bfd/
[deliverable/binutils-gdb.git] / bfd / reloc.c
CommitLineData
252b5132 1/* BFD support for handling relocation entries.
7898deda 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
a75473eb 3 2000, 2001, 2002, 2003
252b5132
RH
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
ec4530b5 7 This file is part of BFD, the Binary File Descriptor library.
252b5132 8
ec4530b5
NC
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
252b5132 13
ec4530b5
NC
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
252b5132 18
ec4530b5
NC
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
252b5132
RH
22
23/*
24SECTION
25 Relocations
26
27 BFD maintains relocations in much the same way it maintains
28 symbols: they are left alone until required, then read in
3f9b03b5 29 en-masse and translated into an internal form. A common
252b5132
RH
30 routine <<bfd_perform_relocation>> acts upon the
31 canonical form to do the fixup.
32
33 Relocations are maintained on a per section basis,
34 while symbols are maintained on a per BFD basis.
35
36 All that a back end has to do to fit the BFD interface is to create
37 a <<struct reloc_cache_entry>> for each relocation
38 in a particular section, and fill in the right bits of the structures.
39
40@menu
41@* typedef arelent::
42@* howto manager::
43@end menu
44
45*/
46
47/* DO compile in the reloc_code name table from libbfd.h. */
48#define _BFD_MAKE_TABLE_bfd_reloc_code_real
49
50#include "bfd.h"
51#include "sysdep.h"
52#include "bfdlink.h"
53#include "libbfd.h"
54/*
55DOCDD
56INODE
57 typedef arelent, howto manager, Relocations, Relocations
58
59SUBSECTION
60 typedef arelent
61
62 This is the structure of a relocation entry:
63
64CODE_FRAGMENT
65.
66.typedef enum bfd_reloc_status
67.{
b5f79c76 68. {* No errors detected. *}
252b5132
RH
69. bfd_reloc_ok,
70.
b5f79c76 71. {* The relocation was performed, but there was an overflow. *}
252b5132
RH
72. bfd_reloc_overflow,
73.
b5f79c76 74. {* The address to relocate was not within the section supplied. *}
252b5132
RH
75. bfd_reloc_outofrange,
76.
b5f79c76 77. {* Used by special functions. *}
252b5132
RH
78. bfd_reloc_continue,
79.
b5f79c76 80. {* Unsupported relocation size requested. *}
252b5132
RH
81. bfd_reloc_notsupported,
82.
b5f79c76 83. {* Unused. *}
252b5132
RH
84. bfd_reloc_other,
85.
b5f79c76 86. {* The symbol to relocate against was undefined. *}
252b5132
RH
87. bfd_reloc_undefined,
88.
dc810e39
AM
89. {* The relocation was performed, but may not be ok - presently
90. generated only when linking i960 coff files with i960 b.out
91. symbols. If this type is returned, the error_message argument
92. to bfd_perform_relocation will be set. *}
252b5132
RH
93. bfd_reloc_dangerous
94. }
95. bfd_reloc_status_type;
96.
97.
98.typedef struct reloc_cache_entry
99.{
b5f79c76 100. {* A pointer into the canonical table of pointers. *}
252b5132
RH
101. struct symbol_cache_entry **sym_ptr_ptr;
102.
b5f79c76 103. {* offset in section. *}
252b5132
RH
104. bfd_size_type address;
105.
b5f79c76 106. {* addend for relocation value. *}
252b5132
RH
107. bfd_vma addend;
108.
b5f79c76 109. {* Pointer to how to perform the required relocation. *}
252b5132
RH
110. reloc_howto_type *howto;
111.
b5f79c76
NC
112.}
113.arelent;
114.
252b5132
RH
115*/
116
117/*
118DESCRIPTION
119
120 Here is a description of each of the fields within an <<arelent>>:
121
122 o <<sym_ptr_ptr>>
123
124 The symbol table pointer points to a pointer to the symbol
125 associated with the relocation request. It is
126 the pointer into the table returned by the back end's
127 <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
128 through a pointer to a pointer so that tools like the linker
129 can fix up all the symbols of the same name by modifying only
130 one pointer. The relocation routine looks in the symbol and
131 uses the base of the section the symbol is attached to and the
132 value of the symbol as the initial relocation offset. If the
133 symbol pointer is zero, then the section provided is looked up.
134
135 o <<address>>
136
137 The <<address>> field gives the offset in bytes from the base of
138 the section data which owns the relocation record to the first
139 byte of relocatable information. The actual data relocated
140 will be relative to this point; for example, a relocation
141 type which modifies the bottom two bytes of a four byte word
142 would not touch the first byte pointed to in a big endian
143 world.
144
145 o <<addend>>
146
147 The <<addend>> is a value provided by the back end to be added (!)
148 to the relocation offset. Its interpretation is dependent upon
149 the howto. For example, on the 68k the code:
150
252b5132
RH
151| char foo[];
152| main()
153| {
154| return foo[0x12345678];
155| }
156
157 Could be compiled into:
158
159| linkw fp,#-4
160| moveb @@#12345678,d0
161| extbl d0
162| unlk fp
163| rts
164
252b5132
RH
165 This could create a reloc pointing to <<foo>>, but leave the
166 offset in the data, something like:
167
252b5132
RH
168|RELOCATION RECORDS FOR [.text]:
169|offset type value
170|00000006 32 _foo
171|
172|00000000 4e56 fffc ; linkw fp,#-4
173|00000004 1039 1234 5678 ; moveb @@#12345678,d0
174|0000000a 49c0 ; extbl d0
175|0000000c 4e5e ; unlk fp
176|0000000e 4e75 ; rts
177
252b5132
RH
178 Using coff and an 88k, some instructions don't have enough
179 space in them to represent the full address range, and
180 pointers have to be loaded in two parts. So you'd get something like:
181
252b5132
RH
182| or.u r13,r0,hi16(_foo+0x12345678)
183| ld.b r2,r13,lo16(_foo+0x12345678)
184| jmp r1
185
252b5132
RH
186 This should create two relocs, both pointing to <<_foo>>, and with
187 0x12340000 in their addend field. The data would consist of:
188
252b5132
RH
189|RELOCATION RECORDS FOR [.text]:
190|offset type value
191|00000002 HVRT16 _foo+0x12340000
192|00000006 LVRT16 _foo+0x12340000
193|
194|00000000 5da05678 ; or.u r13,r0,0x5678
195|00000004 1c4d5678 ; ld.b r2,r13,0x5678
196|00000008 f400c001 ; jmp r1
197
252b5132
RH
198 The relocation routine digs out the value from the data, adds
199 it to the addend to get the original offset, and then adds the
200 value of <<_foo>>. Note that all 32 bits have to be kept around
201 somewhere, to cope with carry from bit 15 to bit 16.
202
203 One further example is the sparc and the a.out format. The
204 sparc has a similar problem to the 88k, in that some
205 instructions don't have room for an entire offset, but on the
206 sparc the parts are created in odd sized lumps. The designers of
207 the a.out format chose to not use the data within the section
208 for storing part of the offset; all the offset is kept within
209 the reloc. Anything in the data should be ignored.
210
211| save %sp,-112,%sp
212| sethi %hi(_foo+0x12345678),%g2
213| ldsb [%g2+%lo(_foo+0x12345678)],%i0
214| ret
215| restore
216
217 Both relocs contain a pointer to <<foo>>, and the offsets
218 contain junk.
219
252b5132
RH
220|RELOCATION RECORDS FOR [.text]:
221|offset type value
222|00000004 HI22 _foo+0x12345678
223|00000008 LO10 _foo+0x12345678
224|
225|00000000 9de3bf90 ; save %sp,-112,%sp
226|00000004 05000000 ; sethi %hi(_foo+0),%g2
227|00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
228|0000000c 81c7e008 ; ret
229|00000010 81e80000 ; restore
230
252b5132
RH
231 o <<howto>>
232
233 The <<howto>> field can be imagined as a
234 relocation instruction. It is a pointer to a structure which
235 contains information on what to do with all of the other
236 information in the reloc record and data section. A back end
237 would normally have a relocation instruction set and turn
238 relocations into pointers to the correct structure on input -
239 but it would be possible to create each howto field on demand.
240
241*/
242
243/*
244SUBSUBSECTION
245 <<enum complain_overflow>>
246
247 Indicates what sort of overflow checking should be done when
248 performing a relocation.
249
250CODE_FRAGMENT
251.
252.enum complain_overflow
253.{
b5f79c76 254. {* Do not complain on overflow. *}
252b5132
RH
255. complain_overflow_dont,
256.
dc810e39 257. {* Complain if the bitfield overflows, whether it is considered
b5f79c76 258. as signed or unsigned. *}
252b5132
RH
259. complain_overflow_bitfield,
260.
dc810e39 261. {* Complain if the value overflows when considered as signed
b5f79c76 262. number. *}
252b5132
RH
263. complain_overflow_signed,
264.
dc810e39 265. {* Complain if the value overflows when considered as an
b5f79c76 266. unsigned number. *}
252b5132
RH
267. complain_overflow_unsigned
268.};
269
270*/
271
272/*
273SUBSUBSECTION
274 <<reloc_howto_type>>
275
276 The <<reloc_howto_type>> is a structure which contains all the
277 information that libbfd needs to know to tie up a back end's data.
278
279CODE_FRAGMENT
b5f79c76 280.struct symbol_cache_entry; {* Forward declaration. *}
252b5132
RH
281.
282.struct reloc_howto_struct
283.{
dc810e39
AM
284. {* The type field has mainly a documentary use - the back end can
285. do what it wants with it, though normally the back end's
286. external idea of what a reloc number is stored
287. in this field. For example, a PC relative word relocation
288. in a coff environment has the type 023 - because that's
289. what the outside world calls a R_PCRWORD reloc. *}
252b5132
RH
290. unsigned int type;
291.
dc810e39
AM
292. {* The value the final relocation is shifted right by. This drops
293. unwanted data from the relocation. *}
252b5132
RH
294. unsigned int rightshift;
295.
dc810e39
AM
296. {* The size of the item to be relocated. This is *not* a
297. power-of-two measure. To get the number of bytes operated
298. on by a type of relocation, use bfd_get_reloc_size. *}
252b5132
RH
299. int size;
300.
dc810e39
AM
301. {* The number of bits in the item to be relocated. This is used
302. when doing overflow checking. *}
252b5132
RH
303. unsigned int bitsize;
304.
dc810e39
AM
305. {* Notes that the relocation is relative to the location in the
306. data section of the addend. The relocation function will
307. subtract from the relocation value the address of the location
308. being relocated. *}
b34976b6 309. bfd_boolean pc_relative;
252b5132 310.
dc810e39
AM
311. {* The bit position of the reloc value in the destination.
312. The relocated value is left shifted by this amount. *}
252b5132
RH
313. unsigned int bitpos;
314.
dc810e39
AM
315. {* What type of overflow error should be checked for when
316. relocating. *}
252b5132
RH
317. enum complain_overflow complain_on_overflow;
318.
dc810e39
AM
319. {* If this field is non null, then the supplied function is
320. called rather than the normal function. This allows really
321. strange relocation methods to be accomodated (e.g., i960 callj
322. instructions). *}
252b5132 323. bfd_reloc_status_type (*special_function)
dc810e39
AM
324. PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
325. bfd *, char **));
252b5132 326.
dc810e39 327. {* The textual name of the relocation type. *}
252b5132
RH
328. char *name;
329.
dc810e39
AM
330. {* Some formats record a relocation addend in the section contents
331. rather than with the relocation. For ELF formats this is the
332. distinction between USE_REL and USE_RELA (though the code checks
333. for USE_REL == 1/0). The value of this field is TRUE if the
334. addend is recorded with the section contents; when performing a
335. partial link (ld -r) the section contents (the data) will be
336. modified. The value of this field is FALSE if addends are
337. recorded with the relocation (in arelent.addend); when performing
338. a partial link the relocation will be modified.
339. All relocations for all ELF USE_RELA targets should set this field
340. to FALSE (values of TRUE should be looked on with suspicion).
341. However, the converse is not true: not all relocations of all ELF
342. USE_REL targets set this field to TRUE. Why this is so is peculiar
343. to each particular target. For relocs that aren't used in partial
344. links (e.g. GOT stuff) it doesn't matter what this is set to. *}
b34976b6 345. bfd_boolean partial_inplace;
252b5132 346.
7dc77aaa
AM
347. {* src_mask selects the part of the instruction (or data) to be used
348. in the relocation sum. If the target relocations don't have an
349. addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
350. dst_mask to extract the addend from the section contents. If
351. relocations do have an addend in the reloc, eg. ELF USE_RELA, this
352. field should be zero. Non-zero values for ELF USE_RELA targets are
353. bogus as in those cases the value in the dst_mask part of the
354. section contents should be treated as garbage. *}
252b5132
RH
355. bfd_vma src_mask;
356.
7dc77aaa
AM
357. {* dst_mask selects which parts of the instruction (or data) are
358. replaced with a relocated value. *}
252b5132
RH
359. bfd_vma dst_mask;
360.
dc810e39
AM
361. {* When some formats create PC relative instructions, they leave
362. the value of the pc of the place being relocated in the offset
363. slot of the instruction, so that a PC relative relocation can
364. be made just by adding in an ordinary offset (e.g., sun3 a.out).
365. Some formats leave the displacement part of an instruction
366. empty (e.g., m88k bcs); this flag signals the fact. *}
b34976b6 367. bfd_boolean pcrel_offset;
252b5132 368.};
b5f79c76 369.
252b5132
RH
370*/
371
372/*
373FUNCTION
374 The HOWTO Macro
375
376DESCRIPTION
377 The HOWTO define is horrible and will go away.
378
dc810e39
AM
379.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
380. { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
252b5132
RH
381
382DESCRIPTION
383 And will be replaced with the totally magic way. But for the
384 moment, we are compatible, so do it this way.
385
dc810e39
AM
386.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
387. HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
b34976b6 388. NAME, FALSE, 0, 0, IN)
252b5132 389.
5f771d47
ILT
390
391DESCRIPTION
392 This is used to fill in an empty howto entry in an array.
393
394.#define EMPTY_HOWTO(C) \
b34976b6
AM
395. HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
396. NULL, FALSE, 0, 0, FALSE)
5f771d47
ILT
397.
398
252b5132
RH
399DESCRIPTION
400 Helper routine to turn a symbol into a relocation value.
401
dc810e39
AM
402.#define HOWTO_PREPARE(relocation, symbol) \
403. { \
404. if (symbol != (asymbol *) NULL) \
405. { \
406. if (bfd_is_com_section (symbol->section)) \
407. { \
408. relocation = 0; \
409. } \
410. else \
411. { \
412. relocation = symbol->value; \
413. } \
414. } \
415. }
b5f79c76 416.
252b5132
RH
417*/
418
419/*
420FUNCTION
421 bfd_get_reloc_size
422
423SYNOPSIS
424 unsigned int bfd_get_reloc_size (reloc_howto_type *);
425
426DESCRIPTION
427 For a reloc_howto_type that operates on a fixed number of bytes,
428 this returns the number of bytes operated on.
429 */
430
431unsigned int
432bfd_get_reloc_size (howto)
433 reloc_howto_type *howto;
434{
435 switch (howto->size)
436 {
437 case 0: return 1;
438 case 1: return 2;
439 case 2: return 4;
440 case 3: return 0;
441 case 4: return 8;
442 case 8: return 16;
443 case -2: return 4;
444 default: abort ();
445 }
446}
447
448/*
449TYPEDEF
450 arelent_chain
451
452DESCRIPTION
453
454 How relocs are tied together in an <<asection>>:
455
dc810e39
AM
456.typedef struct relent_chain
457.{
252b5132 458. arelent relent;
dc810e39 459. struct relent_chain *next;
b5f79c76
NC
460.}
461.arelent_chain;
462.
252b5132
RH
463*/
464
465/* N_ONES produces N one bits, without overflowing machine arithmetic. */
466#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
467
468/*
469FUNCTION
470 bfd_check_overflow
471
472SYNOPSIS
473 bfd_reloc_status_type
474 bfd_check_overflow
475 (enum complain_overflow how,
476 unsigned int bitsize,
477 unsigned int rightshift,
478 unsigned int addrsize,
479 bfd_vma relocation);
480
481DESCRIPTION
482 Perform overflow checking on @var{relocation} which has
483 @var{bitsize} significant bits and will be shifted right by
484 @var{rightshift} bits, on a machine with addresses containing
485 @var{addrsize} significant bits. The result is either of
486 @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
487
488*/
489
490bfd_reloc_status_type
491bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
492 enum complain_overflow how;
493 unsigned int bitsize;
494 unsigned int rightshift;
495 unsigned int addrsize;
496 bfd_vma relocation;
497{
498 bfd_vma fieldmask, addrmask, signmask, ss, a;
499 bfd_reloc_status_type flag = bfd_reloc_ok;
500
501 a = relocation;
502
503 /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
504 we'll be permissive: extra bits in the field mask will
505 automatically extend the address mask for purposes of the
506 overflow check. */
507 fieldmask = N_ONES (bitsize);
508 addrmask = N_ONES (addrsize) | fieldmask;
509
510 switch (how)
511 {
512 case complain_overflow_dont:
513 break;
514
515 case complain_overflow_signed:
516 /* If any sign bits are set, all sign bits must be set. That
517 is, A must be a valid negative address after shifting. */
518 a = (a & addrmask) >> rightshift;
519 signmask = ~ (fieldmask >> 1);
520 ss = a & signmask;
521 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
522 flag = bfd_reloc_overflow;
523 break;
524
525 case complain_overflow_unsigned:
526 /* We have an overflow if the address does not fit in the field. */
527 a = (a & addrmask) >> rightshift;
528 if ((a & ~ fieldmask) != 0)
529 flag = bfd_reloc_overflow;
530 break;
531
532 case complain_overflow_bitfield:
533 /* Bitfields are sometimes signed, sometimes unsigned. We
d5afc56e
AM
534 explicitly allow an address wrap too, which means a bitfield
535 of n bits is allowed to store -2**n to 2**n-1. Thus overflow
536 if the value has some, but not all, bits set outside the
537 field. */
252b5132 538 a >>= rightshift;
d5afc56e
AM
539 ss = a & ~ fieldmask;
540 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
541 flag = bfd_reloc_overflow;
252b5132
RH
542 break;
543
544 default:
545 abort ();
546 }
547
548 return flag;
549}
550
551/*
552FUNCTION
553 bfd_perform_relocation
554
555SYNOPSIS
556 bfd_reloc_status_type
557 bfd_perform_relocation
558 (bfd *abfd,
559 arelent *reloc_entry,
560 PTR data,
561 asection *input_section,
562 bfd *output_bfd,
563 char **error_message);
564
565DESCRIPTION
566 If @var{output_bfd} is supplied to this function, the
567 generated image will be relocatable; the relocations are
568 copied to the output file after they have been changed to
569 reflect the new state of the world. There are two ways of
570 reflecting the results of partial linkage in an output file:
571 by modifying the output data in place, and by modifying the
572 relocation record. Some native formats (e.g., basic a.out and
573 basic coff) have no way of specifying an addend in the
574 relocation type, so the addend has to go in the output data.
