md: fix up raid1/raid10 unplugging.
[deliverable/linux.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
55782138
LZ
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/block.h>
1da177e4 34
8324aa91
JA
35#include "blk.h"
36
d07335e5 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 40
165125e1 41static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
5ece6c52 46static struct kmem_cache *request_cachep;
1da177e4
LT
47
48/*
49 * For queue allocation
50 */
6728cb0e 51struct kmem_cache *blk_requestq_cachep;
1da177e4 52
1da177e4
LT
53/*
54 * Controlling structure to kblockd
55 */
ff856bad 56static struct workqueue_struct *kblockd_workqueue;
1da177e4 57
26b8256e
JA
58static void drive_stat_acct(struct request *rq, int new_io)
59{
28f13702 60 struct hd_struct *part;
26b8256e 61 int rw = rq_data_dir(rq);
c9959059 62 int cpu;
26b8256e 63
c2553b58 64 if (!blk_do_io_stat(rq))
26b8256e
JA
65 return;
66
074a7aca 67 cpu = part_stat_lock();
c9959059 68
09e099d4
JM
69 if (!new_io) {
70 part = rq->part;
074a7aca 71 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 74 if (!hd_struct_try_get(part)) {
09e099d4
JM
75 /*
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
78 *
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
82 */
83 part = &rq->rq_disk->part0;
6c23a968 84 hd_struct_get(part);
09e099d4 85 }
074a7aca 86 part_round_stats(cpu, part);
316d315b 87 part_inc_in_flight(part, rw);
09e099d4 88 rq->part = part;
26b8256e 89 }
e71bf0d0 90
074a7aca 91 part_stat_unlock();
26b8256e
JA
92}
93
8324aa91 94void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
1da177e4
LT
109/**
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
112 *
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
115 *
116 * Will return NULL if the request queue cannot be located.
117 */
118struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119{
120 struct backing_dev_info *ret = NULL;
165125e1 121 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
122
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
126}
1da177e4
LT
127EXPORT_SYMBOL(blk_get_backing_dev_info);
128
2a4aa30c 129void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 130{
1afb20f3
FT
131 memset(rq, 0, sizeof(*rq));
132
1da177e4 133 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 134 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 135 rq->cpu = -1;
63a71386 136 rq->q = q;
a2dec7b3 137 rq->__sector = (sector_t) -1;
2e662b65
JA
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 140 rq->cmd = rq->__cmd;
e2494e1b 141 rq->cmd_len = BLK_MAX_CDB;
63a71386 142 rq->tag = -1;
1da177e4 143 rq->ref_count = 1;
b243ddcb 144 rq->start_time = jiffies;
9195291e 145 set_start_time_ns(rq);
09e099d4 146 rq->part = NULL;
1da177e4 147}
2a4aa30c 148EXPORT_SYMBOL(blk_rq_init);
1da177e4 149
5bb23a68
N
150static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
1da177e4 152{
143a87f4
TH
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
797e7dbb 157
143a87f4
TH
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
5bb23a68 162 }
797e7dbb 163
143a87f4
TH
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 166
143a87f4
TH
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
7ba1ba12 169
143a87f4
TH
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
7ba1ba12 172
143a87f4
TH
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
83096ebf
TH
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 191
33659ebb 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 193 printk(KERN_INFO " cdb: ");
d34c87e4 194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
197 }
198}
1da177e4
LT
199EXPORT_SYMBOL(blk_dump_rq_flags);
200
3cca6dc1 201static void blk_delay_work(struct work_struct *work)
1da177e4 202{
3cca6dc1 203 struct request_queue *q;
1da177e4 204
3cca6dc1
JA
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
4c63f564 207 __blk_run_queue(q, false);
3cca6dc1 208 spin_unlock_irq(q->queue_lock);
1da177e4 209}
1da177e4
LT
210
211/**
3cca6dc1
JA
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
1da177e4
LT
215 *
216 * Description:
3cca6dc1
JA
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
220 */
221void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 222{
3cca6dc1 223 schedule_delayed_work(&q->delay_work, msecs_to_jiffies(msecs));
2ad8b1ef 224}
3cca6dc1 225EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 226
1da177e4
LT
227/**
228 * blk_start_queue - restart a previously stopped queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
165125e1 236void blk_start_queue(struct request_queue *q)
1da177e4 237{
a038e253
PBG
238 WARN_ON(!irqs_disabled());
239
75ad23bc 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1654e741 241 __blk_run_queue(q, false);
1da177e4 242}
1da177e4
LT
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
165125e1 247 * @q: The &struct request_queue in question
1da177e4
LT
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
165125e1 259void blk_stop_queue(struct request_queue *q)
1da177e4 260{
ad3d9d7e 261 __cancel_delayed_work(&q->delay_work);
75ad23bc 262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
59c51591 275 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
da527770
VG
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
1da177e4
LT
283 */
284void blk_sync_queue(struct request_queue *q)
285{
70ed28b9 286 del_timer_sync(&q->timeout);
3cca6dc1 287 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
288}
289EXPORT_SYMBOL(blk_sync_queue);
290
291/**
80a4b58e 292 * __blk_run_queue - run a single device queue
1da177e4 293 * @q: The queue to run
1654e741 294 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd.
80a4b58e
JA
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
99e22598
JA
298 * held and interrupts disabled. If force_kblockd is true, then it is
299 * safe to call this without holding the queue lock.
80a4b58e 300 *
1da177e4 301 */
1654e741 302void __blk_run_queue(struct request_queue *q, bool force_kblockd)
1da177e4 303{
a538cd03
TH
304 if (unlikely(blk_queue_stopped(q)))
305 return;
306
dac07ec1
JA
307 /*
308 * Only recurse once to avoid overrunning the stack, let the unplug
309 * handling reinvoke the handler shortly if we already got there.
