Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
d07335e5 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
165125e1 152 struct request_queue *q = rq->q;
797e7dbb 153
dd4c133f 154 if (&q->flush_rq != rq) {
5bb23a68
N
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
797e7dbb 159
5bb23a68 160 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 162 __func__, nbytes, bio->bi_size);
5bb23a68
N
163 nbytes = bio->bi_size;
164 }
797e7dbb 165
08bafc03
KM
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
168
5bb23a68
N
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
171
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
174
5bb23a68 175 if (bio->bi_size == 0)
6712ecf8 176 bio_endio(bio, error);
5bb23a68 177 } else {
5bb23a68 178 /*
dd4c133f
TH
179 * Okay, this is the sequenced flush request in
180 * progress, just record the error;
5bb23a68 181 */
dd4c133f
TH
182 if (error && !q->flush_err)
183 q->flush_err = error;
5bb23a68 184 }
1da177e4 185}
1da177e4 186
1da177e4
LT
187void blk_dump_rq_flags(struct request *rq, char *msg)
188{
189 int bit;
190
6728cb0e 191 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
192 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
193 rq->cmd_flags);
1da177e4 194
83096ebf
TH
195 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
196 (unsigned long long)blk_rq_pos(rq),
197 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 198 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 199 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 200
33659ebb 201 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 202 printk(KERN_INFO " cdb: ");
d34c87e4 203 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
204 printk("%02x ", rq->cmd[bit]);
205 printk("\n");
206 }
207}
1da177e4
LT
208EXPORT_SYMBOL(blk_dump_rq_flags);
209
1da177e4
LT
210/*
211 * "plug" the device if there are no outstanding requests: this will
212 * force the transfer to start only after we have put all the requests
213 * on the list.
214 *
215 * This is called with interrupts off and no requests on the queue and
216 * with the queue lock held.
217 */
165125e1 218void blk_plug_device(struct request_queue *q)
1da177e4
LT
219{
220 WARN_ON(!irqs_disabled());
221
222 /*
223 * don't plug a stopped queue, it must be paired with blk_start_queue()
224 * which will restart the queueing
225 */
7daac490 226 if (blk_queue_stopped(q))
1da177e4
LT
227 return;
228
e48ec690 229 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 230 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 231 trace_block_plug(q);
2056a782 232 }
1da177e4 233}
1da177e4
LT
234EXPORT_SYMBOL(blk_plug_device);
235
6c5e0c4d
JA
236/**
237 * blk_plug_device_unlocked - plug a device without queue lock held
238 * @q: The &struct request_queue to plug
239 *
240 * Description:
241 * Like @blk_plug_device(), but grabs the queue lock and disables
242 * interrupts.
243 **/
244void blk_plug_device_unlocked(struct request_queue *q)
245{
246 unsigned long flags;
247
248 spin_lock_irqsave(q->queue_lock, flags);
249 blk_plug_device(q);
250 spin_unlock_irqrestore(q->queue_lock, flags);
251}
252EXPORT_SYMBOL(blk_plug_device_unlocked);
253
1da177e4
LT
254/*
255 * remove the queue from the plugged list, if present. called with
256 * queue lock held and interrupts disabled.
257 */
165125e1 258int blk_remove_plug(struct request_queue *q)
1da177e4
LT
259{
260 WARN_ON(!irqs_disabled());
261
e48ec690 262 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
263 return 0;
264
265 del_timer(&q->unplug_timer);
266 return 1;
267}
1da177e4
LT
268EXPORT_SYMBOL(blk_remove_plug);
269
270/*
271 * remove the plug and let it rip..
272 */
165125e1 273void __generic_unplug_device(struct request_queue *q)
1da177e4 274{
7daac490 275 if (unlikely(blk_queue_stopped(q)))
1da177e4 276 return;
a31a9738 277 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
278 return;
279
22e2c507 280 q->request_fn(q);
1da177e4 281}
1da177e4
LT
282
283/**
284 * generic_unplug_device - fire a request queue
165125e1 285 * @q: The &struct request_queue in question
1da177e4
LT
286 *
287 * Description:
288 * Linux uses plugging to build bigger requests queues before letting
289 * the device have at them. If a queue is plugged, the I/O scheduler
290 * is still adding and merging requests on the queue. Once the queue
291 * gets unplugged, the request_fn defined for the queue is invoked and
292 * transfers started.
293 **/
165125e1 294void generic_unplug_device(struct request_queue *q)
1da177e4 295{
dbaf2c00
JA
296 if (blk_queue_plugged(q)) {
297 spin_lock_irq(q->queue_lock);
298 __generic_unplug_device(q);
299 spin_unlock_irq(q->queue_lock);
300 }
1da177e4
LT
301}
302EXPORT_SYMBOL(generic_unplug_device);
303
304static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
305 struct page *page)
306{
165125e1 307 struct request_queue *q = bdi->unplug_io_data;
1da177e4 308
2ad8b1ef 309 blk_unplug(q);
1da177e4
LT
310}
311
86db1e29 312void blk_unplug_work(struct work_struct *work)
1da177e4 313{
165125e1
JA
314 struct request_queue *q =
315 container_of(work, struct request_queue, unplug_work);
1da177e4 316
5f3ea37c 317 trace_block_unplug_io(q);
1da177e4
LT
318 q->unplug_fn(q);
319}
320
86db1e29 321void blk_unplug_timeout(unsigned long data)
1da177e4 322{
165125e1 323 struct request_queue *q = (struct request_queue *)data;
1da177e4 324
5f3ea37c 325 trace_block_unplug_timer(q);
18887ad9 326 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
327}
328
2ad8b1ef
AB
329void blk_unplug(struct request_queue *q)
330{
331 /*
332 * devices don't necessarily have an ->unplug_fn defined
333 */
334 if (q->unplug_fn) {
5f3ea37c 335 trace_block_unplug_io(q);
2ad8b1ef
AB
336 q->unplug_fn(q);
337 }
338}
339EXPORT_SYMBOL(blk_unplug);
340
1da177e4
LT
341/**
342 * blk_start_queue - restart a previously stopped queue
165125e1 343 * @q: The &struct request_queue in question
1da177e4
LT
344 *
345 * Description:
346 * blk_start_queue() will clear the stop flag on the queue, and call
347 * the request_fn for the queue if it was in a stopped state when
348 * entered. Also see blk_stop_queue(). Queue lock must be held.
349 **/
165125e1 350void blk_start_queue(struct request_queue *q)
1da177e4 351{
a038e253
PBG
352 WARN_ON(!irqs_disabled());
353
75ad23bc 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1654e741 355 __blk_run_queue(q, false);
1da177e4 356}
1da177e4
LT
357EXPORT_SYMBOL(blk_start_queue);
358
359/**
360 * blk_stop_queue - stop a queue
165125e1 361 * @q: The &struct request_queue in question
1da177e4
LT
362 *
363 * Description:
364 * The Linux block layer assumes that a block driver will consume all
365 * entries on the request queue when the request_fn strategy is called.
366 * Often this will not happen, because of hardware limitations (queue
367 * depth settings). If a device driver gets a 'queue full' response,
368 * or if it simply chooses not to queue more I/O at one point, it can
369 * call this function to prevent the request_fn from being called until
370 * the driver has signalled it's ready to go again. This happens by calling
371 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 **/
165125e1 373void blk_stop_queue(struct request_queue *q)
1da177e4
LT
374{
375 blk_remove_plug(q);
75ad23bc 376 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
377}
378EXPORT_SYMBOL(blk_stop_queue);
379
380/**
381 * blk_sync_queue - cancel any pending callbacks on a queue
382 * @q: the queue
383 *
384 * Description:
385 * The block layer may perform asynchronous callback activity
386 * on a queue, such as calling the unplug function after a timeout.
387 * A block device may call blk_sync_queue to ensure that any
388 * such activity is cancelled, thus allowing it to release resources
59c51591 389 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
390 * that its ->make_request_fn will not re-add plugging prior to calling
391 * this function.
392 *
393 */
394void blk_sync_queue(struct request_queue *q)
395{
396 del_timer_sync(&q->unplug_timer);
70ed28b9 397 del_timer_sync(&q->timeout);
64d01dc9 398 cancel_work_sync(&q->unplug_work);
e43473b7 399 throtl_shutdown_timer_wq(q);
1da177e4
LT
400}
401EXPORT_SYMBOL(blk_sync_queue);
402
403/**
80a4b58e 404 * __blk_run_queue - run a single device queue
1da177e4 405 * @q: The queue to run
1654e741 406 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
80a4b58e
JA
407 *
408 * Description:
409 * See @blk_run_queue. This variant must be called with the queue lock
410 * held and interrupts disabled.
411 *
1da177e4 412 */
1654e741 413void __blk_run_queue(struct request_queue *q, bool force_kblockd)
1da177e4 414{
1da177e4 415 blk_remove_plug(q);
dac07ec1 416
a538cd03
TH
417 if (unlikely(blk_queue_stopped(q)))
418 return;
419
420 if (elv_queue_empty(q))
421 return;
422
dac07ec1
JA
423 /*
424 * Only recurse once to avoid overrunning the stack, let the unplug
425 * handling reinvoke the handler shortly if we already got there.
426 */
1654e741 427 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
a538cd03
TH
428 q->request_fn(q);
429 queue_flag_clear(QUEUE_FLAG_REENTER, q);
430 } else {
431 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
432 kblockd_schedule_work(q, &q->unplug_work);
433 }
75ad23bc
NP
434}
435EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 436
75ad23bc
NP
437/**
438 * blk_run_queue - run a single device queue
439 * @q: The queue to run
80a4b58e
JA
440 *
441 * Description:
442 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 443 * May be used to restart queueing when a request has completed.
75ad23bc
NP
444 */
445void blk_run_queue(struct request_queue *q)
446{
447 unsigned long flags;
448
449 spin_lock_irqsave(q->queue_lock, flags);
1654e741 450 __blk_run_queue(q, false);
1da177e4
LT
451 spin_unlock_irqrestore(q->queue_lock, flags);
452}
453EXPORT_SYMBOL(blk_run_queue);
454
165125e1 455void blk_put_queue(struct request_queue *q)
483f4afc
AV
456{
457 kobject_put(&q->kobj);
458}
483f4afc 459
6728cb0e 460void blk_cleanup_queue(struct request_queue *q)
483f4afc 461{
e3335de9
JA
462 /*
463 * We know we have process context here, so we can be a little
464 * cautious and ensure that pending block actions on this device
465 * are done before moving on. Going into this function, we should
466 * not have processes doing IO to this device.
