ASoC: Fix wm8753 register cache size and initialization
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
55782138 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 38
165125e1 39static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
40
41/*
42 * For the allocated request tables
43 */
5ece6c52 44static struct kmem_cache *request_cachep;
1da177e4
LT
45
46/*
47 * For queue allocation
48 */
6728cb0e 49struct kmem_cache *blk_requestq_cachep;
1da177e4 50
1da177e4
LT
51/*
52 * Controlling structure to kblockd
53 */
ff856bad 54static struct workqueue_struct *kblockd_workqueue;
1da177e4 55
26b8256e
JA
56static void drive_stat_acct(struct request *rq, int new_io)
57{
28f13702 58 struct hd_struct *part;
26b8256e 59 int rw = rq_data_dir(rq);
c9959059 60 int cpu;
26b8256e 61
c2553b58 62 if (!blk_do_io_stat(rq))
26b8256e
JA
63 return;
64
074a7aca 65 cpu = part_stat_lock();
83096ebf 66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 67
28f13702 68 if (!new_io)
074a7aca 69 part_stat_inc(cpu, part, merges[rw]);
28f13702 70 else {
074a7aca
TH
71 part_round_stats(cpu, part);
72 part_inc_in_flight(part);
26b8256e 73 }
e71bf0d0 74
074a7aca 75 part_stat_unlock();
26b8256e
JA
76}
77
8324aa91 78void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
79{
80 int nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 if (nr > q->nr_requests)
84 nr = q->nr_requests;
85 q->nr_congestion_on = nr;
86
87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 if (nr < 1)
89 nr = 1;
90 q->nr_congestion_off = nr;
91}
92
1da177e4
LT
93/**
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * @bdev: device
96 *
97 * Locates the passed device's request queue and returns the address of its
98 * backing_dev_info
99 *
100 * Will return NULL if the request queue cannot be located.
101 */
102struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103{
104 struct backing_dev_info *ret = NULL;
165125e1 105 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
106
107 if (q)
108 ret = &q->backing_dev_info;
109 return ret;
110}
1da177e4
LT
111EXPORT_SYMBOL(blk_get_backing_dev_info);
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 124 rq->cmd = rq->__cmd;
e2494e1b 125 rq->cmd_len = BLK_MAX_CDB;
63a71386 126 rq->tag = -1;
1da177e4 127 rq->ref_count = 1;
b243ddcb 128 rq->start_time = jiffies;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
5bb23a68
N
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
1da177e4 134{
165125e1 135 struct request_queue *q = rq->q;
797e7dbb 136
5bb23a68
N
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
797e7dbb 142
5bb23a68 143 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 145 __func__, nbytes, bio->bi_size);
5bb23a68
N
146 nbytes = bio->bi_size;
147 }
797e7dbb 148
08bafc03
KM
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
5bb23a68
N
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
5bb23a68 158 if (bio->bi_size == 0)
6712ecf8 159 bio_endio(bio, error);
5bb23a68
N
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
1da177e4 169}
1da177e4 170
1da177e4
LT
171void blk_dump_rq_flags(struct request *rq, char *msg)
172{
173 int bit;
174
6728cb0e 175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
1da177e4 178
83096ebf
TH
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 184
4aff5e23 185 if (blk_pc_request(rq)) {
6728cb0e 186 printk(KERN_INFO " cdb: ");
d34c87e4 187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
190 }
191}
1da177e4
LT
192EXPORT_SYMBOL(blk_dump_rq_flags);
193
1da177e4
LT
194/*
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
198 *
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
201 */
165125e1 202void blk_plug_device(struct request_queue *q)
1da177e4
LT
203{
204 WARN_ON(!irqs_disabled());
205
206 /*
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
209 */
7daac490 210 if (blk_queue_stopped(q))
1da177e4
LT
211 return;
212
e48ec690 213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 215 trace_block_plug(q);
2056a782 216 }
1da177e4 217}
1da177e4
LT
218EXPORT_SYMBOL(blk_plug_device);
219
6c5e0c4d
JA
220/**
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
223 *
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
227 **/
228void blk_plug_device_unlocked(struct request_queue *q)
229{
230 unsigned long flags;
231
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
235}
236EXPORT_SYMBOL(blk_plug_device_unlocked);
237
1da177e4
LT
238/*
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
241 */
165125e1 242int blk_remove_plug(struct request_queue *q)
1da177e4
LT
243{
244 WARN_ON(!irqs_disabled());
245
e48ec690 246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
247 return 0;
248
249 del_timer(&q->unplug_timer);
250 return 1;
251}
1da177e4
LT
252EXPORT_SYMBOL(blk_remove_plug);
253
254/*
255 * remove the plug and let it rip..
256 */
165125e1 257void __generic_unplug_device(struct request_queue *q)
1da177e4 258{
7daac490 259 if (unlikely(blk_queue_stopped(q)))
1da177e4 260 return;
a31a9738 261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
262 return;
263
22e2c507 264 q->request_fn(q);
1da177e4 265}
1da177e4
LT
266
267/**
268 * generic_unplug_device - fire a request queue
165125e1 269 * @q: The &struct request_queue in question
1da177e4
LT
270 *
271 * Description:
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
276 * transfers started.
277 **/
165125e1 278void generic_unplug_device(struct request_queue *q)
1da177e4 279{
dbaf2c00
JA
280 if (blk_queue_plugged(q)) {
281 spin_lock_irq(q->queue_lock);
282 __generic_unplug_device(q);
283 spin_unlock_irq(q->queue_lock);
284 }
1da177e4
LT
285}
286EXPORT_SYMBOL(generic_unplug_device);
287
288static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 struct page *page)
290{
165125e1 291 struct request_queue *q = bdi->unplug_io_data;
1da177e4 292
2ad8b1ef 293 blk_unplug(q);
1da177e4
LT
294}
295
86db1e29 296void blk_unplug_work(struct work_struct *work)
1da177e4 297{
165125e1
JA
298 struct request_queue *q =
299 container_of(work, struct request_queue, unplug_work);
1da177e4 300
5f3ea37c 301 trace_block_unplug_io(q);
1da177e4
LT
302 q->unplug_fn(q);
303}
304
86db1e29 305void blk_unplug_timeout(unsigned long data)
1da177e4 306{
165125e1 307 struct request_queue *q = (struct request_queue *)data;
1da177e4 308
5f3ea37c 309 trace_block_unplug_timer(q);
18887ad9 310 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
311}
312
2ad8b1ef
AB
313void blk_unplug(struct request_queue *q)
314{
315 /*
316 * devices don't necessarily have an ->unplug_fn defined
317 */
318 if (q->unplug_fn) {
5f3ea37c 319 trace_block_unplug_io(q);
2ad8b1ef
AB
320 q->unplug_fn(q);
321 }
322}
323EXPORT_SYMBOL(blk_unplug);
324
1da177e4
LT
325/**
326 * blk_start_queue - restart a previously stopped queue
165125e1 327 * @q: The &struct request_queue in question
1da177e4
LT
328 *
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
333 **/
165125e1 334void blk_start_queue(struct request_queue *q)
1da177e4 335{
a038e253
PBG
336 WARN_ON(!irqs_disabled());
337
75ad23bc 338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 339 __blk_run_queue(q);
1da177e4 340}
1da177e4
LT
341EXPORT_SYMBOL(blk_start_queue);
342
343/**
344 * blk_stop_queue - stop a queue
165125e1 345 * @q: The &struct request_queue in question
1da177e4
LT
346 *
347 * Description:
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
356 **/
165125e1 357void blk_stop_queue(struct request_queue *q)
1da177e4
LT
358{
359 blk_remove_plug(q);
75ad23bc 360 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
361}
362EXPORT_SYMBOL(blk_stop_queue);
363
364/**
365 * blk_sync_queue - cancel any pending callbacks on a queue
366 * @q: the queue
367 *
368 * Description:
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
59c51591 373 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
374 * that its ->make_request_fn will not re-add plugging prior to calling
375 * this function.
376 *
377 */
378void blk_sync_queue(struct request_queue *q)
379{
380 del_timer_sync(&q->unplug_timer);
70ed28b9 381 del_timer_sync(&q->timeout);
64d01dc9 382 cancel_work_sync(&q->unplug_work);
1da177e4
LT
383}
384EXPORT_SYMBOL(blk_sync_queue);
385
386/**
80a4b58e 387 * __blk_run_queue - run a single device queue
1da177e4 388 * @q: The queue to run
80a4b58e
JA
389 *
390 * Description:
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
393 *
1da177e4 394 */
75ad23bc 395void __blk_run_queue(struct request_queue *q)
1da177e4 396{
1da177e4 397 blk_remove_plug(q);
dac07ec1 398
a538cd03
TH
399 if (unlikely(blk_queue_stopped(q)))
400 return;
401
402 if (elv_queue_empty(q))
403 return;
404
dac07ec1
JA
405 /*
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
408 */
a538cd03
TH
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 kblockd_schedule_work(q, &q->unplug_work);
415 }
75ad23bc
NP
416}
417EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 418
75ad23bc
NP
419/**
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
80a4b58e
JA
422 *
423 * Description:
424 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 425 * May be used to restart queueing when a request has completed.