310 */
1654e741 311 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
a538cd03
TH
312 q->request_fn(q);
313 queue_flag_clear(QUEUE_FLAG_REENTER, q);
7eaceacc
JA
314 } else
315 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
75ad23bc
NP
316}
317EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 318
75ad23bc
NP
319/**
320 * blk_run_queue - run a single device queue
321 * @q: The queue to run
80a4b58e
JA
322 *
323 * Description:
324 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 325 * May be used to restart queueing when a request has completed.
75ad23bc
NP
326 */
327void blk_run_queue(struct request_queue *q)
328{
329 unsigned long flags;
330
331 spin_lock_irqsave(q->queue_lock, flags);
1654e741 332 __blk_run_queue(q, false);
1da177e4
LT
333 spin_unlock_irqrestore(q->queue_lock, flags);
334}
335EXPORT_SYMBOL(blk_run_queue);
336
165125e1 337void blk_put_queue(struct request_queue *q)
483f4afc
AV
338{
339 kobject_put(&q->kobj);
340}
483f4afc 341
c94a96ac
VG
342/*
343 * Note: If a driver supplied the queue lock, it should not zap that lock
344 * unexpectedly as some queue cleanup components like elevator_exit() and
345 * blk_throtl_exit() need queue lock.
346 */
6728cb0e 347void blk_cleanup_queue(struct request_queue *q)
483f4afc 348{
e3335de9
JA
349 /*
350 * We know we have process context here, so we can be a little
351 * cautious and ensure that pending block actions on this device
352 * are done before moving on. Going into this function, we should
353 * not have processes doing IO to this device.
354 */
355 blk_sync_queue(q);
356
31373d09 357 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 358 mutex_lock(&q->sysfs_lock);
75ad23bc 359 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
360 mutex_unlock(&q->sysfs_lock);
361
362 if (q->elevator)
363 elevator_exit(q->elevator);
364
da527770
VG
365 blk_throtl_exit(q);
366
483f4afc
AV
367 blk_put_queue(q);
368}
1da177e4
LT
369EXPORT_SYMBOL(blk_cleanup_queue);
370
165125e1 371static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
372{
373 struct request_list *rl = &q->rq;
374
1abec4fd
MS
375 if (unlikely(rl->rq_pool))
376 return 0;
377
1faa16d2
JA
378 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
379 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 380 rl->elvpriv = 0;
1faa16d2
JA
381 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
382 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 383
1946089a
CL
384 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
385 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
386
387 if (!rl->rq_pool)
388 return -ENOMEM;
389
390 return 0;
391}
392
165125e1 393struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 394{
1946089a
CL
395 return blk_alloc_queue_node(gfp_mask, -1);
396}
397EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 398
165125e1 399struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 400{
165125e1 401 struct request_queue *q;
e0bf68dd 402 int err;
1946089a 403
8324aa91 404 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 405 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
406 if (!q)
407 return NULL;
408
0989a025
JA
409 q->backing_dev_info.ra_pages =
410 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
411 q->backing_dev_info.state = 0;
412 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 413 q->backing_dev_info.name = "block";
0989a025 414
e0bf68dd
PZ
415 err = bdi_init(&q->backing_dev_info);
416 if (err) {
8324aa91 417 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
418 return NULL;
419 }
420
e43473b7
VG
421 if (blk_throtl_init(q)) {
422 kmem_cache_free(blk_requestq_cachep, q);
423 return NULL;
424 }
425
31373d09
MG
426 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
427 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
428 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
429 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
430 INIT_LIST_HEAD(&q->flush_queue[0]);
431 INIT_LIST_HEAD(&q->flush_queue[1]);
432 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 433 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 434
8324aa91 435 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 436
483f4afc 437 mutex_init(&q->sysfs_lock);
e7e72bf6 438 spin_lock_init(&q->__queue_lock);
483f4afc 439
c94a96ac
VG
440 /*
441 * By default initialize queue_lock to internal lock and driver can
442 * override it later if need be.
443 */
444 q->queue_lock = &q->__queue_lock;
445
1da177e4
LT
446 return q;
447}
1946089a 448EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
449
450/**
451 * blk_init_queue - prepare a request queue for use with a block device
452 * @rfn: The function to be called to process requests that have been
453 * placed on the queue.
454 * @lock: Request queue spin lock
455 *
456 * Description:
457 * If a block device wishes to use the standard request handling procedures,
458 * which sorts requests and coalesces adjacent requests, then it must
459 * call blk_init_queue(). The function @rfn will be called when there
460 * are requests on the queue that need to be processed. If the device
461 * supports plugging, then @rfn may not be called immediately when requests
462 * are available on the queue, but may be called at some time later instead.
463 * Plugged queues are generally unplugged when a buffer belonging to one
464 * of the requests on the queue is needed, or due to memory pressure.
465 *
466 * @rfn is not required, or even expected, to remove all requests off the
467 * queue, but only as many as it can handle at a time. If it does leave
468 * requests on the queue, it is responsible for arranging that the requests
469 * get dealt with eventually.
470 *
471 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
472 * request queue; this lock will be taken also from interrupt context, so irq
473 * disabling is needed for it.
1da177e4 474 *
710027a4 475 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
476 * it didn't succeed.
477 *
478 * Note:
479 * blk_init_queue() must be paired with a blk_cleanup_queue() call
480 * when the block device is deactivated (such as at module unload).