575 This is no big deal since in these formats the output data
576 slot will always be big enough for the addend. Complex reloc
577 types with addends were invented to solve just this problem.
578 The @var{error_message} argument is set to an error message if
579 this return @code{bfd_reloc_dangerous}.
580
581*/
582
252b5132
RH
583bfd_reloc_status_type
584bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
585 error_message)
586 bfd *abfd;
587 arelent *reloc_entry;
588 PTR data;
589 asection *input_section;
590 bfd *output_bfd;
591 char **error_message;
592{
593 bfd_vma relocation;
594 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 595 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
596 bfd_vma output_base = 0;
597 reloc_howto_type *howto = reloc_entry->howto;
598 asection *reloc_target_output_section;
599 asymbol *symbol;
600
601 symbol = *(reloc_entry->sym_ptr_ptr);
602 if (bfd_is_abs_section (symbol->section)
603 && output_bfd != (bfd *) NULL)
604 {
605 reloc_entry->address += input_section->output_offset;
606 return bfd_reloc_ok;
607 }
608
609 /* If we are not producing relocateable output, return an error if
610 the symbol is not defined. An undefined weak symbol is
611 considered to have a value of zero (SVR4 ABI, p. 4-27). */
612 if (bfd_is_und_section (symbol->section)
613 && (symbol->flags & BSF_WEAK) == 0
614 && output_bfd == (bfd *) NULL)
615 flag = bfd_reloc_undefined;
616
617 /* If there is a function supplied to handle this relocation type,
618 call it. It'll return `bfd_reloc_continue' if further processing
619 can be done. */
620 if (howto->special_function)
621 {
622 bfd_reloc_status_type cont;
623 cont = howto->special_function (abfd, reloc_entry, symbol, data,
624 input_section, output_bfd,
625 error_message);
626 if (cont != bfd_reloc_continue)
627 return cont;
628 }
629
630 /* Is the address of the relocation really within the section? */
e207c4fa
AM
631 if (reloc_entry->address > (input_section->_cooked_size
632 / bfd_octets_per_byte (abfd)))
252b5132
RH
633 return bfd_reloc_outofrange;
634
635 /* Work out which section the relocation is targetted at and the
636 initial relocation command value. */
637
638 /* Get symbol value. (Common symbols are special.) */
639 if (bfd_is_com_section (symbol->section))
640 relocation = 0;
641 else
642 relocation = symbol->value;
643
252b5132
RH
644 reloc_target_output_section = symbol->section->output_section;
645
646 /* Convert input-section-relative symbol value to absolute. */
ec4530b5
NC
647 if ((output_bfd && ! howto->partial_inplace)
648 || reloc_target_output_section == NULL)
252b5132
RH
649 output_base = 0;
650 else
651 output_base = reloc_target_output_section->vma;
652
653 relocation += output_base + symbol->section->output_offset;
654
655 /* Add in supplied addend. */
656 relocation += reloc_entry->addend;
657
658 /* Here the variable relocation holds the final address of the
659 symbol we are relocating against, plus any addend. */
660
82e51918 661 if (howto->pc_relative)
252b5132
RH
662 {
663 /* This is a PC relative relocation. We want to set RELOCATION
664 to the distance between the address of the symbol and the
665 location. RELOCATION is already the address of the symbol.
666
667 We start by subtracting the address of the section containing
668 the location.
669
670 If pcrel_offset is set, we must further subtract the position
671 of the location within the section. Some targets arrange for
672 the addend to be the negative of the position of the location
673 within the section; for example, i386-aout does this. For
b34976b6 674 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 675 include the position of the location; for example, m88kbcs,
b34976b6 676 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
677
678 If we are producing relocateable output, then we must ensure
679 that this reloc will be correctly computed when the final
b34976b6 680 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
681 up with the negative of the location within the section,
682 which means we must adjust the existing addend by the change
b34976b6 683 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
684 we do not want to adjust the existing addend at all.
685
686 FIXME: This seems logical to me, but for the case of
687 producing relocateable output it is not what the code
688 actually does. I don't want to change it, because it seems
689 far too likely that something will break. */
690
691 relocation -=
692 input_section->output_section->vma + input_section->output_offset;
693
82e51918 694 if (howto->pcrel_offset)
252b5132
RH
695 relocation -= reloc_entry->address;
696 }
697
698 if (output_bfd != (bfd *) NULL)
699 {
82e51918 700 if (! howto->partial_inplace)
252b5132
RH
701 {
702 /* This is a partial relocation, and we want to apply the relocation
703 to the reloc entry rather than the raw data. Modify the reloc
704 inplace to reflect what we now know. */
705 reloc_entry->addend = relocation;
706 reloc_entry->address += input_section->output_offset;
707 return flag;
708 }
709 else
710 {
711 /* This is a partial relocation, but inplace, so modify the
712 reloc record a bit.
713
714 If we've relocated with a symbol with a section, change
715 into a ref to the section belonging to the symbol. */
716
717 reloc_entry->address += input_section->output_offset;
718
719 /* WTF?? */
720 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
721 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
722 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
723 {
724#if 1
725 /* For m68k-coff, the addend was being subtracted twice during
726 relocation with -r. Removing the line below this comment
727 fixes that problem; see PR 2953.
728
729However, Ian wrote the following, regarding removing the line below,
730which explains why it is still enabled: --djm
731
732If you put a patch like that into BFD you need to check all the COFF
733linkers. I am fairly certain that patch will break coff-i386 (e.g.,
734SCO); see coff_i386_reloc in coff-i386.c where I worked around the
735problem in a different way. There may very well be a reason that the
736code works as it does.
737
738Hmmm. The first obvious point is that bfd_perform_relocation should
739not have any tests that depend upon the flavour. It's seem like
740entirely the wrong place for such a thing. The second obvious point
741is that the current code ignores the reloc addend when producing
742relocateable output for COFF. That's peculiar. In fact, I really
743have no idea what the point of the line you want to remove is.
744
745A typical COFF reloc subtracts the old value of the symbol and adds in
746the new value to the location in the object file (if it's a pc
747relative reloc it adds the difference between the symbol value and the
748location). When relocating we need to preserve that property.
749
750BFD handles this by setting the addend to the negative of the old
751value of the symbol. Unfortunately it handles common symbols in a
752non-standard way (it doesn't subtract the old value) but that's a
753different story (we can't change it without losing backward
754compatibility with old object files) (coff-i386 does subtract the old
755value, to be compatible with existing coff-i386 targets, like SCO).
756
757So everything works fine when not producing relocateable output. When
758we are producing relocateable output, logically we should do exactly
759what we do when not producing relocateable output. Therefore, your
760patch is correct. In fact, it should probably always just set
761reloc_entry->addend to 0 for all cases, since it is, in fact, going to
762add the value into the object file. This won't hurt the COFF code,
763which doesn't use the addend; I'm not sure what it will do to other
764formats (the thing to check for would be whether any formats both use
765the addend and set partial_inplace).
766
767When I wanted to make coff-i386 produce relocateable output, I ran
768into the problem that you are running into: I wanted to remove that
769line. Rather than risk it, I made the coff-i386 relocs use a special
770function; it's coff_i386_reloc in coff-i386.c. The function
771specifically adds the addend field into the object file, knowing that
772bfd_perform_relocation is not going to. If you remove that line, then
773coff-i386.c will wind up adding the addend field in twice. It's
774trivial to fix; it just needs to be done.
775
776The problem with removing the line is just that it may break some
777working code. With BFD it's hard to be sure of anything. The right
778way to deal with this is simply to build and test at least all the
779supported COFF targets. It should be straightforward if time and disk
780space consuming. For each target:
781 1) build the linker
782 2) generate some executable, and link it using -r (I would
783 probably use paranoia.o and link against newlib/libc.a, which
784 for all the supported targets would be available in
785 /usr/cygnus/progressive/H-host/target/lib/libc.a).
786 3) make the change to reloc.c
787 4) rebuild the linker
788 5) repeat step 2
789 6) if the resulting object files are the same, you have at least
790 made it no worse
791 7) if they are different you have to figure out which version is
792 right
793*/
794 relocation -= reloc_entry->addend;
795#endif
796 reloc_entry->addend = 0;
797 }
798 else
799 {
800 reloc_entry->addend = relocation;
801 }
802 }
803 }
804 else
805 {
806 reloc_entry->addend = 0;
807 }
808
809 /* FIXME: This overflow checking is incomplete, because the value
810 might have overflowed before we get here. For a correct check we
811 need to compute the value in a size larger than bitsize, but we
812 can't reasonably do that for a reloc the same size as a host
813 machine word.
814 FIXME: We should also do overflow checking on the result after
815 adding in the value contained in the object file. */
816 if (howto->complain_on_overflow != complain_overflow_dont
817 && flag == bfd_reloc_ok)
818 flag = bfd_check_overflow (howto->complain_on_overflow,
819 howto->bitsize,
820 howto->rightshift,
821 bfd_arch_bits_per_address (abfd),
822 relocation);
823
b5f79c76
NC
824 /* Either we are relocating all the way, or we don't want to apply
825 the relocation to the reloc entry (probably because there isn't
826 any room in the output format to describe addends to relocs). */
252b5132
RH
827
828 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
829 (OSF version 1.3, compiler version 3.11). It miscompiles the
830 following program:
831
832 struct str
833 {
834 unsigned int i0;
835 } s = { 0 };
836
837 int
838 main ()
839 {
840 unsigned long x;
841
842 x = 0x100000000;
843 x <<= (unsigned long) s.i0;
844 if (x == 0)
845 printf ("failed\n");
846 else
847 printf ("succeeded (%lx)\n", x);
848 }
849 */
850
851 relocation >>= (bfd_vma) howto->rightshift;
852
b5f79c76 853 /* Shift everything up to where it's going to be used. */
252b5132
RH
854 relocation <<= (bfd_vma) howto->bitpos;
855
b5f79c76 856 /* Wait for the day when all have the mask in them. */
252b5132
RH
857
858 /* What we do:
859 i instruction to be left alone
860 o offset within instruction
861 r relocation offset to apply
862 S src mask
863 D dst mask
864 N ~dst mask
865 A part 1
866 B part 2
867 R result
868
869 Do this:
88b6bae0
AM
870 (( i i i i i o o o o o from bfd_get<size>
871 and S S S S S) to get the size offset we want
872 + r r r r r r r r r r) to get the final value to place
252b5132
RH
873 and D D D D D to chop to right size
874 -----------------------
88b6bae0 875 = A A A A A
252b5132 876 And this:
88b6bae0
AM
877 ( i i i i i o o o o o from bfd_get<size>
878 and N N N N N ) get instruction
252b5132 879 -----------------------
88b6bae0 880 = B B B B B
252b5132
RH
881
882 And then:
88b6bae0
AM
883 ( B B B B B
884 or A A A A A)
252b5132 885 -----------------------
88b6bae0 886 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
887 */
888
889#define DOIT(x) \
890 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
891
892 switch (howto->size)
893 {
894 case 0:
895 {
9a968f43 896 char x = bfd_get_8 (abfd, (char *) data + octets);
252b5132 897 DOIT (x);
9a968f43 898 bfd_put_8 (abfd, x, (unsigned char *) data + octets);
252b5132
RH
899 }
900 break;
901
902 case 1:
903 {
9a968f43 904 short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132 905 DOIT (x);
dc810e39 906 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
252b5132
RH
907 }
908 break;
909 case 2:
910 {
9a968f43 911 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132 912 DOIT (x);
dc810e39 913 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
914 }
915 break;
916 case -2:
917 {
9a968f43 918 long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
252b5132
RH
919 relocation = -relocation;
920 DOIT (x);
dc810e39 921 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
922 }
923 break;
924
925 case -1:
926 {
9a968f43 927 long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
252b5132
RH
928 relocation = -relocation;
929 DOIT (x);
dc810e39 930 bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
252b5132
RH
931 }
932 break;
933
934 case 3:
935 /* Do nothing */
936 break;
937
938 case 4:
939#ifdef BFD64
940 {
9a968f43 941 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
252b5132 942 DOIT (x);
9a968f43 943 bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
252b5132
RH
944 }
945#else
946 abort ();
947#endif
948 break;
949 default:
950 return bfd_reloc_other;
951 }
952
953 return flag;
954}
955
956/*
957FUNCTION
958 bfd_install_relocation
959
960SYNOPSIS
961 bfd_reloc_status_type
962 bfd_install_relocation
963 (bfd *abfd,
964 arelent *reloc_entry,
965 PTR data, bfd_vma data_start,
966 asection *input_section,
967 char **error_message);
968
969DESCRIPTION
970 This looks remarkably like <<bfd_perform_relocation>>, except it
971 does not expect that the section contents have been filled in.
972 I.e., it's suitable for use when creating, rather than applying
973 a relocation.
974
975 For now, this function should be considered reserved for the
976 assembler.
252b5132
RH
977*/
978
252b5132
RH
979bfd_reloc_status_type
980bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
981 input_section, error_message)
982 bfd *abfd;
983 arelent *reloc_entry;
984 PTR data_start;
985 bfd_vma data_start_offset;
986 asection *input_section;
987 char **error_message;
988{
989 bfd_vma relocation;
990 bfd_reloc_status_type flag = bfd_reloc_ok;
9a968f43 991 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
252b5132
RH
992 bfd_vma output_base = 0;
993 reloc_howto_type *howto = reloc_entry->howto;
994 asection *reloc_target_output_section;
995 asymbol *symbol;
996 bfd_byte *data;
997
998 symbol = *(reloc_entry->sym_ptr_ptr);
999 if (bfd_is_abs_section (symbol->section))
1000 {
1001 reloc_entry->address += input_section->output_offset;
1002 return bfd_reloc_ok;
1003 }
1004
1005 /* If there is a function supplied to handle this relocation type,
1006 call it. It'll return `bfd_reloc_continue' if further processing
1007 can be done. */
1008 if (howto->special_function)
1009 {
1010 bfd_reloc_status_type cont;
88b6bae0 1011
252b5132
RH
1012 /* XXX - The special_function calls haven't been fixed up to deal
1013 with creating new relocations and section contents. */
1014 cont = howto->special_function (abfd, reloc_entry, symbol,
1015 /* XXX - Non-portable! */
1016 ((bfd_byte *) data_start
1017 - data_start_offset),
1018 input_section, abfd, error_message);
1019 if (cont != bfd_reloc_continue)
1020 return cont;
1021 }
1022
1023 /* Is the address of the relocation really within the section? */
e207c4fa
AM
1024 if (reloc_entry->address > (input_section->_cooked_size
1025 / bfd_octets_per_byte (abfd)))
252b5132
RH
1026 return bfd_reloc_outofrange;
1027
1028 /* Work out which section the relocation is targetted at and the
1029 initial relocation command value. */
1030
1031 /* Get symbol value. (Common symbols are special.) */
1032 if (bfd_is_com_section (symbol->section))
1033 relocation = 0;
1034 else
1035 relocation = symbol->value;
1036
1037 reloc_target_output_section = symbol->section->output_section;
1038
1039 /* Convert input-section-relative symbol value to absolute. */
82e51918 1040 if (! howto->partial_inplace)
252b5132
RH
1041 output_base = 0;
1042 else
1043 output_base = reloc_target_output_section->vma;
1044
1045 relocation += output_base + symbol->section->output_offset;
1046
1047 /* Add in supplied addend. */
1048 relocation += reloc_entry->addend;
1049
1050 /* Here the variable relocation holds the final address of the
1051 symbol we are relocating against, plus any addend. */
1052
82e51918 1053 if (howto->pc_relative)
252b5132
RH
1054 {
1055 /* This is a PC relative relocation. We want to set RELOCATION
1056 to the distance between the address of the symbol and the
1057 location. RELOCATION is already the address of the symbol.
1058
1059 We start by subtracting the address of the section containing
1060 the location.
1061
1062 If pcrel_offset is set, we must further subtract the position
1063 of the location within the section. Some targets arrange for
1064 the addend to be the negative of the position of the location
1065 within the section; for example, i386-aout does this. For
b34976b6 1066 i386-aout, pcrel_offset is FALSE. Some other targets do not
252b5132 1067 include the position of the location; for example, m88kbcs,
b34976b6 1068 or ELF. For those targets, pcrel_offset is TRUE.
252b5132
RH
1069
1070 If we are producing relocateable output, then we must ensure
1071 that this reloc will be correctly computed when the final
b34976b6 1072 relocation is done. If pcrel_offset is FALSE we want to wind
252b5132
RH
1073 up with the negative of the location within the section,
1074 which means we must adjust the existing addend by the change
b34976b6 1075 in the location within the section. If pcrel_offset is TRUE
252b5132
RH
1076 we do not want to adjust the existing addend at all.
1077
1078 FIXME: This seems logical to me, but for the case of
1079 producing relocateable output it is not what the code
1080 actually does. I don't want to change it, because it seems
1081 far too likely that something will break. */
1082
1083 relocation -=
1084 input_section->output_section->vma + input_section->output_offset;
1085
82e51918 1086 if (howto->pcrel_offset && howto->partial_inplace)
252b5132
RH
1087 relocation -= reloc_entry->address;
1088 }
1089
82e51918 1090 if (! howto->partial_inplace)
252b5132
RH
1091 {
1092 /* This is a partial relocation, and we want to apply the relocation
1093 to the reloc entry rather than the raw data. Modify the reloc
1094 inplace to reflect what we now know. */
1095 reloc_entry->addend = relocation;
1096 reloc_entry->address += input_section->output_offset;
1097 return flag;
1098 }
1099 else
1100 {
1101 /* This is a partial relocation, but inplace, so modify the
1102 reloc record a bit.
