
241/* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258#define GGA_NORMAL 0
259#define GGA_RELOC_ONLY 1
260#define GGA_NONE 2
261
861fb55a
DJ
262/* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289};
290
291/* Macros for populating a mips_elf_la25_stub. */
292
293#define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294#define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295#define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
d21911ea
MR
296#define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298#define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300#define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
861fb55a 302
b49e97c9
TS
303/* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306struct mips_elf_hash_sort_data
307{
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
0f20cc35
DJ
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
55f8b9d2 313 bfd_size_type min_got_dynindx;
f4416af6
AO
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
9e4aeb93 316 with dynamic relocations pointing to it from non-primary GOTs). */
55f8b9d2 317 bfd_size_type max_unref_got_dynindx;
e17b0c35
MR
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
b49e97c9 322 symbol without a GOT entry. */
55f8b9d2 323 bfd_size_type max_non_got_dynindx;
b49e97c9
TS
324};
325
1bbce132
MR
326/* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331struct plt_entry
332{
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350};
351
b49e97c9
TS
352/* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355struct mips_elf_link_hash_entry
356{
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
861fb55a
DJ
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
b49e97c9
TS
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
b49e97c9
TS
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
b49e97c9
TS
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
7c5fcef7 380
634835ae
RS
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
6ccf4795
RS
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
71782a75
RS
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
861fb55a
DJ
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
71782a75
RS
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
861fb55a
DJ
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
33bb52fb
RS
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
1bbce132
MR
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
b49e97c9
TS
419};
420
421/* MIPS ELF linker hash table. */
422
423struct mips_elf_link_hash_table
424{
425 struct elf_link_hash_table root;
861fb55a 426
b49e97c9
TS
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
861fb55a 429
b49e97c9
TS
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
861fb55a 432
e6aea42d
MR
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
b34976b6 435 bfd_boolean use_rld_obj_head;
861fb55a 436
b4082c70
DD
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
861fb55a 439
b49e97c9 440 /* This is set if we see any mips16 stub sections. */
b34976b6 441 bfd_boolean mips16_stubs_seen;
861fb55a
DJ
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
833794fc
MR
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
8b10b0b3
MR
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
0a44bf69
RS
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
861fb55a 454
0e53d9da
AN
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
861fb55a 457
0a44bf69
RS
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
0a44bf69 460 asection *srelplt2;
4e41d0d7 461 asection *sstubs;
861fb55a 462
a8028dd0
RS
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
861fb55a 465
d222d210
RS
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
861fb55a 470 /* The size of the PLT header in bytes. */
0a44bf69 471 bfd_vma plt_header_size;
861fb55a 472
1bbce132
MR
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
861fb55a 487
33bb52fb
RS
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
861fb55a 490
5108fc1b
RS
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
861fb55a
DJ
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
13db6b44
RS
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
1bbce132
MR
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
861fb55a
DJ
519};
520
4dfe6ac6
NC
521/* Get the MIPS ELF linker hash table from a link_info structure. */
522
523#define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
861fb55a 527/* A structure used to communicate with htab_traverse callbacks. */
4dfe6ac6
NC
528struct mips_htab_traverse_info
529{
861fb55a
DJ
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
b49e97c9
TS
536};
537
6ae68ba3
MR
538/* MIPS ELF private object data. */
539
540struct mips_elf_obj_tdata
541{
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
ee227692 547
b60bf9be
CF
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
351cdf24
MF
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
ee227692
RS
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
698600e4
AM
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
6ae68ba3
MR
573};
574
575/* Get MIPS ELF private object data from BFD's tdata. */
576
577#define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
0f20cc35
DJ
580#define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
df58fc94 593 || r_type == R_MIPS_TLS_TPREL_LO16 \
d0f13682
CLT
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
df58fc94
RS
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
0f20cc35 608
b49e97c9
TS
609/* Structure used to pass information to mips_elf_output_extsym. */
610
611struct extsym_info
612{
9e4aeb93
RS
613 bfd *abfd;
614 struct bfd_link_info *info;
b49e97c9
TS
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
b34976b6 617 bfd_boolean failed;
b49e97c9
TS
618};
619
8dc1a139 620/* The names of the runtime procedure table symbols used on IRIX5. */
b49e97c9
TS
621
622static const char * const mips_elf_dynsym_rtproc_names[] =
623{
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628};
629
630/* These structures are used to generate the .compact_rel section on
8dc1a139 631 IRIX5. */
b49e97c9
TS
632
633typedef struct
634{
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641} Elf32_compact_rel;
642
643typedef struct
644{
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651} Elf32_External_compact_rel;
652
653typedef struct
654{
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661} Elf32_crinfo;
662
663typedef struct
664{
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670} Elf32_crinfo2;
671
672typedef struct
673{
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677} Elf32_External_crinfo;
678
679typedef struct
680{
681 bfd_byte info[4];
682 bfd_byte konst[4];
683} Elf32_External_crinfo2;
684
685/* These are the constants used to swap the bitfields in a crinfo. */
686
687#define CRINFO_CTYPE (0x1)
688#define CRINFO_CTYPE_SH (31)
689#define CRINFO_RTYPE (0xf)
690#define CRINFO_RTYPE_SH (27)
691#define CRINFO_DIST2TO (0xff)
692#define CRINFO_DIST2TO_SH (19)
693#define CRINFO_RELVADDR (0x7ffff)
694#define CRINFO_RELVADDR_SH (0)
695
696/* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699#define CRF_MIPS_LONG 1
700#define CRF_MIPS_SHORT 0
701
702/* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712#define CRT_MIPS_REL32 0xa
713#define CRT_MIPS_WORD 0xb
714#define CRT_MIPS_GPHI_LO 0xc
715#define CRT_MIPS_JMPAD 0xd
716
717#define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718#define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719#define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720#define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721\f
722/* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725typedef struct runtime_pdr {
ae9a127f
NC
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
b49e97c9 735 long reserved;
ae9a127f 736 struct exception_info *exception_info;/* Pointer to exception array. */
b49e97c9
TS
737} RPDR, *pRPDR;
738#define cbRPDR sizeof (RPDR)
739#define rpdNil ((pRPDR) 0)
740\f
b15e6682 741static struct mips_got_entry *mips_elf_create_local_got_entry
a8028dd0
RS
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
b34976b6 744static bfd_boolean mips_elf_sort_hash_table_f
9719ad41 745 (struct mips_elf_link_hash_entry *, void *);
9719ad41
RS
746static bfd_vma mips_elf_high
747 (bfd_vma);
b34976b6 748static bfd_boolean mips_elf_create_dynamic_relocation
9719ad41
RS
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
f4416af6 752static bfd_vma mips_elf_adjust_gp
9719ad41 753 (bfd *, struct mips_got_info *, bfd *);
f4416af6 754
b49e97c9
TS
755/* This will be used when we sort the dynamic relocation records. */
756static bfd *reldyn_sorting_bfd;
757
6d30f5b2
NC
758/* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760#define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
cd8d5a82
CF
764/* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767#define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770/* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773#define JALR_TO_BAL_P(abfd) 1
774
38a7df63
CF
775/* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778#define JR_TO_B_P(abfd) 1
779
861fb55a
DJ
780/* True if ABFD is a PIC object. */
781#define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
351cdf24
MF
784/* Nonzero if ABFD is using the O32 ABI. */
785#define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
b49e97c9 788/* Nonzero if ABFD is using the N32 ABI. */
b49e97c9
TS
789#define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
4a14403c 792/* Nonzero if ABFD is using the N64 ABI. */
b49e97c9 793#define ABI_64_P(abfd) \
141ff970 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
b49e97c9 795
4a14403c
TS
796/* Nonzero if ABFD is using NewABI conventions. */
797#define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
e8faf7d1
MR
799/* Nonzero if ABFD has microMIPS code. */
800#define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
7361da2c
AB
803/* Nonzero if ABFD is MIPS R6. */
804#define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
4a14403c 808/* The IRIX compatibility level we are striving for. */
b49e97c9
TS
809#define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
b49e97c9
TS
812/* Whether we are trying to be compatible with IRIX at all. */
813#define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816/* The name of the options section. */
817#define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
d80dcc6a 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
b49e97c9 819
cc2e31b9
RS
820/* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822#define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
351cdf24
MF
825/* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826#define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
943284cc
DJ
829/* Whether the section is readonly. */
830#define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
b49e97c9 834/* The name of the stub section. */
ca07892d 835#define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
b49e97c9
TS
836
837/* The size of an external REL relocation. */
838#define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
0a44bf69
RS
841/* The size of an external RELA relocation. */
842#define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
b49e97c9
TS
845/* The size of an external dynamic table entry. */
846#define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849/* The size of a GOT entry. */
850#define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
b4082c70
DD
853/* The size of the .rld_map section. */
854#define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
b49e97c9
TS
857/* The size of a symbol-table entry. */
858#define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861/* The default alignment for sections, as a power of two. */
862#define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
45d6a902 863 (get_elf_backend_data (abfd)->s->log_file_align)
b49e97c9
TS
864
865/* Get word-sized data. */
866#define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869/* Put out word-sized data. */
870#define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
861fb55a
DJ
875/* The opcode for word-sized loads (LW or LD). */
876#define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
b49e97c9 879/* Add a dynamic symbol table-entry. */
9719ad41 880#define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
5a580b3a 881 _bfd_elf_add_dynamic_entry (info, tag, val)
b49e97c9
TS
882
883#define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
0a44bf69
RS
886/* The name of the dynamic relocation section. */
887#define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
b49e97c9
TS
890/* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892#define MINUS_ONE (((bfd_vma)0) - 1)
c5ae1840 893#define MINUS_TWO (((bfd_vma)0) - 2)
b49e97c9 894
51e38d68
RS
895/* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898#define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
f4416af6 901/* The offset of $gp from the beginning of the .got section. */
0a44bf69
RS
902#define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
f4416af6
AO
904
905/* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
0a44bf69 907#define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
f4416af6 908
6a691779 909/* Instructions which appear in a stub. */
3d6746ca
DD
910#define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
40fc1451 914#define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
3d6746ca 915#define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
a18a2a34 916#define STUB_JALR 0x0320f809 /* jalr ra,t9 */
5108fc1b
RS
917#define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918#define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
3d6746ca
DD
919#define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
1bbce132
MR
924/* Likewise for the microMIPS ASE. */
925#define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929#define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
40fc1451 930#define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
1bbce132
MR
931#define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933#define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
833794fc 934#define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
1bbce132
MR
935#define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937#define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939#define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
5108fc1b
RS
944#define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945#define MIPS_FUNCTION_STUB_BIG_SIZE 20
1bbce132
MR
946#define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947#define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
833794fc
MR
948#define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949#define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
b49e97c9
TS
950
951/* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954#define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959#ifdef BFD64
ee6423ed
AO
960#define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
b49e97c9
TS
962#define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964#define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966#define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968#else
ee6423ed 969#define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
b49e97c9
TS
970#define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972#define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974#define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976#endif
977\f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012#define FN_STUB ".mips16.fn."
1013#define CALL_STUB ".mips16.call."
1014#define CALL_FP_STUB ".mips16.call.fp."
b9d58d71
TS
1015
1016#define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017#define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018#define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
b49e97c9 1019\f
861fb55a 1020/* The format of the first PLT entry in an O32 executable. */
6d30f5b2
NC
1021static const bfd_vma mips_o32_exec_plt0_entry[] =
1022{
861fb55a
DJ
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
40fc1451 1027 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031};
1032
1033/* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
6d30f5b2
NC
1035static const bfd_vma mips_n32_exec_plt0_entry[] =
1036{
861fb55a
DJ
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1041 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045};
1046
1047/* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
6d30f5b2
NC
1049static const bfd_vma mips_n64_exec_plt0_entry[] =
1050{
861fb55a
DJ
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
40fc1451 1055 0x03e07825, /* or t7, ra, zero */
861fb55a
DJ
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059};
1060
1bbce132
MR
1061/* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068{
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078};
1079
833794fc
MR
1080/* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083{
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
40fc1451 1088 0x001f, 0x7a90, /* or $15, $31, zero */
833794fc
MR
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092};
1093
1bbce132 1094/* The format of subsequent standard PLT entries. */
6d30f5b2
NC
1095static const bfd_vma mips_exec_plt_entry[] =
1096{
861fb55a
DJ
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101};
1102
7361da2c
AB
1103/* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106static const bfd_vma mipsr6_exec_plt_entry[] =
1107{
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112};
1113
1bbce132
MR
1114/* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117static const bfd_vma mips16_o32_exec_plt_entry[] =
1118{
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126};
1127
1128/* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130static const bfd_vma micromips_o32_exec_plt_entry[] =
1131{
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136};
1137
833794fc
MR
1138/* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140{
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145};
1146
0a44bf69 1147/* The format of the first PLT entry in a VxWorks executable. */
6d30f5b2
NC
1148static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149{
0a44bf69
RS
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156};
1157
1158/* The format of subsequent PLT entries. */
6d30f5b2
NC
1159static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160{
0a44bf69
RS
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169};
1170
1171/* The format of the first PLT entry in a VxWorks shared object. */
6d30f5b2
NC
1172static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173{
0a44bf69
RS
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180};
1181
1182/* The format of subsequent PLT entries. */
6d30f5b2
NC
1183static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184{
0a44bf69
RS
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187};
1188\f
d21911ea
MR
1189/* microMIPS 32-bit opcode helper installer. */
1190
1191static void
1192bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193{
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196}
1197
1198/* microMIPS 32-bit opcode helper retriever. */
1199
1200static bfd_vma
1201bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202{
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204}
1205\f
b49e97c9
TS
1206/* Look up an entry in a MIPS ELF linker hash table. */
1207
1208#define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213/* Traverse a MIPS ELF linker hash table. */
1214
1215#define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
9719ad41 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
b49e97c9
TS
1219 (info)))
1220
0f20cc35
DJ
1221/* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224#define TP_OFFSET 0x7000
1225#define DTP_OFFSET 0x8000
1226
1227static bfd_vma
1228dtprel_base (struct bfd_link_info *info)
1229{
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234}
1235
1236static bfd_vma
1237tprel_base (struct bfd_link_info *info)
1238{
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243}
1244
b49e97c9
TS
1245/* Create an entry in a MIPS ELF linker hash table. */
1246
1247static struct bfd_hash_entry *
9719ad41
RS
1248mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
b49e97c9
TS
1250{
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
9719ad41
RS
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
b49e97c9
TS
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
9719ad41 1265 if (ret != NULL)
b49e97c9
TS
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
861fb55a 1272 ret->la25_stub = 0;
b49e97c9 1273 ret->possibly_dynamic_relocs = 0;
b49e97c9 1274 ret->fn_stub = NULL;
b49e97c9
TS
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
634835ae 1277 ret->global_got_area = GGA_NONE;
6ccf4795 1278 ret->got_only_for_calls = TRUE;
71782a75 1279 ret->readonly_reloc = FALSE;
861fb55a 1280 ret->has_static_relocs = FALSE;
71782a75
RS
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
861fb55a 1283 ret->has_nonpic_branches = FALSE;
33bb52fb 1284 ret->needs_lazy_stub = FALSE;
1bbce132 1285 ret->use_plt_entry = FALSE;
b49e97c9
TS
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289}
f0abc2a1 1290
6ae68ba3
MR
1291/* Allocate MIPS ELF private object data. */
1292
1293bfd_boolean
1294_bfd_mips_elf_mkobject (bfd *abfd)
1295{
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298}
1299
f0abc2a1 1300bfd_boolean
9719ad41 1301_bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
f0abc2a1 1302{
f592407e
AM
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
f0abc2a1 1307
f592407e
AM
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
f0abc2a1
AM
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315}
b49e97c9
TS
1316\f
1317/* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
b34976b6 1320bfd_boolean
9719ad41
RS
1321_bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
b49e97c9
TS
1323{
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
9719ad41 1326 char *ext_hdr;
b49e97c9
TS
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
9719ad41 1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
b49e97c9
TS
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
9719ad41 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
82e51918 1336 swap->external_hdr_size))
b49e97c9
TS
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344#define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
9719ad41 1350 debug->ptr = bfd_malloc (amt); \
b49e97c9
TS
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
9719ad41 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
b49e97c9
TS
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
9719ad41
RS
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
b49e97c9
TS
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
9719ad41
RS
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
b49e97c9
TS
1370#undef READ
1371
1372 debug->fdr = NULL;
b49e97c9 1373
b34976b6 1374 return TRUE;
b49e97c9
TS
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
b34976b6 1401 return FALSE;
b49e97c9
TS
1402}
1403\f
1404/* Swap RPDR (runtime procedure table entry) for output. */
1405
1406static void
9719ad41 1407ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
b49e97c9
TS
1408{
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
b49e97c9
TS
1420}
1421
1422/* Create a runtime procedure table from the .mdebug section. */
1423
b34976b6 1424static bfd_boolean
9719ad41
RS
1425mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
b49e97c9
TS
1428{
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
9719ad41 1433 void *rtproc;
b49e97c9
TS
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
9719ad41 1460 epdr = bfd_malloc (size * count);
b49e97c9
TS
1461 if (epdr == NULL)
1462 goto error_return;
1463
9719ad41 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
b49e97c9
TS
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
9719ad41 1468 rp = rpdr = bfd_malloc (size * count);
b49e97c9
TS
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
9719ad41 1473 sv = bfd_malloc (size * count);
b49e97c9
TS
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
9719ad41 1479 esym = bfd_malloc (size * count);
b49e97c9
TS
1480 if (esym == NULL)
1481 goto error_return;
1482
9719ad41 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
b49e97c9
TS
1484 goto error_return;
1485
1486 count = hdr->issMax;
9719ad41 1487 ss = bfd_malloc (count);
b49e97c9
TS
1488 if (ss == NULL)
1489 goto error_return;
f075ee0c 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
b49e97c9
TS
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
9719ad41
RS
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
b49e97c9
TS
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
9719ad41 1514 rtproc = bfd_alloc (abfd, size);
b49e97c9
TS
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
9719ad41 1523 erp = rtproc;
b49e97c9
TS
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
eea6121a 1538 s->size = size;
9719ad41 1539 s->contents = rtproc;
b49e97c9
TS
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
8423293d 1543 s->map_head.link_order = NULL;
b49e97c9
TS
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
b34976b6 1556 return TRUE;
b49e97c9
TS
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
b34976b6 1569 return FALSE;
b49e97c9 1570}
738e5348 1571\f
861fb55a
DJ
1572/* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575static bfd_boolean
1576mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580{
a848a227 1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
861fb55a
DJ
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
e1fa0163
NC
1584 char *name;
1585 bfd_boolean res;
861fb55a 1586
a848a227 1587 if (micromips_p)
df58fc94
RS
1588 value |= 1;
1589
861fb55a 1590 /* Create a new symbol. */
e1fa0163 1591 name = concat (prefix, h->root.root.root.string, NULL);
861fb55a 1592 bh = NULL;
e1fa0163
NC
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
861fb55a
DJ
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
a848a227
MR
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
861fb55a
DJ
1607 return TRUE;
1608}
1609
738e5348
RS
1610/* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614static bfd_boolean
1615mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618{
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
e1fa0163 1621 char *name;
738e5348
RS
1622 asection *s;
1623 bfd_vma value;
e1fa0163 1624 bfd_boolean res;
738e5348
RS
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
e1fa0163 1633 name = concat (prefix, h->root.root.root.string, NULL);
738e5348 1634 bh = NULL;
e1fa0163
NC
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
738e5348
RS
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649}
1650
1651/* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654static bfd_boolean
1655section_allows_mips16_refs_p (asection *section)
1656{
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664}
1665
1666/* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670static unsigned long
cb4437b8
MR
1671mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
502e814e 1673 const Elf_Internal_Rela *relocs,
738e5348
RS
1674 const Elf_Internal_Rela *relend)
1675{
cb4437b8 1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
738e5348
RS
1677 const Elf_Internal_Rela *rel;
1678
cb4437b8
MR
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
738e5348
RS
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691}
b49e97c9
TS
1692
1693/* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
861fb55a
DJ
1696static void
1697mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
b49e97c9 1699{
738e5348
RS
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
b49e97c9
TS
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
eea6121a 1715 h->fn_stub->size = 0;
b49e97c9
TS
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
ca9584fb 1719 h->fn_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1720 }
1721
1722 if (h->call_stub != NULL
30c09090 1723 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
eea6121a 1728 h->call_stub->size = 0;
b49e97c9
TS
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
ca9584fb 1732 h->call_stub->output_section = bfd_abs_section_ptr;
b49e97c9
TS
1733 }
1734
1735 if (h->call_fp_stub != NULL
30c09090 1736 && ELF_ST_IS_MIPS16 (h->root.other))
b49e97c9
TS
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
eea6121a 1741 h->call_fp_stub->size = 0;
b49e97c9
TS
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
ca9584fb 1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
b49e97c9 1746 }
861fb55a
DJ
1747}
1748
1749/* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751static hashval_t
1752mips_elf_la25_stub_hash (const void *entry_)
1753{
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759}
1760
1761static int
1762mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763{
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772}
1773
1774/* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778bfd_boolean
1779_bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782{
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1786 if (htab == NULL)
1787 return FALSE;
1788
861fb55a
DJ
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796}
1797
1798/* Return true if H is a locally-defined PIC function, in the sense
8f0c309a
CLT
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
861fb55a
DJ
1803
1804static bfd_boolean
1805mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806{
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
f02cb058 1811 && !bfd_is_und_section (h->root.root.u.def.section)
8f0c309a
CLT
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
861fb55a
DJ
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816}
1817
8f0c309a
CLT
1818/* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821static bfd_vma
1822mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824{
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836}
1837
861fb55a
DJ
1838/* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842static bfd_boolean
1843mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845{
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1852 if (htab == NULL)
1853 return FALSE;
861fb55a
DJ
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
8f0c309a 1862 mips_elf_get_la25_target (stub, &input_section);
861fb55a
DJ
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883}
1884
1885/* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889static bfd_boolean
1890mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892{
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1897 if (htab == NULL)
1898 return FALSE;
861fb55a
DJ
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920}
1921
1922/* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925static bfd_boolean
1926mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928{
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
861fb55a
DJ
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
1943 if (htab == NULL)
1944 return FALSE;
1945
861fb55a
DJ
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
8f0c309a
CLT
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
fe152e64
MR
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
8f0c309a
CLT
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
861fb55a
DJ
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976}
1977
1978/* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981static bfd_boolean
1982mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983{
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
0e1862bb 1987 if (!bfd_link_relocatable (hti->info))
861fb55a 1988 mips_elf_check_mips16_stubs (hti->info, h);
b49e97c9 1989
861fb55a
DJ
1990 if (mips_elf_local_pic_function_p (h))
1991 {
ba85c43e
NC
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
861fb55a
DJ
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
0e1862bb 2002 if (bfd_link_relocatable (hti->info))
861fb55a
DJ
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
b34976b6 2013 return TRUE;
b49e97c9
TS
2014}
2015\f
d6f16593
MR
2016/* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
738e5348
RS
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
d6f16593
MR
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
738e5348
RS
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
c9775dde
MR
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
738e5348
RS
2104
2105static inline bfd_boolean
2106mips16_reloc_p (int r_type)
2107{
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
d0f13682
CLT
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
c9775dde 2123 case R_MIPS16_PC16_S1:
738e5348
RS
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129}
2130
df58fc94
RS
2131/* Check if a microMIPS reloc. */
2132
2133static inline bfd_boolean
2134micromips_reloc_p (unsigned int r_type)
2135{
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137}
2138
2139/* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143static inline bfd_boolean
2144micromips_reloc_shuffle_p (unsigned int r_type)
2145{
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149}
2150
738e5348
RS
2151static inline bfd_boolean
2152got16_reloc_p (int r_type)
2153{
df58fc94
RS
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
738e5348
RS
2157}
2158
2159static inline bfd_boolean
2160call16_reloc_p (int r_type)
2161{
df58fc94
RS
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165}
2166
2167static inline bfd_boolean
2168got_disp_reloc_p (unsigned int r_type)
2169{
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171}
2172
2173static inline bfd_boolean
2174got_page_reloc_p (unsigned int r_type)
2175{
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177}
2178
df58fc94
RS
2179static inline bfd_boolean
2180got_lo16_reloc_p (unsigned int r_type)
2181{
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183}
2184
2185static inline bfd_boolean
2186call_hi16_reloc_p (unsigned int r_type)
2187{
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189}
2190
2191static inline bfd_boolean
2192call_lo16_reloc_p (unsigned int r_type)
2193{
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
738e5348
RS
2195}
2196
2197static inline bfd_boolean
2198hi16_reloc_p (int r_type)
2199{
df58fc94
RS
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
7361da2c
AB
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
738e5348 2204}
d6f16593 2205
738e5348
RS
2206static inline bfd_boolean
2207lo16_reloc_p (int r_type)
2208{
df58fc94
RS
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
7361da2c
AB
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
738e5348
RS
2213}
2214
2215static inline bfd_boolean
2216mips16_call_reloc_p (int r_type)
2217{
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219}
d6f16593 2220
38a7df63
CF
2221static inline bfd_boolean
2222jal_reloc_p (int r_type)
2223{
df58fc94
RS
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227}
2228
99aefae6
MR
2229static inline bfd_boolean
2230b_reloc_p (int r_type)
2231{
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
c9775dde 2235 || r_type == R_MIPS_GNU_REL16_S2
9d862524
MR
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
99aefae6
MR
2240}
2241
7361da2c
AB
2242static inline bfd_boolean
2243aligned_pcrel_reloc_p (int r_type)
2244{
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247}
2248
9d862524
MR
2249static inline bfd_boolean
2250branch_reloc_p (int r_type)
2251{
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257}
2258
c9775dde
MR
2259static inline bfd_boolean
2260mips16_branch_reloc_p (int r_type)
2261{
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264}
2265
df58fc94
RS
2266static inline bfd_boolean
2267micromips_branch_reloc_p (int r_type)
2268{
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273}
2274
2275static inline bfd_boolean
2276tls_gd_reloc_p (unsigned int r_type)
2277{
d0f13682
CLT
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
df58fc94
RS
2281}
2282
2283static inline bfd_boolean
2284tls_ldm_reloc_p (unsigned int r_type)
2285{
d0f13682
CLT
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
df58fc94
RS
2289}
2290
2291static inline bfd_boolean
2292tls_gottprel_reloc_p (unsigned int r_type)
2293{
d0f13682
CLT
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
38a7df63
CF
2297}
2298
d6f16593 2299void
df58fc94
RS
2300_bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2302{
df58fc94 2303 bfd_vma first, second, val;
d6f16593 2304
df58fc94 2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2306 return;
2307
df58fc94
RS
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
d6f16593 2316 else
df58fc94
RS
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
d6f16593
MR
2319 bfd_put_32 (abfd, val, data);
2320}
2321
2322void
df58fc94
RS
2323_bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
d6f16593 2325{
df58fc94 2326 bfd_vma first, second, val;
d6f16593 2327
df58fc94 2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
d6f16593
MR
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
df58fc94 2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
d6f16593 2333 {
df58fc94
RS
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
d6f16593
MR
2341 }
2342 else
2343 {
df58fc94
RS
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
d6f16593 2347 }
df58fc94
RS
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
d6f16593
MR
2350}
2351
b49e97c9 2352bfd_reloc_status_type
9719ad41
RS
2353_bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
b49e97c9
TS
2356{
2357 bfd_vma relocation;
a7ebbfdf 2358 bfd_signed_vma val;
30ac9238 2359 bfd_reloc_status_type status;
b49e97c9
TS
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
07515404 2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
b49e97c9
TS
2370 return bfd_reloc_outofrange;
2371
b49e97c9 2372 /* Set val to the offset into the section or symbol. */
a7ebbfdf
TS
2373 val = reloc_entry->addend;
2374
30ac9238 2375 _bfd_mips_elf_sign_extend (val, 16);
a7ebbfdf 2376
b49e97c9 2377 /* Adjust val for the final section location and GP value. If we
1049f94e 2378 are producing relocatable output, we don't want to do this for
b49e97c9 2379 an external symbol. */
1049f94e 2380 if (! relocatable
b49e97c9
TS
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
a7ebbfdf
TS
2384 if (reloc_entry->howto->partial_inplace)
2385 {
30ac9238
RS
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
a7ebbfdf
TS
2391 }
2392 else
2393 reloc_entry->addend = val;
b49e97c9 2394
1049f94e 2395 if (relocatable)
b49e97c9 2396 reloc_entry->address += input_section->output_offset;
30ac9238
RS
2397
2398 return bfd_reloc_ok;
2399}
2400
2401/* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406struct mips_hi16
2407{
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412};
2413
2414/* FIXME: This should not be a static variable. */
2415
2416static struct mips_hi16 *mips_hi16_list;
2417
2418/* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427bfd_reloc_status_type
2428_bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432{
2433 struct mips_hi16 *n;
2434
07515404 2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452}
2453
738e5348 2454/* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
30ac9238
RS
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458bfd_reloc_status_type
2459_bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462{
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473}
2474
2475/* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479bfd_reloc_status_type
2480_bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483{
2484 bfd_vma vallo;
d6f16593 2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
30ac9238 2486
07515404 2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2488 return bfd_reloc_outofrange;
2489
df58fc94 2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
d6f16593 2491 location);
df58fc94
RS
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
d6f16593 2495
30ac9238
RS
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
738e5348
RS
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
30ac9238
RS
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
738e5348
RS
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
df58fc94
RS
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
30ac9238
RS
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
30ac9238
RS
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532}
2533
2534/* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538bfd_reloc_status_type
2539_bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543{
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
07515404 2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
30ac9238
RS
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
d6f16593
MR
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
30ac9238
RS
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
df58fc94
RS
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
30ac9238 2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
d6f16593 2594 location);
df58fc94
RS
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
d6f16593 2597
30ac9238
RS
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
b49e97c9
TS
2604
2605 return bfd_reloc_ok;
2606}
2607\f
2608/* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611static void
9719ad41
RS
2612bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
b49e97c9
TS
2614{
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617}
2618
2619static void
9719ad41
RS
2620bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
b49e97c9
TS
2622{
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625}
2626
2627static void
9719ad41
RS
2628bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
b49e97c9
TS
2630{
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637}
2638
2639static void
9719ad41
RS
2640bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
b49e97c9
TS
2642{
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652}
b49e97c9
TS
2653\f
2654/* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658void
9719ad41
RS
2659bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
b49e97c9
TS
2661{
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668}
2669
2670void
9719ad41
RS
2671bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
b49e97c9
TS
2673{
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680}
2681
2682/* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688void
9719ad41
RS
2689bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
b49e97c9
TS
2691{
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699}
2700
2701void
9719ad41
RS
2702bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
b49e97c9
TS
2704{
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712}
2713
2714/* Swap in an options header. */
2715
2716void
9719ad41
RS
2717bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
b49e97c9
TS
2719{
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724}
2725
2726/* Swap out an options header. */
2727
2728void
9719ad41
RS
2729bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
b49e97c9
TS
2731{
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736}
351cdf24
MF
2737
2738/* Swap in an abiflags structure. */
2739
2740void
2741bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744{
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756}
2757
2758/* Swap out an abiflags structure. */
2759
2760void
2761bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764{
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776}
b49e97c9
TS
2777\f
2778/* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781static int
9719ad41 2782sort_dynamic_relocs (const void *arg1, const void *arg2)
b49e97c9 2783{
947216bf
AM
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
6870500c 2786 int diff;
b49e97c9 2787
947216bf
AM
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
b49e97c9 2790
6870500c
RS
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
b49e97c9
TS
2800}
2801
f4416af6
AO
2802/* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804static int
7e3102a7
AM
2805sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
f4416af6 2807{
7e3102a7 2808#ifdef BFD64
f4416af6
AO
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
6870500c
RS
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
7e3102a7
AM
2827#else
2828 abort ();
2829#endif
f4416af6
AO
2830}
2831
2832
b49e97c9
TS
2833/* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
b34976b6 2847static bfd_boolean
9719ad41 2848mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 2849{
9719ad41 2850 struct extsym_info *einfo = data;
b34976b6 2851 bfd_boolean strip;
b49e97c9
TS
2852 asection *sec, *output_section;
2853
b49e97c9 2854 if (h->root.indx == -2)
b34976b6 2855 strip = FALSE;
f5385ebf 2856 else if ((h->root.def_dynamic
77cfaee6
AM
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
f5385ebf
AM
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
b34976b6 2861 strip = TRUE;
b49e97c9
TS
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
b34976b6
AM
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
b49e97c9 2868 else
b34976b6 2869 strip = FALSE;
b49e97c9
TS
2870
2871 if (strip)
b34976b6 2872 return TRUE;
b49e97c9
TS
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
4a14403c 2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
b49e97c9
TS
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
33bb52fb 2978 else
b49e97c9
TS
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
b49e97c9
TS
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
33bb52fb 2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
b49e97c9 2984
33bb52fb 2985 if (hd->needs_lazy_stub)
b49e97c9 2986 {
1bbce132
MR
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
b49e97c9
TS
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
1bbce132 2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
b49e97c9
TS
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
b49e97c9
TS
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
b34976b6
AM
3011 einfo->failed = TRUE;
3012 return FALSE;
b49e97c9
TS
3013 }
3014
b34976b6 3015 return TRUE;
b49e97c9
TS
3016}
3017
3018/* A comparison routine used to sort .gptab entries. */
3019
3020static int
9719ad41 3021gptab_compare (const void *p1, const void *p2)
b49e97c9 3022{
9719ad41
RS
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
b49e97c9
TS
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027}
3028\f
b15e6682 3029/* Functions to manage the got entry hash table. */
f4416af6
AO
3030
3031/* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034static INLINE hashval_t
9719ad41 3035mips_elf_hash_bfd_vma (bfd_vma addr)
f4416af6
AO
3036{
3037#ifdef BFD64
3038 return addr + (addr >> 32);
3039#else
3040 return addr;
3041#endif
3042}
3043
f4416af6 3044static hashval_t
d9bf376d 3045mips_elf_got_entry_hash (const void *entry_)
f4416af6
AO
3046{
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
e641e783 3049 return (entry->symndx
9ab066b4
RS
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
e641e783
RS
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
f4416af6
AO
3056}
3057
3058static int
3dff0dd1 3059mips_elf_got_entry_eq (const void *entry1, const void *entry2)
f4416af6
AO
3060{
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
e641e783 3064 return (e1->symndx == e2->symndx
9ab066b4
RS
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
e641e783
RS
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
b15e6682 3071}
c224138d 3072
13db6b44
RS
3073static hashval_t
3074mips_got_page_ref_hash (const void *ref_)
3075{
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083}
3084
3085static int
3086mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087{
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097}
3098
c224138d
RS
3099static hashval_t
3100mips_got_page_entry_hash (const void *entry_)
3101{
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
13db6b44 3105 return entry->sec->id;
c224138d
RS
3106}
3107
3108static int
3109mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110{
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
13db6b44 3115 return entry1->sec == entry2->sec;
c224138d 3116}
b15e6682 3117\f
3dff0dd1 3118/* Create and return a new mips_got_info structure. */
5334aa52
RS
3119
3120static struct mips_got_info *
3dff0dd1 3121mips_elf_create_got_info (bfd *abfd)
5334aa52
RS
3122{
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3dff0dd1
RS
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
5334aa52
RS
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
13db6b44
RS
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
5334aa52
RS
3137 return NULL;
3138
3139 return g;
3140}
3141
ee227692
RS
3142/* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145static struct mips_got_info *
3146mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147{
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3dff0dd1 3155 tdata->got = mips_elf_create_got_info (abfd);
ee227692
RS
3156 return tdata->got;
3157}
3158
d7206569
RS
3159/* Record that ABFD should use output GOT G. */
3160
3161static void
3162mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163{
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
13db6b44
RS
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
d7206569
RS
3176 }
3177 tdata->got = g;
3178}
3179
0a44bf69
RS
3180/* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
f4416af6
AO
3183
3184static asection *
0a44bf69 3185mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
f4416af6 3186{
0a44bf69 3187 const char *dname;
f4416af6 3188 asection *sreloc;
0a44bf69 3189 bfd *dynobj;
f4416af6 3190
0a44bf69
RS
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3d4d4302 3193 sreloc = bfd_get_linker_section (dynobj, dname);
f4416af6
AO
3194 if (sreloc == NULL && create_p)
3195 {
3d4d4302
AM
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
f4416af6 3203 if (sreloc == NULL
f4416af6 3204 || ! bfd_set_section_alignment (dynobj, sreloc,
d80dcc6a 3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
f4416af6
AO
3206 return NULL;
3207 }
3208 return sreloc;
3209}
3210
e641e783
RS
3211/* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213static int
3214mips_elf_reloc_tls_type (unsigned int r_type)
3215{
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
9ab066b4 3225 return GOT_TLS_NONE;
e641e783
RS
3226}
3227
3228/* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230static int
3231mips_tls_got_entries (unsigned int type)
3232{
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
9ab066b4 3242 case GOT_TLS_NONE:
e641e783
RS
3243 return 0;
3244 }
3245 abort ();
3246}
3247
0f20cc35
DJ
3248/* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252static int
3253mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255{
3256 int indx = 0;
0f20cc35
DJ
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
0e1862bb
L
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
0f20cc35
DJ
3262 indx = h->dynindx;
3263
0e1862bb 3264 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
e641e783 3271 return 0;
0f20cc35 3272
9ab066b4 3273 switch (tls_type)
0f20cc35 3274 {
e641e783
RS
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
0f20cc35 3277
e641e783
RS
3278 case GOT_TLS_IE:
3279 return 1;
0f20cc35 3280
e641e783 3281 case GOT_TLS_LDM:
0e1862bb 3282 return bfd_link_pic (info) ? 1 : 0;
0f20cc35 3283
e641e783
RS
3284 default:
3285 return 0;
3286 }
0f20cc35
DJ
3287}
3288
ab361d49
RS
3289/* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
0f20cc35 3291
ab361d49
RS
3292static void
3293mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
0f20cc35 3296{
9ab066b4 3297 if (entry->tls_type)
ab361d49 3298 {
9ab066b4
RS
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
ab361d49
RS
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
0f20cc35
DJ
3308}
3309
0f20cc35
DJ
3310/* Output a simple dynamic relocation into SRELOC. */
3311
3312static void
3313mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
861fb55a 3315 unsigned long reloc_index,
0f20cc35
DJ
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319{
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
861fb55a 3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
0f20cc35
DJ
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
861fb55a 3338 + reloc_index * sizeof (Elf32_External_Rel)));
0f20cc35
DJ
3339}
3340
3341/* Initialize a set of TLS GOT entries for one symbol. */
3342
3343static void
9ab066b4
RS
3344mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
0f20cc35
DJ
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348{
23cc69b6 3349 struct mips_elf_link_hash_table *htab;
0f20cc35
DJ
3350 int indx;
3351 asection *sreloc, *sgot;
9ab066b4 3352 bfd_vma got_offset, got_offset2;
0f20cc35
DJ
3353 bfd_boolean need_relocs = FALSE;
3354
23cc69b6 3355 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3356 if (htab == NULL)
3357 return;
3358
ce558b89 3359 sgot = htab->root.sgot;
0f20cc35
DJ
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
0e1862bb
L
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
0f20cc35
DJ
3370 indx = h->root.dynindx;
3371 }
3372
9ab066b4 3373 if (entry->tls_initialized)
0f20cc35
DJ
3374 return;
3375
0e1862bb 3376 if ((bfd_link_pic (info) || indx != 0)
0f20cc35
DJ
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
0a44bf69 3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
9ab066b4 3390 got_offset = entry->gotidx;
0f20cc35 3391
9ab066b4 3392 switch (entry->tls_type)
0f20cc35 3393 {
e641e783
RS
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
0f20cc35
DJ
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
861fb55a 3401 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
e641e783 3403 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
861fb55a 3407 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
e641e783 3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
0f20cc35
DJ
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3412 sgot->contents + got_offset2);
0f20cc35
DJ
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
e641e783 3417 sgot->contents + got_offset);
0f20cc35 3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
e641e783 3419 sgot->contents + got_offset2);
0f20cc35 3420 }
e641e783 3421 break;
0f20cc35 3422
e641e783
RS
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
0f20cc35
DJ
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
e641e783 3429 sgot->contents + got_offset);
0f20cc35
DJ
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
e641e783 3432 sgot->contents + got_offset);
0f20cc35
DJ
3433
3434 mips_elf_output_dynamic_relocation
861fb55a 3435 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35 3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
e641e783 3437 sgot->output_offset + sgot->output_section->vma + got_offset);
0f20cc35
DJ
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
e641e783
RS
3441 sgot->contents + got_offset);
3442 break;
0f20cc35 3443
e641e783 3444 case GOT_TLS_LDM:
0f20cc35
DJ
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
0e1862bb 3451 if (!bfd_link_pic (info))
0f20cc35
DJ
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
861fb55a 3456 (abfd, sreloc, sreloc->reloc_count++, indx,
0f20cc35
DJ
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
e641e783
RS
3459 break;
3460
3461 default:
3462 abort ();
0f20cc35
DJ
3463 }
3464
9ab066b4 3465 entry->tls_initialized = TRUE;
e641e783 3466}
0f20cc35 3467
0a44bf69
RS
3468/* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472static bfd_vma
3473mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475{
1bbce132 3476 bfd_vma got_address, got_value;
0a44bf69
RS
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3480 BFD_ASSERT (htab != NULL);
3481
1bbce132
MR
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
0a44bf69
RS
3484
3485 /* Calculate the address of the associated .got.plt entry. */
ce558b89
AM
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
1bbce132
MR
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
0a44bf69
RS
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497}
3498
5c18022e 3499/* Return the GOT offset for address VALUE. If there is not yet a GOT
0a44bf69
RS
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
b49e97c9
TS
3503
3504static bfd_vma
9719ad41 3505mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3506 bfd_vma value, unsigned long r_symndx,
0f20cc35 3507 struct mips_elf_link_hash_entry *h, int r_type)
b49e97c9 3508{
a8028dd0 3509 struct mips_elf_link_hash_table *htab;
b15e6682 3510 struct mips_got_entry *entry;
b49e97c9 3511
a8028dd0 3512 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3513 BFD_ASSERT (htab != NULL);
3514
a8028dd0
RS
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
0f20cc35 3517 if (!entry)
b15e6682 3518 return MINUS_ONE;
0f20cc35 3519
e641e783 3520 if (entry->tls_type)
9ab066b4
RS
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
b49e97c9
TS
3523}
3524
13fbec83 3525/* Return the GOT index of global symbol H in the primary GOT. */
b49e97c9
TS
3526
3527static bfd_vma
13fbec83
RS
3528mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530{
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
ce558b89 3551 BFD_ASSERT (got_index < htab->root.sgot->size);
13fbec83
RS
3552
3553 return got_index;
3554}
3555
3556/* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559static bfd_vma
3560mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
b49e97c9 3562{
a8028dd0 3563 struct mips_elf_link_hash_table *htab;
6c42ddb9
RS
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
b49e97c9 3567
a8028dd0 3568 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3569 BFD_ASSERT (htab != NULL);
3570
6c42ddb9
RS
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
f4416af6 3573
6c42ddb9
RS
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
f4416af6 3577
6c42ddb9
RS
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
0f20cc35 3583
6c42ddb9 3584 gotidx = entry->gotidx;
ce558b89 3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
f4416af6 3586
6c42ddb9 3587 if (lookup.tls_type)
0f20cc35 3588 {
0f20cc35
DJ
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
9ab066b4 3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
0f20cc35 3599 }
6c42ddb9 3600 return gotidx;
b49e97c9
TS
3601}
3602
5c18022e
RS
3603/* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
0a44bf69 3607 offset of the GOT entry from VALUE. */
b49e97c9
TS
3608
3609static bfd_vma
9719ad41 3610mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3611 bfd_vma value, bfd_vma *offsetp)
b49e97c9 3612{
91d6fa6a 3613 bfd_vma page, got_index;
b15e6682 3614 struct mips_got_entry *entry;
b49e97c9 3615
0a44bf69 3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
a8028dd0
RS
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
b49e97c9 3619
b15e6682
AO
3620 if (!entry)
3621 return MINUS_ONE;
143d77c5 3622
91d6fa6a 3623 got_index = entry->gotidx;
b49e97c9
TS
3624
3625 if (offsetp)
f4416af6 3626 *offsetp = value - entry->d.address;
b49e97c9 3627
91d6fa6a 3628 return got_index;
b49e97c9
TS
3629}
3630
738e5348 3631/* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
020d7251
RS
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
b49e97c9
TS
3634
3635static bfd_vma
9719ad41 3636mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
5c18022e 3637 bfd_vma value, bfd_boolean external)
b49e97c9 3638{
b15e6682 3639 struct mips_got_entry *entry;
b49e97c9 3640
0a44bf69
RS
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
b49e97c9 3645 if (! external)
0a44bf69 3646 value = mips_elf_high (value) << 16;
b49e97c9 3647
738e5348
RS
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
a8028dd0
RS
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
b15e6682
AO
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
b49e97c9
TS
3657}
3658
3659/* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662static bfd_vma
a8028dd0 3663mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
91d6fa6a 3664 bfd *input_bfd, bfd_vma got_index)
b49e97c9 3665{
a8028dd0 3666 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3667 asection *sgot;
3668 bfd_vma gp;
3669
a8028dd0 3670 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3671 BFD_ASSERT (htab != NULL);
3672
ce558b89 3673 sgot = htab->root.sgot;
f4416af6 3674 gp = _bfd_get_gp_value (output_bfd)
a8028dd0 3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
143d77c5 3676
91d6fa6a 3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
b49e97c9
TS
3678}
3679
0a44bf69
RS
3680/* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
b49e97c9 3684
b15e6682 3685static struct mips_got_entry *
0a44bf69 3686mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
a8028dd0 3687 bfd *ibfd, bfd_vma value,
5c18022e 3688 unsigned long r_symndx,
0f20cc35
DJ
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
b49e97c9 3691{
ebc53538
RS
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
f4416af6 3694 struct mips_got_info *g;
0a44bf69 3695 struct mips_elf_link_hash_table *htab;
6c42ddb9 3696 bfd_vma gotidx;
0a44bf69
RS
3697
3698 htab = mips_elf_hash_table (info);
4dfe6ac6 3699 BFD_ASSERT (htab != NULL);
b15e6682 3700
d7206569 3701 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
3702 if (g == NULL)
3703 {
d7206569 3704 g = mips_elf_bfd_got (abfd, FALSE);
f4416af6
AO
3705 BFD_ASSERT (g != NULL);
3706 }
b15e6682 3707
020d7251
RS
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
0f20cc35 3711
ebc53538
RS
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
df58fc94 3716 if (tls_ldm_reloc_p (r_type))
0f20cc35 3717 {
ebc53538
RS
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
0f20cc35
DJ
3720 }
3721 else if (h == NULL)
3722 {
ebc53538
RS
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
0f20cc35
DJ
3725 }
3726 else
ebc53538
RS
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
0f20cc35 3731
ebc53538
RS
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
0f20cc35 3734
6c42ddb9 3735 gotidx = entry->gotidx;
ce558b89 3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
6c42ddb9 3737
ebc53538 3738 return entry;
0f20cc35
DJ
3739 }
3740
ebc53538
RS
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
b15e6682 3746 return NULL;
143d77c5 3747
ebc53538
RS
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
b15e6682 3751
cb22ccf4 3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
b49e97c9
TS
3753 {
3754 /* We didn't allocate enough space in the GOT. */
4eca0228 3755 _bfd_error_handler
b49e97c9
TS
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
b15e6682 3758 return NULL;
b49e97c9
TS
3759 }
3760
ebc53538
RS
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
cb22ccf4
KCY
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
ebc53538
RS
3773 *entry = lookup;
3774 *loc = entry;
3775
ce558b89 3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
b15e6682 3777
5c18022e 3778 /* These GOT entries need a dynamic relocation on VxWorks. */
0a44bf69
RS
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
5c18022e 3782 asection *s;
91d6fa6a 3783 bfd_byte *rloc;
0a44bf69 3784 bfd_vma got_address;
0a44bf69
RS
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
ce558b89
AM
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
ebc53538 3789 + entry->gotidx);
0a44bf69 3790
91d6fa6a 3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
0a44bf69 3792 outrel.r_offset = got_address;
5c18022e
RS
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
91d6fa6a 3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
0a44bf69
RS
3796 }
3797
ebc53538 3798 return entry;
b49e97c9
TS
3799}
3800
d4596a51
RS
3801/* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806static bfd_size_type
3807count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808{
3809 bfd_size_type count;
3810
3811 count = 0;
0e1862bb
L
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
d4596a51
RS
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826}
3827
b49e97c9 3828/* Sort the dynamic symbol table so that symbols that need GOT entries
d4596a51 3829 appear towards the end. */
b49e97c9 3830
b34976b6 3831static bfd_boolean
d4596a51 3832mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
b49e97c9 3833{
a8028dd0 3834 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
b49e97c9 3837
a8028dd0 3838 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3839 BFD_ASSERT (htab != NULL);
3840
0f8c4b60 3841 if (htab->root.dynsymcount == 0)
17a80fa8
MR
3842 return TRUE;
3843
a8028dd0 3844 g = htab->got_info;
d4596a51
RS
3845 if (g == NULL)
3846 return TRUE;
f4416af6 3847
b49e97c9 3848 hsd.low = NULL;
23cc69b6
RS
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
0f8c4b60 3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
e17b0c35
MR
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
0f8c4b60 3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
b49e97c9
TS
3857
3858 /* There should have been enough room in the symbol table to
44c410de 3859 accommodate both the GOT and non-GOT symbols. */
e17b0c35 3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
b49e97c9 3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
55f8b9d2 3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
0f8c4b60 3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
b49e97c9
TS
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
d222d210 3867 htab->global_gotsym = hsd.low;
b49e97c9 3868
b34976b6 3869 return TRUE;
b49e97c9
TS
3870}
3871
3872/* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
b34976b6 3876static bfd_boolean
9719ad41 3877mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
b49e97c9 3878{
9719ad41 3879 struct mips_elf_hash_sort_data *hsd = data;
b49e97c9 3880
b49e97c9
TS
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
b34976b6 3884 return TRUE;
b49e97c9 3885
634835ae 3886 switch (h->global_got_area)
f4416af6 3887 {
634835ae 3888 case GGA_NONE:
e17b0c35
MR
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
634835ae 3893 break;
0f20cc35 3894
634835ae 3895 case GGA_NORMAL:
b49e97c9
TS
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
634835ae
RS
3898 break;
3899
3900 case GGA_RELOC_ONLY:
634835ae
RS
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
b49e97c9
TS
3905 }
3906
b34976b6 3907 return TRUE;
b49e97c9
TS
3908}
3909
ee227692
RS
3910/* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914static bfd_boolean
3915mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917{
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
9ab066b4 3938 lookup->tls_initialized = FALSE;
ee227692
RS
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956}
3957
e641e783
RS
3958/* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
6ccf4795 3960 using the GOT entry for calls. */
b49e97c9 3961
b34976b6 3962static bfd_boolean
9719ad41
RS
3963mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
e641e783 3965 bfd_boolean for_call, int r_type)
b49e97c9 3966{
a8028dd0 3967 struct mips_elf_link_hash_table *htab;
634835ae 3968 struct mips_elf_link_hash_entry *hmips;
ee227692
RS
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
a8028dd0
RS
3971
3972 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
3973 BFD_ASSERT (htab != NULL);
3974
634835ae 3975 hmips = (struct mips_elf_link_hash_entry *) h;
6ccf4795
RS
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
f4416af6 3978
b49e97c9
TS
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
7c5fcef7
L
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
33bb52fb 3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
7c5fcef7
L
3988 break;
3989 }
c152c796 3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 3991 return FALSE;
7c5fcef7 3992 }
b49e97c9 3993
ee227692 3994 tls_type = mips_elf_reloc_tls_type (r_type);
9ab066b4 3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
ee227692 3996 hmips->global_got_area = GGA_NORMAL;
86324f90 3997
f4416af6
AO
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
ee227692
RS
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
b49e97c9 4003}
f4416af6 4004
e641e783
RS
4005/* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
f4416af6
AO
4007
4008static bfd_boolean
9719ad41 4009mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
e641e783 4010 struct bfd_link_info *info, int r_type)
f4416af6 4011{
a8028dd0
RS
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
ee227692 4014 struct mips_got_entry entry;
f4416af6 4015
a8028dd0 4016 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4017 BFD_ASSERT (htab != NULL);
4018
a8028dd0
RS
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
f4416af6
AO
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
e641e783 4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
ee227692 4026 return mips_elf_record_got_entry (info, abfd, &entry);
f4416af6 4027}
c224138d 4028
13db6b44
RS
4029/* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
c224138d
RS
4032
4033static bfd_boolean
13db6b44
RS
4034mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
c224138d 4037{
a8028dd0 4038 struct mips_elf_link_hash_table *htab;
ee227692 4039 struct mips_got_info *g1, *g2;
13db6b44 4040 struct mips_got_page_ref lookup, *entry;
ee227692 4041 void **loc, **bfd_loc;
c224138d 4042
a8028dd0 4043 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4044 BFD_ASSERT (htab != NULL);
4045
ee227692
RS
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
a8028dd0 4048
13db6b44
RS
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
c224138d
RS
4061 if (loc == NULL)
4062 return FALSE;
4063
13db6b44 4064 entry = (struct mips_got_page_ref *) *loc;
c224138d
RS
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
13db6b44 4071 *entry = lookup;
c224138d
RS
4072 *loc = entry;
4073 }
4074
ee227692
RS
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
13db6b44 4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
ee227692
RS
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
c224138d
RS
4087 return TRUE;
4088}
33bb52fb
RS
4089
4090/* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092static void
4093mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095{
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4100 BFD_ASSERT (htab != NULL);
4101
33bb52fb
RS
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117}
4118\f
476366af
RS
4119/* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
33bb52fb
RS
4123
4124static int
4125mips_elf_check_recreate_got (void **entryp, void *data)
4126{
4127 struct mips_got_entry *entry;
476366af 4128 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4129
4130 entry = (struct mips_got_entry *) *entryp;
476366af 4131 arg = (struct mips_elf_traverse_got_arg *) data;
33bb52fb
RS
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
476366af 4140 arg->value = TRUE;
33bb52fb
RS
4141 return 0;
4142 }
4143 }
476366af 4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
33bb52fb
RS
4145 return 1;
4146}
4147
476366af
RS
4148/* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
33bb52fb
RS
4152
4153static int
4154mips_elf_recreate_got (void **entryp, void *data)
4155{
72e7511a 4156 struct mips_got_entry new_entry, *entry;
476366af 4157 struct mips_elf_traverse_got_arg *arg;
33bb52fb
RS
4158 void **slot;
4159
33bb52fb 4160 entry = (struct mips_got_entry *) *entryp;
476366af 4161 arg = (struct mips_elf_traverse_got_arg *) data;
72e7511a
RS
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
33bb52fb
RS
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
72e7511a
RS
4169 new_entry = *entry;
4170 entry = &new_entry;
33bb52fb 4171 h = entry->d.h;
72e7511a 4172 do
634835ae
RS
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
72e7511a
RS
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
33bb52fb
RS
4179 entry->d.h = h;
4180 }
476366af 4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
33bb52fb
RS
4182 if (slot == NULL)
4183 {
476366af 4184 arg->g = NULL;
33bb52fb
RS
4185 return 0;
4186 }
4187 if (*slot == NULL)
72e7511a
RS
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
476366af 4194 arg->g = NULL;
72e7511a
RS
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
476366af 4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
72e7511a 4201 }
33bb52fb
RS
4202 return 1;
4203}
4204
13db6b44
RS
4205/* Return the maximum number of GOT page entries required for RANGE. */
4206
4207static bfd_vma
4208mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209{
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211}
4212
4213/* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215static bfd_boolean
b75d42bc 4216mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
13db6b44
RS
4217 asection *sec, bfd_signed_vma addend)
4218{
b75d42bc 4219 struct mips_got_info *g = arg->g;
13db6b44
RS
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
b75d42bc 4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
13db6b44
RS
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
b75d42bc 4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
13db6b44
RS
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297}
4298
4299/* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304static bfd_boolean
4305mips_elf_resolve_got_page_ref (void **refp, void *data)
4306{
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
b75d42bc 4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
13db6b44
RS
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382}
4383
33bb52fb 4384/* If any entries in G->got_entries are for indirect or warning symbols,
13db6b44
RS
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
33bb52fb
RS
4388
4389static bfd_boolean
476366af
RS
4390mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
33bb52fb 4392{
476366af
RS
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
33bb52fb 4397
476366af
RS
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
33bb52fb 4403 {
476366af
RS
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
33bb52fb
RS
4409 return FALSE;
4410
476366af
RS
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
33bb52fb 4416 }
13db6b44
RS
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
33bb52fb
RS
4427 return TRUE;
4428}
4429
c5d6fa44
RS
4430/* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433static bfd_boolean
4434mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436{
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
0e1862bb 4454 if (bfd_link_executable (info) && h->has_static_relocs)
c5d6fa44
RS
4455 return TRUE;
4456
4457 return FALSE;
4458}
4459
6c42ddb9
RS
4460/* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
33bb52fb
RS
4465
4466static int
d4596a51 4467mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 4468{
020d7251 4469 struct bfd_link_info *info;
6ccf4795 4470 struct mips_elf_link_hash_table *htab;
33bb52fb
RS
4471 struct mips_got_info *g;
4472
020d7251 4473 info = (struct bfd_link_info *) data;
6ccf4795
RS
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
d4596a51 4476 if (h->global_got_area != GGA_NONE)
33bb52fb 4477 {
020d7251 4478 /* Make a final decision about whether the symbol belongs in the
c5d6fa44
RS
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
6c42ddb9
RS
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
6ccf4795
RS
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
1bbce132 4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
6ccf4795
RS
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
6c42ddb9 4492 else if (h->global_got_area == GGA_RELOC_ONLY)
23cc69b6 4493 {
6c42ddb9 4494 g->reloc_only_gotno++;
23cc69b6 4495 g->global_gotno++;
23cc69b6 4496 }
33bb52fb
RS
4497 }
4498 return 1;
4499}
f4416af6 4500\f
d7206569
RS
4501/* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
f4416af6
AO
4503
4504static int
d7206569 4505mips_elf_add_got_entry (void **entryp, void *data)
f4416af6 4506{
d7206569
RS
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
f4416af6 4510
d7206569
RS
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
f4416af6 4515 {
d7206569
RS
4516 arg->g = NULL;
4517 return 0;
f4416af6 4518 }
d7206569 4519 if (!*slot)
c224138d 4520 {
d7206569
RS
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
c224138d 4523 }
f4416af6
AO
4524 return 1;
4525}
4526
d7206569
RS
4527/* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
c224138d
RS
4529
4530static int
d7206569 4531mips_elf_add_got_page_entry (void **entryp, void *data)
c224138d 4532{
d7206569
RS
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
c224138d 4536
d7206569
RS
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
c224138d 4541 {
d7206569 4542 arg->g = NULL;
c224138d
RS
4543 return 0;
4544 }
d7206569
RS
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
c224138d
RS
4550 return 1;
4551}
4552
d7206569
RS
4553/* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
c224138d
RS
4558
4559static int
d7206569 4560mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
c224138d
RS
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563{
d7206569 4564 struct mips_elf_traverse_got_arg tga;
c224138d
RS
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
e2ece73c 4572 /* And conservatively estimate how many local and TLS entries
c224138d 4573 would be needed. */
e2ece73c
RS
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
17214937
RS
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
e2ece73c 4579 conservatively as well. */
17214937 4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
e2ece73c
RS
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
c224138d
RS
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
c224138d 4589 /* Transfer the bfd's got information from FROM to TO. */
d7206569
RS
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
c224138d
RS
4594 return 0;
4595
d7206569
RS
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
c224138d
RS
4598 return 0;
4599
d7206569 4600 mips_elf_replace_bfd_got (abfd, to);
c224138d
RS
4601 return 1;
4602}
4603
d7206569 4604/* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
f4416af6
AO
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
d7206569
RS
4611static bfd_boolean
4612mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
f4416af6 4614{
c224138d
RS
4615 unsigned int estimate;
4616 int result;
4617
476366af 4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
d7206569
RS
4619 return FALSE;
4620
c224138d
RS
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
0f20cc35
DJ
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
c224138d 4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
143d77c5 4632
c224138d 4633 if (estimate <= arg->max_count)
f4416af6 4634 {
c224138d
RS
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
d7206569
RS
4639 arg->primary = g;
4640 return TRUE;
c224138d 4641 }
f4416af6 4642
c224138d 4643 /* Try merging with the primary GOT. */
d7206569 4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
c224138d
RS
4645 if (result >= 0)
4646 return result;
f4416af6 4647 }
c224138d 4648
f4416af6 4649 /* If we can merge with the last-created got, do it. */
c224138d 4650 if (arg->current)
f4416af6 4651 {
d7206569 4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
c224138d
RS
4653 if (result >= 0)
4654 return result;
f4416af6 4655 }
c224138d 4656
f4416af6
AO
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
c224138d
RS
4660 g->next = arg->current;
4661 arg->current = g;
0f20cc35 4662
d7206569 4663 return TRUE;
0f20cc35
DJ
4664}
4665
72e7511a
RS
4666/* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670static bfd_boolean
4671mips_elf_set_gotidx (void **entryp, long gotidx)
4672{
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690}
4691
4692/* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
0f20cc35
DJ
4695
4696static int
72e7511a 4697mips_elf_initialize_tls_index (void **entryp, void *data)
0f20cc35 4698{
72e7511a
RS
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
0f20cc35
DJ
4701
4702 /* We're only interested in TLS symbols. */
72e7511a 4703 entry = (struct mips_got_entry *) *entryp;
9ab066b4 4704 if (entry->tls_type == GOT_TLS_NONE)
0f20cc35
DJ
4705 return 1;
4706
72e7511a 4707 arg = (struct mips_elf_traverse_got_arg *) data;
6c42ddb9 4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
ead49a57 4709 {
6c42ddb9
RS
4710 arg->g = NULL;
4711 return 0;
f4416af6
AO
4712 }
4713
ead49a57 4714 /* Account for the entries we've just allocated. */
9ab066b4 4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
f4416af6
AO
4716 return 1;
4717}
4718
ab361d49
RS
4719/* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
f4416af6 4722
f4416af6 4723static int
ab361d49 4724mips_elf_set_global_got_area (void **entryp, void *data)
f4416af6 4725{
ab361d49
RS
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
f4416af6 4728
ab361d49
RS
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736}
4737
4738/* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
72e7511a 4741 the size of one GOT entry. Set DATA->g to null on failure. */
ab361d49
RS
4742
4743static int
4744mips_elf_set_global_gotidx (void **entryp, void *data)
4745{
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
0f20cc35 4748
ab361d49
RS
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
634835ae
RS
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
f4416af6 4754 {
cb22ccf4 4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
72e7511a
RS
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
cb22ccf4 4760 arg->g->assigned_low_gotno += 1;
72e7511a 4761
0e1862bb 4762 if (bfd_link_pic (arg->info)
ab361d49
RS
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
f4416af6
AO
4767 }
4768
4769 return 1;
4770}
4771
33bb52fb
RS
4772/* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
0626d451 4776static int
33bb52fb 4777mips_elf_forbid_lazy_stubs (void **entryp, void *data)
0626d451 4778{
33bb52fb
RS
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
0626d451 4782
33bb52fb
RS
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4786 BFD_ASSERT (htab != NULL);
4787
0626d451
RS
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
33bb52fb 4790 && entry->d.h->needs_lazy_stub)
f4416af6 4791 {
33bb52fb
RS
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
f4416af6 4794 }
143d77c5 4795
f4416af6
AO
4796 return 1;
4797}
4798
f4416af6
AO
4799/* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801static bfd_vma
9719ad41 4802mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
f4416af6 4803{
d7206569 4804 if (!g->next)
f4416af6
AO
4805 return 0;
4806
d7206569 4807 g = mips_elf_bfd_got (ibfd, FALSE);
f4416af6
AO
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
143d77c5 4814
0f20cc35
DJ
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
f4416af6
AO
4817}
4818
4819/* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822static bfd_boolean
9719ad41 4823mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
a8028dd0 4824 asection *got, bfd_size_type pages)
f4416af6 4825{
a8028dd0 4826 struct mips_elf_link_hash_table *htab;
f4416af6 4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
ab361d49 4828 struct mips_elf_traverse_got_arg tga;
a8028dd0 4829 struct mips_got_info *g, *gg;
33bb52fb 4830 unsigned int assign, needed_relocs;
d7206569 4831 bfd *dynobj, *ibfd;
f4416af6 4832
33bb52fb 4833 dynobj = elf_hash_table (info)->dynobj;
a8028dd0 4834 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
4835 BFD_ASSERT (htab != NULL);
4836
a8028dd0 4837 g = htab->got_info;
f4416af6 4838
f4416af6
AO
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
f4416af6
AO
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
0a44bf69 4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
f4416af6 4844 / MIPS_ELF_GOT_SIZE (abfd))
861fb55a 4845 - htab->reserved_gotno);
c224138d 4846 got_per_bfd_arg.max_pages = pages;
0f20cc35 4847 /* The number of globals that will be included in the primary GOT.