481 **/
1946089a 482
165125e1 483struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 484{
1946089a
CL
485 return blk_init_queue_node(rfn, lock, -1);
486}
487EXPORT_SYMBOL(blk_init_queue);
488
165125e1 489struct request_queue *
1946089a
CL
490blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
491{
c86d1b8a 492 struct request_queue *uninit_q, *q;
1da177e4 493
c86d1b8a
MS
494 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
495 if (!uninit_q)
496 return NULL;
497
498 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
499 if (!q)
500 blk_cleanup_queue(uninit_q);
501
502 return q;
01effb0d
MS
503}
504EXPORT_SYMBOL(blk_init_queue_node);
505
506struct request_queue *
507blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
508 spinlock_t *lock)
509{
510 return blk_init_allocated_queue_node(q, rfn, lock, -1);
511}
512EXPORT_SYMBOL(blk_init_allocated_queue);
513
514struct request_queue *
515blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
516 spinlock_t *lock, int node_id)
517{
1da177e4
LT
518 if (!q)
519 return NULL;
520
1946089a 521 q->node = node_id;
c86d1b8a 522 if (blk_init_free_list(q))
8669aafd 523 return NULL;
1da177e4
LT
524
525 q->request_fn = rfn;
1da177e4 526 q->prep_rq_fn = NULL;
28018c24 527 q->unprep_rq_fn = NULL;
bc58ba94 528 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
529
530 /* Override internal queue lock with supplied lock pointer */
531 if (lock)
532 q->queue_lock = lock;
1da177e4 533
f3b144aa
JA
534 /*
535 * This also sets hw/phys segments, boundary and size
536 */
1da177e4 537 blk_queue_make_request(q, __make_request);
1da177e4 538
44ec9542
AS
539 q->sg_reserved_size = INT_MAX;
540
1da177e4
LT
541 /*
542 * all done
543 */
544 if (!elevator_init(q, NULL)) {
545 blk_queue_congestion_threshold(q);
546 return q;
547 }
548
1da177e4
LT
549 return NULL;
550}
01effb0d 551EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 552
165125e1 553int blk_get_queue(struct request_queue *q)
1da177e4 554{
fde6ad22 555 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 556 kobject_get(&q->kobj);
1da177e4
LT
557 return 0;
558 }
559
560 return 1;
561}
1da177e4 562
165125e1 563static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 564{
73c10101
JA
565 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
566
4aff5e23 567 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 568 elv_put_request(q, rq);
1da177e4
LT
569 mempool_free(rq, q->rq.rq_pool);
570}
571
1ea25ecb 572static struct request *
42dad764 573blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
574{
575 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
576
577 if (!rq)
578 return NULL;
579
2a4aa30c 580 blk_rq_init(q, rq);
1afb20f3 581
42dad764 582 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 583
cb98fc8b 584 if (priv) {
cb78b285 585 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
586 mempool_free(rq, q->rq.rq_pool);
587 return NULL;
588 }
4aff5e23 589 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 590 }
1da177e4 591
cb98fc8b 592 return rq;
1da177e4
LT
593}
594
595/*
596 * ioc_batching returns true if the ioc is a valid batching request and
597 * should be given priority access to a request.
598 */
165125e1 599static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
600{
601 if (!ioc)
602 return 0;
603
604 /*
605 * Make sure the process is able to allocate at least 1 request
606 * even if the batch times out, otherwise we could theoretically
607 * lose wakeups.
608 */
609 return ioc->nr_batch_requests == q->nr_batching ||
610 (ioc->nr_batch_requests > 0
611 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
612}
613
614/*
615 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
616 * will cause the process to be a "batcher" on all queues in the system. This
617 * is the behaviour we want though - once it gets a wakeup it should be given
618 * a nice run.
619 */
165125e1 620static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
621{
622 if (!ioc || ioc_batching(q, ioc))
623 return;
624
625 ioc->nr_batch_requests = q->nr_batching;
626 ioc->last_waited = jiffies;
627}
628
1faa16d2 629static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
630{
631 struct request_list *rl = &q->rq;
632
1faa16d2
JA
633 if (rl->count[sync] < queue_congestion_off_threshold(q))
634 blk_clear_queue_congested(q, sync);
1da177e4 635
1faa16d2
JA
636 if (rl->count[sync] + 1 <= q->nr_requests) {
637 if (waitqueue_active(&rl->wait[sync]))
638 wake_up(&rl->wait[sync]);
1da177e4 639
1faa16d2 640 blk_clear_queue_full(q, sync);
1da177e4
LT
641 }
642}
643
644/*
645 * A request has just been released. Account for it, update the full and
646 * congestion status, wake up any waiters. Called under q->queue_lock.
647 */
1faa16d2 648static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
649{
650 struct request_list *rl = &q->rq;
651
1faa16d2 652 rl->count[sync]--;
cb98fc8b
TH
653 if (priv)
654 rl->elvpriv--;
1da177e4 655
1faa16d2 656 __freed_request(q, sync);
1da177e4 657
1faa16d2
JA
658 if (unlikely(rl->starved[sync ^ 1]))
659 __freed_request(q, sync ^ 1);
1da177e4
LT
660}
661
9d5a4e94
MS
662/*
663 * Determine if elevator data should be initialized when allocating the
664 * request associated with @bio.
665 */
666static bool blk_rq_should_init_elevator(struct bio *bio)
667{
668 if (!bio)
669 return true;
670
671 /*
672 * Flush requests do not use the elevator so skip initialization.
673 * This allows a request to share the flush and elevator data.
674 */
675 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
676 return false;
677
678 return true;
679}
680
1da177e4 681/*
d6344532
NP
682 * Get a free request, queue_lock must be held.