1103
1104 If we've relocated with a symbol with a section, change
1105 into a ref to the section belonging to the symbol. */
252b5132
RH
1106 reloc_entry->address += input_section->output_offset;
1107
1108 /* WTF?? */
1109 if (abfd->xvec->flavour == bfd_target_coff_flavour
252b5132
RH
1110 && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
1111 && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
1112 {
1113#if 1
1114/* For m68k-coff, the addend was being subtracted twice during
1115 relocation with -r. Removing the line below this comment
1116 fixes that problem; see PR 2953.
1117
1118However, Ian wrote the following, regarding removing the line below,
1119which explains why it is still enabled: --djm
1120
1121If you put a patch like that into BFD you need to check all the COFF
1122linkers. I am fairly certain that patch will break coff-i386 (e.g.,
1123SCO); see coff_i386_reloc in coff-i386.c where I worked around the
1124problem in a different way. There may very well be a reason that the
1125code works as it does.
1126
1127Hmmm. The first obvious point is that bfd_install_relocation should
1128not have any tests that depend upon the flavour. It's seem like
1129entirely the wrong place for such a thing. The second obvious point
1130is that the current code ignores the reloc addend when producing
1131relocateable output for COFF. That's peculiar. In fact, I really
1132have no idea what the point of the line you want to remove is.
1133
1134A typical COFF reloc subtracts the old value of the symbol and adds in
1135the new value to the location in the object file (if it's a pc
1136relative reloc it adds the difference between the symbol value and the
1137location). When relocating we need to preserve that property.
1138
1139BFD handles this by setting the addend to the negative of the old
1140value of the symbol. Unfortunately it handles common symbols in a
1141non-standard way (it doesn't subtract the old value) but that's a
1142different story (we can't change it without losing backward
1143compatibility with old object files) (coff-i386 does subtract the old
1144value, to be compatible with existing coff-i386 targets, like SCO).
1145
1146So everything works fine when not producing relocateable output. When
1147we are producing relocateable output, logically we should do exactly
1148what we do when not producing relocateable output. Therefore, your
1149patch is correct. In fact, it should probably always just set
1150reloc_entry->addend to 0 for all cases, since it is, in fact, going to
1151add the value into the object file. This won't hurt the COFF code,
1152which doesn't use the addend; I'm not sure what it will do to other
1153formats (the thing to check for would be whether any formats both use
1154the addend and set partial_inplace).
1155
1156When I wanted to make coff-i386 produce relocateable output, I ran
1157into the problem that you are running into: I wanted to remove that
1158line. Rather than risk it, I made the coff-i386 relocs use a special
1159function; it's coff_i386_reloc in coff-i386.c. The function
1160specifically adds the addend field into the object file, knowing that
1161bfd_install_relocation is not going to. If you remove that line, then
1162coff-i386.c will wind up adding the addend field in twice. It's
1163trivial to fix; it just needs to be done.
1164
1165The problem with removing the line is just that it may break some
1166working code. With BFD it's hard to be sure of anything. The right
1167way to deal with this is simply to build and test at least all the
1168supported COFF targets. It should be straightforward if time and disk
1169space consuming. For each target:
1170 1) build the linker
1171 2) generate some executable, and link it using -r (I would
1172 probably use paranoia.o and link against newlib/libc.a, which
1173 for all the supported targets would be available in
1174 /usr/cygnus/progressive/H-host/target/lib/libc.a).
1175 3) make the change to reloc.c
1176 4) rebuild the linker
1177 5) repeat step 2
1178 6) if the resulting object files are the same, you have at least
1179 made it no worse
1180 7) if they are different you have to figure out which version is
b5f79c76 1181 right. */
252b5132
RH
1182 relocation -= reloc_entry->addend;
1183#endif
1184 reloc_entry->addend = 0;
1185 }
1186 else
1187 {
1188 reloc_entry->addend = relocation;
1189 }
1190 }
1191
1192 /* FIXME: This overflow checking is incomplete, because the value
1193 might have overflowed before we get here. For a correct check we
1194 need to compute the value in a size larger than bitsize, but we
1195 can't reasonably do that for a reloc the same size as a host
1196 machine word.
1197 FIXME: We should also do overflow checking on the result after
1198 adding in the value contained in the object file. */
1199 if (howto->complain_on_overflow != complain_overflow_dont)
1200 flag = bfd_check_overflow (howto->complain_on_overflow,
1201 howto->bitsize,
1202 howto->rightshift,
1203 bfd_arch_bits_per_address (abfd),
1204 relocation);
1205
b5f79c76
NC
1206 /* Either we are relocating all the way, or we don't want to apply
1207 the relocation to the reloc entry (probably because there isn't
1208 any room in the output format to describe addends to relocs). */
252b5132
RH
1209
1210 /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
1211 (OSF version 1.3, compiler version 3.11). It miscompiles the
1212 following program:
1213
1214 struct str
1215 {
1216 unsigned int i0;
1217 } s = { 0 };
1218
1219 int
1220 main ()
1221 {
1222 unsigned long x;
1223
1224 x = 0x100000000;
1225 x <<= (unsigned long) s.i0;
1226 if (x == 0)
1227 printf ("failed\n");
1228 else
1229 printf ("succeeded (%lx)\n", x);
1230 }
1231 */
1232
1233 relocation >>= (bfd_vma) howto->rightshift;
1234
b5f79c76 1235 /* Shift everything up to where it's going to be used. */
252b5132
RH
1236 relocation <<= (bfd_vma) howto->bitpos;
1237
b5f79c76 1238 /* Wait for the day when all have the mask in them. */
252b5132
RH
1239
1240 /* What we do:
1241 i instruction to be left alone
1242 o offset within instruction
1243 r relocation offset to apply
1244 S src mask
1245 D dst mask
1246 N ~dst mask
1247 A part 1
1248 B part 2
1249 R result
1250
1251 Do this:
88b6bae0
AM
1252 (( i i i i i o o o o o from bfd_get<size>
1253 and S S S S S) to get the size offset we want
1254 + r r r r r r r r r r) to get the final value to place
252b5132
RH
1255 and D D D D D to chop to right size
1256 -----------------------
88b6bae0 1257 = A A A A A
252b5132 1258 And this:
88b6bae0
AM
1259 ( i i i i i o o o o o from bfd_get<size>
1260 and N N N N N ) get instruction
252b5132 1261 -----------------------
88b6bae0 1262 = B B B B B
252b5132
RH
1263
1264 And then:
88b6bae0
AM
1265 ( B B B B B
1266 or A A A A A)
252b5132 1267 -----------------------
88b6bae0 1268 = R R R R R R R R R R put into bfd_put<size>
252b5132
RH
1269 */
1270
1271#define DOIT(x) \
1272 x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
1273
9a968f43 1274 data = (bfd_byte *) data_start + (octets - data_start_offset);
252b5132
RH
1275
1276 switch (howto->size)
1277 {
1278 case 0:
1279 {
1280 char x = bfd_get_8 (abfd, (char *) data);
1281 DOIT (x);
1282 bfd_put_8 (abfd, x, (unsigned char *) data);
1283 }
1284 break;
1285
1286 case 1:
1287 {
1288 short x = bfd_get_16 (abfd, (bfd_byte *) data);
1289 DOIT (x);
dc810e39 1290 bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
252b5132
RH
1291 }
1292 break;
1293 case 2:
1294 {
1295 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1296 DOIT (x);
dc810e39 1297 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1298 }
1299 break;
1300 case -2:
1301 {
1302 long x = bfd_get_32 (abfd, (bfd_byte *) data);
1303 relocation = -relocation;
1304 DOIT (x);
dc810e39 1305 bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
252b5132
RH
1306 }
1307 break;
1308
1309 case 3:
1310 /* Do nothing */
1311 break;
1312
1313 case 4:
1314 {
1315 bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
1316 DOIT (x);
1317 bfd_put_64 (abfd, x, (bfd_byte *) data);
1318 }
1319 break;
1320 default:
1321 return bfd_reloc_other;
1322 }
1323
1324 return flag;
1325}
1326
1327/* This relocation routine is used by some of the backend linkers.
1328 They do not construct asymbol or arelent structures, so there is no
1329 reason for them to use bfd_perform_relocation. Also,
1330 bfd_perform_relocation is so hacked up it is easier to write a new
1331 function than to try to deal with it.
1332
1333 This routine does a final relocation. Whether it is useful for a
1334 relocateable link depends upon how the object format defines
1335 relocations.
1336
1337 FIXME: This routine ignores any special_function in the HOWTO,
1338 since the existing special_function values have been written for
1339 bfd_perform_relocation.
1340
1341 HOWTO is the reloc howto information.
1342 INPUT_BFD is the BFD which the reloc applies to.
1343 INPUT_SECTION is the section which the reloc applies to.
1344 CONTENTS is the contents of the section.
1345 ADDRESS is the address of the reloc within INPUT_SECTION.
1346 VALUE is the value of the symbol the reloc refers to.
1347 ADDEND is the addend of the reloc. */
1348
1349bfd_reloc_status_type
1350_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
1351 value, addend)
1352 reloc_howto_type *howto;
1353 bfd *input_bfd;
1354 asection *input_section;
1355 bfd_byte *contents;
1356 bfd_vma address;
1357 bfd_vma value;
1358 bfd_vma addend;
1359{
1360 bfd_vma relocation;
1361
1362 /* Sanity check the address. */
1363 if (address > input_section->_raw_size)
1364 return bfd_reloc_outofrange;
1365
1366 /* This function assumes that we are dealing with a basic relocation
1367 against a symbol. We want to compute the value of the symbol to
1368 relocate to. This is just VALUE, the value of the symbol, plus
1369 ADDEND, any addend associated with the reloc. */
1370 relocation = value + addend;
1371
1372 /* If the relocation is PC relative, we want to set RELOCATION to
1373 the distance between the symbol (currently in RELOCATION) and the
1374 location we are relocating. Some targets (e.g., i386-aout)
1375 arrange for the contents of the section to be the negative of the
1376 offset of the location within the section; for such targets
b34976b6 1377 pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF)
252b5132 1378 simply leave the contents of the section as zero; for such
b34976b6 1379 targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not
252b5132
RH
1380 need to subtract out the offset of the location within the
1381 section (which is just ADDRESS). */
1382 if (howto->pc_relative)
1383 {
1384 relocation -= (input_section->output_section->vma
1385 + input_section->output_offset);
1386 if (howto->pcrel_offset)
1387 relocation -= address;
1388 }
1389
1390 return _bfd_relocate_contents (howto, input_bfd, relocation,
1391 contents + address);
1392}
1393
1394/* Relocate a given location using a given value and howto. */
1395
1396bfd_reloc_status_type
1397_bfd_relocate_contents (howto, input_bfd, relocation, location)
1398 reloc_howto_type *howto;
1399 bfd *input_bfd;
1400 bfd_vma relocation;
1401 bfd_byte *location;
1402{
1403 int size;
7442e600 1404 bfd_vma x = 0;
d5afc56e 1405 bfd_reloc_status_type flag;
252b5132
RH
1406 unsigned int rightshift = howto->rightshift;
1407 unsigned int bitpos = howto->bitpos;
1408
1409 /* If the size is negative, negate RELOCATION. This isn't very
1410 general. */
1411 if (howto->size < 0)
1412 relocation = -relocation;
1413
1414 /* Get the value we are going to relocate. */
1415 size = bfd_get_reloc_size (howto);
1416 switch (size)
1417 {
1418 default:
1419 case 0:
1420 abort ();
1421 case 1:
1422 x = bfd_get_8 (input_bfd, location);
1423 break;
1424 case 2:
1425 x = bfd_get_16 (input_bfd, location);
1426 break;
1427 case 4:
1428 x = bfd_get_32 (input_bfd, location);
1429 break;
1430 case 8:
1431#ifdef BFD64
1432 x = bfd_get_64 (input_bfd, location);
1433#else
1434 abort ();
1435#endif
1436 break;
1437 }
1438
1439 /* Check for overflow. FIXME: We may drop bits during the addition
1440 which we don't check for. We must either check at every single
1441 operation, which would be tedious, or we must do the computations
1442 in a type larger than bfd_vma, which would be inefficient. */
d5afc56e 1443 flag = bfd_reloc_ok;
252b5132
RH
1444 if (howto->complain_on_overflow != complain_overflow_dont)
1445 {
1446 bfd_vma addrmask, fieldmask, signmask, ss;
1447 bfd_vma a, b, sum;
1448
1449 /* Get the values to be added together. For signed and unsigned
1450 relocations, we assume that all values should be truncated to
1451 the size of an address. For bitfields, all the bits matter.
1452 See also bfd_check_overflow. */
1453 fieldmask = N_ONES (howto->bitsize);
1454 addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
1455 a = relocation;
1456 b = x & howto->src_mask;
1457
1458 switch (howto->complain_on_overflow)
1459 {
1460 case complain_overflow_signed:
1461 a = (a & addrmask) >> rightshift;
1462
1463 /* If any sign bits are set, all sign bits must be set.
1464 That is, A must be a valid negative address after
1465 shifting. */
1466 signmask = ~ (fieldmask >> 1);
1467 ss = a & signmask;
1468 if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
d5afc56e 1469 flag = bfd_reloc_overflow;
252b5132
RH
1470
1471 /* We only need this next bit of code if the sign bit of B
1472 is below the sign bit of A. This would only happen if
1473 SRC_MASK had fewer bits than BITSIZE. Note that if
1474 SRC_MASK has more bits than BITSIZE, we can get into
1475 trouble; we would need to verify that B is in range, as
1476 we do for A above. */
1477 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871
AM
1478
1479 /* Set all the bits above the sign bit. */
1480 b = (b ^ signmask) - signmask;
252b5132
RH
1481
1482 b = (b & addrmask) >> bitpos;
1483
1484 /* Now we can do the addition. */
1485 sum = a + b;
1486
1487 /* See if the result has the correct sign. Bits above the
1488 sign bit are junk now; ignore them. If the sum is
1489 positive, make sure we did not have all negative inputs;
1490 if the sum is negative, make sure we did not have all
1491 positive inputs. The test below looks only at the sign
1492 bits, and it really just
1493 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
1494 */
1495 signmask = (fieldmask >> 1) + 1;
1496 if (((~ (a ^ b)) & (a ^ sum)) & signmask)
d5afc56e 1497 flag = bfd_reloc_overflow;
252b5132
RH
1498
1499 break;
1500
1501 case complain_overflow_unsigned:
1502 /* Checking for an unsigned overflow is relatively easy:
1503 trim the addresses and add, and trim the result as well.
1504 Overflow is normally indicated when the result does not
1505 fit in the field. However, we also need to consider the
1506 case when, e.g., fieldmask is 0x7fffffff or smaller, an
1507 input is 0x80000000, and bfd_vma is only 32 bits; then we
1508 will get sum == 0, but there is an overflow, since the
1509 inputs did not fit in the field. Instead of doing a
1510 separate test, we can check for this by or-ing in the
1511 operands when testing for the sum overflowing its final
1512 field. */
1513 a = (a & addrmask) >> rightshift;
1514 b = (b & addrmask) >> bitpos;
1515 sum = (a + b) & addrmask;
1516 if ((a | b | sum) & ~ fieldmask)
d5afc56e 1517 flag = bfd_reloc_overflow;
252b5132
RH
1518
1519 break;
1520
1521 case complain_overflow_bitfield:
d5afc56e 1522 /* Much like the signed check, but for a field one bit
8a4ac871 1523 wider, and no trimming inputs with addrmask. We allow a
d5afc56e
AM
1524 bitfield to represent numbers in the range -2**n to
1525 2**n-1, where n is the number of bits in the field.
1526 Note that when bfd_vma is 32 bits, a 32-bit reloc can't
1527 overflow, which is exactly what we want. */
252b5132 1528 a >>= rightshift;
252b5132 1529
d5afc56e
AM
1530 signmask = ~ fieldmask;
1531 ss = a & signmask;
1532 if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
1533 flag = bfd_reloc_overflow;
252b5132 1534
d5afc56e 1535 signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
8a4ac871 1536 b = (b ^ signmask) - signmask;
252b5132 1537
d5afc56e 1538 b >>= bitpos;
44257b8b 1539
252b5132 1540 sum = a + b;
d5afc56e 1541
8a4ac871
AM
1542 /* We mask with addrmask here to explicitly allow an address
1543 wrap-around. The Linux kernel relies on it, and it is
1544 the only way to write assembler code which can run when
1545 loaded at a location 0x80000000 away from the location at
1546 which it is linked. */
d5afc56e 1547 signmask = fieldmask + 1;
8a4ac871 1548 if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
d5afc56e 1549 flag = bfd_reloc_overflow;
252b5132
RH
1550
1551 break;
1552
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 /* Put RELOCATION in the right bits. */
1559 relocation >>= (bfd_vma) rightshift;
1560 relocation <<= (bfd_vma) bitpos;
1561
1562 /* Add RELOCATION to the right bits of X. */
1563 x = ((x & ~howto->dst_mask)
1564 | (((x & howto->src_mask) + relocation) & howto->dst_mask));
1565
1566 /* Put the relocated value back in the object file. */
1567 switch (size)
1568 {
1569 default:
1570 case 0:
1571 abort ();
1572 case 1:
1573 bfd_put_8 (input_bfd, x, location);
1574 break;
1575 case 2:
1576 bfd_put_16 (input_bfd, x, location);
1577 break;
1578 case 4:
1579 bfd_put_32 (input_bfd, x, location);
1580 break;
1581 case 8:
1582#ifdef BFD64
1583 bfd_put_64 (input_bfd, x, location);
1584#else
1585 abort ();
1586#endif
1587 break;
1588 }
1589
d5afc56e 1590 return flag;
252b5132
RH
1591}
1592
1593/*
1594DOCDD
1595INODE
1596 howto manager, , typedef arelent, Relocations
1597
1598SECTION
1599 The howto manager
1600
1601 When an application wants to create a relocation, but doesn't
1602 know what the target machine might call it, it can find out by
1603 using this bit of code.
1604
1605*/
1606
1607/*
1608TYPEDEF
1609 bfd_reloc_code_type
1610
1611DESCRIPTION
1612 The insides of a reloc code. The idea is that, eventually, there
1613 will be one enumerator for every type of relocation we ever do.
1614 Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
1615 return a howto pointer.
1616
1617 This does mean that the application must determine the correct
1618 enumerator value; you can't get a howto pointer from a random set
1619 of attributes.