ab361d49 4848 See the calls to mips_elf_set_global_got_area below for more
0f20cc35
DJ
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
f4416af6
AO
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
c72f2fb2 4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
f4416af6 4861
0f20cc35 4862 /* If we do not find any suitable primary GOT, create an empty one. */
f4416af6 4863 if (got_per_bfd_arg.primary == NULL)
3dff0dd1 4864 g->next = mips_elf_create_got_info (abfd);
f4416af6
AO
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
d7206569 4878 mips_elf_replace_bfd_got (abfd, g);
f4416af6 4879
634835ae
RS
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
23cc69b6 4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
634835ae 4884 g->global_gotno = gg->global_gotno;
f4416af6 4885
ab361d49
RS
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
f4416af6
AO
4891
4892 /* Now go through the GOTs assigning them offset ranges.
cb22ccf4 4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
f4416af6
AO
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
0f20cc35 4907 gg->tls_gotno = 0;
f4416af6
AO
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
861fb55a 4915 assign += htab->reserved_gotno;
cb22ccf4 4916 g->assigned_low_gotno = assign;
c224138d
RS
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
cb22ccf4 4919 g->assigned_high_gotno = g->local_gotno - 1;
0f20cc35
DJ
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
ead49a57
RS
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
0f20cc35
DJ
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
72e7511a
RS
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
1fd20d70 4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
f4416af6 4938
ead49a57 4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
f4416af6 4940 g = gn;
0626d451 4941
33bb52fb
RS
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
0626d451 4944 if (g)
33bb52fb 4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
f4416af6
AO
4946 }
4947 while (g);
4948
59b08994 4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
33bb52fb
RS
4950
4951 needed_relocs = 0;
33bb52fb
RS
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
ab361d49
RS
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
cb22ccf4
KCY
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
ab361d49
RS
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
72e7511a
RS
4964 if (!tga.g)
4965 return FALSE;
cb22ccf4
KCY
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
72e7511a 4968
0e1862bb 4969 if (bfd_link_pic (info))
33bb52fb 4970 {
cb22ccf4
KCY
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
33bb52fb
RS
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
861fb55a 4975 + htab->reserved_gotno);
33bb52fb 4976 }
ab361d49 4977 needed_relocs += g->relocs;
33bb52fb 4978 }
ab361d49 4979 needed_relocs += g->relocs;
33bb52fb
RS
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
143d77c5 4984
f4416af6
AO
4985 return TRUE;
4986}
143d77c5 4987
b49e97c9
TS
4988\f
4989/* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992static const Elf_Internal_Rela *
9719ad41
RS
4993mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
b49e97c9 4996{
c000e262
TS
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
b49e97c9
TS
4999 while (relocation < relend)
5000 {
c000e262
TS
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
b49e97c9
TS
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
b49e97c9
TS
5009 return NULL;
5010}
5011
020d7251 5012/* Return whether an input relocation is against a local symbol. */
b49e97c9 5013
b34976b6 5014static bfd_boolean
9719ad41
RS
5015mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
020d7251 5017 asection **local_sections)
b49e97c9
TS
5018{
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
b49e97c9
TS
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
b34976b6 5028 return TRUE;
b49e97c9 5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
b34976b6 5030 return TRUE;
b49e97c9 5031
b34976b6 5032 return FALSE;
b49e97c9
TS
5033}
5034\f
5035/* Sign-extend VALUE, which has the indicated number of BITS. */
5036
a7ebbfdf 5037bfd_vma
9719ad41 5038_bfd_mips_elf_sign_extend (bfd_vma value, int bits)
b49e97c9
TS
5039{
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045}
5046
5047/* Return non-zero if the indicated VALUE has overflowed the maximum
4cc11e76 5048 range expressible by a signed number with the indicated number of
b49e97c9
TS
5049 BITS. */
5050
b34976b6 5051static bfd_boolean
9719ad41 5052mips_elf_overflow_p (bfd_vma value, int bits)
b49e97c9
TS
5053{
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
b34976b6 5058 return TRUE;
b49e97c9
TS
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
b34976b6 5061 return TRUE;
b49e97c9
TS
5062
5063 /* All is well. */
b34976b6 5064 return FALSE;
b49e97c9
TS
5065}
5066
5067/* Calculate the %high function. */
5068
5069static bfd_vma
9719ad41 5070mips_elf_high (bfd_vma value)
b49e97c9
TS
5071{
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073}
5074
5075/* Calculate the %higher function. */
5076
5077static bfd_vma
9719ad41 5078mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5079{
5080#ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082#else
5083 abort ();
c5ae1840 5084 return MINUS_ONE;
b49e97c9
TS
5085#endif
5086}
5087
5088/* Calculate the %highest function. */
5089
5090static bfd_vma
9719ad41 5091mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
b49e97c9
TS
5092{
5093#ifdef BFD64
b15e6682 5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
b49e97c9
TS
5095#else
5096 abort ();
c5ae1840 5097 return MINUS_ONE;
b49e97c9
TS
5098#endif
5099}
5100\f
5101/* Create the .compact_rel section. */
5102
b34976b6 5103static bfd_boolean
9719ad41
RS
5104mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
5106{
5107 flagword flags;
5108 register asection *s;
5109
3d4d4302 5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
b49e97c9
TS
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
3d4d4302 5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
b49e97c9 5116 if (s == NULL
b49e97c9
TS
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 5119 return FALSE;
b49e97c9 5120
eea6121a 5121 s->size = sizeof (Elf32_External_compact_rel);
b49e97c9
TS
5122 }
5123
b34976b6 5124 return TRUE;
b49e97c9
TS
5125}
5126
5127/* Create the .got section to hold the global offset table. */
5128
b34976b6 5129static bfd_boolean
23cc69b6 5130mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
5131{
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
14a793b2 5135 struct bfd_link_hash_entry *bh;
0a44bf69
RS
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
4dfe6ac6 5139 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5140
5141 /* This function may be called more than once. */
ce558b89 5142 if (htab->root.sgot)
23cc69b6 5143 return TRUE;
b49e97c9
TS
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
72b4917c
TS
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
87e0a731 5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
b49e97c9 5151 if (s == NULL
72b4917c 5152 || ! bfd_set_section_alignment (abfd, s, 4))
b34976b6 5153 return FALSE;
ce558b89 5154 htab->root.sgot = s;
b49e97c9
TS
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
14a793b2 5159 bh = NULL;
b49e97c9
TS
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
9719ad41 5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 5163 return FALSE;
14a793b2
AM
5164
5165 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
5166 h->non_elf = 0;
5167 h->def_regular = 1;
b49e97c9 5168 h->type = STT_OBJECT;
2f9efdfc 5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
d329bcd1 5170 elf_hash_table (info)->hgot = h;
b49e97c9 5171
0e1862bb 5172 if (bfd_link_pic (info)
c152c796 5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 5174 return FALSE;
b49e97c9 5175
3dff0dd1 5176 htab->got_info = mips_elf_create_got_info (abfd);
f0abc2a1 5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
b49e97c9
TS
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
861fb55a 5180 /* We also need a .got.plt section when generating PLTs. */
87e0a731
AM
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
861fb55a
DJ
5186 if (s == NULL)
5187 return FALSE;
ce558b89 5188 htab->root.sgotplt = s;
0a44bf69 5189
b34976b6 5190 return TRUE;
b49e97c9 5191}
b49e97c9 5192\f
0a44bf69
RS
5193/* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197static bfd_boolean
5198is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199{
5200 return (mips_elf_hash_table (info)->is_vxworks
0e1862bb 5201 && bfd_link_pic (info)
0a44bf69
RS
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204}
861fb55a
DJ
5205
5206/* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211static bfd_boolean
8f0c309a
CLT
5212mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
861fb55a
DJ
5214{
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
7361da2c
AB
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
df58fc94
RS
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
861fb55a
DJ
5234 return TRUE;
5235
8f0c309a
CLT
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
861fb55a
DJ
5239 default:
5240 return FALSE;
5241 }
5242}
0a44bf69 5243\f
b49e97c9
TS
5244/* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
38a7df63 5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
df58fc94 5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9
TS
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257static bfd_reloc_status_type
9719ad41
RS
5258mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
38a7df63
CF
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
9719ad41 5267 bfd_boolean save_addend)
b49e97c9
TS
5268{
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
0a61c8c2 5276 bfd_vma gp;
b49e97c9
TS
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
0a61c8c2 5281 bfd_vma gp0;
b49e97c9
TS
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
b34976b6 5290 /* TRUE if the symbol referred to by this relocation is a local
b49e97c9 5291 symbol. */
b34976b6 5292 bfd_boolean local_p, was_local_p;
77434823
MR
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
b34976b6
AM
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
bbe506e8
TS
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
b49e97c9
TS
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
b34976b6 5305 /* TRUE if overflow occurred during the calculation of the
b49e97c9 5306 relocation value. */
b34976b6
AM
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
df58fc94 5310 bfd_boolean target_is_micromips_code_p = FALSE;
0a44bf69
RS
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
4dfe6ac6 5316 BFD_ASSERT (htab != NULL);
b49e97c9
TS
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
b34976b6 5326 overflowed_p = FALSE;
b49e97c9
TS
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
020d7251 5332 local_sections);
bce03d3d 5333 was_local_p = local_p;
b49e97c9
TS
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
9d862524 5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
b49e97c9
TS
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
77434823
MR
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
b49e97c9 5354 symbol = sec->output_section->vma + sec->output_offset;
77434823 5355 if (!section_p || (sec->flags & SEC_MERGE))
b49e97c9 5356 symbol += sym->st_value;
77434823 5357 if ((sec->flags & SEC_MERGE) && section_p)
d4df96e6
L
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
b49e97c9 5363
df58fc94
RS
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
ceab86af 5372 if (*namep == NULL || **namep == '\0')
b49e97c9
TS
5373 *namep = bfd_section_name (input_bfd, sec);
5374
9d862524
MR
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
b49e97c9
TS
5395 }
5396 else
5397 {
560e09e9
NC
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
b49e97c9
TS
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
560e09e9 5413 if (strcmp (*namep, "_gp_disp") == 0
b49e97c9
TS
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
738e5348 5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
b49e97c9
TS
5419 return bfd_reloc_notsupported;
5420
b34976b6 5421 gp_disp_p = TRUE;
b49e97c9 5422 }
bbe506e8
TS
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
b49e97c9
TS
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
59c2e50f 5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
b49e97c9
TS
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
a4d0f181
TS
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
b49e97c9
TS
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
de194d85 5459 in _bfd_mips_elf_create_dynamic_sections.
b49e97c9
TS
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
0e1862bb 5463 BFD_ASSERT (! bfd_link_pic (info));
b49e97c9
TS
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5e2b0d47
NC
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
b49e97c9
TS
5478 else
5479 {
1a72702b
AM
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
b49e97c9
TS
5486 }
5487
30c09090 5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
1bbce132 5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
b49e97c9
TS
5490 }
5491
738e5348
RS
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
0e1862bb 5502 && !bfd_link_relocatable (info)
738e5348
RS
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
b9d58d71 5506 || (local_p
698600e4
AM
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
738e5348 5509 && !section_allows_mips16_refs_p (input_section))
b49e97c9
TS
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
8f0c309a 5515 {
698600e4 5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
8f0c309a
CLT
5517 value = 0;
5518 }
b49e97c9
TS
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
8f0c309a
CLT
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
b49e97c9
TS
5534 }
5535
8f0c309a 5536 symbol = sec->output_section->vma + sec->output_offset + value;
f38c2df5
TS
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
b49e97c9 5539 }
1bbce132
MR
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
0e1862bb 5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
b314ec0e 5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
b9d58d71 5546 || (local_p
698600e4
AM
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
1bbce132 5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
b49e97c9 5550 {
b9d58d71 5551 if (local_p)
698600e4 5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
b9d58d71 5553 else
b49e97c9 5554 {
b9d58d71
TS
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
b49e97c9 5559 {
b9d58d71 5560 asection *o;
68ffbac6 5561
b9d58d71
TS
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
b49e97c9 5564 {
b9d58d71
TS
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
b49e97c9 5570 }
b9d58d71
TS
5571 if (sec == NULL)
5572 sec = h->call_stub;
b49e97c9 5573 }
b9d58d71 5574 else if (h->call_stub != NULL)
b49e97c9 5575 sec = h->call_stub;
b9d58d71
TS
5576 else
5577 sec = h->call_fp_stub;
5578 }
b49e97c9 5579
eea6121a 5580 BFD_ASSERT (sec->size > 0);
b49e97c9
TS
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
861fb55a
DJ
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
8f0c309a
CLT
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
c7318def
MR
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
1bbce132
MR
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
54806ffa
MR
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
0e1862bb 5602 && !bfd_link_relocatable (info)
1bbce132
MR
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
ce558b89 5610 sec = htab->root.splt;
1bbce132
MR
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
b49e97c9 5621
df58fc94 5622 /* Make sure MIPS16 and microMIPS are not used together. */
c9775dde 5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
df58fc94
RS
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
4eca0228 5626 _bfd_error_handler
df58fc94
RS
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
b49e97c9 5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
df58fc94
RS
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
0e1862bb 5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
df58fc94 5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
9d862524
MR
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
df58fc94 5642 && !target_is_micromips_code_p)
9d862524
MR
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
df58fc94
RS
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
b49e97c9 5647
c5d6fa44 5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
b49e97c9 5649
0a61c8c2
RS
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
23cc69b6 5652 if (htab->got_info)
a8028dd0 5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
0a61c8c2
RS
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
df58fc94
RS
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
020d7251 5662 {
df58fc94
RS
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
020d7251
RS
5665 addend = 0;
5666 }
5667
e77760d2 5668 /* If we haven't already determined the GOT offset, and we're going
0a61c8c2 5669 to need it, get it now. */
b49e97c9
TS
5670 switch (r_type)
5671 {
738e5348
RS
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
b49e97c9
TS
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
df58fc94
RS
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
0f20cc35
DJ
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
d0f13682
CLT
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
df58fc94
RS
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
b49e97c9 5697 /* Find the index into the GOT where this value is located. */
df58fc94 5698 if (tls_ldm_reloc_p (r_type))
0f20cc35 5699 {
0a44bf69 5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5c18022e 5701 0, 0, NULL, r_type);
0f20cc35
DJ
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
b49e97c9 5706 {
0a44bf69
RS
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
df58fc94
RS
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
738e5348 5712 || call16_reloc_p (r_type)))
0a44bf69
RS
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
b49e97c9 5719 {
020d7251 5720 BFD_ASSERT (addend == 0);
13fbec83
RS
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
e641e783 5723 if (!TLS_RELOC_P (r_type)
020d7251
RS
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
ce558b89 5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
b49e97c9
TS
5727 }
5728 }
0a44bf69 5729 else if (!htab->is_vxworks
738e5348 5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
0a44bf69 5731 /* The calculation below does not involve "g". */
b49e97c9
TS
5732 break;
5733 else
5734 {
5c18022e 5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
0a44bf69 5736 symbol + addend, r_symndx, h, r_type);
b49e97c9
TS
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
a8028dd0 5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
b49e97c9 5743 break;
b49e97c9
TS
5744 }
5745
0a44bf69
RS
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
9e3313ae
RS
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
0a44bf69
RS
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
b49e97c9
TS
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
c3eb94b4
MF
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
b49e97c9
TS
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
0e1862bb 5790 if ((bfd_link_pic (info)
861fb55a 5791 || (htab->root.dynamic_sections_created
b49e97c9 5792 && h != NULL
f5385ebf 5793 && h->root.def_dynamic
861fb55a
DJ
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
cf35638d 5796 && r_symndx != STN_UNDEF
9a59ad6b
DJ
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
b49e97c9
TS
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
861fb55a 5802 /* If we're creating a shared library, then we can't know
b49e97c9
TS
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
861fb55a
DJ
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
b49e97c9
TS
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
092dcd75
CD
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
b49e97c9
TS
5832 break;
5833
b49e97c9
TS
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
df58fc94
RS
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
df58fc94
RS
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
77434823 5848 if (howto->partial_inplace && !section_p)
df58fc94 5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
c3eb94b4
MF
5850 else
5851 value = addend;
bc27bb05
MR
5852 value += symbol;
5853
9d862524
MR
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
bc27bb05
MR
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
77434823 5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
df58fc94
RS
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
b49e97c9
TS
5868 break;
5869
0f20cc35 5870 case R_MIPS_TLS_DTPREL_HI16:
d0f13682 5871 case R_MIPS16_TLS_DTPREL_HI16:
df58fc94 5872 case R_MICROMIPS_TLS_DTPREL_HI16:
0f20cc35
DJ
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
741d6ea8
JM
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
d0f13682 5880 case R_MIPS16_TLS_DTPREL_LO16:
df58fc94 5881 case R_MICROMIPS_TLS_DTPREL_LO16:
0f20cc35
DJ
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
d0f13682 5886 case R_MIPS16_TLS_TPREL_HI16:
df58fc94 5887 case R_MICROMIPS_TLS_TPREL_HI16:
0f20cc35
DJ
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
d0f13682
CLT
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
df58fc94 5896 case R_MICROMIPS_TLS_TPREL_LO16:
0f20cc35
DJ
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
b49e97c9 5900 case R_MIPS_HI16:
d6f16593 5901 case R_MIPS16_HI16:
df58fc94 5902 case R_MICROMIPS_HI16:
b49e97c9
TS
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
d6f16593
MR
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
888b9c01
CLT
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
d6f16593 5920 if (r_type == R_MIPS16_HI16)
888b9c01 5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
df58fc94
RS
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
d6f16593
MR
5927 else
5928 value = mips_elf_high (addend + gp - p);
b49e97c9
TS
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
d6f16593 5933 case R_MIPS16_LO16:
df58fc94
RS
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
b49e97c9
TS
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
d6f16593
MR
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
888b9c01 5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
df58fc94
RS
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
d6f16593
MR
5947 else
5948 value = addend + gp - p + 4;
b49e97c9 5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
8dc1a139 5950 for overflow. But, on, say, IRIX5, relocations against
b49e97c9
TS
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
df58fc94 5969 case R_MICROMIPS_LITERAL:
b49e97c9
TS
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
df58fc94
RS
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
bce03d3d
AO
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
a7ebbfdf 5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
bce03d3d
AO
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
538baf8b
AB
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
b49e97c9
TS
6000 break;
6001
738e5348
RS
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
b49e97c9
TS
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
df58fc94
RS
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
0a44bf69 6008 /* VxWorks does not have separate local and global semantics for
738e5348 6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
0a44bf69 6010 if (!htab->is_vxworks && local_p)
b49e97c9 6011 {
5c18022e 6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
020d7251 6013 symbol + addend, !was_local_p);
b49e97c9
TS
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
a8028dd0 6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
0f20cc35
DJ
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
b49e97c9 6027 case R_MIPS_GOT_DISP:
d0f13682
CLT
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
df58fc94
RS
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
b49e97c9
TS
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
bce03d3d
AO
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
b49e97c9
TS
6043 break;
6044
6045 case R_MIPS_PC16:
bad36eac 6046 case R_MIPS_GNU_REL16_S2:
c3eb94b4
MF
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
9d862524
MR
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
c3eb94b4
MF
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
538baf8b
AB
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
37caec6b
TS
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
b49e97c9
TS
6063 break;
6064
c9775dde
MR
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
9d862524
MR
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
c9775dde
MR
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
7361da2c
AB
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
538baf8b
AB
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
7361da2c
AB
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
538baf8b
AB
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
7361da2c
AB
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
538baf8b
AB
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
538baf8b
AB
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
7361da2c
AB
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
538baf8b
AB
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
7361da2c
AB
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
df58fc94 6152 case R_MICROMIPS_PC7_S1:
c3eb94b4
MF
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
9d862524
MR
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
c3eb94b4 6162 value = symbol + addend - p;
538baf8b
AB
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
df58fc94
RS
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
c3eb94b4
MF
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
9d862524
MR
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
c3eb94b4 6179 value = symbol + addend - p;
538baf8b
AB
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
df58fc94
RS
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
c3eb94b4
MF
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
9d862524
MR
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
c3eb94b4 6196 value = symbol + addend - p;
538baf8b
AB
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
df58fc94
RS
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
c3eb94b4
MF
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
538baf8b
AB
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
df58fc94
RS
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
b49e97c9
TS
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
df58fc94
RS
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
b49e97c9
TS
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
df58fc94
RS
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
df58fc94 6233 case R_MICROMIPS_GOT_PAGE:
5c18022e 6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
b49e97c9
TS
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
a8028dd0 6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
b49e97c9
TS
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
df58fc94 6242 case R_MICROMIPS_GOT_OFST:
93a2b7ae 6243 if (local_p)
5c18022e 6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
0fdc1bf1
AO
6245 else
6246 value = addend;
b49e97c9
TS
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
df58fc94 6251 case R_MICROMIPS_SUB:
b49e97c9
TS
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
df58fc94 6257 case R_MICROMIPS_HIGHER:
b49e97c9
TS
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
df58fc94 6263 case R_MICROMIPS_HIGHEST:
b49e97c9
TS
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
df58fc94 6269 case R_MICROMIPS_SCN_DISP:
b49e97c9
TS
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
b49e97c9 6274 case R_MIPS_JALR:
df58fc94 6275 case R_MICROMIPS_JALR:
1367d393
ILT
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
5bbc5ae7
AN
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
1367d393 6280 return bfd_reloc_continue;
c1556ecd
MR
6281 /* We can't optimize cross-mode jumps either. */
6282 if (*cross_mode_jump_p)
6283 return bfd_reloc_continue;
1367d393 6284 value = symbol + addend;
c1556ecd
MR
6285 /* Neither we can non-instruction-aligned targets. */
6286 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6287 return bfd_reloc_continue;
1367d393 6288 break;
b49e97c9 6289
1367d393 6290 case R_MIPS_PJUMP:
b49e97c9
TS
6291 case R_MIPS_GNU_VTINHERIT:
6292 case R_MIPS_GNU_VTENTRY:
6293 /* We don't do anything with these at present. */
6294 return bfd_reloc_continue;
6295
6296 default:
6297 /* An unrecognized relocation type. */
6298 return bfd_reloc_notsupported;
6299 }
6300
6301 /* Store the VALUE for our caller. */
6302 *valuep = value;
6303 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6304}
6305
6306/* Obtain the field relocated by RELOCATION. */
6307
6308static bfd_vma
9719ad41
RS
6309mips_elf_obtain_contents (reloc_howto_type *howto,
6310 const Elf_Internal_Rela *relocation,
6311 bfd *input_bfd, bfd_byte *contents)
b49e97c9 6312{
6346d5ca 6313 bfd_vma x = 0;
b49e97c9 6314 bfd_byte *location = contents + relocation->r_offset;
6346d5ca 6315 unsigned int size = bfd_get_reloc_size (howto);
b49e97c9
TS
6316
6317 /* Obtain the bytes. */
6346d5ca
AM
6318 if (size != 0)
6319 x = bfd_get (8 * size, input_bfd, location);
b49e97c9 6320
b49e97c9
TS
6321 return x;
6322}
6323
6324/* It has been determined that the result of the RELOCATION is the
6325 VALUE. Use HOWTO to place VALUE into the output file at the
6326 appropriate position. The SECTION is the section to which the
68ffbac6 6327 relocation applies.
38a7df63 6328 CROSS_MODE_JUMP_P is true if the relocation field
df58fc94 6329 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
b49e97c9 6330
b34976b6 6331 Returns FALSE if anything goes wrong. */
b49e97c9 6332
b34976b6 6333static bfd_boolean
9719ad41
RS
6334mips_elf_perform_relocation (struct bfd_link_info *info,
6335 reloc_howto_type *howto,
6336 const Elf_Internal_Rela *relocation,
6337 bfd_vma value, bfd *input_bfd,
6338 asection *input_section, bfd_byte *contents,
38a7df63 6339 bfd_boolean cross_mode_jump_p)
b49e97c9
TS
6340{
6341 bfd_vma x;
6342 bfd_byte *location;
6343 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6346d5ca 6344 unsigned int size;
b49e97c9
TS
6345
6346 /* Figure out where the relocation is occurring. */
6347 location = contents + relocation->r_offset;
6348
df58fc94 6349 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
d6f16593 6350
b49e97c9
TS
6351 /* Obtain the current value. */
6352 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6353
6354 /* Clear the field we are setting. */
6355 x &= ~howto->dst_mask;
6356
b49e97c9
TS
6357 /* Set the field. */
6358 x |= (value & howto->dst_mask);
6359
a6ebf616 6360 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
9d862524
MR
6361 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6362 {
6363 bfd_vma opcode = x >> 26;
6364
6365 if (r_type == R_MIPS16_26 ? opcode == 0x7
6366 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6367 : opcode == 0x1d)
6368 {
6369 info->callbacks->einfo
6370 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6371 input_bfd, input_section, relocation->r_offset);
6372 return TRUE;
6373 }
6374 }
38a7df63 6375 if (cross_mode_jump_p && jal_reloc_p (r_type))
b49e97c9 6376 {
b34976b6 6377 bfd_boolean ok;
b49e97c9
TS
6378 bfd_vma opcode = x >> 26;
6379 bfd_vma jalx_opcode;
6380
6381 /* Check to see if the opcode is already JAL or JALX. */
6382 if (r_type == R_MIPS16_26)
6383 {
6384 ok = ((opcode == 0x6) || (opcode == 0x7));
6385 jalx_opcode = 0x7;
6386 }
df58fc94
RS
6387 else if (r_type == R_MICROMIPS_26_S1)
6388 {
6389 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6390 jalx_opcode = 0x3c;
6391 }
b49e97c9
TS
6392 else
6393 {
6394 ok = ((opcode == 0x3) || (opcode == 0x1d));
6395 jalx_opcode = 0x1d;
6396 }
6397
3bdf9505
MR
6398 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6399 convert J or JALS to JALX. */
b49e97c9
TS
6400 if (!ok)
6401 {
5f68df25
MR
6402 info->callbacks->einfo
6403 (_("%X%H: Unsupported jump between ISA modes; "
6404 "consider recompiling with interlinking enabled\n"),
6405 input_bfd, input_section, relocation->r_offset);
6406 return TRUE;
b49e97c9
TS
6407 }
6408
6409 /* Make this the JALX opcode. */
6410 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6411 }
9d862524
MR
6412 else if (cross_mode_jump_p && b_reloc_p (r_type))
6413 {
a6ebf616
MR
6414 bfd_boolean ok = FALSE;
6415 bfd_vma opcode = x >> 16;
6416 bfd_vma jalx_opcode = 0;
6417 bfd_vma addr;
6418 bfd_vma dest;
6419
6420 if (r_type == R_MICROMIPS_PC16_S1)
6421 {
6422 ok = opcode == 0x4060;
6423 jalx_opcode = 0x3c;
6424 value <<= 1;
6425 }
6426 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6427 {
6428 ok = opcode == 0x411;
6429 jalx_opcode = 0x1d;
6430 value <<= 2;
6431 }
6432
8b10b0b3 6433 if (ok && !bfd_link_pic (info))
a6ebf616 6434 {
8b10b0b3
MR
6435 addr = (input_section->output_section->vma
6436 + input_section->output_offset
6437 + relocation->r_offset
6438 + 4);
6439 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
a6ebf616 6440
8b10b0b3
MR
6441 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6442 {
6443 info->callbacks->einfo
6444 (_("%X%H: Cannot convert branch between ISA modes "
6445 "to JALX: relocation out of range\n"),
6446 input_bfd, input_section, relocation->r_offset);
6447 return TRUE;
6448 }
a6ebf616 6449
8b10b0b3
MR
6450 /* Make this the JALX opcode. */
6451 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6452 }
6453 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
a6ebf616
MR
6454 {
6455 info->callbacks->einfo
8b10b0b3 6456 (_("%X%H: Unsupported branch between ISA modes\n"),
a6ebf616
MR
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
9d862524 6460 }
b49e97c9 6461
38a7df63
CF
6462 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6463 range. */
0e1862bb 6464 if (!bfd_link_relocatable (info)
38a7df63 6465 && !cross_mode_jump_p
cd8d5a82
CF
6466 && ((JAL_TO_BAL_P (input_bfd)
6467 && r_type == R_MIPS_26
0e392101 6468 && (x >> 26) == 0x3) /* jal addr */
cd8d5a82
CF
6469 || (JALR_TO_BAL_P (input_bfd)
6470 && r_type == R_MIPS_JALR
0e392101 6471 && x == 0x0320f809) /* jalr t9 */
38a7df63
CF
6472 || (JR_TO_B_P (input_bfd)
6473 && r_type == R_MIPS_JALR
0e392101 6474 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
1367d393
ILT
6475 {
6476 bfd_vma addr;
6477 bfd_vma dest;
6478 bfd_signed_vma off;
6479
6480 addr = (input_section->output_section->vma
6481 + input_section->output_offset
6482 + relocation->r_offset
6483 + 4);
6484 if (r_type == R_MIPS_26)
6485 dest = (value << 2) | ((addr >> 28) << 28);
6486 else
6487 dest = value;
6488 off = dest - addr;
6489 if (off <= 0x1ffff && off >= -0x20000)
38a7df63 6490 {
0e392101 6491 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
38a7df63
CF
6492 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6493 else
6494 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6495 }
1367d393
ILT
6496 }
6497
b49e97c9 6498 /* Put the value into the output. */
6346d5ca
AM
6499 size = bfd_get_reloc_size (howto);
6500 if (size != 0)
6501 bfd_put (8 * size, input_bfd, x, location);
d6f16593 6502
0e1862bb 6503 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
df58fc94 6504 location);
d6f16593 6505
b34976b6 6506 return TRUE;
b49e97c9 6507}
b49e97c9 6508\f
b49e97c9
TS
6509/* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6510 is the original relocation, which is now being transformed into a
6511 dynamic relocation. The ADDENDP is adjusted if necessary; the
6512 caller should store the result in place of the original addend. */
6513
b34976b6 6514static bfd_boolean
9719ad41
RS
6515mips_elf_create_dynamic_relocation (bfd *output_bfd,
6516 struct bfd_link_info *info,
6517 const Elf_Internal_Rela *rel,
6518 struct mips_elf_link_hash_entry *h,
6519 asection *sec, bfd_vma symbol,
6520 bfd_vma *addendp, asection *input_section)
b49e97c9 6521{
947216bf 6522 Elf_Internal_Rela outrel[3];
b49e97c9
TS
6523 asection *sreloc;
6524 bfd *dynobj;
6525 int r_type;
5d41f0b6
RS
6526 long indx;
6527 bfd_boolean defined_p;
0a44bf69 6528 struct mips_elf_link_hash_table *htab;
b49e97c9 6529
0a44bf69 6530 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
6531 BFD_ASSERT (htab != NULL);
6532
b49e97c9
TS
6533 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6534 dynobj = elf_hash_table (info)->dynobj;
0a44bf69 6535 sreloc = mips_elf_rel_dyn_section (info, FALSE);
b49e97c9
TS
6536 BFD_ASSERT (sreloc != NULL);
6537 BFD_ASSERT (sreloc->contents != NULL);
6538 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
eea6121a 6539 < sreloc->size);
b49e97c9 6540
b49e97c9
TS
6541 outrel[0].r_offset =
6542 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
9ddf8309
TS
6543 if (ABI_64_P (output_bfd))
6544 {
6545 outrel[1].r_offset =
6546 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6547 outrel[2].r_offset =
6548 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6549 }
b49e97c9 6550
c5ae1840 6551 if (outrel[0].r_offset == MINUS_ONE)
0d591ff7 6552 /* The relocation field has been deleted. */
5d41f0b6
RS
6553 return TRUE;
6554
6555 if (outrel[0].r_offset == MINUS_TWO)
0d591ff7
RS
6556 {
6557 /* The relocation field has been converted into a relative value of
6558 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6559 the field to be fully relocated, so add in the symbol's value. */
0d591ff7 6560 *addendp += symbol;
5d41f0b6 6561 return TRUE;
0d591ff7 6562 }
b49e97c9 6563
5d41f0b6
RS
6564 /* We must now calculate the dynamic symbol table index to use
6565 in the relocation. */
d4a77f3f 6566 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5d41f0b6 6567 {
020d7251 6568 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5d41f0b6
RS
6569 indx = h->root.dynindx;
6570 if (SGI_COMPAT (output_bfd))
6571 defined_p = h->root.def_regular;
6572 else
6573 /* ??? glibc's ld.so just adds the final GOT entry to the
6574 relocation field. It therefore treats relocs against
6575 defined symbols in the same way as relocs against
6576 undefined symbols. */
6577 defined_p = FALSE;
6578 }
b49e97c9
TS
6579 else
6580 {
5d41f0b6
RS
6581 if (sec != NULL && bfd_is_abs_section (sec))
6582 indx = 0;
6583 else if (sec == NULL || sec->owner == NULL)
fdd07405 6584 {
5d41f0b6
RS
6585 bfd_set_error (bfd_error_bad_value);
6586 return FALSE;
b49e97c9
TS
6587 }
6588 else
6589 {
5d41f0b6 6590 indx = elf_section_data (sec->output_section)->dynindx;
74541ad4
AM
6591 if (indx == 0)
6592 {
6593 asection *osec = htab->root.text_index_section;
6594 indx = elf_section_data (osec)->dynindx;
6595 }
5d41f0b6
RS
6596 if (indx == 0)
6597 abort ();
b49e97c9
TS
6598 }
6599
5d41f0b6
RS
6600 /* Instead of generating a relocation using the section
6601 symbol, we may as well make it a fully relative
6602 relocation. We want to avoid generating relocations to
6603 local symbols because we used to generate them
6604 incorrectly, without adding the original symbol value,
6605 which is mandated by the ABI for section symbols. In
6606 order to give dynamic loaders and applications time to
6607 phase out the incorrect use, we refrain from emitting
6608 section-relative relocations. It's not like they're
6609 useful, after all. This should be a bit more efficient
6610 as well. */
6611 /* ??? Although this behavior is compatible with glibc's ld.so,
6612 the ABI says that relocations against STN_UNDEF should have
6613 a symbol value of 0. Irix rld honors this, so relocations
6614 against STN_UNDEF have no effect. */
6615 if (!SGI_COMPAT (output_bfd))
6616 indx = 0;
6617 defined_p = TRUE;
b49e97c9
TS
6618 }
6619
5d41f0b6
RS
6620 /* If the relocation was previously an absolute relocation and
6621 this symbol will not be referred to by the relocation, we must
6622 adjust it by the value we give it in the dynamic symbol table.
6623 Otherwise leave the job up to the dynamic linker. */
6624 if (defined_p && r_type != R_MIPS_REL32)
6625 *addendp += symbol;
6626
0a44bf69
RS
6627 if (htab->is_vxworks)
6628 /* VxWorks uses non-relative relocations for this. */
6629 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6630 else
6631 /* The relocation is always an REL32 relocation because we don't
6632 know where the shared library will wind up at load-time. */
6633 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6634 R_MIPS_REL32);
6635
5d41f0b6
RS
6636 /* For strict adherence to the ABI specification, we should
6637 generate a R_MIPS_64 relocation record by itself before the
6638 _REL32/_64 record as well, such that the addend is read in as
6639 a 64-bit value (REL32 is a 32-bit relocation, after all).
6640 However, since none of the existing ELF64 MIPS dynamic
6641 loaders seems to care, we don't waste space with these
6642 artificial relocations. If this turns out to not be true,
6643 mips_elf_allocate_dynamic_relocation() should be tweaked so
6644 as to make room for a pair of dynamic relocations per
6645 invocation if ABI_64_P, and here we should generate an
6646 additional relocation record with R_MIPS_64 by itself for a
6647 NULL symbol before this relocation record. */
6648 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6649 ABI_64_P (output_bfd)
6650 ? R_MIPS_64
6651 : R_MIPS_NONE);
6652 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6653
6654 /* Adjust the output offset of the relocation to reference the
6655 correct location in the output file. */
6656 outrel[0].r_offset += (input_section->output_section->vma
6657 + input_section->output_offset);
6658 outrel[1].r_offset += (input_section->output_section->vma
6659 + input_section->output_offset);
6660 outrel[2].r_offset += (input_section->output_section->vma
6661 + input_section->output_offset);
6662
b49e97c9
TS
6663 /* Put the relocation back out. We have to use the special
6664 relocation outputter in the 64-bit case since the 64-bit
6665 relocation format is non-standard. */
6666 if (ABI_64_P (output_bfd))
6667 {
6668 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents
6671 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6672 }
0a44bf69
RS
6673 else if (htab->is_vxworks)
6674 {
6675 /* VxWorks uses RELA rather than REL dynamic relocations. */
6676 outrel[0].r_addend = *addendp;
6677 bfd_elf32_swap_reloca_out
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6681 }
b49e97c9 6682 else
947216bf
AM
6683 bfd_elf32_swap_reloc_out
6684 (output_bfd, &outrel[0],
6685 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
b49e97c9 6686
b49e97c9
TS
6687 /* We've now added another relocation. */
6688 ++sreloc->reloc_count;
6689
6690 /* Make sure the output section is writable. The dynamic linker
6691 will be writing to it. */
6692 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6693 |= SHF_WRITE;
6694
6695 /* On IRIX5, make an entry of compact relocation info. */
5d41f0b6 6696 if (IRIX_COMPAT (output_bfd) == ict_irix5)
b49e97c9 6697 {
3d4d4302 6698 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
6699 bfd_byte *cr;
6700
6701 if (scpt)
6702 {
6703 Elf32_crinfo cptrel;
6704
6705 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6706 cptrel.vaddr = (rel->r_offset
6707 + input_section->output_section->vma
6708 + input_section->output_offset);
6709 if (r_type == R_MIPS_REL32)
6710 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6711 else
6712 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6713 mips_elf_set_cr_dist2to (cptrel, 0);
6714 cptrel.konst = *addendp;
6715
6716 cr = (scpt->contents
6717 + sizeof (Elf32_External_compact_rel));
abc0f8d0 6718 mips_elf_set_cr_relvaddr (cptrel, 0);
b49e97c9
TS
6719 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6720 ((Elf32_External_crinfo *) cr
6721 + scpt->reloc_count));
6722 ++scpt->reloc_count;
6723 }
6724 }
6725
943284cc
DJ
6726 /* If we've written this relocation for a readonly section,
6727 we need to set DF_TEXTREL again, so that we do not delete the
6728 DT_TEXTREL tag. */
6729 if (MIPS_ELF_READONLY_SECTION (input_section))
6730 info->flags |= DF_TEXTREL;
6731
b34976b6 6732 return TRUE;
b49e97c9
TS
6733}
6734\f
b49e97c9
TS
6735/* Return the MACH for a MIPS e_flags value. */
6736
6737unsigned long
9719ad41 6738_bfd_elf_mips_mach (flagword flags)
b49e97c9
TS
6739{
6740 switch (flags & EF_MIPS_MACH)
6741 {
6742 case E_MIPS_MACH_3900:
6743 return bfd_mach_mips3900;
6744
6745 case E_MIPS_MACH_4010:
6746 return bfd_mach_mips4010;
6747
6748 case E_MIPS_MACH_4100:
6749 return bfd_mach_mips4100;
6750
6751 case E_MIPS_MACH_4111:
6752 return bfd_mach_mips4111;
6753
00707a0e
RS
6754 case E_MIPS_MACH_4120:
6755 return bfd_mach_mips4120;
6756
b49e97c9
TS
6757 case E_MIPS_MACH_4650:
6758 return bfd_mach_mips4650;
6759
00707a0e
RS
6760 case E_MIPS_MACH_5400:
6761 return bfd_mach_mips5400;
6762
6763 case E_MIPS_MACH_5500:
6764 return bfd_mach_mips5500;
6765
e407c74b
NC
6766 case E_MIPS_MACH_5900:
6767 return bfd_mach_mips5900;
6768
0d2e43ed
ILT
6769 case E_MIPS_MACH_9000:
6770 return bfd_mach_mips9000;
6771
b49e97c9
TS
6772 case E_MIPS_MACH_SB1:
6773 return bfd_mach_mips_sb1;
6774
350cc38d
MS
6775 case E_MIPS_MACH_LS2E:
6776 return bfd_mach_mips_loongson_2e;
6777
6778 case E_MIPS_MACH_LS2F:
6779 return bfd_mach_mips_loongson_2f;
6780
fd503541
NC
6781 case E_MIPS_MACH_LS3A:
6782 return bfd_mach_mips_loongson_3a;
6783
2c629856
N
6784 case E_MIPS_MACH_OCTEON3:
6785 return bfd_mach_mips_octeon3;
6786
432233b3
AP
6787 case E_MIPS_MACH_OCTEON2:
6788 return bfd_mach_mips_octeon2;
6789
6f179bd0
AN
6790 case E_MIPS_MACH_OCTEON:
6791 return bfd_mach_mips_octeon;
6792
52b6b6b9
JM
6793 case E_MIPS_MACH_XLR:
6794 return bfd_mach_mips_xlr;
6795
38bf472a
MR
6796 case E_MIPS_MACH_IAMR2:
6797 return bfd_mach_mips_interaptiv_mr2;
6798
b49e97c9
TS
6799 default:
6800 switch (flags & EF_MIPS_ARCH)
6801 {
6802 default:
6803 case E_MIPS_ARCH_1:
6804 return bfd_mach_mips3000;
b49e97c9
TS
6805
6806 case E_MIPS_ARCH_2:
6807 return bfd_mach_mips6000;
b49e97c9
TS
6808
6809 case E_MIPS_ARCH_3:
6810 return bfd_mach_mips4000;
b49e97c9
TS
6811
6812 case E_MIPS_ARCH_4:
6813 return bfd_mach_mips8000;
b49e97c9
TS
6814
6815 case E_MIPS_ARCH_5:
6816 return bfd_mach_mips5;
b49e97c9
TS
6817
6818 case E_MIPS_ARCH_32:
6819 return bfd_mach_mipsisa32;
b49e97c9
TS
6820
6821 case E_MIPS_ARCH_64:
6822 return bfd_mach_mipsisa64;
af7ee8bf
CD
6823
6824 case E_MIPS_ARCH_32R2:
6825 return bfd_mach_mipsisa32r2;
5f74bc13
CD
6826
6827 case E_MIPS_ARCH_64R2:
6828 return bfd_mach_mipsisa64r2;
7361da2c
AB
6829
6830 case E_MIPS_ARCH_32R6:
6831 return bfd_mach_mipsisa32r6;
6832
6833 case E_MIPS_ARCH_64R6:
6834 return bfd_mach_mipsisa64r6;
b49e97c9
TS
6835 }
6836 }
6837
6838 return 0;
6839}
6840
6841/* Return printable name for ABI. */
6842
6843static INLINE char *
9719ad41 6844elf_mips_abi_name (bfd *abfd)
b49e97c9
TS
6845{
6846 flagword flags;
6847
6848 flags = elf_elfheader (abfd)->e_flags;
6849 switch (flags & EF_MIPS_ABI)
6850 {
6851 case 0:
6852 if (ABI_N32_P (abfd))
6853 return "N32";
6854 else if (ABI_64_P (abfd))
6855 return "64";
6856 else
6857 return "none";
6858 case E_MIPS_ABI_O32:
6859 return "O32";
6860 case E_MIPS_ABI_O64:
6861 return "O64";
6862 case E_MIPS_ABI_EABI32:
6863 return "EABI32";
6864 case E_MIPS_ABI_EABI64:
6865 return "EABI64";
6866 default:
6867 return "unknown abi";
6868 }
6869}
6870\f
6871/* MIPS ELF uses two common sections. One is the usual one, and the
6872 other is for small objects. All the small objects are kept
6873 together, and then referenced via the gp pointer, which yields
6874 faster assembler code. This is what we use for the small common
6875 section. This approach is copied from ecoff.c. */
6876static asection mips_elf_scom_section;
6877static asymbol mips_elf_scom_symbol;
6878static asymbol *mips_elf_scom_symbol_ptr;
6879
6880/* MIPS ELF also uses an acommon section, which represents an
6881 allocated common symbol which may be overridden by a
6882 definition in a shared library. */
6883static asection mips_elf_acom_section;
6884static asymbol mips_elf_acom_symbol;
6885static asymbol *mips_elf_acom_symbol_ptr;
6886
738e5348 6887/* This is used for both the 32-bit and the 64-bit ABI. */
b49e97c9
TS
6888
6889void
9719ad41 6890_bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
b49e97c9
TS
6891{
6892 elf_symbol_type *elfsym;
6893
738e5348 6894 /* Handle the special MIPS section numbers that a symbol may use. */
b49e97c9
TS
6895 elfsym = (elf_symbol_type *) asym;
6896 switch (elfsym->internal_elf_sym.st_shndx)
6897 {
6898 case SHN_MIPS_ACOMMON:
6899 /* This section is used in a dynamically linked executable file.
