* gdb.guile/guile.exp (guile not supported): Verify multi-line
[deliverable/binutils-gdb.git] / bfd / hash.c
CommitLineData
252b5132 1/* hash.c -- hash table routines for BFD
4b95cf5c 2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
252b5132
RH
3 Written by Steve Chamberlain <sac@cygnus.com>
4
2d643429 5 This file is part of BFD, the Binary File Descriptor library.
252b5132 6
2d643429
NC
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
cd123cb7 9 the Free Software Foundation; either version 3 of the License, or
2d643429 10 (at your option) any later version.
252b5132 11
2d643429
NC
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
252b5132 16
2d643429
NC
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
cd123cb7
NC
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
252b5132 21
252b5132 22#include "sysdep.h"
3db64b00 23#include "bfd.h"
252b5132
RH
24#include "libbfd.h"
25#include "objalloc.h"
2d643429 26#include "libiberty.h"
252b5132
RH
27
28/*
29SECTION
30 Hash Tables
31
32@cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52@menu
53@* Creating and Freeing a Hash Table::
54@* Looking Up or Entering a String::
55@* Traversing a Hash Table::
56@* Deriving a New Hash Table Type::
57@end menu
58
59INODE
60Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61SUBSECTION
62 Creating and freeing a hash table
63
64@findex bfd_hash_table_init
65@findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
b34976b6 71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
252b5132
RH
72 error occurs.
73
74@findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
dc1bc0c9 78 a New Hash Table Type}, for why you would want to use a
252b5132
RH
79 different value for this argument.
80
81@findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86@findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
2d643429
NC
91@findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
252b5132
RH
95INODE
96Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97SUBSECTION
98 Looking up or entering a string
99
100@findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
b34976b6 104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
252b5132
RH
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
b34976b6 111 If the @var{create} argument is <<TRUE>>, the string will be
252b5132
RH
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
b34976b6 118 If the @var{create} argument is <<TRUE>>, and a new entry is
252b5132
RH
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
b34976b6 121 @var{copy} is passed as <<FALSE>>, you must be careful not to
252b5132
RH
122 deallocate or modify the string as long as the hash table
123 exists.
124
125INODE
126Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127SUBSECTION
128 Traversing a hash table
129
130@findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
b34976b6 141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
252b5132
RH
142 return immediately.
143
144INODE
145Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167@menu
168@* Define the Derived Structures::
169@* Write the Derived Creation Routine::
170@* Write Other Derived Routines::
171@end menu
172
173INODE
174Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196INODE
197Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230EXAMPLE
231
232.struct bfd_hash_entry *
c8e7bf0d
NC
233.@var{function_name} (struct bfd_hash_entry *entry,
234. struct bfd_hash_table *table,
235. const char *string)
252b5132
RH
236.{
237. struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238.
239. {* Allocate the structure if it has not already been allocated by a
240. derived class. *}
c8e7bf0d 241. if (ret == NULL)
252b5132 242. {
c8e7bf0d
NC
243. ret = bfd_hash_allocate (table, sizeof (* ret));
244. if (ret == NULL)
252b5132
RH
245. return NULL;
246. }
247.
248. {* Call the allocation method of the base class. *}
249. ret = ((@var{entry_type} *)
250. @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251.
252. {* Initialize the local fields here. *}
253.
254. return (struct bfd_hash_entry *) ret;
255.}
256
257DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269INODE
270Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
3fde5a36 275 as well.