467 */
468 blk_sync_queue(q);
469
31373d09 470 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 471 mutex_lock(&q->sysfs_lock);
75ad23bc 472 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
473 mutex_unlock(&q->sysfs_lock);
474
475 if (q->elevator)
476 elevator_exit(q->elevator);
477
478 blk_put_queue(q);
479}
1da177e4
LT
480EXPORT_SYMBOL(blk_cleanup_queue);
481
165125e1 482static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
483{
484 struct request_list *rl = &q->rq;
485
1abec4fd
MS
486 if (unlikely(rl->rq_pool))
487 return 0;
488
1faa16d2
JA
489 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
490 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 491 rl->elvpriv = 0;
1faa16d2
JA
492 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
493 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 494
1946089a
CL
495 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
496 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
497
498 if (!rl->rq_pool)
499 return -ENOMEM;
500
501 return 0;
502}
503
165125e1 504struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 505{
1946089a
CL
506 return blk_alloc_queue_node(gfp_mask, -1);
507}
508EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 509
165125e1 510struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 511{
165125e1 512 struct request_queue *q;
e0bf68dd 513 int err;
1946089a 514
8324aa91 515 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 516 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
517 if (!q)
518 return NULL;
519
e0bf68dd
PZ
520 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
521 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
522 q->backing_dev_info.ra_pages =
523 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
524 q->backing_dev_info.state = 0;
525 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 526 q->backing_dev_info.name = "block";
0989a025 527
e0bf68dd
PZ
528 err = bdi_init(&q->backing_dev_info);
529 if (err) {
8324aa91 530 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
531 return NULL;
532 }
533
e43473b7
VG
534 if (blk_throtl_init(q)) {
535 kmem_cache_free(blk_requestq_cachep, q);
536 return NULL;
537 }
538
31373d09
MG
539 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
540 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 541 init_timer(&q->unplug_timer);
242f9dcb
JA
542 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
543 INIT_LIST_HEAD(&q->timeout_list);
dd4c133f 544 INIT_LIST_HEAD(&q->pending_flushes);
713ada9b 545 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 546
8324aa91 547 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 548
483f4afc 549 mutex_init(&q->sysfs_lock);
e7e72bf6 550 spin_lock_init(&q->__queue_lock);
483f4afc 551
1da177e4
LT
552 return q;
553}
1946089a 554EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
555
556/**
557 * blk_init_queue - prepare a request queue for use with a block device
558 * @rfn: The function to be called to process requests that have been
559 * placed on the queue.
560 * @lock: Request queue spin lock
561 *
562 * Description:
563 * If a block device wishes to use the standard request handling procedures,
564 * which sorts requests and coalesces adjacent requests, then it must
565 * call blk_init_queue(). The function @rfn will be called when there
566 * are requests on the queue that need to be processed. If the device
567 * supports plugging, then @rfn may not be called immediately when requests
568 * are available on the queue, but may be called at some time later instead.
569 * Plugged queues are generally unplugged when a buffer belonging to one
570 * of the requests on the queue is needed, or due to memory pressure.
571 *
572 * @rfn is not required, or even expected, to remove all requests off the
573 * queue, but only as many as it can handle at a time. If it does leave
574 * requests on the queue, it is responsible for arranging that the requests
575 * get dealt with eventually.
576 *
577 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
578 * request queue; this lock will be taken also from interrupt context, so irq
579 * disabling is needed for it.
1da177e4 580 *
710027a4 581 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
582 * it didn't succeed.
583 *
584 * Note:
585 * blk_init_queue() must be paired with a blk_cleanup_queue() call
586 * when the block device is deactivated (such as at module unload).
587 **/
1946089a 588
165125e1 589struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 590{
1946089a
CL
591 return blk_init_queue_node(rfn, lock, -1);
592}
593EXPORT_SYMBOL(blk_init_queue);
594
165125e1 595struct request_queue *
1946089a
CL
596blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
597{
c86d1b8a 598 struct request_queue *uninit_q, *q;
1da177e4 599
c86d1b8a
MS
600 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
601 if (!uninit_q)
602 return NULL;
603
604 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
605 if (!q)
606 blk_cleanup_queue(uninit_q);
607
608 return q;
01effb0d
MS
609}
610EXPORT_SYMBOL(blk_init_queue_node);
611
612struct request_queue *
613blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
614 spinlock_t *lock)
615{
616 return blk_init_allocated_queue_node(q, rfn, lock, -1);
617}
618EXPORT_SYMBOL(blk_init_allocated_queue);
619
620struct request_queue *
621blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
622 spinlock_t *lock, int node_id)
623{
1da177e4
LT
624 if (!q)
625 return NULL;
626
1946089a 627 q->node = node_id;
c86d1b8a 628 if (blk_init_free_list(q))
8669aafd 629 return NULL;
1da177e4
LT
630
631 q->request_fn = rfn;
1da177e4 632 q->prep_rq_fn = NULL;
28018c24 633 q->unprep_rq_fn = NULL;
1da177e4 634 q->unplug_fn = generic_unplug_device;
bc58ba94 635 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
636 q->queue_lock = lock;
637
f3b144aa
JA
638 /*
639 * This also sets hw/phys segments, boundary and size
640 */
1da177e4 641 blk_queue_make_request(q, __make_request);
1da177e4 642
44ec9542
AS
643 q->sg_reserved_size = INT_MAX;
644
1da177e4
LT
645 /*
646 * all done
647 */
648 if (!elevator_init(q, NULL)) {
649 blk_queue_congestion_threshold(q);
650 return q;
651 }
652
1da177e4
LT
653 return NULL;
654}
01effb0d 655EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 656
165125e1 657int blk_get_queue(struct request_queue *q)
1da177e4 658{
fde6ad22 659 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 660 kobject_get(&q->kobj);
1da177e4
LT
661 return 0;
662 }
663
664 return 1;
665}
1da177e4 666
165125e1 667static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 668{
4aff5e23 669 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 670 elv_put_request(q, rq);
1da177e4
LT
671 mempool_free(rq, q->rq.rq_pool);
672}
673
1ea25ecb 674static struct request *
42dad764 675blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
676{
677 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
678
679 if (!rq)
680 return NULL;
681
2a4aa30c 682 blk_rq_init(q, rq);
1afb20f3 683
42dad764 684 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 685
cb98fc8b 686 if (priv) {
cb78b285 687 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
688 mempool_free(rq, q->rq.rq_pool);
689 return NULL;
690 }
4aff5e23 691 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 692 }
1da177e4 693
cb98fc8b 694 return rq;
1da177e4
LT
695}
696
697/*
698 * ioc_batching returns true if the ioc is a valid batching request and
699 * should be given priority access to a request.
700 */
165125e1 701static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
702{
703 if (!ioc)
704 return 0;
705
706 /*
707 * Make sure the process is able to allocate at least 1 request
708 * even if the batch times out, otherwise we could theoretically
709 * lose wakeups.
710 */
711 return ioc->nr_batch_requests == q->nr_batching ||
712 (ioc->nr_batch_requests > 0
713 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
714}
715
716/*
717 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
718 * will cause the process to be a "batcher" on all queues in the system. This
719 * is the behaviour we want though - once it gets a wakeup it should be given
720 * a nice run.
721 */
165125e1 722static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
723{
724 if (!ioc || ioc_batching(q, ioc))
725 return;
726
727 ioc->nr_batch_requests = q->nr_batching;
728 ioc->last_waited = jiffies;
729}
730
1faa16d2 731static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
732{
733 struct request_list *rl = &q->rq;
734
1faa16d2
JA
735 if (rl->count[sync] < queue_congestion_off_threshold(q))
736 blk_clear_queue_congested(q, sync);
1da177e4 737
1faa16d2
JA
738 if (rl->count[sync] + 1 <= q->nr_requests) {
739 if (waitqueue_active(&rl->wait[sync]))
740 wake_up(&rl->wait[sync]);
1da177e4 741
1faa16d2 742 blk_clear_queue_full(q, sync);
1da177e4
LT
743 }
744}
745
746/*
747 * A request has just been released. Account for it, update the full and
748 * congestion status, wake up any waiters. Called under q->queue_lock.
749 */
1faa16d2 750static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
751{
752 struct request_list *rl = &q->rq;
753
1faa16d2 754 rl->count[sync]--;
cb98fc8b
TH
755 if (priv)
756 rl->elvpriv--;
1da177e4 757
1faa16d2 758 __freed_request(q, sync);
1da177e4 759
1faa16d2
JA
760 if (unlikely(rl->starved[sync ^ 1]))
761 __freed_request(q, sync ^ 1);
1da177e4
LT
762}
763
1da177e4 764/*
d6344532
NP
765 * Get a free request, queue_lock must be held.
766 * Returns NULL on failure, with queue_lock held.
767 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 768 */
165125e1 769static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 770 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
771{
772 struct request *rq = NULL;
773 struct request_list *rl = &q->rq;
88ee5ef1 774 struct io_context *ioc = NULL;
1faa16d2 775 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
776 int may_queue, priv;
777
7749a8d4 778 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
779 if (may_queue == ELV_MQUEUE_NO)
780 goto rq_starved;
781
1faa16d2
JA
782 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
783 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 784 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
785 /*
786 * The queue will fill after this allocation, so set
787 * it as full, and mark this process as "batching".
788 * This process will be allowed to complete a batch of
789 * requests, others will be blocked.