6900 It is an allocated common section. The dynamic linker can
6901 either resolve these symbols to something in a shared
6902 library, or it can just leave them here. For our purposes,
6903 we can consider these symbols to be in a new section. */
6904 if (mips_elf_acom_section.name == NULL)
6905 {
6906 /* Initialize the acommon section. */
6907 mips_elf_acom_section.name = ".acommon";
6908 mips_elf_acom_section.flags = SEC_ALLOC;
6909 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6910 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6911 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6912 mips_elf_acom_symbol.name = ".acommon";
6913 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6914 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6915 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6916 }
6917 asym->section = &mips_elf_acom_section;
6918 break;
6919
6920 case SHN_COMMON:
6921 /* Common symbols less than the GP size are automatically
6922 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6923 if (asym->value > elf_gp_size (abfd)
b59eed79 6924 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
b49e97c9
TS
6925 || IRIX_COMPAT (abfd) == ict_irix6)
6926 break;
6927 /* Fall through. */
6928 case SHN_MIPS_SCOMMON:
6929 if (mips_elf_scom_section.name == NULL)
6930 {
6931 /* Initialize the small common section. */
6932 mips_elf_scom_section.name = ".scommon";
6933 mips_elf_scom_section.flags = SEC_IS_COMMON;
6934 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6935 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6936 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6937 mips_elf_scom_symbol.name = ".scommon";
6938 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6939 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6940 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6941 }
6942 asym->section = &mips_elf_scom_section;
6943 asym->value = elfsym->internal_elf_sym.st_size;
6944 break;
6945
6946 case SHN_MIPS_SUNDEFINED:
6947 asym->section = bfd_und_section_ptr;
6948 break;
6949
b49e97c9 6950 case SHN_MIPS_TEXT:
00b4930b
TS
6951 {
6952 asection *section = bfd_get_section_by_name (abfd, ".text");
6953
00b4930b
TS
6954 if (section != NULL)
6955 {
6956 asym->section = section;
6957 /* MIPS_TEXT is a bit special, the address is not an offset
de194d85 6958 to the base of the .text section. So subtract the section
00b4930b
TS
6959 base address to make it an offset. */
6960 asym->value -= section->vma;
6961 }
6962 }
b49e97c9
TS
6963 break;
6964
6965 case SHN_MIPS_DATA:
00b4930b
TS
6966 {
6967 asection *section = bfd_get_section_by_name (abfd, ".data");
6968
00b4930b
TS
6969 if (section != NULL)
6970 {
6971 asym->section = section;
6972 /* MIPS_DATA is a bit special, the address is not an offset
de194d85 6973 to the base of the .data section. So subtract the section
00b4930b
TS
6974 base address to make it an offset. */
6975 asym->value -= section->vma;
6976 }
6977 }
b49e97c9 6978 break;
b49e97c9 6979 }
738e5348 6980
df58fc94
RS
6981 /* If this is an odd-valued function symbol, assume it's a MIPS16
6982 or microMIPS one. */
738e5348
RS
6983 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6984 && (asym->value & 1) != 0)
6985 {
6986 asym->value--;
e8faf7d1 6987 if (MICROMIPS_P (abfd))
df58fc94
RS
6988 elfsym->internal_elf_sym.st_other
6989 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6990 else
6991 elfsym->internal_elf_sym.st_other
6992 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
738e5348 6993 }
b49e97c9
TS
6994}
6995\f
8c946ed5
RS
6996/* Implement elf_backend_eh_frame_address_size. This differs from
6997 the default in the way it handles EABI64.
6998
6999 EABI64 was originally specified as an LP64 ABI, and that is what
7000 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7001 historically accepted the combination of -mabi=eabi and -mlong32,
7002 and this ILP32 variation has become semi-official over time.
7003 Both forms use elf32 and have pointer-sized FDE addresses.
7004
7005 If an EABI object was generated by GCC 4.0 or above, it will have
7006 an empty .gcc_compiled_longXX section, where XX is the size of longs
7007 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7008 have no special marking to distinguish them from LP64 objects.
7009
7010 We don't want users of the official LP64 ABI to be punished for the
7011 existence of the ILP32 variant, but at the same time, we don't want
7012 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7013 We therefore take the following approach:
7014
7015 - If ABFD contains a .gcc_compiled_longXX section, use it to
7016 determine the pointer size.
7017
7018 - Otherwise check the type of the first relocation. Assume that
7019 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7020
7021 - Otherwise punt.
7022
7023 The second check is enough to detect LP64 objects generated by pre-4.0
7024 compilers because, in the kind of output generated by those compilers,
7025 the first relocation will be associated with either a CIE personality
7026 routine or an FDE start address. Furthermore, the compilers never
7027 used a special (non-pointer) encoding for this ABI.
7028
7029 Checking the relocation type should also be safe because there is no
7030 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7031 did so. */
7032
7033unsigned int
76c20d54 7034_bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
8c946ed5
RS
7035{
7036 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7037 return 8;
7038 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7039 {
7040 bfd_boolean long32_p, long64_p;
7041
7042 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7043 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7044 if (long32_p && long64_p)
7045 return 0;
7046 if (long32_p)
7047 return 4;
7048 if (long64_p)
7049 return 8;
7050
7051 if (sec->reloc_count > 0
7052 && elf_section_data (sec)->relocs != NULL
7053 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7054 == R_MIPS_64))
7055 return 8;
7056
7057 return 0;
7058 }
7059 return 4;
7060}
7061\f
174fd7f9
RS
7062/* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7063 relocations against two unnamed section symbols to resolve to the
7064 same address. For example, if we have code like:
7065
7066 lw $4,%got_disp(.data)($gp)
7067 lw $25,%got_disp(.text)($gp)
7068 jalr $25
7069
7070 then the linker will resolve both relocations to .data and the program
7071 will jump there rather than to .text.
7072
7073 We can work around this problem by giving names to local section symbols.
7074 This is also what the MIPSpro tools do. */
7075
7076bfd_boolean
7077_bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7078{
7079 return SGI_COMPAT (abfd);
7080}
7081\f
b49e97c9
TS
7082/* Work over a section just before writing it out. This routine is
7083 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7084 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7085 a better way. */
7086
b34976b6 7087bfd_boolean
9719ad41 7088_bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
b49e97c9
TS
7089{
7090 if (hdr->sh_type == SHT_MIPS_REGINFO
7091 && hdr->sh_size > 0)
7092 {
7093 bfd_byte buf[4];
7094
7095 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7096 BFD_ASSERT (hdr->contents == NULL);
7097
7098 if (bfd_seek (abfd,
7099 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7100 SEEK_SET) != 0)
b34976b6 7101 return FALSE;
b49e97c9 7102 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7103 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7104 return FALSE;
b49e97c9
TS
7105 }
7106
7107 if (hdr->sh_type == SHT_MIPS_OPTIONS
7108 && hdr->bfd_section != NULL
f0abc2a1
AM
7109 && mips_elf_section_data (hdr->bfd_section) != NULL
7110 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
b49e97c9
TS
7111 {
7112 bfd_byte *contents, *l, *lend;
7113
f0abc2a1
AM
7114 /* We stored the section contents in the tdata field in the
7115 set_section_contents routine. We save the section contents
7116 so that we don't have to read them again.
b49e97c9
TS
7117 At this point we know that elf_gp is set, so we can look
7118 through the section contents to see if there is an
7119 ODK_REGINFO structure. */
7120
f0abc2a1 7121 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
b49e97c9
TS
7122 l = contents;
7123 lend = contents + hdr->sh_size;
7124 while (l + sizeof (Elf_External_Options) <= lend)
7125 {
7126 Elf_Internal_Options intopt;
7127
7128 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7129 &intopt);
1bc8074d
MR
7130 if (intopt.size < sizeof (Elf_External_Options))
7131 {
4eca0228 7132 _bfd_error_handler
695344c0 7133 /* xgettext:c-format */
63a5468a
AM
7134 (_("%B: Warning: bad `%s' option size %u smaller than"
7135 " its header"),
1bc8074d
MR
7136 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7137 break;
7138 }
b49e97c9
TS
7139 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7140 {
7141 bfd_byte buf[8];
7142
7143 if (bfd_seek (abfd,
7144 (hdr->sh_offset
7145 + (l - contents)
7146 + sizeof (Elf_External_Options)
7147 + (sizeof (Elf64_External_RegInfo) - 8)),
7148 SEEK_SET) != 0)
b34976b6 7149 return FALSE;
b49e97c9 7150 H_PUT_64 (abfd, elf_gp (abfd), buf);
9719ad41 7151 if (bfd_bwrite (buf, 8, abfd) != 8)
b34976b6 7152 return FALSE;
b49e97c9
TS
7153 }
7154 else if (intopt.kind == ODK_REGINFO)
7155 {
7156 bfd_byte buf[4];
7157
7158 if (bfd_seek (abfd,
7159 (hdr->sh_offset
7160 + (l - contents)
7161 + sizeof (Elf_External_Options)
7162 + (sizeof (Elf32_External_RegInfo) - 4)),
7163 SEEK_SET) != 0)
b34976b6 7164 return FALSE;
b49e97c9 7165 H_PUT_32 (abfd, elf_gp (abfd), buf);
9719ad41 7166 if (bfd_bwrite (buf, 4, abfd) != 4)
b34976b6 7167 return FALSE;
b49e97c9
TS
7168 }
7169 l += intopt.size;
7170 }
7171 }
7172
7173 if (hdr->bfd_section != NULL)
7174 {
7175 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7176
2d0f9ad9
JM
7177 /* .sbss is not handled specially here because the GNU/Linux
7178 prelinker can convert .sbss from NOBITS to PROGBITS and
7179 changing it back to NOBITS breaks the binary. The entry in
7180 _bfd_mips_elf_special_sections will ensure the correct flags
7181 are set on .sbss if BFD creates it without reading it from an
7182 input file, and without special handling here the flags set
7183 on it in an input file will be followed. */
b49e97c9
TS
7184 if (strcmp (name, ".sdata") == 0
7185 || strcmp (name, ".lit8") == 0
7186 || strcmp (name, ".lit4") == 0)
fd6f9d17 7187 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
b49e97c9 7188 else if (strcmp (name, ".srdata") == 0)
fd6f9d17 7189 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
b49e97c9 7190 else if (strcmp (name, ".compact_rel") == 0)
fd6f9d17 7191 hdr->sh_flags = 0;
b49e97c9
TS
7192 else if (strcmp (name, ".rtproc") == 0)
7193 {
7194 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7195 {
7196 unsigned int adjust;
7197
7198 adjust = hdr->sh_size % hdr->sh_addralign;
7199 if (adjust != 0)
7200 hdr->sh_size += hdr->sh_addralign - adjust;
7201 }
7202 }
7203 }
7204
b34976b6 7205 return TRUE;
b49e97c9
TS
7206}
7207
7208/* Handle a MIPS specific section when reading an object file. This
7209 is called when elfcode.h finds a section with an unknown type.
7210 This routine supports both the 32-bit and 64-bit ELF ABI.
7211
7212 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7213 how to. */
7214
b34976b6 7215bfd_boolean
6dc132d9
L
7216_bfd_mips_elf_section_from_shdr (bfd *abfd,
7217 Elf_Internal_Shdr *hdr,
7218 const char *name,
7219 int shindex)
b49e97c9
TS
7220{
7221 flagword flags = 0;
7222
7223 /* There ought to be a place to keep ELF backend specific flags, but
7224 at the moment there isn't one. We just keep track of the
7225 sections by their name, instead. Fortunately, the ABI gives
7226 suggested names for all the MIPS specific sections, so we will
7227 probably get away with this. */
7228 switch (hdr->sh_type)
7229 {
7230 case SHT_MIPS_LIBLIST:
7231 if (strcmp (name, ".liblist") != 0)
b34976b6 7232 return FALSE;
b49e97c9
TS
7233 break;
7234 case SHT_MIPS_MSYM:
7235 if (strcmp (name, ".msym") != 0)
b34976b6 7236 return FALSE;
b49e97c9
TS
7237 break;
7238 case SHT_MIPS_CONFLICT:
7239 if (strcmp (name, ".conflict") != 0)
b34976b6 7240 return FALSE;
b49e97c9
TS
7241 break;
7242 case SHT_MIPS_GPTAB:
0112cd26 7243 if (! CONST_STRNEQ (name, ".gptab."))
b34976b6 7244 return FALSE;
b49e97c9
TS
7245 break;
7246 case SHT_MIPS_UCODE:
7247 if (strcmp (name, ".ucode") != 0)
b34976b6 7248 return FALSE;
b49e97c9
TS
7249 break;
7250 case SHT_MIPS_DEBUG:
7251 if (strcmp (name, ".mdebug") != 0)
b34976b6 7252 return FALSE;
b49e97c9
TS
7253 flags = SEC_DEBUGGING;
7254 break;
7255 case SHT_MIPS_REGINFO:
7256 if (strcmp (name, ".reginfo") != 0
7257 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
b34976b6 7258 return FALSE;
b49e97c9
TS
7259 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7260 break;
7261 case SHT_MIPS_IFACE:
7262 if (strcmp (name, ".MIPS.interfaces") != 0)
b34976b6 7263 return FALSE;
b49e97c9
TS
7264 break;
7265 case SHT_MIPS_CONTENT:
0112cd26 7266 if (! CONST_STRNEQ (name, ".MIPS.content"))
b34976b6 7267 return FALSE;
b49e97c9
TS
7268 break;
7269 case SHT_MIPS_OPTIONS:
cc2e31b9 7270 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b34976b6 7271 return FALSE;
b49e97c9 7272 break;
351cdf24
MF
7273 case SHT_MIPS_ABIFLAGS:
7274 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7275 return FALSE;
7276 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7277 break;
b49e97c9 7278 case SHT_MIPS_DWARF:
1b315056 7279 if (! CONST_STRNEQ (name, ".debug_")
355d10dc 7280 && ! CONST_STRNEQ (name, ".zdebug_"))
b34976b6 7281 return FALSE;
b49e97c9
TS
7282 break;
7283 case SHT_MIPS_SYMBOL_LIB:
7284 if (strcmp (name, ".MIPS.symlib") != 0)
b34976b6 7285 return FALSE;
b49e97c9
TS
7286 break;
7287 case SHT_MIPS_EVENTS:
0112cd26
NC
7288 if (! CONST_STRNEQ (name, ".MIPS.events")
7289 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
b34976b6 7290 return FALSE;
b49e97c9
TS
7291 break;
7292 default:
cc2e31b9 7293 break;
b49e97c9
TS
7294 }
7295
6dc132d9 7296 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
b34976b6 7297 return FALSE;
b49e97c9
TS
7298
7299 if (flags)
7300 {
7301 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7302 (bfd_get_section_flags (abfd,
7303 hdr->bfd_section)
7304 | flags)))
b34976b6 7305 return FALSE;
b49e97c9
TS
7306 }
7307
351cdf24
MF
7308 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7309 {
7310 Elf_External_ABIFlags_v0 ext;
7311
7312 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7313 &ext, 0, sizeof ext))
7314 return FALSE;
7315 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7316 &mips_elf_tdata (abfd)->abiflags);
7317 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7318 return FALSE;
7319 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7320 }
7321
b49e97c9
TS
7322 /* FIXME: We should record sh_info for a .gptab section. */
7323
7324 /* For a .reginfo section, set the gp value in the tdata information
7325 from the contents of this section. We need the gp value while
7326 processing relocs, so we just get it now. The .reginfo section
7327 is not used in the 64-bit MIPS ELF ABI. */
7328 if (hdr->sh_type == SHT_MIPS_REGINFO)
7329 {
7330 Elf32_External_RegInfo ext;
7331 Elf32_RegInfo s;
7332
9719ad41
RS
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
b34976b6 7335 return FALSE;
b49e97c9
TS
7336 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7337 elf_gp (abfd) = s.ri_gp_value;
7338 }
7339
7340 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7341 set the gp value based on what we find. We may see both
7342 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7343 they should agree. */
7344 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7345 {
7346 bfd_byte *contents, *l, *lend;
7347
9719ad41 7348 contents = bfd_malloc (hdr->sh_size);
b49e97c9 7349 if (contents == NULL)
b34976b6 7350 return FALSE;
b49e97c9 7351 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
9719ad41 7352 0, hdr->sh_size))
b49e97c9
TS
7353 {
7354 free (contents);
b34976b6 7355 return FALSE;
b49e97c9
TS
7356 }
7357 l = contents;
7358 lend = contents + hdr->sh_size;
7359 while (l + sizeof (Elf_External_Options) <= lend)
7360 {
7361 Elf_Internal_Options intopt;
7362
7363 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7364 &intopt);
1bc8074d
MR
7365 if (intopt.size < sizeof (Elf_External_Options))
7366 {
4eca0228 7367 _bfd_error_handler
695344c0 7368 /* xgettext:c-format */
63a5468a
AM
7369 (_("%B: Warning: bad `%s' option size %u smaller than"
7370 " its header"),
1bc8074d
MR
7371 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7372 break;
7373 }
b49e97c9
TS
7374 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7375 {
7376 Elf64_Internal_RegInfo intreg;
7377
7378 bfd_mips_elf64_swap_reginfo_in
7379 (abfd,
7380 ((Elf64_External_RegInfo *)
7381 (l + sizeof (Elf_External_Options))),
7382 &intreg);
7383 elf_gp (abfd) = intreg.ri_gp_value;
7384 }
7385 else if (intopt.kind == ODK_REGINFO)
7386 {
7387 Elf32_RegInfo intreg;
7388
7389 bfd_mips_elf32_swap_reginfo_in
7390 (abfd,
7391 ((Elf32_External_RegInfo *)
7392 (l + sizeof (Elf_External_Options))),
7393 &intreg);
7394 elf_gp (abfd) = intreg.ri_gp_value;
7395 }
7396 l += intopt.size;
7397 }
7398 free (contents);
7399 }
7400
b34976b6 7401 return TRUE;
b49e97c9
TS
7402}
7403
7404/* Set the correct type for a MIPS ELF section. We do this by the
7405 section name, which is a hack, but ought to work. This routine is
7406 used by both the 32-bit and the 64-bit ABI. */
7407
b34976b6 7408bfd_boolean
9719ad41 7409_bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
b49e97c9 7410{
0414f35b 7411 const char *name = bfd_get_section_name (abfd, sec);
b49e97c9
TS
7412
7413 if (strcmp (name, ".liblist") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_LIBLIST;
eea6121a 7416 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
b49e97c9
TS
7417 /* The sh_link field is set in final_write_processing. */
7418 }
7419 else if (strcmp (name, ".conflict") == 0)
7420 hdr->sh_type = SHT_MIPS_CONFLICT;
0112cd26 7421 else if (CONST_STRNEQ (name, ".gptab."))
b49e97c9
TS
7422 {
7423 hdr->sh_type = SHT_MIPS_GPTAB;
7424 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7425 /* The sh_info field is set in final_write_processing. */
7426 }
7427 else if (strcmp (name, ".ucode") == 0)
7428 hdr->sh_type = SHT_MIPS_UCODE;
7429 else if (strcmp (name, ".mdebug") == 0)
7430 {
7431 hdr->sh_type = SHT_MIPS_DEBUG;
8dc1a139 7432 /* In a shared object on IRIX 5.3, the .mdebug section has an
b49e97c9
TS
7433 entsize of 0. FIXME: Does this matter? */
7434 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7435 hdr->sh_entsize = 0;
7436 else
7437 hdr->sh_entsize = 1;
7438 }
7439 else if (strcmp (name, ".reginfo") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_REGINFO;
8dc1a139 7442 /* In a shared object on IRIX 5.3, the .reginfo section has an
b49e97c9
TS
7443 entsize of 0x18. FIXME: Does this matter? */
7444 if (SGI_COMPAT (abfd))
7445 {
7446 if ((abfd->flags & DYNAMIC) != 0)
7447 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7448 else
7449 hdr->sh_entsize = 1;
7450 }
7451 else
7452 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7453 }
7454 else if (SGI_COMPAT (abfd)
7455 && (strcmp (name, ".hash") == 0
7456 || strcmp (name, ".dynamic") == 0
7457 || strcmp (name, ".dynstr") == 0))
7458 {
7459 if (SGI_COMPAT (abfd))
7460 hdr->sh_entsize = 0;
7461#if 0
8dc1a139 7462 /* This isn't how the IRIX6 linker behaves. */
b49e97c9
TS
7463 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7464#endif
7465 }
7466 else if (strcmp (name, ".got") == 0
7467 || strcmp (name, ".srdata") == 0
7468 || strcmp (name, ".sdata") == 0
7469 || strcmp (name, ".sbss") == 0
7470 || strcmp (name, ".lit4") == 0
7471 || strcmp (name, ".lit8") == 0)
7472 hdr->sh_flags |= SHF_MIPS_GPREL;
7473 else if (strcmp (name, ".MIPS.interfaces") == 0)
7474 {
7475 hdr->sh_type = SHT_MIPS_IFACE;
7476 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7477 }
0112cd26 7478 else if (CONST_STRNEQ (name, ".MIPS.content"))
b49e97c9
TS
7479 {
7480 hdr->sh_type = SHT_MIPS_CONTENT;
7481 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7482 /* The sh_info field is set in final_write_processing. */
7483 }
cc2e31b9 7484 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
b49e97c9
TS
7485 {
7486 hdr->sh_type = SHT_MIPS_OPTIONS;
7487 hdr->sh_entsize = 1;
7488 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7489 }
351cdf24
MF
7490 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7491 {
7492 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7493 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7494 }
1b315056
CS
7495 else if (CONST_STRNEQ (name, ".debug_")
7496 || CONST_STRNEQ (name, ".zdebug_"))
b5482f21
NC
7497 {
7498 hdr->sh_type = SHT_MIPS_DWARF;
7499
7500 /* Irix facilities such as libexc expect a single .debug_frame
7501 per executable, the system ones have NOSTRIP set and the linker
7502 doesn't merge sections with different flags so ... */
7503 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7504 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7505 }
b49e97c9
TS
7506 else if (strcmp (name, ".MIPS.symlib") == 0)
7507 {
7508 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7509 /* The sh_link and sh_info fields are set in
7510 final_write_processing. */
7511 }
0112cd26
NC
7512 else if (CONST_STRNEQ (name, ".MIPS.events")
7513 || CONST_STRNEQ (name, ".MIPS.post_rel"))
b49e97c9
TS
7514 {
7515 hdr->sh_type = SHT_MIPS_EVENTS;
7516 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7517 /* The sh_link field is set in final_write_processing. */
7518 }
7519 else if (strcmp (name, ".msym") == 0)
7520 {
7521 hdr->sh_type = SHT_MIPS_MSYM;
7522 hdr->sh_flags |= SHF_ALLOC;
7523 hdr->sh_entsize = 8;
7524 }
7525
7a79a000
TS
7526 /* The generic elf_fake_sections will set up REL_HDR using the default
7527 kind of relocations. We used to set up a second header for the
7528 non-default kind of relocations here, but only NewABI would use
7529 these, and the IRIX ld doesn't like resulting empty RELA sections.
7530 Thus we create those header only on demand now. */
b49e97c9 7531
b34976b6 7532 return TRUE;
b49e97c9
TS
7533}
7534
7535/* Given a BFD section, try to locate the corresponding ELF section
7536 index. This is used by both the 32-bit and the 64-bit ABI.
7537 Actually, it's not clear to me that the 64-bit ABI supports these,
7538 but for non-PIC objects we will certainly want support for at least
7539 the .scommon section. */
7540
b34976b6 7541bfd_boolean
9719ad41
RS
7542_bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7543 asection *sec, int *retval)
b49e97c9
TS
7544{
7545 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7546 {
7547 *retval = SHN_MIPS_SCOMMON;
b34976b6 7548 return TRUE;
b49e97c9
TS
7549 }
7550 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7551 {
7552 *retval = SHN_MIPS_ACOMMON;
b34976b6 7553 return TRUE;
b49e97c9 7554 }
b34976b6 7555 return FALSE;
b49e97c9
TS
7556}
7557\f
7558/* Hook called by the linker routine which adds symbols from an object
7559 file. We must handle the special MIPS section numbers here. */
7560
b34976b6 7561bfd_boolean
9719ad41 7562_bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
555cd476 7563 Elf_Internal_Sym *sym, const char **namep,
9719ad41
RS
7564 flagword *flagsp ATTRIBUTE_UNUSED,
7565 asection **secp, bfd_vma *valp)
b49e97c9
TS
7566{
7567 if (SGI_COMPAT (abfd)
7568 && (abfd->flags & DYNAMIC) != 0
7569 && strcmp (*namep, "_rld_new_interface") == 0)
7570 {
8dc1a139 7571 /* Skip IRIX5 rld entry name. */
b49e97c9 7572 *namep = NULL;
b34976b6 7573 return TRUE;
b49e97c9
TS
7574 }
7575
eedecc07
DD
7576 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7577 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7578 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7579 a magic symbol resolved by the linker, we ignore this bogus definition
7580 of _gp_disp. New ABI objects do not suffer from this problem so this
7581 is not done for them. */
7582 if (!NEWABI_P(abfd)
7583 && (sym->st_shndx == SHN_ABS)
7584 && (strcmp (*namep, "_gp_disp") == 0))
7585 {
7586 *namep = NULL;
7587 return TRUE;
7588 }
7589
b49e97c9
TS
7590 switch (sym->st_shndx)
7591 {
7592 case SHN_COMMON:
7593 /* Common symbols less than the GP size are automatically
7594 treated as SHN_MIPS_SCOMMON symbols. */
7595 if (sym->st_size > elf_gp_size (abfd)
b59eed79 7596 || ELF_ST_TYPE (sym->st_info) == STT_TLS
b49e97c9
TS
7597 || IRIX_COMPAT (abfd) == ict_irix6)
7598 break;
7599 /* Fall through. */
7600 case SHN_MIPS_SCOMMON:
7601 *secp = bfd_make_section_old_way (abfd, ".scommon");
7602 (*secp)->flags |= SEC_IS_COMMON;
7603 *valp = sym->st_size;
7604 break;
7605
7606 case SHN_MIPS_TEXT:
7607 /* This section is used in a shared object. */
698600e4 7608 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
b49e97c9
TS
7609 {
7610 asymbol *elf_text_symbol;
7611 asection *elf_text_section;
7612 bfd_size_type amt = sizeof (asection);
7613
7614 elf_text_section = bfd_zalloc (abfd, amt);
7615 if (elf_text_section == NULL)
b34976b6 7616 return FALSE;
b49e97c9
TS
7617
7618 amt = sizeof (asymbol);
7619 elf_text_symbol = bfd_zalloc (abfd, amt);
7620 if (elf_text_symbol == NULL)
b34976b6 7621 return FALSE;
b49e97c9
TS
7622
7623 /* Initialize the section. */
7624
698600e4
AM
7625 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7626 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
b49e97c9
TS
7627
7628 elf_text_section->symbol = elf_text_symbol;
698600e4 7629 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
b49e97c9
TS
7630
7631 elf_text_section->name = ".text";
7632 elf_text_section->flags = SEC_NO_FLAGS;
7633 elf_text_section->output_section = NULL;
7634 elf_text_section->owner = abfd;
7635 elf_text_symbol->name = ".text";
7636 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7637 elf_text_symbol->section = elf_text_section;
7638 }
7639 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7640 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7641 so I took it out. */
698600e4 7642 *secp = mips_elf_tdata (abfd)->elf_text_section;
b49e97c9
TS
7643 break;
7644
7645 case SHN_MIPS_ACOMMON:
7646 /* Fall through. XXX Can we treat this as allocated data? */
7647 case SHN_MIPS_DATA:
7648 /* This section is used in a shared object. */
698600e4 7649 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
b49e97c9
TS
7650 {
7651 asymbol *elf_data_symbol;
7652 asection *elf_data_section;
7653 bfd_size_type amt = sizeof (asection);
7654
7655 elf_data_section = bfd_zalloc (abfd, amt);
7656 if (elf_data_section == NULL)
b34976b6 7657 return FALSE;
b49e97c9
TS
7658
7659 amt = sizeof (asymbol);
7660 elf_data_symbol = bfd_zalloc (abfd, amt);
7661 if (elf_data_symbol == NULL)
b34976b6 7662 return FALSE;
b49e97c9
TS
7663
7664 /* Initialize the section. */
7665
698600e4
AM
7666 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7667 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
b49e97c9
TS
7668
7669 elf_data_section->symbol = elf_data_symbol;
698600e4 7670 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
b49e97c9
TS
7671
7672 elf_data_section->name = ".data";
7673 elf_data_section->flags = SEC_NO_FLAGS;
7674 elf_data_section->output_section = NULL;
7675 elf_data_section->owner = abfd;
7676 elf_data_symbol->name = ".data";
7677 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7678 elf_data_symbol->section = elf_data_section;
7679 }
7680 /* This code used to do *secp = bfd_und_section_ptr if
0e1862bb 7681 bfd_link_pic (info). I don't know why, and that doesn't make sense,
b49e97c9 7682 so I took it out. */
698600e4 7683 *secp = mips_elf_tdata (abfd)->elf_data_section;
b49e97c9
TS
7684 break;
7685
7686 case SHN_MIPS_SUNDEFINED:
7687 *secp = bfd_und_section_ptr;
7688 break;
7689 }
7690
7691 if (SGI_COMPAT (abfd)
0e1862bb 7692 && ! bfd_link_pic (info)
f13a99db 7693 && info->output_bfd->xvec == abfd->xvec
b49e97c9
TS
7694 && strcmp (*namep, "__rld_obj_head") == 0)
7695 {
7696 struct elf_link_hash_entry *h;
14a793b2 7697 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7698
7699 /* Mark __rld_obj_head as dynamic. */
14a793b2 7700 bh = NULL;
b49e97c9 7701 if (! (_bfd_generic_link_add_one_symbol
9719ad41 7702 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
14a793b2 7703 get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7704 return FALSE;
14a793b2
AM
7705
7706 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7707 h->non_elf = 0;
7708 h->def_regular = 1;
b49e97c9
TS
7709 h->type = STT_OBJECT;
7710
c152c796 7711 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7712 return FALSE;
b49e97c9 7713
b34976b6 7714 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
b4082c70 7715 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7716 }
7717
7718 /* If this is a mips16 text symbol, add 1 to the value to make it
7719 odd. This will cause something like .word SYM to come up with
7720 the right value when it is loaded into the PC. */
df58fc94 7721 if (ELF_ST_IS_COMPRESSED (sym->st_other))
b49e97c9
TS
7722 ++*valp;
7723
b34976b6 7724 return TRUE;
b49e97c9
TS
7725}
7726
7727/* This hook function is called before the linker writes out a global
7728 symbol. We mark symbols as small common if appropriate. This is
7729 also where we undo the increment of the value for a mips16 symbol. */
7730
6e0b88f1 7731int
9719ad41
RS
7732_bfd_mips_elf_link_output_symbol_hook
7733 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7734 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7735 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
b49e97c9
TS
7736{
7737 /* If we see a common symbol, which implies a relocatable link, then
7738 if a symbol was small common in an input file, mark it as small
7739 common in the output file. */
7740 if (sym->st_shndx == SHN_COMMON
7741 && strcmp (input_sec->name, ".scommon") == 0)
7742 sym->st_shndx = SHN_MIPS_SCOMMON;
7743
df58fc94 7744 if (ELF_ST_IS_COMPRESSED (sym->st_other))
79cda7cf 7745 sym->st_value &= ~1;
b49e97c9 7746
6e0b88f1 7747 return 1;
b49e97c9
TS
7748}
7749\f
7750/* Functions for the dynamic linker. */
7751
7752/* Create dynamic sections when linking against a dynamic object. */
7753
b34976b6 7754bfd_boolean
9719ad41 7755_bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
b49e97c9
TS
7756{
7757 struct elf_link_hash_entry *h;
14a793b2 7758 struct bfd_link_hash_entry *bh;
b49e97c9
TS
7759 flagword flags;
7760 register asection *s;
7761 const char * const *namep;
0a44bf69 7762 struct mips_elf_link_hash_table *htab;
b49e97c9 7763
0a44bf69 7764 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
7765 BFD_ASSERT (htab != NULL);
7766
b49e97c9
TS
7767 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7768 | SEC_LINKER_CREATED | SEC_READONLY);
7769
0a44bf69
RS
7770 /* The psABI requires a read-only .dynamic section, but the VxWorks
7771 EABI doesn't. */
7772 if (!htab->is_vxworks)
b49e97c9 7773 {
3d4d4302 7774 s = bfd_get_linker_section (abfd, ".dynamic");
0a44bf69
RS
7775 if (s != NULL)
7776 {
7777 if (! bfd_set_section_flags (abfd, s, flags))
7778 return FALSE;
7779 }
b49e97c9
TS
7780 }
7781
7782 /* We need to create .got section. */
23cc69b6 7783 if (!mips_elf_create_got_section (abfd, info))
f4416af6
AO
7784 return FALSE;
7785
0a44bf69 7786 if (! mips_elf_rel_dyn_section (info, TRUE))
b34976b6 7787 return FALSE;
b49e97c9 7788
b49e97c9 7789 /* Create .stub section. */
3d4d4302
AM
7790 s = bfd_make_section_anyway_with_flags (abfd,
7791 MIPS_ELF_STUB_SECTION_NAME (abfd),
7792 flags | SEC_CODE);
4e41d0d7
RS
7793 if (s == NULL
7794 || ! bfd_set_section_alignment (abfd, s,
7795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7796 return FALSE;
7797 htab->sstubs = s;
b49e97c9 7798
e6aea42d 7799 if (!mips_elf_hash_table (info)->use_rld_obj_head
0e1862bb 7800 && bfd_link_executable (info)
3d4d4302 7801 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
b49e97c9 7802 {
3d4d4302
AM
7803 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7804 flags &~ (flagword) SEC_READONLY);
b49e97c9 7805 if (s == NULL
b49e97c9
TS
7806 || ! bfd_set_section_alignment (abfd, s,
7807 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
b34976b6 7808 return FALSE;
b49e97c9
TS
7809 }
7810
7811 /* On IRIX5, we adjust add some additional symbols and change the
7812 alignments of several sections. There is no ABI documentation
7813 indicating that this is necessary on IRIX6, nor any evidence that
7814 the linker takes such action. */
7815 if (IRIX_COMPAT (abfd) == ict_irix5)
7816 {
7817 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7818 {
14a793b2 7819 bh = NULL;
b49e97c9 7820 if (! (_bfd_generic_link_add_one_symbol
9719ad41
RS
7821 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7822 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7823 return FALSE;
14a793b2
AM
7824
7825 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7826 h->non_elf = 0;
7827 h->def_regular = 1;
b49e97c9
TS
7828 h->type = STT_SECTION;
7829
c152c796 7830 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7831 return FALSE;
b49e97c9
TS
7832 }
7833
7834 /* We need to create a .compact_rel section. */
7835 if (SGI_COMPAT (abfd))
7836 {
7837 if (!mips_elf_create_compact_rel_section (abfd, info))
b34976b6 7838 return FALSE;
b49e97c9
TS
7839 }
7840
44c410de 7841 /* Change alignments of some sections. */
3d4d4302 7842 s = bfd_get_linker_section (abfd, ".hash");
b49e97c9 7843 if (s != NULL)
a253d456
NC
7844 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7845
3d4d4302 7846 s = bfd_get_linker_section (abfd, ".dynsym");
b49e97c9 7847 if (s != NULL)
a253d456
NC
7848 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7849
3d4d4302 7850 s = bfd_get_linker_section (abfd, ".dynstr");
b49e97c9 7851 if (s != NULL)
a253d456
NC
7852 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7853
3d4d4302 7854 /* ??? */
b49e97c9
TS
7855 s = bfd_get_section_by_name (abfd, ".reginfo");
7856 if (s != NULL)
a253d456
NC
7857 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7858
3d4d4302 7859 s = bfd_get_linker_section (abfd, ".dynamic");
b49e97c9 7860 if (s != NULL)
a253d456 7861 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
b49e97c9
TS
7862 }
7863
0e1862bb 7864 if (bfd_link_executable (info))
b49e97c9 7865 {
14a793b2
AM
7866 const char *name;
7867
7868 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7869 bh = NULL;
7870 if (!(_bfd_generic_link_add_one_symbol
9719ad41
RS
7871 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7872 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
b34976b6 7873 return FALSE;
14a793b2
AM
7874
7875 h = (struct elf_link_hash_entry *) bh;
f5385ebf
AM
7876 h->non_elf = 0;
7877 h->def_regular = 1;
b49e97c9
TS
7878 h->type = STT_SECTION;
7879
c152c796 7880 if (! bfd_elf_link_record_dynamic_symbol (info, h))
b34976b6 7881 return FALSE;
b49e97c9
TS
7882
7883 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7884 {
7885 /* __rld_map is a four byte word located in the .data section
7886 and is filled in by the rtld to contain a pointer to
7887 the _r_debug structure. Its symbol value will be set in
7888 _bfd_mips_elf_finish_dynamic_symbol. */
3d4d4302 7889 s = bfd_get_linker_section (abfd, ".rld_map");
0abfb97a 7890 BFD_ASSERT (s != NULL);
14a793b2 7891
0abfb97a
L
7892 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7893 bh = NULL;
7894 if (!(_bfd_generic_link_add_one_symbol
7895 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7896 get_elf_backend_data (abfd)->collect, &bh)))
7897 return FALSE;
b49e97c9 7898
0abfb97a
L
7899 h = (struct elf_link_hash_entry *) bh;
7900 h->non_elf = 0;
7901 h->def_regular = 1;
7902 h->type = STT_OBJECT;
7903
7904 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7905 return FALSE;
b4082c70 7906 mips_elf_hash_table (info)->rld_symbol = h;
b49e97c9
TS
7907 }
7908 }
7909
861fb55a 7910 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
c164a95d 7911 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
861fb55a
DJ
7912 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7913 return FALSE;
7914
1bbce132
MR
7915 /* Do the usual VxWorks handling. */
7916 if (htab->is_vxworks
7917 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7918 return FALSE;
0a44bf69 7919
b34976b6 7920 return TRUE;
b49e97c9
TS
7921}
7922\f
c224138d
RS
7923/* Return true if relocation REL against section SEC is a REL rather than
7924 RELA relocation. RELOCS is the first relocation in the section and
7925 ABFD is the bfd that contains SEC. */
7926
7927static bfd_boolean
7928mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7929 const Elf_Internal_Rela *relocs,
7930 const Elf_Internal_Rela *rel)
7931{
7932 Elf_Internal_Shdr *rel_hdr;
7933 const struct elf_backend_data *bed;
7934
d4730f92
BS
7935 /* To determine which flavor of relocation this is, we depend on the
7936 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7937 rel_hdr = elf_section_data (sec)->rel.hdr;
7938 if (rel_hdr == NULL)
7939 return FALSE;
c224138d 7940 bed = get_elf_backend_data (abfd);
d4730f92
BS
7941 return ((size_t) (rel - relocs)
7942 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
c224138d
RS
7943}
7944
7945/* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7946 HOWTO is the relocation's howto and CONTENTS points to the contents
7947 of the section that REL is against. */
7948
7949static bfd_vma
7950mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7951 reloc_howto_type *howto, bfd_byte *contents)
7952{
7953 bfd_byte *location;
7954 unsigned int r_type;
7955 bfd_vma addend;
17c6c9d9 7956 bfd_vma bytes;
c224138d
RS
7957
7958 r_type = ELF_R_TYPE (abfd, rel->r_info);
7959 location = contents + rel->r_offset;
7960
7961 /* Get the addend, which is stored in the input file. */
df58fc94 7962 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
17c6c9d9 7963 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
df58fc94 7964 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
c224138d 7965
17c6c9d9
MR
7966 addend = bytes & howto->src_mask;
7967
7968 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7969 accordingly. */
7970 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7971 addend <<= 1;
7972
7973 return addend;
c224138d
RS
7974}
7975
7976/* REL is a relocation in ABFD that needs a partnering LO16 relocation
7977 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7978 and update *ADDEND with the final addend. Return true on success
7979 or false if the LO16 could not be found. RELEND is the exclusive
7980 upper bound on the relocations for REL's section. */
7981
7982static bfd_boolean
7983mips_elf_add_lo16_rel_addend (bfd *abfd,
7984 const Elf_Internal_Rela *rel,
7985 const Elf_Internal_Rela *relend,
7986 bfd_byte *contents, bfd_vma *addend)
7987{
7988 unsigned int r_type, lo16_type;
7989 const Elf_Internal_Rela *lo16_relocation;
7990 reloc_howto_type *lo16_howto;
7991 bfd_vma l;
7992
7993 r_type = ELF_R_TYPE (abfd, rel->r_info);
738e5348 7994 if (mips16_reloc_p (r_type))
c224138d 7995 lo16_type = R_MIPS16_LO16;
df58fc94
RS
7996 else if (micromips_reloc_p (r_type))
7997 lo16_type = R_MICROMIPS_LO16;
7361da2c
AB
7998 else if (r_type == R_MIPS_PCHI16)
7999 lo16_type = R_MIPS_PCLO16;
c224138d
RS
8000 else
8001 lo16_type = R_MIPS_LO16;
8002
8003 /* The combined value is the sum of the HI16 addend, left-shifted by
8004 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8005 code does a `lui' of the HI16 value, and then an `addiu' of the
8006 LO16 value.)
8007
8008 Scan ahead to find a matching LO16 relocation.
8009
8010 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8011 be immediately following. However, for the IRIX6 ABI, the next
8012 relocation may be a composed relocation consisting of several
8013 relocations for the same address. In that case, the R_MIPS_LO16
8014 relocation may occur as one of these. We permit a similar
8015 extension in general, as that is useful for GCC.
8016
8017 In some cases GCC dead code elimination removes the LO16 but keeps
8018 the corresponding HI16. This is strictly speaking a violation of
8019 the ABI but not immediately harmful. */
8020 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8021 if (lo16_relocation == NULL)
8022 return FALSE;
8023
8024 /* Obtain the addend kept there. */
8025 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8026 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8027
8028 l <<= lo16_howto->rightshift;
8029 l = _bfd_mips_elf_sign_extend (l, 16);
8030
8031 *addend <<= 16;
8032 *addend += l;
8033 return TRUE;
8034}
8035
8036/* Try to read the contents of section SEC in bfd ABFD. Return true and
8037 store the contents in *CONTENTS on success. Assume that *CONTENTS
8038 already holds the contents if it is nonull on entry. */
8039
8040static bfd_boolean
8041mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8042{
8043 if (*contents)
8044 return TRUE;
8045
8046 /* Get cached copy if it exists. */
8047 if (elf_section_data (sec)->this_hdr.contents != NULL)
8048 {
8049 *contents = elf_section_data (sec)->this_hdr.contents;
8050 return TRUE;
8051 }
8052
8053 return bfd_malloc_and_get_section (abfd, sec, contents);
8054}
8055
1bbce132
MR
8056/* Make a new PLT record to keep internal data. */
8057
8058static struct plt_entry *
8059mips_elf_make_plt_record (bfd *abfd)
8060{
8061 struct plt_entry *entry;
8062
8063 entry = bfd_zalloc (abfd, sizeof (*entry));
8064 if (entry == NULL)
8065 return NULL;
8066
8067 entry->stub_offset = MINUS_ONE;
8068 entry->mips_offset = MINUS_ONE;
8069 entry->comp_offset = MINUS_ONE;
8070 entry->gotplt_index = MINUS_ONE;
8071 return entry;
8072}
8073
b49e97c9 8074/* Look through the relocs for a section during the first phase, and
1bbce132
MR
8075 allocate space in the global offset table and record the need for
8076 standard MIPS and compressed procedure linkage table entries. */
b49e97c9 8077
b34976b6 8078bfd_boolean
9719ad41
RS
8079_bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8080 asection *sec, const Elf_Internal_Rela *relocs)
b49e97c9
TS
8081{
8082 const char *name;
8083 bfd *dynobj;
8084 Elf_Internal_Shdr *symtab_hdr;
8085 struct elf_link_hash_entry **sym_hashes;
b49e97c9
TS
8086 size_t extsymoff;
8087 const Elf_Internal_Rela *rel;
8088 const Elf_Internal_Rela *rel_end;
b49e97c9 8089 asection *sreloc;
9c5bfbb7 8090 const struct elf_backend_data *bed;
0a44bf69 8091 struct mips_elf_link_hash_table *htab;
c224138d
RS
8092 bfd_byte *contents;
8093 bfd_vma addend;
8094 reloc_howto_type *howto;
b49e97c9 8095
0e1862bb 8096 if (bfd_link_relocatable (info))
b34976b6 8097 return TRUE;
b49e97c9 8098
0a44bf69 8099 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8100 BFD_ASSERT (htab != NULL);
8101
b49e97c9
TS
8102 dynobj = elf_hash_table (info)->dynobj;
8103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8104 sym_hashes = elf_sym_hashes (abfd);
8105 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8106
738e5348 8107 bed = get_elf_backend_data (abfd);
056bafd4 8108 rel_end = relocs + sec->reloc_count;
738e5348 8109
b49e97c9
TS
8110 /* Check for the mips16 stub sections. */
8111
8112 name = bfd_get_section_name (abfd, sec);
b9d58d71 8113 if (FN_STUB_P (name))
b49e97c9
TS
8114 {
8115 unsigned long r_symndx;
8116
8117 /* Look at the relocation information to figure out which symbol
8118 this is for. */
8119
cb4437b8 8120 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8121 if (r_symndx == 0)
8122 {
4eca0228 8123 _bfd_error_handler
695344c0 8124 /* xgettext:c-format */
738e5348
RS
8125 (_("%B: Warning: cannot determine the target function for"
8126 " stub section `%s'"),
8127 abfd, name);
8128 bfd_set_error (bfd_error_bad_value);
8129 return FALSE;
8130 }
b49e97c9
TS
8131
8132 if (r_symndx < extsymoff
8133 || sym_hashes[r_symndx - extsymoff] == NULL)
8134 {
8135 asection *o;
8136
8137 /* This stub is for a local symbol. This stub will only be
8138 needed if there is some relocation in this BFD, other
8139 than a 16 bit function call, which refers to this symbol. */
8140 for (o = abfd->sections; o != NULL; o = o->next)
8141 {
8142 Elf_Internal_Rela *sec_relocs;
8143 const Elf_Internal_Rela *r, *rend;
8144
8145 /* We can ignore stub sections when looking for relocs. */
8146 if ((o->flags & SEC_RELOC) == 0
8147 || o->reloc_count == 0
738e5348 8148 || section_allows_mips16_refs_p (o))
b49e97c9
TS
8149 continue;
8150
45d6a902 8151 sec_relocs
9719ad41 8152 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 8153 info->keep_memory);
b49e97c9 8154 if (sec_relocs == NULL)
b34976b6 8155 return FALSE;
b49e97c9
TS
8156
8157 rend = sec_relocs + o->reloc_count;
8158 for (r = sec_relocs; r < rend; r++)
8159 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
738e5348 8160 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
b49e97c9
TS
8161 break;
8162
6cdc0ccc 8163 if (elf_section_data (o)->relocs != sec_relocs)
b49e97c9
TS
8164 free (sec_relocs);
8165
8166 if (r < rend)
8167 break;
8168 }
8169
8170 if (o == NULL)
8171 {
8172 /* There is no non-call reloc for this stub, so we do
8173 not need it. Since this function is called before
8174 the linker maps input sections to output sections, we
8175 can easily discard it by setting the SEC_EXCLUDE
8176 flag. */
8177 sec->flags |= SEC_EXCLUDE;
b34976b6 8178 return TRUE;
b49e97c9
TS
8179 }
8180
8181 /* Record this stub in an array of local symbol stubs for
8182 this BFD. */
698600e4 8183 if (mips_elf_tdata (abfd)->local_stubs == NULL)
b49e97c9
TS
8184 {
8185 unsigned long symcount;
8186 asection **n;
8187 bfd_size_type amt;
8188
8189 if (elf_bad_symtab (abfd))
8190 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8191 else
8192 symcount = symtab_hdr->sh_info;
8193 amt = symcount * sizeof (asection *);
9719ad41 8194 n = bfd_zalloc (abfd, amt);
b49e97c9 8195 if (n == NULL)
b34976b6 8196 return FALSE;
698600e4 8197 mips_elf_tdata (abfd)->local_stubs = n;
b49e97c9
TS
8198 }
8199
b9d58d71 8200 sec->flags |= SEC_KEEP;
698600e4 8201 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
b49e97c9
TS
8202
8203 /* We don't need to set mips16_stubs_seen in this case.
8204 That flag is used to see whether we need to look through
8205 the global symbol table for stubs. We don't need to set
8206 it here, because we just have a local stub. */
8207 }
8208 else
8209 {
8210 struct mips_elf_link_hash_entry *h;
8211
8212 h = ((struct mips_elf_link_hash_entry *)
8213 sym_hashes[r_symndx - extsymoff]);
8214
973a3492
L
8215 while (h->root.root.type == bfd_link_hash_indirect
8216 || h->root.root.type == bfd_link_hash_warning)
8217 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8218
b49e97c9
TS
8219 /* H is the symbol this stub is for. */
8220
b9d58d71
TS
8221 /* If we already have an appropriate stub for this function, we
8222 don't need another one, so we can discard this one. Since
8223 this function is called before the linker maps input sections
8224 to output sections, we can easily discard it by setting the
8225 SEC_EXCLUDE flag. */
8226 if (h->fn_stub != NULL)
8227 {
8228 sec->flags |= SEC_EXCLUDE;
8229 return TRUE;
8230 }
8231
8232 sec->flags |= SEC_KEEP;
b49e97c9 8233 h->fn_stub = sec;
b34976b6 8234 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
b49e97c9
TS
8235 }
8236 }
b9d58d71 8237 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
b49e97c9
TS
8238 {
8239 unsigned long r_symndx;
8240 struct mips_elf_link_hash_entry *h;
8241 asection **loc;
8242
8243 /* Look at the relocation information to figure out which symbol
8244 this is for. */
8245
cb4437b8 8246 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
738e5348
RS
8247 if (r_symndx == 0)
8248 {
4eca0228 8249 _bfd_error_handler
695344c0 8250 /* xgettext:c-format */
738e5348
RS
8251 (_("%B: Warning: cannot determine the target function for"
8252 " stub section `%s'"),
8253 abfd, name);
8254 bfd_set_error (bfd_error_bad_value);
8255 return FALSE;
8256 }
b49e97c9
TS
8257
8258 if (r_symndx < extsymoff
8259 || sym_hashes[r_symndx - extsymoff] == NULL)
8260 {
b9d58d71 8261 asection *o;
b49e97c9 8262
b9d58d71
TS
8263 /* This stub is for a local symbol. This stub will only be
8264 needed if there is some relocation (R_MIPS16_26) in this BFD
8265 that refers to this symbol. */
8266 for (o = abfd->sections; o != NULL; o = o->next)
8267 {
8268 Elf_Internal_Rela *sec_relocs;
8269 const Elf_Internal_Rela *r, *rend;
8270
8271 /* We can ignore stub sections when looking for relocs. */
8272 if ((o->flags & SEC_RELOC) == 0
8273 || o->reloc_count == 0
738e5348 8274 || section_allows_mips16_refs_p (o))
b9d58d71
TS
8275 continue;
8276
8277 sec_relocs
8278 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8279 info->keep_memory);
8280 if (sec_relocs == NULL)
8281 return FALSE;
8282
8283 rend = sec_relocs + o->reloc_count;
8284 for (r = sec_relocs; r < rend; r++)
8285 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8286 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8287 break;
8288
8289 if (elf_section_data (o)->relocs != sec_relocs)
8290 free (sec_relocs);
8291
8292 if (r < rend)
8293 break;
8294 }
8295
8296 if (o == NULL)
8297 {
8298 /* There is no non-call reloc for this stub, so we do
8299 not need it. Since this function is called before
8300 the linker maps input sections to output sections, we
8301 can easily discard it by setting the SEC_EXCLUDE
8302 flag. */
8303 sec->flags |= SEC_EXCLUDE;
8304 return TRUE;
8305 }
8306
8307 /* Record this stub in an array of local symbol call_stubs for
8308 this BFD. */
698600e4 8309 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
b9d58d71
TS
8310 {
8311 unsigned long symcount;
8312 asection **n;
8313 bfd_size_type amt;
8314
8315 if (elf_bad_symtab (abfd))
8316 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8317 else
8318 symcount = symtab_hdr->sh_info;
8319 amt = symcount * sizeof (asection *);
8320 n = bfd_zalloc (abfd, amt);
8321 if (n == NULL)
8322 return FALSE;
698600e4 8323 mips_elf_tdata (abfd)->local_call_stubs = n;
b9d58d71 8324 }
b49e97c9 8325
b9d58d71 8326 sec->flags |= SEC_KEEP;
698600e4 8327 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
b49e97c9 8328
b9d58d71
TS
8329 /* We don't need to set mips16_stubs_seen in this case.
8330 That flag is used to see whether we need to look through
8331 the global symbol table for stubs. We don't need to set
8332 it here, because we just have a local stub. */
8333 }
b49e97c9 8334 else
b49e97c9 8335 {
b9d58d71
TS
8336 h = ((struct mips_elf_link_hash_entry *)
8337 sym_hashes[r_symndx - extsymoff]);
68ffbac6 8338
b9d58d71 8339 /* H is the symbol this stub is for. */
68ffbac6 8340
b9d58d71
TS
8341 if (CALL_FP_STUB_P (name))
8342 loc = &h->call_fp_stub;
8343 else
8344 loc = &h->call_stub;
68ffbac6 8345
b9d58d71
TS
8346 /* If we already have an appropriate stub for this function, we
8347 don't need another one, so we can discard this one. Since
8348 this function is called before the linker maps input sections
8349 to output sections, we can easily discard it by setting the
8350 SEC_EXCLUDE flag. */
8351 if (*loc != NULL)
8352 {
8353 sec->flags |= SEC_EXCLUDE;
8354 return TRUE;
8355 }
b49e97c9 8356
b9d58d71
TS
8357 sec->flags |= SEC_KEEP;
8358 *loc = sec;
8359 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8360 }
b49e97c9
TS
8361 }
8362
b49e97c9 8363 sreloc = NULL;
c224138d 8364 contents = NULL;
b49e97c9
TS
8365 for (rel = relocs; rel < rel_end; ++rel)
8366 {
8367 unsigned long r_symndx;
8368 unsigned int r_type;
8369 struct elf_link_hash_entry *h;
861fb55a 8370 bfd_boolean can_make_dynamic_p;
c5d6fa44
RS
8371 bfd_boolean call_reloc_p;
8372 bfd_boolean constrain_symbol_p;
b49e97c9
TS
8373
8374 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8375 r_type = ELF_R_TYPE (abfd, rel->r_info);
8376
8377 if (r_symndx < extsymoff)
8378 h = NULL;
8379 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8380 {
4eca0228 8381 _bfd_error_handler
695344c0 8382 /* xgettext:c-format */
d003868e
AM
8383 (_("%B: Malformed reloc detected for section %s"),
8384 abfd, name);
b49e97c9 8385 bfd_set_error (bfd_error_bad_value);
b34976b6 8386 return FALSE;
b49e97c9
TS
8387 }
8388 else
8389 {
8390 h = sym_hashes[r_symndx - extsymoff];
81fbe831
AM
8391 if (h != NULL)
8392 {
8393 while (h->root.type == bfd_link_hash_indirect
8394 || h->root.type == bfd_link_hash_warning)
8395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8396
8397 /* PR15323, ref flags aren't set for references in the
8398 same object. */
bc4e12de 8399 h->root.non_ir_ref_regular = 1;
81fbe831 8400 }
861fb55a 8401 }
b49e97c9 8402
861fb55a
DJ
8403 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8404 relocation into a dynamic one. */
8405 can_make_dynamic_p = FALSE;
c5d6fa44
RS
8406
8407 /* Set CALL_RELOC_P to true if the relocation is for a call,
8408 and if pointer equality therefore doesn't matter. */
8409 call_reloc_p = FALSE;
8410
8411 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8412 into account when deciding how to define the symbol.