683 * Returns NULL on failure, with queue_lock held.
684 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 685 */
165125e1 686static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 687 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
688{
689 struct request *rq = NULL;
690 struct request_list *rl = &q->rq;
88ee5ef1 691 struct io_context *ioc = NULL;
1faa16d2 692 const bool is_sync = rw_is_sync(rw_flags) != 0;
9d5a4e94 693 int may_queue, priv = 0;
88ee5ef1 694
7749a8d4 695 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
696 if (may_queue == ELV_MQUEUE_NO)
697 goto rq_starved;
698
1faa16d2
JA
699 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
700 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 701 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
702 /*
703 * The queue will fill after this allocation, so set
704 * it as full, and mark this process as "batching".
705 * This process will be allowed to complete a batch of
706 * requests, others will be blocked.
707 */
1faa16d2 708 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 709 ioc_set_batching(q, ioc);
1faa16d2 710 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
711 } else {
712 if (may_queue != ELV_MQUEUE_MUST
713 && !ioc_batching(q, ioc)) {
714 /*
715 * The queue is full and the allocating
716 * process is not a "batcher", and not
717 * exempted by the IO scheduler
718 */
719 goto out;
720 }
721 }
1da177e4 722 }
1faa16d2 723 blk_set_queue_congested(q, is_sync);
1da177e4
LT
724 }
725
082cf69e
JA
726 /*
727 * Only allow batching queuers to allocate up to 50% over the defined
728 * limit of requests, otherwise we could have thousands of requests
729 * allocated with any setting of ->nr_requests
730 */
1faa16d2 731 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 732 goto out;
fd782a4a 733
1faa16d2
JA
734 rl->count[is_sync]++;
735 rl->starved[is_sync] = 0;
cb98fc8b 736
9d5a4e94
MS
737 if (blk_rq_should_init_elevator(bio)) {
738 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
739 if (priv)
740 rl->elvpriv++;
741 }
cb98fc8b 742
f253b86b
JA
743 if (blk_queue_io_stat(q))
744 rw_flags |= REQ_IO_STAT;
1da177e4
LT
745 spin_unlock_irq(q->queue_lock);
746
7749a8d4 747 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 748 if (unlikely(!rq)) {
1da177e4
LT
749 /*
750 * Allocation failed presumably due to memory. Undo anything
751 * we might have messed up.
752 *
753 * Allocating task should really be put onto the front of the
754 * wait queue, but this is pretty rare.
755 */
756 spin_lock_irq(q->queue_lock);
1faa16d2 757 freed_request(q, is_sync, priv);
1da177e4
LT
758
759 /*
760 * in the very unlikely event that allocation failed and no
761 * requests for this direction was pending, mark us starved
762 * so that freeing of a request in the other direction will
763 * notice us. another possible fix would be to split the
764 * rq mempool into READ and WRITE
765 */
766rq_starved:
1faa16d2
JA
767 if (unlikely(rl->count[is_sync] == 0))
768 rl->starved[is_sync] = 1;
1da177e4 769
1da177e4
LT
770 goto out;
771 }
772
88ee5ef1
JA
773 /*
774 * ioc may be NULL here, and ioc_batching will be false. That's
775 * OK, if the queue is under the request limit then requests need
776 * not count toward the nr_batch_requests limit. There will always
777 * be some limit enforced by BLK_BATCH_TIME.
778 */
1da177e4
LT
779 if (ioc_batching(q, ioc))
780 ioc->nr_batch_requests--;
6728cb0e 781
1faa16d2 782 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 783out:
1da177e4
LT
784 return rq;
785}
786
787/*
7eaceacc
JA
788 * No available requests for this queue, wait for some requests to become
789 * available.
d6344532
NP
790 *
791 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 792 */
165125e1 793static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 794 struct bio *bio)
1da177e4 795{
1faa16d2 796 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
797 struct request *rq;
798
7749a8d4 799 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
800 while (!rq) {
801 DEFINE_WAIT(wait);
05caf8db 802 struct io_context *ioc;
1da177e4
LT
803 struct request_list *rl = &q->rq;
804
1faa16d2 805 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
806 TASK_UNINTERRUPTIBLE);
807
1faa16d2 808 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 809
05caf8db
ZY
810 spin_unlock_irq(q->queue_lock);
811 io_schedule();
1da177e4 812
05caf8db
ZY
813 /*
814 * After sleeping, we become a "batching" process and
815 * will be able to allocate at least one request, and
816 * up to a big batch of them for a small period time.
817 * See ioc_batching, ioc_set_batching
818 */
819 ioc = current_io_context(GFP_NOIO, q->node);
820 ioc_set_batching(q, ioc);
d6344532 821
05caf8db 822 spin_lock_irq(q->queue_lock);
1faa16d2 823 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
824
825 rq = get_request(q, rw_flags, bio, GFP_NOIO);
826 };
1da177e4
LT
827
828 return rq;
829}
830
165125e1 831struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
832{
833 struct request *rq;
834
835 BUG_ON(rw != READ && rw != WRITE);
836
d6344532
NP
837 spin_lock_irq(q->queue_lock);
838 if (gfp_mask & __GFP_WAIT) {
22e2c507 839 rq = get_request_wait(q, rw, NULL);
d6344532 840 } else {
22e2c507 841 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
842 if (!rq)
843 spin_unlock_irq(q->queue_lock);
844 }
845 /* q->queue_lock is unlocked at this point */
1da177e4
LT
846
847 return rq;
848}
1da177e4
LT
849EXPORT_SYMBOL(blk_get_request);
850
dc72ef4a 851/**
79eb63e9 852 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 853 * @q: target request queue
79eb63e9
BH
854 * @bio: The bio describing the memory mappings that will be submitted for IO.