790 */
1faa16d2 791 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 792 ioc_set_batching(q, ioc);
1faa16d2 793 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
794 } else {
795 if (may_queue != ELV_MQUEUE_MUST
796 && !ioc_batching(q, ioc)) {
797 /*
798 * The queue is full and the allocating
799 * process is not a "batcher", and not
800 * exempted by the IO scheduler
801 */
802 goto out;
803 }
804 }
1da177e4 805 }
1faa16d2 806 blk_set_queue_congested(q, is_sync);
1da177e4
LT
807 }
808
082cf69e
JA
809 /*
810 * Only allow batching queuers to allocate up to 50% over the defined
811 * limit of requests, otherwise we could have thousands of requests
812 * allocated with any setting of ->nr_requests
813 */
1faa16d2 814 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 815 goto out;
fd782a4a 816
1faa16d2
JA
817 rl->count[is_sync]++;
818 rl->starved[is_sync] = 0;
cb98fc8b 819
64521d1a 820 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
f253b86b 821 if (priv)
cb98fc8b
TH
822 rl->elvpriv++;
823
f253b86b
JA
824 if (blk_queue_io_stat(q))
825 rw_flags |= REQ_IO_STAT;
1da177e4
LT
826 spin_unlock_irq(q->queue_lock);
827
7749a8d4 828 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 829 if (unlikely(!rq)) {
1da177e4
LT
830 /*
831 * Allocation failed presumably due to memory. Undo anything
832 * we might have messed up.
833 *
834 * Allocating task should really be put onto the front of the
835 * wait queue, but this is pretty rare.
836 */
837 spin_lock_irq(q->queue_lock);
1faa16d2 838 freed_request(q, is_sync, priv);
1da177e4
LT
839
840 /*
841 * in the very unlikely event that allocation failed and no
842 * requests for this direction was pending, mark us starved
843 * so that freeing of a request in the other direction will
844 * notice us. another possible fix would be to split the
845 * rq mempool into READ and WRITE
846 */
847rq_starved:
1faa16d2
JA
848 if (unlikely(rl->count[is_sync] == 0))
849 rl->starved[is_sync] = 1;
1da177e4 850
1da177e4
LT
851 goto out;
852 }
853
88ee5ef1
JA
854 /*
855 * ioc may be NULL here, and ioc_batching will be false. That's
856 * OK, if the queue is under the request limit then requests need
857 * not count toward the nr_batch_requests limit. There will always
858 * be some limit enforced by BLK_BATCH_TIME.
859 */
1da177e4
LT
860 if (ioc_batching(q, ioc))
861 ioc->nr_batch_requests--;
6728cb0e 862
1faa16d2 863 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 864out:
1da177e4
LT
865 return rq;
866}
867
868/*
869 * No available requests for this queue, unplug the device and wait for some
870 * requests to become available.
d6344532
NP
871 *
872 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 873 */
165125e1 874static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 875 struct bio *bio)
1da177e4 876{
1faa16d2 877 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
878 struct request *rq;
879
7749a8d4 880 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
881 while (!rq) {
882 DEFINE_WAIT(wait);
05caf8db 883 struct io_context *ioc;
1da177e4
LT
884 struct request_list *rl = &q->rq;
885
1faa16d2 886 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
887 TASK_UNINTERRUPTIBLE);
888
1faa16d2 889 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 890
05caf8db
ZY
891 __generic_unplug_device(q);
892 spin_unlock_irq(q->queue_lock);
893 io_schedule();
1da177e4 894
05caf8db
ZY
895 /*
896 * After sleeping, we become a "batching" process and
897 * will be able to allocate at least one request, and
898 * up to a big batch of them for a small period time.
899 * See ioc_batching, ioc_set_batching
900 */
901 ioc = current_io_context(GFP_NOIO, q->node);
902 ioc_set_batching(q, ioc);
d6344532 903
05caf8db 904 spin_lock_irq(q->queue_lock);
1faa16d2 905 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
906
907 rq = get_request(q, rw_flags, bio, GFP_NOIO);
908 };
1da177e4
LT
909
910 return rq;
911}
912
165125e1 913struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
914{
915 struct request *rq;
916
917 BUG_ON(rw != READ && rw != WRITE);
918
d6344532
NP
919 spin_lock_irq(q->queue_lock);
920 if (gfp_mask & __GFP_WAIT) {
22e2c507 921 rq = get_request_wait(q, rw, NULL);
d6344532 922 } else {
22e2c507 923 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
924 if (!rq)
925 spin_unlock_irq(q->queue_lock);
926 }
927 /* q->queue_lock is unlocked at this point */
1da177e4
LT
928
929 return rq;
930}
1da177e4
LT
931EXPORT_SYMBOL(blk_get_request);
932
dc72ef4a 933/**
79eb63e9 934 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 935 * @q: target request queue
79eb63e9
BH
936 * @bio: The bio describing the memory mappings that will be submitted for IO.
937 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 938 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 939 *
79eb63e9
BH
940 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
941 * type commands. Where the struct request needs to be farther initialized by
942 * the caller. It is passed a &struct bio, which describes the memory info of
943 * the I/O transfer.
dc72ef4a 944 *
79eb63e9
BH
945 * The caller of blk_make_request must make sure that bi_io_vec
946 * are set to describe the memory buffers. That bio_data_dir() will return
947 * the needed direction of the request. (And all bio's in the passed bio-chain
948 * are properly set accordingly)
949 *
950 * If called under none-sleepable conditions, mapped bio buffers must not
951 * need bouncing, by calling the appropriate masked or flagged allocator,
952 * suitable for the target device. Otherwise the call to blk_queue_bounce will
953 * BUG.
53674ac5
JA
954 *
955 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
956 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
957 * anything but the first bio in the chain. Otherwise you risk waiting for IO
958 * completion of a bio that hasn't been submitted yet, thus resulting in a
959 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
960 * of bio_alloc(), as that avoids the mempool deadlock.
961 * If possible a big IO should be split into smaller parts when allocation
962 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 963 */
79eb63e9
BH
964struct request *blk_make_request(struct request_queue *q, struct bio *bio,
965 gfp_t gfp_mask)
dc72ef4a 966{
79eb63e9
BH
967 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
968
969 if (unlikely(!rq))
970 return ERR_PTR(-ENOMEM);
971
972 for_each_bio(bio) {
973 struct bio *bounce_bio = bio;
974 int ret;
975
976 blk_queue_bounce(q, &bounce_bio);
977 ret = blk_rq_append_bio(q, rq, bounce_bio);
978 if (unlikely(ret)) {
979 blk_put_request(rq);
980 return ERR_PTR(ret);
981 }
982 }
983
984 return rq;
dc72ef4a 985}
79eb63e9 986EXPORT_SYMBOL(blk_make_request);
dc72ef4a 987
1da177e4
LT
988/**
989 * blk_requeue_request - put a request back on queue
990 * @q: request queue where request should be inserted
991 * @rq: request to be inserted
992 *
993 * Description:
994 * Drivers often keep queueing requests until the hardware cannot accept
995 * more, when that condition happens we need to put the request back
996 * on the queue. Must be called with queue lock held.
997 */
165125e1 998void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 999{
242f9dcb
JA
1000 blk_delete_timer(rq);
1001 blk_clear_rq_complete(rq);
5f3ea37c 1002 trace_block_rq_requeue(q, rq);
2056a782 1003
1da177e4
LT
1004 if (blk_rq_tagged(rq))
1005 blk_queue_end_tag(q, rq);
1006
ba396a6c
JB
1007 BUG_ON(blk_queued_rq(rq));
1008
1da177e4
LT
1009 elv_requeue_request(q, rq);
1010}
1da177e4
LT
1011EXPORT_SYMBOL(blk_requeue_request);
1012
1013/**
710027a4 1014 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1015 * @q: request queue where request should be inserted
1016 * @rq: request to be inserted
1017 * @at_head: insert request at head or tail of queue
1018 * @data: private data
1da177e4
LT
1019 *
1020 * Description:
1021 * Many block devices need to execute commands asynchronously, so they don't
1022 * block the whole kernel from preemption during request execution. This is
1023 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1024 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1025 * be scheduled for actual execution by the request queue.
1da177e4
LT
1026 *
1027 * We have the option of inserting the head or the tail of the queue.
1028 * Typically we use the tail for new ioctls and so forth. We use the head
1029 * of the queue for things like a QUEUE_FULL message from a device, or a
1030 * host that is unable to accept a particular command.
1031 */
165125e1 1032void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1033 int at_head, void *data)
1da177e4 1034{
867d1191 1035 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1036 unsigned long flags;
1037
1038 /*
1039 * tell I/O scheduler that this isn't a regular read/write (ie it
1040 * must not attempt merges on this) and that it acts as a soft
1041 * barrier
1042 */
4aff5e23 1043 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1044
1045 rq->special = data;
1046
1047 spin_lock_irqsave(q->queue_lock, flags);
1048
1049 /*
1050 * If command is tagged, release the tag
1051 */
867d1191
TH
1052 if (blk_rq_tagged(rq))
1053 blk_queue_end_tag(q, rq);
1da177e4 1054
b238b3d4 1055 drive_stat_acct(rq, 1);
867d1191 1056 __elv_add_request(q, rq, where, 0);
1654e741 1057 __blk_run_queue(q, false);
1da177e4
LT
1058 spin_unlock_irqrestore(q->queue_lock, flags);
1059}
1da177e4
LT
1060EXPORT_SYMBOL(blk_insert_request);
1061
074a7aca
TH
1062static void part_round_stats_single(int cpu, struct hd_struct *part,
1063 unsigned long now)
1064{
1065 if (now == part->stamp)
1066 return;
1067
316d315b 1068 if (part_in_flight(part)) {
074a7aca 1069 __part_stat_add(cpu, part, time_in_queue,
316d315b 1070 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1071 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1072 }
1073 part->stamp = now;
1074}
1075
1076/**
496aa8a9
RD
1077 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1078 * @cpu: cpu number for stats access
1079 * @part: target partition
1da177e4
LT
1080 *
1081 * The average IO queue length and utilisation statistics are maintained
1082 * by observing the current state of the queue length and the amount of
1083 * time it has been in this state for.
1084 *
1085 * Normally, that accounting is done on IO completion, but that can result
1086 * in more than a second's worth of IO being accounted for within any one
1087 * second, leading to >100% utilisation. To deal with that, we call this
1088 * function to do a round-off before returning the results when reading
1089 * /proc/diskstats. This accounts immediately for all queue usage up to
1090 * the current jiffies and restarts the counters again.