8413 Relocations in nonallocatable sections such as .pdr and
8414 .debug* should have no effect. */
8415 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8416
861fb55a
DJ
8417 switch (r_type)
8418 {
861fb55a
DJ
8419 case R_MIPS_CALL16:
8420 case R_MIPS_CALL_HI16:
8421 case R_MIPS_CALL_LO16:
c5d6fa44
RS
8422 case R_MIPS16_CALL16:
8423 case R_MICROMIPS_CALL16:
8424 case R_MICROMIPS_CALL_HI16:
8425 case R_MICROMIPS_CALL_LO16:
8426 call_reloc_p = TRUE;
8427 /* Fall through. */
8428
8429 case R_MIPS_GOT16:
861fb55a
DJ
8430 case R_MIPS_GOT_HI16:
8431 case R_MIPS_GOT_LO16:
8432 case R_MIPS_GOT_PAGE:
8433 case R_MIPS_GOT_OFST:
8434 case R_MIPS_GOT_DISP:
8435 case R_MIPS_TLS_GOTTPREL:
8436 case R_MIPS_TLS_GD:
8437 case R_MIPS_TLS_LDM:
d0f13682 8438 case R_MIPS16_GOT16:
d0f13682
CLT
8439 case R_MIPS16_TLS_GOTTPREL:
8440 case R_MIPS16_TLS_GD:
8441 case R_MIPS16_TLS_LDM:
df58fc94 8442 case R_MICROMIPS_GOT16:
df58fc94
RS
8443 case R_MICROMIPS_GOT_HI16:
8444 case R_MICROMIPS_GOT_LO16:
8445 case R_MICROMIPS_GOT_PAGE:
8446 case R_MICROMIPS_GOT_OFST:
8447 case R_MICROMIPS_GOT_DISP:
8448 case R_MICROMIPS_TLS_GOTTPREL:
8449 case R_MICROMIPS_TLS_GD:
8450 case R_MICROMIPS_TLS_LDM:
861fb55a
DJ
8451 if (dynobj == NULL)
8452 elf_hash_table (info)->dynobj = dynobj = abfd;
8453 if (!mips_elf_create_got_section (dynobj, info))
8454 return FALSE;
0e1862bb 8455 if (htab->is_vxworks && !bfd_link_pic (info))
b49e97c9 8456 {
4eca0228 8457 _bfd_error_handler
695344c0 8458 /* xgettext:c-format */
d42c267e
AM
8459 (_("%B: GOT reloc at %#Lx not expected in executables"),
8460 abfd, rel->r_offset);
861fb55a
DJ
8461 bfd_set_error (bfd_error_bad_value);
8462 return FALSE;
b49e97c9 8463 }
c5d6fa44 8464 can_make_dynamic_p = TRUE;
861fb55a 8465 break;
b49e97c9 8466
c5d6fa44 8467 case R_MIPS_NONE:
99da6b5f 8468 case R_MIPS_JALR:
df58fc94 8469 case R_MICROMIPS_JALR:
c5d6fa44
RS
8470 /* These relocations have empty fields and are purely there to
8471 provide link information. The symbol value doesn't matter. */
8472 constrain_symbol_p = FALSE;
8473 break;
8474
8475 case R_MIPS_GPREL16:
8476 case R_MIPS_GPREL32:
8477 case R_MIPS16_GPREL:
8478 case R_MICROMIPS_GPREL16:
8479 /* GP-relative relocations always resolve to a definition in a
8480 regular input file, ignoring the one-definition rule. This is
8481 important for the GP setup sequence in NewABI code, which
8482 always resolves to a local function even if other relocations
8483 against the symbol wouldn't. */
8484 constrain_symbol_p = FALSE;
99da6b5f
AN
8485 break;
8486
861fb55a
DJ
8487 case R_MIPS_32:
8488 case R_MIPS_REL32:
8489 case R_MIPS_64:
8490 /* In VxWorks executables, references to external symbols
8491 must be handled using copy relocs or PLT entries; it is not
8492 possible to convert this relocation into a dynamic one.
8493
8494 For executables that use PLTs and copy-relocs, we have a
8495 choice between converting the relocation into a dynamic
8496 one or using copy relocations or PLT entries. It is
8497 usually better to do the former, unless the relocation is
8498 against a read-only section. */
0e1862bb 8499 if ((bfd_link_pic (info)
861fb55a
DJ
8500 || (h != NULL
8501 && !htab->is_vxworks
8502 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8503 && !(!info->nocopyreloc
8504 && !PIC_OBJECT_P (abfd)
8505 && MIPS_ELF_READONLY_SECTION (sec))))
8506 && (sec->flags & SEC_ALLOC) != 0)
b49e97c9 8507 {
861fb55a 8508 can_make_dynamic_p = TRUE;
b49e97c9
TS
8509 if (dynobj == NULL)
8510 elf_hash_table (info)->dynobj = dynobj = abfd;
861fb55a 8511 }
c5d6fa44 8512 break;
b49e97c9 8513
861fb55a
DJ
8514 case R_MIPS_26:
8515 case R_MIPS_PC16:
7361da2c
AB
8516 case R_MIPS_PC21_S2:
8517 case R_MIPS_PC26_S2:
861fb55a 8518 case R_MIPS16_26:
c9775dde 8519 case R_MIPS16_PC16_S1:
df58fc94
RS
8520 case R_MICROMIPS_26_S1:
8521 case R_MICROMIPS_PC7_S1:
8522 case R_MICROMIPS_PC10_S1:
8523 case R_MICROMIPS_PC16_S1:
8524 case R_MICROMIPS_PC23_S2:
c5d6fa44 8525 call_reloc_p = TRUE;
861fb55a 8526 break;
b49e97c9
TS
8527 }
8528
0a44bf69
RS
8529 if (h)
8530 {
c5d6fa44
RS
8531 if (constrain_symbol_p)
8532 {
8533 if (!can_make_dynamic_p)
8534 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8535
8536 if (!call_reloc_p)
8537 h->pointer_equality_needed = 1;
8538
8539 /* We must not create a stub for a symbol that has
8540 relocations related to taking the function's address.
8541 This doesn't apply to VxWorks, where CALL relocs refer
8542 to a .got.plt entry instead of a normal .got entry. */
8543 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8544 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8545 }
8546
0a44bf69
RS
8547 /* Relocations against the special VxWorks __GOTT_BASE__ and
8548 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8549 room for them in .rela.dyn. */
8550 if (is_gott_symbol (info, h))
8551 {
8552 if (sreloc == NULL)
8553 {
8554 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8555 if (sreloc == NULL)
8556 return FALSE;
8557 }
8558 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9e3313ae
RS
8559 if (MIPS_ELF_READONLY_SECTION (sec))
8560 /* We tell the dynamic linker that there are
8561 relocations against the text segment. */
8562 info->flags |= DF_TEXTREL;
0a44bf69
RS
8563 }
8564 }
df58fc94
RS
8565 else if (call_lo16_reloc_p (r_type)
8566 || got_lo16_reloc_p (r_type)
8567 || got_disp_reloc_p (r_type)
738e5348 8568 || (got16_reloc_p (r_type) && htab->is_vxworks))
b49e97c9
TS
8569 {
8570 /* We may need a local GOT entry for this relocation. We
8571 don't count R_MIPS_GOT_PAGE because we can estimate the
8572 maximum number of pages needed by looking at the size of
738e5348
RS
8573 the segment. Similar comments apply to R_MIPS*_GOT16 and
8574 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
0a44bf69 8575 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
b49e97c9 8576 R_MIPS_CALL_HI16 because these are always followed by an
b15e6682 8577 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
a8028dd0 8578 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
e641e783 8579 rel->r_addend, info, r_type))
f4416af6 8580 return FALSE;
b49e97c9
TS
8581 }
8582
8f0c309a
CLT
8583 if (h != NULL
8584 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8585 ELF_ST_IS_MIPS16 (h->other)))
861fb55a
DJ
8586 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8587
b49e97c9
TS
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
738e5348 8591 case R_MIPS16_CALL16:
df58fc94 8592 case R_MICROMIPS_CALL16:
b49e97c9
TS
8593 if (h == NULL)
8594 {
4eca0228 8595 _bfd_error_handler
695344c0 8596 /* xgettext:c-format */
d42c267e
AM
8597 (_("%B: CALL16 reloc at %#Lx not against global symbol"),
8598 abfd, rel->r_offset);
b49e97c9 8599 bfd_set_error (bfd_error_bad_value);
b34976b6 8600 return FALSE;
b49e97c9
TS
8601 }
8602 /* Fall through. */
8603
8604 case R_MIPS_CALL_HI16:
8605 case R_MIPS_CALL_LO16:
df58fc94
RS
8606 case R_MICROMIPS_CALL_HI16:
8607 case R_MICROMIPS_CALL_LO16:
b49e97c9
TS
8608 if (h != NULL)
8609 {
6ccf4795
RS
8610 /* Make sure there is room in the regular GOT to hold the
8611 function's address. We may eliminate it in favour of
8612 a .got.plt entry later; see mips_elf_count_got_symbols. */
e641e783
RS
8613 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8614 r_type))
b34976b6 8615 return FALSE;
b49e97c9
TS
8616
8617 /* We need a stub, not a plt entry for the undefined
8618 function. But we record it as if it needs plt. See
c152c796 8619 _bfd_elf_adjust_dynamic_symbol. */
f5385ebf 8620 h->needs_plt = 1;
b49e97c9
TS
8621 h->type = STT_FUNC;
8622 }
8623 break;
8624
0fdc1bf1 8625 case R_MIPS_GOT_PAGE:
df58fc94 8626 case R_MICROMIPS_GOT_PAGE:
738e5348 8627 case R_MIPS16_GOT16:
b49e97c9
TS
8628 case R_MIPS_GOT16:
8629 case R_MIPS_GOT_HI16:
8630 case R_MIPS_GOT_LO16:
df58fc94
RS
8631 case R_MICROMIPS_GOT16:
8632 case R_MICROMIPS_GOT_HI16:
8633 case R_MICROMIPS_GOT_LO16:
8634 if (!h || got_page_reloc_p (r_type))
c224138d 8635 {
3a3b6725
DJ
8636 /* This relocation needs (or may need, if h != NULL) a
8637 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8638 know for sure until we know whether the symbol is
8639 preemptible. */
c224138d
RS
8640 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8641 {
8642 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8643 return FALSE;
8644 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8645 addend = mips_elf_read_rel_addend (abfd, rel,
8646 howto, contents);
9684f078 8647 if (got16_reloc_p (r_type))
c224138d
RS
8648 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8649 contents, &addend);
8650 else
8651 addend <<= howto->rightshift;
8652 }
8653 else
8654 addend = rel->r_addend;
13db6b44
RS
8655 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8656 h, addend))
c224138d 8657 return FALSE;
13db6b44
RS
8658
8659 if (h)
8660 {
8661 struct mips_elf_link_hash_entry *hmips =
8662 (struct mips_elf_link_hash_entry *) h;
8663
8664 /* This symbol is definitely not overridable. */
8665 if (hmips->root.def_regular
0e1862bb 8666 && ! (bfd_link_pic (info) && ! info->symbolic
13db6b44
RS
8667 && ! hmips->root.forced_local))
8668 h = NULL;
8669 }
c224138d 8670 }
13db6b44
RS
8671 /* If this is a global, overridable symbol, GOT_PAGE will
8672 decay to GOT_DISP, so we'll need a GOT entry for it. */
c224138d
RS
8673 /* Fall through. */
8674
b49e97c9 8675 case R_MIPS_GOT_DISP:
df58fc94 8676 case R_MICROMIPS_GOT_DISP:
6ccf4795 8677 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
e641e783 8678 FALSE, r_type))
b34976b6 8679 return FALSE;
b49e97c9
TS
8680 break;
8681
0f20cc35 8682 case R_MIPS_TLS_GOTTPREL:
d0f13682 8683 case R_MIPS16_TLS_GOTTPREL:
df58fc94 8684 case R_MICROMIPS_TLS_GOTTPREL:
0e1862bb 8685 if (bfd_link_pic (info))
0f20cc35
DJ
8686 info->flags |= DF_STATIC_TLS;
8687 /* Fall through */
8688
8689 case R_MIPS_TLS_LDM:
d0f13682 8690 case R_MIPS16_TLS_LDM:
df58fc94
RS
8691 case R_MICROMIPS_TLS_LDM:
8692 if (tls_ldm_reloc_p (r_type))
0f20cc35 8693 {
cf35638d 8694 r_symndx = STN_UNDEF;
0f20cc35
DJ
8695 h = NULL;
8696 }
8697 /* Fall through */
8698
8699 case R_MIPS_TLS_GD:
d0f13682 8700 case R_MIPS16_TLS_GD:
df58fc94 8701 case R_MICROMIPS_TLS_GD:
0f20cc35
DJ
8702 /* This symbol requires a global offset table entry, or two
8703 for TLS GD relocations. */
e641e783
RS
8704 if (h != NULL)
8705 {
8706 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8707 FALSE, r_type))
8708 return FALSE;
8709 }
8710 else
8711 {
8712 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8713 rel->r_addend,
8714 info, r_type))
8715 return FALSE;
8716 }
0f20cc35
DJ
8717 break;
8718
b49e97c9
TS
8719 case R_MIPS_32:
8720 case R_MIPS_REL32:
8721 case R_MIPS_64:
0a44bf69
RS
8722 /* In VxWorks executables, references to external symbols
8723 are handled using copy relocs or PLT stubs, so there's
8724 no need to add a .rela.dyn entry for this relocation. */
861fb55a 8725 if (can_make_dynamic_p)
b49e97c9
TS
8726 {
8727 if (sreloc == NULL)
8728 {
0a44bf69 8729 sreloc = mips_elf_rel_dyn_section (info, TRUE);
b49e97c9 8730 if (sreloc == NULL)
f4416af6 8731 return FALSE;
b49e97c9 8732 }
0e1862bb 8733 if (bfd_link_pic (info) && h == NULL)
82f0cfbd
EC
8734 {
8735 /* When creating a shared object, we must copy these
8736 reloc types into the output file as R_MIPS_REL32
0a44bf69
RS
8737 relocs. Make room for this reloc in .rel(a).dyn. */
8738 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
943284cc 8739 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8740 /* We tell the dynamic linker that there are
8741 relocations against the text segment. */
8742 info->flags |= DF_TEXTREL;
8743 }
b49e97c9
TS
8744 else
8745 {
8746 struct mips_elf_link_hash_entry *hmips;
82f0cfbd 8747
9a59ad6b
DJ
8748 /* For a shared object, we must copy this relocation
8749 unless the symbol turns out to be undefined and
8750 weak with non-default visibility, in which case
8751 it will be left as zero.
8752
8753 We could elide R_MIPS_REL32 for locally binding symbols
8754 in shared libraries, but do not yet do so.
8755
8756 For an executable, we only need to copy this
8757 reloc if the symbol is defined in a dynamic
8758 object. */
b49e97c9
TS
8759 hmips = (struct mips_elf_link_hash_entry *) h;
8760 ++hmips->possibly_dynamic_relocs;
943284cc 8761 if (MIPS_ELF_READONLY_SECTION (sec))
82f0cfbd
EC
8762 /* We need it to tell the dynamic linker if there
8763 are relocations against the text segment. */
8764 hmips->readonly_reloc = TRUE;
b49e97c9 8765 }
b49e97c9
TS
8766 }
8767
8768 if (SGI_COMPAT (abfd))
8769 mips_elf_hash_table (info)->compact_rel_size +=
8770 sizeof (Elf32_External_crinfo);
8771 break;
8772
8773 case R_MIPS_26:
8774 case R_MIPS_GPREL16:
8775 case R_MIPS_LITERAL:
8776 case R_MIPS_GPREL32:
df58fc94
RS
8777 case R_MICROMIPS_26_S1:
8778 case R_MICROMIPS_GPREL16:
8779 case R_MICROMIPS_LITERAL:
8780 case R_MICROMIPS_GPREL7_S2:
b49e97c9
TS
8781 if (SGI_COMPAT (abfd))
8782 mips_elf_hash_table (info)->compact_rel_size +=
8783 sizeof (Elf32_External_crinfo);
8784 break;
8785
8786 /* This relocation describes the C++ object vtable hierarchy.
8787 Reconstruct it for later use during GC. */
8788 case R_MIPS_GNU_VTINHERIT:
c152c796 8789 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
b34976b6 8790 return FALSE;
b49e97c9
TS
8791 break;
8792
8793 /* This relocation describes which C++ vtable entries are actually
8794 used. Record for later use during GC. */
8795 case R_MIPS_GNU_VTENTRY:
d17e0c6e
JB
8796 BFD_ASSERT (h != NULL);
8797 if (h != NULL
8798 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
b34976b6 8799 return FALSE;
b49e97c9
TS
8800 break;
8801
8802 default:
8803 break;
8804 }
8805
1bbce132
MR
8806 /* Record the need for a PLT entry. At this point we don't know
8807 yet if we are going to create a PLT in the first place, but
8808 we only record whether the relocation requires a standard MIPS
8809 or a compressed code entry anyway. If we don't make a PLT after
8810 all, then we'll just ignore these arrangements. Likewise if
8811 a PLT entry is not created because the symbol is satisfied
8812 locally. */
8813 if (h != NULL
54806ffa
MR
8814 && (branch_reloc_p (r_type)
8815 || mips16_branch_reloc_p (r_type)
8816 || micromips_branch_reloc_p (r_type))
1bbce132
MR
8817 && !SYMBOL_CALLS_LOCAL (info, h))
8818 {
8819 if (h->plt.plist == NULL)
8820 h->plt.plist = mips_elf_make_plt_record (abfd);
8821 if (h->plt.plist == NULL)
8822 return FALSE;
8823
54806ffa 8824 if (branch_reloc_p (r_type))
1bbce132
MR
8825 h->plt.plist->need_mips = TRUE;
8826 else
8827 h->plt.plist->need_comp = TRUE;
8828 }
8829
738e5348
RS
8830 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8831 if there is one. We only need to handle global symbols here;
8832 we decide whether to keep or delete stubs for local symbols
8833 when processing the stub's relocations. */
b49e97c9 8834 if (h != NULL
738e5348
RS
8835 && !mips16_call_reloc_p (r_type)
8836 && !section_allows_mips16_refs_p (sec))
b49e97c9
TS
8837 {
8838 struct mips_elf_link_hash_entry *mh;
8839
8840 mh = (struct mips_elf_link_hash_entry *) h;
b34976b6 8841 mh->need_fn_stub = TRUE;
b49e97c9 8842 }
861fb55a
DJ
8843
8844 /* Refuse some position-dependent relocations when creating a
8845 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8846 not PIC, but we can create dynamic relocations and the result
8847 will be fine. Also do not refuse R_MIPS_LO16, which can be
8848 combined with R_MIPS_GOT16. */
0e1862bb 8849 if (bfd_link_pic (info))
861fb55a
DJ
8850 {
8851 switch (r_type)
8852 {
8853 case R_MIPS16_HI16:
8854 case R_MIPS_HI16:
8855 case R_MIPS_HIGHER:
8856 case R_MIPS_HIGHEST:
df58fc94
RS
8857 case R_MICROMIPS_HI16:
8858 case R_MICROMIPS_HIGHER:
8859 case R_MICROMIPS_HIGHEST:
861fb55a
DJ
8860 /* Don't refuse a high part relocation if it's against
8861 no symbol (e.g. part of a compound relocation). */
cf35638d 8862 if (r_symndx == STN_UNDEF)
861fb55a
DJ
8863 break;
8864
8865 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8866 and has a special meaning. */
8867 if (!NEWABI_P (abfd) && h != NULL
8868 && strcmp (h->root.root.string, "_gp_disp") == 0)
8869 break;
8870
0fc1eb3c
RS
8871 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8872 if (is_gott_symbol (info, h))
8873 break;
8874
861fb55a
DJ
8875 /* FALLTHROUGH */
8876
8877 case R_MIPS16_26:
8878 case R_MIPS_26:
df58fc94 8879 case R_MICROMIPS_26_S1:
861fb55a 8880 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
4eca0228 8881 _bfd_error_handler
695344c0 8882 /* xgettext:c-format */
63a5468a
AM
8883 (_("%B: relocation %s against `%s' can not be used"
8884 " when making a shared object; recompile with -fPIC"),
861fb55a
DJ
8885 abfd, howto->name,
8886 (h) ? h->root.root.string : "a local symbol");
8887 bfd_set_error (bfd_error_bad_value);
8888 return FALSE;
8889 default:
8890 break;
8891 }
8892 }
b49e97c9
TS
8893 }
8894
b34976b6 8895 return TRUE;
b49e97c9
TS
8896}
8897\f
9a59ad6b
DJ
8898/* Allocate space for global sym dynamic relocs. */
8899
8900static bfd_boolean
8901allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8902{
8903 struct bfd_link_info *info = inf;
8904 bfd *dynobj;
8905 struct mips_elf_link_hash_entry *hmips;
8906 struct mips_elf_link_hash_table *htab;
8907
8908 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8909 BFD_ASSERT (htab != NULL);
8910
9a59ad6b
DJ
8911 dynobj = elf_hash_table (info)->dynobj;
8912 hmips = (struct mips_elf_link_hash_entry *) h;
8913
8914 /* VxWorks executables are handled elsewhere; we only need to
8915 allocate relocations in shared objects. */
0e1862bb 8916 if (htab->is_vxworks && !bfd_link_pic (info))
9a59ad6b
DJ
8917 return TRUE;
8918
7686d77d
AM
8919 /* Ignore indirect symbols. All relocations against such symbols
8920 will be redirected to the target symbol. */
8921 if (h->root.type == bfd_link_hash_indirect)
63897e2c
RS
8922 return TRUE;
8923
9a59ad6b
DJ
8924 /* If this symbol is defined in a dynamic object, or we are creating
8925 a shared library, we will need to copy any R_MIPS_32 or
8926 R_MIPS_REL32 relocs against it into the output file. */
0e1862bb 8927 if (! bfd_link_relocatable (info)
9a59ad6b
DJ
8928 && hmips->possibly_dynamic_relocs != 0
8929 && (h->root.type == bfd_link_hash_defweak
625ef6dc 8930 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
0e1862bb 8931 || bfd_link_pic (info)))
9a59ad6b
DJ
8932 {
8933 bfd_boolean do_copy = TRUE;
8934
8935 if (h->root.type == bfd_link_hash_undefweak)
8936 {
8937 /* Do not copy relocations for undefined weak symbols with
8938 non-default visibility. */
8939 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8940 do_copy = FALSE;
8941
8942 /* Make sure undefined weak symbols are output as a dynamic
8943 symbol in PIEs. */
8944 else if (h->dynindx == -1 && !h->forced_local)
8945 {
8946 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8947 return FALSE;
8948 }
8949 }
8950
8951 if (do_copy)
8952 {
aff469fa 8953 /* Even though we don't directly need a GOT entry for this symbol,
f7ff1106
RS
8954 the SVR4 psABI requires it to have a dynamic symbol table
8955 index greater that DT_MIPS_GOTSYM if there are dynamic
8956 relocations against it.
8957
8958 VxWorks does not enforce the same mapping between the GOT
8959 and the symbol table, so the same requirement does not
8960 apply there. */
6ccf4795
RS
8961 if (!htab->is_vxworks)
8962 {
8963 if (hmips->global_got_area > GGA_RELOC_ONLY)
8964 hmips->global_got_area = GGA_RELOC_ONLY;
8965 hmips->got_only_for_calls = FALSE;
8966 }
aff469fa 8967
9a59ad6b
DJ
8968 mips_elf_allocate_dynamic_relocations
8969 (dynobj, info, hmips->possibly_dynamic_relocs);
8970 if (hmips->readonly_reloc)
8971 /* We tell the dynamic linker that there are relocations
8972 against the text segment. */
8973 info->flags |= DF_TEXTREL;
8974 }
8975 }
8976
8977 return TRUE;
8978}
8979
b49e97c9
TS
8980/* Adjust a symbol defined by a dynamic object and referenced by a
8981 regular object. The current definition is in some section of the
8982 dynamic object, but we're not including those sections. We have to
8983 change the definition to something the rest of the link can
8984 understand. */
8985
b34976b6 8986bfd_boolean
9719ad41
RS
8987_bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8988 struct elf_link_hash_entry *h)
b49e97c9
TS
8989{
8990 bfd *dynobj;
8991 struct mips_elf_link_hash_entry *hmips;
5108fc1b 8992 struct mips_elf_link_hash_table *htab;
5474d94f 8993 asection *s, *srel;
b49e97c9 8994
5108fc1b 8995 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
8996 BFD_ASSERT (htab != NULL);
8997
b49e97c9 8998 dynobj = elf_hash_table (info)->dynobj;
861fb55a 8999 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9
TS
9000
9001 /* Make sure we know what is going on here. */
9002 BFD_ASSERT (dynobj != NULL
f5385ebf 9003 && (h->needs_plt
f6e332e6 9004 || h->u.weakdef != NULL
f5385ebf
AM
9005 || (h->def_dynamic
9006 && h->ref_regular
9007 && !h->def_regular)));
b49e97c9 9008
b49e97c9 9009 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 9010
861fb55a
DJ
9011 /* If there are call relocations against an externally-defined symbol,
9012 see whether we can create a MIPS lazy-binding stub for it. We can
9013 only do this if all references to the function are through call
9014 relocations, and in that case, the traditional lazy-binding stubs
9015 are much more efficient than PLT entries.
9016
9017 Traditional stubs are only available on SVR4 psABI-based systems;
9018 VxWorks always uses PLTs instead. */
9019 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
b49e97c9
TS
9020 {
9021 if (! elf_hash_table (info)->dynamic_sections_created)
b34976b6 9022 return TRUE;
b49e97c9
TS
9023
9024 /* If this symbol is not defined in a regular file, then set
9025 the symbol to the stub location. This is required to make
9026 function pointers compare as equal between the normal
9027 executable and the shared library. */
f5385ebf 9028 if (!h->def_regular)
b49e97c9 9029 {
33bb52fb
RS
9030 hmips->needs_lazy_stub = TRUE;
9031 htab->lazy_stub_count++;
b34976b6 9032 return TRUE;
b49e97c9
TS
9033 }
9034 }
861fb55a
DJ
9035 /* As above, VxWorks requires PLT entries for externally-defined
9036 functions that are only accessed through call relocations.
b49e97c9 9037
861fb55a
DJ
9038 Both VxWorks and non-VxWorks targets also need PLT entries if there
9039 are static-only relocations against an externally-defined function.
9040 This can technically occur for shared libraries if there are
9041 branches to the symbol, although it is unlikely that this will be
9042 used in practice due to the short ranges involved. It can occur
9043 for any relative or absolute relocation in executables; in that
9044 case, the PLT entry becomes the function's canonical address. */
9045 else if (((h->needs_plt && !hmips->no_fn_stub)
9046 || (h->type == STT_FUNC && hmips->has_static_relocs))
9047 && htab->use_plts_and_copy_relocs
9048 && !SYMBOL_CALLS_LOCAL (info, h)
9049 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9050 && h->root.type == bfd_link_hash_undefweak))
b49e97c9 9051 {
1bbce132
MR
9052 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9053 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9054
9055 /* If this is the first symbol to need a PLT entry, then make some
9056 basic setup. Also work out PLT entry sizes. We'll need them
9057 for PLT offset calculations. */
9058 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
861fb55a 9059 {
ce558b89 9060 BFD_ASSERT (htab->root.sgotplt->size == 0);
1bbce132 9061 BFD_ASSERT (htab->plt_got_index == 0);
0a44bf69 9062
861fb55a
DJ
9063 /* If we're using the PLT additions to the psABI, each PLT
9064 entry is 16 bytes and the PLT0 entry is 32 bytes.
9065 Encourage better cache usage by aligning. We do this
9066 lazily to avoid pessimizing traditional objects. */
9067 if (!htab->is_vxworks
ce558b89 9068 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
861fb55a 9069 return FALSE;
0a44bf69 9070
861fb55a
DJ
9071 /* Make sure that .got.plt is word-aligned. We do this lazily
9072 for the same reason as above. */
ce558b89 9073 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
861fb55a
DJ
9074 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9075 return FALSE;
0a44bf69 9076
861fb55a
DJ
9077 /* On non-VxWorks targets, the first two entries in .got.plt
9078 are reserved. */
9079 if (!htab->is_vxworks)
1bbce132
MR
9080 htab->plt_got_index
9081 += (get_elf_backend_data (dynobj)->got_header_size
9082 / MIPS_ELF_GOT_SIZE (dynobj));
0a44bf69 9083
861fb55a
DJ
9084 /* On VxWorks, also allocate room for the header's
9085 .rela.plt.unloaded entries. */
0e1862bb 9086 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69 9087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
1bbce132
MR
9088
9089 /* Now work out the sizes of individual PLT entries. */
0e1862bb 9090 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9091 htab->plt_mips_entry_size
9092 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9093 else if (htab->is_vxworks)
9094 htab->plt_mips_entry_size
9095 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9096 else if (newabi_p)
9097 htab->plt_mips_entry_size
9098 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
833794fc 9099 else if (!micromips_p)
1bbce132
MR
9100 {
9101 htab->plt_mips_entry_size
9102 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9103 htab->plt_comp_entry_size
833794fc
MR
9104 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9105 }
9106 else if (htab->insn32)
9107 {
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9110 htab->plt_comp_entry_size
9111 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
1bbce132
MR
9112 }
9113 else
9114 {
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 htab->plt_comp_entry_size
833794fc 9118 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
1bbce132 9119 }
0a44bf69
RS
9120 }
9121
1bbce132
MR
9122 if (h->plt.plist == NULL)
9123 h->plt.plist = mips_elf_make_plt_record (dynobj);
9124 if (h->plt.plist == NULL)
9125 return FALSE;
9126
9127 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9128 n32 or n64, so always use a standard entry there.
9129
9130 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9131 all MIPS16 calls will go via that stub, and there is no benefit
9132 to having a MIPS16 entry. And in the case of call_stub a
9133 standard entry actually has to be used as the stub ends with a J
9134 instruction. */
9135 if (newabi_p
9136 || htab->is_vxworks
9137 || hmips->call_stub
9138 || hmips->call_fp_stub)
9139 {
9140 h->plt.plist->need_mips = TRUE;
9141 h->plt.plist->need_comp = FALSE;
9142 }
9143
9144 /* Otherwise, if there are no direct calls to the function, we
9145 have a free choice of whether to use standard or compressed
9146 entries. Prefer microMIPS entries if the object is known to
9147 contain microMIPS code, so that it becomes possible to create
9148 pure microMIPS binaries. Prefer standard entries otherwise,
9149 because MIPS16 ones are no smaller and are usually slower. */
9150 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9151 {
9152 if (micromips_p)
9153 h->plt.plist->need_comp = TRUE;
9154 else
9155 h->plt.plist->need_mips = TRUE;
9156 }
9157
9158 if (h->plt.plist->need_mips)
9159 {
9160 h->plt.plist->mips_offset = htab->plt_mips_offset;
9161 htab->plt_mips_offset += htab->plt_mips_entry_size;
9162 }
9163 if (h->plt.plist->need_comp)
9164 {
9165 h->plt.plist->comp_offset = htab->plt_comp_offset;
9166 htab->plt_comp_offset += htab->plt_comp_entry_size;
9167 }
9168
9169 /* Reserve the corresponding .got.plt entry now too. */
9170 h->plt.plist->gotplt_index = htab->plt_got_index++;
0a44bf69
RS
9171
9172 /* If the output file has no definition of the symbol, set the
861fb55a 9173 symbol's value to the address of the stub. */
0e1862bb 9174 if (!bfd_link_pic (info) && !h->def_regular)
1bbce132 9175 hmips->use_plt_entry = TRUE;
0a44bf69 9176
1bbce132 9177 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
ce558b89
AM
9178 htab->root.srelplt->size += (htab->is_vxworks
9179 ? MIPS_ELF_RELA_SIZE (dynobj)
9180 : MIPS_ELF_REL_SIZE (dynobj));
0a44bf69
RS
9181
9182 /* Make room for the .rela.plt.unloaded relocations. */
0e1862bb 9183 if (htab->is_vxworks && !bfd_link_pic (info))
0a44bf69
RS
9184 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9185
861fb55a
DJ
9186 /* All relocations against this symbol that could have been made
9187 dynamic will now refer to the PLT entry instead. */
9188 hmips->possibly_dynamic_relocs = 0;
0a44bf69 9189
0a44bf69
RS
9190 return TRUE;
9191 }
9192
9193 /* If this is a weak symbol, and there is a real definition, the
9194 processor independent code will have arranged for us to see the
9195 real definition first, and we can just use the same value. */
9196 if (h->u.weakdef != NULL)
9197 {
9198 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9199 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9200 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9201 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9202 return TRUE;
9203 }
9204
861fb55a
DJ
9205 /* Otherwise, there is nothing further to do for symbols defined
9206 in regular objects. */
9207 if (h->def_regular)
0a44bf69
RS
9208 return TRUE;
9209
861fb55a
DJ
9210 /* There's also nothing more to do if we'll convert all relocations
9211 against this symbol into dynamic relocations. */
9212 if (!hmips->has_static_relocs)
9213 return TRUE;
9214
9215 /* We're now relying on copy relocations. Complain if we have
9216 some that we can't convert. */
0e1862bb 9217 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
861fb55a 9218 {
4eca0228
AM
9219 _bfd_error_handler (_("non-dynamic relocations refer to "
9220 "dynamic symbol %s"),
9221 h->root.root.string);
861fb55a
DJ
9222 bfd_set_error (bfd_error_bad_value);
9223 return FALSE;
9224 }
9225
0a44bf69
RS
9226 /* We must allocate the symbol in our .dynbss section, which will
9227 become part of the .bss section of the executable. There will be
9228 an entry for this symbol in the .dynsym section. The dynamic
9229 object will contain position independent code, so all references
9230 from the dynamic object to this symbol will go through the global
9231 offset table. The dynamic linker will use the .dynsym entry to
9232 determine the address it must put in the global offset table, so
9233 both the dynamic object and the regular object will refer to the
9234 same memory location for the variable. */
9235
5474d94f
AM
9236 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9237 {
9238 s = htab->root.sdynrelro;
9239 srel = htab->root.sreldynrelro;
9240 }
9241 else
9242 {
9243 s = htab->root.sdynbss;
9244 srel = htab->root.srelbss;
9245 }
0a44bf69
RS
9246 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9247 {
861fb55a 9248 if (htab->is_vxworks)
5474d94f 9249 srel->size += sizeof (Elf32_External_Rela);
861fb55a
DJ
9250 else
9251 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
0a44bf69
RS
9252 h->needs_copy = 1;
9253 }
9254
861fb55a
DJ
9255 /* All relocations against this symbol that could have been made
9256 dynamic will now refer to the local copy instead. */
9257 hmips->possibly_dynamic_relocs = 0;
9258
5474d94f 9259 return _bfd_elf_adjust_dynamic_copy (info, h, s);
0a44bf69 9260}
b49e97c9
TS
9261\f
9262/* This function is called after all the input files have been read,
9263 and the input sections have been assigned to output sections. We
9264 check for any mips16 stub sections that we can discard. */
9265
b34976b6 9266bfd_boolean
9719ad41
RS
9267_bfd_mips_elf_always_size_sections (bfd *output_bfd,
9268 struct bfd_link_info *info)
b49e97c9 9269{
351cdf24 9270 asection *sect;
0a44bf69 9271 struct mips_elf_link_hash_table *htab;
861fb55a 9272 struct mips_htab_traverse_info hti;
0a44bf69
RS
9273
9274 htab = mips_elf_hash_table (info);
4dfe6ac6 9275 BFD_ASSERT (htab != NULL);
f4416af6 9276
b49e97c9 9277 /* The .reginfo section has a fixed size. */
351cdf24
MF
9278 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9279 if (sect != NULL)
9280 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9281
9282 /* The .MIPS.abiflags section has a fixed size. */
9283 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9284 if (sect != NULL)
9285 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
b49e97c9 9286
861fb55a
DJ
9287 hti.info = info;
9288 hti.output_bfd = output_bfd;
9289 hti.error = FALSE;
9290 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9291 mips_elf_check_symbols, &hti);
9292 if (hti.error)
9293 return FALSE;
f4416af6 9294
33bb52fb
RS
9295 return TRUE;
9296}
9297
9298/* If the link uses a GOT, lay it out and work out its size. */
9299
9300static bfd_boolean
9301mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9302{
9303 bfd *dynobj;
9304 asection *s;
9305 struct mips_got_info *g;
33bb52fb
RS
9306 bfd_size_type loadable_size = 0;
9307 bfd_size_type page_gotno;
d7206569 9308 bfd *ibfd;
ab361d49 9309 struct mips_elf_traverse_got_arg tga;
33bb52fb
RS
9310 struct mips_elf_link_hash_table *htab;
9311
9312 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9313 BFD_ASSERT (htab != NULL);
9314
ce558b89 9315 s = htab->root.sgot;
f4416af6 9316 if (s == NULL)
b34976b6 9317 return TRUE;
b49e97c9 9318
33bb52fb 9319 dynobj = elf_hash_table (info)->dynobj;
a8028dd0
RS
9320 g = htab->got_info;
9321
861fb55a
DJ
9322 /* Allocate room for the reserved entries. VxWorks always reserves
9323 3 entries; other objects only reserve 2 entries. */
cb22ccf4 9324 BFD_ASSERT (g->assigned_low_gotno == 0);
861fb55a
DJ
9325 if (htab->is_vxworks)
9326 htab->reserved_gotno = 3;
9327 else
9328 htab->reserved_gotno = 2;
9329 g->local_gotno += htab->reserved_gotno;
cb22ccf4 9330 g->assigned_low_gotno = htab->reserved_gotno;
861fb55a 9331
6c42ddb9
RS
9332 /* Decide which symbols need to go in the global part of the GOT and
9333 count the number of reloc-only GOT symbols. */
020d7251 9334 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
f4416af6 9335
13db6b44
RS
9336 if (!mips_elf_resolve_final_got_entries (info, g))
9337 return FALSE;
9338
33bb52fb
RS
9339 /* Calculate the total loadable size of the output. That
9340 will give us the maximum number of GOT_PAGE entries
9341 required. */
c72f2fb2 9342 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
33bb52fb
RS
9343 {
9344 asection *subsection;
5108fc1b 9345
d7206569 9346 for (subsection = ibfd->sections;
33bb52fb
RS
9347 subsection;
9348 subsection = subsection->next)
9349 {
9350 if ((subsection->flags & SEC_ALLOC) == 0)
9351 continue;
9352 loadable_size += ((subsection->size + 0xf)
9353 &~ (bfd_size_type) 0xf);
9354 }
9355 }
f4416af6 9356
0a44bf69 9357 if (htab->is_vxworks)
738e5348 9358 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
0a44bf69
RS
9359 relocations against local symbols evaluate to "G", and the EABI does
9360 not include R_MIPS_GOT_PAGE. */
c224138d 9361 page_gotno = 0;
0a44bf69
RS
9362 else
9363 /* Assume there are two loadable segments consisting of contiguous
9364 sections. Is 5 enough? */
c224138d
RS
9365 page_gotno = (loadable_size >> 16) + 5;
9366
13db6b44 9367 /* Choose the smaller of the two page estimates; both are intended to be
c224138d
RS
9368 conservative. */
9369 if (page_gotno > g->page_gotno)
9370 page_gotno = g->page_gotno;
f4416af6 9371
c224138d 9372 g->local_gotno += page_gotno;
cb22ccf4 9373 g->assigned_high_gotno = g->local_gotno - 1;
ab361d49 9374
ab361d49
RS
9375 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9376 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
0f20cc35
DJ
9377 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9378
0a44bf69
RS
9379 /* VxWorks does not support multiple GOTs. It initializes $gp to
9380 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9381 dynamic loader. */
57093f5e 9382 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
0f20cc35 9383 {
a8028dd0 9384 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
0f20cc35
DJ
9385 return FALSE;
9386 }
9387 else
9388 {
d7206569
RS
9389 /* Record that all bfds use G. This also has the effect of freeing
9390 the per-bfd GOTs, which we no longer need. */
c72f2fb2 9391 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
d7206569
RS
9392 if (mips_elf_bfd_got (ibfd, FALSE))
9393 mips_elf_replace_bfd_got (ibfd, g);
9394 mips_elf_replace_bfd_got (output_bfd, g);
9395
33bb52fb 9396 /* Set up TLS entries. */
0f20cc35 9397 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
72e7511a
RS
9398 tga.info = info;
9399 tga.g = g;
9400 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9401 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9402 if (!tga.g)
9403 return FALSE;
1fd20d70
RS
9404 BFD_ASSERT (g->tls_assigned_gotno
9405 == g->global_gotno + g->local_gotno + g->tls_gotno);
33bb52fb 9406
57093f5e 9407 /* Each VxWorks GOT entry needs an explicit relocation. */
0e1862bb 9408 if (htab->is_vxworks && bfd_link_pic (info))
57093f5e
RS
9409 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9410
33bb52fb 9411 /* Allocate room for the TLS relocations. */
ab361d49
RS
9412 if (g->relocs)
9413 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
0f20cc35 9414 }
b49e97c9 9415
b34976b6 9416 return TRUE;
b49e97c9
TS
9417}
9418
33bb52fb
RS
9419/* Estimate the size of the .MIPS.stubs section. */
9420
9421static void
9422mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9423{
9424 struct mips_elf_link_hash_table *htab;
9425 bfd_size_type dynsymcount;
9426
9427 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9428 BFD_ASSERT (htab != NULL);
9429
33bb52fb
RS
9430 if (htab->lazy_stub_count == 0)
9431 return;
9432
9433 /* IRIX rld assumes that a function stub isn't at the end of the .text
9434 section, so add a dummy entry to the end. */
9435 htab->lazy_stub_count++;
9436
9437 /* Get a worst-case estimate of the number of dynamic symbols needed.
9438 At this point, dynsymcount does not account for section symbols
9439 and count_section_dynsyms may overestimate the number that will
9440 be needed. */
9441 dynsymcount = (elf_hash_table (info)->dynsymcount
9442 + count_section_dynsyms (output_bfd, info));
9443
1bbce132
MR
9444 /* Determine the size of one stub entry. There's no disadvantage
9445 from using microMIPS code here, so for the sake of pure-microMIPS
9446 binaries we prefer it whenever there's any microMIPS code in
9447 output produced at all. This has a benefit of stubs being
833794fc
MR
9448 shorter by 4 bytes each too, unless in the insn32 mode. */
9449 if (!MICROMIPS_P (output_bfd))
1bbce132
MR
9450 htab->function_stub_size = (dynsymcount > 0x10000
9451 ? MIPS_FUNCTION_STUB_BIG_SIZE
9452 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
833794fc
MR
9453 else if (htab->insn32)
9454 htab->function_stub_size = (dynsymcount > 0x10000
9455 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9456 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9457 else
9458 htab->function_stub_size = (dynsymcount > 0x10000
9459 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9460 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
33bb52fb
RS
9461
9462 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9463}
9464
1bbce132
MR
9465/* A mips_elf_link_hash_traverse callback for which DATA points to a
9466 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9467 stub, allocate an entry in the stubs section. */
33bb52fb
RS
9468
9469static bfd_boolean
af924177 9470mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
33bb52fb 9471{
1bbce132 9472 struct mips_htab_traverse_info *hti = data;
33bb52fb 9473 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9474 struct bfd_link_info *info;
9475 bfd *output_bfd;
9476
9477 info = hti->info;
9478 output_bfd = hti->output_bfd;
9479 htab = mips_elf_hash_table (info);
9480 BFD_ASSERT (htab != NULL);
33bb52fb 9481
33bb52fb
RS
9482 if (h->needs_lazy_stub)
9483 {
1bbce132
MR
9484 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9485 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9486 bfd_vma isa_bit = micromips_p;
9487
9488 BFD_ASSERT (htab->root.dynobj != NULL);
9489 if (h->root.plt.plist == NULL)
9490 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9491 if (h->root.plt.plist == NULL)
9492 {
9493 hti->error = TRUE;
9494 return FALSE;
9495 }
33bb52fb 9496 h->root.root.u.def.section = htab->sstubs;
1bbce132
MR
9497 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9498 h->root.plt.plist->stub_offset = htab->sstubs->size;
9499 h->root.other = other;
33bb52fb
RS
9500 htab->sstubs->size += htab->function_stub_size;
9501 }
9502 return TRUE;
9503}
9504
9505/* Allocate offsets in the stubs section to each symbol that needs one.
9506 Set the final size of the .MIPS.stub section. */
9507
1bbce132 9508static bfd_boolean
33bb52fb
RS
9509mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9510{
1bbce132
MR
9511 bfd *output_bfd = info->output_bfd;
9512 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9513 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9514 bfd_vma isa_bit = micromips_p;
33bb52fb 9515 struct mips_elf_link_hash_table *htab;
1bbce132
MR
9516 struct mips_htab_traverse_info hti;
9517 struct elf_link_hash_entry *h;
9518 bfd *dynobj;
33bb52fb
RS
9519
9520 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
9521 BFD_ASSERT (htab != NULL);
9522
33bb52fb 9523 if (htab->lazy_stub_count == 0)
1bbce132 9524 return TRUE;
33bb52fb
RS
9525
9526 htab->sstubs->size = 0;
1bbce132
MR
9527 hti.info = info;
9528 hti.output_bfd = output_bfd;
9529 hti.error = FALSE;
9530 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9531 if (hti.error)
9532 return FALSE;
33bb52fb
RS
9533 htab->sstubs->size += htab->function_stub_size;
9534 BFD_ASSERT (htab->sstubs->size
9535 == htab->lazy_stub_count * htab->function_stub_size);
1bbce132
MR
9536
9537 dynobj = elf_hash_table (info)->dynobj;
9538 BFD_ASSERT (dynobj != NULL);
9539 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9540 if (h == NULL)
9541 return FALSE;
9542 h->root.u.def.value = isa_bit;
9543 h->other = other;
9544 h->type = STT_FUNC;
9545
9546 return TRUE;
9547}
9548
9549/* A mips_elf_link_hash_traverse callback for which DATA points to a
9550 bfd_link_info. If H uses the address of a PLT entry as the value
9551 of the symbol, then set the entry in the symbol table now. Prefer
9552 a standard MIPS PLT entry. */
9553
9554static bfd_boolean
9555mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9556{
9557 struct bfd_link_info *info = data;
9558 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9559 struct mips_elf_link_hash_table *htab;
9560 unsigned int other;
9561 bfd_vma isa_bit;
9562 bfd_vma val;
9563
9564 htab = mips_elf_hash_table (info);
9565 BFD_ASSERT (htab != NULL);
9566
9567 if (h->use_plt_entry)
9568 {
9569 BFD_ASSERT (h->root.plt.plist != NULL);
9570 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9571 || h->root.plt.plist->comp_offset != MINUS_ONE);
9572
9573 val = htab->plt_header_size;
9574 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9575 {
9576 isa_bit = 0;
9577 val += h->root.plt.plist->mips_offset;
9578 other = 0;
9579 }
9580 else
9581 {
9582 isa_bit = 1;
9583 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9584 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9585 }
9586 val += isa_bit;
9587 /* For VxWorks, point at the PLT load stub rather than the lazy
9588 resolution stub; this stub will become the canonical function
9589 address. */
9590 if (htab->is_vxworks)
9591 val += 8;
9592
ce558b89 9593 h->root.root.u.def.section = htab->root.splt;
1bbce132
MR
9594 h->root.root.u.def.value = val;
9595 h->root.other = other;
9596 }
9597
9598 return TRUE;
33bb52fb
RS
9599}
9600
b49e97c9
TS
9601/* Set the sizes of the dynamic sections. */
9602
b34976b6 9603bfd_boolean
9719ad41
RS
9604_bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9605 struct bfd_link_info *info)
b49e97c9
TS
9606{
9607 bfd *dynobj;
861fb55a 9608 asection *s, *sreldyn;
b34976b6 9609 bfd_boolean reltext;
0a44bf69 9610 struct mips_elf_link_hash_table *htab;
b49e97c9 9611
0a44bf69 9612 htab = mips_elf_hash_table (info);
4dfe6ac6 9613 BFD_ASSERT (htab != NULL);
b49e97c9
TS
9614 dynobj = elf_hash_table (info)->dynobj;
9615 BFD_ASSERT (dynobj != NULL);
9616
9617 if (elf_hash_table (info)->dynamic_sections_created)
9618 {
9619 /* Set the contents of the .interp section to the interpreter. */
9b8b325a 9620 if (bfd_link_executable (info) && !info->nointerp)
b49e97c9 9621 {
3d4d4302 9622 s = bfd_get_linker_section (dynobj, ".interp");
b49e97c9 9623 BFD_ASSERT (s != NULL);
eea6121a 9624 s->size
b49e97c9
TS
9625 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9626 s->contents
9627 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9628 }
861fb55a 9629
1bbce132
MR
9630 /* Figure out the size of the PLT header if we know that we
9631 are using it. For the sake of cache alignment always use
9632 a standard header whenever any standard entries are present
9633 even if microMIPS entries are present as well. This also
9634 lets the microMIPS header rely on the value of $v0 only set
9635 by microMIPS entries, for a small size reduction.
9636
9637 Set symbol table entry values for symbols that use the
9638 address of their PLT entry now that we can calculate it.
9639
9640 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9641 haven't already in _bfd_elf_create_dynamic_sections. */
ce558b89 9642 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
861fb55a 9643 {
1bbce132
MR
9644 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9645 && !htab->plt_mips_offset);
9646 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9647 bfd_vma isa_bit = micromips_p;
861fb55a 9648 struct elf_link_hash_entry *h;
1bbce132 9649 bfd_vma size;
861fb55a
DJ
9650
9651 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
9652 BFD_ASSERT (htab->root.sgotplt->size == 0);
9653 BFD_ASSERT (htab->root.splt->size == 0);
1bbce132 9654
0e1862bb 9655 if (htab->is_vxworks && bfd_link_pic (info))
1bbce132
MR
9656 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9657 else if (htab->is_vxworks)
9658 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9659 else if (ABI_64_P (output_bfd))
9660 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9661 else if (ABI_N32_P (output_bfd))
9662 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9663 else if (!micromips_p)
9664 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
833794fc
MR
9665 else if (htab->insn32)
9666 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
1bbce132
MR
9667 else
9668 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
861fb55a 9669
1bbce132
MR
9670 htab->plt_header_is_comp = micromips_p;
9671 htab->plt_header_size = size;
ce558b89
AM
9672 htab->root.splt->size = (size
9673 + htab->plt_mips_offset
9674 + htab->plt_comp_offset);
9675 htab->root.sgotplt->size = (htab->plt_got_index
9676 * MIPS_ELF_GOT_SIZE (dynobj));
1bbce132
MR
9677
9678 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9679
9680 if (htab->root.hplt == NULL)
9681 {
ce558b89 9682 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
1bbce132
MR
9683 "_PROCEDURE_LINKAGE_TABLE_");
9684 htab->root.hplt = h;
9685 if (h == NULL)
9686 return FALSE;
9687 }
9688
9689 h = htab->root.hplt;
9690 h->root.u.def.value = isa_bit;
9691 h->other = other;
861fb55a
DJ
9692 h->type = STT_FUNC;
9693 }
9694 }
4e41d0d7 9695
9a59ad6b 9696 /* Allocate space for global sym dynamic relocs. */
2c3fc389 9697 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9a59ad6b 9698
33bb52fb
RS
9699 mips_elf_estimate_stub_size (output_bfd, info);
9700
9701 if (!mips_elf_lay_out_got (output_bfd, info))
9702 return FALSE;
9703
9704 mips_elf_lay_out_lazy_stubs (info);
9705
b49e97c9
TS
9706 /* The check_relocs and adjust_dynamic_symbol entry points have
9707 determined the sizes of the various dynamic sections. Allocate
9708 memory for them. */
b34976b6 9709 reltext = FALSE;
b49e97c9
TS
9710 for (s = dynobj->sections; s != NULL; s = s->next)
9711 {
9712 const char *name;
b49e97c9
TS
9713
9714 /* It's OK to base decisions on the section name, because none
9715 of the dynobj section names depend upon the input files. */
9716 name = bfd_get_section_name (dynobj, s);
9717
9718 if ((s->flags & SEC_LINKER_CREATED) == 0)
9719 continue;
9720
0112cd26 9721 if (CONST_STRNEQ (name, ".rel"))
b49e97c9 9722 {
c456f082 9723 if (s->size != 0)
b49e97c9
TS
9724 {
9725 const char *outname;
9726 asection *target;
9727
9728 /* If this relocation section applies to a read only
9729 section, then we probably need a DT_TEXTREL entry.