855 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 856 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 857 *
79eb63e9
BH
858 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
859 * type commands. Where the struct request needs to be farther initialized by
860 * the caller. It is passed a &struct bio, which describes the memory info of
861 * the I/O transfer.
dc72ef4a 862 *
79eb63e9
BH
863 * The caller of blk_make_request must make sure that bi_io_vec
864 * are set to describe the memory buffers. That bio_data_dir() will return
865 * the needed direction of the request. (And all bio's in the passed bio-chain
866 * are properly set accordingly)
867 *
868 * If called under none-sleepable conditions, mapped bio buffers must not
869 * need bouncing, by calling the appropriate masked or flagged allocator,
870 * suitable for the target device. Otherwise the call to blk_queue_bounce will
871 * BUG.
53674ac5
JA
872 *
873 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
874 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
875 * anything but the first bio in the chain. Otherwise you risk waiting for IO
876 * completion of a bio that hasn't been submitted yet, thus resulting in a
877 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
878 * of bio_alloc(), as that avoids the mempool deadlock.
879 * If possible a big IO should be split into smaller parts when allocation
880 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 881 */
79eb63e9
BH
882struct request *blk_make_request(struct request_queue *q, struct bio *bio,
883 gfp_t gfp_mask)
dc72ef4a 884{
79eb63e9
BH
885 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
886
887 if (unlikely(!rq))
888 return ERR_PTR(-ENOMEM);
889
890 for_each_bio(bio) {
891 struct bio *bounce_bio = bio;
892 int ret;
893
894 blk_queue_bounce(q, &bounce_bio);
895 ret = blk_rq_append_bio(q, rq, bounce_bio);
896 if (unlikely(ret)) {
897 blk_put_request(rq);
898 return ERR_PTR(ret);
899 }
900 }
901
902 return rq;
dc72ef4a 903}
79eb63e9 904EXPORT_SYMBOL(blk_make_request);
dc72ef4a 905
1da177e4
LT
906/**
907 * blk_requeue_request - put a request back on queue
908 * @q: request queue where request should be inserted
909 * @rq: request to be inserted
910 *
911 * Description:
912 * Drivers often keep queueing requests until the hardware cannot accept
913 * more, when that condition happens we need to put the request back
914 * on the queue. Must be called with queue lock held.
915 */
165125e1 916void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 917{
242f9dcb
JA
918 blk_delete_timer(rq);
919 blk_clear_rq_complete(rq);
5f3ea37c 920 trace_block_rq_requeue(q, rq);
2056a782 921
1da177e4
LT
922 if (blk_rq_tagged(rq))
923 blk_queue_end_tag(q, rq);
924
ba396a6c
JB
925 BUG_ON(blk_queued_rq(rq));
926
1da177e4
LT
927 elv_requeue_request(q, rq);
928}
1da177e4
LT
929EXPORT_SYMBOL(blk_requeue_request);
930
73c10101
JA
931static void add_acct_request(struct request_queue *q, struct request *rq,
932 int where)
933{
934 drive_stat_acct(rq, 1);
7eaceacc 935 __elv_add_request(q, rq, where);
73c10101
JA
936}
937
1da177e4 938/**
710027a4 939 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
940 * @q: request queue where request should be inserted
941 * @rq: request to be inserted
942 * @at_head: insert request at head or tail of queue
943 * @data: private data
1da177e4
LT
944 *
945 * Description:
946 * Many block devices need to execute commands asynchronously, so they don't
947 * block the whole kernel from preemption during request execution. This is
948 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
949 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
950 * be scheduled for actual execution by the request queue.
1da177e4
LT
951 *
952 * We have the option of inserting the head or the tail of the queue.
953 * Typically we use the tail for new ioctls and so forth. We use the head
954 * of the queue for things like a QUEUE_FULL message from a device, or a
955 * host that is unable to accept a particular command.
956 */
165125e1 957void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 958 int at_head, void *data)
1da177e4 959{
867d1191 960 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
961 unsigned long flags;
962
963 /*
964 * tell I/O scheduler that this isn't a regular read/write (ie it
965 * must not attempt merges on this) and that it acts as a soft
966 * barrier
967 */
4aff5e23 968 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
969
970 rq->special = data;
971
972 spin_lock_irqsave(q->queue_lock, flags);
973
974 /*
975 * If command is tagged, release the tag
976 */
867d1191
TH
977 if (blk_rq_tagged(rq))
978 blk_queue_end_tag(q, rq);
1da177e4 979
73c10101 980 add_acct_request(q, rq, where);
1654e741 981 __blk_run_queue(q, false);
1da177e4
LT
982 spin_unlock_irqrestore(q->queue_lock, flags);
983}
1da177e4
LT
984EXPORT_SYMBOL(blk_insert_request);
985
074a7aca
TH
986static void part_round_stats_single(int cpu, struct hd_struct *part,
987 unsigned long now)
988{
989 if (now == part->stamp)
990 return;
991
316d315b 992 if (part_in_flight(part)) {
074a7aca 993 __part_stat_add(cpu, part, time_in_queue,
316d315b 994 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
995 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
996 }
997 part->stamp = now;
998}
999
1000/**
496aa8a9
RD
1001 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1002 * @cpu: cpu number for stats access
1003 * @part: target partition
1da177e4
LT
1004 *
1005 * The average IO queue length and utilisation statistics are maintained
1006 * by observing the current state of the queue length and the amount of
1007 * time it has been in this state for.