75ad23bc
NP
426 */
427void blk_run_queue(struct request_queue *q)
428{
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
1da177e4
LT
433 spin_unlock_irqrestore(q->queue_lock, flags);
434}
435EXPORT_SYMBOL(blk_run_queue);
436
165125e1 437void blk_put_queue(struct request_queue *q)
483f4afc
AV
438{
439 kobject_put(&q->kobj);
440}
483f4afc 441
6728cb0e 442void blk_cleanup_queue(struct request_queue *q)
483f4afc 443{
e3335de9
JA
444 /*
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
449 */
450 blk_sync_queue(q);
451
483f4afc 452 mutex_lock(&q->sysfs_lock);
75ad23bc 453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
454 mutex_unlock(&q->sysfs_lock);
455
456 if (q->elevator)
457 elevator_exit(q->elevator);
458
459 blk_put_queue(q);
460}
1da177e4
LT
461EXPORT_SYMBOL(blk_cleanup_queue);
462
165125e1 463static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
464{
465 struct request_list *rl = &q->rq;
466
1faa16d2
JA
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 469 rl->elvpriv = 0;
1faa16d2
JA
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 472
1946089a
CL
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
475
476 if (!rl->rq_pool)
477 return -ENOMEM;
478
479 return 0;
480}
481
165125e1 482struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 483{
1946089a
CL
484 return blk_alloc_queue_node(gfp_mask, -1);
485}
486EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 487
165125e1 488struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 489{
165125e1 490 struct request_queue *q;
e0bf68dd 491 int err;
1946089a 492
8324aa91 493 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 494 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
495 if (!q)
496 return NULL;
497
e0bf68dd
PZ
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504
e0bf68dd
PZ
505 err = bdi_init(&q->backing_dev_info);
506 if (err) {
8324aa91 507 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
508 return NULL;
509 }
510
1da177e4 511 init_timer(&q->unplug_timer);
242f9dcb
JA
512 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
513 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 514 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 515
8324aa91 516 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 517
483f4afc 518 mutex_init(&q->sysfs_lock);
e7e72bf6 519 spin_lock_init(&q->__queue_lock);
483f4afc 520
1da177e4
LT
521 return q;
522}
1946089a 523EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
524
525/**
526 * blk_init_queue - prepare a request queue for use with a block device
527 * @rfn: The function to be called to process requests that have been
528 * placed on the queue.
529 * @lock: Request queue spin lock
530 *
531 * Description:
532 * If a block device wishes to use the standard request handling procedures,
533 * which sorts requests and coalesces adjacent requests, then it must
534 * call blk_init_queue(). The function @rfn will be called when there
535 * are requests on the queue that need to be processed. If the device
536 * supports plugging, then @rfn may not be called immediately when requests
537 * are available on the queue, but may be called at some time later instead.
538 * Plugged queues are generally unplugged when a buffer belonging to one
539 * of the requests on the queue is needed, or due to memory pressure.
540 *
541 * @rfn is not required, or even expected, to remove all requests off the
542 * queue, but only as many as it can handle at a time. If it does leave
543 * requests on the queue, it is responsible for arranging that the requests
544 * get dealt with eventually.
545 *
546 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
547 * request queue; this lock will be taken also from interrupt context, so irq
548 * disabling is needed for it.
1da177e4 549 *
710027a4 550 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
551 * it didn't succeed.
552 *
553 * Note:
554 * blk_init_queue() must be paired with a blk_cleanup_queue() call
555 * when the block device is deactivated (such as at module unload).
556 **/
1946089a 557
165125e1 558struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 559{
1946089a
CL
560 return blk_init_queue_node(rfn, lock, -1);
561}
562EXPORT_SYMBOL(blk_init_queue);
563
165125e1 564struct request_queue *
1946089a
CL
565blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
566{
165125e1 567 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
568
569 if (!q)
570 return NULL;
571
1946089a 572 q->node = node_id;
8669aafd 573 if (blk_init_free_list(q)) {
8324aa91 574 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
575 return NULL;
576 }
1da177e4 577
152587de 578 /*
579 * if caller didn't supply a lock, they get per-queue locking with
580 * our embedded lock
581 */
e7e72bf6 582 if (!lock)
152587de 583 lock = &q->__queue_lock;
152587de 584
1da177e4 585 q->request_fn = rfn;
1da177e4
LT
586 q->prep_rq_fn = NULL;
587 q->unplug_fn = generic_unplug_device;
bc58ba94 588 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
589 q->queue_lock = lock;
590
f3b144aa
JA
591 /*
592 * This also sets hw/phys segments, boundary and size
593 */
1da177e4 594 blk_queue_make_request(q, __make_request);
1da177e4 595
44ec9542
AS
596 q->sg_reserved_size = INT_MAX;
597
abf54393
FT
598 blk_set_cmd_filter_defaults(&q->cmd_filter);
599
1da177e4
LT
600 /*
601 * all done
602 */
603 if (!elevator_init(q, NULL)) {
604 blk_queue_congestion_threshold(q);
605 return q;
606 }
607
8669aafd 608 blk_put_queue(q);
1da177e4
LT
609 return NULL;
610}
1946089a 611EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 612
165125e1 613int blk_get_queue(struct request_queue *q)
1da177e4 614{
fde6ad22 615 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 616 kobject_get(&q->kobj);
1da177e4
LT
617 return 0;
618 }
619
620 return 1;
621}
1da177e4 622
165125e1 623static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 624{
4aff5e23 625 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 626 elv_put_request(q, rq);
1da177e4
LT
627 mempool_free(rq, q->rq.rq_pool);
628}
629
1ea25ecb 630static struct request *
42dad764 631blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
632{
633 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
634
635 if (!rq)
636 return NULL;
637
2a4aa30c 638 blk_rq_init(q, rq);
1afb20f3 639
42dad764 640 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 641
cb98fc8b 642 if (priv) {
cb78b285 643 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
644 mempool_free(rq, q->rq.rq_pool);
645 return NULL;
646 }
4aff5e23 647 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 648 }
1da177e4 649
cb98fc8b 650 return rq;
1da177e4
LT
651}
652
653/*
654 * ioc_batching returns true if the ioc is a valid batching request and
655 * should be given priority access to a request.
656 */
165125e1 657static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
658{
659 if (!ioc)
660 return 0;
661
662 /*
663 * Make sure the process is able to allocate at least 1 request
664 * even if the batch times out, otherwise we could theoretically
665 * lose wakeups.
666 */
667 return ioc->nr_batch_requests == q->nr_batching ||
668 (ioc->nr_batch_requests > 0
669 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
670}
671
672/*
673 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
674 * will cause the process to be a "batcher" on all queues in the system. This
675 * is the behaviour we want though - once it gets a wakeup it should be given
676 * a nice run.
677 */
165125e1 678static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
679{
680 if (!ioc || ioc_batching(q, ioc))
681 return;
682
683 ioc->nr_batch_requests = q->nr_batching;
684 ioc->last_waited = jiffies;
685}
686
1faa16d2 687static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
688{
689 struct request_list *rl = &q->rq;
690
1faa16d2
JA
691 if (rl->count[sync] < queue_congestion_off_threshold(q))
692 blk_clear_queue_congested(q, sync);
1da177e4 693
1faa16d2
JA
694 if (rl->count[sync] + 1 <= q->nr_requests) {
695 if (waitqueue_active(&rl->wait[sync]))
696 wake_up(&rl->wait[sync]);
1da177e4 697
1faa16d2 698 blk_clear_queue_full(q, sync);
1da177e4
LT
699 }
700}
701
702/*
703 * A request has just been released. Account for it, update the full and
704 * congestion status, wake up any waiters. Called under q->queue_lock.
705 */
1faa16d2 706static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
707{
708 struct request_list *rl = &q->rq;
709
1faa16d2 710 rl->count[sync]--;
cb98fc8b
TH
711 if (priv)
712 rl->elvpriv--;
1da177e4 713
1faa16d2 714 __freed_request(q, sync);
1da177e4 715
1faa16d2
JA
716 if (unlikely(rl->starved[sync ^ 1]))
717 __freed_request(q, sync ^ 1);
1da177e4
LT
718}
719
1da177e4 720/*
d6344532
NP
721 * Get a free request, queue_lock must be held.
722 * Returns NULL on failure, with queue_lock held.
723 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 724 */
165125e1 725static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 726 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
727{
728 struct request *rq = NULL;
729 struct request_list *rl = &q->rq;
88ee5ef1 730 struct io_context *ioc = NULL;
1faa16d2 731 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
732 int may_queue, priv;
733
7749a8d4 734 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
735 if (may_queue == ELV_MQUEUE_NO)
736 goto rq_starved;
737
1faa16d2
JA
738 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
739 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 740 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
741 /*
742 * The queue will fill after this allocation, so set
743 * it as full, and mark this process as "batching".
744 * This process will be allowed to complete a batch of
745 * requests, others will be blocked.
