Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
0bfc2455 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
26308eab 63 if (!blk_fs_request(rq) || !blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
e71bf0d0 67 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca
TH
72 part_round_stats(cpu, part);
73 part_inc_in_flight(part);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386
JA
121 rq->q = q;
122 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
165125e1 135 struct request_queue *q = rq->q;
797e7dbb 136
5bb23a68
N
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
797e7dbb 142
5bb23a68 143 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 145 __func__, nbytes, bio->bi_size);
5bb23a68
N
146 nbytes = bio->bi_size;
147 }
797e7dbb 148
08bafc03
KM
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
5bb23a68
N
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
5bb23a68 158 if (bio->bi_size == 0)
6712ecf8 159 bio_endio(bio, error);
5bb23a68
N
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
1da177e4 169}
1da177e4 170
1da177e4
LT
171void blk_dump_rq_flags(struct request *rq, char *msg)
172{
173 int bit;
174
6728cb0e 175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
1da177e4 178
6728cb0e
JA
179 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
180 (unsigned long long)rq->sector,
181 rq->nr_sectors,
182 rq->current_nr_sectors);
183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
184 rq->bio, rq->biotail,
185 rq->buffer, rq->data,
186 rq->data_len);
1da177e4 187
4aff5e23 188 if (blk_pc_request(rq)) {
6728cb0e 189 printk(KERN_INFO " cdb: ");
d34c87e4 190 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
191 printk("%02x ", rq->cmd[bit]);
192 printk("\n");
193 }
194}
1da177e4
LT
195EXPORT_SYMBOL(blk_dump_rq_flags);
196
1da177e4
LT
197/*
198 * "plug" the device if there are no outstanding requests: this will
199 * force the transfer to start only after we have put all the requests
200 * on the list.
201 *
202 * This is called with interrupts off and no requests on the queue and
203 * with the queue lock held.
204 */
165125e1 205void blk_plug_device(struct request_queue *q)
1da177e4
LT
206{
207 WARN_ON(!irqs_disabled());
208
209 /*
210 * don't plug a stopped queue, it must be paired with blk_start_queue()
211 * which will restart the queueing
212 */
7daac490 213 if (blk_queue_stopped(q))
1da177e4
LT
214 return;
215
e48ec690 216 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 217 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 218 trace_block_plug(q);
2056a782 219 }
1da177e4 220}
1da177e4
LT
221EXPORT_SYMBOL(blk_plug_device);
222
6c5e0c4d
JA
223/**
224 * blk_plug_device_unlocked - plug a device without queue lock held
225 * @q: The &struct request_queue to plug
226 *
227 * Description:
228 * Like @blk_plug_device(), but grabs the queue lock and disables
229 * interrupts.
230 **/
231void blk_plug_device_unlocked(struct request_queue *q)
232{
233 unsigned long flags;
234
235 spin_lock_irqsave(q->queue_lock, flags);
236 blk_plug_device(q);
237 spin_unlock_irqrestore(q->queue_lock, flags);
238}
239EXPORT_SYMBOL(blk_plug_device_unlocked);
240
1da177e4
LT
241/*
242 * remove the queue from the plugged list, if present. called with
243 * queue lock held and interrupts disabled.
244 */
165125e1 245int blk_remove_plug(struct request_queue *q)
1da177e4
LT
246{
247 WARN_ON(!irqs_disabled());
248
e48ec690 249 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
250 return 0;
251
252 del_timer(&q->unplug_timer);
253 return 1;
254}
1da177e4
LT
255EXPORT_SYMBOL(blk_remove_plug);
256
257/*
258 * remove the plug and let it rip..
259 */
165125e1 260void __generic_unplug_device(struct request_queue *q)
1da177e4 261{
7daac490 262 if (unlikely(blk_queue_stopped(q)))
1da177e4 263 return;
a31a9738 264 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
265 return;
266
22e2c507 267 q->request_fn(q);
1da177e4 268}
1da177e4
LT
269
270/**
271 * generic_unplug_device - fire a request queue
165125e1 272 * @q: The &struct request_queue in question
1da177e4
LT
273 *
274 * Description:
275 * Linux uses plugging to build bigger requests queues before letting
276 * the device have at them. If a queue is plugged, the I/O scheduler
277 * is still adding and merging requests on the queue. Once the queue
278 * gets unplugged, the request_fn defined for the queue is invoked and
279 * transfers started.
280 **/
165125e1 281void generic_unplug_device(struct request_queue *q)
1da177e4 282{
dbaf2c00
JA
283 if (blk_queue_plugged(q)) {
284 spin_lock_irq(q->queue_lock);
285 __generic_unplug_device(q);
286 spin_unlock_irq(q->queue_lock);
287 }
1da177e4
LT
288}
289EXPORT_SYMBOL(generic_unplug_device);
290
291static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
292 struct page *page)
293{
165125e1 294 struct request_queue *q = bdi->unplug_io_data;
1da177e4 295
2ad8b1ef 296 blk_unplug(q);
1da177e4
LT
297}
298
86db1e29 299void blk_unplug_work(struct work_struct *work)
1da177e4 300{
165125e1
JA
301 struct request_queue *q =
302 container_of(work, struct request_queue, unplug_work);
1da177e4 303
5f3ea37c 304 trace_block_unplug_io(q);
1da177e4
LT
305 q->unplug_fn(q);
306}
307
86db1e29 308void blk_unplug_timeout(unsigned long data)
1da177e4 309{
165125e1 310 struct request_queue *q = (struct request_queue *)data;
1da177e4 311
5f3ea37c 312 trace_block_unplug_timer(q);
18887ad9 313 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
314}
315
2ad8b1ef
AB
316void blk_unplug(struct request_queue *q)
317{
318 /*
319 * devices don't necessarily have an ->unplug_fn defined
320 */
321 if (q->unplug_fn) {
5f3ea37c 322 trace_block_unplug_io(q);
2ad8b1ef
AB
323 q->unplug_fn(q);
324 }
325}
326EXPORT_SYMBOL(blk_unplug);
327
c7c22e4d
JA
328static void blk_invoke_request_fn(struct request_queue *q)
329{
80a4b58e
JA
330 if (unlikely(blk_queue_stopped(q)))
331 return;
332
c7c22e4d
JA
333 /*
334 * one level of recursion is ok and is much faster than kicking
335 * the unplug handling
336 */
337 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
338 q->request_fn(q);
339 queue_flag_clear(QUEUE_FLAG_REENTER, q);
340 } else {
341 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
342 kblockd_schedule_work(q, &q->unplug_work);
343 }
344}
345
1da177e4
LT
346/**
347 * blk_start_queue - restart a previously stopped queue
165125e1 348 * @q: The &struct request_queue in question
1da177e4
LT
349 *
350 * Description:
351 * blk_start_queue() will clear the stop flag on the queue, and call
352 * the request_fn for the queue if it was in a stopped state when
353 * entered. Also see blk_stop_queue(). Queue lock must be held.
354 **/
165125e1 355void blk_start_queue(struct request_queue *q)
1da177e4 356{
a038e253
PBG
357 WARN_ON(!irqs_disabled());
358
75ad23bc 359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 360 blk_invoke_request_fn(q);
1da177e4 361}
1da177e4
LT
362EXPORT_SYMBOL(blk_start_queue);
363
364/**
365 * blk_stop_queue - stop a queue
165125e1 366 * @q: The &struct request_queue in question
1da177e4
LT
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations. Queue lock must be held.
377 **/
165125e1 378void blk_stop_queue(struct request_queue *q)
1da177e4
LT
379{
380 blk_remove_plug(q);
75ad23bc 381 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
382}
383EXPORT_SYMBOL(blk_stop_queue);
384
385/**
386 * blk_sync_queue - cancel any pending callbacks on a queue
387 * @q: the queue
388 *
389 * Description:
390 * The block layer may perform asynchronous callback activity
391 * on a queue, such as calling the unplug function after a timeout.
392 * A block device may call blk_sync_queue to ensure that any
393 * such activity is cancelled, thus allowing it to release resources
59c51591 394 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
395 * that its ->make_request_fn will not re-add plugging prior to calling
396 * this function.