252b5132
RH
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298*/
299
300/* The default number of entries to use when creating a hash table. */
bd75c995 301#define DEFAULT_SIZE 4051
aa149cf7
DD
302
303/* The following function returns a nearest prime number which is
bd75c995
AM
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
aa149cf7
DD
306
307static unsigned long
308higher_prime_number (unsigned long n)
309{
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
164a5cb7
NC
312 static const unsigned long primes[] =
313 {
314 (unsigned long) 31,
315 (unsigned long) 61,
316 (unsigned long) 127,
317 (unsigned long) 251,
318 (unsigned long) 509,
319 (unsigned long) 1021,
320 (unsigned long) 2039,
321 (unsigned long) 4093,
322 (unsigned long) 8191,
323 (unsigned long) 16381,
324 (unsigned long) 32749,
325 (unsigned long) 65521,
326 (unsigned long) 131071,
327 (unsigned long) 262139,
328 (unsigned long) 524287,
329 (unsigned long) 1048573,
330 (unsigned long) 2097143,
331 (unsigned long) 4194301,
332 (unsigned long) 8388593,
333 (unsigned long) 16777213,
334 (unsigned long) 33554393,
335 (unsigned long) 67108859,
336 (unsigned long) 134217689,
337 (unsigned long) 268435399,
338 (unsigned long) 536870909,
339 (unsigned long) 1073741789,
340 (unsigned long) 2147483647,
aa149cf7 341 /* 4294967291L */
164a5cb7 342 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
aa149cf7
DD
343 };
344
345 const unsigned long *low = &primes[0];
bd75c995 346 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
aa149cf7
DD
347
348 while (low != high)
349 {
350 const unsigned long *mid = low + (high - low) / 2;
351 if (n >= *mid)
352 low = mid + 1;
353 else
354 high = mid;
355 }
356
bd75c995
AM
357 if (n >= *low)
358 return 0;
aa149cf7
DD
359
360 return *low;
361}
362
8ad17b3a 363static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
252b5132
RH
364
365/* Create a new hash table, given a number of entries. */
366
b34976b6 367bfd_boolean
c8e7bf0d
NC
368bfd_hash_table_init_n (struct bfd_hash_table *table,
369 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 struct bfd_hash_table *,
371 const char *),
66eb6687 372 unsigned int entsize,
c8e7bf0d 373 unsigned int size)
252b5132 374{
8ad17b3a 375 unsigned long alloc;
252b5132 376
8ad17b3a
AM
377 alloc = size;
378 alloc *= sizeof (struct bfd_hash_entry *);
379 if (alloc / sizeof (struct bfd_hash_entry *) != size)
380 {
381 bfd_set_error (bfd_error_no_memory);
382 return FALSE;
383 }
252b5132 384
c8e7bf0d 385 table->memory = (void *) objalloc_create ();
252b5132
RH
386 if (table->memory == NULL)
387 {
388 bfd_set_error (bfd_error_no_memory);
b34976b6 389 return FALSE;
252b5132 390 }
a50b1753
NC
391 table->table = (struct bfd_hash_entry **)
392 objalloc_alloc ((struct objalloc *) table->memory, alloc);
252b5132
RH
393 if (table->table == NULL)
394 {
395 bfd_set_error (bfd_error_no_memory);
b34976b6 396 return FALSE;
252b5132 397 }
c8e7bf0d 398 memset ((void *) table->table, 0, alloc);
252b5132 399 table->size = size;
66eb6687 400 table->entsize = entsize;
aa149cf7 401 table->count = 0;
98f0b6ab 402 table->frozen = 0;
252b5132 403 table->newfunc = newfunc;
b34976b6 404 return TRUE;
252b5132
RH
405}
406
407/* Create a new hash table with the default number of entries. */
408
b34976b6 409bfd_boolean
c8e7bf0d
NC
410bfd_hash_table_init (struct bfd_hash_table *table,
411 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
412 struct bfd_hash_table *,
66eb6687
AM
413 const char *),
414 unsigned int entsize)
252b5132 415{
66eb6687
AM
416 return bfd_hash_table_init_n (table, newfunc, entsize,
417 bfd_default_hash_table_size);
252b5132
RH
418}
419
420/* Free a hash table. */
421
422void