0a44bf69 9730 If the relocation section is .rel(a).dyn, we always
b49e97c9
TS
9731 assert a DT_TEXTREL entry rather than testing whether
9732 there exists a relocation to a read only section or
9733 not. */
9734 outname = bfd_get_section_name (output_bfd,
9735 s->output_section);
9736 target = bfd_get_section_by_name (output_bfd, outname + 4);
9737 if ((target != NULL
9738 && (target->flags & SEC_READONLY) != 0
9739 && (target->flags & SEC_ALLOC) != 0)
0a44bf69 9740 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
b34976b6 9741 reltext = TRUE;
b49e97c9
TS
9742
9743 /* We use the reloc_count field as a counter if we need
9744 to copy relocs into the output file. */
0a44bf69 9745 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
b49e97c9 9746 s->reloc_count = 0;
f4416af6
AO
9747
9748 /* If combreloc is enabled, elf_link_sort_relocs() will
9749 sort relocations, but in a different way than we do,
9750 and before we're done creating relocations. Also, it
9751 will move them around between input sections'
9752 relocation's contents, so our sorting would be
9753 broken, so don't let it run. */
9754 info->combreloc = 0;
b49e97c9
TS
9755 }
9756 }
0e1862bb 9757 else if (bfd_link_executable (info)
b49e97c9 9758 && ! mips_elf_hash_table (info)->use_rld_obj_head
0112cd26 9759 && CONST_STRNEQ (name, ".rld_map"))
b49e97c9 9760 {
5108fc1b 9761 /* We add a room for __rld_map. It will be filled in by the
b49e97c9 9762 rtld to contain a pointer to the _r_debug structure. */
b4082c70 9763 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
b49e97c9
TS
9764 }
9765 else if (SGI_COMPAT (output_bfd)
0112cd26 9766 && CONST_STRNEQ (name, ".compact_rel"))
eea6121a 9767 s->size += mips_elf_hash_table (info)->compact_rel_size;
ce558b89 9768 else if (s == htab->root.splt)
861fb55a
DJ
9769 {
9770 /* If the last PLT entry has a branch delay slot, allocate
6d30f5b2
NC
9771 room for an extra nop to fill the delay slot. This is
9772 for CPUs without load interlocking. */
9773 if (! LOAD_INTERLOCKS_P (output_bfd)
9774 && ! htab->is_vxworks && s->size > 0)
861fb55a
DJ
9775 s->size += 4;
9776 }
0112cd26 9777 else if (! CONST_STRNEQ (name, ".init")
ce558b89
AM
9778 && s != htab->root.sgot
9779 && s != htab->root.sgotplt
861fb55a 9780 && s != htab->sstubs
5474d94f
AM
9781 && s != htab->root.sdynbss
9782 && s != htab->root.sdynrelro)
b49e97c9
TS
9783 {
9784 /* It's not one of our sections, so don't allocate space. */
9785 continue;
9786 }
9787
c456f082 9788 if (s->size == 0)
b49e97c9 9789 {
8423293d 9790 s->flags |= SEC_EXCLUDE;
b49e97c9
TS
9791 continue;
9792 }
9793
c456f082
AM
9794 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9795 continue;
9796
b49e97c9 9797 /* Allocate memory for the section contents. */
eea6121a 9798 s->contents = bfd_zalloc (dynobj, s->size);
c456f082 9799 if (s->contents == NULL)
b49e97c9
TS
9800 {
9801 bfd_set_error (bfd_error_no_memory);
b34976b6 9802 return FALSE;
b49e97c9
TS
9803 }
9804 }
9805
9806 if (elf_hash_table (info)->dynamic_sections_created)
9807 {
9808 /* Add some entries to the .dynamic section. We fill in the
9809 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9810 must add the entries now so that we get the correct size for
5750dcec 9811 the .dynamic section. */
af5978fb
RS
9812
9813 /* SGI object has the equivalence of DT_DEBUG in the
5750dcec 9814 DT_MIPS_RLD_MAP entry. This must come first because glibc
6e6be592
MR
9815 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9816 may only look at the first one they see. */
0e1862bb 9817 if (!bfd_link_pic (info)
af5978fb
RS
9818 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9819 return FALSE;
b49e97c9 9820
0e1862bb 9821 if (bfd_link_executable (info)
a5499fa4
MF
9822 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9823 return FALSE;
9824
5750dcec
DJ
9825 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9826 used by the debugger. */
0e1862bb 9827 if (bfd_link_executable (info)
5750dcec
DJ
9828 && !SGI_COMPAT (output_bfd)
9829 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9830 return FALSE;
9831
0a44bf69 9832 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
b49e97c9
TS
9833 info->flags |= DF_TEXTREL;
9834
9835 if ((info->flags & DF_TEXTREL) != 0)
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
b34976b6 9838 return FALSE;
943284cc
DJ
9839
9840 /* Clear the DF_TEXTREL flag. It will be set again if we
9841 write out an actual text relocation; we may not, because
9842 at this point we do not know whether e.g. any .eh_frame
9843 absolute relocations have been converted to PC-relative. */
9844 info->flags &= ~DF_TEXTREL;
b49e97c9
TS
9845 }
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
b34976b6 9848 return FALSE;
b49e97c9 9849
861fb55a 9850 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
0a44bf69 9851 if (htab->is_vxworks)
b49e97c9 9852 {
0a44bf69
RS
9853 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9854 use any of the DT_MIPS_* tags. */
861fb55a 9855 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9856 {
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9858 return FALSE;
b49e97c9 9859
0a44bf69
RS
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9861 return FALSE;
b49e97c9 9862
0a44bf69
RS
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9864 return FALSE;
9865 }
b49e97c9 9866 }
0a44bf69
RS
9867 else
9868 {
861fb55a 9869 if (sreldyn && sreldyn->size > 0)
0a44bf69
RS
9870 {
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9872 return FALSE;
b49e97c9 9873
0a44bf69
RS
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9875 return FALSE;
b49e97c9 9876
0a44bf69
RS
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9878 return FALSE;
9879 }
b49e97c9 9880
0a44bf69
RS
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9882 return FALSE;
b49e97c9 9883
0a44bf69
RS
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9885 return FALSE;
b49e97c9 9886
0a44bf69
RS
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9888 return FALSE;
b49e97c9 9889
0a44bf69
RS
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9891 return FALSE;
b49e97c9 9892
0a44bf69
RS
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9894 return FALSE;
b49e97c9 9895
0a44bf69
RS
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9897 return FALSE;
b49e97c9 9898
0a44bf69
RS
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9900 return FALSE;
9901
9902 if (IRIX_COMPAT (dynobj) == ict_irix5
9903 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9904 return FALSE;
9905
9906 if (IRIX_COMPAT (dynobj) == ict_irix6
9907 && (bfd_get_section_by_name
af0edeb8 9908 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
0a44bf69
RS
9909 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9910 return FALSE;
9911 }
ce558b89 9912 if (htab->root.splt->size > 0)
861fb55a
DJ
9913 {
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9921 return FALSE;
9922
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9924 return FALSE;
9925 }
7a2b07ff
NS
9926 if (htab->is_vxworks
9927 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9928 return FALSE;
b49e97c9
TS
9929 }
9930
b34976b6 9931 return TRUE;
b49e97c9
TS
9932}
9933\f
81d43bff
RS
9934/* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9935 Adjust its R_ADDEND field so that it is correct for the output file.
9936 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9937 and sections respectively; both use symbol indexes. */
9938
9939static void
9940mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9941 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9942 asection **local_sections, Elf_Internal_Rela *rel)
9943{
9944 unsigned int r_type, r_symndx;
9945 Elf_Internal_Sym *sym;
9946 asection *sec;
9947
020d7251 9948 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
81d43bff
RS
9949 {
9950 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
df58fc94 9951 if (gprel16_reloc_p (r_type)
81d43bff 9952 || r_type == R_MIPS_GPREL32
df58fc94 9953 || literal_reloc_p (r_type))
81d43bff
RS
9954 {
9955 rel->r_addend += _bfd_get_gp_value (input_bfd);
9956 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9957 }
9958
9959 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9960 sym = local_syms + r_symndx;
9961
9962 /* Adjust REL's addend to account for section merging. */
0e1862bb 9963 if (!bfd_link_relocatable (info))
81d43bff
RS
9964 {
9965 sec = local_sections[r_symndx];
9966 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9967 }
9968
9969 /* This would normally be done by the rela_normal code in elflink.c. */
9970 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9971 rel->r_addend += local_sections[r_symndx]->output_offset;
9972 }
9973}
9974
545fd46b
MR
9975/* Handle relocations against symbols from removed linkonce sections,
9976 or sections discarded by a linker script. We use this wrapper around
9977 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9978 on 64-bit ELF targets. In this case for any relocation handled, which
9979 always be the first in a triplet, the remaining two have to be processed
9980 together with the first, even if they are R_MIPS_NONE. It is the symbol
9981 index referred by the first reloc that applies to all the three and the
9982 remaining two never refer to an object symbol. And it is the final
9983 relocation (the last non-null one) that determines the output field of
9984 the whole relocation so retrieve the corresponding howto structure for
9985 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9986
9987 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9988 and therefore requires to be pasted in a loop. It also defines a block
9989 and does not protect any of its arguments, hence the extra brackets. */
9990
9991static void
9992mips_reloc_against_discarded_section (bfd *output_bfd,
9993 struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 Elf_Internal_Rela **rel,
9996 const Elf_Internal_Rela **relend,
9997 bfd_boolean rel_reloc,
9998 reloc_howto_type *howto,
9999 bfd_byte *contents)
10000{
10001 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10002 int count = bed->s->int_rels_per_ext_rel;
10003 unsigned int r_type;
10004 int i;
10005
10006 for (i = count - 1; i > 0; i--)
10007 {
10008 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10009 if (r_type != R_MIPS_NONE)
10010 {
10011 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10012 break;
10013 }
10014 }
10015 do
10016 {
10017 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10018 (*rel), count, (*relend),
10019 howto, i, contents);
10020 }
10021 while (0);
10022}
10023
b49e97c9
TS
10024/* Relocate a MIPS ELF section. */
10025
b34976b6 10026bfd_boolean
9719ad41
RS
10027_bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10028 bfd *input_bfd, asection *input_section,
10029 bfd_byte *contents, Elf_Internal_Rela *relocs,
10030 Elf_Internal_Sym *local_syms,
10031 asection **local_sections)
b49e97c9
TS
10032{
10033 Elf_Internal_Rela *rel;
10034 const Elf_Internal_Rela *relend;
10035 bfd_vma addend = 0;
b34976b6 10036 bfd_boolean use_saved_addend_p = FALSE;
b49e97c9 10037
056bafd4 10038 relend = relocs + input_section->reloc_count;
b49e97c9
TS
10039 for (rel = relocs; rel < relend; ++rel)
10040 {
10041 const char *name;
c9adbffe 10042 bfd_vma value = 0;
b49e97c9 10043 reloc_howto_type *howto;
ad3d9127 10044 bfd_boolean cross_mode_jump_p = FALSE;
b34976b6 10045 /* TRUE if the relocation is a RELA relocation, rather than a
b49e97c9 10046 REL relocation. */
b34976b6 10047 bfd_boolean rela_relocation_p = TRUE;
b49e97c9 10048 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9719ad41 10049 const char *msg;
ab96bf03
AM
10050 unsigned long r_symndx;
10051 asection *sec;
749b8d9d
L
10052 Elf_Internal_Shdr *symtab_hdr;
10053 struct elf_link_hash_entry *h;
d4730f92 10054 bfd_boolean rel_reloc;
b49e97c9 10055
d4730f92
BS
10056 rel_reloc = (NEWABI_P (input_bfd)
10057 && mips_elf_rel_relocation_p (input_bfd, input_section,
10058 relocs, rel));
b49e97c9 10059 /* Find the relocation howto for this relocation. */
d4730f92 10060 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
ab96bf03
AM
10061
10062 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
749b8d9d 10063 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
020d7251 10064 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
749b8d9d
L
10065 {
10066 sec = local_sections[r_symndx];
10067 h = NULL;
10068 }
ab96bf03
AM
10069 else
10070 {
ab96bf03 10071 unsigned long extsymoff;
ab96bf03 10072
ab96bf03
AM
10073 extsymoff = 0;
10074 if (!elf_bad_symtab (input_bfd))
10075 extsymoff = symtab_hdr->sh_info;
10076 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10077 while (h->root.type == bfd_link_hash_indirect
10078 || h->root.type == bfd_link_hash_warning)
10079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10080
10081 sec = NULL;
10082 if (h->root.type == bfd_link_hash_defined
10083 || h->root.type == bfd_link_hash_defweak)
10084 sec = h->root.u.def.section;
10085 }
10086
dbaa2011 10087 if (sec != NULL && discarded_section (sec))
545fd46b
MR
10088 {
10089 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10090 input_section, &rel, &relend,
10091 rel_reloc, howto, contents);
10092 continue;
10093 }
ab96bf03 10094
4a14403c 10095 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
b49e97c9
TS
10096 {
10097 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10098 64-bit code, but make sure all their addresses are in the
10099 lowermost or uppermost 32-bit section of the 64-bit address
10100 space. Thus, when they use an R_MIPS_64 they mean what is
10101 usually meant by R_MIPS_32, with the exception that the
10102 stored value is sign-extended to 64 bits. */
b34976b6 10103 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
b49e97c9
TS
10104
10105 /* On big-endian systems, we need to lie about the position
10106 of the reloc. */
10107 if (bfd_big_endian (input_bfd))
10108 rel->r_offset += 4;
10109 }
b49e97c9
TS
10110
10111 if (!use_saved_addend_p)
10112 {
b49e97c9
TS
10113 /* If these relocations were originally of the REL variety,
10114 we must pull the addend out of the field that will be
10115 relocated. Otherwise, we simply use the contents of the
c224138d
RS
10116 RELA relocation. */
10117 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10118 relocs, rel))
b49e97c9 10119 {
b34976b6 10120 rela_relocation_p = FALSE;
c224138d
RS
10121 addend = mips_elf_read_rel_addend (input_bfd, rel,
10122 howto, contents);
738e5348
RS
10123 if (hi16_reloc_p (r_type)
10124 || (got16_reloc_p (r_type)
b49e97c9 10125 && mips_elf_local_relocation_p (input_bfd, rel,
020d7251 10126 local_sections)))
b49e97c9 10127 {
c224138d
RS
10128 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10129 contents, &addend))
749b8d9d 10130 {
749b8d9d
L
10131 if (h)
10132 name = h->root.root.string;
10133 else
10134 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10135 local_syms + r_symndx,
10136 sec);
4eca0228 10137 _bfd_error_handler
695344c0 10138 /* xgettext:c-format */
c08bb8dd 10139 (_("%B: Can't find matching LO16 reloc against `%s'"
d42c267e 10140 " for %s at %#Lx in section `%A'"),
c08bb8dd
AM
10141 input_bfd, name,
10142 howto->name, rel->r_offset, input_section);
749b8d9d 10143 }
b49e97c9 10144 }
30ac9238
RS
10145 else
10146 addend <<= howto->rightshift;
b49e97c9
TS
10147 }
10148 else
10149 addend = rel->r_addend;
81d43bff
RS
10150 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10151 local_syms, local_sections, rel);
b49e97c9
TS
10152 }
10153
0e1862bb 10154 if (bfd_link_relocatable (info))
b49e97c9 10155 {
4a14403c 10156 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
b49e97c9
TS
10157 && bfd_big_endian (input_bfd))
10158 rel->r_offset -= 4;
10159
81d43bff 10160 if (!rela_relocation_p && rel->r_addend)
5a659663 10161 {
81d43bff 10162 addend += rel->r_addend;
738e5348 10163 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
5a659663
TS
10164 addend = mips_elf_high (addend);
10165 else if (r_type == R_MIPS_HIGHER)
10166 addend = mips_elf_higher (addend);
10167 else if (r_type == R_MIPS_HIGHEST)
10168 addend = mips_elf_highest (addend);
30ac9238
RS
10169 else
10170 addend >>= howto->rightshift;
b49e97c9 10171
30ac9238
RS
10172 /* We use the source mask, rather than the destination
10173 mask because the place to which we are writing will be
10174 source of the addend in the final link. */
b49e97c9
TS
10175 addend &= howto->src_mask;
10176
5a659663 10177 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10178 /* See the comment above about using R_MIPS_64 in the 32-bit
10179 ABI. Here, we need to update the addend. It would be
10180 possible to get away with just using the R_MIPS_32 reloc
10181 but for endianness. */
10182 {
10183 bfd_vma sign_bits;
10184 bfd_vma low_bits;
10185 bfd_vma high_bits;
10186
10187 if (addend & ((bfd_vma) 1 << 31))
10188#ifdef BFD64
10189 sign_bits = ((bfd_vma) 1 << 32) - 1;
10190#else
10191 sign_bits = -1;
10192#endif
10193 else
10194 sign_bits = 0;
10195
10196 /* If we don't know that we have a 64-bit type,
10197 do two separate stores. */
10198 if (bfd_big_endian (input_bfd))
10199 {
10200 /* Store the sign-bits (which are most significant)
10201 first. */
10202 low_bits = sign_bits;
10203 high_bits = addend;
10204 }
10205 else
10206 {
10207 low_bits = addend;
10208 high_bits = sign_bits;
10209 }
10210 bfd_put_32 (input_bfd, low_bits,
10211 contents + rel->r_offset);
10212 bfd_put_32 (input_bfd, high_bits,
10213 contents + rel->r_offset + 4);
10214 continue;
10215 }
10216
10217 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10218 input_bfd, input_section,
b34976b6
AM
10219 contents, FALSE))
10220 return FALSE;
b49e97c9
TS
10221 }
10222
10223 /* Go on to the next relocation. */
10224 continue;
10225 }
10226
10227 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10228 relocations for the same offset. In that case we are
10229 supposed to treat the output of each relocation as the addend
10230 for the next. */
10231 if (rel + 1 < relend
10232 && rel->r_offset == rel[1].r_offset
10233 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
b34976b6 10234 use_saved_addend_p = TRUE;
b49e97c9 10235 else
b34976b6 10236 use_saved_addend_p = FALSE;
b49e97c9
TS
10237
10238 /* Figure out what value we are supposed to relocate. */
10239 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10240 input_section, info, rel,
10241 addend, howto, local_syms,
10242 local_sections, &value,
38a7df63 10243 &name, &cross_mode_jump_p,
bce03d3d 10244 use_saved_addend_p))
b49e97c9
TS
10245 {
10246 case bfd_reloc_continue:
10247 /* There's nothing to do. */
10248 continue;
10249
10250 case bfd_reloc_undefined:
10251 /* mips_elf_calculate_relocation already called the
10252 undefined_symbol callback. There's no real point in
10253 trying to perform the relocation at this point, so we
10254 just skip ahead to the next relocation. */
10255 continue;
10256
10257 case bfd_reloc_notsupported:
10258 msg = _("internal error: unsupported relocation error");
10259 info->callbacks->warning
10260 (info, msg, name, input_bfd, input_section, rel->r_offset);
b34976b6 10261 return FALSE;
b49e97c9
TS
10262
10263 case bfd_reloc_overflow:
10264 if (use_saved_addend_p)
10265 /* Ignore overflow until we reach the last relocation for
10266 a given location. */
10267 ;
10268 else
10269 {
0e53d9da
AN
10270 struct mips_elf_link_hash_table *htab;
10271
10272 htab = mips_elf_hash_table (info);
4dfe6ac6 10273 BFD_ASSERT (htab != NULL);
b49e97c9 10274 BFD_ASSERT (name != NULL);
0e53d9da 10275 if (!htab->small_data_overflow_reported
9684f078 10276 && (gprel16_reloc_p (howto->type)
df58fc94 10277 || literal_reloc_p (howto->type)))
0e53d9da 10278 {
91d6fa6a
NC
10279 msg = _("small-data section exceeds 64KB;"
10280 " lower small-data size limit (see option -G)");
0e53d9da
AN
10281
10282 htab->small_data_overflow_reported = TRUE;
10283 (*info->callbacks->einfo) ("%P: %s\n", msg);
10284 }
1a72702b
AM
10285 (*info->callbacks->reloc_overflow)
10286 (info, NULL, name, howto->name, (bfd_vma) 0,
10287 input_bfd, input_section, rel->r_offset);
b49e97c9
TS
10288 }
10289 break;
10290
10291 case bfd_reloc_ok:
10292 break;
10293
df58fc94 10294 case bfd_reloc_outofrange:
7db9a74e 10295 msg = NULL;
df58fc94 10296 if (jal_reloc_p (howto->type))
9d862524
MR
10297 msg = (cross_mode_jump_p
10298 ? _("Cannot convert a jump to JALX "
10299 "for a non-word-aligned address")
10300 : (howto->type == R_MIPS16_26
10301 ? _("Jump to a non-word-aligned address")
10302 : _("Jump to a non-instruction-aligned address")));
99aefae6 10303 else if (b_reloc_p (howto->type))
a6ebf616
MR
10304 msg = (cross_mode_jump_p
10305 ? _("Cannot convert a branch to JALX "
10306 "for a non-word-aligned address")
10307 : _("Branch to a non-instruction-aligned address"));
7db9a74e
MR
10308 else if (aligned_pcrel_reloc_p (howto->type))
10309 msg = _("PC-relative load from unaligned address");
10310 if (msg)
df58fc94 10311 {
de341542 10312 info->callbacks->einfo
ed53407e
MR
10313 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10314 break;
7361da2c 10315 }
df58fc94
RS
10316 /* Fall through. */
10317
b49e97c9
TS
10318 default:
10319 abort ();
10320 break;
10321 }
10322
10323 /* If we've got another relocation for the address, keep going
10324 until we reach the last one. */
10325 if (use_saved_addend_p)
10326 {
10327 addend = value;
10328 continue;
10329 }
10330
4a14403c 10331 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10332 /* See the comment above about using R_MIPS_64 in the 32-bit
10333 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10334 that calculated the right value. Now, however, we
10335 sign-extend the 32-bit result to 64-bits, and store it as a
10336 64-bit value. We are especially generous here in that we
10337 go to extreme lengths to support this usage on systems with
10338 only a 32-bit VMA. */
10339 {
10340 bfd_vma sign_bits;
10341 bfd_vma low_bits;
10342 bfd_vma high_bits;
10343
10344 if (value & ((bfd_vma) 1 << 31))
10345#ifdef BFD64
10346 sign_bits = ((bfd_vma) 1 << 32) - 1;
10347#else
10348 sign_bits = -1;
10349#endif
10350 else
10351 sign_bits = 0;
10352
10353 /* If we don't know that we have a 64-bit type,
10354 do two separate stores. */
10355 if (bfd_big_endian (input_bfd))
10356 {
10357 /* Undo what we did above. */
10358 rel->r_offset -= 4;
10359 /* Store the sign-bits (which are most significant)
10360 first. */
10361 low_bits = sign_bits;
10362 high_bits = value;
10363 }
10364 else
10365 {
10366 low_bits = value;
10367 high_bits = sign_bits;
10368 }
10369 bfd_put_32 (input_bfd, low_bits,
10370 contents + rel->r_offset);
10371 bfd_put_32 (input_bfd, high_bits,
10372 contents + rel->r_offset + 4);
10373 continue;
10374 }
10375
10376 /* Actually perform the relocation. */
10377 if (! mips_elf_perform_relocation (info, howto, rel, value,
10378 input_bfd, input_section,
38a7df63 10379 contents, cross_mode_jump_p))
b34976b6 10380 return FALSE;
b49e97c9
TS
10381 }
10382
b34976b6 10383 return TRUE;
b49e97c9
TS
10384}
10385\f
861fb55a
DJ
10386/* A function that iterates over each entry in la25_stubs and fills
10387 in the code for each one. DATA points to a mips_htab_traverse_info. */
10388
10389static int
10390mips_elf_create_la25_stub (void **slot, void *data)
10391{
10392 struct mips_htab_traverse_info *hti;
10393 struct mips_elf_link_hash_table *htab;
10394 struct mips_elf_la25_stub *stub;
10395 asection *s;
10396 bfd_byte *loc;
10397 bfd_vma offset, target, target_high, target_low;
10398
10399 stub = (struct mips_elf_la25_stub *) *slot;
10400 hti = (struct mips_htab_traverse_info *) data;
10401 htab = mips_elf_hash_table (hti->info);
4dfe6ac6 10402 BFD_ASSERT (htab != NULL);
861fb55a
DJ
10403
10404 /* Create the section contents, if we haven't already. */
10405 s = stub->stub_section;
10406 loc = s->contents;
10407 if (loc == NULL)
10408 {
10409 loc = bfd_malloc (s->size);
10410 if (loc == NULL)
10411 {
10412 hti->error = TRUE;
10413 return FALSE;
10414 }
10415 s->contents = loc;
10416 }
10417
10418 /* Work out where in the section this stub should go. */
10419 offset = stub->offset;
10420
10421 /* Work out the target address. */
8f0c309a
CLT
10422 target = mips_elf_get_la25_target (stub, &s);
10423 target += s->output_section->vma + s->output_offset;
10424
861fb55a
DJ
10425 target_high = ((target + 0x8000) >> 16) & 0xffff;
10426 target_low = (target & 0xffff);
10427
10428 if (stub->stub_section != htab->strampoline)
10429 {
df58fc94 10430 /* This is a simple LUI/ADDIU stub. Zero out the beginning
861fb55a
DJ
10431 of the section and write the two instructions at the end. */
10432 memset (loc, 0, offset);
10433 loc += offset;
df58fc94
RS
10434 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10435 {
d21911ea
MR
10436 bfd_put_micromips_32 (hti->output_bfd,
10437 LA25_LUI_MICROMIPS (target_high),
10438 loc);
10439 bfd_put_micromips_32 (hti->output_bfd,
10440 LA25_ADDIU_MICROMIPS (target_low),
10441 loc + 4);
df58fc94
RS
10442 }
10443 else
10444 {
10445 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10446 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10447 }
861fb55a
DJ
10448 }
10449 else
10450 {
10451 /* This is trampoline. */
10452 loc += offset;
df58fc94
RS
10453 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10454 {
d21911ea
MR
10455 bfd_put_micromips_32 (hti->output_bfd,
10456 LA25_LUI_MICROMIPS (target_high), loc);
10457 bfd_put_micromips_32 (hti->output_bfd,
10458 LA25_J_MICROMIPS (target), loc + 4);
10459 bfd_put_micromips_32 (hti->output_bfd,
10460 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
df58fc94
RS
10461 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10462 }
10463 else
10464 {
10465 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10466 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10467 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10468 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10469 }
861fb55a
DJ
10470 }
10471 return TRUE;
10472}
10473
b49e97c9
TS
10474/* If NAME is one of the special IRIX6 symbols defined by the linker,
10475 adjust it appropriately now. */
10476
10477static void
9719ad41
RS
10478mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10479 const char *name, Elf_Internal_Sym *sym)
b49e97c9
TS
10480{
10481 /* The linker script takes care of providing names and values for
10482 these, but we must place them into the right sections. */
10483 static const char* const text_section_symbols[] = {
10484 "_ftext",
10485 "_etext",
10486 "__dso_displacement",
10487 "__elf_header",
10488 "__program_header_table",
10489 NULL
10490 };
10491
10492 static const char* const data_section_symbols[] = {
10493 "_fdata",
10494 "_edata",
10495 "_end",
10496 "_fbss",
10497 NULL
10498 };
10499
10500 const char* const *p;
10501 int i;
10502
10503 for (i = 0; i < 2; ++i)
10504 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10505 *p;
10506 ++p)
10507 if (strcmp (*p, name) == 0)
10508 {
10509 /* All of these symbols are given type STT_SECTION by the
10510 IRIX6 linker. */
10511 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
e10609d3 10512 sym->st_other = STO_PROTECTED;
b49e97c9
TS
10513
10514 /* The IRIX linker puts these symbols in special sections. */
10515 if (i == 0)
10516 sym->st_shndx = SHN_MIPS_TEXT;
10517 else
10518 sym->st_shndx = SHN_MIPS_DATA;
10519
10520 break;
10521 }
10522}
10523
10524/* Finish up dynamic symbol handling. We set the contents of various
10525 dynamic sections here. */
10526
b34976b6 10527bfd_boolean
9719ad41
RS
10528_bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10529 struct bfd_link_info *info,
10530 struct elf_link_hash_entry *h,
10531 Elf_Internal_Sym *sym)
b49e97c9
TS
10532{
10533 bfd *dynobj;
b49e97c9 10534 asection *sgot;
f4416af6 10535 struct mips_got_info *g, *gg;
b49e97c9 10536 const char *name;
3d6746ca 10537 int idx;
5108fc1b 10538 struct mips_elf_link_hash_table *htab;
738e5348 10539 struct mips_elf_link_hash_entry *hmips;
b49e97c9 10540
5108fc1b 10541 htab = mips_elf_hash_table (info);
4dfe6ac6 10542 BFD_ASSERT (htab != NULL);
b49e97c9 10543 dynobj = elf_hash_table (info)->dynobj;
738e5348 10544 hmips = (struct mips_elf_link_hash_entry *) h;
b49e97c9 10545
861fb55a
DJ
10546 BFD_ASSERT (!htab->is_vxworks);
10547
1bbce132
MR
10548 if (h->plt.plist != NULL
10549 && (h->plt.plist->mips_offset != MINUS_ONE
10550 || h->plt.plist->comp_offset != MINUS_ONE))
861fb55a
DJ
10551 {
10552 /* We've decided to create a PLT entry for this symbol. */
10553 bfd_byte *loc;
1bbce132 10554 bfd_vma header_address, got_address;
861fb55a 10555 bfd_vma got_address_high, got_address_low, load;
1bbce132
MR
10556 bfd_vma got_index;
10557 bfd_vma isa_bit;
10558
10559 got_index = h->plt.plist->gotplt_index;
861fb55a
DJ
10560
10561 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10562 BFD_ASSERT (h->dynindx != -1);
ce558b89 10563 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 10564 BFD_ASSERT (got_index != MINUS_ONE);
861fb55a
DJ
10565 BFD_ASSERT (!h->def_regular);
10566
10567 /* Calculate the address of the PLT header. */
1bbce132 10568 isa_bit = htab->plt_header_is_comp;
ce558b89
AM
10569 header_address = (htab->root.splt->output_section->vma
10570 + htab->root.splt->output_offset + isa_bit);
861fb55a
DJ
10571
10572 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
10573 got_address = (htab->root.sgotplt->output_section->vma
10574 + htab->root.sgotplt->output_offset
1bbce132
MR
10575 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10576
861fb55a
DJ
10577 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10578 got_address_low = got_address & 0xffff;
10579
10580 /* Initially point the .got.plt entry at the PLT header. */
ce558b89 10581 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
861fb55a
DJ
10582 if (ABI_64_P (output_bfd))
10583 bfd_put_64 (output_bfd, header_address, loc);
10584 else
10585 bfd_put_32 (output_bfd, header_address, loc);
10586
1bbce132
MR
10587 /* Now handle the PLT itself. First the standard entry (the order
10588 does not matter, we just have to pick one). */
10589 if (h->plt.plist->mips_offset != MINUS_ONE)
10590 {
10591 const bfd_vma *plt_entry;
10592 bfd_vma plt_offset;
861fb55a 10593
1bbce132 10594 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
861fb55a 10595
ce558b89 10596 BFD_ASSERT (plt_offset <= htab->root.splt->size);
6d30f5b2 10597
1bbce132 10598 /* Find out where the .plt entry should go. */
ce558b89 10599 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10600
10601 /* Pick the load opcode. */
10602 load = MIPS_ELF_LOAD_WORD (output_bfd);
10603
10604 /* Fill in the PLT entry itself. */
7361da2c
AB
10605
10606 if (MIPSR6_P (output_bfd))
10607 plt_entry = mipsr6_exec_plt_entry;
10608 else
10609 plt_entry = mips_exec_plt_entry;
1bbce132
MR
10610 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10611 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10612 loc + 4);
10613
10614 if (! LOAD_INTERLOCKS_P (output_bfd))
10615 {
10616 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10617 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10618 }
10619 else
10620 {
10621 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10622 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10623 loc + 12);
10624 }
6d30f5b2 10625 }
1bbce132
MR
10626
10627 /* Now the compressed entry. They come after any standard ones. */
10628 if (h->plt.plist->comp_offset != MINUS_ONE)
6d30f5b2 10629 {
1bbce132
MR
10630 bfd_vma plt_offset;
10631
10632 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10633 + h->plt.plist->comp_offset);
10634
ce558b89 10635 BFD_ASSERT (plt_offset <= htab->root.splt->size);
1bbce132
MR
10636
10637 /* Find out where the .plt entry should go. */
ce558b89 10638 loc = htab->root.splt->contents + plt_offset;
1bbce132
MR
10639
10640 /* Fill in the PLT entry itself. */
833794fc
MR
10641 if (!MICROMIPS_P (output_bfd))
10642 {
10643 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10644
10645 bfd_put_16 (output_bfd, plt_entry[0], loc);
10646 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10647 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10648 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10649 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10650 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10651 bfd_put_32 (output_bfd, got_address, loc + 12);
10652 }
10653 else if (htab->insn32)
10654 {
10655 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10656
10657 bfd_put_16 (output_bfd, plt_entry[0], loc);
10658 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10659 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10660 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10661 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10662 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10663 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10664 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10665 }
10666 else
1bbce132
MR
10667 {
10668 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10669 bfd_signed_vma gotpc_offset;
10670 bfd_vma loc_address;
10671
10672 BFD_ASSERT (got_address % 4 == 0);
10673
ce558b89
AM
10674 loc_address = (htab->root.splt->output_section->vma
10675 + htab->root.splt->output_offset + plt_offset);
1bbce132
MR
10676 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10677
10678 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10679 if (gotpc_offset + 0x1000000 >= 0x2000000)
10680 {
4eca0228 10681 _bfd_error_handler
695344c0 10682 /* xgettext:c-format */
d42c267e 10683 (_("%B: `%A' offset of %Ld from `%A' "
1bbce132
MR
10684 "beyond the range of ADDIUPC"),
10685 output_bfd,
ce558b89 10686 htab->root.sgotplt->output_section,
d42c267e 10687 gotpc_offset,
c08bb8dd 10688 htab->root.splt->output_section);
1bbce132
MR
10689 bfd_set_error (bfd_error_no_error);
10690 return FALSE;
10691 }
10692 bfd_put_16 (output_bfd,
10693 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10694 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10695 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10696 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10697 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10698 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10699 }
6d30f5b2 10700 }
861fb55a
DJ
10701
10702 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 10703 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
1bbce132 10704 got_index - 2, h->dynindx,
861fb55a
DJ
10705 R_MIPS_JUMP_SLOT, got_address);
10706
10707 /* We distinguish between PLT entries and lazy-binding stubs by
10708 giving the former an st_other value of STO_MIPS_PLT. Set the
10709 flag and leave the value if there are any relocations in the
10710 binary where pointer equality matters. */
10711 sym->st_shndx = SHN_UNDEF;
10712 if (h->pointer_equality_needed)
1bbce132 10713 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
861fb55a 10714 else
1bbce132
MR
10715 {
10716 sym->st_value = 0;
10717 sym->st_other = 0;
10718 }
861fb55a 10719 }
1bbce132
MR
10720
10721 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
b49e97c9 10722 {
861fb55a 10723 /* We've decided to create a lazy-binding stub. */
1bbce132
MR
10724 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10725 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10726 bfd_vma stub_size = htab->function_stub_size;
5108fc1b 10727 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
1bbce132
MR
10728 bfd_vma isa_bit = micromips_p;
10729 bfd_vma stub_big_size;
10730
833794fc 10731 if (!micromips_p)
1bbce132 10732 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
833794fc
MR
10733 else if (htab->insn32)
10734 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10735 else
10736 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
b49e97c9
TS
10737
10738 /* This symbol has a stub. Set it up. */
10739
10740 BFD_ASSERT (h->dynindx != -1);
10741
1bbce132 10742 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
3d6746ca
DD
10743
10744 /* Values up to 2^31 - 1 are allowed. Larger values would cause
5108fc1b
RS
10745 sign extension at runtime in the stub, resulting in a negative
10746 index value. */
10747 if (h->dynindx & ~0x7fffffff)
b34976b6 10748 return FALSE;
b49e97c9
TS
10749
10750 /* Fill the stub. */
1bbce132
MR
10751 if (micromips_p)
10752 {
10753 idx = 0;
10754 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10755 stub + idx);
10756 idx += 4;
833794fc
MR
10757 if (htab->insn32)
10758 {
10759 bfd_put_micromips_32 (output_bfd,
40fc1451 10760 STUB_MOVE32_MICROMIPS, stub + idx);
833794fc
MR
10761 idx += 4;
10762 }
10763 else
10764 {
10765 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10766 idx += 2;
10767 }
1bbce132
MR
10768 if (stub_size == stub_big_size)
10769 {
10770 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10771
10772 bfd_put_micromips_32 (output_bfd,
10773 STUB_LUI_MICROMIPS (dynindx_hi),
10774 stub + idx);
10775 idx += 4;
10776 }
833794fc
MR
10777 if (htab->insn32)
10778 {
10779 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10780 stub + idx);
10781 idx += 4;
10782 }
10783 else
10784 {
10785 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10786 idx += 2;
10787 }
1bbce132
MR
10788
10789 /* If a large stub is not required and sign extension is not a
10790 problem, then use legacy code in the stub. */
10791 if (stub_size == stub_big_size)
10792 bfd_put_micromips_32 (output_bfd,
10793 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10794 stub + idx);
10795 else if (h->dynindx & ~0x7fff)
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10798 stub + idx);
10799 else
10800 bfd_put_micromips_32 (output_bfd,
10801 STUB_LI16S_MICROMIPS (output_bfd,
10802 h->dynindx),
10803 stub + idx);
10804 }
3d6746ca 10805 else
1bbce132
MR
10806 {
10807 idx = 0;
10808 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10809 idx += 4;
40fc1451 10810 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
1bbce132
MR
10811 idx += 4;
10812 if (stub_size == stub_big_size)
10813 {
10814 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10815 stub + idx);
10816 idx += 4;
10817 }
10818 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10819 idx += 4;
10820
10821 /* If a large stub is not required and sign extension is not a
10822 problem, then use legacy code in the stub. */
10823 if (stub_size == stub_big_size)
10824 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10825 stub + idx);
10826 else if (h->dynindx & ~0x7fff)
10827 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10828 stub + idx);
10829 else
10830 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10831 stub + idx);
10832 }
5108fc1b 10833
1bbce132
MR
10834 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10835 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10836 stub, stub_size);
b49e97c9 10837
1bbce132 10838 /* Mark the symbol as undefined. stub_offset != -1 occurs
b49e97c9
TS
10839 only for the referenced symbol. */
10840 sym->st_shndx = SHN_UNDEF;
10841
10842 /* The run-time linker uses the st_value field of the symbol
10843 to reset the global offset table entry for this external
10844 to its stub address when unlinking a shared object. */
4e41d0d7
RS
10845 sym->st_value = (htab->sstubs->output_section->vma
10846 + htab->sstubs->output_offset
1bbce132
MR
10847 + h->plt.plist->stub_offset
10848 + isa_bit);
10849 sym->st_other = other;
b49e97c9
TS
10850 }
10851
738e5348
RS
10852 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10853 refer to the stub, since only the stub uses the standard calling
10854 conventions. */
10855 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10856 {
10857 BFD_ASSERT (hmips->need_fn_stub);
10858 sym->st_value = (hmips->fn_stub->output_section->vma
10859 + hmips->fn_stub->output_offset);
10860 sym->st_size = hmips->fn_stub->size;
10861 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10862 }
10863
b49e97c9 10864 BFD_ASSERT (h->dynindx != -1
f5385ebf 10865 || h->forced_local);
b49e97c9 10866
ce558b89 10867 sgot = htab->root.sgot;
a8028dd0 10868 g = htab->got_info;
b49e97c9
TS
10869 BFD_ASSERT (g != NULL);
10870
10871 /* Run through the global symbol table, creating GOT entries for all
10872 the symbols that need them. */
020d7251 10873 if (hmips->global_got_area != GGA_NONE)
b49e97c9
TS
10874 {
10875 bfd_vma offset;
10876 bfd_vma value;
10877
6eaa6adc 10878 value = sym->st_value;
13fbec83 10879 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
b49e97c9
TS
10880 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10881 }
10882
e641e783 10883 if (hmips->global_got_area != GGA_NONE && g->next)
f4416af6
AO
10884 {
10885 struct mips_got_entry e, *p;
0626d451 10886 bfd_vma entry;
f4416af6 10887 bfd_vma offset;
f4416af6
AO
10888
10889 gg = g;
10890
10891 e.abfd = output_bfd;
10892 e.symndx = -1;
738e5348 10893 e.d.h = hmips;
9ab066b4 10894 e.tls_type = GOT_TLS_NONE;
143d77c5 10895
f4416af6
AO
10896 for (g = g->next; g->next != gg; g = g->next)
10897 {
10898 if (g->got_entries
10899 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10900 &e)))
10901 {
10902 offset = p->gotidx;
ce558b89 10903 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
0e1862bb 10904 if (bfd_link_pic (info)
0626d451
RS
10905 || (elf_hash_table (info)->dynamic_sections_created
10906 && p->d.h != NULL
f5385ebf
AM
10907 && p->d.h->root.def_dynamic
10908 && !p->d.h->root.def_regular))
0626d451
RS
10909 {
10910 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10911 the various compatibility problems, it's easier to mock
10912 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10913 mips_elf_create_dynamic_relocation to calculate the
10914 appropriate addend. */
10915 Elf_Internal_Rela rel[3];
10916
10917 memset (rel, 0, sizeof (rel));
10918 if (ABI_64_P (output_bfd))
10919 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10920 else
10921 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10922 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10923
10924 entry = 0;
10925 if (! (mips_elf_create_dynamic_relocation
10926 (output_bfd, info, rel,
10927 e.d.h, NULL, sym->st_value, &entry, sgot)))
10928 return FALSE;
10929 }
10930 else
10931 entry = sym->st_value;
10932 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
f4416af6
AO
10933 }
10934 }
10935 }
10936
b49e97c9
TS
10937 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10938 name = h->root.root.string;
9637f6ef 10939 if (h == elf_hash_table (info)->hdynamic
22edb2f1 10940 || h == elf_hash_table (info)->hgot)
b49e97c9
TS
10941 sym->st_shndx = SHN_ABS;
10942 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10943 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10944 {
10945 sym->st_shndx = SHN_ABS;
10946 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10947 sym->st_value = 1;
10948 }
4a14403c 10949 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
b49e97c9
TS
10950 {
10951 sym->st_shndx = SHN_ABS;
10952 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10953 sym->st_value = elf_gp (output_bfd);
10954 }
10955 else if (SGI_COMPAT (output_bfd))
10956 {
10957 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10958 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10959 {
10960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10961 sym->st_other = STO_PROTECTED;
10962 sym->st_value = 0;
10963 sym->st_shndx = SHN_MIPS_DATA;
10964 }
10965 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10966 {
10967 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10968 sym->st_other = STO_PROTECTED;
10969 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10970 sym->st_shndx = SHN_ABS;
10971 }
10972 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10973 {
10974 if (h->type == STT_FUNC)
10975 sym->st_shndx = SHN_MIPS_TEXT;
10976 else if (h->type == STT_OBJECT)
10977 sym->st_shndx = SHN_MIPS_DATA;
10978 }
10979 }
10980
861fb55a
DJ
10981 /* Emit a copy reloc, if needed. */
10982 if (h->needs_copy)
10983 {
10984 asection *s;
10985 bfd_vma symval;
10986
10987 BFD_ASSERT (h->dynindx != -1);
10988 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10989
10990 s = mips_elf_rel_dyn_section (info, FALSE);
10991 symval = (h->root.u.def.section->output_section->vma
10992 + h->root.u.def.section->output_offset
10993 + h->root.u.def.value);
10994 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10995 h->dynindx, R_MIPS_COPY, symval);
10996 }
10997
b49e97c9
TS
10998 /* Handle the IRIX6-specific symbols. */
10999 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11000 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11001
cbf8d970
MR
11002 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11003 to treat compressed symbols like any other. */
30c09090 11004 if (ELF_ST_IS_MIPS16 (sym->st_other))
738e5348
RS
11005 {
11006 BFD_ASSERT (sym->st_value & 1);
11007 sym->st_other -= STO_MIPS16;
11008 }
cbf8d970
MR
11009 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11010 {
11011 BFD_ASSERT (sym->st_value & 1);
11012 sym->st_other -= STO_MICROMIPS;
11013 }
b49e97c9 11014
b34976b6 11015 return TRUE;
b49e97c9
TS
11016}
11017
0a44bf69
RS
11018/* Likewise, for VxWorks. */
11019
11020bfd_boolean
11021_bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11022 struct bfd_link_info *info,
11023 struct elf_link_hash_entry *h,
11024 Elf_Internal_Sym *sym)
11025{
11026 bfd *dynobj;
11027 asection *sgot;
11028 struct mips_got_info *g;
11029 struct mips_elf_link_hash_table *htab;
020d7251 11030 struct mips_elf_link_hash_entry *hmips;
0a44bf69
RS
11031
11032 htab = mips_elf_hash_table (info);
4dfe6ac6 11033 BFD_ASSERT (htab != NULL);
0a44bf69 11034 dynobj = elf_hash_table (info)->dynobj;
020d7251 11035 hmips = (struct mips_elf_link_hash_entry *) h;
0a44bf69 11036
1bbce132 11037 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
0a44bf69 11038 {
6d79d2ed 11039 bfd_byte *loc;
1bbce132 11040 bfd_vma plt_address, got_address, got_offset, branch_offset;
0a44bf69
RS
11041 Elf_Internal_Rela rel;
11042 static const bfd_vma *plt_entry;
1bbce132
MR
11043 bfd_vma gotplt_index;
11044 bfd_vma plt_offset;
11045
11046 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11047 gotplt_index = h->plt.plist->gotplt_index;
0a44bf69
RS
11048
11049 BFD_ASSERT (h->dynindx != -1);
ce558b89 11050 BFD_ASSERT (htab->root.splt != NULL);
1bbce132 11051 BFD_ASSERT (gotplt_index != MINUS_ONE);
ce558b89 11052 BFD_ASSERT (plt_offset <= htab->root.splt->size);
0a44bf69
RS
11053
11054 /* Calculate the address of the .plt entry. */
ce558b89
AM
11055 plt_address = (htab->root.splt->output_section->vma
11056 + htab->root.splt->output_offset
1bbce132 11057 + plt_offset);
0a44bf69
RS
11058
11059 /* Calculate the address of the .got.plt entry. */
ce558b89
AM
11060 got_address = (htab->root.sgotplt->output_section->vma
11061 + htab->root.sgotplt->output_offset
1bbce132 11062 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
0a44bf69
RS
11063
11064 /* Calculate the offset of the .got.plt entry from
11065 _GLOBAL_OFFSET_TABLE_. */
11066 got_offset = mips_elf_gotplt_index (info, h);
11067
11068 /* Calculate the offset for the branch at the start of the PLT
11069 entry. The branch jumps to the beginning of .plt. */
1bbce132 11070 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
0a44bf69
RS
11071
11072 /* Fill in the initial value of the .got.plt entry. */
11073 bfd_put_32 (output_bfd, plt_address,
ce558b89 11074 (htab->root.sgotplt->contents
1bbce132 11075 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
0a44bf69
RS
11076
11077 /* Find out where the .plt entry should go. */
ce558b89 11078 loc = htab->root.splt->contents + plt_offset;
0a44bf69 11079
0e1862bb 11080 if (bfd_link_pic (info))
0a44bf69
RS
11081 {
11082 plt_entry = mips_vxworks_shared_plt_entry;
11083 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11084 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11085 }
11086 else
11087 {
11088 bfd_vma got_address_high, got_address_low;
11089
11090 plt_entry = mips_vxworks_exec_plt_entry;
11091 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11092 got_address_low = got_address & 0xffff;
11093
11094 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
1bbce132 11095 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
0a44bf69
RS
11096 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11097 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11098 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11099 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11100 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11101 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11102
11103 loc = (htab->srelplt2->contents
1bbce132 11104 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
0a44bf69
RS
11105
11106 /* Emit a relocation for the .got.plt entry. */
11107 rel.r_offset = got_address;
11108 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
1bbce132 11109 rel.r_addend = plt_offset;
0a44bf69
RS
11110 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11111
11112 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11113 loc += sizeof (Elf32_External_Rela);
11114 rel.r_offset = plt_address + 8;
11115 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11116 rel.r_addend = got_offset;
11117 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11118
11119 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11120 loc += sizeof (Elf32_External_Rela);
11121 rel.r_offset += 4;
11122 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11123 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11124 }
11125
11126 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
ce558b89 11127 loc = (htab->root.srelplt->contents
1bbce132 11128 + gotplt_index * sizeof (Elf32_External_Rela));
0a44bf69
RS
11129 rel.r_offset = got_address;
11130 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11131 rel.r_addend = 0;
11132 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11133
11134 if (!h->def_regular)
11135 sym->st_shndx = SHN_UNDEF;
11136 }
11137
11138 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11139
ce558b89 11140 sgot = htab->root.sgot;
a8028dd0 11141 g = htab->got_info;
0a44bf69
RS
11142 BFD_ASSERT (g != NULL);
11143
11144 /* See if this symbol has an entry in the GOT. */
020d7251 11145 if (hmips->global_got_area != GGA_NONE)
0a44bf69
RS
11146 {
11147 bfd_vma offset;
11148 Elf_Internal_Rela outrel;
11149 bfd_byte *loc;
11150 asection *s;
11151
11152 /* Install the symbol value in the GOT. */
13fbec83 11153 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
0a44bf69
RS
11154 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11155
11156 /* Add a dynamic relocation for it. */
11157 s = mips_elf_rel_dyn_section (info, FALSE);
11158 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11159 outrel.r_offset = (sgot->output_section->vma
11160 + sgot->output_offset
11161 + offset);
11162 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11163 outrel.r_addend = 0;
11164 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11165 }
11166
11167 /* Emit a copy reloc, if needed. */
11168 if (h->needs_copy)
11169 {
11170 Elf_Internal_Rela rel;
5474d94f
AM
11171 asection *srel;
11172 bfd_byte *loc;
0a44bf69
RS
11173
11174 BFD_ASSERT (h->dynindx != -1);
11175
11176 rel.r_offset = (h->root.u.def.section->output_section->vma
11177 + h->root.u.def.section->output_offset
11178 + h->root.u.def.value);
11179 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11180 rel.r_addend = 0;
afbf7e8e 11181 if (h->root.u.def.section == htab->root.sdynrelro)
5474d94f
AM
11182 srel = htab->root.sreldynrelro;
11183 else
11184 srel = htab->root.srelbss;
11185 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11186 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11187 ++srel->reloc_count;
0a44bf69
RS
11188 }
11189
df58fc94
RS
11190 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11191 if (ELF_ST_IS_COMPRESSED (sym->st_other))
0a44bf69
RS
11192 sym->st_value &= ~1;
11193
11194 return TRUE;
11195}
11196
861fb55a
DJ
11197/* Write out a plt0 entry to the beginning of .plt. */
11198
1bbce132 11199static bfd_boolean
861fb55a
DJ
11200mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11201{
11202 bfd_byte *loc;
11203 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11204 static const bfd_vma *plt_entry;
11205 struct mips_elf_link_hash_table *htab;
11206
11207 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11208 BFD_ASSERT (htab != NULL);
11209
861fb55a
DJ
11210 if (ABI_64_P (output_bfd))
11211 plt_entry = mips_n64_exec_plt0_entry;
11212 else if (ABI_N32_P (output_bfd))
11213 plt_entry = mips_n32_exec_plt0_entry;
833794fc 11214 else if (!htab->plt_header_is_comp)
861fb55a 11215 plt_entry = mips_o32_exec_plt0_entry;
833794fc
MR
11216 else if (htab->insn32)
11217 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11218 else
11219 plt_entry = micromips_o32_exec_plt0_entry;
861fb55a
DJ
11220
11221 /* Calculate the value of .got.plt. */
ce558b89
AM
11222 gotplt_value = (htab->root.sgotplt->output_section->vma
11223 + htab->root.sgotplt->output_offset);
861fb55a
DJ
11224 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11225 gotplt_value_low = gotplt_value & 0xffff;
11226
11227 /* The PLT sequence is not safe for N64 if .got.plt's address can
11228 not be loaded in two instructions. */
11229 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11230 || ~(gotplt_value | 0x7fffffff) == 0);
11231
11232 /* Install the PLT header. */
ce558b89 11233 loc = htab->root.splt->contents;
1bbce132
MR
11234 if (plt_entry == micromips_o32_exec_plt0_entry)
11235 {
11236 bfd_vma gotpc_offset;
11237 bfd_vma loc_address;
11238 size_t i;
11239
11240 BFD_ASSERT (gotplt_value % 4 == 0);
11241
ce558b89
AM
11242 loc_address = (htab->root.splt->output_section->vma
11243 + htab->root.splt->output_offset);
1bbce132
MR
11244 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11245
11246 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11247 if (gotpc_offset + 0x1000000 >= 0x2000000)
11248 {
4eca0228 11249 _bfd_error_handler
695344c0 11250 /* xgettext:c-format */
d42c267e 11251 (_("%B: `%A' offset of %Ld from `%A' beyond the range of ADDIUPC"),
1bbce132 11252 output_bfd,
ce558b89 11253 htab->root.sgotplt->output_section,
d42c267e 11254 gotpc_offset,
c08bb8dd 11255 htab->root.splt->output_section);
1bbce132
MR
11256 bfd_set_error (bfd_error_no_error);
11257 return FALSE;
11258 }
11259 bfd_put_16 (output_bfd,
11260 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11261 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11262 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11263 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11264 }
833794fc
MR
11265 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11266 {
11267 size_t i;
11268
11269 bfd_put_16 (output_bfd, plt_entry[0], loc);
11270 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11271 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11272 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11273 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11274 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11275 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11276 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11277 }
1bbce132
MR
11278 else
11279 {
11280 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11281 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11282 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11283 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11284 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11285 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11286 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11287 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11288 }
11289
11290 return TRUE;
861fb55a
DJ
11291}
11292
0a44bf69
RS
11293/* Install the PLT header for a VxWorks executable and finalize the
11294 contents of .rela.plt.unloaded. */
11295
11296static void
11297mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11298{
11299 Elf_Internal_Rela rela;
11300 bfd_byte *loc;
11301 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11302 static const bfd_vma *plt_entry;
11303 struct mips_elf_link_hash_table *htab;
11304
11305 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11306 BFD_ASSERT (htab != NULL);
11307
0a44bf69
RS
11308 plt_entry = mips_vxworks_exec_plt0_entry;
11309
11310 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11311 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11312 + htab->root.hgot->root.u.def.section->output_offset
11313 + htab->root.hgot->root.u.def.value);
11314
11315 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11316 got_value_low = got_value & 0xffff;
11317
11318 /* Calculate the address of the PLT header. */
ce558b89
AM
11319 plt_address = (htab->root.splt->output_section->vma
11320 + htab->root.splt->output_offset);
0a44bf69
RS
11321
11322 /* Install the PLT header. */
ce558b89 11323 loc = htab->root.splt->contents;
0a44bf69
RS
11324 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11325 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11326 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11327 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11328 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11329 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11330
11331 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11332 loc = htab->srelplt2->contents;
11333 rela.r_offset = plt_address;
11334 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11335 rela.r_addend = 0;
11336 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11337 loc += sizeof (Elf32_External_Rela);
11338
11339 /* Output the relocation for the following addiu of
11340 %lo(_GLOBAL_OFFSET_TABLE_). */
11341 rela.r_offset += 4;
11342 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11343 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11344 loc += sizeof (Elf32_External_Rela);
11345
11346 /* Fix up the remaining relocations. They may have the wrong
11347 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11348 in which symbols were output. */
11349 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11350 {
11351 Elf_Internal_Rela rel;
11352
11353 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11354 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11355 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11356 loc += sizeof (Elf32_External_Rela);
11357
11358 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11359 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11360 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11361 loc += sizeof (Elf32_External_Rela);
11362
11363 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11364 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11365 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11366 loc += sizeof (Elf32_External_Rela);
11367 }
11368}
11369
11370/* Install the PLT header for a VxWorks shared library. */
11371
11372static void
11373mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11374{
11375 unsigned int i;
11376 struct mips_elf_link_hash_table *htab;
11377
11378 htab = mips_elf_hash_table (info);
4dfe6ac6 11379 BFD_ASSERT (htab != NULL);
0a44bf69
RS
11380
11381 /* We just need to copy the entry byte-by-byte. */
11382 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11383 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
ce558b89 11384 htab->root.splt->contents + i * 4);
0a44bf69
RS
11385}
11386
b49e97c9
TS
11387/* Finish up the dynamic sections. */
11388
b34976b6 11389bfd_boolean
9719ad41
RS
11390_bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11391 struct bfd_link_info *info)
b49e97c9
TS
11392{
11393 bfd *dynobj;
11394 asection *sdyn;
11395 asection *sgot;
f4416af6 11396 struct mips_got_info *gg, *g;
0a44bf69 11397 struct mips_elf_link_hash_table *htab;
b49e97c9 11398
0a44bf69 11399 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
11400 BFD_ASSERT (htab != NULL);
11401
b49e97c9
TS
11402 dynobj = elf_hash_table (info)->dynobj;
11403
3d4d4302 11404 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
b49e97c9 11405
ce558b89 11406 sgot = htab->root.sgot;
23cc69b6 11407 gg = htab->got_info;
b49e97c9
TS
11408
11409 if (elf_hash_table (info)->dynamic_sections_created)
11410 {
11411 bfd_byte *b;
943284cc 11412 int dyn_to_skip = 0, dyn_skipped = 0;
b49e97c9
TS
11413
11414 BFD_ASSERT (sdyn != NULL);
23cc69b6
RS
11415 BFD_ASSERT (gg != NULL);
11416
d7206569 11417 g = mips_elf_bfd_got (output_bfd, FALSE);
b49e97c9
TS
11418 BFD_ASSERT (g != NULL);
11419
11420 for (b = sdyn->contents;
eea6121a 11421 b < sdyn->contents + sdyn->size;
b49e97c9
TS
11422 b += MIPS_ELF_DYN_SIZE (dynobj))
11423 {
11424 Elf_Internal_Dyn dyn;
11425 const char *name;
11426 size_t elemsize;
11427 asection *s;
b34976b6 11428 bfd_boolean swap_out_p;
b49e97c9
TS
11429
11430 /* Read in the current dynamic entry. */
11431 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11432
11433 /* Assume that we're going to modify it and write it out. */
b34976b6 11434 swap_out_p = TRUE;
b49e97c9
TS
11435
11436 switch (dyn.d_tag)
11437 {
11438 case DT_RELENT:
b49e97c9
TS
11439 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11440 break;
11441
0a44bf69
RS
11442 case DT_RELAENT:
11443 BFD_ASSERT (htab->is_vxworks);
11444 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11445 break;
11446
b49e97c9
TS
11447 case DT_STRSZ:
11448 /* Rewrite DT_STRSZ. */
11449 dyn.d_un.d_val =
11450 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11451 break;
11452
11453 case DT_PLTGOT:
ce558b89 11454 s = htab->root.sgot;
861fb55a
DJ
11455 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11456 break;
11457
11458 case DT_MIPS_PLTGOT:
ce558b89 11459 s = htab->root.sgotplt;
861fb55a 11460 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
b49e97c9
TS
11461 break;
11462
11463 case DT_MIPS_RLD_VERSION:
11464 dyn.d_un.d_val = 1; /* XXX */
11465 break;
11466
11467 case DT_MIPS_FLAGS:
11468 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11469 break;
11470
b49e97c9 11471 case DT_MIPS_TIME_STAMP:
6edfbbad
DJ
11472 {
11473 time_t t;
11474 time (&t);
11475 dyn.d_un.d_val = t;
11476 }
b49e97c9
TS
11477 break;
11478
11479 case DT_MIPS_ICHECKSUM:
11480 /* XXX FIXME: */
b34976b6 11481 swap_out_p = FALSE;
b49e97c9
TS
11482 break;
11483
11484 case DT_MIPS_IVERSION:
11485 /* XXX FIXME: */
b34976b6 11486 swap_out_p = FALSE;
b49e97c9
TS
11487 break;
11488
11489 case DT_MIPS_BASE_ADDRESS:
11490 s = output_bfd->sections;
11491 BFD_ASSERT (s != NULL);
11492 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11493 break;
11494
11495 case DT_MIPS_LOCAL_GOTNO:
11496 dyn.d_un.d_val = g->local_gotno;
11497 break;
11498
11499 case DT_MIPS_UNREFEXTNO:
11500 /* The index into the dynamic symbol table which is the
11501 entry of the first external symbol that is not
11502 referenced within the same object. */
11503 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11504 break;
11505
11506 case DT_MIPS_GOTSYM:
d222d210 11507 if (htab->global_gotsym)
b49e97c9 11508 {
d222d210 11509 dyn.d_un.d_val = htab->global_gotsym->dynindx;
b49e97c9
TS
11510 break;
11511 }
11512 /* In case if we don't have global got symbols we default
11513 to setting DT_MIPS_GOTSYM to the same value as
1a0670f3
AM
11514 DT_MIPS_SYMTABNO. */
11515 /* Fall through. */
b49e97c9
TS
11516
11517 case DT_MIPS_SYMTABNO:
11518 name = ".dynsym";
11519 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
4ade44b7 11520 s = bfd_get_linker_section (dynobj, name);
b49e97c9 11521
131e2f8e
MF
11522 if (s != NULL)
11523 dyn.d_un.d_val = s->size / elemsize;
11524 else
11525 dyn.d_un.d_val = 0;
b49e97c9
TS
11526 break;
11527
11528 case DT_MIPS_HIPAGENO:
861fb55a 11529 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
b49e97c9
TS
11530 break;
11531
11532 case DT_MIPS_RLD_MAP:
b4082c70
DD
11533 {
11534 struct elf_link_hash_entry *h;
11535 h = mips_elf_hash_table (info)->rld_symbol;
11536 if (!h)
11537 {
11538 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11539 swap_out_p = FALSE;
11540 break;
11541 }
11542 s = h->root.u.def.section;
a5499fa4
MF
11543
11544 /* The MIPS_RLD_MAP tag stores the absolute address of the
11545 debug pointer. */
b4082c70
DD
11546 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11547 + h->root.u.def.value);
11548 }
b49e97c9
TS
11549 break;
11550
a5499fa4
MF
11551 case DT_MIPS_RLD_MAP_REL:
11552 {
11553 struct elf_link_hash_entry *h;
11554 bfd_vma dt_addr, rld_addr;
11555 h = mips_elf_hash_table (info)->rld_symbol;
11556 if (!h)
11557 {
11558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11559 swap_out_p = FALSE;
11560 break;
11561 }
11562 s = h->root.u.def.section;
11563
11564 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11565 pointer, relative to the address of the tag. */
11566 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
d5cff5df 11567 + (b - sdyn->contents));
a5499fa4
MF
11568 rld_addr = (s->output_section->vma + s->output_offset
11569 + h->root.u.def.value);
11570 dyn.d_un.d_ptr = rld_addr - dt_addr;
11571 }
11572 break;
11573
b49e97c9
TS
11574 case DT_MIPS_OPTIONS:
11575 s = (bfd_get_section_by_name
11576 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11577 dyn.d_un.d_ptr = s->vma;
11578 break;
11579
0a44bf69 11580 case DT_PLTREL:
861fb55a
DJ
11581 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11582 if (htab->is_vxworks)
11583 dyn.d_un.d_val = DT_RELA;
11584 else
11585 dyn.d_un.d_val = DT_REL;
0a44bf69
RS
11586 break;
11587
11588 case DT_PLTRELSZ:
861fb55a 11589 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89 11590 dyn.d_un.d_val = htab->root.srelplt->size;
0a44bf69
RS
11591 break;
11592
11593 case DT_JMPREL:
861fb55a 11594 BFD_ASSERT (htab->use_plts_and_copy_relocs);
ce558b89
AM
11595 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11596 + htab->root.srelplt->output_offset);
0a44bf69
RS
11597 break;
11598
943284cc
DJ
11599 case DT_TEXTREL:
11600 /* If we didn't need any text relocations after all, delete
11601 the dynamic tag. */
11602 if (!(info->flags & DF_TEXTREL))
11603 {
11604 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11605 swap_out_p = FALSE;
11606 }
11607 break;
11608
11609 case DT_FLAGS:
11610 /* If we didn't need any text relocations after all, clear
11611 DF_TEXTREL from DT_FLAGS. */
11612 if (!(info->flags & DF_TEXTREL))
11613 dyn.d_un.d_val &= ~DF_TEXTREL;
11614 else
11615 swap_out_p = FALSE;
11616 break;
11617
b49e97c9 11618 default:
b34976b6 11619 swap_out_p = FALSE;
7a2b07ff
NS
11620 if (htab->is_vxworks
11621 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11622 swap_out_p = TRUE;
b49e97c9
TS
11623 break;
11624 }
11625
943284cc 11626 if (swap_out_p || dyn_skipped)
b49e97c9 11627 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
943284cc
DJ
11628 (dynobj, &dyn, b - dyn_skipped);
11629
11630 if (dyn_to_skip)
11631 {
11632 dyn_skipped += dyn_to_skip;
11633 dyn_to_skip = 0;
11634 }
b49e97c9 11635 }
943284cc
DJ
11636
11637 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11638 if (dyn_skipped > 0)
11639 memset (b - dyn_skipped, 0, dyn_skipped);
b49e97c9
TS
11640 }
11641
b55fd4d4
DJ
11642 if (sgot != NULL && sgot->size > 0
11643 && !bfd_is_abs_section (sgot->output_section))
b49e97c9 11644 {
0a44bf69
RS
11645 if (htab->is_vxworks)
11646 {
11647 /* The first entry of the global offset table points to the
11648 ".dynamic" section. The second is initialized by the
11649 loader and contains the shared library identifier.