397 *
398 */
399void blk_sync_queue(struct request_queue *q)
400{
401 del_timer_sync(&q->unplug_timer);
70ed28b9 402 del_timer_sync(&q->timeout);
64d01dc9 403 cancel_work_sync(&q->unplug_work);
1da177e4
LT
404}
405EXPORT_SYMBOL(blk_sync_queue);
406
407/**
80a4b58e 408 * __blk_run_queue - run a single device queue
1da177e4 409 * @q: The queue to run
80a4b58e
JA
410 *
411 * Description:
412 * See @blk_run_queue. This variant must be called with the queue lock
413 * held and interrupts disabled.
414 *
1da177e4 415 */
75ad23bc 416void __blk_run_queue(struct request_queue *q)
1da177e4 417{
1da177e4 418 blk_remove_plug(q);
dac07ec1
JA
419
420 /*
421 * Only recurse once to avoid overrunning the stack, let the unplug
422 * handling reinvoke the handler shortly if we already got there.
423 */
c7c22e4d
JA
424 if (!elv_queue_empty(q))
425 blk_invoke_request_fn(q);
75ad23bc
NP
426}
427EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 428
75ad23bc
NP
429/**
430 * blk_run_queue - run a single device queue
431 * @q: The queue to run
80a4b58e
JA
432 *
433 * Description:
434 * Invoke request handling on this queue, if it has pending work to do.
435 * May be used to restart queueing when a request has completed. Also
436 * See @blk_start_queueing.
437 *
75ad23bc
NP
438 */
439void blk_run_queue(struct request_queue *q)
440{
441 unsigned long flags;
442
443 spin_lock_irqsave(q->queue_lock, flags);
444 __blk_run_queue(q);
1da177e4
LT
445 spin_unlock_irqrestore(q->queue_lock, flags);
446}
447EXPORT_SYMBOL(blk_run_queue);
448
165125e1 449void blk_put_queue(struct request_queue *q)
483f4afc
AV
450{
451 kobject_put(&q->kobj);
452}
483f4afc 453
6728cb0e 454void blk_cleanup_queue(struct request_queue *q)
483f4afc 455{
e3335de9
JA
456 /*
457 * We know we have process context here, so we can be a little
458 * cautious and ensure that pending block actions on this device
459 * are done before moving on. Going into this function, we should
460 * not have processes doing IO to this device.
461 */
462 blk_sync_queue(q);
463
483f4afc 464 mutex_lock(&q->sysfs_lock);
75ad23bc 465 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
466 mutex_unlock(&q->sysfs_lock);
467
468 if (q->elevator)
469 elevator_exit(q->elevator);
470
471 blk_put_queue(q);
472}
1da177e4
LT
473EXPORT_SYMBOL(blk_cleanup_queue);
474
165125e1 475static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
476{
477 struct request_list *rl = &q->rq;
478
1faa16d2
JA
479 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
480 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 481 rl->elvpriv = 0;
1faa16d2
JA
482 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
483 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 484
1946089a
CL
485 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
486 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
487
488 if (!rl->rq_pool)
489 return -ENOMEM;
490
491 return 0;
492}
493
165125e1 494struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 495{
1946089a
CL
496 return blk_alloc_queue_node(gfp_mask, -1);
497}
498EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 499
165125e1 500struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 501{
165125e1 502 struct request_queue *q;
e0bf68dd 503 int err;
1946089a 504
8324aa91 505 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 506 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
507 if (!q)
508 return NULL;
509
e0bf68dd
PZ
510 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
511 q->backing_dev_info.unplug_io_data = q;
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
1da177e4 518 init_timer(&q->unplug_timer);
242f9dcb
JA
519 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
520 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 521 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 522
8324aa91 523 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 524
483f4afc 525 mutex_init(&q->sysfs_lock);
e7e72bf6 526 spin_lock_init(&q->__queue_lock);
483f4afc 527
1da177e4
LT
528 return q;
529}
1946089a 530EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
531
532/**
533 * blk_init_queue - prepare a request queue for use with a block device
534 * @rfn: The function to be called to process requests that have been
535 * placed on the queue.
536 * @lock: Request queue spin lock
537 *
538 * Description:
539 * If a block device wishes to use the standard request handling procedures,
540 * which sorts requests and coalesces adjacent requests, then it must
541 * call blk_init_queue(). The function @rfn will be called when there
542 * are requests on the queue that need to be processed. If the device
543 * supports plugging, then @rfn may not be called immediately when requests
544 * are available on the queue, but may be called at some time later instead.
545 * Plugged queues are generally unplugged when a buffer belonging to one
546 * of the requests on the queue is needed, or due to memory pressure.
547 *
548 * @rfn is not required, or even expected, to remove all requests off the
549 * queue, but only as many as it can handle at a time. If it does leave
550 * requests on the queue, it is responsible for arranging that the requests
551 * get dealt with eventually.
552 *
553 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
554 * request queue; this lock will be taken also from interrupt context, so irq
555 * disabling is needed for it.
1da177e4 556 *
710027a4 557 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
558 * it didn't succeed.
559 *
560 * Note:
561 * blk_init_queue() must be paired with a blk_cleanup_queue() call
562 * when the block device is deactivated (such as at module unload).
563 **/
1946089a 564
165125e1 565struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 566{
1946089a
CL
567 return blk_init_queue_node(rfn, lock, -1);
568}
569EXPORT_SYMBOL(blk_init_queue);
570
165125e1 571struct request_queue *
1946089a
CL
572blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
573{
165125e1 574 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
575
576 if (!q)
577 return NULL;
578
1946089a 579 q->node = node_id;
8669aafd 580 if (blk_init_free_list(q)) {
8324aa91 581 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
582 return NULL;
583 }
1da177e4 584
152587de 585 /*
586 * if caller didn't supply a lock, they get per-queue locking with
587 * our embedded lock
588 */
e7e72bf6 589 if (!lock)
152587de 590 lock = &q->__queue_lock;
152587de 591
1da177e4 592 q->request_fn = rfn;
1da177e4
LT
593 q->prep_rq_fn = NULL;
594 q->unplug_fn = generic_unplug_device;
bc58ba94 595 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
596 q->queue_lock = lock;
597
f3b144aa
JA
598 /*
599 * This also sets hw/phys segments, boundary and size
600 */
1da177e4 601 blk_queue_make_request(q, __make_request);
1da177e4 602
44ec9542
AS
603 q->sg_reserved_size = INT_MAX;
604
abf54393
FT
605 blk_set_cmd_filter_defaults(&q->cmd_filter);
606
1da177e4
LT
607 /*
608 * all done
609 */
610 if (!elevator_init(q, NULL)) {
611 blk_queue_congestion_threshold(q);
612 return q;
613 }
614
8669aafd 615 blk_put_queue(q);
1da177e4
LT
616 return NULL;
617}
1946089a 618EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 619
165125e1 620int blk_get_queue(struct request_queue *q)
1da177e4 621{
fde6ad22 622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 623 kobject_get(&q->kobj);
1da177e4
LT
624 return 0;
625 }
626
627 return 1;
628}
1da177e4 629
165125e1 630static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 631{
4aff5e23 632 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 633 elv_put_request(q, rq);
1da177e4
LT
634 mempool_free(rq, q->rq.rq_pool);
635}
636
1ea25ecb 637static struct request *
42dad764 638blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
639{
640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
641
642 if (!rq)
643 return NULL;
644
2a4aa30c 645 blk_rq_init(q, rq);
1afb20f3 646
42dad764 647 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 648
cb98fc8b 649 if (priv) {
cb78b285 650 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
651 mempool_free(rq, q->rq.rq_pool);
652 return NULL;
653 }
4aff5e23 654 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 655 }
1da177e4 656
cb98fc8b 657 return rq;
1da177e4
LT
658}
659
660/*
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
663 */
165125e1 664static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
665{
666 if (!ioc)
667 return 0;
668
669 /*
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
673 */
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677}
678
679/*
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
684 */
165125e1 685static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
686{
687 if (!ioc || ioc_batching(q, ioc))
688 return;
689
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
692}
693
1faa16d2 694static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
695{
696 struct request_list *rl = &q->rq;
697
1faa16d2
JA
698 if (rl->count[sync] < queue_congestion_off_threshold(q))
699 blk_clear_queue_congested(q, sync);
1da177e4 700
1faa16d2
JA
701 if (rl->count[sync] + 1 <= q->nr_requests) {
702 if (waitqueue_active(&rl->wait[sync]))
703 wake_up(&rl->wait[sync]);
1da177e4 704
1faa16d2 705 blk_clear_queue_full(q, sync);
1da177e4
LT
706 }
707}
708
709/*
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
712 */
1faa16d2 713static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
714{
715 struct request_list *rl = &q->rq;
716
1faa16d2 717 rl->count[sync]--;
cb98fc8b
TH
718 if (priv)
719 rl->elvpriv--;
1da177e4 720
1faa16d2 721 __freed_request(q, sync);
1da177e4 722
1faa16d2
JA
723 if (unlikely(rl->starved[sync ^ 1]))
724 __freed_request(q, sync ^ 1);
1da177e4
LT
725}
726
1da177e4 727/*
d6344532
NP
728 * Get a free request, queue_lock must be held.