1620
1621SENUM
1622 bfd_reloc_code_real
1623
1624ENUM
1625 BFD_RELOC_64
1626ENUMX
1627 BFD_RELOC_32
1628ENUMX
1629 BFD_RELOC_26
1630ENUMX
1631 BFD_RELOC_24
1632ENUMX
1633 BFD_RELOC_16
1634ENUMX
1635 BFD_RELOC_14
1636ENUMX
1637 BFD_RELOC_8
1638ENUMDOC
1639 Basic absolute relocations of N bits.
1640
1641ENUM
1642 BFD_RELOC_64_PCREL
1643ENUMX
1644 BFD_RELOC_32_PCREL
1645ENUMX
1646 BFD_RELOC_24_PCREL
1647ENUMX
1648 BFD_RELOC_16_PCREL
1649ENUMX
1650 BFD_RELOC_12_PCREL
1651ENUMX
1652 BFD_RELOC_8_PCREL
1653ENUMDOC
1654 PC-relative relocations. Sometimes these are relative to the address
1655of the relocation itself; sometimes they are relative to the start of
1656the section containing the relocation. It depends on the specific target.
1657
1658The 24-bit relocation is used in some Intel 960 configurations.
1659
1660ENUM
1661 BFD_RELOC_32_GOT_PCREL
1662ENUMX
1663 BFD_RELOC_16_GOT_PCREL
1664ENUMX
1665 BFD_RELOC_8_GOT_PCREL
1666ENUMX
1667 BFD_RELOC_32_GOTOFF
1668ENUMX
1669 BFD_RELOC_16_GOTOFF
1670ENUMX
1671 BFD_RELOC_LO16_GOTOFF
1672ENUMX
1673 BFD_RELOC_HI16_GOTOFF
1674ENUMX
1675 BFD_RELOC_HI16_S_GOTOFF
1676ENUMX
1677 BFD_RELOC_8_GOTOFF
5bd4f169
AM
1678ENUMX
1679 BFD_RELOC_64_PLT_PCREL
252b5132
RH
1680ENUMX
1681 BFD_RELOC_32_PLT_PCREL
1682ENUMX
1683 BFD_RELOC_24_PLT_PCREL
1684ENUMX
1685 BFD_RELOC_16_PLT_PCREL
1686ENUMX
1687 BFD_RELOC_8_PLT_PCREL
5bd4f169
AM
1688ENUMX
1689 BFD_RELOC_64_PLTOFF
252b5132
RH
1690ENUMX
1691 BFD_RELOC_32_PLTOFF
1692ENUMX
1693 BFD_RELOC_16_PLTOFF
1694ENUMX
1695 BFD_RELOC_LO16_PLTOFF
1696ENUMX
1697 BFD_RELOC_HI16_PLTOFF
1698ENUMX
1699 BFD_RELOC_HI16_S_PLTOFF
1700ENUMX
1701 BFD_RELOC_8_PLTOFF
1702ENUMDOC
1703 For ELF.
1704
1705ENUM
1706 BFD_RELOC_68K_GLOB_DAT
1707ENUMX
1708 BFD_RELOC_68K_JMP_SLOT
1709ENUMX
1710 BFD_RELOC_68K_RELATIVE
1711ENUMDOC
1712 Relocations used by 68K ELF.
1713
1714ENUM
1715 BFD_RELOC_32_BASEREL
1716ENUMX
1717 BFD_RELOC_16_BASEREL
1718ENUMX
1719 BFD_RELOC_LO16_BASEREL
1720ENUMX
1721 BFD_RELOC_HI16_BASEREL
1722ENUMX
1723 BFD_RELOC_HI16_S_BASEREL
1724ENUMX
1725 BFD_RELOC_8_BASEREL
1726ENUMX
1727 BFD_RELOC_RVA
1728ENUMDOC
1729 Linkage-table relative.
1730
1731ENUM
1732 BFD_RELOC_8_FFnn
1733ENUMDOC
1734 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
1735
1736ENUM
1737 BFD_RELOC_32_PCREL_S2
1738ENUMX
1739 BFD_RELOC_16_PCREL_S2
1740ENUMX
1741 BFD_RELOC_23_PCREL_S2
1742ENUMDOC
1743 These PC-relative relocations are stored as word displacements --
1744i.e., byte displacements shifted right two bits. The 30-bit word
1745displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
1746SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
1747signed 16-bit displacement is used on the MIPS, and the 23-bit
1748displacement is used on the Alpha.
1749
1750ENUM
1751 BFD_RELOC_HI22
1752ENUMX
1753 BFD_RELOC_LO10
1754ENUMDOC
1755 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
1756the target word. These are used on the SPARC.
1757
1758ENUM
1759 BFD_RELOC_GPREL16
1760ENUMX
1761 BFD_RELOC_GPREL32
1762ENUMDOC
1763 For systems that allocate a Global Pointer register, these are
1764displacements off that register. These relocation types are
1765handled specially, because the value the register will have is
1766decided relatively late.
1767
252b5132
RH
1768ENUM
1769 BFD_RELOC_I960_CALLJ
1770ENUMDOC
1771 Reloc types used for i960/b.out.
1772
1773ENUM
1774 BFD_RELOC_NONE
1775ENUMX
1776 BFD_RELOC_SPARC_WDISP22
1777ENUMX
1778 BFD_RELOC_SPARC22
1779ENUMX
1780 BFD_RELOC_SPARC13
1781ENUMX
1782 BFD_RELOC_SPARC_GOT10
1783ENUMX
1784 BFD_RELOC_SPARC_GOT13
1785ENUMX
1786 BFD_RELOC_SPARC_GOT22
1787ENUMX
1788 BFD_RELOC_SPARC_PC10
1789ENUMX
1790 BFD_RELOC_SPARC_PC22
1791ENUMX
1792 BFD_RELOC_SPARC_WPLT30
1793ENUMX
1794 BFD_RELOC_SPARC_COPY
1795ENUMX
1796 BFD_RELOC_SPARC_GLOB_DAT
1797ENUMX
1798 BFD_RELOC_SPARC_JMP_SLOT
1799ENUMX
1800 BFD_RELOC_SPARC_RELATIVE
0f2712ed
NC
1801ENUMX
1802 BFD_RELOC_SPARC_UA16
252b5132
RH
1803ENUMX
1804 BFD_RELOC_SPARC_UA32
0f2712ed
NC
1805ENUMX
1806 BFD_RELOC_SPARC_UA64
252b5132
RH
1807ENUMDOC
1808 SPARC ELF relocations. There is probably some overlap with other
1809 relocation types already defined.
1810
1811ENUM
1812 BFD_RELOC_SPARC_BASE13
1813ENUMX
1814 BFD_RELOC_SPARC_BASE22
1815ENUMDOC
1816 I think these are specific to SPARC a.out (e.g., Sun 4).
1817
1818ENUMEQ
1819 BFD_RELOC_SPARC_64
1820 BFD_RELOC_64
1821ENUMX
1822 BFD_RELOC_SPARC_10
1823ENUMX
1824 BFD_RELOC_SPARC_11
1825ENUMX
1826 BFD_RELOC_SPARC_OLO10
1827ENUMX
1828 BFD_RELOC_SPARC_HH22
1829ENUMX
1830 BFD_RELOC_SPARC_HM10
1831ENUMX
1832 BFD_RELOC_SPARC_LM22
1833ENUMX
1834 BFD_RELOC_SPARC_PC_HH22
1835ENUMX
1836 BFD_RELOC_SPARC_PC_HM10
1837ENUMX
1838 BFD_RELOC_SPARC_PC_LM22
1839ENUMX
1840 BFD_RELOC_SPARC_WDISP16
1841ENUMX
1842 BFD_RELOC_SPARC_WDISP19
1843ENUMX
1844 BFD_RELOC_SPARC_7
1845ENUMX
1846 BFD_RELOC_SPARC_6
1847ENUMX
1848 BFD_RELOC_SPARC_5
1849ENUMEQX
1850 BFD_RELOC_SPARC_DISP64
1851 BFD_RELOC_64_PCREL
bd5e6e7e
JJ
1852ENUMX
1853 BFD_RELOC_SPARC_PLT32
252b5132
RH
1854ENUMX
1855 BFD_RELOC_SPARC_PLT64
1856ENUMX
1857 BFD_RELOC_SPARC_HIX22
1858ENUMX
1859 BFD_RELOC_SPARC_LOX10
1860ENUMX
1861 BFD_RELOC_SPARC_H44
1862ENUMX
1863 BFD_RELOC_SPARC_M44
1864ENUMX
1865 BFD_RELOC_SPARC_L44
1866ENUMX
1867 BFD_RELOC_SPARC_REGISTER
1868ENUMDOC
1869 SPARC64 relocations
1870
1871ENUM
1872 BFD_RELOC_SPARC_REV32
1873ENUMDOC
1874 SPARC little endian relocation
b9734f35
JJ
1875ENUM
1876 BFD_RELOC_SPARC_TLS_GD_HI22
1877ENUMX
1878 BFD_RELOC_SPARC_TLS_GD_LO10
1879ENUMX
1880 BFD_RELOC_SPARC_TLS_GD_ADD
1881ENUMX
1882 BFD_RELOC_SPARC_TLS_GD_CALL
1883ENUMX
1884 BFD_RELOC_SPARC_TLS_LDM_HI22
1885ENUMX
1886 BFD_RELOC_SPARC_TLS_LDM_LO10
1887ENUMX
1888 BFD_RELOC_SPARC_TLS_LDM_ADD
1889ENUMX
1890 BFD_RELOC_SPARC_TLS_LDM_CALL
1891ENUMX
1892 BFD_RELOC_SPARC_TLS_LDO_HIX22
1893ENUMX
1894 BFD_RELOC_SPARC_TLS_LDO_LOX10
1895ENUMX
1896 BFD_RELOC_SPARC_TLS_LDO_ADD
1897ENUMX
1898 BFD_RELOC_SPARC_TLS_IE_HI22
1899ENUMX
1900 BFD_RELOC_SPARC_TLS_IE_LO10
1901ENUMX
1902 BFD_RELOC_SPARC_TLS_IE_LD
1903ENUMX
1904 BFD_RELOC_SPARC_TLS_IE_LDX
1905ENUMX
1906 BFD_RELOC_SPARC_TLS_IE_ADD
1907ENUMX
1908 BFD_RELOC_SPARC_TLS_LE_HIX22
1909ENUMX
1910 BFD_RELOC_SPARC_TLS_LE_LOX10
1911ENUMX
1912 BFD_RELOC_SPARC_TLS_DTPMOD32
1913ENUMX
1914 BFD_RELOC_SPARC_TLS_DTPMOD64
1915ENUMX
1916 BFD_RELOC_SPARC_TLS_DTPOFF32
1917ENUMX
1918 BFD_RELOC_SPARC_TLS_DTPOFF64
1919ENUMX
1920 BFD_RELOC_SPARC_TLS_TPOFF32
1921ENUMX
1922 BFD_RELOC_SPARC_TLS_TPOFF64
1923ENUMDOC
1924 SPARC TLS relocations
252b5132
RH
1925
1926ENUM
1927 BFD_RELOC_ALPHA_GPDISP_HI16
1928ENUMDOC
1929 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
1930 "addend" in some special way.
1931 For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
1932 writing; when reading, it will be the absolute section symbol. The
1933 addend is the displacement in bytes of the "lda" instruction from
1934 the "ldah" instruction (which is at the address of this reloc).
1935ENUM
1936 BFD_RELOC_ALPHA_GPDISP_LO16
1937ENUMDOC
1938 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
1939 with GPDISP_HI16 relocs. The addend is ignored when writing the
1940 relocations out, and is filled in with the file's GP value on
1941 reading, for convenience.
1942
1943ENUM
1944 BFD_RELOC_ALPHA_GPDISP
1945ENUMDOC
1946 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
1947 relocation except that there is no accompanying GPDISP_LO16
1948 relocation.
1949
1950ENUM
1951 BFD_RELOC_ALPHA_LITERAL
1952ENUMX
1953 BFD_RELOC_ALPHA_ELF_LITERAL
1954ENUMX
1955 BFD_RELOC_ALPHA_LITUSE
1956ENUMDOC
1957 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
1958 the assembler turns it into a LDQ instruction to load the address of
1959 the symbol, and then fills in a register in the real instruction.
1960
1961 The LITERAL reloc, at the LDQ instruction, refers to the .lita
1962 section symbol. The addend is ignored when writing, but is filled
1963 in with the file's GP value on reading, for convenience, as with the
1964 GPDISP_LO16 reloc.
1965
1966 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
1967 It should refer to the symbol to be referenced, as with 16_GOTOFF,
1968 but it generates output not based on the position within the .got
1969 section, but relative to the GP value chosen for the file during the
1970 final link stage.
1971
1972 The LITUSE reloc, on the instruction using the loaded address, gives
1973 information to the linker that it might be able to use to optimize
1974 away some literal section references. The symbol is ignored (read
1975 as the absolute section symbol), and the "addend" indicates the type
1976 of instruction using the register:
1977 1 - "memory" fmt insn
1978 2 - byte-manipulation (byte offset reg)
1979 3 - jsr (target of branch)
1980
252b5132
RH
1981ENUM
1982 BFD_RELOC_ALPHA_HINT
1983ENUMDOC
1984 The HINT relocation indicates a value that should be filled into the
1985 "hint" field of a jmp/jsr/ret instruction, for possible branch-
1986 prediction logic which may be provided on some processors.
1987
1988ENUM
1989 BFD_RELOC_ALPHA_LINKAGE
1990ENUMDOC
1991 The LINKAGE relocation outputs a linkage pair in the object file,
1992 which is filled by the linker.
1993
1994ENUM
1995 BFD_RELOC_ALPHA_CODEADDR
1996ENUMDOC
1997 The CODEADDR relocation outputs a STO_CA in the object file,
1998 which is filled by the linker.
1999
dfe57ca0
RH
2000ENUM
2001 BFD_RELOC_ALPHA_GPREL_HI16
2002ENUMX
2003 BFD_RELOC_ALPHA_GPREL_LO16
2004ENUMDOC
dc810e39
AM
2005 The GPREL_HI/LO relocations together form a 32-bit offset from the
2006 GP register.
dfe57ca0 2007
7793f4d0
RH
2008ENUM
2009 BFD_RELOC_ALPHA_BRSGP
2010ENUMDOC
2011 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
b34976b6 2012 share a common GP, and the target address is adjusted for
7793f4d0
RH
2013 STO_ALPHA_STD_GPLOAD.
2014
3765b1be
RH
2015ENUM
2016 BFD_RELOC_ALPHA_TLSGD
2017ENUMX
2018 BFD_RELOC_ALPHA_TLSLDM
2019ENUMX
2020 BFD_RELOC_ALPHA_DTPMOD64
2021ENUMX
2022 BFD_RELOC_ALPHA_GOTDTPREL16
2023ENUMX
2024 BFD_RELOC_ALPHA_DTPREL64
2025ENUMX
2026 BFD_RELOC_ALPHA_DTPREL_HI16
2027ENUMX
2028 BFD_RELOC_ALPHA_DTPREL_LO16
2029ENUMX
2030 BFD_RELOC_ALPHA_DTPREL16
2031ENUMX
2032 BFD_RELOC_ALPHA_GOTTPREL16
2033ENUMX
2034 BFD_RELOC_ALPHA_TPREL64
2035ENUMX
2036 BFD_RELOC_ALPHA_TPREL_HI16
2037ENUMX
2038 BFD_RELOC_ALPHA_TPREL_LO16
2039ENUMX
2040 BFD_RELOC_ALPHA_TPREL16
2041ENUMDOC
2042 Alpha thread-local storage relocations.
2043
252b5132
RH
2044ENUM
2045 BFD_RELOC_MIPS_JMP
2046ENUMDOC
2047 Bits 27..2 of the relocation address shifted right 2 bits;
2048 simple reloc otherwise.
2049
2050ENUM
2051 BFD_RELOC_MIPS16_JMP
2052ENUMDOC
2053 The MIPS16 jump instruction.
2054
2055ENUM
2056 BFD_RELOC_MIPS16_GPREL
2057ENUMDOC
2058 MIPS16 GP relative reloc.
2059
2060ENUM
2061 BFD_RELOC_HI16
2062ENUMDOC
2063 High 16 bits of 32-bit value; simple reloc.
2064ENUM
2065 BFD_RELOC_HI16_S
2066ENUMDOC
2067 High 16 bits of 32-bit value but the low 16 bits will be sign
2068 extended and added to form the final result. If the low 16
2069 bits form a negative number, we need to add one to the high value
2070 to compensate for the borrow when the low bits are added.