746 */
1faa16d2 747 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 748 ioc_set_batching(q, ioc);
1faa16d2 749 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
750 } else {
751 if (may_queue != ELV_MQUEUE_MUST
752 && !ioc_batching(q, ioc)) {
753 /*
754 * The queue is full and the allocating
755 * process is not a "batcher", and not
756 * exempted by the IO scheduler
757 */
758 goto out;
759 }
760 }
1da177e4 761 }
1faa16d2 762 blk_set_queue_congested(q, is_sync);
1da177e4
LT
763 }
764
082cf69e
JA
765 /*
766 * Only allow batching queuers to allocate up to 50% over the defined
767 * limit of requests, otherwise we could have thousands of requests
768 * allocated with any setting of ->nr_requests
769 */
1faa16d2 770 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 771 goto out;
fd782a4a 772
1faa16d2
JA
773 rl->count[is_sync]++;
774 rl->starved[is_sync] = 0;
cb98fc8b 775
64521d1a 776 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
777 if (priv)
778 rl->elvpriv++;
779
42dad764
JM
780 if (blk_queue_io_stat(q))
781 rw_flags |= REQ_IO_STAT;
1da177e4
LT
782 spin_unlock_irq(q->queue_lock);
783
7749a8d4 784 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 785 if (unlikely(!rq)) {
1da177e4
LT
786 /*
787 * Allocation failed presumably due to memory. Undo anything
788 * we might have messed up.
789 *
790 * Allocating task should really be put onto the front of the
791 * wait queue, but this is pretty rare.
792 */
793 spin_lock_irq(q->queue_lock);
1faa16d2 794 freed_request(q, is_sync, priv);
1da177e4
LT
795
796 /*
797 * in the very unlikely event that allocation failed and no
798 * requests for this direction was pending, mark us starved
799 * so that freeing of a request in the other direction will
800 * notice us. another possible fix would be to split the
801 * rq mempool into READ and WRITE
802 */
803rq_starved:
1faa16d2
JA
804 if (unlikely(rl->count[is_sync] == 0))
805 rl->starved[is_sync] = 1;
1da177e4 806
1da177e4
LT
807 goto out;
808 }
809
88ee5ef1
JA
810 /*
811 * ioc may be NULL here, and ioc_batching will be false. That's
812 * OK, if the queue is under the request limit then requests need
813 * not count toward the nr_batch_requests limit. There will always
814 * be some limit enforced by BLK_BATCH_TIME.
815 */
1da177e4
LT
816 if (ioc_batching(q, ioc))
817 ioc->nr_batch_requests--;
6728cb0e 818
1faa16d2 819 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 820out:
1da177e4
LT
821 return rq;
822}
823
824/*
825 * No available requests for this queue, unplug the device and wait for some
826 * requests to become available.
d6344532
NP
827 *
828 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 829 */
165125e1 830static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 831 struct bio *bio)
1da177e4 832{
1faa16d2 833 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
834 struct request *rq;
835
7749a8d4 836 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
837 while (!rq) {
838 DEFINE_WAIT(wait);
05caf8db 839 struct io_context *ioc;
1da177e4
LT
840 struct request_list *rl = &q->rq;
841
1faa16d2 842 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
843 TASK_UNINTERRUPTIBLE);
844
1faa16d2 845 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 846
05caf8db
ZY
847 __generic_unplug_device(q);
848 spin_unlock_irq(q->queue_lock);
849 io_schedule();
1da177e4 850
05caf8db
ZY
851 /*
852 * After sleeping, we become a "batching" process and
853 * will be able to allocate at least one request, and
854 * up to a big batch of them for a small period time.
855 * See ioc_batching, ioc_set_batching
856 */
857 ioc = current_io_context(GFP_NOIO, q->node);
858 ioc_set_batching(q, ioc);
d6344532 859
05caf8db 860 spin_lock_irq(q->queue_lock);
1faa16d2 861 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
862
863 rq = get_request(q, rw_flags, bio, GFP_NOIO);
864 };
1da177e4
LT
865
866 return rq;
867}
868
165125e1 869struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
870{
871 struct request *rq;
872
873 BUG_ON(rw != READ && rw != WRITE);
874
d6344532
NP
875 spin_lock_irq(q->queue_lock);
876 if (gfp_mask & __GFP_WAIT) {
22e2c507 877 rq = get_request_wait(q, rw, NULL);
d6344532 878 } else {
22e2c507 879 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
880 if (!rq)
881 spin_unlock_irq(q->queue_lock);
882 }
883 /* q->queue_lock is unlocked at this point */
1da177e4
LT
884
885 return rq;
886}
1da177e4
LT
887EXPORT_SYMBOL(blk_get_request);
888
dc72ef4a 889/**
79eb63e9 890 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 891 * @q: target request queue
79eb63e9
BH
892 * @bio: The bio describing the memory mappings that will be submitted for IO.
893 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 894 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 895 *
79eb63e9
BH
896 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
897 * type commands. Where the struct request needs to be farther initialized by
898 * the caller. It is passed a &struct bio, which describes the memory info of
899 * the I/O transfer.
dc72ef4a 900 *
79eb63e9
BH
901 * The caller of blk_make_request must make sure that bi_io_vec
902 * are set to describe the memory buffers. That bio_data_dir() will return
903 * the needed direction of the request. (And all bio's in the passed bio-chain
904 * are properly set accordingly)
905 *
906 * If called under none-sleepable conditions, mapped bio buffers must not
907 * need bouncing, by calling the appropriate masked or flagged allocator,
908 * suitable for the target device. Otherwise the call to blk_queue_bounce will
909 * BUG.
53674ac5
JA
910 *
911 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
912 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
913 * anything but the first bio in the chain. Otherwise you risk waiting for IO
914 * completion of a bio that hasn't been submitted yet, thus resulting in a
915 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
916 * of bio_alloc(), as that avoids the mempool deadlock.
917 * If possible a big IO should be split into smaller parts when allocation
918 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 919 */
79eb63e9
BH
920struct request *blk_make_request(struct request_queue *q, struct bio *bio,
921 gfp_t gfp_mask)
dc72ef4a 922{
79eb63e9
BH
923 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
924
925 if (unlikely(!rq))
926 return ERR_PTR(-ENOMEM);
927
928 for_each_bio(bio) {
929 struct bio *bounce_bio = bio;
930 int ret;
931
932 blk_queue_bounce(q, &bounce_bio);
933 ret = blk_rq_append_bio(q, rq, bounce_bio);
934 if (unlikely(ret)) {
935 blk_put_request(rq);
936 return ERR_PTR(ret);
937 }
938 }
939
940 return rq;
dc72ef4a 941}
79eb63e9 942EXPORT_SYMBOL(blk_make_request);
dc72ef4a 943
1da177e4
LT
944/**
945 * blk_requeue_request - put a request back on queue
946 * @q: request queue where request should be inserted
947 * @rq: request to be inserted
948 *
949 * Description:
950 * Drivers often keep queueing requests until the hardware cannot accept
951 * more, when that condition happens we need to put the request back
952 * on the queue. Must be called with queue lock held.
953 */
165125e1 954void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 955{
242f9dcb
JA
956 blk_delete_timer(rq);
957 blk_clear_rq_complete(rq);
5f3ea37c 958 trace_block_rq_requeue(q, rq);
2056a782 959
1da177e4
LT
960 if (blk_rq_tagged(rq))
961 blk_queue_end_tag(q, rq);
962
ba396a6c
JB
963 BUG_ON(blk_queued_rq(rq));
964
1da177e4
LT
965 elv_requeue_request(q, rq);
966}
1da177e4
LT
967EXPORT_SYMBOL(blk_requeue_request);
968
969/**
710027a4 970 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
971 * @q: request queue where request should be inserted
972 * @rq: request to be inserted
973 * @at_head: insert request at head or tail of queue
974 * @data: private data
1da177e4
LT
975 *
976 * Description:
977 * Many block devices need to execute commands asynchronously, so they don't
978 * block the whole kernel from preemption during request execution. This is
979 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
980 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
981 * be scheduled for actual execution by the request queue.
1da177e4
LT
982 *
983 * We have the option of inserting the head or the tail of the queue.
984 * Typically we use the tail for new ioctls and so forth. We use the head
985 * of the queue for things like a QUEUE_FULL message from a device, or a
986 * host that is unable to accept a particular command.
987 */
165125e1 988void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 989 int at_head, void *data)
1da177e4 990{
867d1191 991 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
992 unsigned long flags;
993
994 /*
995 * tell I/O scheduler that this isn't a regular read/write (ie it
996 * must not attempt merges on this) and that it acts as a soft
997 * barrier
998 */
4aff5e23 999 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1000
1001 rq->special = data;
1002
1003 spin_lock_irqsave(q->queue_lock, flags);
1004
1005 /*
1006 * If command is tagged, release the tag
1007 */
867d1191
TH
1008 if (blk_rq_tagged(rq))
1009 blk_queue_end_tag(q, rq);
1da177e4 1010
b238b3d4 1011 drive_stat_acct(rq, 1);
867d1191 1012 __elv_add_request(q, rq, where, 0);
a7f55792 1013 __blk_run_queue(q);
1da177e4
LT
1014 spin_unlock_irqrestore(q->queue_lock, flags);
1015}
1da177e4
LT
1016EXPORT_SYMBOL(blk_insert_request);
1017
1da177e4
LT
1018/*
1019 * add-request adds a request to the linked list.
1020 * queue lock is held and interrupts disabled, as we muck with the
1021 * request queue list.