729 * Returns NULL on failure, with queue_lock held.
730 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 731 */
165125e1 732static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 733 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
734{
735 struct request *rq = NULL;
736 struct request_list *rl = &q->rq;
88ee5ef1 737 struct io_context *ioc = NULL;
1faa16d2 738 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
739 int may_queue, priv;
740
7749a8d4 741 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
742 if (may_queue == ELV_MQUEUE_NO)
743 goto rq_starved;
744
1faa16d2
JA
745 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
746 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 747 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
748 /*
749 * The queue will fill after this allocation, so set
750 * it as full, and mark this process as "batching".
751 * This process will be allowed to complete a batch of
752 * requests, others will be blocked.
753 */
1faa16d2 754 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 755 ioc_set_batching(q, ioc);
1faa16d2 756 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
757 } else {
758 if (may_queue != ELV_MQUEUE_MUST
759 && !ioc_batching(q, ioc)) {
760 /*
761 * The queue is full and the allocating
762 * process is not a "batcher", and not
763 * exempted by the IO scheduler
764 */
765 goto out;
766 }
767 }
1da177e4 768 }
1faa16d2 769 blk_set_queue_congested(q, is_sync);
1da177e4
LT
770 }
771
082cf69e
JA
772 /*
773 * Only allow batching queuers to allocate up to 50% over the defined
774 * limit of requests, otherwise we could have thousands of requests
775 * allocated with any setting of ->nr_requests
776 */
1faa16d2 777 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 778 goto out;
fd782a4a 779
1faa16d2
JA
780 rl->count[is_sync]++;
781 rl->starved[is_sync] = 0;
cb98fc8b 782
64521d1a 783 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
784 if (priv)
785 rl->elvpriv++;
786
42dad764
JM
787 if (blk_queue_io_stat(q))
788 rw_flags |= REQ_IO_STAT;
1da177e4
LT
789 spin_unlock_irq(q->queue_lock);
790
7749a8d4 791 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 792 if (unlikely(!rq)) {
1da177e4
LT
793 /*
794 * Allocation failed presumably due to memory. Undo anything
795 * we might have messed up.
796 *
797 * Allocating task should really be put onto the front of the
798 * wait queue, but this is pretty rare.
799 */
800 spin_lock_irq(q->queue_lock);
1faa16d2 801 freed_request(q, is_sync, priv);
1da177e4
LT
802
803 /*
804 * in the very unlikely event that allocation failed and no
805 * requests for this direction was pending, mark us starved
806 * so that freeing of a request in the other direction will
807 * notice us. another possible fix would be to split the
808 * rq mempool into READ and WRITE
809 */
810rq_starved:
1faa16d2
JA
811 if (unlikely(rl->count[is_sync] == 0))
812 rl->starved[is_sync] = 1;
1da177e4 813
1da177e4
LT
814 goto out;
815 }
816
88ee5ef1
JA
817 /*
818 * ioc may be NULL here, and ioc_batching will be false. That's
819 * OK, if the queue is under the request limit then requests need
820 * not count toward the nr_batch_requests limit. There will always
821 * be some limit enforced by BLK_BATCH_TIME.
822 */
1da177e4
LT
823 if (ioc_batching(q, ioc))
824 ioc->nr_batch_requests--;
6728cb0e 825
1faa16d2 826 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 827out:
1da177e4
LT
828 return rq;
829}
830
831/*
832 * No available requests for this queue, unplug the device and wait for some
833 * requests to become available.
d6344532
NP
834 *
835 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 836 */
165125e1 837static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 838 struct bio *bio)
1da177e4 839{
1faa16d2 840 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
841 struct request *rq;
842
7749a8d4 843 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
844 while (!rq) {
845 DEFINE_WAIT(wait);
05caf8db 846 struct io_context *ioc;
1da177e4
LT
847 struct request_list *rl = &q->rq;
848
1faa16d2 849 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
850 TASK_UNINTERRUPTIBLE);
851
1faa16d2 852 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 853
05caf8db
ZY
854 __generic_unplug_device(q);
855 spin_unlock_irq(q->queue_lock);
856 io_schedule();
1da177e4 857
05caf8db
ZY
858 /*
859 * After sleeping, we become a "batching" process and
860 * will be able to allocate at least one request, and
861 * up to a big batch of them for a small period time.
862 * See ioc_batching, ioc_set_batching
863 */
864 ioc = current_io_context(GFP_NOIO, q->node);
865 ioc_set_batching(q, ioc);
d6344532 866
05caf8db 867 spin_lock_irq(q->queue_lock);
1faa16d2 868 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
869
870 rq = get_request(q, rw_flags, bio, GFP_NOIO);
871 };
1da177e4
LT
872
873 return rq;
874}
875
165125e1 876struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
877{
878 struct request *rq;
879
880 BUG_ON(rw != READ && rw != WRITE);
881
d6344532
NP
882 spin_lock_irq(q->queue_lock);
883 if (gfp_mask & __GFP_WAIT) {
22e2c507 884 rq = get_request_wait(q, rw, NULL);
d6344532 885 } else {
22e2c507 886 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
887 if (!rq)
888 spin_unlock_irq(q->queue_lock);
889 }
890 /* q->queue_lock is unlocked at this point */
1da177e4
LT
891
892 return rq;
893}
1da177e4
LT
894EXPORT_SYMBOL(blk_get_request);
895
dc72ef4a
JA
896/**
897 * blk_start_queueing - initiate dispatch of requests to device
898 * @q: request queue to kick into gear
899 *
900 * This is basically a helper to remove the need to know whether a queue
901 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
902 * for this queue. Should be used to start queueing on a device outside
903 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
904 *
905 * The queue lock must be held with interrupts disabled.
906 */
165125e1 907void blk_start_queueing(struct request_queue *q)
dc72ef4a 908{
336c3d8c
EO
909 if (!blk_queue_plugged(q)) {
910 if (unlikely(blk_queue_stopped(q)))
911 return;
dc72ef4a 912 q->request_fn(q);
336c3d8c 913 } else
dc72ef4a
JA
914 __generic_unplug_device(q);
915}
916EXPORT_SYMBOL(blk_start_queueing);
917
1da177e4
LT
918/**
919 * blk_requeue_request - put a request back on queue
920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted
922 *
923 * Description:
924 * Drivers often keep queueing requests until the hardware cannot accept
925 * more, when that condition happens we need to put the request back
926 * on the queue. Must be called with queue lock held.
927 */
165125e1 928void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 929{
242f9dcb
JA
930 blk_delete_timer(rq);
931 blk_clear_rq_complete(rq);
5f3ea37c 932 trace_block_rq_requeue(q, rq);
2056a782 933
1da177e4
LT
934 if (blk_rq_tagged(rq))
935 blk_queue_end_tag(q, rq);
936
937 elv_requeue_request(q, rq);
938}
1da177e4
LT
939EXPORT_SYMBOL(blk_requeue_request);
940
941/**
710027a4 942 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
943 * @q: request queue where request should be inserted
944 * @rq: request to be inserted
945 * @at_head: insert request at head or tail of queue
946 * @data: private data
1da177e4
LT
947 *
948 * Description:
949 * Many block devices need to execute commands asynchronously, so they don't
950 * block the whole kernel from preemption during request execution. This is
951 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
952 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
953 * be scheduled for actual execution by the request queue.
1da177e4
LT
954 *
955 * We have the option of inserting the head or the tail of the queue.