c8e7bf0d 423bfd_hash_table_free (struct bfd_hash_table *table)
252b5132 424{
a50b1753 425 objalloc_free ((struct objalloc *) table->memory);
252b5132
RH
426 table->memory = NULL;
427}
428
4e011fb5
AM
429static inline unsigned long
430bfd_hash_hash (const char *string, unsigned int *lenp)
252b5132 431{
c8e7bf0d
NC
432 const unsigned char *s;
433 unsigned long hash;
252b5132 434 unsigned int len;
4e011fb5 435 unsigned int c;
3fde5a36 436
252b5132
RH
437 hash = 0;
438 len = 0;
439 s = (const unsigned char *) string;
440 while ((c = *s++) != '\0')
441 {
442 hash += c + (c << 17);
443 hash ^= hash >> 2;
252b5132 444 }
2c13d98b 445 len = (s - (const unsigned char *) string) - 1;
252b5132
RH
446 hash += len + (len << 17);
447 hash ^= hash >> 2;
4e011fb5
AM
448 if (lenp != NULL)
449 *lenp = len;
450 return hash;
451}
452
453/* Look up a string in a hash table. */
454
455struct bfd_hash_entry *
456bfd_hash_lookup (struct bfd_hash_table *table,
457 const char *string,
458 bfd_boolean create,
459 bfd_boolean copy)
460{
461 unsigned long hash;
462 struct bfd_hash_entry *hashp;
463 unsigned int len;
464 unsigned int _index;
252b5132 465
4e011fb5 466 hash = bfd_hash_hash (string, &len);
91d6fa6a
NC
467 _index = hash % table->size;
468 for (hashp = table->table[_index];
c8e7bf0d 469 hashp != NULL;
252b5132
RH
470 hashp = hashp->next)
471 {
472 if (hashp->hash == hash
473 && strcmp (hashp->string, string) == 0)
474 return hashp;
475 }
476
477 if (! create)
c8e7bf0d 478 return NULL;
252b5132 479
252b5132
RH
480 if (copy)
481 {
d3ce72d0 482 char *new_string;
252b5132 483
d3ce72d0
NC
484 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
485 len + 1);
486 if (!new_string)
252b5132
RH
487 {
488 bfd_set_error (bfd_error_no_memory);
c8e7bf0d 489 return NULL;
252b5132 490 }
d3ce72d0
NC
491 memcpy (new_string, string, len + 1);
492 string = new_string;
252b5132 493 }
a69898aa
AM
494
495 return bfd_hash_insert (table, string, hash);
496}
497
498/* Insert an entry in a hash table. */
499
500struct bfd_hash_entry *
501bfd_hash_insert (struct bfd_hash_table *table,
502 const char *string,
503 unsigned long hash)
504{
505 struct bfd_hash_entry *hashp;
91d6fa6a 506 unsigned int _index;
a69898aa
AM
507
508 hashp = (*table->newfunc) (NULL, table, string);
509 if (hashp == NULL)
510 return NULL;
252b5132
RH
511 hashp->string = string;
512 hashp->hash = hash;
91d6fa6a
NC
513 _index = hash % table->size;
514 hashp->next = table->table[_index];
515 table->table[_index] = hashp;
0bef4ce5 516 table->count++;
252b5132 517
98f0b6ab 518 if (!table->frozen && table->count > table->size * 3 / 4)
aa149cf7 519 {
bd75c995 520 unsigned long newsize = higher_prime_number (table->size);
aa149cf7
DD
521 struct bfd_hash_entry **newtable;
522 unsigned int hi;
bd75c995 523 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
aa149cf7 524
bd75c995
AM
525 /* If we can't find a higher prime, or we can't possibly alloc
526 that much memory, don't try to grow the table. */
527 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
528 {
98f0b6ab 529 table->frozen = 1;
bd75c995
AM
530 return hashp;
531 }
aa149cf7
DD
532
533 newtable = ((struct bfd_hash_entry **)
534 objalloc_alloc ((struct objalloc *) table->memory, alloc));
a69898aa
AM
535 if (newtable == NULL)
536 {
537 table->frozen = 1;
538 return hashp;
539 }
2c3fc389 540 memset (newtable, 0, alloc);
aa149cf7
DD
541
542 for (hi = 0; hi < table->size; hi ++)
543 while (table->table[hi])
544 {
545 struct bfd_hash_entry *chain = table->table[hi];
546 struct bfd_hash_entry *chain_end = chain;
aa149cf7
DD
547
548 while (chain_end->next && chain_end->next->hash == chain->hash)
bd75c995 549 chain_end = chain_end->next;
aa149cf7
DD
550