1022 */
6728cb0e 1023static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1024{
b238b3d4 1025 drive_stat_acct(req, 1);
1da177e4 1026
1da177e4
LT
1027 /*
1028 * elevator indicated where it wants this request to be
1029 * inserted at elevator_merge time
1030 */
1031 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1032}
6728cb0e 1033
074a7aca
TH
1034static void part_round_stats_single(int cpu, struct hd_struct *part,
1035 unsigned long now)
1036{
1037 if (now == part->stamp)
1038 return;
1039
1040 if (part->in_flight) {
1041 __part_stat_add(cpu, part, time_in_queue,
1042 part->in_flight * (now - part->stamp));
1043 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1044 }
1045 part->stamp = now;
1046}
1047
1048/**
496aa8a9
RD
1049 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1050 * @cpu: cpu number for stats access
1051 * @part: target partition
1da177e4
LT
1052 *
1053 * The average IO queue length and utilisation statistics are maintained
1054 * by observing the current state of the queue length and the amount of
1055 * time it has been in this state for.
1056 *
1057 * Normally, that accounting is done on IO completion, but that can result
1058 * in more than a second's worth of IO being accounted for within any one
1059 * second, leading to >100% utilisation. To deal with that, we call this
1060 * function to do a round-off before returning the results when reading
1061 * /proc/diskstats. This accounts immediately for all queue usage up to
1062 * the current jiffies and restarts the counters again.
1063 */
c9959059 1064void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1065{
1066 unsigned long now = jiffies;
1067
074a7aca
TH
1068 if (part->partno)
1069 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1070 part_round_stats_single(cpu, part, now);
6f2576af 1071}
074a7aca 1072EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1073
1da177e4
LT
1074/*
1075 * queue lock must be held
1076 */
165125e1 1077void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1078{
1da177e4
LT
1079 if (unlikely(!q))
1080 return;
1081 if (unlikely(--req->ref_count))
1082 return;
1083
8922e16c
TH
1084 elv_completed_request(q, req);
1085
1cd96c24
BH
1086 /* this is a bio leak */
1087 WARN_ON(req->bio != NULL);
1088
1da177e4
LT
1089 /*
1090 * Request may not have originated from ll_rw_blk. if not,
1091 * it didn't come out of our reserved rq pools
1092 */
49171e5c 1093 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1094 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1095 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1096
1da177e4 1097 BUG_ON(!list_empty(&req->queuelist));
9817064b 1098 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1099
1100 blk_free_request(q, req);
1faa16d2 1101 freed_request(q, is_sync, priv);
1da177e4
LT
1102 }
1103}
6e39b69e
MC
1104EXPORT_SYMBOL_GPL(__blk_put_request);
1105
1da177e4
LT
1106void blk_put_request(struct request *req)
1107{
8922e16c 1108 unsigned long flags;
165125e1 1109 struct request_queue *q = req->q;
8922e16c 1110
52a93ba8
FT
1111 spin_lock_irqsave(q->queue_lock, flags);
1112 __blk_put_request(q, req);
1113 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1114}
1da177e4
LT
1115EXPORT_SYMBOL(blk_put_request);
1116
86db1e29 1117void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1118{
c7c22e4d 1119 req->cpu = bio->bi_comp_cpu;
4aff5e23 1120 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1121
1122 /*
1123 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1124 */
6000a368
MC
1125 if (bio_rw_ahead(bio))
1126 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1127 REQ_FAILFAST_DRIVER);
1128 if (bio_failfast_dev(bio))
1129 req->cmd_flags |= REQ_FAILFAST_DEV;
1130 if (bio_failfast_transport(bio))
1131 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1132 if (bio_failfast_driver(bio))
1133 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675 1134
fb2dce86 1135 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1136 req->cmd_flags |= REQ_DISCARD;
1137 if (bio_barrier(bio))
1138 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1139 req->q->prepare_discard_fn(req->q, req);
e17fc0a1 1140 } else if (unlikely(bio_barrier(bio)))
e4025f6c 1141 req->cmd_flags |= REQ_HARDBARRIER;
52d9e675 1142
b31dc66a 1143 if (bio_sync(bio))
4aff5e23 1144 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1145 if (bio_rw_meta(bio))
1146 req->cmd_flags |= REQ_RW_META;
aeb6fafb
JA
1147 if (bio_noidle(bio))
1148 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1149
52d9e675 1150 req->errors = 0;
a2dec7b3 1151 req->__sector = bio->bi_sector;
52d9e675 1152 req->ioprio = bio_prio(bio);
bc1c56fd 1153 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1154}
1155
644b2d99
JA
1156/*
1157 * Only disabling plugging for non-rotational devices if it does tagging
1158 * as well, otherwise we do need the proper merging
1159 */
1160static inline bool queue_should_plug(struct request_queue *q)
1161{
1162 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1163}
1164
165125e1 1165static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1166{
450991bc 1167 struct request *req;
2e46e8b2
TH
1168 int el_ret;
1169 unsigned int bytes = bio->bi_size;
51da90fc
JA
1170 const unsigned short prio = bio_prio(bio);
1171 const int sync = bio_sync(bio);
213d9417 1172 const int unplug = bio_unplug(bio);
7749a8d4 1173 int rw_flags;
1da177e4 1174
1da177e4
LT
1175 /*
1176 * low level driver can indicate that it wants pages above a
1177 * certain limit bounced to low memory (ie for highmem, or even
1178 * ISA dma in theory)
1179 */
1180 blk_queue_bounce(q, &bio);
1181
1da177e4
LT
1182 spin_lock_irq(q->queue_lock);
1183
a7384677 1184 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1185 goto get_rq;
1186
1187 el_ret = elv_merge(q, &req, bio);
1188 switch (el_ret) {
6728cb0e
JA
1189 case ELEVATOR_BACK_MERGE:
1190 BUG_ON(!rq_mergeable(req));
1da177e4 1191
6728cb0e
JA
1192 if (!ll_back_merge_fn(q, req, bio))
1193 break;
1da177e4 1194
5f3ea37c 1195 trace_block_bio_backmerge(q, bio);
2056a782 1196
6728cb0e
JA
1197 req->biotail->bi_next = bio;
1198 req->biotail = bio;
a2dec7b3 1199 req->__data_len += bytes;
6728cb0e 1200 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1201 if (!blk_rq_cpu_valid(req))
1202 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1203 drive_stat_acct(req, 0);
1204 if (!attempt_back_merge(q, req))
1205 elv_merged_request(q, req, el_ret);
1206 goto out;
1da177e4 1207
6728cb0e
JA
1208 case ELEVATOR_FRONT_MERGE:
1209 BUG_ON(!rq_mergeable(req));
1da177e4 1210
6728cb0e
JA
1211 if (!ll_front_merge_fn(q, req, bio))
1212 break;
1da177e4 1213
5f3ea37c 1214 trace_block_bio_frontmerge(q, bio);
2056a782 1215
6728cb0e
JA
1216 bio->bi_next = req->bio;
1217 req->bio = bio;
1da177e4 1218
6728cb0e
JA
1219 /*
1220 * may not be valid. if the low level driver said
1221 * it didn't need a bounce buffer then it better
1222 * not touch req->buffer either...
1223 */
1224 req->buffer = bio_data(bio);
a2dec7b3
TH
1225 req->__sector = bio->bi_sector;
1226 req->__data_len += bytes;
6728cb0e 1227 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1228 if (!blk_rq_cpu_valid(req))
1229 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1230 drive_stat_acct(req, 0);
1231 if (!attempt_front_merge(q, req))
1232 elv_merged_request(q, req, el_ret);
1233 goto out;
1234
1235 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1236 default:
1237 ;
1da177e4
LT
1238 }
1239
450991bc 1240get_rq:
7749a8d4
JA
1241 /*
1242 * This sync check and mask will be re-done in init_request_from_bio(),
1243 * but we need to set it earlier to expose the sync flag to the
1244 * rq allocator and io schedulers.
1245 */
1246 rw_flags = bio_data_dir(bio);
1247 if (sync)
1248 rw_flags |= REQ_RW_SYNC;
1249
1da177e4 1250 /*
450991bc 1251 * Grab a free request. This is might sleep but can not fail.
d6344532 1252 * Returns with the queue unlocked.
450991bc 1253 */
7749a8d4 1254 req = get_request_wait(q, rw_flags, bio);
d6344532 1255
450991bc
NP
1256 /*
1257 * After dropping the lock and possibly sleeping here, our request
1258 * may now be mergeable after it had proven unmergeable (above).
1259 * We don't worry about that case for efficiency. It won't happen
1260 * often, and the elevators are able to handle it.