956 * Typically we use the tail for new ioctls and so forth. We use the head
957 * of the queue for things like a QUEUE_FULL message from a device, or a
958 * host that is unable to accept a particular command.
959 */
165125e1 960void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 961 int at_head, void *data)
1da177e4 962{
867d1191 963 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
964 unsigned long flags;
965
966 /*
967 * tell I/O scheduler that this isn't a regular read/write (ie it
968 * must not attempt merges on this) and that it acts as a soft
969 * barrier
970 */
4aff5e23
JA
971 rq->cmd_type = REQ_TYPE_SPECIAL;
972 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
973
974 rq->special = data;
975
976 spin_lock_irqsave(q->queue_lock, flags);
977
978 /*
979 * If command is tagged, release the tag
980 */
867d1191
TH
981 if (blk_rq_tagged(rq))
982 blk_queue_end_tag(q, rq);
1da177e4 983
b238b3d4 984 drive_stat_acct(rq, 1);
867d1191 985 __elv_add_request(q, rq, where, 0);
dc72ef4a 986 blk_start_queueing(q);
1da177e4
LT
987 spin_unlock_irqrestore(q->queue_lock, flags);
988}
1da177e4
LT
989EXPORT_SYMBOL(blk_insert_request);
990
1da177e4
LT
991/*
992 * add-request adds a request to the linked list.
993 * queue lock is held and interrupts disabled, as we muck with the
994 * request queue list.
995 */
6728cb0e 996static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 997{
b238b3d4 998 drive_stat_acct(req, 1);
1da177e4 999
1da177e4
LT
1000 /*
1001 * elevator indicated where it wants this request to be
1002 * inserted at elevator_merge time
1003 */
1004 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1005}
6728cb0e 1006
074a7aca
TH
1007static void part_round_stats_single(int cpu, struct hd_struct *part,
1008 unsigned long now)
1009{
1010 if (now == part->stamp)
1011 return;
1012
1013 if (part->in_flight) {
1014 __part_stat_add(cpu, part, time_in_queue,
1015 part->in_flight * (now - part->stamp));
1016 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1017 }
1018 part->stamp = now;
1019}
1020
1021/**
496aa8a9
RD
1022 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1023 * @cpu: cpu number for stats access
1024 * @part: target partition
1da177e4
LT
1025 *
1026 * The average IO queue length and utilisation statistics are maintained
1027 * by observing the current state of the queue length and the amount of
1028 * time it has been in this state for.
1029 *
1030 * Normally, that accounting is done on IO completion, but that can result
1031 * in more than a second's worth of IO being accounted for within any one
1032 * second, leading to >100% utilisation. To deal with that, we call this
1033 * function to do a round-off before returning the results when reading
1034 * /proc/diskstats. This accounts immediately for all queue usage up to
1035 * the current jiffies and restarts the counters again.
1036 */
c9959059 1037void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1038{
1039 unsigned long now = jiffies;
1040
074a7aca
TH
1041 if (part->partno)
1042 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1043 part_round_stats_single(cpu, part, now);
6f2576af 1044}
074a7aca 1045EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1046
1da177e4
LT
1047/*
1048 * queue lock must be held
1049 */
165125e1 1050void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1051{
1da177e4
LT
1052 if (unlikely(!q))
1053 return;
1054 if (unlikely(--req->ref_count))
1055 return;
1056
8922e16c
TH
1057 elv_completed_request(q, req);
1058
1cd96c24
BH
1059 /* this is a bio leak */
1060 WARN_ON(req->bio != NULL);
1061
1da177e4
LT
1062 /*
1063 * Request may not have originated from ll_rw_blk. if not,
1064 * it didn't come out of our reserved rq pools
1065 */
49171e5c 1066 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1067 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1068 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1069
1da177e4 1070 BUG_ON(!list_empty(&req->queuelist));
9817064b 1071 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1072
1073 blk_free_request(q, req);
1faa16d2 1074 freed_request(q, is_sync, priv);
1da177e4
LT
1075 }
1076}
6e39b69e
MC
1077EXPORT_SYMBOL_GPL(__blk_put_request);
1078
1da177e4
LT
1079void blk_put_request(struct request *req)
1080{
8922e16c 1081 unsigned long flags;
165125e1 1082 struct request_queue *q = req->q;
8922e16c 1083
52a93ba8
FT
1084 spin_lock_irqsave(q->queue_lock, flags);
1085 __blk_put_request(q, req);
1086 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1087}
1da177e4
LT
1088EXPORT_SYMBOL(blk_put_request);
1089
86db1e29 1090void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1091{
c7c22e4d 1092 req->cpu = bio->bi_comp_cpu;
4aff5e23 1093 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1094
1095 /*
1096 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1097 */
6000a368
MC
1098 if (bio_rw_ahead(bio))
1099 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1100 REQ_FAILFAST_DRIVER);
1101 if (bio_failfast_dev(bio))
1102 req->cmd_flags |= REQ_FAILFAST_DEV;
1103 if (bio_failfast_transport(bio))
1104 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1105 if (bio_failfast_driver(bio))
1106 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675
TH
1107
1108 /*
1109 * REQ_BARRIER implies no merging, but lets make it explicit
1110 */
fb2dce86 1111 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1112 req->cmd_flags |= REQ_DISCARD;
1113 if (bio_barrier(bio))
1114 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1115 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1116 } else if (unlikely(bio_barrier(bio)))
1117 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1118
b31dc66a 1119 if (bio_sync(bio))
4aff5e23 1120 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1121 if (bio_rw_meta(bio))
1122 req->cmd_flags |= REQ_RW_META;
aeb6fafb
JA
1123 if (bio_noidle(bio))
1124 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1125
52d9e675
TH
1126 req->errors = 0;
1127 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1128 req->ioprio = bio_prio(bio);
52d9e675 1129 req->start_time = jiffies;
bc1c56fd 1130 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1131}
1132
644b2d99
JA
1133/*
1134 * Only disabling plugging for non-rotational devices if it does tagging
1135 * as well, otherwise we do need the proper merging
1136 */
1137static inline bool queue_should_plug(struct request_queue *q)
1138{
1139 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1140}
1141
165125e1 1142static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1143{
450991bc 1144 struct request *req;
a7384677 1145 int el_ret, nr_sectors;
51da90fc
JA
1146 const unsigned short prio = bio_prio(bio);
1147 const int sync = bio_sync(bio);
213d9417 1148 const int unplug = bio_unplug(bio);
7749a8d4 1149 int rw_flags;
1da177e4 1150
1da177e4 1151 nr_sectors = bio_sectors(bio);
1da177e4
LT
1152
1153 /*
1154 * low level driver can indicate that it wants pages above a
1155 * certain limit bounced to low memory (ie for highmem, or even
1156 * ISA dma in theory)
1157 */
1158 blk_queue_bounce(q, &bio);
1159
1da177e4
LT
1160 spin_lock_irq(q->queue_lock);
1161
a7384677 1162 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1163 goto get_rq;
1164
1165 el_ret = elv_merge(q, &req, bio);
1166 switch (el_ret) {
6728cb0e
JA
1167 case ELEVATOR_BACK_MERGE:
1168 BUG_ON(!rq_mergeable(req));
1da177e4 1169
6728cb0e
JA
1170 if (!ll_back_merge_fn(q, req, bio))
1171 break;
1da177e4 1172
5f3ea37c 1173 trace_block_bio_backmerge(q, bio);
2056a782 1174
6728cb0e
JA
1175 req->biotail->bi_next = bio;
1176 req->biotail = bio;
1177 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1178 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1179 if (!blk_rq_cpu_valid(req))
1180 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1181 drive_stat_acct(req, 0);
1182 if (!attempt_back_merge(q, req))
1183 elv_merged_request(q, req, el_ret);
1184 goto out;
1da177e4 1185
6728cb0e
JA
1186 case ELEVATOR_FRONT_MERGE:
1187 BUG_ON(!rq_mergeable(req));
1da177e4 1188
6728cb0e
JA
1189 if (!ll_front_merge_fn(q, req, bio))
1190 break;
1da177e4 1191
5f3ea37c 1192 trace_block_bio_frontmerge(q, bio);
2056a782 1193
6728cb0e
JA
1194 bio->bi_next = req->bio;
1195 req->bio = bio;
1da177e4 1196
6728cb0e
JA
1197 /*
1198 * may not be valid. if the low level driver said
1199 * it didn't need a bounce buffer then it better
1200 * not touch req->buffer either...