551 table->table[hi] = chain_end->next;
91d6fa6a
NC
552 _index = chain->hash % newsize;
553 chain_end->next = newtable[_index];
554 newtable[_index] = chain;
aa149cf7
DD
555 }
556 table->table = newtable;
557 table->size = newsize;
558 }
559
252b5132
RH
560 return hashp;
561}
562
4e011fb5
AM
563/* Rename an entry in a hash table. */
564
565void
566bfd_hash_rename (struct bfd_hash_table *table,
567 const char *string,
568 struct bfd_hash_entry *ent)
569{
570 unsigned int _index;
571 struct bfd_hash_entry **pph;
572
573 _index = ent->hash % table->size;
574 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
575 if (*pph == ent)
576 break;
577 if (*pph == NULL)
578 abort ();
579
580 *pph = ent->next;
581 ent->string = string;
582 ent->hash = bfd_hash_hash (string, NULL);
583 _index = ent->hash % table->size;
584 ent->next = table->table[_index];
585 table->table[_index] = ent;
586}
587
252b5132
RH
588/* Replace an entry in a hash table. */
589
590void
c8e7bf0d
NC
591bfd_hash_replace (struct bfd_hash_table *table,
592 struct bfd_hash_entry *old,
593 struct bfd_hash_entry *nw)
252b5132 594{
91d6fa6a 595 unsigned int _index;
252b5132
RH
596 struct bfd_hash_entry **pph;
597
91d6fa6a
NC
598 _index = old->hash % table->size;
599 for (pph = &table->table[_index];
c8e7bf0d 600 (*pph) != NULL;
252b5132
RH
601 pph = &(*pph)->next)
602 {
603 if (*pph == old)
604 {
605 *pph = nw;
606 return;
607 }
608 }
609
610 abort ();
611}
612
252b5132
RH
613/* Allocate space in a hash table. */
614
c8e7bf0d
NC
615void *
616bfd_hash_allocate (struct bfd_hash_table *table,
617 unsigned int size)
252b5132 618{
c8e7bf0d 619 void * ret;
252b5132
RH
620
621 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
622 if (ret == NULL && size != 0)
623 bfd_set_error (bfd_error_no_memory);
624 return ret;
625}
626
c8e7bf0d
NC
627/* Base method for creating a new hash table entry. */
628
629struct bfd_hash_entry *
630bfd_hash_newfunc (struct bfd_hash_entry *entry,
631 struct bfd_hash_table *table,
632 const char *string ATTRIBUTE_UNUSED)
633{
634 if (entry == NULL)
a50b1753
NC
635 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
636 sizeof (* entry));
c8e7bf0d
NC
637 return entry;
638}
639
252b5132
RH
640/* Traverse a hash table. */
641
642void
c8e7bf0d
NC
643bfd_hash_traverse (struct bfd_hash_table *table,
644 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
645 void * info)
252b5132
RH
646{
647 unsigned int i;
648
98f0b6ab 649 table->frozen = 1;
252b5132
RH
650 for (i = 0; i < table->size; i++)
651 {
652 struct bfd_hash_entry *p;
653
654 for (p = table->table[i]; p != NULL; p = p->next)
c8e7bf0d 655 if (! (*func) (p, info))
98f0b6ab 656 goto out;
252b5132 657 }
98f0b6ab
AM
658 out:
659 table->frozen = 0;
252b5132
RH
660}
661\f
8ad17b3a
AM
662unsigned long
663bfd_hash_set_default_size (unsigned long hash_size)
2d643429 664{
2d643429 665 /* Extend this prime list if you want more granularity of hash table size. */
8ad17b3a 666 static const unsigned long hash_size_primes[] =
2d643429 667 {
164a5cb7 668 31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
2d643429 669 };
8ad17b3a 670 unsigned int _index;
2d643429
NC
671
672 /* Work out best prime number near the hash_size. */
91d6fa6a
NC
673 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
674 if (hash_size <= hash_size_primes[_index])
2d643429
NC
675 break;
676
91d6fa6a 677 bfd_default_hash_table_size = hash_size_primes[_index];
8ad17b3a 678 return bfd_default_hash_table_size;
2d643429
NC
679}
680\f
252b5132
RH
681/* A few different object file formats (a.out, COFF, ELF) use a string
682 table. These functions support adding strings to a string table,
683 returning the byte offset, and writing out the table.