1091 */
c9959059 1092void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1093{
1094 unsigned long now = jiffies;
1095
074a7aca
TH
1096 if (part->partno)
1097 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1098 part_round_stats_single(cpu, part, now);
6f2576af 1099}
074a7aca 1100EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1101
1da177e4
LT
1102/*
1103 * queue lock must be held
1104 */
165125e1 1105void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1106{
1da177e4
LT
1107 if (unlikely(!q))
1108 return;
1109 if (unlikely(--req->ref_count))
1110 return;
1111
8922e16c
TH
1112 elv_completed_request(q, req);
1113
1cd96c24
BH
1114 /* this is a bio leak */
1115 WARN_ON(req->bio != NULL);
1116
1da177e4
LT
1117 /*
1118 * Request may not have originated from ll_rw_blk. if not,
1119 * it didn't come out of our reserved rq pools
1120 */
49171e5c 1121 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1122 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1123 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1124
1da177e4 1125 BUG_ON(!list_empty(&req->queuelist));
9817064b 1126 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1127
1128 blk_free_request(q, req);
1faa16d2 1129 freed_request(q, is_sync, priv);
1da177e4
LT
1130 }
1131}
6e39b69e
MC
1132EXPORT_SYMBOL_GPL(__blk_put_request);
1133
1da177e4
LT
1134void blk_put_request(struct request *req)
1135{
8922e16c 1136 unsigned long flags;
165125e1 1137 struct request_queue *q = req->q;
8922e16c 1138
52a93ba8
FT
1139 spin_lock_irqsave(q->queue_lock, flags);
1140 __blk_put_request(q, req);
1141 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1142}
1da177e4
LT
1143EXPORT_SYMBOL(blk_put_request);
1144
66ac0280
CH
1145/**
1146 * blk_add_request_payload - add a payload to a request
1147 * @rq: request to update
1148 * @page: page backing the payload
1149 * @len: length of the payload.
1150 *
1151 * This allows to later add a payload to an already submitted request by
1152 * a block driver. The driver needs to take care of freeing the payload
1153 * itself.
1154 *
1155 * Note that this is a quite horrible hack and nothing but handling of
1156 * discard requests should ever use it.
1157 */
1158void blk_add_request_payload(struct request *rq, struct page *page,
1159 unsigned int len)
1160{
1161 struct bio *bio = rq->bio;
1162
1163 bio->bi_io_vec->bv_page = page;
1164 bio->bi_io_vec->bv_offset = 0;
1165 bio->bi_io_vec->bv_len = len;
1166
1167 bio->bi_size = len;
1168 bio->bi_vcnt = 1;
1169 bio->bi_phys_segments = 1;
1170
1171 rq->__data_len = rq->resid_len = len;
1172 rq->nr_phys_segments = 1;
1173 rq->buffer = bio_data(bio);
1174}
1175EXPORT_SYMBOL_GPL(blk_add_request_payload);
1176
86db1e29 1177void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1178{
c7c22e4d 1179 req->cpu = bio->bi_comp_cpu;
4aff5e23 1180 req->cmd_type = REQ_TYPE_FS;
52d9e675 1181
7b6d91da
CH
1182 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1183 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1184 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1185
52d9e675 1186 req->errors = 0;
a2dec7b3 1187 req->__sector = bio->bi_sector;
52d9e675 1188 req->ioprio = bio_prio(bio);
bc1c56fd 1189 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1190}
1191
644b2d99
JA
1192/*
1193 * Only disabling plugging for non-rotational devices if it does tagging
1194 * as well, otherwise we do need the proper merging
1195 */
1196static inline bool queue_should_plug(struct request_queue *q)
1197{
79da0644 1198 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1199}
1200
165125e1 1201static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1202{
450991bc 1203 struct request *req;
2e46e8b2
TH
1204 int el_ret;
1205 unsigned int bytes = bio->bi_size;
51da90fc 1206 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1207 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1208 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1209 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
28e7d184 1210 int where = ELEVATOR_INSERT_SORT;
7749a8d4 1211 int rw_flags;
1da177e4 1212
1da177e4
LT
1213 /*
1214 * low level driver can indicate that it wants pages above a
1215 * certain limit bounced to low memory (ie for highmem, or even
1216 * ISA dma in theory)
1217 */
1218 blk_queue_bounce(q, &bio);
1219
1da177e4
LT
1220 spin_lock_irq(q->queue_lock);
1221
4fed947c 1222 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
28e7d184
TH
1223 where = ELEVATOR_INSERT_FRONT;
1224 goto get_rq;
1225 }
1226
1227 if (elv_queue_empty(q))
1da177e4
LT
1228 goto get_rq;
1229
1230 el_ret = elv_merge(q, &req, bio);
1231 switch (el_ret) {
6728cb0e
JA
1232 case ELEVATOR_BACK_MERGE:
1233 BUG_ON(!rq_mergeable(req));
1da177e4 1234
6728cb0e
JA
1235 if (!ll_back_merge_fn(q, req, bio))
1236 break;
1da177e4 1237
5f3ea37c 1238 trace_block_bio_backmerge(q, bio);
2056a782 1239
80a761fd
TH
1240 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1241 blk_rq_set_mixed_merge(req);
1242
6728cb0e
JA
1243 req->biotail->bi_next = bio;
1244 req->biotail = bio;
a2dec7b3 1245 req->__data_len += bytes;
6728cb0e 1246 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1247 if (!blk_rq_cpu_valid(req))
1248 req->cpu = bio->bi_comp_cpu;
6728cb0e 1249 drive_stat_acct(req, 0);
812d4026 1250 elv_bio_merged(q, req, bio);
6728cb0e
JA
1251 if (!attempt_back_merge(q, req))
1252 elv_merged_request(q, req, el_ret);
1253 goto out;
1da177e4 1254
6728cb0e
JA
1255 case ELEVATOR_FRONT_MERGE:
1256 BUG_ON(!rq_mergeable(req));
1da177e4 1257
6728cb0e
JA
1258 if (!ll_front_merge_fn(q, req, bio))
1259 break;
1da177e4 1260
5f3ea37c 1261 trace_block_bio_frontmerge(q, bio);
2056a782 1262
80a761fd
TH
1263 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1264 blk_rq_set_mixed_merge(req);
1265 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1266 req->cmd_flags |= ff;
1267 }
1268
6728cb0e
JA
1269 bio->bi_next = req->bio;
1270 req->bio = bio;
1da177e4 1271
6728cb0e
JA
1272 /*
1273 * may not be valid. if the low level driver said
1274 * it didn't need a bounce buffer then it better
1275 * not touch req->buffer either...
1276 */
1277 req->buffer = bio_data(bio);
a2dec7b3
TH
1278 req->__sector = bio->bi_sector;
1279 req->__data_len += bytes;
6728cb0e 1280 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1281 if (!blk_rq_cpu_valid(req))
1282 req->cpu = bio->bi_comp_cpu;
6728cb0e 1283 drive_stat_acct(req, 0);
812d4026 1284 elv_bio_merged(q, req, bio);
6728cb0e
JA
1285 if (!attempt_front_merge(q, req))
1286 elv_merged_request(q, req, el_ret);
1287 goto out;
1288
1289 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1290 default:
1291 ;
1da177e4
LT
1292 }
1293
450991bc 1294get_rq:
7749a8d4
JA
1295 /*
1296 * This sync check and mask will be re-done in init_request_from_bio(),
1297 * but we need to set it earlier to expose the sync flag to the
1298 * rq allocator and io schedulers.
1299 */
1300 rw_flags = bio_data_dir(bio);
1301 if (sync)
7b6d91da 1302 rw_flags |= REQ_SYNC;
7749a8d4 1303
1da177e4 1304 /*
450991bc 1305 * Grab a free request. This is might sleep but can not fail.
d6344532 1306 * Returns with the queue unlocked.
450991bc 1307 */
7749a8d4 1308 req = get_request_wait(q, rw_flags, bio);
d6344532 1309
450991bc
NP
1310 /*
1311 * After dropping the lock and possibly sleeping here, our request
1312 * may now be mergeable after it had proven unmergeable (above).
1313 * We don't worry about that case for efficiency. It won't happen
1314 * often, and the elevators are able to handle it.
1da177e4 1315 */
52d9e675 1316 init_request_from_bio(req, bio);
1da177e4 1317
450991bc 1318 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1319 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1320 bio_flagged(bio, BIO_CPU_AFFINE))
1321 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1322 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1323 blk_plug_device(q);
dd831006
TH
1324
1325 /* insert the request into the elevator */
1326 drive_stat_acct(req, 1);
28e7d184 1327 __elv_add_request(q, req, where, 0);
1da177e4 1328out:
644b2d99 1329 if (unplug || !queue_should_plug(q))
1da177e4 1330 __generic_unplug_device(q);
1da177e4
LT
1331 spin_unlock_irq(q->queue_lock);
1332 return 0;
1da177e4
LT
1333}
1334
1335/*
1336 * If bio->bi_dev is a partition, remap the location
1337 */
1338static inline void blk_partition_remap(struct bio *bio)
1339{
1340 struct block_device *bdev = bio->bi_bdev;
1341
bf2de6f5 1342 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1343 struct hd_struct *p = bdev->bd_part;
1344
1da177e4
LT
1345 bio->bi_sector += p->start_sect;
1346 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1347
d07335e5
MS
1348 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1349 bdev->bd_dev,
1350 bio->bi_sector - p->start_sect);
1da177e4
LT
1351 }
1352}
1353
1da177e4
LT
1354static void handle_bad_sector(struct bio *bio)
1355{
1356 char b[BDEVNAME_SIZE];
1357
1358 printk(KERN_INFO "attempt to access beyond end of device\n");
1359 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1360 bdevname(bio->bi_bdev, b),
1361 bio->bi_rw,
1362 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1363 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1364
1365 set_bit(BIO_EOF, &bio->bi_flags);
1366}
1367
c17bb495
AM
1368#ifdef CONFIG_FAIL_MAKE_REQUEST
1369
1370static DECLARE_FAULT_ATTR(fail_make_request);
1371
1372static int __init setup_fail_make_request(char *str)
1373{
1374 return setup_fault_attr(&fail_make_request, str);
1375}
1376__setup("fail_make_request=", setup_fail_make_request);
1377
1378static int should_fail_request(struct bio *bio)
1379{
eddb2e26
TH
1380 struct hd_struct *part = bio->bi_bdev->bd_part;
1381
1382 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1383 return should_fail(&fail_make_request, bio->bi_size);
1384
1385 return 0;
1386}
1387
1388static int __init fail_make_request_debugfs(void)
1389{
1390 return init_fault_attr_dentries(&fail_make_request,
1391 "fail_make_request");
1392}
1393
1394late_initcall(fail_make_request_debugfs);
1395
1396#else /* CONFIG_FAIL_MAKE_REQUEST */
1397
1398static inline int should_fail_request(struct bio *bio)
1399{
1400 return 0;
1401}
1402
1403#endif /* CONFIG_FAIL_MAKE_REQUEST */
1404
c07e2b41
JA
1405/*
1406 * Check whether this bio extends beyond the end of the device.