1201 */
1202 req->buffer = bio_data(bio);
1203 req->current_nr_sectors = bio_cur_sectors(bio);
1204 req->hard_cur_sectors = req->current_nr_sectors;
1205 req->sector = req->hard_sector = bio->bi_sector;
1206 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1207 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1208 if (!blk_rq_cpu_valid(req))
1209 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1210 drive_stat_acct(req, 0);
1211 if (!attempt_front_merge(q, req))
1212 elv_merged_request(q, req, el_ret);
1213 goto out;
1214
1215 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1216 default:
1217 ;
1da177e4
LT
1218 }
1219
450991bc 1220get_rq:
7749a8d4
JA
1221 /*
1222 * This sync check and mask will be re-done in init_request_from_bio(),
1223 * but we need to set it earlier to expose the sync flag to the
1224 * rq allocator and io schedulers.
1225 */
1226 rw_flags = bio_data_dir(bio);
1227 if (sync)
1228 rw_flags |= REQ_RW_SYNC;
1229
1da177e4 1230 /*
450991bc 1231 * Grab a free request. This is might sleep but can not fail.
d6344532 1232 * Returns with the queue unlocked.
450991bc 1233 */
7749a8d4 1234 req = get_request_wait(q, rw_flags, bio);
d6344532 1235
450991bc
NP
1236 /*
1237 * After dropping the lock and possibly sleeping here, our request
1238 * may now be mergeable after it had proven unmergeable (above).
1239 * We don't worry about that case for efficiency. It won't happen
1240 * often, and the elevators are able to handle it.
1da177e4 1241 */
52d9e675 1242 init_request_from_bio(req, bio);
1da177e4 1243
450991bc 1244 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1245 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1246 bio_flagged(bio, BIO_CPU_AFFINE))
1247 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1248 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1249 blk_plug_device(q);
1da177e4
LT
1250 add_request(q, req);
1251out:
644b2d99 1252 if (unplug || !queue_should_plug(q))
1da177e4 1253 __generic_unplug_device(q);
1da177e4
LT
1254 spin_unlock_irq(q->queue_lock);
1255 return 0;
1da177e4
LT
1256}
1257
1258/*
1259 * If bio->bi_dev is a partition, remap the location
1260 */
1261static inline void blk_partition_remap(struct bio *bio)
1262{
1263 struct block_device *bdev = bio->bi_bdev;
1264
bf2de6f5 1265 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1266 struct hd_struct *p = bdev->bd_part;
1267
1da177e4
LT
1268 bio->bi_sector += p->start_sect;
1269 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1270
5f3ea37c 1271 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1272 bdev->bd_dev,
c7149d6b 1273 bio->bi_sector - p->start_sect);
1da177e4
LT
1274 }
1275}
1276
1da177e4
LT
1277static void handle_bad_sector(struct bio *bio)
1278{
1279 char b[BDEVNAME_SIZE];
1280
1281 printk(KERN_INFO "attempt to access beyond end of device\n");
1282 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1283 bdevname(bio->bi_bdev, b),
1284 bio->bi_rw,
1285 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1286 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1287
1288 set_bit(BIO_EOF, &bio->bi_flags);
1289}
1290
c17bb495
AM
1291#ifdef CONFIG_FAIL_MAKE_REQUEST
1292
1293static DECLARE_FAULT_ATTR(fail_make_request);
1294
1295static int __init setup_fail_make_request(char *str)
1296{
1297 return setup_fault_attr(&fail_make_request, str);
1298}
1299__setup("fail_make_request=", setup_fail_make_request);
1300
1301static int should_fail_request(struct bio *bio)
1302{
eddb2e26
TH
1303 struct hd_struct *part = bio->bi_bdev->bd_part;
1304
1305 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1306 return should_fail(&fail_make_request, bio->bi_size);
1307
1308 return 0;
1309}
1310
1311static int __init fail_make_request_debugfs(void)
1312{
1313 return init_fault_attr_dentries(&fail_make_request,
1314 "fail_make_request");
1315}
1316
1317late_initcall(fail_make_request_debugfs);
1318
1319#else /* CONFIG_FAIL_MAKE_REQUEST */
1320
1321static inline int should_fail_request(struct bio *bio)
1322{
1323 return 0;
1324}
1325
1326#endif /* CONFIG_FAIL_MAKE_REQUEST */
1327
c07e2b41
JA
1328/*
1329 * Check whether this bio extends beyond the end of the device.
1330 */
1331static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1332{
1333 sector_t maxsector;
1334
1335 if (!nr_sectors)
1336 return 0;
1337
1338 /* Test device or partition size, when known. */
1339 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1340 if (maxsector) {
1341 sector_t sector = bio->bi_sector;
1342
1343 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1344 /*
1345 * This may well happen - the kernel calls bread()
1346 * without checking the size of the device, e.g., when
1347 * mounting a device.
1348 */
1349 handle_bad_sector(bio);
1350 return 1;
1351 }
1352 }
1353
1354 return 0;
1355}
1356
1da177e4 1357/**
710027a4 1358 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1359 * @bio: The bio describing the location in memory and on the device.
1360 *
1361 * generic_make_request() is used to make I/O requests of block
1362 * devices. It is passed a &struct bio, which describes the I/O that needs
1363 * to be done.
1364 *
1365 * generic_make_request() does not return any status. The
1366 * success/failure status of the request, along with notification of
1367 * completion, is delivered asynchronously through the bio->bi_end_io
1368 * function described (one day) else where.
1369 *
1370 * The caller of generic_make_request must make sure that bi_io_vec
1371 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1372 * set to describe the device address, and the
1373 * bi_end_io and optionally bi_private are set to describe how
1374 * completion notification should be signaled.
1375 *
1376 * generic_make_request and the drivers it calls may use bi_next if this
1377 * bio happens to be merged with someone else, and may change bi_dev and
1378 * bi_sector for remaps as it sees fit. So the values of these fields
1379 * should NOT be depended on after the call to generic_make_request.
1380 */
d89d8796 1381static inline void __generic_make_request(struct bio *bio)
1da177e4 1382{
165125e1 1383 struct request_queue *q;
5ddfe969 1384 sector_t old_sector;
1da177e4 1385 int ret, nr_sectors = bio_sectors(bio);
2056a782 1386 dev_t old_dev;
51fd77bd 1387 int err = -EIO;
1da177e4
LT
1388
1389 might_sleep();
1da177e4 1390
c07e2b41
JA
1391 if (bio_check_eod(bio, nr_sectors))
1392 goto end_io;
1da177e4
LT
1393
1394 /*
1395 * Resolve the mapping until finished. (drivers are
1396 * still free to implement/resolve their own stacking
1397 * by explicitly returning 0)
1398 *
1399 * NOTE: we don't repeat the blk_size check for each new device.
1400 * Stacking drivers are expected to know what they are doing.
1401 */
5ddfe969 1402 old_sector = -1;
2056a782 1403 old_dev = 0;
1da177e4
LT
1404 do {
1405 char b[BDEVNAME_SIZE];
1406
1407 q = bdev_get_queue(bio->bi_bdev);
a7384677 1408 if (unlikely(!q)) {
1da177e4
LT
1409 printk(KERN_ERR
1410 "generic_make_request: Trying to access "
1411 "nonexistent block-device %s (%Lu)\n",
1412 bdevname(bio->bi_bdev, b),
1413 (long long) bio->bi_sector);
a7384677 1414 goto end_io;
1da177e4
LT
1415 }
1416
4fa253f3 1417 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1418 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1419 bdevname(bio->bi_bdev, b),
1420 bio_sectors(bio),
1421 q->max_hw_sectors);
1422 goto end_io;
1423 }
1424
fde6ad22 1425 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1426 goto end_io;
1427
c17bb495
AM
1428 if (should_fail_request(bio))
1429 goto end_io;
1430
1da177e4
LT
1431 /*
1432 * If this device has partitions, remap block n
1433 * of partition p to block n+start(p) of the disk.