684
685 Possible improvements:
686 + look for strings matching trailing substrings of other strings
687 + better data structures? balanced trees?
688 + look at reducing memory use elsewhere -- maybe if we didn't have
689 to construct the entire symbol table at once, we could get by
690 with smaller amounts of VM? (What effect does that have on the
691 string table reductions?) */
692
693/* An entry in the strtab hash table. */
694
695struct strtab_hash_entry
696{
697 struct bfd_hash_entry root;
698 /* Index in string table. */
699 bfd_size_type index;
700 /* Next string in strtab. */
701 struct strtab_hash_entry *next;
702};
703
704/* The strtab hash table. */
705
706struct bfd_strtab_hash
707{
708 struct bfd_hash_table table;
709 /* Size of strtab--also next available index. */
710 bfd_size_type size;
711 /* First string in strtab. */
712 struct strtab_hash_entry *first;
713 /* Last string in strtab. */
714 struct strtab_hash_entry *last;
715 /* Whether to precede strings with a two byte length, as in the
716 XCOFF .debug section. */
b34976b6 717 bfd_boolean xcoff;
252b5132
RH
718};
719
252b5132
RH
720/* Routine to create an entry in a strtab. */
721
722static struct bfd_hash_entry *
c8e7bf0d
NC
723strtab_hash_newfunc (struct bfd_hash_entry *entry,
724 struct bfd_hash_table *table,
725 const char *string)
252b5132
RH
726{
727 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
728
729 /* Allocate the structure if it has not already been allocated by a
730 subclass. */
c8e7bf0d 731 if (ret == NULL)
a50b1753
NC
732 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
733 sizeof (* ret));
c8e7bf0d 734 if (ret == NULL)
252b5132
RH
735 return NULL;
736
737 /* Call the allocation method of the superclass. */
c8e7bf0d
NC
738 ret = (struct strtab_hash_entry *)
739 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
252b5132
RH
740
741 if (ret)
742 {
743 /* Initialize the local fields. */
744 ret->index = (bfd_size_type) -1;
745 ret->next = NULL;
746 }
747
748 return (struct bfd_hash_entry *) ret;
749}
750
751/* Look up an entry in an strtab. */
752
753#define strtab_hash_lookup(t, string, create, copy) \
754 ((struct strtab_hash_entry *) \
755 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
756
757/* Create a new strtab. */
758
759struct bfd_strtab_hash *
c8e7bf0d 760_bfd_stringtab_init (void)
252b5132
RH
761{
762 struct bfd_strtab_hash *table;
c8e7bf0d 763 bfd_size_type amt = sizeof (* table);
252b5132 764
a50b1753 765 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
252b5132
RH
766 if (table == NULL)
767 return NULL;
768
66eb6687
AM
769 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
770 sizeof (struct strtab_hash_entry)))
252b5132
RH
771 {
772 free (table);
773 return NULL;
774 }
775
776 table->size = 0;
777 table->first = NULL;
778 table->last = NULL;
b34976b6 779 table->xcoff = FALSE;
252b5132
RH
780
781 return table;
782}
783
784/* Create a new strtab in which the strings are output in the format
785 used in the XCOFF .debug section: a two byte length precedes each
786 string. */
787
788struct bfd_strtab_hash *
c8e7bf0d 789_bfd_xcoff_stringtab_init (void)
252b5132