1008 *
1009 * Normally, that accounting is done on IO completion, but that can result
1010 * in more than a second's worth of IO being accounted for within any one
1011 * second, leading to >100% utilisation. To deal with that, we call this
1012 * function to do a round-off before returning the results when reading
1013 * /proc/diskstats. This accounts immediately for all queue usage up to
1014 * the current jiffies and restarts the counters again.
1015 */
c9959059 1016void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1017{
1018 unsigned long now = jiffies;
1019
074a7aca
TH
1020 if (part->partno)
1021 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1022 part_round_stats_single(cpu, part, now);
6f2576af 1023}
074a7aca 1024EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1025
1da177e4
LT
1026/*
1027 * queue lock must be held
1028 */
165125e1 1029void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1030{
1da177e4
LT
1031 if (unlikely(!q))
1032 return;
1033 if (unlikely(--req->ref_count))
1034 return;
1035
8922e16c
TH
1036 elv_completed_request(q, req);
1037
1cd96c24
BH
1038 /* this is a bio leak */
1039 WARN_ON(req->bio != NULL);
1040
1da177e4
LT
1041 /*
1042 * Request may not have originated from ll_rw_blk. if not,
1043 * it didn't come out of our reserved rq pools
1044 */
49171e5c 1045 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1046 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1047 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1048
1da177e4 1049 BUG_ON(!list_empty(&req->queuelist));
9817064b 1050 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1051
1052 blk_free_request(q, req);
1faa16d2 1053 freed_request(q, is_sync, priv);
1da177e4
LT
1054 }
1055}
6e39b69e
MC
1056EXPORT_SYMBOL_GPL(__blk_put_request);
1057
1da177e4
LT
1058void blk_put_request(struct request *req)
1059{
8922e16c 1060 unsigned long flags;
165125e1 1061 struct request_queue *q = req->q;
8922e16c 1062
52a93ba8
FT
1063 spin_lock_irqsave(q->queue_lock, flags);
1064 __blk_put_request(q, req);
1065 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1066}
1da177e4
LT
1067EXPORT_SYMBOL(blk_put_request);
1068
66ac0280
CH
1069/**
1070 * blk_add_request_payload - add a payload to a request
1071 * @rq: request to update
1072 * @page: page backing the payload
1073 * @len: length of the payload.
1074 *
1075 * This allows to later add a payload to an already submitted request by
1076 * a block driver. The driver needs to take care of freeing the payload
1077 * itself.
1078 *
1079 * Note that this is a quite horrible hack and nothing but handling of
1080 * discard requests should ever use it.
1081 */
1082void blk_add_request_payload(struct request *rq, struct page *page,
1083 unsigned int len)
1084{
1085 struct bio *bio = rq->bio;
1086
1087 bio->bi_io_vec->bv_page = page;
1088 bio->bi_io_vec->bv_offset = 0;
1089 bio->bi_io_vec->bv_len = len;
1090
1091 bio->bi_size = len;
1092 bio->bi_vcnt = 1;
1093 bio->bi_phys_segments = 1;
1094
1095 rq->__data_len = rq->resid_len = len;
1096 rq->nr_phys_segments = 1;
1097 rq->buffer = bio_data(bio);
1098}
1099EXPORT_SYMBOL_GPL(blk_add_request_payload);
1100
73c10101
JA
1101static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1102 struct bio *bio)
1103{
1104 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1105
1106 /*
1107 * Debug stuff, kill later
1108 */
1109 if (!rq_mergeable(req)) {
1110 blk_dump_rq_flags(req, "back");
1111 return false;
1112 }
1113
1114 if (!ll_back_merge_fn(q, req, bio))
1115 return false;
1116
1117 trace_block_bio_backmerge(q, bio);
1118
1119 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1120 blk_rq_set_mixed_merge(req);
1121
1122 req->biotail->bi_next = bio;
1123 req->biotail = bio;
1124 req->__data_len += bio->bi_size;
1125 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1126
1127 drive_stat_acct(req, 0);
1128 return true;
1129}
1130
1131static bool bio_attempt_front_merge(struct request_queue *q,
1132 struct request *req, struct bio *bio)
1133{
1134 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1135 sector_t sector;
1136
1137 /*
1138 * Debug stuff, kill later
1139 */
1140 if (!rq_mergeable(req)) {
1141 blk_dump_rq_flags(req, "front");
1142 return false;
1143 }
1144
1145 if (!ll_front_merge_fn(q, req, bio))
1146 return false;
1147
1148 trace_block_bio_frontmerge(q, bio);
1149
1150 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1151 blk_rq_set_mixed_merge(req);
1152
1153 sector = bio->bi_sector;
1154
1155 bio->bi_next = req->bio;
1156 req->bio = bio;
1157
1158 /*
1159 * may not be valid. if the low level driver said
1160 * it didn't need a bounce buffer then it better
1161 * not touch req->buffer either...
1162 */
1163 req->buffer = bio_data(bio);
1164 req->__sector = bio->bi_sector;
1165 req->__data_len += bio->bi_size;
1166 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1167
1168 drive_stat_acct(req, 0);
1169 return true;
1170}
1171
1172/*
1173 * Attempts to merge with the plugged list in the current process. Returns
25985edc 1174 * true if merge was successful, otherwise false.