1da177e4 1261 */
52d9e675 1262 init_request_from_bio(req, bio);
1da177e4 1263
450991bc 1264 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1265 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1266 bio_flagged(bio, BIO_CPU_AFFINE))
1267 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1268 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1269 blk_plug_device(q);
1da177e4
LT
1270 add_request(q, req);
1271out:
644b2d99 1272 if (unplug || !queue_should_plug(q))
1da177e4 1273 __generic_unplug_device(q);
1da177e4
LT
1274 spin_unlock_irq(q->queue_lock);
1275 return 0;
1da177e4
LT
1276}
1277
1278/*
1279 * If bio->bi_dev is a partition, remap the location
1280 */
1281static inline void blk_partition_remap(struct bio *bio)
1282{
1283 struct block_device *bdev = bio->bi_bdev;
1284
bf2de6f5 1285 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1286 struct hd_struct *p = bdev->bd_part;
1287
1da177e4
LT
1288 bio->bi_sector += p->start_sect;
1289 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1290
5f3ea37c 1291 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1292 bdev->bd_dev,
c7149d6b 1293 bio->bi_sector - p->start_sect);
1da177e4
LT
1294 }
1295}
1296
1da177e4
LT
1297static void handle_bad_sector(struct bio *bio)
1298{
1299 char b[BDEVNAME_SIZE];
1300
1301 printk(KERN_INFO "attempt to access beyond end of device\n");
1302 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1303 bdevname(bio->bi_bdev, b),
1304 bio->bi_rw,
1305 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1306 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1307
1308 set_bit(BIO_EOF, &bio->bi_flags);
1309}
1310
c17bb495
AM
1311#ifdef CONFIG_FAIL_MAKE_REQUEST
1312
1313static DECLARE_FAULT_ATTR(fail_make_request);
1314
1315static int __init setup_fail_make_request(char *str)
1316{
1317 return setup_fault_attr(&fail_make_request, str);
1318}
1319__setup("fail_make_request=", setup_fail_make_request);
1320
1321static int should_fail_request(struct bio *bio)
1322{
eddb2e26
TH
1323 struct hd_struct *part = bio->bi_bdev->bd_part;
1324
1325 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1326 return should_fail(&fail_make_request, bio->bi_size);
1327
1328 return 0;
1329}
1330
1331static int __init fail_make_request_debugfs(void)
1332{
1333 return init_fault_attr_dentries(&fail_make_request,
1334 "fail_make_request");
1335}
1336
1337late_initcall(fail_make_request_debugfs);
1338
1339#else /* CONFIG_FAIL_MAKE_REQUEST */
1340
1341static inline int should_fail_request(struct bio *bio)
1342{
1343 return 0;
1344}
1345
1346#endif /* CONFIG_FAIL_MAKE_REQUEST */
1347
c07e2b41
JA
1348/*
1349 * Check whether this bio extends beyond the end of the device.
1350 */
1351static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1352{
1353 sector_t maxsector;
1354
1355 if (!nr_sectors)
1356 return 0;
1357
1358 /* Test device or partition size, when known. */
1359 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1360 if (maxsector) {
1361 sector_t sector = bio->bi_sector;
1362
1363 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1364 /*
1365 * This may well happen - the kernel calls bread()
1366 * without checking the size of the device, e.g., when
1367 * mounting a device.
1368 */
1369 handle_bad_sector(bio);
1370 return 1;
1371 }
1372 }
1373
1374 return 0;
1375}
1376
1da177e4 1377/**
710027a4 1378 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1379 * @bio: The bio describing the location in memory and on the device.
1380 *
1381 * generic_make_request() is used to make I/O requests of block
1382 * devices. It is passed a &struct bio, which describes the I/O that needs
1383 * to be done.
1384 *
1385 * generic_make_request() does not return any status. The
1386 * success/failure status of the request, along with notification of
1387 * completion, is delivered asynchronously through the bio->bi_end_io
1388 * function described (one day) else where.
1389 *
1390 * The caller of generic_make_request must make sure that bi_io_vec
1391 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1392 * set to describe the device address, and the
1393 * bi_end_io and optionally bi_private are set to describe how
1394 * completion notification should be signaled.
1395 *
1396 * generic_make_request and the drivers it calls may use bi_next if this
1397 * bio happens to be merged with someone else, and may change bi_dev and
1398 * bi_sector for remaps as it sees fit. So the values of these fields
1399 * should NOT be depended on after the call to generic_make_request.
1400 */
d89d8796 1401static inline void __generic_make_request(struct bio *bio)
1da177e4 1402{
165125e1 1403 struct request_queue *q;
5ddfe969 1404 sector_t old_sector;
1da177e4 1405 int ret, nr_sectors = bio_sectors(bio);
2056a782 1406 dev_t old_dev;
51fd77bd 1407 int err = -EIO;
1da177e4
LT
1408
1409 might_sleep();
1da177e4 1410
c07e2b41
JA
1411 if (bio_check_eod(bio, nr_sectors))
1412 goto end_io;
1da177e4
LT
1413
1414 /*
1415 * Resolve the mapping until finished. (drivers are
1416 * still free to implement/resolve their own stacking
1417 * by explicitly returning 0)
1418 *
1419 * NOTE: we don't repeat the blk_size check for each new device.
1420 * Stacking drivers are expected to know what they are doing.
1421 */
5ddfe969 1422 old_sector = -1;
2056a782 1423 old_dev = 0;
1da177e4
LT
1424 do {
1425 char b[BDEVNAME_SIZE];
1426
1427 q = bdev_get_queue(bio->bi_bdev);
a7384677 1428 if (unlikely(!q)) {
1da177e4
LT
1429 printk(KERN_ERR
1430 "generic_make_request: Trying to access "
1431 "nonexistent block-device %s (%Lu)\n",
1432 bdevname(bio->bi_bdev, b),
1433 (long long) bio->bi_sector);
a7384677 1434 goto end_io;
1da177e4
LT
1435 }
1436
ae03bf63 1437 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1438 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1439 bdevname(bio->bi_bdev, b),
1440 bio_sectors(bio),
1441 queue_max_hw_sectors(q));
1da177e4
LT
1442 goto end_io;
1443 }
1444
fde6ad22 1445 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1446 goto end_io;
1447
c17bb495
AM
1448 if (should_fail_request(bio))
1449 goto end_io;
1450
1da177e4
LT
1451 /*
1452 * If this device has partitions, remap block n
1453 * of partition p to block n+start(p) of the disk.
1454 */
1455 blk_partition_remap(bio);
1456
7ba1ba12
MP
1457 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1458 goto end_io;
1459
5ddfe969 1460 if (old_sector != -1)
22a7c31a 1461 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1462
5f3ea37c 1463 trace_block_bio_queue(q, bio);
2056a782 1464
5ddfe969 1465 old_sector = bio->bi_sector;
2056a782
JA
1466 old_dev = bio->bi_bdev->bd_dev;
1467
c07e2b41
JA
1468 if (bio_check_eod(bio, nr_sectors))
1469 goto end_io;
a7384677
TH
1470
1471 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1472 err = -EOPNOTSUPP;
1473 goto end_io;
1474 }
cec0707e
JA
1475 if (bio_barrier(bio) && bio_has_data(bio) &&
1476 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1477 err = -EOPNOTSUPP;
1478 goto end_io;
1479 }
5ddfe969 1480
1da177e4
LT
1481 ret = q->make_request_fn(q, bio);
1482 } while (ret);
a7384677
TH
1483
1484 return;
1485
1486end_io:
1487 bio_endio(bio, err);
1da177e4
LT
1488}
1489
d89d8796
NB
1490/*
1491 * We only want one ->make_request_fn to be active at a time,
1492 * else stack usage with stacked devices could be a problem.
1493 * So use current->bio_{list,tail} to keep a list of requests
1494 * submited by a make_request_fn function.
1495 * current->bio_tail is also used as a flag to say if
1496 * generic_make_request is currently active in this task or not.
1497 * If it is NULL, then no make_request is active. If it is non-NULL,
1498 * then a make_request is active, and new requests should be added
1499 * at the tail
1500 */
1501void generic_make_request(struct bio *bio)
1502{
1503 if (current->bio_tail) {
1504 /* make_request is active */
1505 *(current->bio_tail) = bio;
1506 bio->bi_next = NULL;
1507 current->bio_tail = &bio->bi_next;
1508 return;
1509 }
1510 /* following loop may be a bit non-obvious, and so deserves some
1511 * explanation.
1512 * Before entering the loop, bio->bi_next is NULL (as all callers
1513 * ensure that) so we have a list with a single bio.
1514 * We pretend that we have just taken it off a longer list, so
1515 * we assign bio_list to the next (which is NULL) and bio_tail
1516 * to &bio_list, thus initialising the bio_list of new bios to be
1517 * added. __generic_make_request may indeed add some more bios
1518 * through a recursive call to generic_make_request. If it
1519 * did, we find a non-NULL value in bio_list and re-enter the loop
1520 * from the top. In this case we really did just take the bio
1521 * of the top of the list (no pretending) and so fixup bio_list and
1522 * bio_tail or bi_next, and call into __generic_make_request again.
1523 *
1524 * The loop was structured like this to make only one call to
1525 * __generic_make_request (which is important as it is large and
1526 * inlined) and to keep the structure simple.
1527 */
1528 BUG_ON(bio->bi_next);
1529 do {
1530 current->bio_list = bio->bi_next;
1531 if (bio->bi_next == NULL)
1532 current->bio_tail = &current->bio_list;
1533 else
1534 bio->bi_next = NULL;
1535 __generic_make_request(bio);
1536 bio = current->bio_list;
1537 } while (bio);
1538 current->bio_tail = NULL; /* deactivate */
1539}
1da177e4
LT
1540EXPORT_SYMBOL(generic_make_request);
1541
1542/**
710027a4 1543 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1544 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1545 * @bio: The &struct bio which describes the I/O
1546 *
1547 * submit_bio() is very similar in purpose to generic_make_request(), and
1548 * uses that function to do most of the work. Both are fairly rough
710027a4 1549 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1550 *
1551 */
1552void submit_bio(int rw, struct bio *bio)
1553{
1554 int count = bio_sectors(bio);
1555
22e2c507 1556 bio->bi_rw |= rw;
1da177e4 1557
bf2de6f5
JA
1558 /*
1559 * If it's a regular read/write or a barrier with data attached,
1560 * go through the normal accounting stuff before submission.