RH
790{
791 struct bfd_strtab_hash *ret;
792
793 ret = _bfd_stringtab_init ();
794 if (ret != NULL)
b34976b6 795 ret->xcoff = TRUE;
252b5132
RH
796 return ret;
797}
798
799/* Free a strtab. */
800
801void
c8e7bf0d 802_bfd_stringtab_free (struct bfd_strtab_hash *table)
252b5132
RH
803{
804 bfd_hash_table_free (&table->table);
805 free (table);
806}
807
808/* Get the index of a string in a strtab, adding it if it is not
b34976b6 809 already present. If HASH is FALSE, we don't really use the hash
cd6d434c
NC
810 table, and we don't eliminate duplicate strings. If COPY is true
811 then store a copy of STR if creating a new entry. */
252b5132
RH
812
813bfd_size_type
c8e7bf0d
NC
814_bfd_stringtab_add (struct bfd_strtab_hash *tab,
815 const char *str,
816 bfd_boolean hash,
817 bfd_boolean copy)
252b5132 818{
c8e7bf0d 819 struct strtab_hash_entry *entry;
252b5132
RH
820
821 if (hash)
822 {
b34976b6 823 entry = strtab_hash_lookup (tab, str, TRUE, copy);
252b5132
RH
824 if (entry == NULL)
825 return (bfd_size_type) -1;
826 }
827 else
828 {
a50b1753
NC
829 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
830 sizeof (* entry));
252b5132
RH
831 if (entry == NULL)
832 return (bfd_size_type) -1;
833 if (! copy)
834 entry->root.string = str;
835 else
836 {
cd6d434c 837 size_t len = strlen (str) + 1;
252b5132
RH
838 char *n;
839
cd6d434c 840 n = (char *) bfd_hash_allocate (&tab->table, len);
252b5132
RH
841 if (n == NULL)
842 return (bfd_size_type) -1;
cd6d434c 843 memcpy (n, str, len);
252b5132
RH
844 entry->root.string = n;
845 }
846 entry->index = (bfd_size_type) -1;
847 entry->next = NULL;
848 }
849
850 if (entry->index == (bfd_size_type) -1)
851 {
852 entry->index = tab->size;
853 tab->size += strlen (str) + 1;
854 if (tab->xcoff)
855 {
856 entry->index += 2;
857 tab->size += 2;
858 }
859 if (tab->first == NULL)
860 tab->first = entry;
861 else
862 tab->last->next = entry;
863 tab->last = entry;
864 }
865
866 return entry->index;
867}
868
869/* Get the number of bytes in a strtab. */
870
871bfd_size_type
c8e7bf0d 872_bfd_stringtab_size (struct bfd_strtab_hash *tab)
252b5132
RH
873{
874 return tab->size;
875}
876
877/* Write out a strtab. ABFD must already be at the right location in
878 the file. */
879
b34976b6 880bfd_boolean
c8e7bf0d 881_bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
252b5132 882{
c8e7bf0d
NC
883 bfd_boolean xcoff;
884 struct strtab_hash_entry *entry;
252b5132
RH
885
886 xcoff = tab->xcoff;
887
888 for (entry = tab->first; entry != NULL; entry = entry->next)
889 {
dc810e39
AM
890 const char *str;
891 size_t len;
252b5132
RH
892
893 str = entry->root.string;
894 len = strlen (str) + 1;
895
896 if (xcoff)
897 {
898 bfd_byte buf[2];
899
900 /* The output length includes the null byte. */
dc810e39 901 bfd_put_16 (abfd, (bfd_vma) len, buf);
c8e7bf0d 902 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
b34976b6 903 return FALSE;
252b5132
RH
904 }
905
c8e7bf0d 906 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
b34976b6 907 return FALSE;
252b5132
RH
908 }
909
b34976b6 910 return TRUE;
252b5132 911}
This page took 0.79123 seconds and 4 git commands to generate.