11650 The third is also initialized by the loader and points
11651 to the lazy resolution stub. */
11652 MIPS_ELF_PUT_WORD (output_bfd,
11653 sdyn->output_offset + sdyn->output_section->vma,
11654 sgot->contents);
11655 MIPS_ELF_PUT_WORD (output_bfd, 0,
11656 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11657 MIPS_ELF_PUT_WORD (output_bfd, 0,
11658 sgot->contents
11659 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11660 }
11661 else
11662 {
11663 /* The first entry of the global offset table will be filled at
11664 runtime. The second entry will be used by some runtime loaders.
11665 This isn't the case of IRIX rld. */
11666 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
51e38d68 11667 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
0a44bf69
RS
11668 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11669 }
b49e97c9 11670
54938e2a
TS
11671 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11672 = MIPS_ELF_GOT_SIZE (output_bfd);
11673 }
b49e97c9 11674
f4416af6
AO
11675 /* Generate dynamic relocations for the non-primary gots. */
11676 if (gg != NULL && gg->next)
11677 {
11678 Elf_Internal_Rela rel[3];
11679 bfd_vma addend = 0;
11680
11681 memset (rel, 0, sizeof (rel));
11682 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11683
11684 for (g = gg->next; g->next != gg; g = g->next)
11685 {
91d6fa6a 11686 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
0f20cc35 11687 + g->next->tls_gotno;
f4416af6 11688
9719ad41 11689 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
91d6fa6a 11690 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
51e38d68
RS
11691 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11692 sgot->contents
91d6fa6a 11693 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
f4416af6 11694
0e1862bb 11695 if (! bfd_link_pic (info))
f4416af6
AO
11696 continue;
11697
cb22ccf4 11698 for (; got_index < g->local_gotno; got_index++)
f4416af6 11699 {
cb22ccf4
KCY
11700 if (got_index >= g->assigned_low_gotno
11701 && got_index <= g->assigned_high_gotno)
11702 continue;
11703
f4416af6 11704 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
cb22ccf4 11705 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
f4416af6
AO
11706 if (!(mips_elf_create_dynamic_relocation
11707 (output_bfd, info, rel, NULL,
11708 bfd_abs_section_ptr,
11709 0, &addend, sgot)))
11710 return FALSE;
11711 BFD_ASSERT (addend == 0);
11712 }
11713 }
11714 }
11715
3133ddbf
DJ
11716 /* The generation of dynamic relocations for the non-primary gots
11717 adds more dynamic relocations. We cannot count them until
11718 here. */
11719
11720 if (elf_hash_table (info)->dynamic_sections_created)
11721 {
11722 bfd_byte *b;
11723 bfd_boolean swap_out_p;
11724
11725 BFD_ASSERT (sdyn != NULL);
11726
11727 for (b = sdyn->contents;
11728 b < sdyn->contents + sdyn->size;
11729 b += MIPS_ELF_DYN_SIZE (dynobj))
11730 {
11731 Elf_Internal_Dyn dyn;
11732 asection *s;
11733
11734 /* Read in the current dynamic entry. */
11735 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11736
11737 /* Assume that we're going to modify it and write it out. */
11738 swap_out_p = TRUE;
11739
11740 switch (dyn.d_tag)
11741 {
11742 case DT_RELSZ:
11743 /* Reduce DT_RELSZ to account for any relocations we
11744 decided not to make. This is for the n64 irix rld,
11745 which doesn't seem to apply any relocations if there
11746 are trailing null entries. */
0a44bf69 11747 s = mips_elf_rel_dyn_section (info, FALSE);
3133ddbf
DJ
11748 dyn.d_un.d_val = (s->reloc_count
11749 * (ABI_64_P (output_bfd)
11750 ? sizeof (Elf64_Mips_External_Rel)
11751 : sizeof (Elf32_External_Rel)));
bcfdf036
RS
11752 /* Adjust the section size too. Tools like the prelinker
11753 can reasonably expect the values to the same. */
11754 elf_section_data (s->output_section)->this_hdr.sh_size
11755 = dyn.d_un.d_val;
3133ddbf
DJ
11756 break;
11757
11758 default:
11759 swap_out_p = FALSE;
11760 break;
11761 }
11762
11763 if (swap_out_p)
11764 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11765 (dynobj, &dyn, b);
11766 }
11767 }
11768
b49e97c9 11769 {
b49e97c9
TS
11770 asection *s;
11771 Elf32_compact_rel cpt;
11772
b49e97c9
TS
11773 if (SGI_COMPAT (output_bfd))
11774 {
11775 /* Write .compact_rel section out. */
3d4d4302 11776 s = bfd_get_linker_section (dynobj, ".compact_rel");
b49e97c9
TS
11777 if (s != NULL)
11778 {
11779 cpt.id1 = 1;
11780 cpt.num = s->reloc_count;
11781 cpt.id2 = 2;
11782 cpt.offset = (s->output_section->filepos
11783 + sizeof (Elf32_External_compact_rel));
11784 cpt.reserved0 = 0;
11785 cpt.reserved1 = 0;
11786 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11787 ((Elf32_External_compact_rel *)
11788 s->contents));
11789
11790 /* Clean up a dummy stub function entry in .text. */
4e41d0d7 11791 if (htab->sstubs != NULL)
b49e97c9
TS
11792 {
11793 file_ptr dummy_offset;
11794
4e41d0d7
RS
11795 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11796 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11797 memset (htab->sstubs->contents + dummy_offset, 0,
5108fc1b 11798 htab->function_stub_size);
b49e97c9
TS
11799 }
11800 }
11801 }
11802
0a44bf69
RS
11803 /* The psABI says that the dynamic relocations must be sorted in
11804 increasing order of r_symndx. The VxWorks EABI doesn't require
11805 this, and because the code below handles REL rather than RELA
11806 relocations, using it for VxWorks would be outright harmful. */
11807 if (!htab->is_vxworks)
b49e97c9 11808 {
0a44bf69
RS
11809 s = mips_elf_rel_dyn_section (info, FALSE);
11810 if (s != NULL
11811 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11812 {
11813 reldyn_sorting_bfd = output_bfd;
b49e97c9 11814
0a44bf69
RS
11815 if (ABI_64_P (output_bfd))
11816 qsort ((Elf64_External_Rel *) s->contents + 1,
11817 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11818 sort_dynamic_relocs_64);
11819 else
11820 qsort ((Elf32_External_Rel *) s->contents + 1,
11821 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11822 sort_dynamic_relocs);
11823 }
b49e97c9 11824 }
b49e97c9
TS
11825 }
11826
ce558b89 11827 if (htab->root.splt && htab->root.splt->size > 0)
0a44bf69 11828 {
861fb55a
DJ
11829 if (htab->is_vxworks)
11830 {
0e1862bb 11831 if (bfd_link_pic (info))
861fb55a
DJ
11832 mips_vxworks_finish_shared_plt (output_bfd, info);
11833 else
11834 mips_vxworks_finish_exec_plt (output_bfd, info);
11835 }
0a44bf69 11836 else
861fb55a 11837 {
0e1862bb 11838 BFD_ASSERT (!bfd_link_pic (info));
1bbce132
MR
11839 if (!mips_finish_exec_plt (output_bfd, info))
11840 return FALSE;
861fb55a 11841 }
0a44bf69 11842 }
b34976b6 11843 return TRUE;
b49e97c9
TS
11844}
11845
b49e97c9 11846
64543e1a
RS
11847/* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11848
11849static void
9719ad41 11850mips_set_isa_flags (bfd *abfd)
b49e97c9 11851{
64543e1a 11852 flagword val;
b49e97c9
TS
11853
11854 switch (bfd_get_mach (abfd))
11855 {
11856 default:
11857 case bfd_mach_mips3000:
11858 val = E_MIPS_ARCH_1;
11859 break;
11860
11861 case bfd_mach_mips3900:
11862 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11863 break;
11864
11865 case bfd_mach_mips6000:
11866 val = E_MIPS_ARCH_2;
11867 break;
11868
b417536f
MR
11869 case bfd_mach_mips4010:
11870 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11871 break;
11872
b49e97c9
TS
11873 case bfd_mach_mips4000:
11874 case bfd_mach_mips4300:
11875 case bfd_mach_mips4400:
11876 case bfd_mach_mips4600:
11877 val = E_MIPS_ARCH_3;
11878 break;
11879
b49e97c9
TS
11880 case bfd_mach_mips4100:
11881 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11882 break;
11883
11884 case bfd_mach_mips4111:
11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11886 break;
11887
00707a0e
RS
11888 case bfd_mach_mips4120:
11889 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11890 break;
11891
b49e97c9
TS
11892 case bfd_mach_mips4650:
11893 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11894 break;
11895
00707a0e
RS
11896 case bfd_mach_mips5400:
11897 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11898 break;
11899
11900 case bfd_mach_mips5500:
11901 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11902 break;
11903
e407c74b
NC
11904 case bfd_mach_mips5900:
11905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11906 break;
11907
0d2e43ed
ILT
11908 case bfd_mach_mips9000:
11909 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11910 break;
11911
b49e97c9 11912 case bfd_mach_mips5000:
5a7ea749 11913 case bfd_mach_mips7000:
b49e97c9
TS
11914 case bfd_mach_mips8000:
11915 case bfd_mach_mips10000:
11916 case bfd_mach_mips12000:
3aa3176b
TS
11917 case bfd_mach_mips14000:
11918 case bfd_mach_mips16000:
b49e97c9
TS
11919 val = E_MIPS_ARCH_4;
11920 break;
11921
11922 case bfd_mach_mips5:
11923 val = E_MIPS_ARCH_5;
11924 break;
11925
350cc38d
MS
11926 case bfd_mach_mips_loongson_2e:
11927 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11928 break;
11929
11930 case bfd_mach_mips_loongson_2f:
11931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11932 break;
11933
b49e97c9
TS
11934 case bfd_mach_mips_sb1:
11935 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11936 break;
11937
d051516a 11938 case bfd_mach_mips_loongson_3a:
4ba154f5 11939 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
d051516a
NC
11940 break;
11941
6f179bd0 11942 case bfd_mach_mips_octeon:
dd6a37e7 11943 case bfd_mach_mips_octeonp:
6f179bd0
AN
11944 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11945 break;
11946
2c629856
N
11947 case bfd_mach_mips_octeon3:
11948 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11949 break;
11950
52b6b6b9
JM
11951 case bfd_mach_mips_xlr:
11952 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11953 break;
11954
432233b3
AP
11955 case bfd_mach_mips_octeon2:
11956 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11957 break;
11958
b49e97c9
TS
11959 case bfd_mach_mipsisa32:
11960 val = E_MIPS_ARCH_32;
11961 break;
11962
11963 case bfd_mach_mipsisa64:
11964 val = E_MIPS_ARCH_64;
af7ee8bf
CD
11965 break;
11966
11967 case bfd_mach_mipsisa32r2:
ae52f483
AB
11968 case bfd_mach_mipsisa32r3:
11969 case bfd_mach_mipsisa32r5:
af7ee8bf
CD
11970 val = E_MIPS_ARCH_32R2;
11971 break;
5f74bc13 11972
38bf472a
MR
11973 case bfd_mach_mips_interaptiv_mr2:
11974 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11975 break;
11976
5f74bc13 11977 case bfd_mach_mipsisa64r2:
ae52f483
AB
11978 case bfd_mach_mipsisa64r3:
11979 case bfd_mach_mipsisa64r5:
5f74bc13
CD
11980 val = E_MIPS_ARCH_64R2;
11981 break;
7361da2c
AB
11982
11983 case bfd_mach_mipsisa32r6:
11984 val = E_MIPS_ARCH_32R6;
11985 break;
11986
11987 case bfd_mach_mipsisa64r6:
11988 val = E_MIPS_ARCH_64R6;
11989 break;
b49e97c9 11990 }
b49e97c9
TS
11991 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11992 elf_elfheader (abfd)->e_flags |= val;
11993
64543e1a
RS
11994}
11995
11996
28dbcedc
AM
11997/* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11998 Don't do so for code sections. We want to keep ordering of HI16/LO16
11999 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12000 relocs to be sorted. */
12001
12002bfd_boolean
12003_bfd_mips_elf_sort_relocs_p (asection *sec)
12004{
12005 return (sec->flags & SEC_CODE) == 0;
12006}
12007
12008
64543e1a
RS
12009/* The final processing done just before writing out a MIPS ELF object
12010 file. This gets the MIPS architecture right based on the machine
12011 number. This is used by both the 32-bit and the 64-bit ABI. */
12012
12013void
9719ad41
RS
12014_bfd_mips_elf_final_write_processing (bfd *abfd,
12015 bfd_boolean linker ATTRIBUTE_UNUSED)
64543e1a
RS
12016{
12017 unsigned int i;
12018 Elf_Internal_Shdr **hdrpp;
12019 const char *name;
12020 asection *sec;
12021
12022 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12023 is nonzero. This is for compatibility with old objects, which used
12024 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12025 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12026 mips_set_isa_flags (abfd);
12027
b49e97c9
TS
12028 /* Set the sh_info field for .gptab sections and other appropriate
12029 info for each special section. */
12030 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12031 i < elf_numsections (abfd);
12032 i++, hdrpp++)
12033 {
12034 switch ((*hdrpp)->sh_type)
12035 {
12036 case SHT_MIPS_MSYM:
12037 case SHT_MIPS_LIBLIST:
12038 sec = bfd_get_section_by_name (abfd, ".dynstr");
12039 if (sec != NULL)
12040 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12041 break;
12042
12043 case SHT_MIPS_GPTAB:
12044 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12045 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12046 BFD_ASSERT (name != NULL
0112cd26 12047 && CONST_STRNEQ (name, ".gptab."));
b49e97c9
TS
12048 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12049 BFD_ASSERT (sec != NULL);
12050 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12051 break;
12052
12053 case SHT_MIPS_CONTENT:
12054 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12055 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12056 BFD_ASSERT (name != NULL
0112cd26 12057 && CONST_STRNEQ (name, ".MIPS.content"));
b49e97c9
TS
12058 sec = bfd_get_section_by_name (abfd,
12059 name + sizeof ".MIPS.content" - 1);
12060 BFD_ASSERT (sec != NULL);
12061 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12062 break;
12063
12064 case SHT_MIPS_SYMBOL_LIB:
12065 sec = bfd_get_section_by_name (abfd, ".dynsym");
12066 if (sec != NULL)
12067 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12068 sec = bfd_get_section_by_name (abfd, ".liblist");
12069 if (sec != NULL)
12070 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12071 break;
12072
12073 case SHT_MIPS_EVENTS:
12074 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12075 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12076 BFD_ASSERT (name != NULL);
0112cd26 12077 if (CONST_STRNEQ (name, ".MIPS.events"))
b49e97c9
TS
12078 sec = bfd_get_section_by_name (abfd,
12079 name + sizeof ".MIPS.events" - 1);
12080 else
12081 {
0112cd26 12082 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
b49e97c9
TS
12083 sec = bfd_get_section_by_name (abfd,
12084 (name
12085 + sizeof ".MIPS.post_rel" - 1));
12086 }
12087 BFD_ASSERT (sec != NULL);
12088 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12089 break;
12090
12091 }
12092 }
12093}
12094\f
8dc1a139 12095/* When creating an IRIX5 executable, we need REGINFO and RTPROC
b49e97c9
TS
12096 segments. */
12097
12098int
a6b96beb
AM
12099_bfd_mips_elf_additional_program_headers (bfd *abfd,
12100 struct bfd_link_info *info ATTRIBUTE_UNUSED)
b49e97c9
TS
12101{
12102 asection *s;
12103 int ret = 0;
12104
12105 /* See if we need a PT_MIPS_REGINFO segment. */
12106 s = bfd_get_section_by_name (abfd, ".reginfo");
12107 if (s && (s->flags & SEC_LOAD))
12108 ++ret;
12109
351cdf24
MF
12110 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12111 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12112 ++ret;
12113
b49e97c9
TS
12114 /* See if we need a PT_MIPS_OPTIONS segment. */
12115 if (IRIX_COMPAT (abfd) == ict_irix6
12116 && bfd_get_section_by_name (abfd,
12117 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12118 ++ret;
12119
12120 /* See if we need a PT_MIPS_RTPROC segment. */
12121 if (IRIX_COMPAT (abfd) == ict_irix5
12122 && bfd_get_section_by_name (abfd, ".dynamic")
12123 && bfd_get_section_by_name (abfd, ".mdebug"))
12124 ++ret;
12125
98c904a8
RS
12126 /* Allocate a PT_NULL header in dynamic objects. See
12127 _bfd_mips_elf_modify_segment_map for details. */
12128 if (!SGI_COMPAT (abfd)
12129 && bfd_get_section_by_name (abfd, ".dynamic"))
12130 ++ret;
12131
b49e97c9
TS
12132 return ret;
12133}
12134
8dc1a139 12135/* Modify the segment map for an IRIX5 executable. */
b49e97c9 12136
b34976b6 12137bfd_boolean
9719ad41 12138_bfd_mips_elf_modify_segment_map (bfd *abfd,
7c8b76cc 12139 struct bfd_link_info *info)
b49e97c9
TS
12140{
12141 asection *s;
12142 struct elf_segment_map *m, **pm;
12143 bfd_size_type amt;
12144
12145 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12146 segment. */
12147 s = bfd_get_section_by_name (abfd, ".reginfo");
12148 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12149 {
12bd6957 12150 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12151 if (m->p_type == PT_MIPS_REGINFO)
12152 break;
12153 if (m == NULL)
12154 {
12155 amt = sizeof *m;
9719ad41 12156 m = bfd_zalloc (abfd, amt);
b49e97c9 12157 if (m == NULL)
b34976b6 12158 return FALSE;
b49e97c9
TS
12159
12160 m->p_type = PT_MIPS_REGINFO;
12161 m->count = 1;
12162 m->sections[0] = s;
12163
12164 /* We want to put it after the PHDR and INTERP segments. */
12bd6957 12165 pm = &elf_seg_map (abfd);
b49e97c9
TS
12166 while (*pm != NULL
12167 && ((*pm)->p_type == PT_PHDR
12168 || (*pm)->p_type == PT_INTERP))
12169 pm = &(*pm)->next;
12170
12171 m->next = *pm;
12172 *pm = m;
12173 }
12174 }
12175
351cdf24
MF
12176 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12177 segment. */
12178 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12179 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12180 {
12181 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12182 if (m->p_type == PT_MIPS_ABIFLAGS)
12183 break;
12184 if (m == NULL)
12185 {
12186 amt = sizeof *m;
12187 m = bfd_zalloc (abfd, amt);
12188 if (m == NULL)
12189 return FALSE;
12190
12191 m->p_type = PT_MIPS_ABIFLAGS;
12192 m->count = 1;
12193 m->sections[0] = s;
12194
12195 /* We want to put it after the PHDR and INTERP segments. */
12196 pm = &elf_seg_map (abfd);
12197 while (*pm != NULL
12198 && ((*pm)->p_type == PT_PHDR
12199 || (*pm)->p_type == PT_INTERP))
12200 pm = &(*pm)->next;
12201
12202 m->next = *pm;
12203 *pm = m;
12204 }
12205 }
12206
b49e97c9
TS
12207 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12208 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
98a8deaf 12209 PT_MIPS_OPTIONS segment immediately following the program header
b49e97c9 12210 table. */
c1fd6598
AO
12211 if (NEWABI_P (abfd)
12212 /* On non-IRIX6 new abi, we'll have already created a segment
12213 for this section, so don't create another. I'm not sure this
12214 is not also the case for IRIX 6, but I can't test it right
12215 now. */
12216 && IRIX_COMPAT (abfd) == ict_irix6)
b49e97c9
TS
12217 {
12218 for (s = abfd->sections; s; s = s->next)
12219 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12220 break;
12221
12222 if (s)
12223 {
12224 struct elf_segment_map *options_segment;
12225
12bd6957 12226 pm = &elf_seg_map (abfd);
98a8deaf
RS
12227 while (*pm != NULL
12228 && ((*pm)->p_type == PT_PHDR
12229 || (*pm)->p_type == PT_INTERP))
12230 pm = &(*pm)->next;
b49e97c9 12231
8ded5a0f
AM
12232 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12233 {
12234 amt = sizeof (struct elf_segment_map);
12235 options_segment = bfd_zalloc (abfd, amt);
12236 options_segment->next = *pm;
12237 options_segment->p_type = PT_MIPS_OPTIONS;
12238 options_segment->p_flags = PF_R;
12239 options_segment->p_flags_valid = TRUE;
12240 options_segment->count = 1;
12241 options_segment->sections[0] = s;
12242 *pm = options_segment;
12243 }
b49e97c9
TS
12244 }
12245 }
12246 else
12247 {
12248 if (IRIX_COMPAT (abfd) == ict_irix5)
12249 {
12250 /* If there are .dynamic and .mdebug sections, we make a room
12251 for the RTPROC header. FIXME: Rewrite without section names. */
12252 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12253 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12254 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12255 {
12bd6957 12256 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
b49e97c9
TS
12257 if (m->p_type == PT_MIPS_RTPROC)
12258 break;
12259 if (m == NULL)
12260 {
12261 amt = sizeof *m;
9719ad41 12262 m = bfd_zalloc (abfd, amt);
b49e97c9 12263 if (m == NULL)
b34976b6 12264 return FALSE;
b49e97c9
TS
12265
12266 m->p_type = PT_MIPS_RTPROC;
12267
12268 s = bfd_get_section_by_name (abfd, ".rtproc");
12269 if (s == NULL)
12270 {
12271 m->count = 0;
12272 m->p_flags = 0;
12273 m->p_flags_valid = 1;
12274 }
12275 else
12276 {
12277 m->count = 1;
12278 m->sections[0] = s;
12279 }
12280
12281 /* We want to put it after the DYNAMIC segment. */
12bd6957 12282 pm = &elf_seg_map (abfd);
b49e97c9
TS
12283 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12284 pm = &(*pm)->next;
12285 if (*pm != NULL)
12286 pm = &(*pm)->next;
12287
12288 m->next = *pm;
12289 *pm = m;
12290 }
12291 }
12292 }
8dc1a139 12293 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
b49e97c9
TS
12294 .dynstr, .dynsym, and .hash sections, and everything in
12295 between. */
12bd6957 12296 for (pm = &elf_seg_map (abfd); *pm != NULL;
b49e97c9
TS
12297 pm = &(*pm)->next)
12298 if ((*pm)->p_type == PT_DYNAMIC)
12299 break;
12300 m = *pm;
f6f62d6f
RS
12301 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12302 glibc's dynamic linker has traditionally derived the number of
12303 tags from the p_filesz field, and sometimes allocates stack
12304 arrays of that size. An overly-big PT_DYNAMIC segment can
12305 be actively harmful in such cases. Making PT_DYNAMIC contain
12306 other sections can also make life hard for the prelinker,
12307 which might move one of the other sections to a different
12308 PT_LOAD segment. */
12309 if (SGI_COMPAT (abfd)
12310 && m != NULL
12311 && m->count == 1
12312 && strcmp (m->sections[0]->name, ".dynamic") == 0)
b49e97c9
TS
12313 {
12314 static const char *sec_names[] =
12315 {
12316 ".dynamic", ".dynstr", ".dynsym", ".hash"
12317 };
12318 bfd_vma low, high;
12319 unsigned int i, c;
12320 struct elf_segment_map *n;
12321
792b4a53 12322 low = ~(bfd_vma) 0;
b49e97c9
TS
12323 high = 0;
12324 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12325 {
12326 s = bfd_get_section_by_name (abfd, sec_names[i]);
12327 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12328 {
12329 bfd_size_type sz;
12330
12331 if (low > s->vma)
12332 low = s->vma;
eea6121a 12333 sz = s->size;
b49e97c9
TS
12334 if (high < s->vma + sz)
12335 high = s->vma + sz;
12336 }
12337 }
12338
12339 c = 0;
12340 for (s = abfd->sections; s != NULL; s = s->next)
12341 if ((s->flags & SEC_LOAD) != 0
12342 && s->vma >= low
eea6121a 12343 && s->vma + s->size <= high)
b49e97c9
TS
12344 ++c;
12345
12346 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9719ad41 12347 n = bfd_zalloc (abfd, amt);
b49e97c9 12348 if (n == NULL)
b34976b6 12349 return FALSE;
b49e97c9
TS
12350 *n = *m;
12351 n->count = c;
12352
12353 i = 0;
12354 for (s = abfd->sections; s != NULL; s = s->next)
12355 {
12356 if ((s->flags & SEC_LOAD) != 0
12357 && s->vma >= low
eea6121a 12358 && s->vma + s->size <= high)
b49e97c9
TS
12359 {
12360 n->sections[i] = s;
12361 ++i;
12362 }
12363 }
12364
12365 *pm = n;
12366 }
12367 }
12368
98c904a8
RS
12369 /* Allocate a spare program header in dynamic objects so that tools
12370 like the prelinker can add an extra PT_LOAD entry.
12371
12372 If the prelinker needs to make room for a new PT_LOAD entry, its
12373 standard procedure is to move the first (read-only) sections into
12374 the new (writable) segment. However, the MIPS ABI requires
12375 .dynamic to be in a read-only segment, and the section will often
12376 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12377
12378 Although the prelinker could in principle move .dynamic to a
12379 writable segment, it seems better to allocate a spare program
12380 header instead, and avoid the need to move any sections.
12381 There is a long tradition of allocating spare dynamic tags,
12382 so allocating a spare program header seems like a natural
7c8b76cc
JM
12383 extension.
12384
12385 If INFO is NULL, we may be copying an already prelinked binary
12386 with objcopy or strip, so do not add this header. */
12387 if (info != NULL
12388 && !SGI_COMPAT (abfd)
98c904a8
RS
12389 && bfd_get_section_by_name (abfd, ".dynamic"))
12390 {
12bd6957 12391 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
98c904a8
RS
12392 if ((*pm)->p_type == PT_NULL)
12393 break;
12394 if (*pm == NULL)
12395 {
12396 m = bfd_zalloc (abfd, sizeof (*m));
12397 if (m == NULL)
12398 return FALSE;
12399
12400 m->p_type = PT_NULL;
12401 *pm = m;
12402 }
12403 }
12404
b34976b6 12405 return TRUE;
b49e97c9
TS
12406}
12407\f
12408/* Return the section that should be marked against GC for a given
12409 relocation. */
12410
12411asection *
9719ad41 12412_bfd_mips_elf_gc_mark_hook (asection *sec,
07adf181 12413 struct bfd_link_info *info,
9719ad41
RS
12414 Elf_Internal_Rela *rel,
12415 struct elf_link_hash_entry *h,
12416 Elf_Internal_Sym *sym)
b49e97c9
TS
12417{
12418 /* ??? Do mips16 stub sections need to be handled special? */
12419
12420 if (h != NULL)
07adf181
AM
12421 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12422 {
12423 case R_MIPS_GNU_VTINHERIT:
12424 case R_MIPS_GNU_VTENTRY:
12425 return NULL;
12426 }
b49e97c9 12427
07adf181 12428 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
b49e97c9
TS
12429}
12430
12431/* Update the got entry reference counts for the section being removed. */
12432
b34976b6 12433bfd_boolean
9719ad41
RS
12434_bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12435 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12436 asection *sec ATTRIBUTE_UNUSED,
12437 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
b49e97c9
TS
12438{
12439#if 0
12440 Elf_Internal_Shdr *symtab_hdr;
12441 struct elf_link_hash_entry **sym_hashes;
12442 bfd_signed_vma *local_got_refcounts;
12443 const Elf_Internal_Rela *rel, *relend;
12444 unsigned long r_symndx;
12445 struct elf_link_hash_entry *h;
12446
0e1862bb 12447 if (bfd_link_relocatable (info))
7dda2462
TG
12448 return TRUE;
12449
b49e97c9
TS
12450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12451 sym_hashes = elf_sym_hashes (abfd);
12452 local_got_refcounts = elf_local_got_refcounts (abfd);
12453
12454 relend = relocs + sec->reloc_count;
12455 for (rel = relocs; rel < relend; rel++)
12456 switch (ELF_R_TYPE (abfd, rel->r_info))
12457 {
738e5348
RS
12458 case R_MIPS16_GOT16:
12459 case R_MIPS16_CALL16:
b49e97c9
TS
12460 case R_MIPS_GOT16:
12461 case R_MIPS_CALL16:
12462 case R_MIPS_CALL_HI16:
12463 case R_MIPS_CALL_LO16:
12464 case R_MIPS_GOT_HI16:
12465 case R_MIPS_GOT_LO16:
4a14403c
TS
12466 case R_MIPS_GOT_DISP:
12467 case R_MIPS_GOT_PAGE:
12468 case R_MIPS_GOT_OFST:
df58fc94
RS
12469 case R_MICROMIPS_GOT16:
12470 case R_MICROMIPS_CALL16:
12471 case R_MICROMIPS_CALL_HI16:
12472 case R_MICROMIPS_CALL_LO16:
12473 case R_MICROMIPS_GOT_HI16:
12474 case R_MICROMIPS_GOT_LO16:
12475 case R_MICROMIPS_GOT_DISP:
12476 case R_MICROMIPS_GOT_PAGE:
12477 case R_MICROMIPS_GOT_OFST:
b49e97c9
TS
12478 /* ??? It would seem that the existing MIPS code does no sort
12479 of reference counting or whatnot on its GOT and PLT entries,
12480 so it is not possible to garbage collect them at this time. */
12481 break;
12482
12483 default:
12484 break;
12485 }
12486#endif
12487
b34976b6 12488 return TRUE;
b49e97c9 12489}
351cdf24
MF
12490
12491/* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12492
12493bfd_boolean
12494_bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12495 elf_gc_mark_hook_fn gc_mark_hook)
12496{
12497 bfd *sub;
12498
12499 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12500
12501 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12502 {
12503 asection *o;
12504
12505 if (! is_mips_elf (sub))
12506 continue;
12507
12508 for (o = sub->sections; o != NULL; o = o->next)
12509 if (!o->gc_mark
12510 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12511 (bfd_get_section_name (sub, o)))
12512 {
12513 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12514 return FALSE;
12515 }
12516 }
12517
12518 return TRUE;
12519}
b49e97c9
TS
12520\f
12521/* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12522 hiding the old indirect symbol. Process additional relocation
12523 information. Also called for weakdefs, in which case we just let
12524 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12525
12526void
fcfa13d2 12527_bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9719ad41
RS
12528 struct elf_link_hash_entry *dir,
12529 struct elf_link_hash_entry *ind)
b49e97c9
TS
12530{
12531 struct mips_elf_link_hash_entry *dirmips, *indmips;
12532
fcfa13d2 12533 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
b49e97c9 12534
861fb55a
DJ
12535 dirmips = (struct mips_elf_link_hash_entry *) dir;
12536 indmips = (struct mips_elf_link_hash_entry *) ind;
12537 /* Any absolute non-dynamic relocations against an indirect or weak
12538 definition will be against the target symbol. */
12539 if (indmips->has_static_relocs)
12540 dirmips->has_static_relocs = TRUE;
12541
b49e97c9
TS
12542 if (ind->root.type != bfd_link_hash_indirect)
12543 return;
12544
b49e97c9
TS
12545 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12546 if (indmips->readonly_reloc)
b34976b6 12547 dirmips->readonly_reloc = TRUE;
b49e97c9 12548 if (indmips->no_fn_stub)
b34976b6 12549 dirmips->no_fn_stub = TRUE;
61b0a4af
RS
12550 if (indmips->fn_stub)
12551 {
12552 dirmips->fn_stub = indmips->fn_stub;
12553 indmips->fn_stub = NULL;
12554 }
12555 if (indmips->need_fn_stub)
12556 {
12557 dirmips->need_fn_stub = TRUE;
12558 indmips->need_fn_stub = FALSE;
12559 }
12560 if (indmips->call_stub)
12561 {
12562 dirmips->call_stub = indmips->call_stub;
12563 indmips->call_stub = NULL;
12564 }
12565 if (indmips->call_fp_stub)
12566 {
12567 dirmips->call_fp_stub = indmips->call_fp_stub;
12568 indmips->call_fp_stub = NULL;
12569 }
634835ae
RS
12570 if (indmips->global_got_area < dirmips->global_got_area)
12571 dirmips->global_got_area = indmips->global_got_area;
12572 if (indmips->global_got_area < GGA_NONE)
12573 indmips->global_got_area = GGA_NONE;
861fb55a
DJ
12574 if (indmips->has_nonpic_branches)
12575 dirmips->has_nonpic_branches = TRUE;
b49e97c9 12576}
b49e97c9 12577\f
d01414a5
TS
12578#define PDR_SIZE 32
12579
b34976b6 12580bfd_boolean
9719ad41
RS
12581_bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12582 struct bfd_link_info *info)
d01414a5
TS
12583{
12584 asection *o;
b34976b6 12585 bfd_boolean ret = FALSE;
d01414a5
TS
12586 unsigned char *tdata;
12587 size_t i, skip;
12588
12589 o = bfd_get_section_by_name (abfd, ".pdr");
12590 if (! o)
b34976b6 12591 return FALSE;
eea6121a 12592 if (o->size == 0)
b34976b6 12593 return FALSE;
eea6121a 12594 if (o->size % PDR_SIZE != 0)
b34976b6 12595 return FALSE;
d01414a5
TS
12596 if (o->output_section != NULL
12597 && bfd_is_abs_section (o->output_section))
b34976b6 12598 return FALSE;
d01414a5 12599
eea6121a 12600 tdata = bfd_zmalloc (o->size / PDR_SIZE);
d01414a5 12601 if (! tdata)
b34976b6 12602 return FALSE;
d01414a5 12603
9719ad41 12604 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
45d6a902 12605 info->keep_memory);
d01414a5
TS
12606 if (!cookie->rels)
12607 {
12608 free (tdata);
b34976b6 12609 return FALSE;
d01414a5
TS
12610 }
12611
12612 cookie->rel = cookie->rels;
12613 cookie->relend = cookie->rels + o->reloc_count;
12614
eea6121a 12615 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
d01414a5 12616 {
c152c796 12617 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
d01414a5
TS
12618 {
12619 tdata[i] = 1;
12620 skip ++;
12621 }
12622 }
12623
12624 if (skip != 0)
12625 {
f0abc2a1 12626 mips_elf_section_data (o)->u.tdata = tdata;
e034b2cc
MR
12627 if (o->rawsize == 0)
12628 o->rawsize = o->size;
eea6121a 12629 o->size -= skip * PDR_SIZE;
b34976b6 12630 ret = TRUE;
d01414a5
TS
12631 }
12632 else
12633 free (tdata);
12634
12635 if (! info->keep_memory)
12636 free (cookie->rels);
12637
12638 return ret;
12639}
12640
b34976b6 12641bfd_boolean
9719ad41 12642_bfd_mips_elf_ignore_discarded_relocs (asection *sec)
53bfd6b4
MR
12643{
12644 if (strcmp (sec->name, ".pdr") == 0)
b34976b6
AM
12645 return TRUE;
12646 return FALSE;
53bfd6b4 12647}
d01414a5 12648
b34976b6 12649bfd_boolean
c7b8f16e
JB
12650_bfd_mips_elf_write_section (bfd *output_bfd,
12651 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12652 asection *sec, bfd_byte *contents)
d01414a5
TS
12653{
12654 bfd_byte *to, *from, *end;
12655 int i;
12656
12657 if (strcmp (sec->name, ".pdr") != 0)
b34976b6 12658 return FALSE;
d01414a5 12659
f0abc2a1 12660 if (mips_elf_section_data (sec)->u.tdata == NULL)
b34976b6 12661 return FALSE;
d01414a5
TS
12662
12663 to = contents;
eea6121a 12664 end = contents + sec->size;
d01414a5
TS
12665 for (from = contents, i = 0;
12666 from < end;
12667 from += PDR_SIZE, i++)
12668 {
f0abc2a1 12669 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
d01414a5
TS
12670 continue;
12671 if (to != from)
12672 memcpy (to, from, PDR_SIZE);
12673 to += PDR_SIZE;
12674 }
12675 bfd_set_section_contents (output_bfd, sec->output_section, contents,
eea6121a 12676 sec->output_offset, sec->size);
b34976b6 12677 return TRUE;
d01414a5 12678}
53bfd6b4 12679\f
df58fc94
RS
12680/* microMIPS code retains local labels for linker relaxation. Omit them
12681 from output by default for clarity. */
12682
12683bfd_boolean
12684_bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12685{
12686 return _bfd_elf_is_local_label_name (abfd, sym->name);
12687}
12688
b49e97c9
TS
12689/* MIPS ELF uses a special find_nearest_line routine in order the
12690 handle the ECOFF debugging information. */
12691
12692struct mips_elf_find_line
12693{
12694 struct ecoff_debug_info d;
12695 struct ecoff_find_line i;
12696};
12697
b34976b6 12698bfd_boolean
fb167eb2
AM
12699_bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12700 asection *section, bfd_vma offset,
9719ad41
RS
12701 const char **filename_ptr,
12702 const char **functionname_ptr,
fb167eb2
AM
12703 unsigned int *line_ptr,
12704 unsigned int *discriminator_ptr)
b49e97c9
TS
12705{
12706 asection *msec;
12707
fb167eb2 12708 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
b49e97c9 12709 filename_ptr, functionname_ptr,
fb167eb2
AM
12710 line_ptr, discriminator_ptr,
12711 dwarf_debug_sections,
12712 ABI_64_P (abfd) ? 8 : 0,
12713 &elf_tdata (abfd)->dwarf2_find_line_info))
b34976b6 12714 return TRUE;
b49e97c9 12715
fb167eb2 12716 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12717 filename_ptr, functionname_ptr,
fb167eb2 12718 line_ptr))
b34976b6 12719 return TRUE;
b49e97c9
TS
12720
12721 msec = bfd_get_section_by_name (abfd, ".mdebug");
12722 if (msec != NULL)
12723 {
12724 flagword origflags;
12725 struct mips_elf_find_line *fi;
12726 const struct ecoff_debug_swap * const swap =
12727 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12728
12729 /* If we are called during a link, mips_elf_final_link may have
12730 cleared the SEC_HAS_CONTENTS field. We force it back on here
12731 if appropriate (which it normally will be). */
12732 origflags = msec->flags;
12733 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12734 msec->flags |= SEC_HAS_CONTENTS;
12735
698600e4 12736 fi = mips_elf_tdata (abfd)->find_line_info;
b49e97c9
TS
12737 if (fi == NULL)
12738 {
12739 bfd_size_type external_fdr_size;
12740 char *fraw_src;
12741 char *fraw_end;
12742 struct fdr *fdr_ptr;
12743 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12744
9719ad41 12745 fi = bfd_zalloc (abfd, amt);
b49e97c9
TS
12746 if (fi == NULL)
12747 {
12748 msec->flags = origflags;
b34976b6 12749 return FALSE;
b49e97c9
TS
12750 }
12751
12752 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12753 {
12754 msec->flags = origflags;
b34976b6 12755 return FALSE;
b49e97c9
TS
12756 }
12757
12758 /* Swap in the FDR information. */
12759 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9719ad41 12760 fi->d.fdr = bfd_alloc (abfd, amt);
b49e97c9
TS
12761 if (fi->d.fdr == NULL)
12762 {
12763 msec->flags = origflags;
b34976b6 12764 return FALSE;
b49e97c9
TS
12765 }
12766 external_fdr_size = swap->external_fdr_size;
12767 fdr_ptr = fi->d.fdr;
12768 fraw_src = (char *) fi->d.external_fdr;
12769 fraw_end = (fraw_src
12770 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12771 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719ad41 12772 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
b49e97c9 12773
698600e4 12774 mips_elf_tdata (abfd)->find_line_info = fi;
b49e97c9
TS
12775
12776 /* Note that we don't bother to ever free this information.