1561 */
a9c701e5 1562 if (bio_has_data(bio)) {
bf2de6f5
JA
1563 if (rw & WRITE) {
1564 count_vm_events(PGPGOUT, count);
1565 } else {
1566 task_io_account_read(bio->bi_size);
1567 count_vm_events(PGPGIN, count);
1568 }
1569
1570 if (unlikely(block_dump)) {
1571 char b[BDEVNAME_SIZE];
1572 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1573 current->comm, task_pid_nr(current),
bf2de6f5
JA
1574 (rw & WRITE) ? "WRITE" : "READ",
1575 (unsigned long long)bio->bi_sector,
6728cb0e 1576 bdevname(bio->bi_bdev, b));
bf2de6f5 1577 }
1da177e4
LT
1578 }
1579
1580 generic_make_request(bio);
1581}
1da177e4
LT
1582EXPORT_SYMBOL(submit_bio);
1583
82124d60
KU
1584/**
1585 * blk_rq_check_limits - Helper function to check a request for the queue limit
1586 * @q: the queue
1587 * @rq: the request being checked
1588 *
1589 * Description:
1590 * @rq may have been made based on weaker limitations of upper-level queues
1591 * in request stacking drivers, and it may violate the limitation of @q.
1592 * Since the block layer and the underlying device driver trust @rq
1593 * after it is inserted to @q, it should be checked against @q before
1594 * the insertion using this generic function.
1595 *
1596 * This function should also be useful for request stacking drivers
1597 * in some cases below, so export this fuction.
1598 * Request stacking drivers like request-based dm may change the queue
1599 * limits while requests are in the queue (e.g. dm's table swapping).
1600 * Such request stacking drivers should check those requests agaist
1601 * the new queue limits again when they dispatch those requests,
1602 * although such checkings are also done against the old queue limits
1603 * when submitting requests.
1604 */
1605int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1606{
ae03bf63
MP
1607 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1608 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1609 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1610 return -EIO;
1611 }
1612
1613 /*
1614 * queue's settings related to segment counting like q->bounce_pfn
1615 * may differ from that of other stacking queues.
1616 * Recalculate it to check the request correctly on this queue's
1617 * limitation.
1618 */
1619 blk_recalc_rq_segments(rq);
ae03bf63
MP
1620 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1621 rq->nr_phys_segments > queue_max_hw_segments(q)) {
82124d60
KU
1622 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1623 return -EIO;
1624 }
1625
1626 return 0;
1627}
1628EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1629
1630/**
1631 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1632 * @q: the queue to submit the request
1633 * @rq: the request being queued
1634 */
1635int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1636{
1637 unsigned long flags;
1638
1639 if (blk_rq_check_limits(q, rq))
1640 return -EIO;
1641
1642#ifdef CONFIG_FAIL_MAKE_REQUEST
1643 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1644 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1645 return -EIO;
1646#endif
1647
1648 spin_lock_irqsave(q->queue_lock, flags);
1649
1650 /*
1651 * Submitting request must be dequeued before calling this function
1652 * because it will be linked to another request_queue
1653 */
1654 BUG_ON(blk_queued_rq(rq));
1655
1656 drive_stat_acct(rq, 1);
1657 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1658
1659 spin_unlock_irqrestore(q->queue_lock, flags);
1660
1661 return 0;
1662}
1663EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1664
bc58ba94
JA
1665static void blk_account_io_completion(struct request *req, unsigned int bytes)
1666{
c2553b58 1667 if (blk_do_io_stat(req)) {
bc58ba94
JA
1668 const int rw = rq_data_dir(req);
1669 struct hd_struct *part;
1670 int cpu;
1671
1672 cpu = part_stat_lock();
83096ebf 1673 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1674 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1675 part_stat_unlock();
1676 }
1677}
1678
1679static void blk_account_io_done(struct request *req)
1680{
bc58ba94
JA
1681 /*
1682 * Account IO completion. bar_rq isn't accounted as a normal
1683 * IO on queueing nor completion. Accounting the containing
1684 * request is enough.
1685 */
c2553b58 1686 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1687 unsigned long duration = jiffies - req->start_time;
1688 const int rw = rq_data_dir(req);
1689 struct hd_struct *part;
1690 int cpu;
1691
1692 cpu = part_stat_lock();
83096ebf 1693 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1694
1695 part_stat_inc(cpu, part, ios[rw]);
1696 part_stat_add(cpu, part, ticks[rw], duration);
1697 part_round_stats(cpu, part);
1698 part_dec_in_flight(part);
1699
1700 part_stat_unlock();
1701 }
1702}
1703
3bcddeac 1704/**
9934c8c0
TH
1705 * blk_peek_request - peek at the top of a request queue
1706 * @q: request queue to peek at
1707 *
1708 * Description:
1709 * Return the request at the top of @q. The returned request
1710 * should be started using blk_start_request() before LLD starts
1711 * processing it.
1712 *
1713 * Return:
1714 * Pointer to the request at the top of @q if available. Null
1715 * otherwise.
1716 *
1717 * Context:
1718 * queue_lock must be held.
1719 */
1720struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1721{
1722 struct request *rq;
1723 int ret;
1724
1725 while ((rq = __elv_next_request(q)) != NULL) {
1726 if (!(rq->cmd_flags & REQ_STARTED)) {
1727 /*
1728 * This is the first time the device driver
1729 * sees this request (possibly after
1730 * requeueing). Notify IO scheduler.
1731 */
1732 if (blk_sorted_rq(rq))
1733 elv_activate_rq(q, rq);
1734
1735 /*
1736 * just mark as started even if we don't start
1737 * it, a request that has been delayed should
1738 * not be passed by new incoming requests
1739 */
1740 rq->cmd_flags |= REQ_STARTED;
1741 trace_block_rq_issue(q, rq);
1742 }
1743
1744 if (!q->boundary_rq || q->boundary_rq == rq) {
1745 q->end_sector = rq_end_sector(rq);
1746 q->boundary_rq = NULL;
1747 }
1748
1749 if (rq->cmd_flags & REQ_DONTPREP)
1750 break;
1751
2e46e8b2 1752 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1753 /*
1754 * make sure space for the drain appears we
1755 * know we can do this because max_hw_segments
1756 * has been adjusted to be one fewer than the
1757 * device can handle
1758 */
1759 rq->nr_phys_segments++;
1760 }
1761
1762 if (!q->prep_rq_fn)
1763 break;
1764
1765 ret = q->prep_rq_fn(q, rq);
1766 if (ret == BLKPREP_OK) {
1767 break;
1768 } else if (ret == BLKPREP_DEFER) {
1769 /*
1770 * the request may have been (partially) prepped.
1771 * we need to keep this request in the front to
1772 * avoid resource deadlock. REQ_STARTED will
1773 * prevent other fs requests from passing this one.
1774 */
2e46e8b2 1775 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1776 !(rq->cmd_flags & REQ_DONTPREP)) {
1777 /*
1778 * remove the space for the drain we added
1779 * so that we don't add it again
1780 */
1781 --rq->nr_phys_segments;
1782 }
1783
1784 rq = NULL;
1785 break;
1786 } else if (ret == BLKPREP_KILL) {
1787 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1788 /*
1789 * Mark this request as started so we don't trigger
1790 * any debug logic in the end I/O path.
1791 */
1792 blk_start_request(rq);
40cbbb78 1793 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1794 } else {
1795 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1796 break;
1797 }
1798 }
1799
1800 return rq;
1801}
9934c8c0 1802EXPORT_SYMBOL(blk_peek_request);
158dbda0 1803
9934c8c0 1804void blk_dequeue_request(struct request *rq)
158dbda0 1805{
9934c8c0
TH
1806 struct request_queue *q = rq->q;
1807
158dbda0
TH
1808 BUG_ON(list_empty(&rq->queuelist));
1809 BUG_ON(ELV_ON_HASH(rq));
1810
1811 list_del_init(&rq->queuelist);
1812
1813 /*
1814 * the time frame between a request being removed from the lists
1815 * and to it is freed is accounted as io that is in progress at
1816 * the driver side.
1817 */
1818 if (blk_account_rq(rq))
0a7ae2ff 1819 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
1820}
1821
9934c8c0
TH
1822/**
1823 * blk_start_request - start request processing on the driver
1824 * @req: request to dequeue
1825 *
1826 * Description:
1827 * Dequeue @req and start timeout timer on it. This hands off the
1828 * request to the driver.
1829 *
1830 * Block internal functions which don't want to start timer should
1831 * call blk_dequeue_request().
1832 *
1833 * Context:
1834 * queue_lock must be held.
1835 */
1836void blk_start_request(struct request *req)
1837{
1838 blk_dequeue_request(req);
1839
1840 /*
5f49f631
TH
1841 * We are now handing the request to the hardware, initialize
1842 * resid_len to full count and add the timeout handler.
9934c8c0 1843 */
5f49f631 1844 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1845 if (unlikely(blk_bidi_rq(req)))
1846 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1847
9934c8c0
TH
1848 blk_add_timer(req);
1849}
1850EXPORT_SYMBOL(blk_start_request);
1851
1852/**
1853 * blk_fetch_request - fetch a request from a request queue
1854 * @q: request queue to fetch a request from
1855 *
1856 * Description:
1857 * Return the request at the top of @q. The request is started on
1858 * return and LLD can start processing it immediately.