2071ENUM
2072 BFD_RELOC_LO16
2073ENUMDOC
2074 Low 16 bits.
2075ENUM
2076 BFD_RELOC_PCREL_HI16_S
2077ENUMDOC
2078 Like BFD_RELOC_HI16_S, but PC relative.
2079ENUM
2080 BFD_RELOC_PCREL_LO16
2081ENUMDOC
2082 Like BFD_RELOC_LO16, but PC relative.
2083
252b5132
RH
2084ENUM
2085 BFD_RELOC_MIPS_LITERAL
2086ENUMDOC
2087 Relocation against a MIPS literal section.
2088
2089ENUM
2090 BFD_RELOC_MIPS_GOT16
2091ENUMX
2092 BFD_RELOC_MIPS_CALL16
252b5132
RH
2093ENUMX
2094 BFD_RELOC_MIPS_GOT_HI16
2095ENUMX
2096 BFD_RELOC_MIPS_GOT_LO16
2097ENUMX
2098 BFD_RELOC_MIPS_CALL_HI16
2099ENUMX
2100 BFD_RELOC_MIPS_CALL_LO16
3f830999
MM
2101ENUMX
2102 BFD_RELOC_MIPS_SUB
2103ENUMX
2104 BFD_RELOC_MIPS_GOT_PAGE
2105ENUMX
2106 BFD_RELOC_MIPS_GOT_OFST
2107ENUMX
2108 BFD_RELOC_MIPS_GOT_DISP
c2feb664
NC
2109ENUMX
2110 BFD_RELOC_MIPS_SHIFT5
2111ENUMX
2112 BFD_RELOC_MIPS_SHIFT6
2113ENUMX
2114 BFD_RELOC_MIPS_INSERT_A
2115ENUMX
2116 BFD_RELOC_MIPS_INSERT_B
2117ENUMX
2118 BFD_RELOC_MIPS_DELETE
2119ENUMX
2120 BFD_RELOC_MIPS_HIGHEST
2121ENUMX
2122 BFD_RELOC_MIPS_HIGHER
2123ENUMX
2124 BFD_RELOC_MIPS_SCN_DISP
2125ENUMX
2126 BFD_RELOC_MIPS_REL16
2127ENUMX
2128 BFD_RELOC_MIPS_RELGOT
2129ENUMX
2130 BFD_RELOC_MIPS_JALR
252b5132 2131COMMENT
4e5ba5b7
DB
2132ENUM
2133 BFD_RELOC_FRV_LABEL16
2134ENUMX
2135 BFD_RELOC_FRV_LABEL24
2136ENUMX
2137 BFD_RELOC_FRV_LO16
2138ENUMX
2139 BFD_RELOC_FRV_HI16
2140ENUMX
2141 BFD_RELOC_FRV_GPREL12
2142ENUMX
2143 BFD_RELOC_FRV_GPRELU12
2144ENUMX
2145 BFD_RELOC_FRV_GPREL32
2146ENUMX
2147 BFD_RELOC_FRV_GPRELHI
2148ENUMX
2149 BFD_RELOC_FRV_GPRELLO
2150ENUMDOC
2151 Fujitsu Frv Relocations.
2152COMMENT
fbca6ad9 2153COMMENT
252b5132
RH
2154ENUMDOC
2155 MIPS ELF relocations.
2156
2157COMMENT
2158
2159ENUM
2160 BFD_RELOC_386_GOT32
2161ENUMX
2162 BFD_RELOC_386_PLT32
2163ENUMX
2164 BFD_RELOC_386_COPY
2165ENUMX
2166 BFD_RELOC_386_GLOB_DAT
2167ENUMX
2168 BFD_RELOC_386_JUMP_SLOT
2169ENUMX
2170 BFD_RELOC_386_RELATIVE
2171ENUMX
2172 BFD_RELOC_386_GOTOFF
2173ENUMX
2174 BFD_RELOC_386_GOTPC
37e55690
JJ
2175ENUMX
2176 BFD_RELOC_386_TLS_TPOFF
2177ENUMX
2178 BFD_RELOC_386_TLS_IE
2179ENUMX
2180 BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
2181ENUMX
2182 BFD_RELOC_386_TLS_LE
2183ENUMX
2184 BFD_RELOC_386_TLS_GD
2185ENUMX
2186 BFD_RELOC_386_TLS_LDM
2187ENUMX
2188 BFD_RELOC_386_TLS_LDO_32
2189ENUMX
2190 BFD_RELOC_386_TLS_IE_32
2191ENUMX
2192 BFD_RELOC_386_TLS_LE_32
2193ENUMX
2194 BFD_RELOC_386_TLS_DTPMOD32
2195ENUMX
2196 BFD_RELOC_386_TLS_DTPOFF32
2197ENUMX
2198 BFD_RELOC_386_TLS_TPOFF32
252b5132
RH
2199ENUMDOC
2200 i386/elf relocations
2201
8d88c4ca
NC
2202ENUM
2203 BFD_RELOC_X86_64_GOT32
2204ENUMX
2205 BFD_RELOC_X86_64_PLT32
2206ENUMX
2207 BFD_RELOC_X86_64_COPY
2208ENUMX
2209 BFD_RELOC_X86_64_GLOB_DAT
2210ENUMX
2211 BFD_RELOC_X86_64_JUMP_SLOT
2212ENUMX
2213 BFD_RELOC_X86_64_RELATIVE
2214ENUMX
2215 BFD_RELOC_X86_64_GOTPCREL
2216ENUMX
2217 BFD_RELOC_X86_64_32S
bffbf940
JJ
2218ENUMX
2219 BFD_RELOC_X86_64_DTPMOD64
2220ENUMX
2221 BFD_RELOC_X86_64_DTPOFF64
2222ENUMX
2223 BFD_RELOC_X86_64_TPOFF64
2224ENUMX
2225 BFD_RELOC_X86_64_TLSGD
2226ENUMX
2227 BFD_RELOC_X86_64_TLSLD
2228ENUMX
2229 BFD_RELOC_X86_64_DTPOFF32
2230ENUMX
2231 BFD_RELOC_X86_64_GOTTPOFF
2232ENUMX
2233 BFD_RELOC_X86_64_TPOFF32
8d88c4ca
NC
2234ENUMDOC
2235 x86-64/elf relocations
2236
252b5132
RH
2237ENUM
2238 BFD_RELOC_NS32K_IMM_8
2239ENUMX
2240 BFD_RELOC_NS32K_IMM_16
2241ENUMX
2242 BFD_RELOC_NS32K_IMM_32
2243ENUMX
2244 BFD_RELOC_NS32K_IMM_8_PCREL
2245ENUMX
2246 BFD_RELOC_NS32K_IMM_16_PCREL
2247ENUMX
2248 BFD_RELOC_NS32K_IMM_32_PCREL
2249ENUMX
2250 BFD_RELOC_NS32K_DISP_8
2251ENUMX
2252 BFD_RELOC_NS32K_DISP_16
2253ENUMX
2254 BFD_RELOC_NS32K_DISP_32
2255ENUMX
2256 BFD_RELOC_NS32K_DISP_8_PCREL
2257ENUMX
2258 BFD_RELOC_NS32K_DISP_16_PCREL
2259ENUMX
2260 BFD_RELOC_NS32K_DISP_32_PCREL
2261ENUMDOC
2262 ns32k relocations
2263
e135f41b
NC
2264ENUM
2265 BFD_RELOC_PDP11_DISP_8_PCREL
2266ENUMX
2267 BFD_RELOC_PDP11_DISP_6_PCREL
2268ENUMDOC
2269 PDP11 relocations
2270
0bcb993b
ILT
2271ENUM
2272 BFD_RELOC_PJ_CODE_HI16
2273ENUMX
2274 BFD_RELOC_PJ_CODE_LO16
2275ENUMX
2276 BFD_RELOC_PJ_CODE_DIR16
2277ENUMX
2278 BFD_RELOC_PJ_CODE_DIR32
2279ENUMX
2280 BFD_RELOC_PJ_CODE_REL16
2281ENUMX
2282 BFD_RELOC_PJ_CODE_REL32
2283ENUMDOC
2284 Picojava relocs. Not all of these appear in object files.
88b6bae0 2285
252b5132
RH
2286ENUM
2287 BFD_RELOC_PPC_B26
2288ENUMX
2289 BFD_RELOC_PPC_BA26
2290ENUMX
2291 BFD_RELOC_PPC_TOC16
2292ENUMX
2293 BFD_RELOC_PPC_B16
2294ENUMX
2295 BFD_RELOC_PPC_B16_BRTAKEN
2296ENUMX
2297 BFD_RELOC_PPC_B16_BRNTAKEN
2298ENUMX
2299 BFD_RELOC_PPC_BA16
2300ENUMX
2301 BFD_RELOC_PPC_BA16_BRTAKEN
2302ENUMX
2303 BFD_RELOC_PPC_BA16_BRNTAKEN
2304ENUMX
2305 BFD_RELOC_PPC_COPY
2306ENUMX
2307 BFD_RELOC_PPC_GLOB_DAT
2308ENUMX
2309 BFD_RELOC_PPC_JMP_SLOT
2310ENUMX
2311 BFD_RELOC_PPC_RELATIVE
2312ENUMX
2313 BFD_RELOC_PPC_LOCAL24PC
2314ENUMX
2315 BFD_RELOC_PPC_EMB_NADDR32
2316ENUMX
2317 BFD_RELOC_PPC_EMB_NADDR16
2318ENUMX
2319 BFD_RELOC_PPC_EMB_NADDR16_LO
2320ENUMX
2321 BFD_RELOC_PPC_EMB_NADDR16_HI
2322ENUMX
2323 BFD_RELOC_PPC_EMB_NADDR16_HA
2324ENUMX
2325 BFD_RELOC_PPC_EMB_SDAI16
2326ENUMX
2327 BFD_RELOC_PPC_EMB_SDA2I16
2328ENUMX
2329 BFD_RELOC_PPC_EMB_SDA2REL
2330ENUMX
2331 BFD_RELOC_PPC_EMB_SDA21
2332ENUMX
2333 BFD_RELOC_PPC_EMB_MRKREF
2334ENUMX
2335 BFD_RELOC_PPC_EMB_RELSEC16
2336ENUMX
2337 BFD_RELOC_PPC_EMB_RELST_LO
2338ENUMX
2339 BFD_RELOC_PPC_EMB_RELST_HI
2340ENUMX
2341 BFD_RELOC_PPC_EMB_RELST_HA
2342ENUMX
2343 BFD_RELOC_PPC_EMB_BIT_FLD
2344ENUMX
2345 BFD_RELOC_PPC_EMB_RELSDA
5bd4f169
AM
2346ENUMX
2347 BFD_RELOC_PPC64_HIGHER
2348ENUMX
2349 BFD_RELOC_PPC64_HIGHER_S
2350ENUMX
2351 BFD_RELOC_PPC64_HIGHEST
2352ENUMX
2353 BFD_RELOC_PPC64_HIGHEST_S
2354ENUMX
2355 BFD_RELOC_PPC64_TOC16_LO
2356ENUMX
2357 BFD_RELOC_PPC64_TOC16_HI
2358ENUMX
2359 BFD_RELOC_PPC64_TOC16_HA
2360ENUMX
2361 BFD_RELOC_PPC64_TOC
2362ENUMX
dc810e39 2363 BFD_RELOC_PPC64_PLTGOT16
5bd4f169
AM
2364ENUMX
2365 BFD_RELOC_PPC64_PLTGOT16_LO
2366ENUMX
2367 BFD_RELOC_PPC64_PLTGOT16_HI
2368ENUMX
2369 BFD_RELOC_PPC64_PLTGOT16_HA
2370ENUMX
2371 BFD_RELOC_PPC64_ADDR16_DS
2372ENUMX
2373 BFD_RELOC_PPC64_ADDR16_LO_DS
2374ENUMX
2375 BFD_RELOC_PPC64_GOT16_DS
2376ENUMX
2377 BFD_RELOC_PPC64_GOT16_LO_DS
2378ENUMX
2379 BFD_RELOC_PPC64_PLT16_LO_DS
2380ENUMX
2381 BFD_RELOC_PPC64_SECTOFF_DS
2382ENUMX
2383 BFD_RELOC_PPC64_SECTOFF_LO_DS
2384ENUMX
2385 BFD_RELOC_PPC64_TOC16_DS
2386ENUMX
2387 BFD_RELOC_PPC64_TOC16_LO_DS
2388ENUMX
2389 BFD_RELOC_PPC64_PLTGOT16_DS
2390ENUMX
2391 BFD_RELOC_PPC64_PLTGOT16_LO_DS
252b5132
RH
2392ENUMDOC
2393 Power(rs6000) and PowerPC relocations.
2394
5b93d8bb
AM
2395ENUM
2396 BFD_RELOC_I370_D12
2397ENUMDOC
2398 IBM 370/390 relocations
2399
252b5132
RH
2400ENUM
2401 BFD_RELOC_CTOR
2402ENUMDOC
2403 The type of reloc used to build a contructor table - at the moment
2404 probably a 32 bit wide absolute relocation, but the target can choose.
2405 It generally does map to one of the other relocation types.
2406
2407ENUM
2408 BFD_RELOC_ARM_PCREL_BRANCH
2409ENUMDOC
2410 ARM 26 bit pc-relative branch. The lowest two bits must be zero and are
2411 not stored in the instruction.
dfc5f959
NC
2412ENUM
2413 BFD_RELOC_ARM_PCREL_BLX
2414ENUMDOC
2415 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
2416 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2417 field in the instruction.
2418ENUM
2419 BFD_RELOC_THUMB_PCREL_BLX
2420ENUMDOC
2421 Thumb 22 bit pc-relative branch. The lowest bit must be zero and is
2422 not stored in the instruction. The 2nd lowest bit comes from a 1 bit
2423 field in the instruction.
252b5132
RH
2424ENUM
2425 BFD_RELOC_ARM_IMMEDIATE
752149a0
NC
2426ENUMX
2427 BFD_RELOC_ARM_ADRL_IMMEDIATE
252b5132
RH
2428ENUMX
2429 BFD_RELOC_ARM_OFFSET_IMM
2430ENUMX
2431 BFD_RELOC_ARM_SHIFT_IMM
2432ENUMX
2433 BFD_RELOC_ARM_SWI
2434ENUMX
2435 BFD_RELOC_ARM_MULTI
2436ENUMX
2437 BFD_RELOC_ARM_CP_OFF_IMM
2438ENUMX
2439 BFD_RELOC_ARM_ADR_IMM
2440ENUMX
2441 BFD_RELOC_ARM_LDR_IMM
2442ENUMX
2443 BFD_RELOC_ARM_LITERAL
2444ENUMX
2445 BFD_RELOC_ARM_IN_POOL
2446ENUMX
2447 BFD_RELOC_ARM_OFFSET_IMM8
2448ENUMX
2449 BFD_RELOC_ARM_HWLITERAL
2450ENUMX
2451 BFD_RELOC_ARM_THUMB_ADD
2452ENUMX
2453 BFD_RELOC_ARM_THUMB_IMM
2454ENUMX
2455 BFD_RELOC_ARM_THUMB_SHIFT
2456ENUMX
2457 BFD_RELOC_ARM_THUMB_OFFSET
2458ENUMX
2459 BFD_RELOC_ARM_GOT12
2460ENUMX
2461 BFD_RELOC_ARM_GOT32
2462ENUMX
2463 BFD_RELOC_ARM_JUMP_SLOT
2464ENUMX
2465 BFD_RELOC_ARM_COPY
2466ENUMX
2467 BFD_RELOC_ARM_GLOB_DAT
2468ENUMX
2469 BFD_RELOC_ARM_PLT32
2470ENUMX
2471 BFD_RELOC_ARM_RELATIVE
2472ENUMX
2473 BFD_RELOC_ARM_GOTOFF
2474ENUMX
2475 BFD_RELOC_ARM_GOTPC
2476ENUMDOC
2477 These relocs are only used within the ARM assembler. They are not
2478 (at present) written to any object files.
2479
2480ENUM
2481 BFD_RELOC_SH_PCDISP8BY2
2482ENUMX
2483 BFD_RELOC_SH_PCDISP12BY2
2484ENUMX
2485 BFD_RELOC_SH_IMM4
2486ENUMX
2487 BFD_RELOC_SH_IMM4BY2
2488ENUMX
2489 BFD_RELOC_SH_IMM4BY4
2490ENUMX
2491 BFD_RELOC_SH_IMM8
2492ENUMX
2493 BFD_RELOC_SH_IMM8BY2
2494ENUMX
2495 BFD_RELOC_SH_IMM8BY4
2496ENUMX
2497 BFD_RELOC_SH_PCRELIMM8BY2
2498ENUMX
2499 BFD_RELOC_SH_PCRELIMM8BY4
2500ENUMX
2501 BFD_RELOC_SH_SWITCH16
2502ENUMX
2503 BFD_RELOC_SH_SWITCH32
2504ENUMX
2505 BFD_RELOC_SH_USES
2506ENUMX
2507 BFD_RELOC_SH_COUNT
2508ENUMX
2509 BFD_RELOC_SH_ALIGN
2510ENUMX
2511 BFD_RELOC_SH_CODE
2512ENUMX
2513 BFD_RELOC_SH_DATA
2514ENUMX
2515 BFD_RELOC_SH_LABEL
015551fc
JR
2516ENUMX
2517 BFD_RELOC_SH_LOOP_START
2518ENUMX
2519 BFD_RELOC_SH_LOOP_END
3d96075c
L
2520ENUMX
2521 BFD_RELOC_SH_COPY
2522ENUMX
2523 BFD_RELOC_SH_GLOB_DAT
2524ENUMX
2525 BFD_RELOC_SH_JMP_SLOT
2526ENUMX
2527 BFD_RELOC_SH_RELATIVE
2528ENUMX
2529 BFD_RELOC_SH_GOTPC
eb1e0e80
NC
2530ENUMX
2531 BFD_RELOC_SH_GOT_LOW16
2532ENUMX
2533 BFD_RELOC_SH_GOT_MEDLOW16
2534ENUMX
2535 BFD_RELOC_SH_GOT_MEDHI16
2536ENUMX
2537 BFD_RELOC_SH_GOT_HI16
2538ENUMX
2539 BFD_RELOC_SH_GOTPLT_LOW16
2540ENUMX
2541 BFD_RELOC_SH_GOTPLT_MEDLOW16
2542ENUMX
2543 BFD_RELOC_SH_GOTPLT_MEDHI16
2544ENUMX
2545 BFD_RELOC_SH_GOTPLT_HI16
2546ENUMX
2547 BFD_RELOC_SH_PLT_LOW16
2548ENUMX
2549 BFD_RELOC_SH_PLT_MEDLOW16
2550ENUMX
2551 BFD_RELOC_SH_PLT_MEDHI16
2552ENUMX
2553 BFD_RELOC_SH_PLT_HI16
2554ENUMX
2555 BFD_RELOC_SH_GOTOFF_LOW16
2556ENUMX
2557 BFD_RELOC_SH_GOTOFF_MEDLOW16
2558ENUMX
2559 BFD_RELOC_SH_GOTOFF_MEDHI16
2560ENUMX
2561 BFD_RELOC_SH_GOTOFF_HI16
2562ENUMX
2563 BFD_RELOC_SH_GOTPC_LOW16
2564ENUMX
2565 BFD_RELOC_SH_GOTPC_MEDLOW16
2566ENUMX
2567 BFD_RELOC_SH_GOTPC_MEDHI16
2568ENUMX
2569 BFD_RELOC_SH_GOTPC_HI16
2570ENUMX
2571 BFD_RELOC_SH_COPY64
2572ENUMX
2573 BFD_RELOC_SH_GLOB_DAT64
2574ENUMX
2575 BFD_RELOC_SH_JMP_SLOT64
2576ENUMX
2577 BFD_RELOC_SH_RELATIVE64
2578ENUMX
2579 BFD_RELOC_SH_GOT10BY4
2580ENUMX
2581 BFD_RELOC_SH_GOT10BY8
2582ENUMX
2583 BFD_RELOC_SH_GOTPLT10BY4
2584ENUMX
2585 BFD_RELOC_SH_GOTPLT10BY8
2586ENUMX
2587 BFD_RELOC_SH_GOTPLT32
2588ENUMX
2589 BFD_RELOC_SH_SHMEDIA_CODE
2590ENUMX
2591 BFD_RELOC_SH_IMMU5
2592ENUMX
2593 BFD_RELOC_SH_IMMS6
2594ENUMX
2595 BFD_RELOC_SH_IMMS6BY32
2596ENUMX
2597 BFD_RELOC_SH_IMMU6
2598ENUMX
2599 BFD_RELOC_SH_IMMS10
2600ENUMX
2601 BFD_RELOC_SH_IMMS10BY2
2602ENUMX
2603 BFD_RELOC_SH_IMMS10BY4
2604ENUMX
2605 BFD_RELOC_SH_IMMS10BY8
2606ENUMX
2607 BFD_RELOC_SH_IMMS16
2608ENUMX
2609 BFD_RELOC_SH_IMMU16
2610ENUMX
2611 BFD_RELOC_SH_IMM_LOW16
2612ENUMX
2613 BFD_RELOC_SH_IMM_LOW16_PCREL
2614ENUMX
2615 BFD_RELOC_SH_IMM_MEDLOW16
2616ENUMX
2617 BFD_RELOC_SH_IMM_MEDLOW16_PCREL
2618ENUMX
2619 BFD_RELOC_SH_IMM_MEDHI16
2620ENUMX
2621 BFD_RELOC_SH_IMM_MEDHI16_PCREL
2622ENUMX
2623 BFD_RELOC_SH_IMM_HI16
2624ENUMX
2625 BFD_RELOC_SH_IMM_HI16_PCREL
2626ENUMX
2627 BFD_RELOC_SH_PT_16
3376eaf5
KK
2628ENUMX
2629 BFD_RELOC_SH_TLS_GD_32
2630ENUMX
2631 BFD_RELOC_SH_TLS_LD_32
2632ENUMX
2633 BFD_RELOC_SH_TLS_LDO_32
2634ENUMX
2635 BFD_RELOC_SH_TLS_IE_32
2636ENUMX
2637 BFD_RELOC_SH_TLS_LE_32
2638ENUMX
2639 BFD_RELOC_SH_TLS_DTPMOD32
2640ENUMX
2641 BFD_RELOC_SH_TLS_DTPOFF32
2642ENUMX
2643 BFD_RELOC_SH_TLS_TPOFF32
252b5132
RH
2644ENUMDOC
2645 Hitachi SH relocs. Not all of these appear in object files.
2646
2647ENUM
2648 BFD_RELOC_THUMB_PCREL_BRANCH9
2649ENUMX
2650 BFD_RELOC_THUMB_PCREL_BRANCH12
2651ENUMX
2652 BFD_RELOC_THUMB_PCREL_BRANCH23
2653ENUMDOC
2654 Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must
2655 be zero and is not stored in the instruction.