12777 find_nearest_line is either called all the time, as in
12778 objdump -l, so the information should be saved, or it is
12779 rarely called, as in ld error messages, so the memory
12780 wasted is unimportant. Still, it would probably be a
12781 good idea for free_cached_info to throw it away. */
12782 }
12783
12784 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12785 &fi->i, filename_ptr, functionname_ptr,
12786 line_ptr))
12787 {
12788 msec->flags = origflags;
b34976b6 12789 return TRUE;
b49e97c9
TS
12790 }
12791
12792 msec->flags = origflags;
12793 }
12794
12795 /* Fall back on the generic ELF find_nearest_line routine. */
12796
fb167eb2 12797 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
b49e97c9 12798 filename_ptr, functionname_ptr,
fb167eb2 12799 line_ptr, discriminator_ptr);
b49e97c9 12800}
4ab527b0
FF
12801
12802bfd_boolean
12803_bfd_mips_elf_find_inliner_info (bfd *abfd,
12804 const char **filename_ptr,
12805 const char **functionname_ptr,
12806 unsigned int *line_ptr)
12807{
12808 bfd_boolean found;
12809 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12810 functionname_ptr, line_ptr,
12811 & elf_tdata (abfd)->dwarf2_find_line_info);
12812 return found;
12813}
12814
b49e97c9
TS
12815\f
12816/* When are writing out the .options or .MIPS.options section,
12817 remember the bytes we are writing out, so that we can install the
12818 GP value in the section_processing routine. */
12819
b34976b6 12820bfd_boolean
9719ad41
RS
12821_bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12822 const void *location,
12823 file_ptr offset, bfd_size_type count)
b49e97c9 12824{
cc2e31b9 12825 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
b49e97c9
TS
12826 {
12827 bfd_byte *c;
12828
12829 if (elf_section_data (section) == NULL)
12830 {
12831 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9719ad41 12832 section->used_by_bfd = bfd_zalloc (abfd, amt);
b49e97c9 12833 if (elf_section_data (section) == NULL)
b34976b6 12834 return FALSE;
b49e97c9 12835 }
f0abc2a1 12836 c = mips_elf_section_data (section)->u.tdata;
b49e97c9
TS
12837 if (c == NULL)
12838 {
eea6121a 12839 c = bfd_zalloc (abfd, section->size);
b49e97c9 12840 if (c == NULL)
b34976b6 12841 return FALSE;
f0abc2a1 12842 mips_elf_section_data (section)->u.tdata = c;
b49e97c9
TS
12843 }
12844
9719ad41 12845 memcpy (c + offset, location, count);
b49e97c9
TS
12846 }
12847
12848 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12849 count);
12850}
12851
12852/* This is almost identical to bfd_generic_get_... except that some
12853 MIPS relocations need to be handled specially. Sigh. */
12854
12855bfd_byte *
9719ad41
RS
12856_bfd_elf_mips_get_relocated_section_contents
12857 (bfd *abfd,
12858 struct bfd_link_info *link_info,
12859 struct bfd_link_order *link_order,
12860 bfd_byte *data,
12861 bfd_boolean relocatable,
12862 asymbol **symbols)
b49e97c9
TS
12863{
12864 /* Get enough memory to hold the stuff */
12865 bfd *input_bfd = link_order->u.indirect.section->owner;
12866 asection *input_section = link_order->u.indirect.section;
eea6121a 12867 bfd_size_type sz;
b49e97c9
TS
12868
12869 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12870 arelent **reloc_vector = NULL;
12871 long reloc_count;
12872
12873 if (reloc_size < 0)
12874 goto error_return;
12875
9719ad41 12876 reloc_vector = bfd_malloc (reloc_size);
b49e97c9
TS
12877 if (reloc_vector == NULL && reloc_size != 0)
12878 goto error_return;
12879
12880 /* read in the section */
eea6121a
AM
12881 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12882 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
b49e97c9
TS
12883 goto error_return;
12884
b49e97c9
TS
12885 reloc_count = bfd_canonicalize_reloc (input_bfd,
12886 input_section,
12887 reloc_vector,
12888 symbols);
12889 if (reloc_count < 0)
12890 goto error_return;
12891
12892 if (reloc_count > 0)
12893 {
12894 arelent **parent;
12895 /* for mips */
12896 int gp_found;
12897 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12898
12899 {
12900 struct bfd_hash_entry *h;
12901 struct bfd_link_hash_entry *lh;
12902 /* Skip all this stuff if we aren't mixing formats. */
12903 if (abfd && input_bfd
12904 && abfd->xvec == input_bfd->xvec)
12905 lh = 0;
12906 else
12907 {
b34976b6 12908 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
b49e97c9
TS
12909 lh = (struct bfd_link_hash_entry *) h;
12910 }
12911 lookup:
12912 if (lh)
12913 {
12914 switch (lh->type)
12915 {
12916 case bfd_link_hash_undefined:
12917 case bfd_link_hash_undefweak:
12918 case bfd_link_hash_common:
12919 gp_found = 0;
12920 break;
12921 case bfd_link_hash_defined:
12922 case bfd_link_hash_defweak:
12923 gp_found = 1;
12924 gp = lh->u.def.value;
12925 break;
12926 case bfd_link_hash_indirect:
12927 case bfd_link_hash_warning:
12928 lh = lh->u.i.link;
12929 /* @@FIXME ignoring warning for now */
12930 goto lookup;
12931 case bfd_link_hash_new:
12932 default:
12933 abort ();
12934 }
12935 }
12936 else
12937 gp_found = 0;
12938 }
12939 /* end mips */
9719ad41 12940 for (parent = reloc_vector; *parent != NULL; parent++)
b49e97c9 12941 {
9719ad41 12942 char *error_message = NULL;
b49e97c9
TS
12943 bfd_reloc_status_type r;
12944
12945 /* Specific to MIPS: Deal with relocation types that require
12946 knowing the gp of the output bfd. */
12947 asymbol *sym = *(*parent)->sym_ptr_ptr;
b49e97c9 12948
8236346f
EC
12949 /* If we've managed to find the gp and have a special
12950 function for the relocation then go ahead, else default
12951 to the generic handling. */
12952 if (gp_found
12953 && (*parent)->howto->special_function
12954 == _bfd_mips_elf32_gprel16_reloc)
12955 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12956 input_section, relocatable,
12957 data, gp);
12958 else
86324f90 12959 r = bfd_perform_relocation (input_bfd, *parent, data,
8236346f
EC
12960 input_section,
12961 relocatable ? abfd : NULL,
12962 &error_message);
b49e97c9 12963
1049f94e 12964 if (relocatable)
b49e97c9
TS
12965 {
12966 asection *os = input_section->output_section;
12967
12968 /* A partial link, so keep the relocs */
12969 os->orelocation[os->reloc_count] = *parent;
12970 os->reloc_count++;
12971 }
12972
12973 if (r != bfd_reloc_ok)
12974 {
12975 switch (r)
12976 {
12977 case bfd_reloc_undefined:
1a72702b
AM
12978 (*link_info->callbacks->undefined_symbol)
12979 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12980 input_bfd, input_section, (*parent)->address, TRUE);
b49e97c9
TS
12981 break;
12982 case bfd_reloc_dangerous:
9719ad41 12983 BFD_ASSERT (error_message != NULL);
1a72702b
AM
12984 (*link_info->callbacks->reloc_dangerous)
12985 (link_info, error_message,
12986 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12987 break;
12988 case bfd_reloc_overflow:
1a72702b
AM
12989 (*link_info->callbacks->reloc_overflow)
12990 (link_info, NULL,
12991 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12992 (*parent)->howto->name, (*parent)->addend,
12993 input_bfd, input_section, (*parent)->address);
b49e97c9
TS
12994 break;
12995 case bfd_reloc_outofrange:
12996 default:
12997 abort ();
12998 break;
12999 }
13000
13001 }
13002 }
13003 }
13004 if (reloc_vector != NULL)
13005 free (reloc_vector);
13006 return data;
13007
13008error_return:
13009 if (reloc_vector != NULL)
13010 free (reloc_vector);
13011 return NULL;
13012}
13013\f
df58fc94
RS
13014static bfd_boolean
13015mips_elf_relax_delete_bytes (bfd *abfd,
13016 asection *sec, bfd_vma addr, int count)
13017{
13018 Elf_Internal_Shdr *symtab_hdr;
13019 unsigned int sec_shndx;
13020 bfd_byte *contents;
13021 Elf_Internal_Rela *irel, *irelend;
13022 Elf_Internal_Sym *isym;
13023 Elf_Internal_Sym *isymend;
13024 struct elf_link_hash_entry **sym_hashes;
13025 struct elf_link_hash_entry **end_hashes;
13026 struct elf_link_hash_entry **start_hashes;
13027 unsigned int symcount;
13028
13029 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13030 contents = elf_section_data (sec)->this_hdr.contents;
13031
13032 irel = elf_section_data (sec)->relocs;
13033 irelend = irel + sec->reloc_count;
13034
13035 /* Actually delete the bytes. */
13036 memmove (contents + addr, contents + addr + count,
13037 (size_t) (sec->size - addr - count));
13038 sec->size -= count;
13039
13040 /* Adjust all the relocs. */
13041 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13042 {
13043 /* Get the new reloc address. */
13044 if (irel->r_offset > addr)
13045 irel->r_offset -= count;
13046 }
13047
13048 BFD_ASSERT (addr % 2 == 0);
13049 BFD_ASSERT (count % 2 == 0);
13050
13051 /* Adjust the local symbols defined in this section. */
13052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13053 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13054 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2309ddf2 13055 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
df58fc94
RS
13056 isym->st_value -= count;
13057
13058 /* Now adjust the global symbols defined in this section. */
13059 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13060 - symtab_hdr->sh_info);
13061 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13062 end_hashes = sym_hashes + symcount;
13063
13064 for (; sym_hashes < end_hashes; sym_hashes++)
13065 {
13066 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13067
13068 if ((sym_hash->root.type == bfd_link_hash_defined
13069 || sym_hash->root.type == bfd_link_hash_defweak)
13070 && sym_hash->root.u.def.section == sec)
13071 {
2309ddf2 13072 bfd_vma value = sym_hash->root.u.def.value;
df58fc94 13073
df58fc94
RS
13074 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13075 value &= MINUS_TWO;
13076 if (value > addr)
13077 sym_hash->root.u.def.value -= count;
13078 }
13079 }
13080
13081 return TRUE;
13082}
13083
13084
13085/* Opcodes needed for microMIPS relaxation as found in
13086 opcodes/micromips-opc.c. */
13087
13088struct opcode_descriptor {
13089 unsigned long match;
13090 unsigned long mask;
13091};
13092
13093/* The $ra register aka $31. */
13094
13095#define RA 31
13096
13097/* 32-bit instruction format register fields. */
13098
13099#define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13100#define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13101
13102/* Check if a 5-bit register index can be abbreviated to 3 bits. */
13103
13104#define OP16_VALID_REG(r) \
13105 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13106
13107
13108/* 32-bit and 16-bit branches. */
13109
13110static const struct opcode_descriptor b_insns_32[] = {
13111 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13112 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13113 { 0, 0 } /* End marker for find_match(). */
13114};
13115
13116static const struct opcode_descriptor bc_insn_32 =
13117 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13118
13119static const struct opcode_descriptor bz_insn_32 =
13120 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13121
13122static const struct opcode_descriptor bzal_insn_32 =
13123 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13124
13125static const struct opcode_descriptor beq_insn_32 =
13126 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13127
13128static const struct opcode_descriptor b_insn_16 =
13129 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13130
13131static const struct opcode_descriptor bz_insn_16 =
c088dedf 13132 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
df58fc94
RS
13133
13134
13135/* 32-bit and 16-bit branch EQ and NE zero. */
13136
13137/* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13138 eq and second the ne. This convention is used when replacing a
13139 32-bit BEQ/BNE with the 16-bit version. */
13140
13141#define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13142
13143static const struct opcode_descriptor bz_rs_insns_32[] = {
13144 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13145 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13146 { 0, 0 } /* End marker for find_match(). */
13147};
13148
13149static const struct opcode_descriptor bz_rt_insns_32[] = {
13150 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13151 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13152 { 0, 0 } /* End marker for find_match(). */
13153};
13154
13155static const struct opcode_descriptor bzc_insns_32[] = {
13156 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13157 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13158 { 0, 0 } /* End marker for find_match(). */
13159};
13160
13161static const struct opcode_descriptor bz_insns_16[] = {
13162 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13163 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13164 { 0, 0 } /* End marker for find_match(). */
13165};
13166
13167/* Switch between a 5-bit register index and its 3-bit shorthand. */
13168
e67f83e5 13169#define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
eb6b0cf4 13170#define BZ16_REG_FIELD(r) (((r) & 7) << 7)
df58fc94
RS
13171
13172
13173/* 32-bit instructions with a delay slot. */
13174
13175static const struct opcode_descriptor jal_insn_32_bd16 =
13176 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13177
13178static const struct opcode_descriptor jal_insn_32_bd32 =
13179 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13180
13181static const struct opcode_descriptor jal_x_insn_32_bd32 =
13182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13183
13184static const struct opcode_descriptor j_insn_32 =
13185 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13186
13187static const struct opcode_descriptor jalr_insn_32 =
13188 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13189
13190/* This table can be compacted, because no opcode replacement is made. */
13191
13192static const struct opcode_descriptor ds_insns_32_bd16[] = {
13193 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13194
13195 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13196 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13197
13198 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13199 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13200 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13201 { 0, 0 } /* End marker for find_match(). */
13202};
13203
13204/* This table can be compacted, because no opcode replacement is made. */
13205
13206static const struct opcode_descriptor ds_insns_32_bd32[] = {
13207 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13208
13209 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13210 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13211 { 0, 0 } /* End marker for find_match(). */
13212};
13213
13214
13215/* 16-bit instructions with a delay slot. */
13216
13217static const struct opcode_descriptor jalr_insn_16_bd16 =
13218 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13219
13220static const struct opcode_descriptor jalr_insn_16_bd32 =
13221 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13222
13223static const struct opcode_descriptor jr_insn_16 =
13224 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13225
13226#define JR16_REG(opcode) ((opcode) & 0x1f)
13227
13228/* This table can be compacted, because no opcode replacement is made. */
13229
13230static const struct opcode_descriptor ds_insns_16_bd16[] = {
13231 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13232
13233 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13234 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13235 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13236 { 0, 0 } /* End marker for find_match(). */
13237};
13238
13239
13240/* LUI instruction. */
13241
13242static const struct opcode_descriptor lui_insn =
13243 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13244
13245
13246/* ADDIU instruction. */
13247
13248static const struct opcode_descriptor addiu_insn =
13249 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13250
13251static const struct opcode_descriptor addiupc_insn =
13252 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13253
13254#define ADDIUPC_REG_FIELD(r) \
13255 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13256
13257
13258/* Relaxable instructions in a JAL delay slot: MOVE. */
13259
13260/* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13261 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13262#define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13263#define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13264
13265#define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13266#define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13267
13268static const struct opcode_descriptor move_insns_32[] = {
df58fc94 13269 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
40fc1451 13270 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
df58fc94
RS
13271 { 0, 0 } /* End marker for find_match(). */
13272};
13273
13274static const struct opcode_descriptor move_insn_16 =
13275 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13276
13277
13278/* NOP instructions. */
13279
13280static const struct opcode_descriptor nop_insn_32 =
13281 { /* "nop", "", */ 0x00000000, 0xffffffff };
13282
13283static const struct opcode_descriptor nop_insn_16 =
13284 { /* "nop", "", */ 0x0c00, 0xffff };
13285
13286
13287/* Instruction match support. */
13288
13289#define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13290
13291static int
13292find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13293{
13294 unsigned long indx;
13295
13296 for (indx = 0; insn[indx].mask != 0; indx++)
13297 if (MATCH (opcode, insn[indx]))
13298 return indx;
13299
13300 return -1;
13301}
13302
13303
13304/* Branch and delay slot decoding support. */
13305
13306/* If PTR points to what *might* be a 16-bit branch or jump, then
13307 return the minimum length of its delay slot, otherwise return 0.
13308 Non-zero results are not definitive as we might be checking against
13309 the second half of another instruction. */
13310
13311static int
13312check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13313{
13314 unsigned long opcode;
13315 int bdsize;
13316
13317 opcode = bfd_get_16 (abfd, ptr);
13318 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13319 /* 16-bit branch/jump with a 32-bit delay slot. */
13320 bdsize = 4;
13321 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13322 || find_match (opcode, ds_insns_16_bd16) >= 0)
13323 /* 16-bit branch/jump with a 16-bit delay slot. */
13324 bdsize = 2;
13325 else
13326 /* No delay slot. */
13327 bdsize = 0;
13328
13329 return bdsize;
13330}
13331
13332/* If PTR points to what *might* be a 32-bit branch or jump, then
13333 return the minimum length of its delay slot, otherwise return 0.
13334 Non-zero results are not definitive as we might be checking against
13335 the second half of another instruction. */
13336
13337static int
13338check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13339{
13340 unsigned long opcode;
13341 int bdsize;
13342
d21911ea 13343 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13344 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13345 /* 32-bit branch/jump with a 32-bit delay slot. */
13346 bdsize = 4;
13347 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13348 /* 32-bit branch/jump with a 16-bit delay slot. */
13349 bdsize = 2;
13350 else
13351 /* No delay slot. */
13352 bdsize = 0;
13353
13354 return bdsize;
13355}
13356
13357/* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13358 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13359
13360static bfd_boolean
13361check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13362{
13363 unsigned long opcode;
13364
13365 opcode = bfd_get_16 (abfd, ptr);
13366 if (MATCH (opcode, b_insn_16)
13367 /* B16 */
13368 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13369 /* JR16 */
13370 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13371 /* BEQZ16, BNEZ16 */
13372 || (MATCH (opcode, jalr_insn_16_bd32)
13373 /* JALR16 */
13374 && reg != JR16_REG (opcode) && reg != RA))
13375 return TRUE;
13376
13377 return FALSE;
13378}
13379
13380/* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13381 then return TRUE, otherwise FALSE. */
13382
f41e5fcc 13383static bfd_boolean
df58fc94
RS
13384check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13385{
13386 unsigned long opcode;
13387
d21911ea 13388 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13389 if (MATCH (opcode, j_insn_32)
13390 /* J */
13391 || MATCH (opcode, bc_insn_32)
13392 /* BC1F, BC1T, BC2F, BC2T */
13393 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13394 /* JAL, JALX */
13395 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13396 /* BGEZ, BGTZ, BLEZ, BLTZ */
13397 || (MATCH (opcode, bzal_insn_32)
13398 /* BGEZAL, BLTZAL */
13399 && reg != OP32_SREG (opcode) && reg != RA)
13400 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13401 /* JALR, JALR.HB, BEQ, BNE */
13402 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13403 return TRUE;
13404
13405 return FALSE;
13406}
13407
80cab405
MR
13408/* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13409 IRELEND) at OFFSET indicate that there must be a compact branch there,
13410 then return TRUE, otherwise FALSE. */
df58fc94
RS
13411
13412static bfd_boolean
80cab405
MR
13413check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13414 const Elf_Internal_Rela *internal_relocs,
13415 const Elf_Internal_Rela *irelend)
df58fc94 13416{
80cab405
MR
13417 const Elf_Internal_Rela *irel;
13418 unsigned long opcode;
13419
d21911ea 13420 opcode = bfd_get_micromips_32 (abfd, ptr);
80cab405
MR
13421 if (find_match (opcode, bzc_insns_32) < 0)
13422 return FALSE;
df58fc94
RS
13423
13424 for (irel = internal_relocs; irel < irelend; irel++)
80cab405
MR
13425 if (irel->r_offset == offset
13426 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13427 return TRUE;
13428
df58fc94
RS
13429 return FALSE;
13430}
80cab405
MR
13431
13432/* Bitsize checking. */
13433#define IS_BITSIZE(val, N) \
13434 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13435 - (1ULL << ((N) - 1))) == (val))
13436
df58fc94
RS
13437\f
13438bfd_boolean
13439_bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13440 struct bfd_link_info *link_info,
13441 bfd_boolean *again)
13442{
833794fc 13443 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
df58fc94
RS
13444 Elf_Internal_Shdr *symtab_hdr;
13445 Elf_Internal_Rela *internal_relocs;
13446 Elf_Internal_Rela *irel, *irelend;
13447 bfd_byte *contents = NULL;
13448 Elf_Internal_Sym *isymbuf = NULL;
13449
13450 /* Assume nothing changes. */
13451 *again = FALSE;
13452
13453 /* We don't have to do anything for a relocatable link, if
13454 this section does not have relocs, or if this is not a
13455 code section. */
13456
0e1862bb 13457 if (bfd_link_relocatable (link_info)
df58fc94
RS
13458 || (sec->flags & SEC_RELOC) == 0
13459 || sec->reloc_count == 0
13460 || (sec->flags & SEC_CODE) == 0)
13461 return TRUE;
13462
13463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13464
13465 /* Get a copy of the native relocations. */
13466 internal_relocs = (_bfd_elf_link_read_relocs
2c3fc389 13467 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
df58fc94
RS
13468 link_info->keep_memory));
13469 if (internal_relocs == NULL)
13470 goto error_return;
13471
13472 /* Walk through them looking for relaxing opportunities. */
13473 irelend = internal_relocs + sec->reloc_count;
13474 for (irel = internal_relocs; irel < irelend; irel++)
13475 {
13476 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13477 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13478 bfd_boolean target_is_micromips_code_p;
13479 unsigned long opcode;
13480 bfd_vma symval;
13481 bfd_vma pcrval;
2309ddf2 13482 bfd_byte *ptr;
df58fc94
RS
13483 int fndopc;
13484
13485 /* The number of bytes to delete for relaxation and from where
13486 to delete these bytes starting at irel->r_offset. */
13487 int delcnt = 0;
13488 int deloff = 0;
13489
13490 /* If this isn't something that can be relaxed, then ignore
13491 this reloc. */
13492 if (r_type != R_MICROMIPS_HI16
13493 && r_type != R_MICROMIPS_PC16_S1
2309ddf2 13494 && r_type != R_MICROMIPS_26_S1)
df58fc94
RS
13495 continue;
13496
13497 /* Get the section contents if we haven't done so already. */
13498 if (contents == NULL)
13499 {
13500 /* Get cached copy if it exists. */
13501 if (elf_section_data (sec)->this_hdr.contents != NULL)
13502 contents = elf_section_data (sec)->this_hdr.contents;
13503 /* Go get them off disk. */
13504 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13505 goto error_return;
13506 }
2309ddf2 13507 ptr = contents + irel->r_offset;
df58fc94
RS
13508
13509 /* Read this BFD's local symbols if we haven't done so already. */
13510 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13511 {
13512 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13513 if (isymbuf == NULL)
13514 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13515 symtab_hdr->sh_info, 0,
13516 NULL, NULL, NULL);
13517 if (isymbuf == NULL)
13518 goto error_return;
13519 }
13520
13521 /* Get the value of the symbol referred to by the reloc. */
13522 if (r_symndx < symtab_hdr->sh_info)
13523 {
13524 /* A local symbol. */
13525 Elf_Internal_Sym *isym;
13526 asection *sym_sec;
13527
13528 isym = isymbuf + r_symndx;
13529 if (isym->st_shndx == SHN_UNDEF)
13530 sym_sec = bfd_und_section_ptr;
13531 else if (isym->st_shndx == SHN_ABS)
13532 sym_sec = bfd_abs_section_ptr;
13533 else if (isym->st_shndx == SHN_COMMON)
13534 sym_sec = bfd_com_section_ptr;
13535 else
13536 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13537 symval = (isym->st_value
13538 + sym_sec->output_section->vma
13539 + sym_sec->output_offset);
13540 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13541 }
13542 else
13543 {
13544 unsigned long indx;
13545 struct elf_link_hash_entry *h;
13546
13547 /* An external symbol. */
13548 indx = r_symndx - symtab_hdr->sh_info;
13549 h = elf_sym_hashes (abfd)[indx];
13550 BFD_ASSERT (h != NULL);
13551
13552 if (h->root.type != bfd_link_hash_defined
13553 && h->root.type != bfd_link_hash_defweak)
13554 /* This appears to be a reference to an undefined
13555 symbol. Just ignore it -- it will be caught by the
13556 regular reloc processing. */
13557 continue;
13558
13559 symval = (h->root.u.def.value
13560 + h->root.u.def.section->output_section->vma
13561 + h->root.u.def.section->output_offset);
13562 target_is_micromips_code_p = (!h->needs_plt
13563 && ELF_ST_IS_MICROMIPS (h->other));
13564 }
13565
13566
13567 /* For simplicity of coding, we are going to modify the
13568 section contents, the section relocs, and the BFD symbol
13569 table. We must tell the rest of the code not to free up this
13570 information. It would be possible to instead create a table
13571 of changes which have to be made, as is done in coff-mips.c;
13572 that would be more work, but would require less memory when
13573 the linker is run. */
13574
13575 /* Only 32-bit instructions relaxed. */
13576 if (irel->r_offset + 4 > sec->size)
13577 continue;
13578
d21911ea 13579 opcode = bfd_get_micromips_32 (abfd, ptr);
df58fc94
RS
13580
13581 /* This is the pc-relative distance from the instruction the
13582 relocation is applied to, to the symbol referred. */
13583 pcrval = (symval
13584 - (sec->output_section->vma + sec->output_offset)
13585 - irel->r_offset);
13586
13587 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13588 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13589 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13590
13591 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13592
13593 where pcrval has first to be adjusted to apply against the LO16
13594 location (we make the adjustment later on, when we have figured
13595 out the offset). */
13596 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13597 {
80cab405 13598 bfd_boolean bzc = FALSE;
df58fc94
RS
13599 unsigned long nextopc;
13600 unsigned long reg;
13601 bfd_vma offset;
13602
13603 /* Give up if the previous reloc was a HI16 against this symbol
13604 too. */
13605 if (irel > internal_relocs
13606 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13607 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13608 continue;
13609
13610 /* Or if the next reloc is not a LO16 against this symbol. */
13611 if (irel + 1 >= irelend
13612 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13613 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13614 continue;
13615
13616 /* Or if the second next reloc is a LO16 against this symbol too. */
13617 if (irel + 2 >= irelend
13618 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13619 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13620 continue;
13621
80cab405
MR
13622 /* See if the LUI instruction *might* be in a branch delay slot.
13623 We check whether what looks like a 16-bit branch or jump is
13624 actually an immediate argument to a compact branch, and let
13625 it through if so. */
df58fc94 13626 if (irel->r_offset >= 2
2309ddf2 13627 && check_br16_dslot (abfd, ptr - 2)
df58fc94 13628 && !(irel->r_offset >= 4
80cab405
MR
13629 && (bzc = check_relocated_bzc (abfd,
13630 ptr - 4, irel->r_offset - 4,
13631 internal_relocs, irelend))))
df58fc94
RS
13632 continue;
13633 if (irel->r_offset >= 4
80cab405 13634 && !bzc
2309ddf2 13635 && check_br32_dslot (abfd, ptr - 4))
df58fc94
RS
13636 continue;
13637
13638 reg = OP32_SREG (opcode);
13639
13640 /* We only relax adjacent instructions or ones separated with
13641 a branch or jump that has a delay slot. The branch or jump
13642 must not fiddle with the register used to hold the address.
13643 Subtract 4 for the LUI itself. */
13644 offset = irel[1].r_offset - irel[0].r_offset;
13645 switch (offset - 4)
13646 {
13647 case 0:
13648 break;
13649 case 2:
2309ddf2 13650 if (check_br16 (abfd, ptr + 4, reg))
df58fc94
RS
13651 break;
13652 continue;
13653 case 4:
2309ddf2 13654 if (check_br32 (abfd, ptr + 4, reg))
df58fc94
RS
13655 break;
13656 continue;
13657 default:
13658 continue;
13659 }
13660
d21911ea 13661 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
df58fc94
RS
13662
13663 /* Give up unless the same register is used with both
13664 relocations. */
13665 if (OP32_SREG (nextopc) != reg)
13666 continue;
13667
13668 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13669 and rounding up to take masking of the two LSBs into account. */
13670 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13671
13672 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13673 if (IS_BITSIZE (symval, 16))
13674 {
13675 /* Fix the relocation's type. */
13676 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13677
13678 /* Instructions using R_MICROMIPS_LO16 have the base or
13679 source register in bits 20:16. This register becomes $0
13680 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13681 nextopc &= ~0x001f0000;
13682 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13683 contents + irel[1].r_offset);
13684 }
13685
13686 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13687 We add 4 to take LUI deletion into account while checking
13688 the PC-relative distance. */
13689 else if (symval % 4 == 0
13690 && IS_BITSIZE (pcrval + 4, 25)
13691 && MATCH (nextopc, addiu_insn)
13692 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13693 && OP16_VALID_REG (OP32_TREG (nextopc)))
13694 {
13695 /* Fix the relocation's type. */
13696 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13697
13698 /* Replace ADDIU with the ADDIUPC version. */
13699 nextopc = (addiupc_insn.match
13700 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13701
d21911ea
MR
13702 bfd_put_micromips_32 (abfd, nextopc,
13703 contents + irel[1].r_offset);
df58fc94
RS
13704 }
13705
13706 /* Can't do anything, give up, sigh... */
13707 else
13708 continue;
13709
13710 /* Fix the relocation's type. */
13711 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13712
13713 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13714 delcnt = 4;
13715 deloff = 0;
13716 }
13717
13718 /* Compact branch relaxation -- due to the multitude of macros
13719 employed by the compiler/assembler, compact branches are not
13720 always generated. Obviously, this can/will be fixed elsewhere,
13721 but there is no drawback in double checking it here. */
13722 else if (r_type == R_MICROMIPS_PC16_S1
13723 && irel->r_offset + 5 < sec->size
13724 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13725 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
833794fc
MR
13726 && ((!insn32
13727 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13728 nop_insn_16) ? 2 : 0))
13729 || (irel->r_offset + 7 < sec->size
13730 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13731 ptr + 4),
13732 nop_insn_32) ? 4 : 0))))
df58fc94
RS
13733 {
13734 unsigned long reg;
13735
13736 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13737
13738 /* Replace BEQZ/BNEZ with the compact version. */
13739 opcode = (bzc_insns_32[fndopc].match
13740 | BZC32_REG_FIELD (reg)
13741 | (opcode & 0xffff)); /* Addend value. */
13742
d21911ea 13743 bfd_put_micromips_32 (abfd, opcode, ptr);
df58fc94 13744
833794fc
MR
13745 /* Delete the delay slot NOP: two or four bytes from
13746 irel->offset + 4; delcnt has already been set above. */
df58fc94
RS
13747 deloff = 4;
13748 }
13749
13750 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13751 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13752 else if (!insn32
13753 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13754 && IS_BITSIZE (pcrval - 2, 11)
13755 && find_match (opcode, b_insns_32) >= 0)
13756 {
13757 /* Fix the relocation's type. */
13758 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13759
a8685210 13760 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13761 bfd_put_16 (abfd,
13762 (b_insn_16.match
13763 | (opcode & 0x3ff)), /* Addend value. */
2309ddf2 13764 ptr);
df58fc94
RS
13765
13766 /* Delete 2 bytes from irel->r_offset + 2. */
13767 delcnt = 2;
13768 deloff = 2;
13769 }
13770
13771 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13772 to check the distance from the next instruction, so subtract 2. */
833794fc
MR
13773 else if (!insn32
13774 && r_type == R_MICROMIPS_PC16_S1
df58fc94
RS
13775 && IS_BITSIZE (pcrval - 2, 8)
13776 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13777 && OP16_VALID_REG (OP32_SREG (opcode)))
13778 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13779 && OP16_VALID_REG (OP32_TREG (opcode)))))
13780 {
13781 unsigned long reg;
13782
13783 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13784
13785 /* Fix the relocation's type. */
13786 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13787
a8685210 13788 /* Replace the 32-bit opcode with a 16-bit opcode. */
df58fc94
RS
13789 bfd_put_16 (abfd,
13790 (bz_insns_16[fndopc].match
13791 | BZ16_REG_FIELD (reg)
13792 | (opcode & 0x7f)), /* Addend value. */
2309ddf2 13793 ptr);
df58fc94
RS
13794
13795 /* Delete 2 bytes from irel->r_offset + 2. */
13796 delcnt = 2;
13797 deloff = 2;
13798 }
13799
13800 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
833794fc
MR
13801 else if (!insn32
13802 && r_type == R_MICROMIPS_26_S1
df58fc94
RS
13803 && target_is_micromips_code_p
13804 && irel->r_offset + 7 < sec->size
13805 && MATCH (opcode, jal_insn_32_bd32))
13806 {
13807 unsigned long n32opc;
13808 bfd_boolean relaxed = FALSE;
13809
d21911ea 13810 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
df58fc94
RS
13811
13812 if (MATCH (n32opc, nop_insn_32))
13813 {
13814 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
2309ddf2 13815 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
df58fc94
RS
13816
13817 relaxed = TRUE;
13818 }
13819 else if (find_match (n32opc, move_insns_32) >= 0)
13820 {
13821 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13822 bfd_put_16 (abfd,
13823 (move_insn_16.match
13824 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13825 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
2309ddf2 13826 ptr + 4);
df58fc94
RS
13827
13828 relaxed = TRUE;
13829 }
13830 /* Other 32-bit instructions relaxable to 16-bit
13831 instructions will be handled here later. */
13832
13833 if (relaxed)
13834 {
13835 /* JAL with 32-bit delay slot that is changed to a JALS
13836 with 16-bit delay slot. */
d21911ea 13837 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
df58fc94
RS
13838
13839 /* Delete 2 bytes from irel->r_offset + 6. */
13840 delcnt = 2;
13841 deloff = 6;
13842 }
13843 }
13844
13845 if (delcnt != 0)
13846 {
13847 /* Note that we've changed the relocs, section contents, etc. */
13848 elf_section_data (sec)->relocs = internal_relocs;
13849 elf_section_data (sec)->this_hdr.contents = contents;
13850 symtab_hdr->contents = (unsigned char *) isymbuf;
13851
13852 /* Delete bytes depending on the delcnt and deloff. */
13853 if (!mips_elf_relax_delete_bytes (abfd, sec,
13854 irel->r_offset + deloff, delcnt))
13855 goto error_return;
13856
13857 /* That will change things, so we should relax again.
13858 Note that this is not required, and it may be slow. */
13859 *again = TRUE;
13860 }
13861 }
13862
13863 if (isymbuf != NULL
13864 && symtab_hdr->contents != (unsigned char *) isymbuf)
13865 {
13866 if (! link_info->keep_memory)
13867 free (isymbuf);
13868 else
13869 {
13870 /* Cache the symbols for elf_link_input_bfd. */
13871 symtab_hdr->contents = (unsigned char *) isymbuf;
13872 }
13873 }
13874
13875 if (contents != NULL
13876 && elf_section_data (sec)->this_hdr.contents != contents)
13877 {
13878 if (! link_info->keep_memory)
13879 free (contents);
13880 else
13881 {
13882 /* Cache the section contents for elf_link_input_bfd. */
13883 elf_section_data (sec)->this_hdr.contents = contents;
13884 }
13885 }
13886
13887 if (internal_relocs != NULL
13888 && elf_section_data (sec)->relocs != internal_relocs)
13889 free (internal_relocs);
13890
13891 return TRUE;
13892
13893 error_return:
13894 if (isymbuf != NULL
13895 && symtab_hdr->contents != (unsigned char *) isymbuf)
13896 free (isymbuf);
13897 if (contents != NULL
13898 && elf_section_data (sec)->this_hdr.contents != contents)
13899 free (contents);
13900 if (internal_relocs != NULL
13901 && elf_section_data (sec)->relocs != internal_relocs)
13902 free (internal_relocs);
13903
13904 return FALSE;
13905}
13906\f
b49e97c9
TS
13907/* Create a MIPS ELF linker hash table. */
13908
13909struct bfd_link_hash_table *
9719ad41 13910_bfd_mips_elf_link_hash_table_create (bfd *abfd)
b49e97c9
TS
13911{
13912 struct mips_elf_link_hash_table *ret;
13913 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13914
7bf52ea2 13915 ret = bfd_zmalloc (amt);
9719ad41 13916 if (ret == NULL)
b49e97c9
TS
13917 return NULL;
13918
66eb6687
AM
13919 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13920 mips_elf_link_hash_newfunc,
4dfe6ac6
NC
13921 sizeof (struct mips_elf_link_hash_entry),
13922 MIPS_ELF_DATA))
b49e97c9 13923 {
e2d34d7d 13924 free (ret);
b49e97c9
TS
13925 return NULL;
13926 }
1bbce132
MR
13927 ret->root.init_plt_refcount.plist = NULL;
13928 ret->root.init_plt_offset.plist = NULL;
b49e97c9 13929
b49e97c9
TS
13930 return &ret->root.root;
13931}
0a44bf69
RS
13932
13933/* Likewise, but indicate that the target is VxWorks. */
13934
13935struct bfd_link_hash_table *
13936_bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13937{
13938 struct bfd_link_hash_table *ret;
13939
13940 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13941 if (ret)
13942 {
13943 struct mips_elf_link_hash_table *htab;
13944
13945 htab = (struct mips_elf_link_hash_table *) ret;
861fb55a
DJ
13946 htab->use_plts_and_copy_relocs = TRUE;
13947 htab->is_vxworks = TRUE;
0a44bf69
RS
13948 }
13949 return ret;
13950}
861fb55a
DJ
13951
13952/* A function that the linker calls if we are allowed to use PLTs
13953 and copy relocs. */
13954
13955void
13956_bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13957{
13958 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13959}
833794fc
MR
13960
13961/* A function that the linker calls to select between all or only
8b10b0b3
MR
13962 32-bit microMIPS instructions, and between making or ignoring
13963 branch relocation checks for invalid transitions between ISA modes. */
833794fc
MR
13964
13965void
8b10b0b3
MR
13966_bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13967 bfd_boolean ignore_branch_isa)
833794fc 13968{
8b10b0b3
MR
13969 mips_elf_hash_table (info)->insn32 = insn32;
13970 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
833794fc 13971}
b49e97c9 13972\f
c97c330b
MF
13973/* Structure for saying that BFD machine EXTENSION extends BASE. */
13974
13975struct mips_mach_extension
13976{
13977 unsigned long extension, base;
13978};
13979
13980
13981/* An array describing how BFD machines relate to one another. The entries
13982 are ordered topologically with MIPS I extensions listed last. */
13983
13984static const struct mips_mach_extension mips_mach_extensions[] =
13985{
13986 /* MIPS64r2 extensions. */
13987 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13988 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13989 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13990 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13991 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13992
13993 /* MIPS64 extensions. */
13994 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13995 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13996 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13997
13998 /* MIPS V extensions. */
13999 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14000
14001 /* R10000 extensions. */
14002 { bfd_mach_mips12000, bfd_mach_mips10000 },
14003 { bfd_mach_mips14000, bfd_mach_mips10000 },
14004 { bfd_mach_mips16000, bfd_mach_mips10000 },
14005
14006 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14007 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14008 better to allow vr5400 and vr5500 code to be merged anyway, since
14009 many libraries will just use the core ISA. Perhaps we could add
14010 some sort of ASE flag if this ever proves a problem. */
14011 { bfd_mach_mips5500, bfd_mach_mips5400 },
14012 { bfd_mach_mips5400, bfd_mach_mips5000 },
14013
14014 /* MIPS IV extensions. */
14015 { bfd_mach_mips5, bfd_mach_mips8000 },
14016 { bfd_mach_mips10000, bfd_mach_mips8000 },
14017 { bfd_mach_mips5000, bfd_mach_mips8000 },
14018 { bfd_mach_mips7000, bfd_mach_mips8000 },
14019 { bfd_mach_mips9000, bfd_mach_mips8000 },
14020
14021 /* VR4100 extensions. */
14022 { bfd_mach_mips4120, bfd_mach_mips4100 },
14023 { bfd_mach_mips4111, bfd_mach_mips4100 },
14024
14025 /* MIPS III extensions. */
14026 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14027 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14028 { bfd_mach_mips8000, bfd_mach_mips4000 },
14029 { bfd_mach_mips4650, bfd_mach_mips4000 },
14030 { bfd_mach_mips4600, bfd_mach_mips4000 },
14031 { bfd_mach_mips4400, bfd_mach_mips4000 },
14032 { bfd_mach_mips4300, bfd_mach_mips4000 },
14033 { bfd_mach_mips4100, bfd_mach_mips4000 },
c97c330b
MF
14034 { bfd_mach_mips5900, bfd_mach_mips4000 },
14035
38bf472a
MR
14036 /* MIPS32r3 extensions. */
14037 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14038
14039 /* MIPS32r2 extensions. */
14040 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14041
c97c330b
MF
14042 /* MIPS32 extensions. */
14043 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14044
14045 /* MIPS II extensions. */
14046 { bfd_mach_mips4000, bfd_mach_mips6000 },
14047 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
b417536f 14048 { bfd_mach_mips4010, bfd_mach_mips6000 },
c97c330b
MF
14049
14050 /* MIPS I extensions. */
14051 { bfd_mach_mips6000, bfd_mach_mips3000 },
14052 { bfd_mach_mips3900, bfd_mach_mips3000 }
14053};
14054
14055/* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14056
14057static bfd_boolean
14058mips_mach_extends_p (unsigned long base, unsigned long extension)
14059{
14060 size_t i;
14061
14062 if (extension == base)
14063 return TRUE;
14064
14065 if (base == bfd_mach_mipsisa32
14066 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14067 return TRUE;
14068
14069 if (base == bfd_mach_mipsisa32r2
14070 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14071 return TRUE;
14072
14073 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14074 if (extension == mips_mach_extensions[i].extension)
14075 {
14076 extension = mips_mach_extensions[i].base;
14077 if (extension == base)
14078 return TRUE;
14079 }
14080
14081 return FALSE;
14082}
14083
14084/* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14085
14086static unsigned long
14087bfd_mips_isa_ext_mach (unsigned int isa_ext)
14088{
14089 switch (isa_ext)
14090 {
14091 case AFL_EXT_3900: return bfd_mach_mips3900;
14092 case AFL_EXT_4010: return bfd_mach_mips4010;
14093 case AFL_EXT_4100: return bfd_mach_mips4100;
14094 case AFL_EXT_4111: return bfd_mach_mips4111;
14095 case AFL_EXT_4120: return bfd_mach_mips4120;
14096 case AFL_EXT_4650: return bfd_mach_mips4650;
14097 case AFL_EXT_5400: return bfd_mach_mips5400;
14098 case AFL_EXT_5500: return bfd_mach_mips5500;
14099 case AFL_EXT_5900: return bfd_mach_mips5900;
14100 case AFL_EXT_10000: return bfd_mach_mips10000;
14101 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14102 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14103 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14104 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14105 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14106 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14107 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14108 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14109 default: return bfd_mach_mips3000;
14110 }
14111}
14112
351cdf24
MF
14113/* Return the .MIPS.abiflags value representing each ISA Extension. */
14114
14115unsigned int
14116bfd_mips_isa_ext (bfd *abfd)
14117{
14118 switch (bfd_get_mach (abfd))
14119 {
c97c330b
MF
14120 case bfd_mach_mips3900: return AFL_EXT_3900;
14121 case bfd_mach_mips4010: return AFL_EXT_4010;
14122 case bfd_mach_mips4100: return AFL_EXT_4100;
14123 case bfd_mach_mips4111: return AFL_EXT_4111;
14124 case bfd_mach_mips4120: return AFL_EXT_4120;
14125 case bfd_mach_mips4650: return AFL_EXT_4650;
14126 case bfd_mach_mips5400: return AFL_EXT_5400;
14127 case bfd_mach_mips5500: return AFL_EXT_5500;
14128 case bfd_mach_mips5900: return AFL_EXT_5900;
14129 case bfd_mach_mips10000: return AFL_EXT_10000;
14130 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14131 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14132 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14133 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14134 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14135 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14136 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14137 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14138 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
38bf472a
MR
14139 case bfd_mach_mips_interaptiv_mr2:
14140 return AFL_EXT_INTERAPTIV_MR2;
c97c330b
MF
14141 default: return 0;
14142 }
14143}
14144
14145/* Encode ISA level and revision as a single value. */
14146#define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14147
14148/* Decode a single value into level and revision. */
14149#define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14150#define ISA_REV(LEVREV) ((LEVREV) & 0x7)
351cdf24
MF
14151
14152/* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14153
14154static void
14155update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14156{
c97c330b 14157 int new_isa = 0;
351cdf24
MF
14158 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14159 {
c97c330b
MF
14160 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14161 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14162 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14163 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14164 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14165 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14166 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14167 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14168 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14169 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14170 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
351cdf24 14171 default:
4eca0228 14172 _bfd_error_handler
695344c0 14173 /* xgettext:c-format */
351cdf24
MF
14174 (_("%B: Unknown architecture %s"),
14175 abfd, bfd_printable_name (abfd));
14176 }
14177
c97c330b
MF
14178 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14179 {
14180 abiflags->isa_level = ISA_LEVEL (new_isa);
14181 abiflags->isa_rev = ISA_REV (new_isa);
14182 }
14183
14184 /* Update the isa_ext if ABFD describes a further extension. */
14185 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14186 bfd_get_mach (abfd)))
14187 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
351cdf24
MF
14188}
14189
14190/* Return true if the given ELF header flags describe a 32-bit binary. */
14191
14192static bfd_boolean
14193mips_32bit_flags_p (flagword flags)
14194{
14195 return ((flags & EF_MIPS_32BITMODE) != 0
14196 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14197 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14198 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14199 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14200 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
7361da2c
AB
14201 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14202 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
351cdf24
MF
14203}
14204
14205/* Infer the content of the ABI flags based on the elf header. */
14206
14207static void
14208infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14209{
14210 obj_attribute *in_attr;
14211
14212 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14213 update_mips_abiflags_isa (abfd, abiflags);
14214
14215 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14216 abiflags->gpr_size = AFL_REG_32;
14217 else
14218 abiflags->gpr_size = AFL_REG_64;
14219
14220 abiflags->cpr1_size = AFL_REG_NONE;
14221
14222 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14223 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14224
14225 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14226 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14227 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14228 && abiflags->gpr_size == AFL_REG_32))
14229 abiflags->cpr1_size = AFL_REG_32;
14230 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14231 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14232 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14233 abiflags->cpr1_size = AFL_REG_64;
14234
14235 abiflags->cpr2_size = AFL_REG_NONE;
14236
14237 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14238 abiflags->ases |= AFL_ASE_MDMX;
14239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14240 abiflags->ases |= AFL_ASE_MIPS16;
14241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14242 abiflags->ases |= AFL_ASE_MICROMIPS;
14243
14244 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14245 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14246 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14247 && abiflags->isa_level >= 32
14248 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14249 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14250}
14251
b49e97c9
TS
14252/* We need to use a special link routine to handle the .reginfo and
14253 the .mdebug sections. We need to merge all instances of these
14254 sections together, not write them all out sequentially. */
14255
b34976b6 14256bfd_boolean
9719ad41 14257_bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
b49e97c9 14258{
b49e97c9
TS
14259 asection *o;
14260 struct bfd_link_order *p;
14261 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
351cdf24 14262 asection *rtproc_sec, *abiflags_sec;
b49e97c9
TS
14263 Elf32_RegInfo reginfo;
14264 struct ecoff_debug_info debug;
861fb55a 14265 struct mips_htab_traverse_info hti;
7a2a6943
NC
14266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14267 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
b49e97c9 14268 HDRR *symhdr = &debug.symbolic_header;
9719ad41 14269 void *mdebug_handle = NULL;
b49e97c9
TS
14270 asection *s;
14271 EXTR esym;
14272 unsigned int i;
14273 bfd_size_type amt;
0a44bf69 14274 struct mips_elf_link_hash_table *htab;
b49e97c9
TS
14275
14276 static const char * const secname[] =
14277 {
14278 ".text", ".init", ".fini", ".data",
14279 ".rodata", ".sdata", ".sbss", ".bss"
14280 };
14281 static const int sc[] =
14282 {
14283 scText, scInit, scFini, scData,
14284 scRData, scSData, scSBss, scBss
14285 };
14286
0a44bf69 14287 htab = mips_elf_hash_table (info);
4dfe6ac6
NC
14288 BFD_ASSERT (htab != NULL);
14289
64575f78
MR
14290 /* Sort the dynamic symbols so that those with GOT entries come after
14291 those without. */
d4596a51
RS
14292 if (!mips_elf_sort_hash_table (abfd, info))
14293 return FALSE;
b49e97c9 14294
861fb55a
DJ
14295 /* Create any scheduled LA25 stubs. */
14296 hti.info = info;
14297 hti.output_bfd = abfd;
14298 hti.error = FALSE;
14299 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14300 if (hti.error)
14301 return FALSE;
14302
b49e97c9
TS
14303 /* Get a value for the GP register. */
14304 if (elf_gp (abfd) == 0)
14305 {
14306 struct bfd_link_hash_entry *h;
14307
b34976b6 14308 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9719ad41 14309 if (h != NULL && h->type == bfd_link_hash_defined)
b49e97c9
TS
14310 elf_gp (abfd) = (h->u.def.value
14311 + h->u.def.section->output_section->vma
14312 + h->u.def.section->output_offset);
0a44bf69
RS
14313 else if (htab->is_vxworks
14314 && (h = bfd_link_hash_lookup (info->hash,
14315 "_GLOBAL_OFFSET_TABLE_",
14316 FALSE, FALSE, TRUE))
14317 && h->type == bfd_link_hash_defined)
14318 elf_gp (abfd) = (h->u.def.section->output_section->vma
14319 + h->u.def.section->output_offset
14320 + h->u.def.value);
0e1862bb 14321 else if (bfd_link_relocatable (info))
b49e97c9
TS
14322 {
14323 bfd_vma lo = MINUS_ONE;
14324
14325 /* Find the GP-relative section with the lowest offset. */
9719ad41 14326 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9
TS
14327 if (o->vma < lo
14328 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14329 lo = o->vma;
14330
14331 /* And calculate GP relative to that. */
0a44bf69 14332 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
b49e97c9
TS
14333 }
14334 else
14335 {
14336 /* If the relocate_section function needs to do a reloc
14337 involving the GP value, it should make a reloc_dangerous
14338 callback to warn that GP is not defined. */
14339 }
14340 }
14341
14342 /* Go through the sections and collect the .reginfo and .mdebug
14343 information. */
351cdf24 14344 abiflags_sec = NULL;
b49e97c9
TS
14345 reginfo_sec = NULL;
14346 mdebug_sec = NULL;
14347 gptab_data_sec = NULL;
14348 gptab_bss_sec = NULL;
9719ad41 14349 for (o = abfd->sections; o != NULL; o = o->next)
b49e97c9 14350 {
351cdf24
MF
14351 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14352 {
14353 /* We have found the .MIPS.abiflags section in the output file.
14354 Look through all the link_orders comprising it and remove them.
14355 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14356 for (p = o->map_head.link_order; p != NULL; p = p->next)
14357 {
14358 asection *input_section;
14359
14360 if (p->type != bfd_indirect_link_order)
14361 {
14362 if (p->type == bfd_data_link_order)
14363 continue;
14364 abort ();
14365 }
14366
14367 input_section = p->u.indirect.section;
14368
14369 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14370 elf_link_input_bfd ignores this section. */
14371 input_section->flags &= ~SEC_HAS_CONTENTS;
14372 }
14373
14374 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14375 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14376
14377 /* Skip this section later on (I don't think this currently
14378 matters, but someday it might). */
14379 o->map_head.link_order = NULL;
14380
14381 abiflags_sec = o;
14382 }
14383
b49e97c9
TS
14384 if (strcmp (o->name, ".reginfo") == 0)
14385 {
14386 memset (&reginfo, 0, sizeof reginfo);
14387
14388 /* We have found the .reginfo section in the output file.
14389 Look through all the link_orders comprising it and merge
14390 the information together. */
8423293d 14391 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14392 {
14393 asection *input_section;
14394 bfd *input_bfd;
14395 Elf32_External_RegInfo ext;
14396 Elf32_RegInfo sub;
14397
14398 if (p->type != bfd_indirect_link_order)
14399 {
14400 if (p->type == bfd_data_link_order)
14401 continue;
14402 abort ();
14403 }
14404
14405 input_section = p->u.indirect.section;
14406 input_bfd = input_section->owner;
14407
b49e97c9 14408 if (! bfd_get_section_contents (input_bfd, input_section,
9719ad41 14409 &ext, 0, sizeof ext))
b34976b6 14410 return FALSE;
b49e97c9
TS
14411
14412 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14413
14414 reginfo.ri_gprmask |= sub.ri_gprmask;
14415 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14416 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14417 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14418 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14419
14420 /* ri_gp_value is set by the function
14421 mips_elf32_section_processing when the section is
14422 finally written out. */
14423
14424 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14425 elf_link_input_bfd ignores this section. */
14426 input_section->flags &= ~SEC_HAS_CONTENTS;
14427 }
14428
14429 /* Size has been set in _bfd_mips_elf_always_size_sections. */
eea6121a 14430 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
b49e97c9
TS
14431
14432 /* Skip this section later on (I don't think this currently
14433 matters, but someday it might). */
8423293d 14434 o->map_head.link_order = NULL;
b49e97c9
TS
14435
14436 reginfo_sec = o;
14437 }
14438
14439 if (strcmp (o->name, ".mdebug") == 0)
14440 {
14441 struct extsym_info einfo;
14442 bfd_vma last;
14443
14444 /* We have found the .mdebug section in the output file.