1407 */
1408static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1409{
1410 sector_t maxsector;
1411
1412 if (!nr_sectors)
1413 return 0;
1414
1415 /* Test device or partition size, when known. */
77304d2a 1416 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1417 if (maxsector) {
1418 sector_t sector = bio->bi_sector;
1419
1420 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1421 /*
1422 * This may well happen - the kernel calls bread()
1423 * without checking the size of the device, e.g., when
1424 * mounting a device.
1425 */
1426 handle_bad_sector(bio);
1427 return 1;
1428 }
1429 }
1430
1431 return 0;
1432}
1433
1da177e4 1434/**
710027a4 1435 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1436 * @bio: The bio describing the location in memory and on the device.
1437 *
1438 * generic_make_request() is used to make I/O requests of block
1439 * devices. It is passed a &struct bio, which describes the I/O that needs
1440 * to be done.
1441 *
1442 * generic_make_request() does not return any status. The
1443 * success/failure status of the request, along with notification of
1444 * completion, is delivered asynchronously through the bio->bi_end_io
1445 * function described (one day) else where.
1446 *
1447 * The caller of generic_make_request must make sure that bi_io_vec
1448 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1449 * set to describe the device address, and the
1450 * bi_end_io and optionally bi_private are set to describe how
1451 * completion notification should be signaled.
1452 *
1453 * generic_make_request and the drivers it calls may use bi_next if this
1454 * bio happens to be merged with someone else, and may change bi_dev and
1455 * bi_sector for remaps as it sees fit. So the values of these fields
1456 * should NOT be depended on after the call to generic_make_request.
1457 */
d89d8796 1458static inline void __generic_make_request(struct bio *bio)
1da177e4 1459{
165125e1 1460 struct request_queue *q;
5ddfe969 1461 sector_t old_sector;
1da177e4 1462 int ret, nr_sectors = bio_sectors(bio);
2056a782 1463 dev_t old_dev;
51fd77bd 1464 int err = -EIO;
1da177e4
LT
1465
1466 might_sleep();
1da177e4 1467
c07e2b41
JA
1468 if (bio_check_eod(bio, nr_sectors))
1469 goto end_io;
1da177e4
LT
1470
1471 /*
1472 * Resolve the mapping until finished. (drivers are
1473 * still free to implement/resolve their own stacking
1474 * by explicitly returning 0)
1475 *
1476 * NOTE: we don't repeat the blk_size check for each new device.
1477 * Stacking drivers are expected to know what they are doing.
1478 */
5ddfe969 1479 old_sector = -1;
2056a782 1480 old_dev = 0;
1da177e4
LT
1481 do {
1482 char b[BDEVNAME_SIZE];
1483
1484 q = bdev_get_queue(bio->bi_bdev);
a7384677 1485 if (unlikely(!q)) {
1da177e4
LT
1486 printk(KERN_ERR
1487 "generic_make_request: Trying to access "
1488 "nonexistent block-device %s (%Lu)\n",
1489 bdevname(bio->bi_bdev, b),
1490 (long long) bio->bi_sector);
a7384677 1491 goto end_io;
1da177e4
LT
1492 }
1493
7b6d91da 1494 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1495 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1496 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1497 bdevname(bio->bi_bdev, b),
1498 bio_sectors(bio),
1499 queue_max_hw_sectors(q));
1da177e4
LT
1500 goto end_io;
1501 }
1502
fde6ad22 1503 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1504 goto end_io;
1505
c17bb495
AM
1506 if (should_fail_request(bio))
1507 goto end_io;
1508
1da177e4
LT
1509 /*
1510 * If this device has partitions, remap block n
1511 * of partition p to block n+start(p) of the disk.
1512 */
1513 blk_partition_remap(bio);
1514
7ba1ba12
MP
1515 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1516 goto end_io;
1517
5ddfe969 1518 if (old_sector != -1)
d07335e5 1519 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1520
5ddfe969 1521 old_sector = bio->bi_sector;
2056a782
JA
1522 old_dev = bio->bi_bdev->bd_dev;
1523
c07e2b41
JA
1524 if (bio_check_eod(bio, nr_sectors))
1525 goto end_io;
a7384677 1526
1e87901e
TH
1527 /*
1528 * Filter flush bio's early so that make_request based
1529 * drivers without flush support don't have to worry
1530 * about them.
1531 */
1532 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1533 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1534 if (!nr_sectors) {
1535 err = 0;
1536 goto end_io;
1537 }
1538 }
1539
8d57a98c
AH
1540 if ((bio->bi_rw & REQ_DISCARD) &&
1541 (!blk_queue_discard(q) ||
1542 ((bio->bi_rw & REQ_SECURE) &&
1543 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1544 err = -EOPNOTSUPP;
1545 goto end_io;
1546 }
5ddfe969 1547
e43473b7
VG
1548 blk_throtl_bio(q, &bio);
1549
1550 /*
1551 * If bio = NULL, bio has been throttled and will be submitted
1552 * later.
1553 */
1554 if (!bio)
1555 break;
1556
01edede4
MK
1557 trace_block_bio_queue(q, bio);
1558
1da177e4
LT
1559 ret = q->make_request_fn(q, bio);
1560 } while (ret);
a7384677
TH
1561
1562 return;
1563
1564end_io:
1565 bio_endio(bio, err);
1da177e4
LT
1566}
1567
d89d8796
NB
1568/*
1569 * We only want one ->make_request_fn to be active at a time,
1570 * else stack usage with stacked devices could be a problem.
bddd87c7 1571 * So use current->bio_list to keep a list of requests
d89d8796 1572 * submited by a make_request_fn function.
bddd87c7 1573 * current->bio_list is also used as a flag to say if
d89d8796
NB
1574 * generic_make_request is currently active in this task or not.
1575 * If it is NULL, then no make_request is active. If it is non-NULL,
1576 * then a make_request is active, and new requests should be added
1577 * at the tail
1578 */
1579void generic_make_request(struct bio *bio)
1580{
bddd87c7
AM
1581 struct bio_list bio_list_on_stack;
1582
1583 if (current->bio_list) {
d89d8796 1584 /* make_request is active */
bddd87c7 1585 bio_list_add(current->bio_list, bio);
d89d8796
NB
1586 return;
1587 }
1588 /* following loop may be a bit non-obvious, and so deserves some
1589 * explanation.
1590 * Before entering the loop, bio->bi_next is NULL (as all callers
1591 * ensure that) so we have a list with a single bio.
1592 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1593 * we assign bio_list to a pointer to the bio_list_on_stack,
1594 * thus initialising the bio_list of new bios to be
d89d8796
NB
1595 * added. __generic_make_request may indeed add some more bios
1596 * through a recursive call to generic_make_request. If it
1597 * did, we find a non-NULL value in bio_list and re-enter the loop
1598 * from the top. In this case we really did just take the bio
bddd87c7
AM
1599 * of the top of the list (no pretending) and so remove it from
1600 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1601 *
1602 * The loop was structured like this to make only one call to
1603 * __generic_make_request (which is important as it is large and
1604 * inlined) and to keep the structure simple.
1605 */
1606 BUG_ON(bio->bi_next);
bddd87c7
AM
1607 bio_list_init(&bio_list_on_stack);
1608 current->bio_list = &bio_list_on_stack;
d89d8796 1609 do {
d89d8796 1610 __generic_make_request(bio);
bddd87c7 1611 bio = bio_list_pop(current->bio_list);
d89d8796 1612 } while (bio);
bddd87c7 1613 current->bio_list = NULL; /* deactivate */
d89d8796 1614}
1da177e4
LT
1615EXPORT_SYMBOL(generic_make_request);
1616
1617/**
710027a4 1618 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1619 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1620 * @bio: The &struct bio which describes the I/O
1621 *
1622 * submit_bio() is very similar in purpose to generic_make_request(), and
1623 * uses that function to do most of the work. Both are fairly rough
710027a4 1624 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1625 *
1626 */
1627void submit_bio(int rw, struct bio *bio)
1628{
1629 int count = bio_sectors(bio);
1630
22e2c507 1631 bio->bi_rw |= rw;
1da177e4 1632
bf2de6f5
JA
1633 /*
1634 * If it's a regular read/write or a barrier with data attached,
1635 * go through the normal accounting stuff before submission.
1636 */
3ffb52e7 1637 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1638 if (rw & WRITE) {
1639 count_vm_events(PGPGOUT, count);
1640 } else {
1641 task_io_account_read(bio->bi_size);
1642 count_vm_events(PGPGIN, count);
1643 }
1644
1645 if (unlikely(block_dump)) {
1646 char b[BDEVNAME_SIZE];
8dcbdc74 1647 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1648 current->comm, task_pid_nr(current),
bf2de6f5
JA
1649 (rw & WRITE) ? "WRITE" : "READ",
1650 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1651 bdevname(bio->bi_bdev, b),
1652 count);
bf2de6f5 1653 }
1da177e4
LT
1654 }
1655
1656 generic_make_request(bio);
1657}
1da177e4
LT
1658EXPORT_SYMBOL(submit_bio);
1659
82124d60
KU
1660/**
1661 * blk_rq_check_limits - Helper function to check a request for the queue limit
1662 * @q: the queue
1663 * @rq: the request being checked
1664 *
1665 * Description:
1666 * @rq may have been made based on weaker limitations of upper-level queues
1667 * in request stacking drivers, and it may violate the limitation of @q.