1434 */
1435 blk_partition_remap(bio);
1436
7ba1ba12
MP
1437 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1438 goto end_io;
1439
5ddfe969 1440 if (old_sector != -1)
22a7c31a 1441 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1442
5f3ea37c 1443 trace_block_bio_queue(q, bio);
2056a782 1444
5ddfe969 1445 old_sector = bio->bi_sector;
2056a782
JA
1446 old_dev = bio->bi_bdev->bd_dev;
1447
c07e2b41
JA
1448 if (bio_check_eod(bio, nr_sectors))
1449 goto end_io;
a7384677
TH
1450
1451 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1452 err = -EOPNOTSUPP;
1453 goto end_io;
1454 }
cec0707e
JA
1455 if (bio_barrier(bio) && bio_has_data(bio) &&
1456 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1457 err = -EOPNOTSUPP;
1458 goto end_io;
1459 }
5ddfe969 1460
1da177e4
LT
1461 ret = q->make_request_fn(q, bio);
1462 } while (ret);
a7384677
TH
1463
1464 return;
1465
1466end_io:
1467 bio_endio(bio, err);
1da177e4
LT
1468}
1469
d89d8796
NB
1470/*
1471 * We only want one ->make_request_fn to be active at a time,
1472 * else stack usage with stacked devices could be a problem.
1473 * So use current->bio_{list,tail} to keep a list of requests
1474 * submited by a make_request_fn function.
1475 * current->bio_tail is also used as a flag to say if
1476 * generic_make_request is currently active in this task or not.
1477 * If it is NULL, then no make_request is active. If it is non-NULL,
1478 * then a make_request is active, and new requests should be added
1479 * at the tail
1480 */
1481void generic_make_request(struct bio *bio)
1482{
1483 if (current->bio_tail) {
1484 /* make_request is active */
1485 *(current->bio_tail) = bio;
1486 bio->bi_next = NULL;
1487 current->bio_tail = &bio->bi_next;
1488 return;
1489 }
1490 /* following loop may be a bit non-obvious, and so deserves some
1491 * explanation.
1492 * Before entering the loop, bio->bi_next is NULL (as all callers
1493 * ensure that) so we have a list with a single bio.
1494 * We pretend that we have just taken it off a longer list, so
1495 * we assign bio_list to the next (which is NULL) and bio_tail
1496 * to &bio_list, thus initialising the bio_list of new bios to be
1497 * added. __generic_make_request may indeed add some more bios
1498 * through a recursive call to generic_make_request. If it
1499 * did, we find a non-NULL value in bio_list and re-enter the loop
1500 * from the top. In this case we really did just take the bio
1501 * of the top of the list (no pretending) and so fixup bio_list and
1502 * bio_tail or bi_next, and call into __generic_make_request again.
1503 *
1504 * The loop was structured like this to make only one call to
1505 * __generic_make_request (which is important as it is large and
1506 * inlined) and to keep the structure simple.
1507 */
1508 BUG_ON(bio->bi_next);
1509 do {
1510 current->bio_list = bio->bi_next;
1511 if (bio->bi_next == NULL)
1512 current->bio_tail = &current->bio_list;
1513 else
1514 bio->bi_next = NULL;
1515 __generic_make_request(bio);
1516 bio = current->bio_list;
1517 } while (bio);
1518 current->bio_tail = NULL; /* deactivate */
1519}
1da177e4
LT
1520EXPORT_SYMBOL(generic_make_request);
1521
1522/**
710027a4 1523 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1524 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1525 * @bio: The &struct bio which describes the I/O
1526 *
1527 * submit_bio() is very similar in purpose to generic_make_request(), and
1528 * uses that function to do most of the work. Both are fairly rough
710027a4 1529 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1530 *
1531 */
1532void submit_bio(int rw, struct bio *bio)
1533{
1534 int count = bio_sectors(bio);
1535
22e2c507 1536 bio->bi_rw |= rw;
1da177e4 1537
bf2de6f5
JA
1538 /*
1539 * If it's a regular read/write or a barrier with data attached,
1540 * go through the normal accounting stuff before submission.
1541 */
a9c701e5 1542 if (bio_has_data(bio)) {
bf2de6f5
JA
1543 if (rw & WRITE) {
1544 count_vm_events(PGPGOUT, count);
1545 } else {
1546 task_io_account_read(bio->bi_size);
1547 count_vm_events(PGPGIN, count);
1548 }
1549
1550 if (unlikely(block_dump)) {
1551 char b[BDEVNAME_SIZE];
1552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1553 current->comm, task_pid_nr(current),
bf2de6f5
JA
1554 (rw & WRITE) ? "WRITE" : "READ",
1555 (unsigned long long)bio->bi_sector,
6728cb0e 1556 bdevname(bio->bi_bdev, b));
bf2de6f5 1557 }
1da177e4
LT
1558 }
1559
1560 generic_make_request(bio);
1561}
1da177e4
LT
1562EXPORT_SYMBOL(submit_bio);
1563
82124d60
KU
1564/**
1565 * blk_rq_check_limits - Helper function to check a request for the queue limit
1566 * @q: the queue
1567 * @rq: the request being checked
1568 *
1569 * Description:
1570 * @rq may have been made based on weaker limitations of upper-level queues
1571 * in request stacking drivers, and it may violate the limitation of @q.
1572 * Since the block layer and the underlying device driver trust @rq
1573 * after it is inserted to @q, it should be checked against @q before
1574 * the insertion using this generic function.
1575 *
1576 * This function should also be useful for request stacking drivers
1577 * in some cases below, so export this fuction.
1578 * Request stacking drivers like request-based dm may change the queue
1579 * limits while requests are in the queue (e.g. dm's table swapping).
1580 * Such request stacking drivers should check those requests agaist
1581 * the new queue limits again when they dispatch those requests,
1582 * although such checkings are also done against the old queue limits
1583 * when submitting requests.
1584 */
1585int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1586{
1587 if (rq->nr_sectors > q->max_sectors ||
1588 rq->data_len > q->max_hw_sectors << 9) {
1589 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1590 return -EIO;
1591 }
1592
1593 /*
1594 * queue's settings related to segment counting like q->bounce_pfn
1595 * may differ from that of other stacking queues.
1596 * Recalculate it to check the request correctly on this queue's
1597 * limitation.
1598 */
1599 blk_recalc_rq_segments(rq);
1600 if (rq->nr_phys_segments > q->max_phys_segments ||
1601 rq->nr_phys_segments > q->max_hw_segments) {
1602 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1603 return -EIO;
1604 }
1605
1606 return 0;
1607}
1608EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1609
1610/**
1611 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1612 * @q: the queue to submit the request
1613 * @rq: the request being queued
1614 */
1615int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1616{
1617 unsigned long flags;
1618
1619 if (blk_rq_check_limits(q, rq))
1620 return -EIO;
1621
1622#ifdef CONFIG_FAIL_MAKE_REQUEST
1623 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1624 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1625 return -EIO;
1626#endif
1627
1628 spin_lock_irqsave(q->queue_lock, flags);
1629
1630 /*
1631 * Submitting request must be dequeued before calling this function
1632 * because it will be linked to another request_queue
1633 */
1634 BUG_ON(blk_queued_rq(rq));
1635
1636 drive_stat_acct(rq, 1);
1637 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1638
1639 spin_unlock_irqrestore(q->queue_lock, flags);
1640
1641 return 0;
1642}
1643EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1644
53a08807
TH
1645/**
1646 * blkdev_dequeue_request - dequeue request and start timeout timer
1647 * @req: request to dequeue
1648 *
1649 * Dequeue @req and start timeout timer on it. This hands off the
1650 * request to the driver.
1651 *
1652 * Block internal functions which don't want to start timer should
1653 * call elv_dequeue_request().
1654 */
1655void blkdev_dequeue_request(struct request *req)
1656{
1657 elv_dequeue_request(req->q, req);
1658
1659 /*
1660 * We are now handing the request to the hardware, add the
1661 * timeout handler.