73c10101
JA
1175 */
1176static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1177 struct bio *bio)
1178{
1179 struct blk_plug *plug;
1180 struct request *rq;
1181 bool ret = false;
1182
1183 plug = tsk->plug;
1184 if (!plug)
1185 goto out;
1186
1187 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1188 int el_ret;
1189
1190 if (rq->q != q)
1191 continue;
1192
1193 el_ret = elv_try_merge(rq, bio);
1194 if (el_ret == ELEVATOR_BACK_MERGE) {
1195 ret = bio_attempt_back_merge(q, rq, bio);
1196 if (ret)
1197 break;
1198 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1199 ret = bio_attempt_front_merge(q, rq, bio);
1200 if (ret)
1201 break;
1202 }
1203 }
1204out:
1205 return ret;
1206}
1207
86db1e29 1208void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1209{
c7c22e4d 1210 req->cpu = bio->bi_comp_cpu;
4aff5e23 1211 req->cmd_type = REQ_TYPE_FS;
52d9e675 1212
7b6d91da
CH
1213 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1214 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1215 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1216
52d9e675 1217 req->errors = 0;
a2dec7b3 1218 req->__sector = bio->bi_sector;
52d9e675 1219 req->ioprio = bio_prio(bio);
bc1c56fd 1220 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1221}
1222
165125e1 1223static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1224{
5e00d1b5 1225 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1226 struct blk_plug *plug;
1227 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1228 struct request *req;
1da177e4 1229
1da177e4
LT
1230 /*
1231 * low level driver can indicate that it wants pages above a
1232 * certain limit bounced to low memory (ie for highmem, or even
1233 * ISA dma in theory)
1234 */
1235 blk_queue_bounce(q, &bio);
1236
4fed947c 1237 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1238 spin_lock_irq(q->queue_lock);
ae1b1539 1239 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1240 goto get_rq;
1241 }
1242
73c10101
JA
1243 /*
1244 * Check if we can merge with the plugged list before grabbing
1245 * any locks.
1246 */
1247 if (attempt_plug_merge(current, q, bio))
6728cb0e 1248 goto out;
1da177e4 1249
73c10101 1250 spin_lock_irq(q->queue_lock);
2056a782 1251
73c10101
JA
1252 el_ret = elv_merge(q, &req, bio);
1253 if (el_ret == ELEVATOR_BACK_MERGE) {
1254 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1255 if (bio_attempt_back_merge(q, req, bio)) {
1256 if (!attempt_back_merge(q, req))
1257 elv_merged_request(q, req, el_ret);
1258 goto out_unlock;
1259 }
1260 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1261 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1262 if (bio_attempt_front_merge(q, req, bio)) {
1263 if (!attempt_front_merge(q, req))
1264 elv_merged_request(q, req, el_ret);
1265 goto out_unlock;
80a761fd 1266 }
1da177e4
LT
1267 }
1268
450991bc 1269get_rq:
7749a8d4
JA
1270 /*
1271 * This sync check and mask will be re-done in init_request_from_bio(),
1272 * but we need to set it earlier to expose the sync flag to the
1273 * rq allocator and io schedulers.
1274 */
1275 rw_flags = bio_data_dir(bio);
1276 if (sync)
7b6d91da 1277 rw_flags |= REQ_SYNC;
7749a8d4 1278
1da177e4 1279 /*
450991bc 1280 * Grab a free request. This is might sleep but can not fail.
d6344532 1281 * Returns with the queue unlocked.
450991bc 1282 */
7749a8d4 1283 req = get_request_wait(q, rw_flags, bio);
d6344532 1284
450991bc
NP
1285 /*
1286 * After dropping the lock and possibly sleeping here, our request
1287 * may now be mergeable after it had proven unmergeable (above).
1288 * We don't worry about that case for efficiency. It won't happen
1289 * often, and the elevators are able to handle it.
1da177e4 1290 */
52d9e675 1291 init_request_from_bio(req, bio);
1da177e4 1292
c7c22e4d 1293 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
73c10101
JA
1294 bio_flagged(bio, BIO_CPU_AFFINE)) {
1295 req->cpu = blk_cpu_to_group(get_cpu());
1296 put_cpu();
1297 }
1298
1299 plug = current->plug;
721a9602 1300 if (plug) {
dc6d36c9
JA
1301 /*
1302 * If this is the first request added after a plug, fire
1303 * of a plug trace. If others have been added before, check
1304 * if we have multiple devices in this plug. If so, make a
1305 * note to sort the list before dispatch.
1306 */
1307 if (list_empty(&plug->list))
1308 trace_block_plug(q);
1309 else if (!plug->should_sort) {
73c10101
JA
1310 struct request *__rq;
1311
1312 __rq = list_entry_rq(plug->list.prev);
1313 if (__rq->q != q)
1314 plug->should_sort = 1;
1315 }
1316 /*
1317 * Debug flag, kill later
1318 */
1319 req->cmd_flags |= REQ_ON_PLUG;
1320 list_add_tail(&req->queuelist, &plug->list);
1321 drive_stat_acct(req, 1);
1322 } else {
1323 spin_lock_irq(q->queue_lock);
1324 add_acct_request(q, req, where);
4c63f564 1325 __blk_run_queue(q, false);
73c10101
JA
1326out_unlock:
1327 spin_unlock_irq(q->queue_lock);
1328 }
1da177e4 1329out:
1da177e4 1330 return 0;
1da177e4
LT
1331}
1332
1333/*
1334 * If bio->bi_dev is a partition, remap the location
1335 */
1336static inline void blk_partition_remap(struct bio *bio)
1337{
1338 struct block_device *bdev = bio->bi_bdev;
1339
bf2de6f5 1340 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1341 struct hd_struct *p = bdev->bd_part;
1342
1da177e4
LT
1343 bio->bi_sector += p->start_sect;
1344 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1345
d07335e5
MS
1346 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1347 bdev->bd_dev,
1348 bio->bi_sector - p->start_sect);
1da177e4
LT
1349 }
1350}
1351
1da177e4
LT
1352static void handle_bad_sector(struct bio *bio)
1353{
1354 char b[BDEVNAME_SIZE];
1355
1356 printk(KERN_INFO "attempt to access beyond end of device\n");
1357 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1358 bdevname(bio->bi_bdev, b),
1359 bio->bi_rw,
1360 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1361 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1362
1363 set_bit(BIO_EOF, &bio->bi_flags);
1364}
1365
c17bb495
AM
1366#ifdef CONFIG_FAIL_MAKE_REQUEST
1367
1368static DECLARE_FAULT_ATTR(fail_make_request);
1369
1370static int __init setup_fail_make_request(char *str)
1371{
1372 return setup_fault_attr(&fail_make_request, str);
1373}
1374__setup("fail_make_request=", setup_fail_make_request);
1375
1376static int should_fail_request(struct bio *bio)
1377{
eddb2e26
TH
1378 struct hd_struct *part = bio->bi_bdev->bd_part;
1379
1380 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1381 return should_fail(&fail_make_request, bio->bi_size);
1382
1383 return 0;
1384}
1385
1386static int __init fail_make_request_debugfs(void)
1387{
1388 return init_fault_attr_dentries(&fail_make_request,
1389 "fail_make_request");
1390}
1391
1392late_initcall(fail_make_request_debugfs);
1393
1394#else /* CONFIG_FAIL_MAKE_REQUEST */
1395
1396static inline int should_fail_request(struct bio *bio)
1397{
1398 return 0;
1399}
1400
1401#endif /* CONFIG_FAIL_MAKE_REQUEST */
1402
c07e2b41
JA
1403/*
1404 * Check whether this bio extends beyond the end of the device.