1859 *
1860 * Return:
1861 * Pointer to the request at the top of @q if available. Null
1862 * otherwise.
1863 *
1864 * Context:
1865 * queue_lock must be held.
1866 */
1867struct request *blk_fetch_request(struct request_queue *q)
1868{
1869 struct request *rq;
1870
1871 rq = blk_peek_request(q);
1872 if (rq)
1873 blk_start_request(rq);
1874 return rq;
1875}
1876EXPORT_SYMBOL(blk_fetch_request);
1877
3bcddeac 1878/**
2e60e022 1879 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1880 * @req: the request being processed
710027a4 1881 * @error: %0 for success, < %0 for error
8ebf9756 1882 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1883 *
1884 * Description:
8ebf9756
RD
1885 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1886 * the request structure even if @req doesn't have leftover.
1887 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1888 *
1889 * This special helper function is only for request stacking drivers
1890 * (e.g. request-based dm) so that they can handle partial completion.
1891 * Actual device drivers should use blk_end_request instead.
1892 *
1893 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1894 * %false return from this function.
3bcddeac
KU
1895 *
1896 * Return:
2e60e022
TH
1897 * %false - this request doesn't have any more data
1898 * %true - this request has more data
3bcddeac 1899 **/
2e60e022 1900bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1901{
5450d3e1 1902 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1903 struct bio *bio;
1904
2e60e022
TH
1905 if (!req->bio)
1906 return false;
1907
5f3ea37c 1908 trace_block_rq_complete(req->q, req);
2056a782 1909
1da177e4 1910 /*
6f41469c
TH
1911 * For fs requests, rq is just carrier of independent bio's
1912 * and each partial completion should be handled separately.
1913 * Reset per-request error on each partial completion.
1914 *
1915 * TODO: tj: This is too subtle. It would be better to let
1916 * low level drivers do what they see fit.
1da177e4 1917 */
6f41469c 1918 if (blk_fs_request(req))
1da177e4
LT
1919 req->errors = 0;
1920
6728cb0e
JA
1921 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1922 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1923 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1924 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1925 }
1926
bc58ba94 1927 blk_account_io_completion(req, nr_bytes);
d72d904a 1928
1da177e4
LT
1929 total_bytes = bio_nbytes = 0;
1930 while ((bio = req->bio) != NULL) {
1931 int nbytes;
1932
1933 if (nr_bytes >= bio->bi_size) {
1934 req->bio = bio->bi_next;
1935 nbytes = bio->bi_size;
5bb23a68 1936 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1937 next_idx = 0;
1938 bio_nbytes = 0;
1939 } else {
1940 int idx = bio->bi_idx + next_idx;
1941
af498d7f 1942 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1943 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1944 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1945 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1946 break;
1947 }
1948
1949 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1950 BIO_BUG_ON(nbytes > bio->bi_size);
1951
1952 /*
1953 * not a complete bvec done
1954 */
1955 if (unlikely(nbytes > nr_bytes)) {
1956 bio_nbytes += nr_bytes;
1957 total_bytes += nr_bytes;
1958 break;
1959 }
1960
1961 /*
1962 * advance to the next vector
1963 */
1964 next_idx++;
1965 bio_nbytes += nbytes;
1966 }
1967
1968 total_bytes += nbytes;
1969 nr_bytes -= nbytes;
1970
6728cb0e
JA
1971 bio = req->bio;
1972 if (bio) {
1da177e4
LT
1973 /*
1974 * end more in this run, or just return 'not-done'
1975 */
1976 if (unlikely(nr_bytes <= 0))
1977 break;
1978 }
1979 }
1980
1981 /*
1982 * completely done
1983 */
2e60e022
TH
1984 if (!req->bio) {
1985 /*
1986 * Reset counters so that the request stacking driver
1987 * can find how many bytes remain in the request
1988 * later.
1989 */
a2dec7b3 1990 req->__data_len = 0;
2e60e022
TH
1991 return false;
1992 }
1da177e4
LT
1993
1994 /*
1995 * if the request wasn't completed, update state
1996 */
1997 if (bio_nbytes) {
5bb23a68 1998 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1999 bio->bi_idx += next_idx;
2000 bio_iovec(bio)->bv_offset += nr_bytes;
2001 bio_iovec(bio)->bv_len -= nr_bytes;
2002 }
2003
a2dec7b3 2004 req->__data_len -= total_bytes;
2e46e8b2
TH
2005 req->buffer = bio_data(req->bio);
2006
2007 /* update sector only for requests with clear definition of sector */
2008 if (blk_fs_request(req) || blk_discard_rq(req))
a2dec7b3 2009 req->__sector += total_bytes >> 9;
2e46e8b2
TH
2010
2011 /*
2012 * If total number of sectors is less than the first segment
2013 * size, something has gone terribly wrong.
2014 */
2015 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2016 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2017 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2018 }
2019
2020 /* recalculate the number of segments */
1da177e4 2021 blk_recalc_rq_segments(req);
2e46e8b2 2022
2e60e022 2023 return true;
1da177e4 2024}
2e60e022 2025EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2026
2e60e022
TH
2027static bool blk_update_bidi_request(struct request *rq, int error,
2028 unsigned int nr_bytes,
2029 unsigned int bidi_bytes)
5efccd17 2030{
2e60e022
TH
2031 if (blk_update_request(rq, error, nr_bytes))
2032 return true;
5efccd17 2033
2e60e022
TH
2034 /* Bidi request must be completed as a whole */
2035 if (unlikely(blk_bidi_rq(rq)) &&
2036 blk_update_request(rq->next_rq, error, bidi_bytes))
2037 return true;
5efccd17 2038
2e60e022
TH
2039 add_disk_randomness(rq->rq_disk);
2040
2041 return false;
1da177e4
LT
2042}
2043
1da177e4
LT
2044/*
2045 * queue lock must be held
2046 */
2e60e022 2047static void blk_finish_request(struct request *req, int error)
1da177e4 2048{
b8286239
KU
2049 if (blk_rq_tagged(req))
2050 blk_queue_end_tag(req->q, req);
2051
ba396a6c 2052 BUG_ON(blk_queued_rq(req));
1da177e4
LT
2053
2054 if (unlikely(laptop_mode) && blk_fs_request(req))
2055 laptop_io_completion();
2056
e78042e5
MA
2057 blk_delete_timer(req);
2058
bc58ba94 2059 blk_account_io_done(req);
b8286239 2060
1da177e4 2061 if (req->end_io)
8ffdc655 2062 req->end_io(req, error);
b8286239
KU
2063 else {
2064 if (blk_bidi_rq(req))
2065 __blk_put_request(req->next_rq->q, req->next_rq);
2066
1da177e4 2067 __blk_put_request(req->q, req);
b8286239 2068 }
1da177e4
LT
2069}
2070
3b11313a 2071/**
2e60e022
TH
2072 * blk_end_bidi_request - Complete a bidi request
2073 * @rq: the request to complete
2074 * @error: %0 for success, < %0 for error
2075 * @nr_bytes: number of bytes to complete @rq
2076 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2077 *
2078 * Description:
e3a04fe3 2079 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2080 * Drivers that supports bidi can safely call this member for any
2081 * type of request, bidi or uni. In the later case @bidi_bytes is
2082 * just ignored.
336cdb40
KU
2083 *
2084 * Return:
2e60e022
TH
2085 * %false - we are done with this request
2086 * %true - still buffers pending for this request
a0cd1285 2087 **/
b1f74493 2088static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2089 unsigned int nr_bytes, unsigned int bidi_bytes)
2090{
336cdb40 2091 struct request_queue *q = rq->q;
2e60e022 2092 unsigned long flags;
32fab448 2093
2e60e022
TH
2094 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2095 return true;
32fab448 2096
336cdb40 2097 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2098 blk_finish_request(rq, error);
336cdb40
KU
2099 spin_unlock_irqrestore(q->queue_lock, flags);
2100
2e60e022 2101 return false;
32fab448
KU
2102}
2103
336cdb40 2104/**
2e60e022
TH
2105 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2106 * @rq: the request to complete
710027a4 2107 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2108 * @nr_bytes: number of bytes to complete @rq
2109 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2110 *
2111 * Description:
2e60e022
TH
2112 * Identical to blk_end_bidi_request() except that queue lock is
2113 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2114 *
2115 * Return:
2e60e022
TH
2116 * %false - we are done with this request
2117 * %true - still buffers pending for this request
336cdb40 2118 **/
b1f74493
FT
2119static bool __blk_end_bidi_request(struct request *rq, int error,
2120 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2121{
2e60e022
TH
2122 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2123 return true;
336cdb40 2124
2e60e022 2125 blk_finish_request(rq, error);
336cdb40 2126
2e60e022 2127 return false;
336cdb40 2128}
e19a3ab0
KU
2129
2130/**
2131 * blk_end_request - Helper function for drivers to complete the request.
2132 * @rq: the request being processed
710027a4 2133 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2134 * @nr_bytes: number of bytes to complete
2135 *
2136 * Description:
2137 * Ends I/O on a number of bytes attached to @rq.
2138 * If @rq has leftover, sets it up for the next range of segments.