14445 Look through all the link_orders comprising it and merge
14446 the information together. */
14447 symhdr->magic = swap->sym_magic;
14448 /* FIXME: What should the version stamp be? */
14449 symhdr->vstamp = 0;
14450 symhdr->ilineMax = 0;
14451 symhdr->cbLine = 0;
14452 symhdr->idnMax = 0;
14453 symhdr->ipdMax = 0;
14454 symhdr->isymMax = 0;
14455 symhdr->ioptMax = 0;
14456 symhdr->iauxMax = 0;
14457 symhdr->issMax = 0;
14458 symhdr->issExtMax = 0;
14459 symhdr->ifdMax = 0;
14460 symhdr->crfd = 0;
14461 symhdr->iextMax = 0;
14462
14463 /* We accumulate the debugging information itself in the
14464 debug_info structure. */
14465 debug.line = NULL;
14466 debug.external_dnr = NULL;
14467 debug.external_pdr = NULL;
14468 debug.external_sym = NULL;
14469 debug.external_opt = NULL;
14470 debug.external_aux = NULL;
14471 debug.ss = NULL;
14472 debug.ssext = debug.ssext_end = NULL;
14473 debug.external_fdr = NULL;
14474 debug.external_rfd = NULL;
14475 debug.external_ext = debug.external_ext_end = NULL;
14476
14477 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9719ad41 14478 if (mdebug_handle == NULL)
b34976b6 14479 return FALSE;
b49e97c9
TS
14480
14481 esym.jmptbl = 0;
14482 esym.cobol_main = 0;
14483 esym.weakext = 0;
14484 esym.reserved = 0;
14485 esym.ifd = ifdNil;
14486 esym.asym.iss = issNil;
14487 esym.asym.st = stLocal;
14488 esym.asym.reserved = 0;
14489 esym.asym.index = indexNil;
14490 last = 0;
14491 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14492 {
14493 esym.asym.sc = sc[i];
14494 s = bfd_get_section_by_name (abfd, secname[i]);
14495 if (s != NULL)
14496 {
14497 esym.asym.value = s->vma;
eea6121a 14498 last = s->vma + s->size;
b49e97c9
TS
14499 }
14500 else
14501 esym.asym.value = last;
14502 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14503 secname[i], &esym))
b34976b6 14504 return FALSE;
b49e97c9
TS
14505 }
14506
8423293d 14507 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14508 {
14509 asection *input_section;
14510 bfd *input_bfd;
14511 const struct ecoff_debug_swap *input_swap;
14512 struct ecoff_debug_info input_debug;
14513 char *eraw_src;
14514 char *eraw_end;
14515
14516 if (p->type != bfd_indirect_link_order)
14517 {
14518 if (p->type == bfd_data_link_order)
14519 continue;
14520 abort ();
14521 }
14522
14523 input_section = p->u.indirect.section;
14524 input_bfd = input_section->owner;
14525
d5eaccd7 14526 if (!is_mips_elf (input_bfd))
b49e97c9
TS
14527 {
14528 /* I don't know what a non MIPS ELF bfd would be
14529 doing with a .mdebug section, but I don't really
14530 want to deal with it. */
14531 continue;
14532 }
14533
14534 input_swap = (get_elf_backend_data (input_bfd)
14535 ->elf_backend_ecoff_debug_swap);
14536
eea6121a 14537 BFD_ASSERT (p->size == input_section->size);
b49e97c9
TS
14538
14539 /* The ECOFF linking code expects that we have already
14540 read in the debugging information and set up an
14541 ecoff_debug_info structure, so we do that now. */
14542 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14543 &input_debug))
b34976b6 14544 return FALSE;
b49e97c9
TS
14545
14546 if (! (bfd_ecoff_debug_accumulate
14547 (mdebug_handle, abfd, &debug, swap, input_bfd,
14548 &input_debug, input_swap, info)))
b34976b6 14549 return FALSE;
b49e97c9
TS
14550
14551 /* Loop through the external symbols. For each one with
14552 interesting information, try to find the symbol in
14553 the linker global hash table and save the information
14554 for the output external symbols. */
14555 eraw_src = input_debug.external_ext;
14556 eraw_end = (eraw_src
14557 + (input_debug.symbolic_header.iextMax
14558 * input_swap->external_ext_size));
14559 for (;
14560 eraw_src < eraw_end;
14561 eraw_src += input_swap->external_ext_size)
14562 {
14563 EXTR ext;
14564 const char *name;
14565 struct mips_elf_link_hash_entry *h;
14566
9719ad41 14567 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
b49e97c9
TS
14568 if (ext.asym.sc == scNil
14569 || ext.asym.sc == scUndefined
14570 || ext.asym.sc == scSUndefined)
14571 continue;
14572
14573 name = input_debug.ssext + ext.asym.iss;
14574 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
b34976b6 14575 name, FALSE, FALSE, TRUE);
b49e97c9
TS
14576 if (h == NULL || h->esym.ifd != -2)
14577 continue;
14578
14579 if (ext.ifd != -1)
14580 {
14581 BFD_ASSERT (ext.ifd
14582 < input_debug.symbolic_header.ifdMax);
14583 ext.ifd = input_debug.ifdmap[ext.ifd];
14584 }
14585
14586 h->esym = ext;
14587 }
14588
14589 /* Free up the information we just read. */
14590 free (input_debug.line);
14591 free (input_debug.external_dnr);
14592 free (input_debug.external_pdr);
14593 free (input_debug.external_sym);
14594 free (input_debug.external_opt);
14595 free (input_debug.external_aux);
14596 free (input_debug.ss);
14597 free (input_debug.ssext);
14598 free (input_debug.external_fdr);
14599 free (input_debug.external_rfd);
14600 free (input_debug.external_ext);
14601
14602 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14603 elf_link_input_bfd ignores this section. */
14604 input_section->flags &= ~SEC_HAS_CONTENTS;
14605 }
14606
0e1862bb 14607 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
b49e97c9
TS
14608 {
14609 /* Create .rtproc section. */
87e0a731 14610 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
b49e97c9
TS
14611 if (rtproc_sec == NULL)
14612 {
14613 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14614 | SEC_LINKER_CREATED | SEC_READONLY);
14615
87e0a731
AM
14616 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14617 ".rtproc",
14618 flags);
b49e97c9 14619 if (rtproc_sec == NULL
b49e97c9 14620 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
b34976b6 14621 return FALSE;
b49e97c9
TS
14622 }
14623
14624 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14625 info, rtproc_sec,
14626 &debug))
b34976b6 14627 return FALSE;
b49e97c9
TS
14628 }
14629
14630 /* Build the external symbol information. */
14631 einfo.abfd = abfd;
14632 einfo.info = info;
14633 einfo.debug = &debug;
14634 einfo.swap = swap;
b34976b6 14635 einfo.failed = FALSE;
b49e97c9 14636 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9719ad41 14637 mips_elf_output_extsym, &einfo);
b49e97c9 14638 if (einfo.failed)
b34976b6 14639 return FALSE;
b49e97c9
TS
14640
14641 /* Set the size of the .mdebug section. */
eea6121a 14642 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
b49e97c9
TS
14643
14644 /* Skip this section later on (I don't think this currently
14645 matters, but someday it might). */
8423293d 14646 o->map_head.link_order = NULL;
b49e97c9
TS
14647
14648 mdebug_sec = o;
14649 }
14650
0112cd26 14651 if (CONST_STRNEQ (o->name, ".gptab."))
b49e97c9
TS
14652 {
14653 const char *subname;
14654 unsigned int c;
14655 Elf32_gptab *tab;
14656 Elf32_External_gptab *ext_tab;
14657 unsigned int j;
14658
14659 /* The .gptab.sdata and .gptab.sbss sections hold
14660 information describing how the small data area would
14661 change depending upon the -G switch. These sections
14662 not used in executables files. */
0e1862bb 14663 if (! bfd_link_relocatable (info))
b49e97c9 14664 {
8423293d 14665 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14666 {
14667 asection *input_section;
14668
14669 if (p->type != bfd_indirect_link_order)
14670 {
14671 if (p->type == bfd_data_link_order)
14672 continue;
14673 abort ();
14674 }
14675
14676 input_section = p->u.indirect.section;
14677
14678 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14679 elf_link_input_bfd ignores this section. */
14680 input_section->flags &= ~SEC_HAS_CONTENTS;
14681 }
14682
14683 /* Skip this section later on (I don't think this
14684 currently matters, but someday it might). */
8423293d 14685 o->map_head.link_order = NULL;
b49e97c9
TS
14686
14687 /* Really remove the section. */
5daa8fe7 14688 bfd_section_list_remove (abfd, o);
b49e97c9
TS
14689 --abfd->section_count;
14690
14691 continue;
14692 }
14693
14694 /* There is one gptab for initialized data, and one for
14695 uninitialized data. */
14696 if (strcmp (o->name, ".gptab.sdata") == 0)
14697 gptab_data_sec = o;
14698 else if (strcmp (o->name, ".gptab.sbss") == 0)
14699 gptab_bss_sec = o;
14700 else
14701 {
4eca0228 14702 _bfd_error_handler
695344c0 14703 /* xgettext:c-format */
dae82561 14704 (_("%B: illegal section name `%A'"), abfd, o);
b49e97c9 14705 bfd_set_error (bfd_error_nonrepresentable_section);
b34976b6 14706 return FALSE;
b49e97c9
TS
14707 }
14708
14709 /* The linker script always combines .gptab.data and
14710 .gptab.sdata into .gptab.sdata, and likewise for
14711 .gptab.bss and .gptab.sbss. It is possible that there is
14712 no .sdata or .sbss section in the output file, in which
14713 case we must change the name of the output section. */
14714 subname = o->name + sizeof ".gptab" - 1;
14715 if (bfd_get_section_by_name (abfd, subname) == NULL)
14716 {
14717 if (o == gptab_data_sec)
14718 o->name = ".gptab.data";
14719 else
14720 o->name = ".gptab.bss";
14721 subname = o->name + sizeof ".gptab" - 1;
14722 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14723 }
14724
14725 /* Set up the first entry. */
14726 c = 1;
14727 amt = c * sizeof (Elf32_gptab);
9719ad41 14728 tab = bfd_malloc (amt);
b49e97c9 14729 if (tab == NULL)
b34976b6 14730 return FALSE;
b49e97c9
TS
14731 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14732 tab[0].gt_header.gt_unused = 0;
14733
14734 /* Combine the input sections. */
8423293d 14735 for (p = o->map_head.link_order; p != NULL; p = p->next)
b49e97c9
TS
14736 {
14737 asection *input_section;
14738 bfd *input_bfd;
14739 bfd_size_type size;
14740 unsigned long last;
14741 bfd_size_type gpentry;
14742
14743 if (p->type != bfd_indirect_link_order)
14744 {
14745 if (p->type == bfd_data_link_order)
14746 continue;
14747 abort ();
14748 }
14749
14750 input_section = p->u.indirect.section;
14751 input_bfd = input_section->owner;
14752
14753 /* Combine the gptab entries for this input section one
14754 by one. We know that the input gptab entries are
14755 sorted by ascending -G value. */
eea6121a 14756 size = input_section->size;
b49e97c9
TS
14757 last = 0;
14758 for (gpentry = sizeof (Elf32_External_gptab);
14759 gpentry < size;
14760 gpentry += sizeof (Elf32_External_gptab))
14761 {
14762 Elf32_External_gptab ext_gptab;
14763 Elf32_gptab int_gptab;
14764 unsigned long val;
14765 unsigned long add;
b34976b6 14766 bfd_boolean exact;
b49e97c9
TS
14767 unsigned int look;
14768
14769 if (! (bfd_get_section_contents
9719ad41
RS
14770 (input_bfd, input_section, &ext_gptab, gpentry,
14771 sizeof (Elf32_External_gptab))))
b49e97c9
TS
14772 {
14773 free (tab);
b34976b6 14774 return FALSE;
b49e97c9
TS
14775 }
14776
14777 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14778 &int_gptab);
14779 val = int_gptab.gt_entry.gt_g_value;
14780 add = int_gptab.gt_entry.gt_bytes - last;
14781
b34976b6 14782 exact = FALSE;
b49e97c9
TS
14783 for (look = 1; look < c; look++)
14784 {
14785 if (tab[look].gt_entry.gt_g_value >= val)
14786 tab[look].gt_entry.gt_bytes += add;
14787
14788 if (tab[look].gt_entry.gt_g_value == val)
b34976b6 14789 exact = TRUE;
b49e97c9
TS
14790 }
14791
14792 if (! exact)
14793 {
14794 Elf32_gptab *new_tab;
14795 unsigned int max;
14796
14797 /* We need a new table entry. */
14798 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9719ad41 14799 new_tab = bfd_realloc (tab, amt);
b49e97c9
TS
14800 if (new_tab == NULL)
14801 {
14802 free (tab);
b34976b6 14803 return FALSE;
b49e97c9
TS
14804 }
14805 tab = new_tab;
14806 tab[c].gt_entry.gt_g_value = val;
14807 tab[c].gt_entry.gt_bytes = add;
14808
14809 /* Merge in the size for the next smallest -G
14810 value, since that will be implied by this new
14811 value. */
14812 max = 0;
14813 for (look = 1; look < c; look++)
14814 {
14815 if (tab[look].gt_entry.gt_g_value < val
14816 && (max == 0
14817 || (tab[look].gt_entry.gt_g_value
14818 > tab[max].gt_entry.gt_g_value)))
14819 max = look;
14820 }
14821 if (max != 0)
14822 tab[c].gt_entry.gt_bytes +=
14823 tab[max].gt_entry.gt_bytes;
14824
14825 ++c;
14826 }
14827
14828 last = int_gptab.gt_entry.gt_bytes;
14829 }
14830
14831 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14832 elf_link_input_bfd ignores this section. */
14833 input_section->flags &= ~SEC_HAS_CONTENTS;
14834 }
14835
14836 /* The table must be sorted by -G value. */
14837 if (c > 2)
14838 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14839
14840 /* Swap out the table. */
14841 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9719ad41 14842 ext_tab = bfd_alloc (abfd, amt);
b49e97c9
TS
14843 if (ext_tab == NULL)
14844 {
14845 free (tab);
b34976b6 14846 return FALSE;
b49e97c9
TS
14847 }
14848
14849 for (j = 0; j < c; j++)
14850 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14851 free (tab);
14852
eea6121a 14853 o->size = c * sizeof (Elf32_External_gptab);
b49e97c9
TS
14854 o->contents = (bfd_byte *) ext_tab;
14855
14856 /* Skip this section later on (I don't think this currently
14857 matters, but someday it might). */
8423293d 14858 o->map_head.link_order = NULL;
b49e97c9
TS
14859 }
14860 }
14861
14862 /* Invoke the regular ELF backend linker to do all the work. */
c152c796 14863 if (!bfd_elf_final_link (abfd, info))
b34976b6 14864 return FALSE;
b49e97c9
TS
14865
14866 /* Now write out the computed sections. */
14867
351cdf24
MF
14868 if (abiflags_sec != NULL)
14869 {
14870 Elf_External_ABIFlags_v0 ext;
14871 Elf_Internal_ABIFlags_v0 *abiflags;
14872
14873 abiflags = &mips_elf_tdata (abfd)->abiflags;
14874
14875 /* Set up the abiflags if no valid input sections were found. */
14876 if (!mips_elf_tdata (abfd)->abiflags_valid)
14877 {
14878 infer_mips_abiflags (abfd, abiflags);
14879 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14880 }
14881 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14882 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14883 return FALSE;
14884 }
14885
9719ad41 14886 if (reginfo_sec != NULL)
b49e97c9
TS
14887 {
14888 Elf32_External_RegInfo ext;
14889
14890 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9719ad41 14891 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
b34976b6 14892 return FALSE;
b49e97c9
TS
14893 }
14894
9719ad41 14895 if (mdebug_sec != NULL)
b49e97c9
TS
14896 {
14897 BFD_ASSERT (abfd->output_has_begun);
14898 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14899 swap, info,
14900 mdebug_sec->filepos))
b34976b6 14901 return FALSE;
b49e97c9
TS
14902
14903 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14904 }
14905
9719ad41 14906 if (gptab_data_sec != NULL)
b49e97c9
TS
14907 {
14908 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14909 gptab_data_sec->contents,
eea6121a 14910 0, gptab_data_sec->size))
b34976b6 14911 return FALSE;
b49e97c9
TS
14912 }
14913
9719ad41 14914 if (gptab_bss_sec != NULL)
b49e97c9
TS
14915 {
14916 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14917 gptab_bss_sec->contents,
eea6121a 14918 0, gptab_bss_sec->size))
b34976b6 14919 return FALSE;
b49e97c9
TS
14920 }
14921
14922 if (SGI_COMPAT (abfd))
14923 {
14924 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14925 if (rtproc_sec != NULL)
14926 {
14927 if (! bfd_set_section_contents (abfd, rtproc_sec,
14928 rtproc_sec->contents,
eea6121a 14929 0, rtproc_sec->size))
b34976b6 14930 return FALSE;
b49e97c9
TS
14931 }
14932 }
14933
b34976b6 14934 return TRUE;
b49e97c9
TS
14935}
14936\f
b2e9744f
MR
14937/* Merge object file header flags from IBFD into OBFD. Raise an error
14938 if there are conflicting settings. */
14939
14940static bfd_boolean
50e03d47 14941mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
b2e9744f 14942{
50e03d47 14943 bfd *obfd = info->output_bfd;
b2e9744f
MR
14944 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14945 flagword old_flags;
14946 flagword new_flags;
14947 bfd_boolean ok;
14948
14949 new_flags = elf_elfheader (ibfd)->e_flags;
14950 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14951 old_flags = elf_elfheader (obfd)->e_flags;
14952
14953 /* Check flag compatibility. */
14954
14955 new_flags &= ~EF_MIPS_NOREORDER;
14956 old_flags &= ~EF_MIPS_NOREORDER;
14957
14958 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14959 doesn't seem to matter. */
14960 new_flags &= ~EF_MIPS_XGOT;
14961 old_flags &= ~EF_MIPS_XGOT;
14962
14963 /* MIPSpro generates ucode info in n64 objects. Again, we should
14964 just be able to ignore this. */
14965 new_flags &= ~EF_MIPS_UCODE;
14966 old_flags &= ~EF_MIPS_UCODE;
14967
14968 /* DSOs should only be linked with CPIC code. */
14969 if ((ibfd->flags & DYNAMIC) != 0)
14970 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14971
14972 if (new_flags == old_flags)
14973 return TRUE;
14974
14975 ok = TRUE;
14976
14977 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14978 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14979 {
4eca0228 14980 _bfd_error_handler
b2e9744f
MR
14981 (_("%B: warning: linking abicalls files with non-abicalls files"),
14982 ibfd);
14983 ok = TRUE;
14984 }
14985
14986 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14987 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14988 if (! (new_flags & EF_MIPS_PIC))
14989 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14990
14991 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14992 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14993
14994 /* Compare the ISAs. */
14995 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14996 {
4eca0228 14997 _bfd_error_handler
b2e9744f
MR
14998 (_("%B: linking 32-bit code with 64-bit code"),
14999 ibfd);
15000 ok = FALSE;
15001 }
15002 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15003 {
15004 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15005 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15006 {
15007 /* Copy the architecture info from IBFD to OBFD. Also copy
15008 the 32-bit flag (if set) so that we continue to recognise
15009 OBFD as a 32-bit binary. */
15010 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15011 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15012 elf_elfheader (obfd)->e_flags
15013 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15014
15015 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15016 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15017
15018 /* Copy across the ABI flags if OBFD doesn't use them
15019 and if that was what caused us to treat IBFD as 32-bit. */
15020 if ((old_flags & EF_MIPS_ABI) == 0
15021 && mips_32bit_flags_p (new_flags)
15022 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15023 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15024 }
15025 else
15026 {
15027 /* The ISAs aren't compatible. */
4eca0228 15028 _bfd_error_handler
695344c0 15029 /* xgettext:c-format */
b2e9744f
MR
15030 (_("%B: linking %s module with previous %s modules"),
15031 ibfd,
15032 bfd_printable_name (ibfd),
15033 bfd_printable_name (obfd));
15034 ok = FALSE;
15035 }
15036 }
15037
15038 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15039 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15040
15041 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15042 does set EI_CLASS differently from any 32-bit ABI. */
15043 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15044 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15045 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15046 {
15047 /* Only error if both are set (to different values). */
15048 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15049 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15050 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15051 {
4eca0228 15052 _bfd_error_handler
695344c0 15053 /* xgettext:c-format */
b2e9744f
MR
15054 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15055 ibfd,
15056 elf_mips_abi_name (ibfd),
15057 elf_mips_abi_name (obfd));
15058 ok = FALSE;
15059 }
15060 new_flags &= ~EF_MIPS_ABI;
15061 old_flags &= ~EF_MIPS_ABI;
15062 }
15063
15064 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15065 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15066 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15067 {
15068 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15069 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15070 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15071 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15072 int micro_mis = old_m16 && new_micro;
15073 int m16_mis = old_micro && new_m16;
15074
15075 if (m16_mis || micro_mis)
15076 {
4eca0228 15077 _bfd_error_handler
695344c0 15078 /* xgettext:c-format */
b2e9744f
MR
15079 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15080 ibfd,
15081 m16_mis ? "MIPS16" : "microMIPS",
15082 m16_mis ? "microMIPS" : "MIPS16");
15083 ok = FALSE;
15084 }
15085
15086 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15087
15088 new_flags &= ~ EF_MIPS_ARCH_ASE;
15089 old_flags &= ~ EF_MIPS_ARCH_ASE;
15090 }
15091
15092 /* Compare NaN encodings. */
15093 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15094 {
695344c0 15095 /* xgettext:c-format */
b2e9744f
MR
15096 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15097 ibfd,
15098 (new_flags & EF_MIPS_NAN2008
15099 ? "-mnan=2008" : "-mnan=legacy"),
15100 (old_flags & EF_MIPS_NAN2008
15101 ? "-mnan=2008" : "-mnan=legacy"));
15102 ok = FALSE;
15103 new_flags &= ~EF_MIPS_NAN2008;
15104 old_flags &= ~EF_MIPS_NAN2008;
15105 }
15106
15107 /* Compare FP64 state. */
15108 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15109 {
695344c0 15110 /* xgettext:c-format */
b2e9744f
MR
15111 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15112 ibfd,
15113 (new_flags & EF_MIPS_FP64
15114 ? "-mfp64" : "-mfp32"),
15115 (old_flags & EF_MIPS_FP64
15116 ? "-mfp64" : "-mfp32"));
15117 ok = FALSE;
15118 new_flags &= ~EF_MIPS_FP64;
15119 old_flags &= ~EF_MIPS_FP64;
15120 }
15121
15122 /* Warn about any other mismatches */
15123 if (new_flags != old_flags)
15124 {
695344c0 15125 /* xgettext:c-format */
4eca0228 15126 _bfd_error_handler
d42c267e
AM
15127 (_("%B: uses different e_flags (%#x) fields than previous modules "
15128 "(%#x)"),
15129 ibfd, new_flags, old_flags);
b2e9744f
MR
15130 ok = FALSE;
15131 }
15132
15133 return ok;
15134}
15135
2cf19d5c
JM
15136/* Merge object attributes from IBFD into OBFD. Raise an error if
15137 there are conflicting attributes. */
15138static bfd_boolean
50e03d47 15139mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
2cf19d5c 15140{
50e03d47 15141 bfd *obfd = info->output_bfd;
2cf19d5c
JM
15142 obj_attribute *in_attr;
15143 obj_attribute *out_attr;
6ae68ba3 15144 bfd *abi_fp_bfd;
b60bf9be 15145 bfd *abi_msa_bfd;
6ae68ba3
MR
15146
15147 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15148 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
d929bc19 15149 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
6ae68ba3 15150 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
2cf19d5c 15151
b60bf9be
CF
15152 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15153 if (!abi_msa_bfd
15154 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15155 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15156
2cf19d5c
JM
15157 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15158 {
15159 /* This is the first object. Copy the attributes. */
15160 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15161
15162 /* Use the Tag_null value to indicate the attributes have been
15163 initialized. */
15164 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15165
15166 return TRUE;
15167 }
15168
15169 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15170 non-conflicting ones. */
2cf19d5c
JM
15171 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15172 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15173 {
757a636f 15174 int out_fp, in_fp;
6ae68ba3 15175
757a636f
RS
15176 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15177 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15178 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15179 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15180 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
351cdf24
MF
15181 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15182 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15183 || in_fp == Val_GNU_MIPS_ABI_FP_64
15184 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15185 {
15186 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15187 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15188 }
15189 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15190 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15191 || out_fp == Val_GNU_MIPS_ABI_FP_64
15192 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15193 /* Keep the current setting. */;
15194 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15195 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15196 {
15197 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15198 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15199 }
15200 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15201 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15202 /* Keep the current setting. */;
757a636f
RS
15203 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15204 {
15205 const char *out_string, *in_string;
6ae68ba3 15206
757a636f
RS
15207 out_string = _bfd_mips_fp_abi_string (out_fp);
15208 in_string = _bfd_mips_fp_abi_string (in_fp);
15209 /* First warn about cases involving unrecognised ABIs. */
15210 if (!out_string && !in_string)
695344c0 15211 /* xgettext:c-format */
757a636f
RS
15212 _bfd_error_handler
15213 (_("Warning: %B uses unknown floating point ABI %d "
15214 "(set by %B), %B uses unknown floating point ABI %d"),
c08bb8dd 15215 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15216 else if (!out_string)
15217 _bfd_error_handler
695344c0 15218 /* xgettext:c-format */
757a636f
RS
15219 (_("Warning: %B uses unknown floating point ABI %d "
15220 "(set by %B), %B uses %s"),
c08bb8dd 15221 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15222 else if (!in_string)
15223 _bfd_error_handler
695344c0 15224 /* xgettext:c-format */
757a636f
RS
15225 (_("Warning: %B uses %s (set by %B), "
15226 "%B uses unknown floating point ABI %d"),
c08bb8dd 15227 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
757a636f
RS
15228 else
15229 {
15230 /* If one of the bfds is soft-float, the other must be
15231 hard-float. The exact choice of hard-float ABI isn't
15232 really relevant to the error message. */
15233 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15234 out_string = "-mhard-float";
15235 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15236 in_string = "-mhard-float";
15237 _bfd_error_handler
695344c0 15238 /* xgettext:c-format */
757a636f 15239 (_("Warning: %B uses %s (set by %B), %B uses %s"),
c08bb8dd 15240 obfd, out_string, abi_fp_bfd, ibfd, in_string);
757a636f
RS
15241 }
15242 }
2cf19d5c
JM
15243 }
15244
b60bf9be
CF
15245 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15246 non-conflicting ones. */
15247 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15248 {
15249 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15250 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15251 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15252 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15253 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15254 {
15255 case Val_GNU_MIPS_ABI_MSA_128:
15256 _bfd_error_handler
695344c0 15257 /* xgettext:c-format */
b60bf9be
CF
15258 (_("Warning: %B uses %s (set by %B), "
15259 "%B uses unknown MSA ABI %d"),
c08bb8dd
AM
15260 obfd, "-mmsa", abi_msa_bfd,
15261 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15262 break;
15263
15264 default:
15265 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15266 {
15267 case Val_GNU_MIPS_ABI_MSA_128:
15268 _bfd_error_handler
695344c0 15269 /* xgettext:c-format */
b60bf9be
CF
15270 (_("Warning: %B uses unknown MSA ABI %d "
15271 "(set by %B), %B uses %s"),
c08bb8dd
AM
15272 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15273 abi_msa_bfd, ibfd, "-mmsa");
b60bf9be
CF
15274 break;
15275
15276 default:
15277 _bfd_error_handler
695344c0 15278 /* xgettext:c-format */
b60bf9be
CF
15279 (_("Warning: %B uses unknown MSA ABI %d "
15280 "(set by %B), %B uses unknown MSA ABI %d"),
c08bb8dd
AM
15281 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15282 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
b60bf9be
CF
15283 break;
15284 }
15285 }
15286 }
15287
2cf19d5c 15288 /* Merge Tag_compatibility attributes and any common GNU ones. */
50e03d47 15289 return _bfd_elf_merge_object_attributes (ibfd, info);
2cf19d5c
JM
15290}
15291
a3dc0a7f
MR
15292/* Merge object ABI flags from IBFD into OBFD. Raise an error if
15293 there are conflicting settings. */
15294
15295static bfd_boolean
15296mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15297{
15298 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15299 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15300 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15301
15302 /* Update the output abiflags fp_abi using the computed fp_abi. */
15303 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15304
15305#define max(a, b) ((a) > (b) ? (a) : (b))
15306 /* Merge abiflags. */
15307 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15308 in_tdata->abiflags.isa_level);
15309 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15310 in_tdata->abiflags.isa_rev);
15311 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15312 in_tdata->abiflags.gpr_size);
15313 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15314 in_tdata->abiflags.cpr1_size);
15315 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15316 in_tdata->abiflags.cpr2_size);
15317#undef max
15318 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15319 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15320
15321 return TRUE;
15322}
15323
b49e97c9
TS
15324/* Merge backend specific data from an object file to the output
15325 object file when linking. */
15326
b34976b6 15327bfd_boolean
50e03d47 15328_bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
b49e97c9 15329{
50e03d47 15330 bfd *obfd = info->output_bfd;
cf8502c1
MR
15331 struct mips_elf_obj_tdata *out_tdata;
15332 struct mips_elf_obj_tdata *in_tdata;
b34976b6 15333 bfd_boolean null_input_bfd = TRUE;
b49e97c9 15334 asection *sec;
d537eeb5 15335 bfd_boolean ok;
b49e97c9 15336
58238693 15337 /* Check if we have the same endianness. */
50e03d47 15338 if (! _bfd_generic_verify_endian_match (ibfd, info))
aa701218 15339 {
4eca0228 15340 _bfd_error_handler
d003868e
AM
15341 (_("%B: endianness incompatible with that of the selected emulation"),
15342 ibfd);
aa701218
AO
15343 return FALSE;
15344 }
b49e97c9 15345
d5eaccd7 15346 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
b34976b6 15347 return TRUE;
b49e97c9 15348
cf8502c1
MR
15349 in_tdata = mips_elf_tdata (ibfd);
15350 out_tdata = mips_elf_tdata (obfd);
15351
aa701218
AO
15352 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15353 {
4eca0228 15354 _bfd_error_handler
d003868e
AM
15355 (_("%B: ABI is incompatible with that of the selected emulation"),
15356 ibfd);
aa701218
AO
15357 return FALSE;
15358 }
15359
23ba6f18
MR
15360 /* Check to see if the input BFD actually contains any sections. If not,
15361 then it has no attributes, and its flags may not have been initialized
15362 either, but it cannot actually cause any incompatibility. */
351cdf24
MF
15363 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15364 {
15365 /* Ignore synthetic sections and empty .text, .data and .bss sections
15366 which are automatically generated by gas. Also ignore fake
15367 (s)common sections, since merely defining a common symbol does
15368 not affect compatibility. */
15369 if ((sec->flags & SEC_IS_COMMON) == 0
15370 && strcmp (sec->name, ".reginfo")
15371 && strcmp (sec->name, ".mdebug")
15372 && (sec->size != 0
15373 || (strcmp (sec->name, ".text")
15374 && strcmp (sec->name, ".data")
15375 && strcmp (sec->name, ".bss"))))
15376 {
15377 null_input_bfd = FALSE;
15378 break;
15379 }
15380 }
15381 if (null_input_bfd)
15382 return TRUE;
15383
28d45e28 15384 /* Populate abiflags using existing information. */
23ba6f18
MR
15385 if (in_tdata->abiflags_valid)
15386 {
15387 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
28d45e28
MR
15388 Elf_Internal_ABIFlags_v0 in_abiflags;
15389 Elf_Internal_ABIFlags_v0 abiflags;
15390
15391 /* Set up the FP ABI attribute from the abiflags if it is not already
15392 set. */
23ba6f18
MR
15393 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15394 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
23ba6f18 15395
351cdf24 15396 infer_mips_abiflags (ibfd, &abiflags);
cf8502c1 15397 in_abiflags = in_tdata->abiflags;
351cdf24
MF
15398
15399 /* It is not possible to infer the correct ISA revision
15400 for R3 or R5 so drop down to R2 for the checks. */
15401 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15402 in_abiflags.isa_rev = 2;
15403
c97c330b
MF
15404 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15405 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
4eca0228 15406 _bfd_error_handler
351cdf24
MF
15407 (_("%B: warning: Inconsistent ISA between e_flags and "
15408 ".MIPS.abiflags"), ibfd);
15409 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15410 && in_abiflags.fp_abi != abiflags.fp_abi)
4eca0228 15411 _bfd_error_handler
dcb1c796 15412 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
351cdf24
MF
15413 ".MIPS.abiflags"), ibfd);
15414 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
4eca0228 15415 _bfd_error_handler
351cdf24
MF
15416 (_("%B: warning: Inconsistent ASEs between e_flags and "
15417 ".MIPS.abiflags"), ibfd);
c97c330b
MF
15418 /* The isa_ext is allowed to be an extension of what can be inferred
15419 from e_flags. */
15420 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15421 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
4eca0228 15422 _bfd_error_handler
351cdf24
MF
15423 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15424 ".MIPS.abiflags"), ibfd);
15425 if (in_abiflags.flags2 != 0)
4eca0228 15426 _bfd_error_handler
351cdf24
MF
15427 (_("%B: warning: Unexpected flag in the flags2 field of "
15428 ".MIPS.abiflags (0x%lx)"), ibfd,
d42c267e 15429 in_abiflags.flags2);
351cdf24 15430 }
28d45e28
MR
15431 else
15432 {
15433 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15434 in_tdata->abiflags_valid = TRUE;
15435 }
15436
cf8502c1 15437 if (!out_tdata->abiflags_valid)
351cdf24
MF
15438 {
15439 /* Copy input abiflags if output abiflags are not already valid. */
cf8502c1
MR
15440 out_tdata->abiflags = in_tdata->abiflags;
15441 out_tdata->abiflags_valid = TRUE;
351cdf24 15442 }
b49e97c9
TS
15443
15444 if (! elf_flags_init (obfd))
15445 {
b34976b6 15446 elf_flags_init (obfd) = TRUE;
351cdf24 15447 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
b49e97c9
TS
15448 elf_elfheader (obfd)->e_ident[EI_CLASS]
15449 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15450
15451 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2907b861 15452 && (bfd_get_arch_info (obfd)->the_default
68ffbac6 15453 || mips_mach_extends_p (bfd_get_mach (obfd),
2907b861 15454 bfd_get_mach (ibfd))))
b49e97c9
TS
15455 {
15456 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15457 bfd_get_mach (ibfd)))
b34976b6 15458 return FALSE;
351cdf24
MF
15459
15460 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
cf8502c1 15461 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
b49e97c9
TS
15462 }
15463
d537eeb5 15464 ok = TRUE;
b49e97c9 15465 }
d537eeb5 15466 else
50e03d47 15467 ok = mips_elf_merge_obj_e_flags (ibfd, info);
d537eeb5 15468
50e03d47 15469 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
b49e97c9 15470
a3dc0a7f 15471 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
351cdf24 15472
d537eeb5 15473 if (!ok)
b49e97c9
TS
15474 {
15475 bfd_set_error (bfd_error_bad_value);
b34976b6 15476 return FALSE;
b49e97c9
TS
15477 }
15478
b34976b6 15479 return TRUE;
b49e97c9
TS
15480}
15481
15482/* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15483
b34976b6 15484bfd_boolean
9719ad41 15485_bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
b49e97c9
TS
15486{
15487 BFD_ASSERT (!elf_flags_init (abfd)
15488 || elf_elfheader (abfd)->e_flags == flags);
15489
15490 elf_elfheader (abfd)->e_flags = flags;
b34976b6
AM
15491 elf_flags_init (abfd) = TRUE;
15492 return TRUE;
b49e97c9
TS
15493}
15494
ad9563d6
CM
15495char *
15496_bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15497{
15498 switch (dtag)
15499 {
15500 default: return "";
15501 case DT_MIPS_RLD_VERSION:
15502 return "MIPS_RLD_VERSION";
15503 case DT_MIPS_TIME_STAMP:
15504 return "MIPS_TIME_STAMP";
15505 case DT_MIPS_ICHECKSUM:
15506 return "MIPS_ICHECKSUM";
15507 case DT_MIPS_IVERSION:
15508 return "MIPS_IVERSION";
15509 case DT_MIPS_FLAGS:
15510 return "MIPS_FLAGS";
15511 case DT_MIPS_BASE_ADDRESS:
15512 return "MIPS_BASE_ADDRESS";
15513 case DT_MIPS_MSYM:
15514 return "MIPS_MSYM";
15515 case DT_MIPS_CONFLICT:
15516 return "MIPS_CONFLICT";
15517 case DT_MIPS_LIBLIST:
15518 return "MIPS_LIBLIST";
15519 case DT_MIPS_LOCAL_GOTNO:
15520 return "MIPS_LOCAL_GOTNO";
15521 case DT_MIPS_CONFLICTNO:
15522 return "MIPS_CONFLICTNO";
15523 case DT_MIPS_LIBLISTNO:
15524 return "MIPS_LIBLISTNO";
15525 case DT_MIPS_SYMTABNO:
15526 return "MIPS_SYMTABNO";
15527 case DT_MIPS_UNREFEXTNO:
15528 return "MIPS_UNREFEXTNO";
15529 case DT_MIPS_GOTSYM:
15530 return "MIPS_GOTSYM";
15531 case DT_MIPS_HIPAGENO:
15532 return "MIPS_HIPAGENO";
15533 case DT_MIPS_RLD_MAP:
15534 return "MIPS_RLD_MAP";
a5499fa4
MF
15535 case DT_MIPS_RLD_MAP_REL:
15536 return "MIPS_RLD_MAP_REL";
ad9563d6
CM
15537 case DT_MIPS_DELTA_CLASS:
15538 return "MIPS_DELTA_CLASS";
15539 case DT_MIPS_DELTA_CLASS_NO:
15540 return "MIPS_DELTA_CLASS_NO";
15541 case DT_MIPS_DELTA_INSTANCE:
15542 return "MIPS_DELTA_INSTANCE";
15543 case DT_MIPS_DELTA_INSTANCE_NO:
15544 return "MIPS_DELTA_INSTANCE_NO";
15545 case DT_MIPS_DELTA_RELOC:
15546 return "MIPS_DELTA_RELOC";
15547 case DT_MIPS_DELTA_RELOC_NO:
15548 return "MIPS_DELTA_RELOC_NO";
15549 case DT_MIPS_DELTA_SYM:
15550 return "MIPS_DELTA_SYM";
15551 case DT_MIPS_DELTA_SYM_NO:
15552 return "MIPS_DELTA_SYM_NO";
15553 case DT_MIPS_DELTA_CLASSSYM:
15554 return "MIPS_DELTA_CLASSSYM";
15555 case DT_MIPS_DELTA_CLASSSYM_NO:
15556 return "MIPS_DELTA_CLASSSYM_NO";
15557 case DT_MIPS_CXX_FLAGS:
15558 return "MIPS_CXX_FLAGS";
15559 case DT_MIPS_PIXIE_INIT:
15560 return "MIPS_PIXIE_INIT";
15561 case DT_MIPS_SYMBOL_LIB:
15562 return "MIPS_SYMBOL_LIB";
15563 case DT_MIPS_LOCALPAGE_GOTIDX:
15564 return "MIPS_LOCALPAGE_GOTIDX";
15565 case DT_MIPS_LOCAL_GOTIDX:
15566 return "MIPS_LOCAL_GOTIDX";
15567 case DT_MIPS_HIDDEN_GOTIDX:
15568 return "MIPS_HIDDEN_GOTIDX";
15569 case DT_MIPS_PROTECTED_GOTIDX:
15570 return "MIPS_PROTECTED_GOT_IDX";
15571 case DT_MIPS_OPTIONS:
15572 return "MIPS_OPTIONS";
15573 case DT_MIPS_INTERFACE:
15574 return "MIPS_INTERFACE";
15575 case DT_MIPS_DYNSTR_ALIGN:
15576 return "DT_MIPS_DYNSTR_ALIGN";
15577 case DT_MIPS_INTERFACE_SIZE:
15578 return "DT_MIPS_INTERFACE_SIZE";
15579 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15580 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15581 case DT_MIPS_PERF_SUFFIX:
15582 return "DT_MIPS_PERF_SUFFIX";
15583 case DT_MIPS_COMPACT_SIZE:
15584 return "DT_MIPS_COMPACT_SIZE";
15585 case DT_MIPS_GP_VALUE:
15586 return "DT_MIPS_GP_VALUE";
15587 case DT_MIPS_AUX_DYNAMIC:
15588 return "DT_MIPS_AUX_DYNAMIC";
861fb55a
DJ
15589 case DT_MIPS_PLTGOT:
15590 return "DT_MIPS_PLTGOT";
15591 case DT_MIPS_RWPLT:
15592 return "DT_MIPS_RWPLT";
ad9563d6
CM
15593 }
15594}
15595
757a636f
RS
15596/* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15597 not known. */
15598
15599const char *
15600_bfd_mips_fp_abi_string (int fp)
15601{
15602 switch (fp)
15603 {
15604 /* These strings aren't translated because they're simply
15605 option lists. */
15606 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15607 return "-mdouble-float";
15608
15609 case Val_GNU_MIPS_ABI_FP_SINGLE:
15610 return "-msingle-float";
15611
15612 case Val_GNU_MIPS_ABI_FP_SOFT:
15613 return "-msoft-float";
15614
351cdf24
MF
15615 case Val_GNU_MIPS_ABI_FP_OLD_64:
15616 return _("-mips32r2 -mfp64 (12 callee-saved)");
15617
15618 case Val_GNU_MIPS_ABI_FP_XX:
15619 return "-mfpxx";
15620
757a636f 15621 case Val_GNU_MIPS_ABI_FP_64:
351cdf24
MF
15622 return "-mgp32 -mfp64";
15623
15624 case Val_GNU_MIPS_ABI_FP_64A:
15625 return "-mgp32 -mfp64 -mno-odd-spreg";
757a636f
RS
15626
15627 default:
15628 return 0;
15629 }
15630}
15631
351cdf24
MF
15632static void
15633print_mips_ases (FILE *file, unsigned int mask)
15634{
15635 if (mask & AFL_ASE_DSP)
15636 fputs ("\n\tDSP ASE", file);
15637 if (mask & AFL_ASE_DSPR2)
15638 fputs ("\n\tDSP R2 ASE", file);
8f4f9071
MF
15639 if (mask & AFL_ASE_DSPR3)
15640 fputs ("\n\tDSP R3 ASE", file);
351cdf24
MF
15641 if (mask & AFL_ASE_EVA)
15642 fputs ("\n\tEnhanced VA Scheme", file);
15643 if (mask & AFL_ASE_MCU)
15644 fputs ("\n\tMCU (MicroController) ASE", file);
15645 if (mask & AFL_ASE_MDMX)
15646 fputs ("\n\tMDMX ASE", file);
15647 if (mask & AFL_ASE_MIPS3D)
15648 fputs ("\n\tMIPS-3D ASE", file);
15649 if (mask & AFL_ASE_MT)
15650 fputs ("\n\tMT ASE", file);
15651 if (mask & AFL_ASE_SMARTMIPS)
15652 fputs ("\n\tSmartMIPS ASE", file);
15653 if (mask & AFL_ASE_VIRT)
15654 fputs ("\n\tVZ ASE", file);
15655 if (mask & AFL_ASE_MSA)
15656 fputs ("\n\tMSA ASE", file);
15657 if (mask & AFL_ASE_MIPS16)
15658 fputs ("\n\tMIPS16 ASE", file);
15659 if (mask & AFL_ASE_MICROMIPS)
15660 fputs ("\n\tMICROMIPS ASE", file);
15661 if (mask & AFL_ASE_XPA)
15662 fputs ("\n\tXPA ASE", file);
25499ac7
MR
15663 if (mask & AFL_ASE_MIPS16E2)
15664 fputs ("\n\tMIPS16e2 ASE", file);
351cdf24
MF
15665 if (mask == 0)
15666 fprintf (file, "\n\t%s", _("None"));
00ac7aa0
MF
15667 else if ((mask & ~AFL_ASE_MASK) != 0)
15668 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
351cdf24
MF
15669}
15670
15671static void
15672print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15673{
15674 switch (isa_ext)
15675 {
15676 case 0:
15677 fputs (_("None"), file);
15678 break;
15679 case AFL_EXT_XLR:
15680 fputs ("RMI XLR", file);
15681 break;
2c629856
N
15682 case AFL_EXT_OCTEON3:
15683 fputs ("Cavium Networks Octeon3", file);
15684 break;
351cdf24
MF
15685 case AFL_EXT_OCTEON2:
15686 fputs ("Cavium Networks Octeon2", file);
15687 break;
15688 case AFL_EXT_OCTEONP:
15689 fputs ("Cavium Networks OcteonP", file);
15690 break;
15691 case AFL_EXT_LOONGSON_3A:
15692 fputs ("Loongson 3A", file);
15693 break;
15694 case AFL_EXT_OCTEON:
15695 fputs ("Cavium Networks Octeon", file);
15696 break;
15697 case AFL_EXT_5900:
15698 fputs ("Toshiba R5900", file);
15699 break;
15700 case AFL_EXT_4650:
15701 fputs ("MIPS R4650", file);
15702 break;
15703 case AFL_EXT_4010:
15704 fputs ("LSI R4010", file);
15705 break;
15706 case AFL_EXT_4100:
15707 fputs ("NEC VR4100", file);
15708 break;
15709 case AFL_EXT_3900:
15710 fputs ("Toshiba R3900", file);
15711 break;
15712 case AFL_EXT_10000:
15713 fputs ("MIPS R10000", file);
15714 break;
15715 case AFL_EXT_SB1:
15716 fputs ("Broadcom SB-1", file);
15717 break;
15718 case AFL_EXT_4111:
15719 fputs ("NEC VR4111/VR4181", file);
15720 break;
15721 case AFL_EXT_4120:
15722 fputs ("NEC VR4120", file);
15723 break;
15724 case AFL_EXT_5400:
15725 fputs ("NEC VR5400", file);
15726 break;
15727 case AFL_EXT_5500:
15728 fputs ("NEC VR5500", file);
15729 break;
15730 case AFL_EXT_LOONGSON_2E:
15731 fputs ("ST Microelectronics Loongson 2E", file);
15732 break;
15733 case AFL_EXT_LOONGSON_2F:
15734 fputs ("ST Microelectronics Loongson 2F", file);
15735 break;
38bf472a
MR
15736 case AFL_EXT_INTERAPTIV_MR2:
15737 fputs ("Imagination interAptiv MR2", file);
15738 break;
351cdf24 15739 default:
00ac7aa0 15740 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
351cdf24
MF
15741 break;
15742 }
15743}
15744
15745static void
15746print_mips_fp_abi_value (FILE *file, int val)
15747{
15748 switch (val)
15749 {
15750 case Val_GNU_MIPS_ABI_FP_ANY:
15751 fprintf (file, _("Hard or soft float\n"));
15752 break;
15753 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15754 fprintf (file, _("Hard float (double precision)\n"));
15755 break;
15756 case Val_GNU_MIPS_ABI_FP_SINGLE:
15757 fprintf (file, _("Hard float (single precision)\n"));
15758 break;
15759 case Val_GNU_MIPS_ABI_FP_SOFT:
15760 fprintf (file, _("Soft float\n"));
15761 break;
15762 case Val_GNU_MIPS_ABI_FP_OLD_64:
15763 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15764 break;
15765 case Val_GNU_MIPS_ABI_FP_XX:
15766 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15767 break;
15768 case Val_GNU_MIPS_ABI_FP_64:
15769 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15770 break;
15771 case Val_GNU_MIPS_ABI_FP_64A:
15772 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15773 break;
15774 default:
15775 fprintf (file, "??? (%d)\n", val);
15776 break;
15777 }
15778}
15779
15780static int
15781get_mips_reg_size (int reg_size)
15782{
15783 return (reg_size == AFL_REG_NONE) ? 0
15784 : (reg_size == AFL_REG_32) ? 32
15785 : (reg_size == AFL_REG_64) ? 64
15786 : (reg_size == AFL_REG_128) ? 128
15787 : -1;
15788}
15789
b34976b6 15790bfd_boolean
9719ad41 15791_bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
b49e97c9 15792{
9719ad41 15793 FILE *file = ptr;
b49e97c9
TS
15794
15795 BFD_ASSERT (abfd != NULL && ptr != NULL);
15796
15797 /* Print normal ELF private data. */
15798 _bfd_elf_print_private_bfd_data (abfd, ptr);
15799
15800 /* xgettext:c-format */
15801 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15802
15803 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15804 fprintf (file, _(" [abi=O32]"));
15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15806 fprintf (file, _(" [abi=O64]"));
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15808 fprintf (file, _(" [abi=EABI32]"));
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15810 fprintf (file, _(" [abi=EABI64]"));
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15812 fprintf (file, _(" [abi unknown]"));
15813 else if (ABI_N32_P (abfd))
15814 fprintf (file, _(" [abi=N32]"));
15815 else if (ABI_64_P (abfd))
15816 fprintf (file, _(" [abi=64]"));
15817 else
15818 fprintf (file, _(" [no abi set]"));
15819
15820 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
ae0d2616 15821 fprintf (file, " [mips1]");
b49e97c9 15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
ae0d2616 15823 fprintf (file, " [mips2]");
b49e97c9 15824 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
ae0d2616 15825 fprintf (file, " [mips3]");
b49e97c9 15826 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
ae0d2616 15827 fprintf (file, " [mips4]");
b49e97c9 15828 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
ae0d2616 15829 fprintf (file, " [mips5]");
b49e97c9 15830 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
ae0d2616 15831 fprintf (file, " [mips32]");
b49e97c9 15832 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
ae0d2616 15833 fprintf (file, " [mips64]");
af7ee8bf 15834 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
ae0d2616 15835 fprintf (file, " [mips32r2]");
5f74bc13 15836 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
ae0d2616 15837 fprintf (file, " [mips64r2]");
7361da2c
AB
15838 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15839 fprintf (file, " [mips32r6]");
15840 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15841 fprintf (file, " [mips64r6]");
b49e97c9
TS
15842 else
15843 fprintf (file, _(" [unknown ISA]"));
15844
40d32fc6 15845 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
ae0d2616 15846 fprintf (file, " [mdmx]");
40d32fc6
CD
15847
15848 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
ae0d2616 15849 fprintf (file, " [mips16]");
40d32fc6 15850
df58fc94
RS
15851 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15852 fprintf (file, " [micromips]");
15853
ba92f887
MR
15854 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15855 fprintf (file, " [nan2008]");
15856
5baf5e34 15857 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
351cdf24 15858 fprintf (file, " [old fp64]");
5baf5e34 15859
b49e97c9 15860 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
ae0d2616 15861 fprintf (file, " [32bitmode]");
b49e97c9
TS
15862 else
15863 fprintf (file, _(" [not 32bitmode]"));
15864
c0e3f241 15865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
ae0d2616 15866 fprintf (file, " [noreorder]");
c0e3f241
CD
15867
15868 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
ae0d2616 15869 fprintf (file, " [PIC]");
c0e3f241
CD
15870
15871 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
ae0d2616 15872 fprintf (file, " [CPIC]");
c0e3f241
CD
15873
15874 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
ae0d2616 15875 fprintf (file, " [XGOT]");
c0e3f241
CD
15876
15877 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
ae0d2616 15878 fprintf (file, " [UCODE]");
c0e3f241 15879
b49e97c9
TS
15880 fputc ('\n', file);
15881
351cdf24
MF
15882 if (mips_elf_tdata (abfd)->abiflags_valid)
15883 {
15884 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15885 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15886 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15887 if (abiflags->isa_rev > 1)
15888 fprintf (file, "r%d", abiflags->isa_rev);
15889 fprintf (file, "\nGPR size: %d",
15890 get_mips_reg_size (abiflags->gpr_size));
15891 fprintf (file, "\nCPR1 size: %d",
15892 get_mips_reg_size (abiflags->cpr1_size));
15893 fprintf (file, "\nCPR2 size: %d",
15894 get_mips_reg_size (abiflags->cpr2_size));
15895 fputs ("\nFP ABI: ", file);
15896 print_mips_fp_abi_value (file, abiflags->fp_abi);
15897 fputs ("ISA Extension: ", file);
15898 print_mips_isa_ext (file, abiflags->isa_ext);
15899 fputs ("\nASEs:", file);
15900 print_mips_ases (file, abiflags->ases);
15901 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15902 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15903 fputc ('\n', file);
15904 }
15905
b34976b6 15906 return TRUE;
b49e97c9 15907}
2f89ff8d 15908
b35d266b 15909const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
2f89ff8d 15910{
0112cd26
NC
15911 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15912 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15913 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15914 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15915 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15916 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15917 { NULL, 0, 0, 0, 0 }
2f89ff8d 15918};
5e2b0d47 15919
8992f0d7
TS
15920/* Merge non visibility st_other attributes. Ensure that the
15921 STO_OPTIONAL flag is copied into h->other, even if this is not a
15922 definiton of the symbol. */
5e2b0d47
NC
15923void
15924_bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15925 const Elf_Internal_Sym *isym,
15926 bfd_boolean definition,
15927 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15928{
8992f0d7
TS
15929 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15930 {
15931 unsigned char other;
15932
15933 other = (definition ? isym->st_other : h->other);
15934 other &= ~ELF_ST_VISIBILITY (-1);
15935 h->other = other | ELF_ST_VISIBILITY (h->other);
15936 }
15937
15938 if (!definition
5e2b0d47
NC
15939 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15940 h->other |= STO_OPTIONAL;
15941}
12ac1cf5
NC
15942
15943/* Decide whether an undefined symbol is special and can be ignored.
15944 This is the case for OPTIONAL symbols on IRIX. */
15945bfd_boolean
15946_bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15947{
15948 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15949}
e0764319
NC
15950
15951bfd_boolean
15952_bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15953{
15954 return (sym->st_shndx == SHN_COMMON
15955 || sym->st_shndx == SHN_MIPS_ACOMMON
15956 || sym->st_shndx == SHN_MIPS_SCOMMON);
15957}
861fb55a
DJ
15958
15959/* Return address for Ith PLT stub in section PLT, for relocation REL
15960 or (bfd_vma) -1 if it should not be included. */
15961
15962bfd_vma
15963_bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15964 const arelent *rel ATTRIBUTE_UNUSED)
15965{
15966 return (plt->vma
15967 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15968 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15969}
15970
1bbce132
MR
15971/* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15972 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15973 and .got.plt and also the slots may be of a different size each we walk
15974 the PLT manually fetching instructions and matching them against known
15975 patterns. To make things easier standard MIPS slots, if any, always come
15976 first. As we don't create proper ELF symbols we use the UDATA.I member
15977 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15978 with the ST_OTHER member of the ELF symbol. */
15979
15980long
15981_bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15982 long symcount ATTRIBUTE_UNUSED,
15983 asymbol **syms ATTRIBUTE_UNUSED,
15984 long dynsymcount, asymbol **dynsyms,
15985 asymbol **ret)
15986{
15987 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15988 static const char microsuffix[] = "@micromipsplt";
15989 static const char m16suffix[] = "@mips16plt";
15990 static const char mipssuffix[] = "@plt";
15991
15992 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15993 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15994 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15995 Elf_Internal_Shdr *hdr;
15996 bfd_byte *plt_data;
15997 bfd_vma plt_offset;
15998 unsigned int other;
15999 bfd_vma entry_size;
16000 bfd_vma plt0_size;
16001 asection *relplt;
16002 bfd_vma opcode;
16003 asection *plt;
16004 asymbol *send;
16005 size_t size;
16006 char *names;
16007 long counti;
16008 arelent *p;
16009 asymbol *s;
16010 char *nend;
16011 long count;
16012 long pi;
16013 long i;
16014 long n;
16015
16016 *ret = NULL;
16017
16018 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16019 return 0;
16020
16021 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16022 if (relplt == NULL)
16023 return 0;
16024
16025 hdr = &elf_section_data (relplt)->this_hdr;
16026 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16027 return 0;
16028
16029 plt = bfd_get_section_by_name (abfd, ".plt");
16030 if (plt == NULL)
16031 return 0;
16032
16033 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16034 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16035 return -1;
16036 p = relplt->relocation;
16037
16038 /* Calculating the exact amount of space required for symbols would
16039 require two passes over the PLT, so just pessimise assuming two
16040 PLT slots per relocation. */
16041 count = relplt->size / hdr->sh_entsize;
16042 counti = count * bed->s->int_rels_per_ext_rel;
16043 size = 2 * count * sizeof (asymbol);
16044 size += count * (sizeof (mipssuffix) +
16045 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16046 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16047 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16048
16049 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16050 size += sizeof (asymbol) + sizeof (pltname);
16051
16052 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16053 return -1;
16054
16055 if (plt->size < 16)
16056 return -1;
16057
16058 s = *ret = bfd_malloc (size);
16059 if (s == NULL)
16060 return -1;
16061 send = s + 2 * count + 1;
16062
16063 names = (char *) send;
16064 nend = (char *) s + size;
16065 n = 0;
16066
16067 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16068 if (opcode == 0x3302fffe)
16069 {
16070 if (!micromips_p)
16071 return -1;
16072 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16073 other = STO_MICROMIPS;
16074 }
833794fc
MR
16075 else if (opcode == 0x0398c1d0)
16076 {
16077 if (!micromips_p)
16078 return -1;
16079 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16080 other = STO_MICROMIPS;
16081 }
1bbce132
MR
16082 else
16083 {
16084 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16085 other = 0;
16086 }
16087
16088 s->the_bfd = abfd;
16089 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16090 s->section = plt;
16091 s->value = 0;
16092 s->name = names;
16093 s->udata.i = other;
16094 memcpy (names, pltname, sizeof (pltname));
16095 names += sizeof (pltname);
16096 ++s, ++n;
16097
16098 pi = 0;
16099 for (plt_offset = plt0_size;
16100 plt_offset + 8 <= plt->size && s < send;
16101 plt_offset += entry_size)
16102 {
16103 bfd_vma gotplt_addr;
16104 const char *suffix;
16105 bfd_vma gotplt_hi;
16106 bfd_vma gotplt_lo;
16107 size_t suffixlen;
16108
16109 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16110
16111 /* Check if the second word matches the expected MIPS16 instruction. */
16112 if (opcode == 0x651aeb00)
16113 {
16114 if (micromips_p)
16115 return -1;
16116 /* Truncated table??? */
16117 if (plt_offset + 16 > plt->size)
16118 break;
16119 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16120 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16121 suffixlen = sizeof (m16suffix);
16122 suffix = m16suffix;
16123 other = STO_MIPS16;
16124 }
833794fc 16125 /* Likewise the expected microMIPS instruction (no insn32 mode). */
1bbce132
MR
16126 else if (opcode == 0xff220000)
16127 {
16128 if (!micromips_p)
16129 return -1;
16130 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16131 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16132 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16133 gotplt_lo <<= 2;
16134 gotplt_addr = gotplt_hi + gotplt_lo;
16135 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16136 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16137 suffixlen = sizeof (microsuffix);
16138 suffix = microsuffix;
16139 other = STO_MICROMIPS;
16140 }
833794fc
MR
16141 /* Likewise the expected microMIPS instruction (insn32 mode). */
16142 else if ((opcode & 0xffff0000) == 0xff2f0000)
16143 {
16144 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16145 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16146 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16147 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16148 gotplt_addr = gotplt_hi + gotplt_lo;
16149 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16150 suffixlen = sizeof (microsuffix);
16151 suffix = microsuffix;
16152 other = STO_MICROMIPS;
16153 }
1bbce132
MR
16154 /* Otherwise assume standard MIPS code. */
16155 else
16156 {
16157 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16158 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16159 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16160 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16161 gotplt_addr = gotplt_hi + gotplt_lo;
16162 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16163 suffixlen = sizeof (mipssuffix);
16164 suffix = mipssuffix;
16165 other = 0;
16166 }
16167 /* Truncated table??? */
16168 if (plt_offset + entry_size > plt->size)
16169 break;
16170
16171 for (i = 0;
16172 i < count && p[pi].address != gotplt_addr;
16173 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16174
16175 if (i < count)
16176 {
16177 size_t namelen;
16178 size_t len;
16179
16180 *s = **p[pi].sym_ptr_ptr;
16181 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16182 we are defining a symbol, ensure one of them is set. */
16183 if ((s->flags & BSF_LOCAL) == 0)
16184 s->flags |= BSF_GLOBAL;
16185 s->flags |= BSF_SYNTHETIC;
16186 s->section = plt;
16187 s->value = plt_offset;
16188 s->name = names;
16189 s->udata.i = other;
16190
16191 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16192 namelen = len + suffixlen;
16193 if (names + namelen > nend)
16194 break;
16195
16196 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16197 names += len;
16198 memcpy (names, suffix, suffixlen);
16199 names += suffixlen;
16200
16201 ++s, ++n;
16202 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16203 }
16204 }
16205
16206 free (plt_data);
16207
16208 return n;
16209}
16210
5e7fc731
MR
16211/* Return the ABI flags associated with ABFD if available. */
16212
16213Elf_Internal_ABIFlags_v0 *
16214bfd_mips_elf_get_abiflags (bfd *abfd)
16215{
16216 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16217
16218 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16219}
16220
861fb55a
DJ
16221void
16222_bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16223{
16224 struct mips_elf_link_hash_table *htab;
16225 Elf_Internal_Ehdr *i_ehdrp;
16226
16227 i_ehdrp = elf_elfheader (abfd);
16228 if (link_info)
16229 {
16230 htab = mips_elf_hash_table (link_info);
4dfe6ac6
NC
16231 BFD_ASSERT (htab != NULL);
16232
861fb55a
DJ
16233 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16234 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16235 }
0af03126
L
16236
16237 _bfd_elf_post_process_headers (abfd, link_info);
351cdf24
MF
16238
16239 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16240 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16241 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
861fb55a 16242}
2f0c68f2
CM
16243
16244int
16245_bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16246{
16247 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16248}
16249
16250/* Return the opcode for can't unwind. */
16251
16252int
16253_bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16254{
16255 return COMPACT_EH_CANT_UNWIND_OPCODE;
16256}
This page took 2.210091 seconds and 4 git commands to generate.