1668 * Since the block layer and the underlying device driver trust @rq
1669 * after it is inserted to @q, it should be checked against @q before
1670 * the insertion using this generic function.
1671 *
1672 * This function should also be useful for request stacking drivers
eef35c2d 1673 * in some cases below, so export this function.
82124d60
KU
1674 * Request stacking drivers like request-based dm may change the queue
1675 * limits while requests are in the queue (e.g. dm's table swapping).
1676 * Such request stacking drivers should check those requests agaist
1677 * the new queue limits again when they dispatch those requests,
1678 * although such checkings are also done against the old queue limits
1679 * when submitting requests.
1680 */
1681int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1682{
3383977f
S
1683 if (rq->cmd_flags & REQ_DISCARD)
1684 return 0;
1685
ae03bf63
MP
1686 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1687 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1688 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1689 return -EIO;
1690 }
1691
1692 /*
1693 * queue's settings related to segment counting like q->bounce_pfn
1694 * may differ from that of other stacking queues.
1695 * Recalculate it to check the request correctly on this queue's
1696 * limitation.
1697 */
1698 blk_recalc_rq_segments(rq);
8a78362c 1699 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1700 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1701 return -EIO;
1702 }
1703
1704 return 0;
1705}
1706EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1707
1708/**
1709 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1710 * @q: the queue to submit the request
1711 * @rq: the request being queued
1712 */
1713int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1714{
1715 unsigned long flags;
1716
1717 if (blk_rq_check_limits(q, rq))
1718 return -EIO;
1719
1720#ifdef CONFIG_FAIL_MAKE_REQUEST
1721 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1722 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1723 return -EIO;
1724#endif
1725
1726 spin_lock_irqsave(q->queue_lock, flags);
1727
1728 /*
1729 * Submitting request must be dequeued before calling this function
1730 * because it will be linked to another request_queue
1731 */
1732 BUG_ON(blk_queued_rq(rq));
1733
1734 drive_stat_acct(rq, 1);
1735 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1736
1737 spin_unlock_irqrestore(q->queue_lock, flags);
1738
1739 return 0;
1740}
1741EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1742
80a761fd
TH
1743/**
1744 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1745 * @rq: request to examine
1746 *
1747 * Description:
1748 * A request could be merge of IOs which require different failure
1749 * handling. This function determines the number of bytes which
1750 * can be failed from the beginning of the request without
1751 * crossing into area which need to be retried further.
1752 *
1753 * Return:
1754 * The number of bytes to fail.
1755 *
1756 * Context:
1757 * queue_lock must be held.
1758 */
1759unsigned int blk_rq_err_bytes(const struct request *rq)
1760{
1761 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1762 unsigned int bytes = 0;
1763 struct bio *bio;
1764
1765 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1766 return blk_rq_bytes(rq);
1767
1768 /*
1769 * Currently the only 'mixing' which can happen is between
1770 * different fastfail types. We can safely fail portions
1771 * which have all the failfast bits that the first one has -
1772 * the ones which are at least as eager to fail as the first
1773 * one.
1774 */
1775 for (bio = rq->bio; bio; bio = bio->bi_next) {
1776 if ((bio->bi_rw & ff) != ff)
1777 break;
1778 bytes += bio->bi_size;
1779 }
1780
1781 /* this could lead to infinite loop */
1782 BUG_ON(blk_rq_bytes(rq) && !bytes);
1783 return bytes;
1784}
1785EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1786
bc58ba94
JA
1787static void blk_account_io_completion(struct request *req, unsigned int bytes)
1788{
c2553b58 1789 if (blk_do_io_stat(req)) {
bc58ba94
JA
1790 const int rw = rq_data_dir(req);
1791 struct hd_struct *part;
1792 int cpu;
1793
1794 cpu = part_stat_lock();
09e099d4 1795 part = req->part;
bc58ba94
JA
1796 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1797 part_stat_unlock();
1798 }
1799}
1800
1801static void blk_account_io_done(struct request *req)
1802{
bc58ba94 1803 /*
dd4c133f
TH
1804 * Account IO completion. flush_rq isn't accounted as a
1805 * normal IO on queueing nor completion. Accounting the
1806 * containing request is enough.
bc58ba94 1807 */
dd4c133f 1808 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
bc58ba94
JA
1809 unsigned long duration = jiffies - req->start_time;
1810 const int rw = rq_data_dir(req);
1811 struct hd_struct *part;
1812 int cpu;
1813
1814 cpu = part_stat_lock();
09e099d4 1815 part = req->part;
bc58ba94
JA
1816
1817 part_stat_inc(cpu, part, ios[rw]);
1818 part_stat_add(cpu, part, ticks[rw], duration);
1819 part_round_stats(cpu, part);
316d315b 1820 part_dec_in_flight(part, rw);
bc58ba94 1821
6c23a968 1822 hd_struct_put(part);
bc58ba94
JA
1823 part_stat_unlock();
1824 }
1825}
1826
3bcddeac 1827/**
9934c8c0
TH
1828 * blk_peek_request - peek at the top of a request queue
1829 * @q: request queue to peek at
1830 *
1831 * Description:
1832 * Return the request at the top of @q. The returned request
1833 * should be started using blk_start_request() before LLD starts
1834 * processing it.
1835 *
1836 * Return:
1837 * Pointer to the request at the top of @q if available. Null
1838 * otherwise.
1839 *
1840 * Context:
1841 * queue_lock must be held.
1842 */
1843struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1844{
1845 struct request *rq;
1846 int ret;
1847
1848 while ((rq = __elv_next_request(q)) != NULL) {
1849 if (!(rq->cmd_flags & REQ_STARTED)) {
1850 /*
1851 * This is the first time the device driver
1852 * sees this request (possibly after
1853 * requeueing). Notify IO scheduler.
1854 */
33659ebb 1855 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1856 elv_activate_rq(q, rq);
1857
1858 /*
1859 * just mark as started even if we don't start
1860 * it, a request that has been delayed should
1861 * not be passed by new incoming requests
1862 */
1863 rq->cmd_flags |= REQ_STARTED;
1864 trace_block_rq_issue(q, rq);
1865 }
1866
1867 if (!q->boundary_rq || q->boundary_rq == rq) {
1868 q->end_sector = rq_end_sector(rq);
1869 q->boundary_rq = NULL;
1870 }
1871
1872 if (rq->cmd_flags & REQ_DONTPREP)
1873 break;
1874
2e46e8b2 1875 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1876 /*
1877 * make sure space for the drain appears we
1878 * know we can do this because max_hw_segments
1879 * has been adjusted to be one fewer than the
1880 * device can handle
1881 */
1882 rq->nr_phys_segments++;
1883 }
1884
1885 if (!q->prep_rq_fn)
1886 break;
1887
1888 ret = q->prep_rq_fn(q, rq);
1889 if (ret == BLKPREP_OK) {
1890 break;
1891 } else if (ret == BLKPREP_DEFER) {
1892 /*
1893 * the request may have been (partially) prepped.
1894 * we need to keep this request in the front to
1895 * avoid resource deadlock. REQ_STARTED will
1896 * prevent other fs requests from passing this one.
1897 */
2e46e8b2 1898 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1899 !(rq->cmd_flags & REQ_DONTPREP)) {
1900 /*
1901 * remove the space for the drain we added
1902 * so that we don't add it again
1903 */
1904 --rq->nr_phys_segments;
1905 }
1906
1907 rq = NULL;
1908 break;
1909 } else if (ret == BLKPREP_KILL) {
1910 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1911 /*
1912 * Mark this request as started so we don't trigger
1913 * any debug logic in the end I/O path.
1914 */
1915 blk_start_request(rq);
40cbbb78 1916 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1917 } else {
1918 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1919 break;
1920 }
1921 }
1922
1923 return rq;
1924}
9934c8c0 1925EXPORT_SYMBOL(blk_peek_request);
158dbda0 1926
9934c8c0 1927void blk_dequeue_request(struct request *rq)
158dbda0 1928{
9934c8c0
TH
1929 struct request_queue *q = rq->q;
1930
158dbda0
TH
1931 BUG_ON(list_empty(&rq->queuelist));
1932 BUG_ON(ELV_ON_HASH(rq));
1933
1934 list_del_init(&rq->queuelist);
1935
1936 /*
1937 * the time frame between a request being removed from the lists
1938 * and to it is freed is accounted as io that is in progress at
1939 * the driver side.
1940 */
9195291e 1941 if (blk_account_rq(rq)) {
0a7ae2ff 1942 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1943 set_io_start_time_ns(rq);
1944 }
158dbda0
TH
1945}
1946
9934c8c0
TH
1947/**
1948 * blk_start_request - start request processing on the driver
1949 * @req: request to dequeue
1950 *
1951 * Description:
1952 * Dequeue @req and start timeout timer on it. This hands off the
1953 * request to the driver.
1954 *
1955 * Block internal functions which don't want to start timer should
1956 * call blk_dequeue_request().
1957 *
1958 * Context:
1959 * queue_lock must be held.
1960 */
1961void blk_start_request(struct request *req)
1962{
1963 blk_dequeue_request(req);
1964
1965 /*
5f49f631
TH
1966 * We are now handing the request to the hardware, initialize
1967 * resid_len to full count and add the timeout handler.
9934c8c0 1968 */
5f49f631 1969 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1970 if (unlikely(blk_bidi_rq(req)))
1971 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1972
9934c8c0
TH
1973 blk_add_timer(req);
1974}
1975EXPORT_SYMBOL(blk_start_request);
1976
1977/**
1978 * blk_fetch_request - fetch a request from a request queue
1979 * @q: request queue to fetch a request from
1980 *
1981 * Description:
1982 * Return the request at the top of @q. The request is started on
1983 * return and LLD can start processing it immediately.
1984 *
1985 * Return:
1986 * Pointer to the request at the top of @q if available. Null
1987 * otherwise.
1988 *
1989 * Context:
1990 * queue_lock must be held.