2656
2657ENUM
2658 BFD_RELOC_ARC_B22_PCREL
2659ENUMDOC
0d2bcfaf 2660 ARC Cores relocs.
252b5132
RH
2661 ARC 22 bit pc-relative branch. The lowest two bits must be zero and are
2662 not stored in the instruction. The high 20 bits are installed in bits 26
2663 through 7 of the instruction.
2664ENUM
2665 BFD_RELOC_ARC_B26
2666ENUMDOC
2667 ARC 26 bit absolute branch. The lowest two bits must be zero and are not
2668 stored in the instruction. The high 24 bits are installed in bits 23
2669 through 0.
2670
2671ENUM
2672 BFD_RELOC_D10V_10_PCREL_R
2673ENUMDOC
2674 Mitsubishi D10V relocs.
2675 This is a 10-bit reloc with the right 2 bits
2676 assumed to be 0.
2677ENUM
2678 BFD_RELOC_D10V_10_PCREL_L
2679ENUMDOC
2680 Mitsubishi D10V relocs.
2681 This is a 10-bit reloc with the right 2 bits
2682 assumed to be 0. This is the same as the previous reloc
2683 except it is in the left container, i.e.,
2684 shifted left 15 bits.
2685ENUM
2686 BFD_RELOC_D10V_18
2687ENUMDOC
2688 This is an 18-bit reloc with the right 2 bits
2689 assumed to be 0.
2690ENUM
2691 BFD_RELOC_D10V_18_PCREL
2692ENUMDOC
2693 This is an 18-bit reloc with the right 2 bits
2694 assumed to be 0.
2695
2696ENUM
2697 BFD_RELOC_D30V_6
2698ENUMDOC
2699 Mitsubishi D30V relocs.
2700 This is a 6-bit absolute reloc.
2701ENUM
2702 BFD_RELOC_D30V_9_PCREL
2703ENUMDOC
88b6bae0
AM
2704 This is a 6-bit pc-relative reloc with
2705 the right 3 bits assumed to be 0.
252b5132
RH
2706ENUM
2707 BFD_RELOC_D30V_9_PCREL_R
2708ENUMDOC
88b6bae0 2709 This is a 6-bit pc-relative reloc with
252b5132
RH
2710 the right 3 bits assumed to be 0. Same
2711 as the previous reloc but on the right side
88b6bae0 2712 of the container.
252b5132
RH
2713ENUM
2714 BFD_RELOC_D30V_15
2715ENUMDOC
88b6bae0
AM
2716 This is a 12-bit absolute reloc with the
2717 right 3 bitsassumed to be 0.
252b5132
RH
2718ENUM
2719 BFD_RELOC_D30V_15_PCREL
2720ENUMDOC
88b6bae0
AM
2721 This is a 12-bit pc-relative reloc with
2722 the right 3 bits assumed to be 0.
252b5132
RH
2723ENUM
2724 BFD_RELOC_D30V_15_PCREL_R
2725ENUMDOC
88b6bae0 2726 This is a 12-bit pc-relative reloc with
252b5132
RH
2727 the right 3 bits assumed to be 0. Same
2728 as the previous reloc but on the right side
88b6bae0 2729 of the container.
252b5132
RH
2730ENUM
2731 BFD_RELOC_D30V_21
2732ENUMDOC
88b6bae0 2733 This is an 18-bit absolute reloc with
252b5132
RH
2734 the right 3 bits assumed to be 0.
2735ENUM
2736 BFD_RELOC_D30V_21_PCREL
2737ENUMDOC
88b6bae0 2738 This is an 18-bit pc-relative reloc with
252b5132
RH
2739 the right 3 bits assumed to be 0.
2740ENUM
2741 BFD_RELOC_D30V_21_PCREL_R
2742ENUMDOC
88b6bae0 2743 This is an 18-bit pc-relative reloc with
252b5132
RH
2744 the right 3 bits assumed to be 0. Same
2745 as the previous reloc but on the right side
2746 of the container.
2747ENUM
2748 BFD_RELOC_D30V_32
2749ENUMDOC
2750 This is a 32-bit absolute reloc.
2751ENUM
2752 BFD_RELOC_D30V_32_PCREL
2753ENUMDOC
2754 This is a 32-bit pc-relative reloc.
2755
d172d4ba
NC
2756ENUM
2757 BFD_RELOC_DLX_HI16_S
2758ENUMDOC
2759 DLX relocs
2760ENUM
2761 BFD_RELOC_DLX_LO16
2762ENUMDOC
2763 DLX relocs
2764ENUM
2765 BFD_RELOC_DLX_JMP26
2766ENUMDOC
2767 DLX relocs
2768
252b5132
RH
2769ENUM
2770 BFD_RELOC_M32R_24
2771ENUMDOC
2772 Mitsubishi M32R relocs.
2773 This is a 24 bit absolute address.
2774ENUM
2775 BFD_RELOC_M32R_10_PCREL
2776ENUMDOC
2777 This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
2778ENUM
2779 BFD_RELOC_M32R_18_PCREL
2780ENUMDOC
2781 This is an 18-bit reloc with the right 2 bits assumed to be 0.
2782ENUM
2783 BFD_RELOC_M32R_26_PCREL
2784ENUMDOC
2785 This is a 26-bit reloc with the right 2 bits assumed to be 0.
2786ENUM
2787 BFD_RELOC_M32R_HI16_ULO
2788ENUMDOC
2789 This is a 16-bit reloc containing the high 16 bits of an address
2790 used when the lower 16 bits are treated as unsigned.
2791ENUM
2792 BFD_RELOC_M32R_HI16_SLO
2793ENUMDOC
2794 This is a 16-bit reloc containing the high 16 bits of an address
2795 used when the lower 16 bits are treated as signed.
2796ENUM
2797 BFD_RELOC_M32R_LO16
2798ENUMDOC
2799 This is a 16-bit reloc containing the lower 16 bits of an address.
2800ENUM
2801 BFD_RELOC_M32R_SDA16
2802ENUMDOC
2803 This is a 16-bit reloc containing the small data area offset for use in
2804 add3, load, and store instructions.
2805
2806ENUM
2807 BFD_RELOC_V850_9_PCREL
2808ENUMDOC
2809 This is a 9-bit reloc
2810ENUM
2811 BFD_RELOC_V850_22_PCREL
2812ENUMDOC
2813 This is a 22-bit reloc
2814
2815ENUM
2816 BFD_RELOC_V850_SDA_16_16_OFFSET
2817ENUMDOC
2818 This is a 16 bit offset from the short data area pointer.
2819ENUM
2820 BFD_RELOC_V850_SDA_15_16_OFFSET
2821ENUMDOC
2822 This is a 16 bit offset (of which only 15 bits are used) from the
2823 short data area pointer.
2824ENUM
2825 BFD_RELOC_V850_ZDA_16_16_OFFSET
2826ENUMDOC
2827 This is a 16 bit offset from the zero data area pointer.
2828ENUM
2829 BFD_RELOC_V850_ZDA_15_16_OFFSET
2830ENUMDOC
2831 This is a 16 bit offset (of which only 15 bits are used) from the
2832 zero data area pointer.
2833ENUM
2834 BFD_RELOC_V850_TDA_6_8_OFFSET
2835ENUMDOC
2836 This is an 8 bit offset (of which only 6 bits are used) from the
2837 tiny data area pointer.
2838ENUM
2839 BFD_RELOC_V850_TDA_7_8_OFFSET
2840ENUMDOC
2841 This is an 8bit offset (of which only 7 bits are used) from the tiny
2842 data area pointer.
2843ENUM
2844 BFD_RELOC_V850_TDA_7_7_OFFSET
2845ENUMDOC
2846 This is a 7 bit offset from the tiny data area pointer.
2847ENUM
2848 BFD_RELOC_V850_TDA_16_16_OFFSET
2849ENUMDOC
2850 This is a 16 bit offset from the tiny data area pointer.
2851COMMENT
2852ENUM
2853 BFD_RELOC_V850_TDA_4_5_OFFSET
2854ENUMDOC
2855 This is a 5 bit offset (of which only 4 bits are used) from the tiny
2856 data area pointer.
2857ENUM
2858 BFD_RELOC_V850_TDA_4_4_OFFSET
2859ENUMDOC
2860 This is a 4 bit offset from the tiny data area pointer.
2861ENUM
2862 BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
2863ENUMDOC
2864 This is a 16 bit offset from the short data area pointer, with the
2865 bits placed non-contigously in the instruction.
2866ENUM
2867 BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
2868ENUMDOC
2869 This is a 16 bit offset from the zero data area pointer, with the
2870 bits placed non-contigously in the instruction.
2871ENUM
2872 BFD_RELOC_V850_CALLT_6_7_OFFSET
2873ENUMDOC
2874 This is a 6 bit offset from the call table base pointer.
2875ENUM
2876 BFD_RELOC_V850_CALLT_16_16_OFFSET
2877ENUMDOC
2878 This is a 16 bit offset from the call table base pointer.
86aba9db
NC
2879ENUM
2880 BFD_RELOC_V850_LONGCALL
2881ENUMDOC
2882 Used for relaxing indirect function calls.
2883ENUM
2884 BFD_RELOC_V850_LONGJUMP
2885ENUMDOC
2886 Used for relaxing indirect jumps.
2887ENUM
2888 BFD_RELOC_V850_ALIGN
2889ENUMDOC
2890 Used to maintain alignment whilst relaxing.
252b5132
RH
2891ENUM
2892 BFD_RELOC_MN10300_32_PCREL
2893ENUMDOC
2894 This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
2895 instruction.
2896ENUM
2897 BFD_RELOC_MN10300_16_PCREL
2898ENUMDOC
2899 This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
2900 instruction.
2901
2902ENUM
2903 BFD_RELOC_TIC30_LDP
2904ENUMDOC
2905 This is a 8bit DP reloc for the tms320c30, where the most
2906 significant 8 bits of a 24 bit word are placed into the least
2907 significant 8 bits of the opcode.
2908
81635ce4
TW
2909ENUM
2910 BFD_RELOC_TIC54X_PARTLS7
2911ENUMDOC
2912 This is a 7bit reloc for the tms320c54x, where the least
2913 significant 7 bits of a 16 bit word are placed into the least
2914 significant 7 bits of the opcode.
2915
2916ENUM
2917 BFD_RELOC_TIC54X_PARTMS9
2918ENUMDOC
2919 This is a 9bit DP reloc for the tms320c54x, where the most
2920 significant 9 bits of a 16 bit word are placed into the least
2921 significant 9 bits of the opcode.
2922
2923ENUM
2924 BFD_RELOC_TIC54X_23
2925ENUMDOC
2926 This is an extended address 23-bit reloc for the tms320c54x.
2927
2928ENUM
2929 BFD_RELOC_TIC54X_16_OF_23
2930ENUMDOC
3d855632
KH
2931 This is a 16-bit reloc for the tms320c54x, where the least
2932 significant 16 bits of a 23-bit extended address are placed into
81635ce4
TW
2933 the opcode.
2934
2935ENUM
2936 BFD_RELOC_TIC54X_MS7_OF_23
2937ENUMDOC
2938 This is a reloc for the tms320c54x, where the most
3d855632 2939 significant 7 bits of a 23-bit extended address are placed into
81635ce4 2940 the opcode.
81635ce4 2941
252b5132
RH
2942ENUM
2943 BFD_RELOC_FR30_48
2944ENUMDOC
2945 This is a 48 bit reloc for the FR30 that stores 32 bits.
2946ENUM
2947 BFD_RELOC_FR30_20
2948ENUMDOC
2949 This is a 32 bit reloc for the FR30 that stores 20 bits split up into
2950 two sections.
2951ENUM
2952 BFD_RELOC_FR30_6_IN_4
2953ENUMDOC
2954 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
2955 4 bits.
2956ENUM
2957 BFD_RELOC_FR30_8_IN_8
2958ENUMDOC
2959 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
2960 into 8 bits.
2961ENUM
2962 BFD_RELOC_FR30_9_IN_8
2963ENUMDOC
2964 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
2965 into 8 bits.
2966ENUM
2967 BFD_RELOC_FR30_10_IN_8
2968ENUMDOC
2969 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
2970 into 8 bits.
2971ENUM
2972 BFD_RELOC_FR30_9_PCREL
2973ENUMDOC
2974 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
2975 short offset into 8 bits.
2976ENUM
2977 BFD_RELOC_FR30_12_PCREL
2978ENUMDOC
2979 This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
2980 short offset into 11 bits.
88b6bae0 2981
252b5132
RH
2982ENUM
2983 BFD_RELOC_MCORE_PCREL_IMM8BY4
2984ENUMX
2985 BFD_RELOC_MCORE_PCREL_IMM11BY2
2986ENUMX
2987 BFD_RELOC_MCORE_PCREL_IMM4BY2
2988ENUMX
2989 BFD_RELOC_MCORE_PCREL_32
2990ENUMX
2991 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
36797d47
NC
2992ENUMX
2993 BFD_RELOC_MCORE_RVA
252b5132
RH
2994ENUMDOC
2995 Motorola Mcore relocations.
88b6bae0 2996
3c3bdf30
NC
2997ENUM
2998 BFD_RELOC_MMIX_GETA
2999ENUMX
3000 BFD_RELOC_MMIX_GETA_1
3001ENUMX
3002 BFD_RELOC_MMIX_GETA_2
3003ENUMX
3004 BFD_RELOC_MMIX_GETA_3
3005ENUMDOC
3006 These are relocations for the GETA instruction.
3007ENUM
3008 BFD_RELOC_MMIX_CBRANCH
3009ENUMX
3010 BFD_RELOC_MMIX_CBRANCH_J
3011ENUMX
3012 BFD_RELOC_MMIX_CBRANCH_1
3013ENUMX
3014 BFD_RELOC_MMIX_CBRANCH_2
3015ENUMX
3016 BFD_RELOC_MMIX_CBRANCH_3
3017ENUMDOC
3018 These are relocations for a conditional branch instruction.
3019ENUM
3020 BFD_RELOC_MMIX_PUSHJ
3021ENUMX
3022 BFD_RELOC_MMIX_PUSHJ_1
3023ENUMX
3024 BFD_RELOC_MMIX_PUSHJ_2
3025ENUMX
3026 BFD_RELOC_MMIX_PUSHJ_3
3027ENUMDOC
3028 These are relocations for the PUSHJ instruction.
3029ENUM
3030 BFD_RELOC_MMIX_JMP
3031ENUMX
3032 BFD_RELOC_MMIX_JMP_1
3033ENUMX
3034 BFD_RELOC_MMIX_JMP_2
3035ENUMX
3036 BFD_RELOC_MMIX_JMP_3
3037ENUMDOC
3038 These are relocations for the JMP instruction.
3039ENUM
3040 BFD_RELOC_MMIX_ADDR19
3041ENUMDOC
3042 This is a relocation for a relative address as in a GETA instruction or
3043 a branch.
3044ENUM
3045 BFD_RELOC_MMIX_ADDR27
3046ENUMDOC
3047 This is a relocation for a relative address as in a JMP instruction.
3048ENUM
3049 BFD_RELOC_MMIX_REG_OR_BYTE
3050ENUMDOC
3051 This is a relocation for an instruction field that may be a general
3052 register or a value 0..255.
3053ENUM
3054 BFD_RELOC_MMIX_REG
3055ENUMDOC
3056 This is a relocation for an instruction field that may be a general
3057 register.
3058ENUM
3059 BFD_RELOC_MMIX_BASE_PLUS_OFFSET
3060ENUMDOC
3061 This is a relocation for two instruction fields holding a register and
3062 an offset, the equivalent of the relocation.
3063ENUM
3064 BFD_RELOC_MMIX_LOCAL
3065ENUMDOC
3066 This relocation is an assertion that the expression is not allocated as
3067 a global register. It does not modify contents.
3068
adde6300
AM
3069ENUM
3070 BFD_RELOC_AVR_7_PCREL
3071ENUMDOC
3072 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
3073 short offset into 7 bits.