1662 */
1663 blk_add_timer(req);
1664}
1665EXPORT_SYMBOL(blkdev_dequeue_request);
1666
bc58ba94
JA
1667static void blk_account_io_completion(struct request *req, unsigned int bytes)
1668{
26308eab 1669 if (!blk_do_io_stat(req))
bc58ba94
JA
1670 return;
1671
1672 if (blk_fs_request(req)) {
1673 const int rw = rq_data_dir(req);
1674 struct hd_struct *part;
1675 int cpu;
1676
1677 cpu = part_stat_lock();
1678 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1679 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1680 part_stat_unlock();
1681 }
1682}
1683
1684static void blk_account_io_done(struct request *req)
1685{
26308eab 1686 if (!blk_do_io_stat(req))
bc58ba94
JA
1687 return;
1688
1689 /*
1690 * Account IO completion. bar_rq isn't accounted as a normal
1691 * IO on queueing nor completion. Accounting the containing
1692 * request is enough.
1693 */
1694 if (blk_fs_request(req) && req != &req->q->bar_rq) {
1695 unsigned long duration = jiffies - req->start_time;
1696 const int rw = rq_data_dir(req);
1697 struct hd_struct *part;
1698 int cpu;
1699
1700 cpu = part_stat_lock();
26308eab 1701 part = disk_map_sector_rcu(req->rq_disk, req->sector);
bc58ba94
JA
1702
1703 part_stat_inc(cpu, part, ios[rw]);
1704 part_stat_add(cpu, part, ticks[rw], duration);
1705 part_round_stats(cpu, part);
1706 part_dec_in_flight(part);
1707
1708 part_stat_unlock();
1709 }
1710}
1711
3bcddeac
KU
1712/**
1713 * __end_that_request_first - end I/O on a request
1714 * @req: the request being processed
710027a4 1715 * @error: %0 for success, < %0 for error
3bcddeac
KU
1716 * @nr_bytes: number of bytes to complete
1717 *
1718 * Description:
1719 * Ends I/O on a number of bytes attached to @req, and sets it up
1720 * for the next range of segments (if any) in the cluster.
1721 *
1722 * Return:
710027a4
RD
1723 * %0 - we are done with this request, call end_that_request_last()
1724 * %1 - still buffers pending for this request
3bcddeac 1725 **/
5450d3e1 1726static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1727 int nr_bytes)
1728{
5450d3e1 1729 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1730 struct bio *bio;
1731
5f3ea37c 1732 trace_block_rq_complete(req->q, req);
2056a782 1733
1da177e4 1734 /*
6f41469c
TH
1735 * For fs requests, rq is just carrier of independent bio's
1736 * and each partial completion should be handled separately.
1737 * Reset per-request error on each partial completion.
1738 *
1739 * TODO: tj: This is too subtle. It would be better to let
1740 * low level drivers do what they see fit.
1da177e4 1741 */
6f41469c 1742 if (blk_fs_request(req))
1da177e4
LT
1743 req->errors = 0;
1744
6728cb0e
JA
1745 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1746 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1747 req->rq_disk ? req->rq_disk->disk_name : "?",
1748 (unsigned long long)req->sector);
1749 }
1750
bc58ba94 1751 blk_account_io_completion(req, nr_bytes);
d72d904a 1752
1da177e4
LT
1753 total_bytes = bio_nbytes = 0;
1754 while ((bio = req->bio) != NULL) {
1755 int nbytes;
1756
1757 if (nr_bytes >= bio->bi_size) {
1758 req->bio = bio->bi_next;
1759 nbytes = bio->bi_size;
5bb23a68 1760 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1761 next_idx = 0;
1762 bio_nbytes = 0;
1763 } else {
1764 int idx = bio->bi_idx + next_idx;
1765
af498d7f 1766 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1767 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1768 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1769 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1770 break;
1771 }
1772
1773 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1774 BIO_BUG_ON(nbytes > bio->bi_size);
1775
1776 /*
1777 * not a complete bvec done
1778 */
1779 if (unlikely(nbytes > nr_bytes)) {
1780 bio_nbytes += nr_bytes;
1781 total_bytes += nr_bytes;
1782 break;
1783 }
1784
1785 /*
1786 * advance to the next vector
1787 */
1788 next_idx++;
1789 bio_nbytes += nbytes;
1790 }
1791
1792 total_bytes += nbytes;
1793 nr_bytes -= nbytes;
1794
6728cb0e
JA
1795 bio = req->bio;
1796 if (bio) {
1da177e4
LT
1797 /*
1798 * end more in this run, or just return 'not-done'
1799 */
1800 if (unlikely(nr_bytes <= 0))
1801 break;
1802 }
1803 }
1804
1805 /*
1806 * completely done
1807 */
1808 if (!req->bio)
1809 return 0;
1810
1811 /*
1812 * if the request wasn't completed, update state
1813 */
1814 if (bio_nbytes) {
5bb23a68 1815 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1816 bio->bi_idx += next_idx;
1817 bio_iovec(bio)->bv_offset += nr_bytes;
1818 bio_iovec(bio)->bv_len -= nr_bytes;
1819 }
1820
1821 blk_recalc_rq_sectors(req, total_bytes >> 9);
1822 blk_recalc_rq_segments(req);
1823 return 1;
1824}
1825
1da177e4
LT
1826/*
1827 * queue lock must be held
1828 */
5450d3e1 1829static void end_that_request_last(struct request *req, int error)
1da177e4 1830{
b8286239
KU
1831 if (blk_rq_tagged(req))
1832 blk_queue_end_tag(req->q, req);
1833
1834 if (blk_queued_rq(req))
53a08807 1835 elv_dequeue_request(req->q, req);
1da177e4
LT
1836
1837 if (unlikely(laptop_mode) && blk_fs_request(req))
1838 laptop_io_completion();
1839
e78042e5
MA
1840 blk_delete_timer(req);
1841
bc58ba94 1842 blk_account_io_done(req);
b8286239 1843
1da177e4 1844 if (req->end_io)
8ffdc655 1845 req->end_io(req, error);
b8286239
KU
1846 else {
1847 if (blk_bidi_rq(req))
1848 __blk_put_request(req->next_rq->q, req->next_rq);
1849
1da177e4 1850 __blk_put_request(req->q, req);
b8286239 1851 }
1da177e4
LT
1852}
1853
3b11313a
KU
1854/**
1855 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1856 * @rq: the request being processed
3b11313a
KU
1857 **/
1858unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1859{
1860 if (blk_fs_request(rq))
1861 return rq->hard_nr_sectors << 9;
1862
1863 return rq->data_len;
1864}
3b11313a
KU
1865EXPORT_SYMBOL_GPL(blk_rq_bytes);
1866
1867/**
1868 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1869 * @rq: the request being processed
3b11313a
KU
1870 **/
1871unsigned int blk_rq_cur_bytes(struct request *rq)
1872{
1873 if (blk_fs_request(rq))
1874 return rq->current_nr_sectors << 9;
1875
1876 if (rq->bio)
1877 return rq->bio->bi_size;
1878
1879 return rq->data_len;
1880}
1881EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1882
a0cd1285
JA
1883/**
1884 * end_request - end I/O on the current segment of the request
8f731f7d 1885 * @req: the request being processed
710027a4 1886 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1887 *
1888 * Description:
1889 * Ends I/O on the current segment of a request. If that is the only
1890 * remaining segment, the request is also completed and freed.
1891 *
710027a4
RD
1892 * This is a remnant of how older block drivers handled I/O completions.
1893 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1894 * they have a residual value to account for. For that case this function
1895 * isn't really useful, unless the residual just happens to be the
1896 * full current segment. In other words, don't use this function in new
d00e29fd 1897 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1898 **/
1899void end_request(struct request *req, int uptodate)
1900{
d00e29fd
KU
1901 int error = 0;
1902
1903 if (uptodate <= 0)
1904 error = uptodate ? uptodate : -EIO;
1905
1906 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1907}
1da177e4
LT
1908EXPORT_SYMBOL(end_request);
1909
32fab448
KU
1910static int end_that_request_data(struct request *rq, int error,
1911 unsigned int nr_bytes, unsigned int bidi_bytes)
1912{
1913 if (rq->bio) {
1914 if (__end_that_request_first(rq, error, nr_bytes))
1915 return 1;
1916
1917 /* Bidi request must be completed as a whole */
1918 if (blk_bidi_rq(rq) &&
1919 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1920 return 1;
1921 }
1922
1923 return 0;
1924}
1925
336cdb40 1926/**
e19a3ab0
KU
1927 * blk_end_io - Generic end_io function to complete a request.