1991 */
1992struct request *blk_fetch_request(struct request_queue *q)
1993{
1994 struct request *rq;
1995
1996 rq = blk_peek_request(q);
1997 if (rq)
1998 blk_start_request(rq);
1999 return rq;
2000}
2001EXPORT_SYMBOL(blk_fetch_request);
2002
3bcddeac 2003/**
2e60e022 2004 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2005 * @req: the request being processed
710027a4 2006 * @error: %0 for success, < %0 for error
8ebf9756 2007 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2008 *
2009 * Description:
8ebf9756
RD
2010 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2011 * the request structure even if @req doesn't have leftover.
2012 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2013 *
2014 * This special helper function is only for request stacking drivers
2015 * (e.g. request-based dm) so that they can handle partial completion.
2016 * Actual device drivers should use blk_end_request instead.
2017 *
2018 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2019 * %false return from this function.
3bcddeac
KU
2020 *
2021 * Return:
2e60e022
TH
2022 * %false - this request doesn't have any more data
2023 * %true - this request has more data
3bcddeac 2024 **/
2e60e022 2025bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2026{
5450d3e1 2027 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2028 struct bio *bio;
2029
2e60e022
TH
2030 if (!req->bio)
2031 return false;
2032
5f3ea37c 2033 trace_block_rq_complete(req->q, req);
2056a782 2034
1da177e4 2035 /*
6f41469c
TH
2036 * For fs requests, rq is just carrier of independent bio's
2037 * and each partial completion should be handled separately.
2038 * Reset per-request error on each partial completion.
2039 *
2040 * TODO: tj: This is too subtle. It would be better to let
2041 * low level drivers do what they see fit.
1da177e4 2042 */
33659ebb 2043 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2044 req->errors = 0;
2045
33659ebb
CH
2046 if (error && req->cmd_type == REQ_TYPE_FS &&
2047 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2048 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2049 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2050 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2051 }
2052
bc58ba94 2053 blk_account_io_completion(req, nr_bytes);
d72d904a 2054
1da177e4
LT
2055 total_bytes = bio_nbytes = 0;
2056 while ((bio = req->bio) != NULL) {
2057 int nbytes;
2058
2059 if (nr_bytes >= bio->bi_size) {
2060 req->bio = bio->bi_next;
2061 nbytes = bio->bi_size;
5bb23a68 2062 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2063 next_idx = 0;
2064 bio_nbytes = 0;
2065 } else {
2066 int idx = bio->bi_idx + next_idx;
2067
af498d7f 2068 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2069 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2070 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2071 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2072 break;
2073 }
2074
2075 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2076 BIO_BUG_ON(nbytes > bio->bi_size);
2077
2078 /*
2079 * not a complete bvec done
2080 */
2081 if (unlikely(nbytes > nr_bytes)) {
2082 bio_nbytes += nr_bytes;
2083 total_bytes += nr_bytes;
2084 break;
2085 }
2086
2087 /*
2088 * advance to the next vector
2089 */
2090 next_idx++;
2091 bio_nbytes += nbytes;
2092 }
2093
2094 total_bytes += nbytes;
2095 nr_bytes -= nbytes;
2096
6728cb0e
JA
2097 bio = req->bio;
2098 if (bio) {
1da177e4
LT
2099 /*
2100 * end more in this run, or just return 'not-done'
2101 */
2102 if (unlikely(nr_bytes <= 0))
2103 break;
2104 }
2105 }
2106
2107 /*
2108 * completely done
2109 */
2e60e022
TH
2110 if (!req->bio) {
2111 /*
2112 * Reset counters so that the request stacking driver
2113 * can find how many bytes remain in the request
2114 * later.
2115 */
a2dec7b3 2116 req->__data_len = 0;
2e60e022
TH
2117 return false;
2118 }
1da177e4
LT
2119
2120 /*
2121 * if the request wasn't completed, update state
2122 */
2123 if (bio_nbytes) {
5bb23a68 2124 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2125 bio->bi_idx += next_idx;
2126 bio_iovec(bio)->bv_offset += nr_bytes;
2127 bio_iovec(bio)->bv_len -= nr_bytes;
2128 }
2129
a2dec7b3 2130 req->__data_len -= total_bytes;
2e46e8b2
TH
2131 req->buffer = bio_data(req->bio);
2132
2133 /* update sector only for requests with clear definition of sector */
33659ebb 2134 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2135 req->__sector += total_bytes >> 9;
2e46e8b2 2136
80a761fd
TH
2137 /* mixed attributes always follow the first bio */
2138 if (req->cmd_flags & REQ_MIXED_MERGE) {
2139 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2140 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2141 }
2142
2e46e8b2
TH
2143 /*
2144 * If total number of sectors is less than the first segment
2145 * size, something has gone terribly wrong.
2146 */
2147 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2148 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2149 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2150 }
2151
2152 /* recalculate the number of segments */
1da177e4 2153 blk_recalc_rq_segments(req);
2e46e8b2 2154
2e60e022 2155 return true;
1da177e4 2156}
2e60e022 2157EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2158
2e60e022
TH
2159static bool blk_update_bidi_request(struct request *rq, int error,
2160 unsigned int nr_bytes,
2161 unsigned int bidi_bytes)
5efccd17 2162{
2e60e022
TH
2163 if (blk_update_request(rq, error, nr_bytes))
2164 return true;
5efccd17 2165
2e60e022
TH
2166 /* Bidi request must be completed as a whole */
2167 if (unlikely(blk_bidi_rq(rq)) &&
2168 blk_update_request(rq->next_rq, error, bidi_bytes))
2169 return true;
5efccd17 2170
e2e1a148
JA
2171 if (blk_queue_add_random(rq->q))
2172 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2173
2174 return false;
1da177e4
LT
2175}
2176
28018c24
JB
2177/**
2178 * blk_unprep_request - unprepare a request
2179 * @req: the request
2180 *
2181 * This function makes a request ready for complete resubmission (or
2182 * completion). It happens only after all error handling is complete,
2183 * so represents the appropriate moment to deallocate any resources
2184 * that were allocated to the request in the prep_rq_fn. The queue
2185 * lock is held when calling this.
2186 */
2187void blk_unprep_request(struct request *req)
2188{
2189 struct request_queue *q = req->q;
2190
2191 req->cmd_flags &= ~REQ_DONTPREP;
2192 if (q->unprep_rq_fn)
2193 q->unprep_rq_fn(q, req);
2194}
2195EXPORT_SYMBOL_GPL(blk_unprep_request);
2196
1da177e4
LT
2197/*
2198 * queue lock must be held
2199 */
2e60e022 2200static void blk_finish_request(struct request *req, int error)
1da177e4 2201{
b8286239
KU
2202 if (blk_rq_tagged(req))
2203 blk_queue_end_tag(req->q, req);
2204
ba396a6c 2205 BUG_ON(blk_queued_rq(req));
1da177e4 2206
33659ebb 2207 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2208 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2209
e78042e5
MA
2210 blk_delete_timer(req);
2211
28018c24
JB
2212 if (req->cmd_flags & REQ_DONTPREP)
2213 blk_unprep_request(req);
2214
2215
bc58ba94 2216 blk_account_io_done(req);
b8286239 2217
1da177e4 2218 if (req->end_io)
8ffdc655 2219 req->end_io(req, error);
b8286239
KU
2220 else {
2221 if (blk_bidi_rq(req))
2222 __blk_put_request(req->next_rq->q, req->next_rq);
2223
1da177e4 2224 __blk_put_request(req->q, req);
b8286239 2225 }
1da177e4
LT
2226}
2227
3b11313a 2228/**
2e60e022
TH
2229 * blk_end_bidi_request - Complete a bidi request
2230 * @rq: the request to complete
2231 * @error: %0 for success, < %0 for error
2232 * @nr_bytes: number of bytes to complete @rq
2233 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2234 *
2235 * Description:
e3a04fe3 2236 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2237 * Drivers that supports bidi can safely call this member for any
2238 * type of request, bidi or uni. In the later case @bidi_bytes is
2239 * just ignored.
336cdb40
KU
2240 *
2241 * Return:
2e60e022
TH
2242 * %false - we are done with this request
2243 * %true - still buffers pending for this request
a0cd1285 2244 **/
b1f74493 2245static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2246 unsigned int nr_bytes, unsigned int bidi_bytes)
2247{
336cdb40 2248 struct request_queue *q = rq->q;
2e60e022 2249 unsigned long flags;
32fab448 2250
2e60e022
TH
2251 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2252 return true;
32fab448 2253
336cdb40 2254 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2255 blk_finish_request(rq, error);
336cdb40
KU
2256 spin_unlock_irqrestore(q->queue_lock, flags);
2257
2e60e022 2258 return false;
32fab448
KU
2259}
2260
336cdb40 2261/**
2e60e022
TH
2262 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2263 * @rq: the request to complete
710027a4 2264 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2265 * @nr_bytes: number of bytes to complete @rq
2266 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2267 *
2268 * Description:
2e60e022
TH
2269 * Identical to blk_end_bidi_request() except that queue lock is
2270 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2271 *
2272 * Return:
2e60e022
TH
2273 * %false - we are done with this request
2274 * %true - still buffers pending for this request
336cdb40 2275 **/
b1f74493
FT
2276static bool __blk_end_bidi_request(struct request *rq, int error,
2277 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2278{
2e60e022
TH
2279 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2280 return true;
336cdb40 2281
2e60e022 2282 blk_finish_request(rq, error);
336cdb40 2283
2e60e022 2284 return false;
336cdb40 2285}
e19a3ab0
KU
2286
2287/**
2288 * blk_end_request - Helper function for drivers to complete the request.
2289 * @rq: the request being processed
710027a4 2290 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2291 * @nr_bytes: number of bytes to complete
2292 *
2293 * Description:
2294 * Ends I/O on a number of bytes attached to @rq.
2295 * If @rq has leftover, sets it up for the next range of segments.
2296 *
2297 * Return:
b1f74493
FT
2298 * %false - we are done with this request
2299 * %true - still buffers pending for this request
e19a3ab0 2300 **/
b1f74493 2301bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2302{
b1f74493 2303 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2304}
56ad1740 2305EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2306
2307/**
b1f74493
FT
2308 * blk_end_request_all - Helper function for drives to finish the request.