2139 *
2140 * Return:
b1f74493
FT
2141 * %false - we are done with this request
2142 * %true - still buffers pending for this request
e19a3ab0 2143 **/
b1f74493 2144bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2145{
b1f74493 2146 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2147}
336cdb40
KU
2148EXPORT_SYMBOL_GPL(blk_end_request);
2149
2150/**
b1f74493
FT
2151 * blk_end_request_all - Helper function for drives to finish the request.
2152 * @rq: the request to finish
8ebf9756 2153 * @error: %0 for success, < %0 for error
336cdb40
KU
2154 *
2155 * Description:
b1f74493
FT
2156 * Completely finish @rq.
2157 */
2158void blk_end_request_all(struct request *rq, int error)
336cdb40 2159{
b1f74493
FT
2160 bool pending;
2161 unsigned int bidi_bytes = 0;
336cdb40 2162
b1f74493
FT
2163 if (unlikely(blk_bidi_rq(rq)))
2164 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2165
b1f74493
FT
2166 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2167 BUG_ON(pending);
2168}
2169EXPORT_SYMBOL_GPL(blk_end_request_all);
336cdb40 2170
b1f74493
FT
2171/**
2172 * blk_end_request_cur - Helper function to finish the current request chunk.
2173 * @rq: the request to finish the current chunk for
8ebf9756 2174 * @error: %0 for success, < %0 for error
b1f74493
FT
2175 *
2176 * Description:
2177 * Complete the current consecutively mapped chunk from @rq.
2178 *
2179 * Return:
2180 * %false - we are done with this request
2181 * %true - still buffers pending for this request
2182 */
2183bool blk_end_request_cur(struct request *rq, int error)
2184{
2185 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2186}
b1f74493 2187EXPORT_SYMBOL_GPL(blk_end_request_cur);
336cdb40 2188
e3a04fe3 2189/**
b1f74493
FT
2190 * __blk_end_request - Helper function for drivers to complete the request.
2191 * @rq: the request being processed
2192 * @error: %0 for success, < %0 for error
2193 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2194 *
2195 * Description:
b1f74493 2196 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2197 *
2198 * Return:
b1f74493
FT
2199 * %false - we are done with this request
2200 * %true - still buffers pending for this request
e3a04fe3 2201 **/
b1f74493 2202bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2203{
b1f74493 2204 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2205}
b1f74493 2206EXPORT_SYMBOL_GPL(__blk_end_request);
e3a04fe3 2207
32fab448 2208/**
b1f74493
FT
2209 * __blk_end_request_all - Helper function for drives to finish the request.
2210 * @rq: the request to finish
8ebf9756 2211 * @error: %0 for success, < %0 for error
32fab448
KU
2212 *
2213 * Description:
b1f74493 2214 * Completely finish @rq. Must be called with queue lock held.
32fab448 2215 */
b1f74493 2216void __blk_end_request_all(struct request *rq, int error)
32fab448 2217{
b1f74493
FT
2218 bool pending;
2219 unsigned int bidi_bytes = 0;
2220
2221 if (unlikely(blk_bidi_rq(rq)))
2222 bidi_bytes = blk_rq_bytes(rq->next_rq);
2223
2224 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2225 BUG_ON(pending);
32fab448 2226}
b1f74493 2227EXPORT_SYMBOL_GPL(__blk_end_request_all);
32fab448 2228
e19a3ab0 2229/**
b1f74493
FT
2230 * __blk_end_request_cur - Helper function to finish the current request chunk.
2231 * @rq: the request to finish the current chunk for
8ebf9756 2232 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2233 *
2234 * Description:
b1f74493
FT
2235 * Complete the current consecutively mapped chunk from @rq. Must
2236 * be called with queue lock held.
e19a3ab0
KU
2237 *
2238 * Return:
b1f74493
FT
2239 * %false - we are done with this request
2240 * %true - still buffers pending for this request
2241 */
2242bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2243{
b1f74493 2244 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2245}
b1f74493 2246EXPORT_SYMBOL_GPL(__blk_end_request_cur);
e19a3ab0 2247
86db1e29
JA
2248void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2249 struct bio *bio)
1da177e4 2250{
d628eaef
DW
2251 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2252 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2253 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2254
fb2dce86
DW
2255 if (bio_has_data(bio)) {
2256 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2257 rq->buffer = bio_data(bio);
2258 }
a2dec7b3 2259 rq->__data_len = bio->bi_size;
1da177e4 2260 rq->bio = rq->biotail = bio;
1da177e4 2261
66846572
N
2262 if (bio->bi_bdev)
2263 rq->rq_disk = bio->bi_bdev->bd_disk;
2264}
1da177e4 2265
ef9e3fac
KU
2266/**
2267 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2268 * @q : the queue of the device being checked
2269 *
2270 * Description:
2271 * Check if underlying low-level drivers of a device are busy.
2272 * If the drivers want to export their busy state, they must set own
2273 * exporting function using blk_queue_lld_busy() first.
2274 *
2275 * Basically, this function is used only by request stacking drivers
2276 * to stop dispatching requests to underlying devices when underlying
2277 * devices are busy. This behavior helps more I/O merging on the queue
2278 * of the request stacking driver and prevents I/O throughput regression
2279 * on burst I/O load.
2280 *
2281 * Return:
2282 * 0 - Not busy (The request stacking driver should dispatch request)
2283 * 1 - Busy (The request stacking driver should stop dispatching request)
2284 */
2285int blk_lld_busy(struct request_queue *q)
2286{
2287 if (q->lld_busy_fn)
2288 return q->lld_busy_fn(q);
2289
2290 return 0;
2291}
2292EXPORT_SYMBOL_GPL(blk_lld_busy);
2293
b0fd271d
KU
2294/**
2295 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2296 * @rq: the clone request to be cleaned up
2297 *
2298 * Description:
2299 * Free all bios in @rq for a cloned request.
2300 */
2301void blk_rq_unprep_clone(struct request *rq)
2302{
2303 struct bio *bio;
2304
2305 while ((bio = rq->bio) != NULL) {
2306 rq->bio = bio->bi_next;
2307
2308 bio_put(bio);
2309 }
2310}
2311EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2312
2313/*
2314 * Copy attributes of the original request to the clone request.
2315 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2316 */
2317static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2318{
2319 dst->cpu = src->cpu;
2320 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2321 dst->cmd_type = src->cmd_type;
2322 dst->__sector = blk_rq_pos(src);
2323 dst->__data_len = blk_rq_bytes(src);
2324 dst->nr_phys_segments = src->nr_phys_segments;
2325 dst->ioprio = src->ioprio;
2326 dst->extra_len = src->extra_len;
2327}
2328
2329/**
2330 * blk_rq_prep_clone - Helper function to setup clone request
2331 * @rq: the request to be setup
2332 * @rq_src: original request to be cloned
2333 * @bs: bio_set that bios for clone are allocated from
2334 * @gfp_mask: memory allocation mask for bio
2335 * @bio_ctr: setup function to be called for each clone bio.
2336 * Returns %0 for success, non %0 for failure.
2337 * @data: private data to be passed to @bio_ctr
2338 *
2339 * Description:
2340 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2341 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2342 * are not copied, and copying such parts is the caller's responsibility.
2343 * Also, pages which the original bios are pointing to are not copied
2344 * and the cloned bios just point same pages.
2345 * So cloned bios must be completed before original bios, which means
2346 * the caller must complete @rq before @rq_src.
2347 */
2348int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2349 struct bio_set *bs, gfp_t gfp_mask,
2350 int (*bio_ctr)(struct bio *, struct bio *, void *),
2351 void *data)
2352{
2353 struct bio *bio, *bio_src;
2354
2355 if (!bs)
2356 bs = fs_bio_set;
2357
2358 blk_rq_init(NULL, rq);
2359
2360 __rq_for_each_bio(bio_src, rq_src) {
2361 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2362 if (!bio)
2363 goto free_and_out;
2364
2365 __bio_clone(bio, bio_src);
2366
2367 if (bio_integrity(bio_src) &&
2368 bio_integrity_clone(bio, bio_src, gfp_mask))
2369 goto free_and_out;
2370
2371 if (bio_ctr && bio_ctr(bio, bio_src, data))
2372 goto free_and_out;
2373
2374 if (rq->bio) {
2375 rq->biotail->bi_next = bio;
2376 rq->biotail = bio;
2377 } else
2378 rq->bio = rq->biotail = bio;
2379 }
2380
2381 __blk_rq_prep_clone(rq, rq_src);
2382
2383 return 0;
2384
2385free_and_out:
2386 if (bio)
2387 bio_free(bio, bs);
2388 blk_rq_unprep_clone(rq);
2389
2390 return -ENOMEM;
2391}
2392EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2393
18887ad9 2394int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2395{
2396 return queue_work(kblockd_workqueue, work);
2397}
1da177e4
LT
2398EXPORT_SYMBOL(kblockd_schedule_work);
2399
1da177e4
LT
2400int __init blk_dev_init(void)
2401{
9eb55b03
NK
2402 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2403 sizeof(((struct request *)0)->cmd_flags));
2404
1da177e4
LT
2405 kblockd_workqueue = create_workqueue("kblockd");
2406 if (!kblockd_workqueue)
2407 panic("Failed to create kblockd\n");
2408
2409 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2410 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2411
8324aa91 2412 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2413 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2414
d38ecf93 2415 return 0;
1da177e4 2416}
1da177e4 2417
This page took 0.815902 seconds and 5 git commands to generate.