1928 * @rq: the request being processed
710027a4 1929 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1930 * @nr_bytes: number of bytes to complete @rq
1931 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1932 * @drv_callback: function called between completion of bios in the request
1933 * and completion of the request.
710027a4 1934 * If the callback returns non %0, this helper returns without
e19a3ab0 1935 * completion of the request.
336cdb40
KU
1936 *
1937 * Description:
e3a04fe3 1938 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1939 * If @rq has leftover, sets it up for the next range of segments.
1940 *
1941 * Return:
710027a4
RD
1942 * %0 - we are done with this request
1943 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1944 **/
22b13210
JA
1945static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1946 unsigned int bidi_bytes,
1947 int (drv_callback)(struct request *))
336cdb40
KU
1948{
1949 struct request_queue *q = rq->q;
1950 unsigned long flags = 0UL;
336cdb40 1951
32fab448
KU
1952 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1953 return 1;
336cdb40 1954
e19a3ab0
KU
1955 /* Special feature for tricky drivers */
1956 if (drv_callback && drv_callback(rq))
1957 return 1;
1958
336cdb40
KU
1959 add_disk_randomness(rq->rq_disk);
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1962 end_that_request_last(rq, error);
336cdb40
KU
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964
1965 return 0;
1966}
e19a3ab0
KU
1967
1968/**
1969 * blk_end_request - Helper function for drivers to complete the request.
1970 * @rq: the request being processed
710027a4 1971 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1972 * @nr_bytes: number of bytes to complete
1973 *
1974 * Description:
1975 * Ends I/O on a number of bytes attached to @rq.
1976 * If @rq has leftover, sets it up for the next range of segments.
1977 *
1978 * Return:
710027a4
RD
1979 * %0 - we are done with this request
1980 * %1 - still buffers pending for this request
e19a3ab0 1981 **/
22b13210 1982int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1983{
e3a04fe3 1984 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1985}
336cdb40
KU
1986EXPORT_SYMBOL_GPL(blk_end_request);
1987
1988/**
1989 * __blk_end_request - Helper function for drivers to complete the request.
1990 * @rq: the request being processed
710027a4 1991 * @error: %0 for success, < %0 for error
336cdb40
KU
1992 * @nr_bytes: number of bytes to complete
1993 *
1994 * Description:
1995 * Must be called with queue lock held unlike blk_end_request().
1996 *
1997 * Return:
710027a4
RD
1998 * %0 - we are done with this request
1999 * %1 - still buffers pending for this request
336cdb40 2000 **/
22b13210 2001int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 2002{
60540161 2003 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 2004 return 1;
336cdb40
KU
2005
2006 add_disk_randomness(rq->rq_disk);
2007
b8286239 2008 end_that_request_last(rq, error);
336cdb40
KU
2009
2010 return 0;
2011}
2012EXPORT_SYMBOL_GPL(__blk_end_request);
2013
e3a04fe3
KU
2014/**
2015 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2016 * @rq: the bidi request being processed
710027a4 2017 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2018 * @nr_bytes: number of bytes to complete @rq
2019 * @bidi_bytes: number of bytes to complete @rq->next_rq
2020 *
2021 * Description:
2022 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2023 *
2024 * Return:
710027a4
RD
2025 * %0 - we are done with this request
2026 * %1 - still buffers pending for this request
e3a04fe3 2027 **/
22b13210
JA
2028int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2029 unsigned int bidi_bytes)
e3a04fe3
KU
2030{
2031 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2032}
2033EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2034
32fab448
KU
2035/**
2036 * blk_update_request - Special helper function for request stacking drivers
2037 * @rq: the request being processed
2038 * @error: %0 for success, < %0 for error
2039 * @nr_bytes: number of bytes to complete @rq
2040 *
2041 * Description:
2042 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2043 * the request structure even if @rq doesn't have leftover.
2044 * If @rq has leftover, sets it up for the next range of segments.
2045 *
2046 * This special helper function is only for request stacking drivers
2047 * (e.g. request-based dm) so that they can handle partial completion.
2048 * Actual device drivers should use blk_end_request instead.
2049 */
2050void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2051{
2052 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2053 /*
2054 * These members are not updated in end_that_request_data()
2055 * when all bios are completed.
2056 * Update them so that the request stacking driver can find
2057 * how many bytes remain in the request later.
2058 */
2059 rq->nr_sectors = rq->hard_nr_sectors = 0;
2060 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2061 }
2062}
2063EXPORT_SYMBOL_GPL(blk_update_request);
2064
e19a3ab0
KU
2065/**
2066 * blk_end_request_callback - Special helper function for tricky drivers
2067 * @rq: the request being processed
710027a4 2068 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2069 * @nr_bytes: number of bytes to complete
2070 * @drv_callback: function called between completion of bios in the request
2071 * and completion of the request.
710027a4 2072 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2073 * completion of the request.
2074 *
2075 * Description:
2076 * Ends I/O on a number of bytes attached to @rq.
2077 * If @rq has leftover, sets it up for the next range of segments.
2078 *
2079 * This special helper function is used only for existing tricky drivers.
2080 * (e.g. cdrom_newpc_intr() of ide-cd)
2081 * This interface will be removed when such drivers are rewritten.
2082 * Don't use this interface in other places anymore.
2083 *
2084 * Return:
710027a4
RD
2085 * %0 - we are done with this request
2086 * %1 - this request is not freed yet.
2087 * this request still has pending buffers or
2088 * the driver doesn't want to finish this request yet.
e19a3ab0 2089 **/
22b13210
JA
2090int blk_end_request_callback(struct request *rq, int error,
2091 unsigned int nr_bytes,
e19a3ab0
KU
2092 int (drv_callback)(struct request *))
2093{
e3a04fe3 2094 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2095}
2096EXPORT_SYMBOL_GPL(blk_end_request_callback);
2097
86db1e29
JA
2098void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2099 struct bio *bio)
1da177e4 2100{
d628eaef
DW
2101 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2102 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2103 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2104
fb2dce86
DW
2105 if (bio_has_data(bio)) {
2106 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2107 rq->buffer = bio_data(bio);
2108 }
1da177e4
LT
2109 rq->current_nr_sectors = bio_cur_sectors(bio);
2110 rq->hard_cur_sectors = rq->current_nr_sectors;
2111 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2112 rq->data_len = bio->bi_size;
1da177e4
LT
2113
2114 rq->bio = rq->biotail = bio;
1da177e4 2115
66846572
N
2116 if (bio->bi_bdev)
2117 rq->rq_disk = bio->bi_bdev->bd_disk;
2118}
1da177e4 2119
ef9e3fac
KU
2120/**
2121 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2122 * @q : the queue of the device being checked
2123 *
2124 * Description:
2125 * Check if underlying low-level drivers of a device are busy.
2126 * If the drivers want to export their busy state, they must set own
2127 * exporting function using blk_queue_lld_busy() first.
2128 *
2129 * Basically, this function is used only by request stacking drivers
2130 * to stop dispatching requests to underlying devices when underlying
2131 * devices are busy. This behavior helps more I/O merging on the queue
2132 * of the request stacking driver and prevents I/O throughput regression
2133 * on burst I/O load.
2134 *
2135 * Return:
2136 * 0 - Not busy (The request stacking driver should dispatch request)
2137 * 1 - Busy (The request stacking driver should stop dispatching request)
2138 */
2139int blk_lld_busy(struct request_queue *q)
2140{
2141 if (q->lld_busy_fn)
2142 return q->lld_busy_fn(q);
2143
2144 return 0;
2145}
2146EXPORT_SYMBOL_GPL(blk_lld_busy);
2147
18887ad9 2148int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2149{
2150 return queue_work(kblockd_workqueue, work);
2151}
1da177e4
LT
2152EXPORT_SYMBOL(kblockd_schedule_work);
2153
1da177e4
LT
2154int __init blk_dev_init(void)
2155{
2156 kblockd_workqueue = create_workqueue("kblockd");
2157 if (!kblockd_workqueue)
2158 panic("Failed to create kblockd\n");
2159
2160 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2161 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2162
8324aa91 2163 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2164 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2165
d38ecf93 2166 return 0;
1da177e4 2167}
1da177e4 2168
This page took 0.897 seconds and 5 git commands to generate.