2309 * @rq: the request to finish
8ebf9756 2310 * @error: %0 for success, < %0 for error
336cdb40
KU
2311 *
2312 * Description:
b1f74493
FT
2313 * Completely finish @rq.
2314 */
2315void blk_end_request_all(struct request *rq, int error)
336cdb40 2316{
b1f74493
FT
2317 bool pending;
2318 unsigned int bidi_bytes = 0;
336cdb40 2319
b1f74493
FT
2320 if (unlikely(blk_bidi_rq(rq)))
2321 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2322
b1f74493
FT
2323 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2324 BUG_ON(pending);
2325}
56ad1740 2326EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2327
b1f74493
FT
2328/**
2329 * blk_end_request_cur - Helper function to finish the current request chunk.
2330 * @rq: the request to finish the current chunk for
8ebf9756 2331 * @error: %0 for success, < %0 for error
b1f74493
FT
2332 *
2333 * Description:
2334 * Complete the current consecutively mapped chunk from @rq.
2335 *
2336 * Return:
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
2339 */
2340bool blk_end_request_cur(struct request *rq, int error)
2341{
2342 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2343}
56ad1740 2344EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2345
80a761fd
TH
2346/**
2347 * blk_end_request_err - Finish a request till the next failure boundary.
2348 * @rq: the request to finish till the next failure boundary for
2349 * @error: must be negative errno
2350 *
2351 * Description:
2352 * Complete @rq till the next failure boundary.
2353 *
2354 * Return:
2355 * %false - we are done with this request
2356 * %true - still buffers pending for this request
2357 */
2358bool blk_end_request_err(struct request *rq, int error)
2359{
2360 WARN_ON(error >= 0);
2361 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2362}
2363EXPORT_SYMBOL_GPL(blk_end_request_err);
2364
e3a04fe3 2365/**
b1f74493
FT
2366 * __blk_end_request - Helper function for drivers to complete the request.
2367 * @rq: the request being processed
2368 * @error: %0 for success, < %0 for error
2369 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2370 *
2371 * Description:
b1f74493 2372 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2373 *
2374 * Return:
b1f74493
FT
2375 * %false - we are done with this request
2376 * %true - still buffers pending for this request
e3a04fe3 2377 **/
b1f74493 2378bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2379{
b1f74493 2380 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2381}
56ad1740 2382EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2383
32fab448 2384/**
b1f74493
FT
2385 * __blk_end_request_all - Helper function for drives to finish the request.
2386 * @rq: the request to finish
8ebf9756 2387 * @error: %0 for success, < %0 for error
32fab448
KU
2388 *
2389 * Description:
b1f74493 2390 * Completely finish @rq. Must be called with queue lock held.
32fab448 2391 */
b1f74493 2392void __blk_end_request_all(struct request *rq, int error)
32fab448 2393{
b1f74493
FT
2394 bool pending;
2395 unsigned int bidi_bytes = 0;
2396
2397 if (unlikely(blk_bidi_rq(rq)))
2398 bidi_bytes = blk_rq_bytes(rq->next_rq);
2399
2400 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2401 BUG_ON(pending);
32fab448 2402}
56ad1740 2403EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2404
e19a3ab0 2405/**
b1f74493
FT
2406 * __blk_end_request_cur - Helper function to finish the current request chunk.
2407 * @rq: the request to finish the current chunk for
8ebf9756 2408 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2409 *
2410 * Description:
b1f74493
FT
2411 * Complete the current consecutively mapped chunk from @rq. Must
2412 * be called with queue lock held.
e19a3ab0
KU
2413 *
2414 * Return:
b1f74493
FT
2415 * %false - we are done with this request
2416 * %true - still buffers pending for this request
2417 */
2418bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2419{
b1f74493 2420 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2421}
56ad1740 2422EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2423
80a761fd
TH
2424/**
2425 * __blk_end_request_err - Finish a request till the next failure boundary.
2426 * @rq: the request to finish till the next failure boundary for
2427 * @error: must be negative errno
2428 *
2429 * Description:
2430 * Complete @rq till the next failure boundary. Must be called
2431 * with queue lock held.
2432 *
2433 * Return:
2434 * %false - we are done with this request
2435 * %true - still buffers pending for this request
2436 */
2437bool __blk_end_request_err(struct request *rq, int error)
2438{
2439 WARN_ON(error >= 0);
2440 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2441}
2442EXPORT_SYMBOL_GPL(__blk_end_request_err);
2443
86db1e29
JA
2444void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2445 struct bio *bio)
1da177e4 2446{
a82afdfc 2447 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2448 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2449
fb2dce86
DW
2450 if (bio_has_data(bio)) {
2451 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2452 rq->buffer = bio_data(bio);
2453 }
a2dec7b3 2454 rq->__data_len = bio->bi_size;
1da177e4 2455 rq->bio = rq->biotail = bio;
1da177e4 2456
66846572
N
2457 if (bio->bi_bdev)
2458 rq->rq_disk = bio->bi_bdev->bd_disk;
2459}
1da177e4 2460
2d4dc890
IL
2461#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2462/**
2463 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2464 * @rq: the request to be flushed
2465 *
2466 * Description:
2467 * Flush all pages in @rq.
2468 */
2469void rq_flush_dcache_pages(struct request *rq)
2470{
2471 struct req_iterator iter;
2472 struct bio_vec *bvec;
2473
2474 rq_for_each_segment(bvec, rq, iter)
2475 flush_dcache_page(bvec->bv_page);
2476}
2477EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2478#endif
2479
ef9e3fac
KU
2480/**
2481 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2482 * @q : the queue of the device being checked
2483 *
2484 * Description:
2485 * Check if underlying low-level drivers of a device are busy.
2486 * If the drivers want to export their busy state, they must set own
2487 * exporting function using blk_queue_lld_busy() first.
2488 *
2489 * Basically, this function is used only by request stacking drivers
2490 * to stop dispatching requests to underlying devices when underlying
2491 * devices are busy. This behavior helps more I/O merging on the queue
2492 * of the request stacking driver and prevents I/O throughput regression
2493 * on burst I/O load.
2494 *
2495 * Return:
2496 * 0 - Not busy (The request stacking driver should dispatch request)
2497 * 1 - Busy (The request stacking driver should stop dispatching request)
2498 */
2499int blk_lld_busy(struct request_queue *q)
2500{
2501 if (q->lld_busy_fn)
2502 return q->lld_busy_fn(q);
2503
2504 return 0;
2505}
2506EXPORT_SYMBOL_GPL(blk_lld_busy);
2507
b0fd271d
KU
2508/**
2509 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2510 * @rq: the clone request to be cleaned up
2511 *
2512 * Description:
2513 * Free all bios in @rq for a cloned request.
2514 */
2515void blk_rq_unprep_clone(struct request *rq)
2516{
2517 struct bio *bio;
2518
2519 while ((bio = rq->bio) != NULL) {
2520 rq->bio = bio->bi_next;
2521
2522 bio_put(bio);
2523 }
2524}
2525EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2526
2527/*
2528 * Copy attributes of the original request to the clone request.
2529 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2530 */
2531static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2532{
2533 dst->cpu = src->cpu;
3a2edd0d 2534 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2535 dst->cmd_type = src->cmd_type;
2536 dst->__sector = blk_rq_pos(src);
2537 dst->__data_len = blk_rq_bytes(src);
2538 dst->nr_phys_segments = src->nr_phys_segments;
2539 dst->ioprio = src->ioprio;
2540 dst->extra_len = src->extra_len;
2541}
2542
2543/**
2544 * blk_rq_prep_clone - Helper function to setup clone request
2545 * @rq: the request to be setup
2546 * @rq_src: original request to be cloned
2547 * @bs: bio_set that bios for clone are allocated from
2548 * @gfp_mask: memory allocation mask for bio
2549 * @bio_ctr: setup function to be called for each clone bio.
2550 * Returns %0 for success, non %0 for failure.
2551 * @data: private data to be passed to @bio_ctr
2552 *
2553 * Description:
2554 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2555 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2556 * are not copied, and copying such parts is the caller's responsibility.
2557 * Also, pages which the original bios are pointing to are not copied
2558 * and the cloned bios just point same pages.
2559 * So cloned bios must be completed before original bios, which means
2560 * the caller must complete @rq before @rq_src.
2561 */
2562int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2563 struct bio_set *bs, gfp_t gfp_mask,
2564 int (*bio_ctr)(struct bio *, struct bio *, void *),
2565 void *data)
2566{
2567 struct bio *bio, *bio_src;
2568
2569 if (!bs)
2570 bs = fs_bio_set;
2571
2572 blk_rq_init(NULL, rq);
2573
2574 __rq_for_each_bio(bio_src, rq_src) {
2575 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2576 if (!bio)
2577 goto free_and_out;
2578
2579 __bio_clone(bio, bio_src);
2580
2581 if (bio_integrity(bio_src) &&
7878cba9 2582 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2583 goto free_and_out;
2584
2585 if (bio_ctr && bio_ctr(bio, bio_src, data))
2586 goto free_and_out;
2587
2588 if (rq->bio) {
2589 rq->biotail->bi_next = bio;
2590 rq->biotail = bio;
2591 } else
2592 rq->bio = rq->biotail = bio;
2593 }
2594
2595 __blk_rq_prep_clone(rq, rq_src);
2596
2597 return 0;
2598
2599free_and_out:
2600 if (bio)
2601 bio_free(bio, bs);
2602 blk_rq_unprep_clone(rq);
2603
2604 return -ENOMEM;
2605}
2606EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2607
18887ad9 2608int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2609{
2610 return queue_work(kblockd_workqueue, work);
2611}
1da177e4
LT
2612EXPORT_SYMBOL(kblockd_schedule_work);
2613
1da177e4
LT
2614int __init blk_dev_init(void)
2615{
9eb55b03
NK
2616 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2617 sizeof(((struct request *)0)->cmd_flags));
2618
89b90be2
TH
2619 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2620 kblockd_workqueue = alloc_workqueue("kblockd",
2621 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2622 if (!kblockd_workqueue)
2623 panic("Failed to create kblockd\n");
2624
2625 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2626 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2627
8324aa91 2628 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2629 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2630
d38ecf93 2631 return 0;
1da177e4 2632}
This page took 0.816728 seconds and 5 git commands to generate.