3074ENUM
3075 BFD_RELOC_AVR_13_PCREL
3076ENUMDOC
3077 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
3078 short offset into 12 bits.
3079ENUM
3080 BFD_RELOC_AVR_16_PM
3081ENUMDOC
3082 This is a 16 bit reloc for the AVR that stores 17 bit value (usually
3d855632 3083 program memory address) into 16 bits.
adde6300
AM
3084ENUM
3085 BFD_RELOC_AVR_LO8_LDI
3086ENUMDOC
3087 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3088 data memory address) into 8 bit immediate value of LDI insn.
3089ENUM
3090 BFD_RELOC_AVR_HI8_LDI
3091ENUMDOC
3092 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3093 of data memory address) into 8 bit immediate value of LDI insn.
3094ENUM
3095 BFD_RELOC_AVR_HH8_LDI
3096ENUMDOC
3097 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3098 of program memory address) into 8 bit immediate value of LDI insn.
3099ENUM
3100 BFD_RELOC_AVR_LO8_LDI_NEG
3101ENUMDOC
3102 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3103 (usually data memory address) into 8 bit immediate value of SUBI insn.
3104ENUM
3105 BFD_RELOC_AVR_HI8_LDI_NEG
3106ENUMDOC
3107 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3108 (high 8 bit of data memory address) into 8 bit immediate value of
3109 SUBI insn.
3110ENUM
3111 BFD_RELOC_AVR_HH8_LDI_NEG
3112ENUMDOC
3113 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3114 (most high 8 bit of program memory address) into 8 bit immediate value
3115 of LDI or SUBI insn.
3116ENUM
3117 BFD_RELOC_AVR_LO8_LDI_PM
3118ENUMDOC
3119 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
3120 command address) into 8 bit immediate value of LDI insn.
3121ENUM
3122 BFD_RELOC_AVR_HI8_LDI_PM
3123ENUMDOC
3124 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
3125 of command address) into 8 bit immediate value of LDI insn.
3126ENUM
3127 BFD_RELOC_AVR_HH8_LDI_PM
3128ENUMDOC
3129 This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
3130 of command address) into 8 bit immediate value of LDI insn.
3131ENUM
3132 BFD_RELOC_AVR_LO8_LDI_PM_NEG
3133ENUMDOC
3134 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3135 (usually command address) into 8 bit immediate value of SUBI insn.
3136ENUM
3137 BFD_RELOC_AVR_HI8_LDI_PM_NEG
3138ENUMDOC
3139 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3140 (high 8 bit of 16 bit command address) into 8 bit immediate value
3141 of SUBI insn.
3142ENUM
3143 BFD_RELOC_AVR_HH8_LDI_PM_NEG
3144ENUMDOC
3145 This is a 16 bit reloc for the AVR that stores negated 8 bit value
3146 (high 6 bit of 22 bit command address) into 8 bit immediate
3147 value of SUBI insn.
3148ENUM
3149 BFD_RELOC_AVR_CALL
3150ENUMDOC
3151 This is a 32 bit reloc for the AVR that stores 23 bit value
3152 into 22 bits.
3153
a85d7ed0
NC
3154ENUM
3155 BFD_RELOC_390_12
3156ENUMDOC
3157 Direct 12 bit.
3158ENUM
3159 BFD_RELOC_390_GOT12
3160ENUMDOC
3161 12 bit GOT offset.
3162ENUM
3163 BFD_RELOC_390_PLT32
3164ENUMDOC
3165 32 bit PC relative PLT address.
3166ENUM
3167 BFD_RELOC_390_COPY
3168ENUMDOC
3169 Copy symbol at runtime.
3170ENUM
3171 BFD_RELOC_390_GLOB_DAT
3172ENUMDOC
3173 Create GOT entry.
3174ENUM
3175 BFD_RELOC_390_JMP_SLOT
3176ENUMDOC
3177 Create PLT entry.
3178ENUM
3179 BFD_RELOC_390_RELATIVE
3180ENUMDOC
3181 Adjust by program base.
3182ENUM
3183 BFD_RELOC_390_GOTPC
3184ENUMDOC
3185 32 bit PC relative offset to GOT.
3186ENUM
3187 BFD_RELOC_390_GOT16
3188ENUMDOC
3189 16 bit GOT offset.
3190ENUM
3191 BFD_RELOC_390_PC16DBL
3192ENUMDOC
3193 PC relative 16 bit shifted by 1.
3194ENUM
3195 BFD_RELOC_390_PLT16DBL
3196ENUMDOC
3197 16 bit PC rel. PLT shifted by 1.
3198ENUM
3199 BFD_RELOC_390_PC32DBL
3200ENUMDOC
3201 PC relative 32 bit shifted by 1.
3202ENUM
3203 BFD_RELOC_390_PLT32DBL
3204ENUMDOC
3205 32 bit PC rel. PLT shifted by 1.
3206ENUM
3207 BFD_RELOC_390_GOTPCDBL
3208ENUMDOC
3209 32 bit PC rel. GOT shifted by 1.
3210ENUM
3211 BFD_RELOC_390_GOT64
3212ENUMDOC
3213 64 bit GOT offset.
3214ENUM
3215 BFD_RELOC_390_PLT64
3216ENUMDOC
3217 64 bit PC relative PLT address.
3218ENUM
3219 BFD_RELOC_390_GOTENT
3220ENUMDOC
3221 32 bit rel. offset to GOT entry.
5236c819
MS
3222ENUM
3223 BFD_RELOC_390_GOTOFF64
3224ENUMDOC
3225 64 bit offset to GOT.
3226ENUM
3227 BFD_RELOC_390_GOTPLT12
3228ENUMDOC
3229 12-bit offset to symbol-entry within GOT, with PLT handling.
3230ENUM
3231 BFD_RELOC_390_GOTPLT16
3232ENUMDOC
3233 16-bit offset to symbol-entry within GOT, with PLT handling.
3234ENUM
3235 BFD_RELOC_390_GOTPLT32
3236ENUMDOC
3237 32-bit offset to symbol-entry within GOT, with PLT handling.
3238ENUM
3239 BFD_RELOC_390_GOTPLT64
3240ENUMDOC
3241 64-bit offset to symbol-entry within GOT, with PLT handling.
3242ENUM
3243 BFD_RELOC_390_GOTPLTENT
3244ENUMDOC
3245 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
3246ENUM
3247 BFD_RELOC_390_PLTOFF16
3248ENUMDOC
3249 16-bit rel. offset from the GOT to a PLT entry.
3250ENUM
3251 BFD_RELOC_390_PLTOFF32
3252ENUMDOC
3253 32-bit rel. offset from the GOT to a PLT entry.
3254ENUM
3255 BFD_RELOC_390_PLTOFF64
3256ENUMDOC
3257 64-bit rel. offset from the GOT to a PLT entry.
dc810e39 3258
69fc87f1
MS
3259ENUM
3260 BFD_RELOC_390_TLS_LOAD
3261ENUMX
3262 BFD_RELOC_390_TLS_GDCALL
3263ENUMX
3264 BFD_RELOC_390_TLS_LDCALL
3265ENUMX
3266 BFD_RELOC_390_TLS_GD32
3267ENUMX
3268 BFD_RELOC_390_TLS_GD64
3269ENUMX
3270 BFD_RELOC_390_TLS_GOTIE12
3271ENUMX
3272 BFD_RELOC_390_TLS_GOTIE32
3273ENUMX
3274 BFD_RELOC_390_TLS_GOTIE64
3275ENUMX
3276 BFD_RELOC_390_TLS_LDM32
3277ENUMX
3278 BFD_RELOC_390_TLS_LDM64
3279ENUMX
3280 BFD_RELOC_390_TLS_IE32
3281ENUMX
3282 BFD_RELOC_390_TLS_IE64
3283ENUMX
3284 BFD_RELOC_390_TLS_IEENT
3285ENUMX
3286 BFD_RELOC_390_TLS_LE32
3287ENUMX
3288 BFD_RELOC_390_TLS_LE64
3289ENUMX
3290 BFD_RELOC_390_TLS_LDO32
3291ENUMX
3292 BFD_RELOC_390_TLS_LDO64
3293ENUMX
3294 BFD_RELOC_390_TLS_DTPMOD
3295ENUMX
3296 BFD_RELOC_390_TLS_DTPOFF
3297ENUMX
3298 BFD_RELOC_390_TLS_TPOFF
3299ENUMDOC
3300 s390 tls relocations.
3301
cf88bb9f
NC
3302ENUM
3303 BFD_RELOC_IP2K_FR9
3304ENUMDOC
3305 Scenix IP2K - 9-bit register number / data address
3306ENUM
3307 BFD_RELOC_IP2K_BANK
3308ENUMDOC
3309 Scenix IP2K - 4-bit register/data bank number
3310ENUM
3311 BFD_RELOC_IP2K_ADDR16CJP
3312ENUMDOC
3313 Scenix IP2K - low 13 bits of instruction word address
3314ENUM
3315 BFD_RELOC_IP2K_PAGE3
3316ENUMDOC
3317 Scenix IP2K - high 3 bits of instruction word address
3318ENUM
3319 BFD_RELOC_IP2K_LO8DATA
3320ENUMX
3321 BFD_RELOC_IP2K_HI8DATA
3322ENUMX
3323 BFD_RELOC_IP2K_EX8DATA
3324ENUMDOC
3325 Scenix IP2K - ext/low/high 8 bits of data address
3326ENUM
3327 BFD_RELOC_IP2K_LO8INSN
3328ENUMX
3329 BFD_RELOC_IP2K_HI8INSN
3330ENUMDOC
3331 Scenix IP2K - low/high 8 bits of instruction word address
3332ENUM
3333 BFD_RELOC_IP2K_PC_SKIP
3334ENUMDOC
3335 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
3336ENUM
3337 BFD_RELOC_IP2K_TEXT
3338ENUMDOC
3339 Scenix IP2K - 16 bit word address in text section.
3340ENUM
3341 BFD_RELOC_IP2K_FR_OFFSET
3342ENUMDOC
3343 Scenix IP2K - 7-bit sp or dp offset
3344ENUM
3345 BFD_RELOC_VPE4KMATH_DATA
3346ENUMX
3347 BFD_RELOC_VPE4KMATH_INSN
3348ENUMDOC
3349 Scenix VPE4K coprocessor - data/insn-space addressing
3350
252b5132
RH
3351ENUM
3352 BFD_RELOC_VTABLE_INHERIT
3353ENUMX
3354 BFD_RELOC_VTABLE_ENTRY
3355ENUMDOC
88b6bae0 3356 These two relocations are used by the linker to determine which of
252b5132
RH
3357 the entries in a C++ virtual function table are actually used. When
3358 the --gc-sections option is given, the linker will zero out the entries
3359 that are not used, so that the code for those functions need not be
3360 included in the output.
3361
3362 VTABLE_INHERIT is a zero-space relocation used to describe to the
3363 linker the inheritence tree of a C++ virtual function table. The
3364 relocation's symbol should be the parent class' vtable, and the
3365 relocation should be located at the child vtable.
3366
3367 VTABLE_ENTRY is a zero-space relocation that describes the use of a
3368 virtual function table entry. The reloc's symbol should refer to the
3369 table of the class mentioned in the code. Off of that base, an offset
88b6bae0 3370 describes the entry that is being used. For Rela hosts, this offset
252b5132
RH
3371 is stored in the reloc's addend. For Rel hosts, we are forced to put
3372 this offset in the reloc's section offset.
3373
800eeca4
JW
3374ENUM
3375 BFD_RELOC_IA64_IMM14
3376ENUMX
3377 BFD_RELOC_IA64_IMM22
3378ENUMX
3379 BFD_RELOC_IA64_IMM64
3380ENUMX
3381 BFD_RELOC_IA64_DIR32MSB
3382ENUMX
3383 BFD_RELOC_IA64_DIR32LSB
3384ENUMX
3385 BFD_RELOC_IA64_DIR64MSB
3386ENUMX
3387 BFD_RELOC_IA64_DIR64LSB
3388ENUMX
3389 BFD_RELOC_IA64_GPREL22
3390ENUMX
3391 BFD_RELOC_IA64_GPREL64I
3392ENUMX
3393 BFD_RELOC_IA64_GPREL32MSB
3394ENUMX
3395 BFD_RELOC_IA64_GPREL32LSB
3396ENUMX
3397 BFD_RELOC_IA64_GPREL64MSB
3398ENUMX
3399 BFD_RELOC_IA64_GPREL64LSB
3400ENUMX
3401 BFD_RELOC_IA64_LTOFF22
3402ENUMX
3403 BFD_RELOC_IA64_LTOFF64I
3404ENUMX
3405 BFD_RELOC_IA64_PLTOFF22
3406ENUMX
3407 BFD_RELOC_IA64_PLTOFF64I
3408ENUMX
3409 BFD_RELOC_IA64_PLTOFF64MSB
3410ENUMX
3411 BFD_RELOC_IA64_PLTOFF64LSB
3412ENUMX
3413 BFD_RELOC_IA64_FPTR64I
3414ENUMX
3415 BFD_RELOC_IA64_FPTR32MSB
3416ENUMX
3417 BFD_RELOC_IA64_FPTR32LSB
3418ENUMX
3419 BFD_RELOC_IA64_FPTR64MSB
3420ENUMX
3421 BFD_RELOC_IA64_FPTR64LSB
3422ENUMX
3423 BFD_RELOC_IA64_PCREL21B
748abff6
RH
3424ENUMX
3425 BFD_RELOC_IA64_PCREL21BI
800eeca4
JW
3426ENUMX
3427 BFD_RELOC_IA64_PCREL21M
3428ENUMX
3429 BFD_RELOC_IA64_PCREL21F
748abff6
RH
3430ENUMX
3431 BFD_RELOC_IA64_PCREL22
3432ENUMX
3433 BFD_RELOC_IA64_PCREL60B
3434ENUMX
3435 BFD_RELOC_IA64_PCREL64I
800eeca4
JW
3436ENUMX
3437 BFD_RELOC_IA64_PCREL32MSB
3438ENUMX
3439 BFD_RELOC_IA64_PCREL32LSB
3440ENUMX
3441 BFD_RELOC_IA64_PCREL64MSB
3442ENUMX
3443 BFD_RELOC_IA64_PCREL64LSB
3444ENUMX
3445 BFD_RELOC_IA64_LTOFF_FPTR22
3446ENUMX
3447 BFD_RELOC_IA64_LTOFF_FPTR64I
a4bd8390
JW
3448ENUMX
3449 BFD_RELOC_IA64_LTOFF_FPTR32MSB
3450ENUMX
3451 BFD_RELOC_IA64_LTOFF_FPTR32LSB
800eeca4
JW
3452ENUMX
3453 BFD_RELOC_IA64_LTOFF_FPTR64MSB
3454ENUMX
3455 BFD_RELOC_IA64_LTOFF_FPTR64LSB
800eeca4
JW
3456ENUMX
3457 BFD_RELOC_IA64_SEGREL32MSB
3458ENUMX
3459 BFD_RELOC_IA64_SEGREL32LSB
3460ENUMX
3461 BFD_RELOC_IA64_SEGREL64MSB
3462ENUMX
3463 BFD_RELOC_IA64_SEGREL64LSB
3464ENUMX
3465 BFD_RELOC_IA64_SECREL32MSB
3466ENUMX
3467 BFD_RELOC_IA64_SECREL32LSB
3468ENUMX
3469 BFD_RELOC_IA64_SECREL64MSB
3470ENUMX
3471 BFD_RELOC_IA64_SECREL64LSB
3472ENUMX
3473 BFD_RELOC_IA64_REL32MSB
3474ENUMX
3475 BFD_RELOC_IA64_REL32LSB
3476ENUMX
3477 BFD_RELOC_IA64_REL64MSB
3478ENUMX
3479 BFD_RELOC_IA64_REL64LSB
3480ENUMX
3481 BFD_RELOC_IA64_LTV32MSB
3482ENUMX
3483 BFD_RELOC_IA64_LTV32LSB
3484ENUMX
3485 BFD_RELOC_IA64_LTV64MSB
3486ENUMX
3487 BFD_RELOC_IA64_LTV64LSB
3488ENUMX
3489 BFD_RELOC_IA64_IPLTMSB
3490ENUMX
3491 BFD_RELOC_IA64_IPLTLSB
800eeca4
JW
3492ENUMX
3493 BFD_RELOC_IA64_COPY
13ae64f3
JJ
3494ENUMX
3495 BFD_RELOC_IA64_LTOFF22X
3496ENUMX
3497 BFD_RELOC_IA64_LDXMOV
3498ENUMX
3499 BFD_RELOC_IA64_TPREL14
800eeca4
JW
3500ENUMX
3501 BFD_RELOC_IA64_TPREL22
13ae64f3
JJ
3502ENUMX
3503 BFD_RELOC_IA64_TPREL64I
800eeca4
JW
3504ENUMX
3505 BFD_RELOC_IA64_TPREL64MSB
3506ENUMX
3507 BFD_RELOC_IA64_TPREL64LSB
3508ENUMX
13ae64f3 3509 BFD_RELOC_IA64_LTOFF_TPREL22
800eeca4 3510ENUMX
13ae64f3 3511 BFD_RELOC_IA64_DTPMOD64MSB
800eeca4 3512ENUMX
13ae64f3
JJ
3513 BFD_RELOC_IA64_DTPMOD64LSB
3514ENUMX
3515 BFD_RELOC_IA64_LTOFF_DTPMOD22
3516ENUMX
3517 BFD_RELOC_IA64_DTPREL14
3518ENUMX
3519 BFD_RELOC_IA64_DTPREL22
3520ENUMX
3521 BFD_RELOC_IA64_DTPREL64I
3522ENUMX
3523 BFD_RELOC_IA64_DTPREL32MSB
3524ENUMX
3525 BFD_RELOC_IA64_DTPREL32LSB
3526ENUMX
3527 BFD_RELOC_IA64_DTPREL64MSB
3528ENUMX
3529 BFD_RELOC_IA64_DTPREL64LSB
3530ENUMX
3531 BFD_RELOC_IA64_LTOFF_DTPREL22
800eeca4
JW
3532ENUMDOC
3533 Intel IA64 Relocations.
60bcf0fa
NC
3534
3535ENUM
3536 BFD_RELOC_M68HC11_HI8
3537ENUMDOC
3538 Motorola 68HC11 reloc.
3dbfec86 3539 This is the 8 bit high part of an absolute address.
60bcf0fa
NC
3540ENUM
3541 BFD_RELOC_M68HC11_LO8
3542ENUMDOC
3543 Motorola 68HC11 reloc.
3dbfec86 3544 This is the 8 bit low part of an absolute address.
60bcf0fa
NC
3545ENUM
3546 BFD_RELOC_M68HC11_3B
3547ENUMDOC
3548 Motorola 68HC11 reloc.
3dbfec86
SC
3549 This is the 3 bit of a value.
3550ENUM
3551 BFD_RELOC_M68HC11_RL_JUMP
3552ENUMDOC
3553 Motorola 68HC11 reloc.
3554 This reloc marks the beginning of a jump/call instruction.
3555 It is used for linker relaxation to correctly identify beginning
3556 of instruction and change some branchs to use PC-relative
3557 addressing mode.
3558ENUM
3559 BFD_RELOC_M68HC11_RL_GROUP
3560ENUMDOC
3561 Motorola 68HC11 reloc.
3562 This reloc marks a group of several instructions that gcc generates
3563 and for which the linker relaxation pass can modify and/or remove
3564 some of them.
3565ENUM
3566 BFD_RELOC_M68HC11_LO16
3567ENUMDOC
3568 Motorola 68HC11 reloc.
3569 This is the 16-bit lower part of an address. It is used for 'call'
3570 instruction to specify the symbol address without any special
3571 transformation (due to memory bank window).
3572ENUM
3573 BFD_RELOC_M68HC11_PAGE
3574ENUMDOC
3575 Motorola 68HC11 reloc.
3576 This is a 8-bit reloc that specifies the page number of an address.
3577 It is used by 'call' instruction to specify the page number of
3578 the symbol.
3579ENUM
3580 BFD_RELOC_M68HC11_24
3581ENUMDOC
3582 Motorola 68HC11 reloc.
3583 This is a 24-bit reloc that represents the address with a 16-bit
3584 value and a 8-bit page number. The symbol address is transformed
3585 to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
60bcf0fa 3586
06c15ad7
HPN
3587ENUM
3588 BFD_RELOC_CRIS_BDISP8
3589ENUMX
3590 BFD_RELOC_CRIS_UNSIGNED_5
3591ENUMX
3592 BFD_RELOC_CRIS_SIGNED_6
3593ENUMX
3594 BFD_RELOC_CRIS_UNSIGNED_6
3595ENUMX
3596 BFD_RELOC_CRIS_UNSIGNED_4
3597ENUMDOC
3598 These relocs are only used within the CRIS assembler. They are not
3599 (at present) written to any object files.
58d29fc3
HPN
3600ENUM
3601 BFD_RELOC_CRIS_COPY
3602ENUMX
3603 BFD_RELOC_CRIS_GLOB_DAT
3604ENUMX
3605 BFD_RELOC_CRIS_JUMP_SLOT
3606ENUMX
3607 BFD_RELOC_CRIS_RELATIVE
3608ENUMDOC
3609 Relocs used in ELF shared libraries for CRIS.
3610ENUM
3611 BFD_RELOC_CRIS_32_GOT
3612ENUMDOC
3613 32-bit offset to symbol-entry within GOT.
3614ENUM
3615 BFD_RELOC_CRIS_16_GOT
3616ENUMDOC
3617 16-bit offset to symbol-entry within GOT.
3618ENUM
3619 BFD_RELOC_CRIS_32_GOTPLT
3620ENUMDOC
3621 32-bit offset to symbol-entry within GOT, with PLT handling.
3622ENUM
3623 BFD_RELOC_CRIS_16_GOTPLT
3624ENUMDOC
3625 16-bit offset to symbol-entry within GOT, with PLT handling.
3626ENUM
3627 BFD_RELOC_CRIS_32_GOTREL
3628ENUMDOC
3629 32-bit offset to symbol, relative to GOT.
3630ENUM
3631 BFD_RELOC_CRIS_32_PLT_GOTREL
3632ENUMDOC
3633 32-bit offset to symbol with PLT entry, relative to GOT.
3634ENUM
3635 BFD_RELOC_CRIS_32_PLT_PCREL
3636ENUMDOC
3637 32-bit offset to symbol with PLT entry, relative to this relocation.
06c15ad7 3638
a87fdb8d
JE
3639ENUM
3640 BFD_RELOC_860_COPY
3641ENUMX
3642 BFD_RELOC_860_GLOB_DAT
3643ENUMX
3644 BFD_RELOC_860_JUMP_SLOT
3645ENUMX
3646 BFD_RELOC_860_RELATIVE
3647ENUMX
3648 BFD_RELOC_860_PC26
3649ENUMX
3650 BFD_RELOC_860_PLT26
3651ENUMX
3652 BFD_RELOC_860_PC16
3653ENUMX
3654 BFD_RELOC_860_LOW0
3655ENUMX
3656 BFD_RELOC_860_SPLIT0
3657ENUMX
3658 BFD_RELOC_860_LOW1
3659ENUMX
3660 BFD_RELOC_860_SPLIT1
3661ENUMX
3662 BFD_RELOC_860_LOW2
3663ENUMX
3664 BFD_RELOC_860_SPLIT2
3665ENUMX
3666 BFD_RELOC_860_LOW3
3667ENUMX
3668 BFD_RELOC_860_LOGOT0
3669ENUMX
3670 BFD_RELOC_860_SPGOT0
3671ENUMX
3672 BFD_RELOC_860_LOGOT1
3673ENUMX
3674 BFD_RELOC_860_SPGOT1
3675ENUMX
3676 BFD_RELOC_860_LOGOTOFF0
3677ENUMX
3678 BFD_RELOC_860_SPGOTOFF0
3679ENUMX
3680 BFD_RELOC_860_LOGOTOFF1
3681ENUMX
3682 BFD_RELOC_860_SPGOTOFF1
3683ENUMX
3684 BFD_RELOC_860_LOGOTOFF2
3685ENUMX
3686 BFD_RELOC_860_LOGOTOFF3
3687ENUMX
3688 BFD_RELOC_860_LOPC
3689ENUMX
3690 BFD_RELOC_860_HIGHADJ
3691ENUMX
3692 BFD_RELOC_860_HAGOT
3693ENUMX
3694 BFD_RELOC_860_HAGOTOFF
3695ENUMX
3696 BFD_RELOC_860_HAPC
3697ENUMX
3698 BFD_RELOC_860_HIGH
3699ENUMX
3700 BFD_RELOC_860_HIGOT
3701ENUMX
3702 BFD_RELOC_860_HIGOTOFF
3703ENUMDOC
3704 Intel i860 Relocations.
3705
b3baf5d0
NC
3706ENUM
3707 BFD_RELOC_OPENRISC_ABS_26
3708ENUMX
3709 BFD_RELOC_OPENRISC_REL_26
3710ENUMDOC
3711 OpenRISC Relocations.
3712
e01b0e69
JR
3713ENUM
3714 BFD_RELOC_H8_DIR16A8
3715ENUMX
3716 BFD_RELOC_H8_DIR16R8
3717ENUMX
3718 BFD_RELOC_H8_DIR24A8
3719ENUMX
3720 BFD_RELOC_H8_DIR24R8
3721ENUMX
3722 BFD_RELOC_H8_DIR32A16
3723ENUMDOC
3724 H8 elf Relocations.
3725
93fbbb04
GK
3726ENUM
3727 BFD_RELOC_XSTORMY16_REL_12
5fd63999
DD
3728ENUMX
3729 BFD_RELOC_XSTORMY16_12
93fbbb04
GK
3730ENUMX
3731 BFD_RELOC_XSTORMY16_24
3732ENUMX
3733 BFD_RELOC_XSTORMY16_FPTR16
3734ENUMDOC
3735 Sony Xstormy16 Relocations.
3736
90ace9e9
JT
3737ENUM
3738 BFD_RELOC_VAX_GLOB_DAT
3739ENUMX
3740 BFD_RELOC_VAX_JMP_SLOT
3741ENUMX
3742 BFD_RELOC_VAX_RELATIVE
3743ENUMDOC
3744 Relocations used by VAX ELF.
2469cfa2
NC
3745
3746ENUM
3747 BFD_RELOC_MSP430_10_PCREL
3748ENUMX
3749 BFD_RELOC_MSP430_16_PCREL
3750ENUMX
3751 BFD_RELOC_MSP430_16
3752ENUMX
3753 BFD_RELOC_MSP430_16_PCREL_BYTE
3754ENUMX
3755 BFD_RELOC_MSP430_16_BYTE
3756ENUMDOC
3757 msp430 specific relocation codes
90ace9e9 3758
a75473eb
SC
3759ENUM
3760 BFD_RELOC_IQ2000_OFFSET_16
3761ENUMX
3762 BFD_RELOC_IQ2000_OFFSET_21
3763ENUMX
3764 BFD_RELOC_IQ2000_UHI16
3765ENUMDOC
3766 IQ2000 Relocations.
3767
252b5132
RH
3768ENDSENUM
3769 BFD_RELOC_UNUSED
3770CODE_FRAGMENT
3771.
3772.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
3773*/
3774
252b5132
RH
3775/*
3776FUNCTION
3777 bfd_reloc_type_lookup
3778
3779SYNOPSIS
3780 reloc_howto_type *
3781 bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
3782
3783DESCRIPTION
3784 Return a pointer to a howto structure which, when
3785 invoked, will perform the relocation @var{code} on data from the
3786 architecture noted.
3787
3788*/
3789
252b5132
RH
3790reloc_howto_type *
3791bfd_reloc_type_lookup (abfd, code)
3792 bfd *abfd;
3793 bfd_reloc_code_real_type code;
3794{
3795 return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
3796}
3797
3798static reloc_howto_type bfd_howto_32 =
b34976b6 3799HOWTO (0, 00, 2, 32, FALSE, 0, complain_overflow_bitfield, 0, "VRT32", FALSE, 0xffffffff, 0xffffffff, TRUE);
252b5132 3800
252b5132
RH
3801/*
3802INTERNAL_FUNCTION
3803 bfd_default_reloc_type_lookup
3804
3805SYNOPSIS
3806 reloc_howto_type *bfd_default_reloc_type_lookup
3807 (bfd *abfd, bfd_reloc_code_real_type code);
3808
3809DESCRIPTION
3810 Provides a default relocation lookup routine for any architecture.
3811
252b5132
RH
3812*/
3813
3814reloc_howto_type *
3815bfd_default_reloc_type_lookup (abfd, code)
3816 bfd *abfd;
3817 bfd_reloc_code_real_type code;
3818{
3819 switch (code)
3820 {
3821 case BFD_RELOC_CTOR:
3822 /* The type of reloc used in a ctor, which will be as wide as the
3823 address - so either a 64, 32, or 16 bitter. */
3824 switch (bfd_get_arch_info (abfd)->bits_per_address)
3825 {
3826 case 64:
3827 BFD_FAIL ();
3828 case 32:
3829 return &bfd_howto_32;
3830 case 16:
3831 BFD_FAIL ();
3832 default:
3833 BFD_FAIL ();
3834 }
3835 default:
3836 BFD_FAIL ();
3837 }
3838 return (reloc_howto_type *) NULL;
3839}
3840
3841/*
3842FUNCTION
3843 bfd_get_reloc_code_name
3844
3845SYNOPSIS
3846 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
3847
3848DESCRIPTION
3849 Provides a printable name for the supplied relocation code.
3850 Useful mainly for printing error messages.
3851*/
3852
3853const char *
3854bfd_get_reloc_code_name (code)
3855 bfd_reloc_code_real_type code;
3856{
d45913a0 3857 if ((int) code > (int) BFD_RELOC_UNUSED)
252b5132
RH
3858 return 0;
3859 return bfd_reloc_code_real_names[(int)code];
3860}
3861
3862/*
3863INTERNAL_FUNCTION
3864 bfd_generic_relax_section
3865
3866SYNOPSIS
b34976b6 3867 bfd_boolean bfd_generic_relax_section
252b5132
RH
3868 (bfd *abfd,
3869 asection *section,
3870 struct bfd_link_info *,
b34976b6 3871 bfd_boolean *);
252b5132
RH
3872
3873DESCRIPTION
3874 Provides default handling for relaxing for back ends which
3875 don't do relaxing -- i.e., does nothing.
3876*/
3877
b34976b6 3878bfd_boolean
252b5132 3879bfd_generic_relax_section (abfd, section, link_info, again)
7442e600
ILT
3880 bfd *abfd ATTRIBUTE_UNUSED;
3881 asection *section ATTRIBUTE_UNUSED;
3882 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
b34976b6 3883 bfd_boolean *again;
252b5132 3884{
b34976b6
AM
3885 *again = FALSE;
3886 return TRUE;
252b5132
RH
3887}
3888
3889/*
3890INTERNAL_FUNCTION
3891 bfd_generic_gc_sections
3892
3893SYNOPSIS
b34976b6 3894 bfd_boolean bfd_generic_gc_sections
252b5132
RH
3895 (bfd *, struct bfd_link_info *);
3896
3897DESCRIPTION
3898 Provides default handling for relaxing for back ends which
3899 don't do section gc -- i.e., does nothing.
3900*/
3901
b34976b6 3902bfd_boolean
252b5132 3903bfd_generic_gc_sections (abfd, link_info)
7442e600
ILT
3904 bfd *abfd ATTRIBUTE_UNUSED;
3905 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
252b5132 3906{
b34976b6 3907 return TRUE;
252b5132
RH
3908}
3909
8550eb6e
JJ
3910/*
3911INTERNAL_FUNCTION
3912 bfd_generic_merge_sections
3913
3914SYNOPSIS
b34976b6 3915 bfd_boolean bfd_generic_merge_sections
8550eb6e
JJ
3916 (bfd *, struct bfd_link_info *);
3917
3918DESCRIPTION
3919 Provides default handling for SEC_MERGE section merging for back ends
3920 which don't have SEC_MERGE support -- i.e., does nothing.
3921*/
3922
b34976b6 3923bfd_boolean
8550eb6e
JJ
3924bfd_generic_merge_sections (abfd, link_info)
3925 bfd *abfd ATTRIBUTE_UNUSED;
3926 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
3927{
b34976b6 3928 return TRUE;
8550eb6e
JJ
3929}
3930
252b5132
RH
3931/*
3932INTERNAL_FUNCTION
3933 bfd_generic_get_relocated_section_contents
3934
3935SYNOPSIS
3936 bfd_byte *
3937 bfd_generic_get_relocated_section_contents (bfd *abfd,
3938 struct bfd_link_info *link_info,
3939 struct bfd_link_order *link_order,
3940 bfd_byte *data,
b34976b6 3941 bfd_boolean relocateable,
252b5132
RH
3942 asymbol **symbols);
3943
3944DESCRIPTION
3945 Provides default handling of relocation effort for back ends
3946 which can't be bothered to do it efficiently.
3947
3948*/
3949
3950bfd_byte *
3951bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
3952 relocateable, symbols)
3953 bfd *abfd;
3954 struct bfd_link_info *link_info;
3955 struct bfd_link_order *link_order;
3956 bfd_byte *data;
b34976b6 3957 bfd_boolean relocateable;
252b5132
RH
3958 asymbol **symbols;
3959{
b5f79c76 3960 /* Get enough memory to hold the stuff. */
252b5132
RH
3961 bfd *input_bfd = link_order->u.indirect.section->owner;
3962 asection *input_section = link_order->u.indirect.section;
3963
3964 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
3965 arelent **reloc_vector = NULL;
3966 long reloc_count;
3967
3968 if (reloc_size < 0)
3969 goto error_return;
3970
dc810e39 3971 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
252b5132
RH
3972 if (reloc_vector == NULL && reloc_size != 0)
3973 goto error_return;
3974
b5f79c76 3975 /* Read in the section. */
252b5132
RH
3976 if (!bfd_get_section_contents (input_bfd,
3977 input_section,
3978 (PTR) data,
dc810e39 3979 (bfd_vma) 0,
252b5132
RH
3980 input_section->_raw_size))
3981 goto error_return;
3982
b5f79c76 3983 /* We're not relaxing the section, so just copy the size info. */
252b5132 3984 input_section->_cooked_size = input_section->_raw_size;
b34976b6 3985 input_section->reloc_done = TRUE;
252b5132
RH
3986
3987 reloc_count = bfd_canonicalize_reloc (input_bfd,
3988 input_section,
3989 reloc_vector,
3990 symbols);
3991 if (reloc_count < 0)
3992 goto error_return;
3993
3994 if (reloc_count > 0)
3995 {
3996 arelent **parent;
3997 for (parent = reloc_vector; *parent != (arelent *) NULL;
3998 parent++)
3999 {
4000 char *error_message = (char *) NULL;
4001 bfd_reloc_status_type r =
4002 bfd_perform_relocation (input_bfd,
4003 *parent,
4004 (PTR) data,
4005 input_section,
4006 relocateable ? abfd : (bfd *) NULL,
4007 &error_message);
4008
4009 if (relocateable)
4010 {
4011 asection *os = input_section->output_section;
4012
b5f79c76 4013 /* A partial link, so keep the relocs. */
252b5132
RH
4014 os->orelocation[os->reloc_count] = *parent;
4015 os->reloc_count++;
4016 }
4017
4018 if (r != bfd_reloc_ok)
4019 {
4020 switch (r)
4021 {
4022 case bfd_reloc_undefined:
4023 if (!((*link_info->callbacks->undefined_symbol)
4024 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
5cc7c785 4025 input_bfd, input_section, (*parent)->address,
b34976b6 4026 TRUE)))
252b5132
RH
4027 goto error_return;
4028 break;
4029 case bfd_reloc_dangerous:
4030 BFD_ASSERT (error_message != (char *) NULL);
4031 if (!((*link_info->callbacks->reloc_dangerous)
4032 (link_info, error_message, input_bfd, input_section,
4033 (*parent)->address)))
4034 goto error_return;
4035 break;
4036 case bfd_reloc_overflow:
4037 if (!((*link_info->callbacks->reloc_overflow)
4038 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
4039 (*parent)->howto->name, (*parent)->addend,
4040 input_bfd, input_section, (*parent)->address)))
4041 goto error_return;
4042 break;
4043 case bfd_reloc_outofrange:
4044 default:
4045 abort ();
4046 break;
4047 }
4048
4049 }
4050 }
4051 }
4052 if (reloc_vector != NULL)
4053 free (reloc_vector);
4054 return data;
4055
4056error_return:
4057 if (reloc_vector != NULL)
4058 free (reloc_vector);
4059 return NULL;
4060}
This page took 0.358341 seconds and 4 git commands to generate.