1405 */
1406static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1407{
1408 sector_t maxsector;
1409
1410 if (!nr_sectors)
1411 return 0;
1412
1413 /* Test device or partition size, when known. */
77304d2a 1414 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1415 if (maxsector) {
1416 sector_t sector = bio->bi_sector;
1417
1418 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1419 /*
1420 * This may well happen - the kernel calls bread()
1421 * without checking the size of the device, e.g., when
1422 * mounting a device.
1423 */
1424 handle_bad_sector(bio);
1425 return 1;
1426 }
1427 }
1428
1429 return 0;
1430}
1431
1da177e4 1432/**
710027a4 1433 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1434 * @bio: The bio describing the location in memory and on the device.
1435 *
1436 * generic_make_request() is used to make I/O requests of block
1437 * devices. It is passed a &struct bio, which describes the I/O that needs
1438 * to be done.
1439 *
1440 * generic_make_request() does not return any status. The
1441 * success/failure status of the request, along with notification of
1442 * completion, is delivered asynchronously through the bio->bi_end_io
1443 * function described (one day) else where.
1444 *
1445 * The caller of generic_make_request must make sure that bi_io_vec
1446 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1447 * set to describe the device address, and the
1448 * bi_end_io and optionally bi_private are set to describe how
1449 * completion notification should be signaled.
1450 *
1451 * generic_make_request and the drivers it calls may use bi_next if this
1452 * bio happens to be merged with someone else, and may change bi_dev and
1453 * bi_sector for remaps as it sees fit. So the values of these fields
1454 * should NOT be depended on after the call to generic_make_request.
1455 */
d89d8796 1456static inline void __generic_make_request(struct bio *bio)
1da177e4 1457{
165125e1 1458 struct request_queue *q;
5ddfe969 1459 sector_t old_sector;
1da177e4 1460 int ret, nr_sectors = bio_sectors(bio);
2056a782 1461 dev_t old_dev;
51fd77bd 1462 int err = -EIO;
1da177e4
LT
1463
1464 might_sleep();
1da177e4 1465
c07e2b41
JA
1466 if (bio_check_eod(bio, nr_sectors))
1467 goto end_io;
1da177e4
LT
1468
1469 /*
1470 * Resolve the mapping until finished. (drivers are
1471 * still free to implement/resolve their own stacking
1472 * by explicitly returning 0)
1473 *
1474 * NOTE: we don't repeat the blk_size check for each new device.
1475 * Stacking drivers are expected to know what they are doing.
1476 */
5ddfe969 1477 old_sector = -1;
2056a782 1478 old_dev = 0;
1da177e4
LT
1479 do {
1480 char b[BDEVNAME_SIZE];
1481
1482 q = bdev_get_queue(bio->bi_bdev);
a7384677 1483 if (unlikely(!q)) {
1da177e4
LT
1484 printk(KERN_ERR
1485 "generic_make_request: Trying to access "
1486 "nonexistent block-device %s (%Lu)\n",
1487 bdevname(bio->bi_bdev, b),
1488 (long long) bio->bi_sector);
a7384677 1489 goto end_io;
1da177e4
LT
1490 }
1491
7b6d91da 1492 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1493 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1494 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1495 bdevname(bio->bi_bdev, b),
1496 bio_sectors(bio),
1497 queue_max_hw_sectors(q));
1da177e4
LT
1498 goto end_io;
1499 }
1500
fde6ad22 1501 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1502 goto end_io;
1503
c17bb495
AM
1504 if (should_fail_request(bio))
1505 goto end_io;
1506
1da177e4
LT
1507 /*
1508 * If this device has partitions, remap block n
1509 * of partition p to block n+start(p) of the disk.
1510 */
1511 blk_partition_remap(bio);
1512
7ba1ba12
MP
1513 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1514 goto end_io;
1515
5ddfe969 1516 if (old_sector != -1)
d07335e5 1517 trace_block_bio_remap(q, bio, old_dev, old_sector);
2056a782 1518
5ddfe969 1519 old_sector = bio->bi_sector;
2056a782
JA
1520 old_dev = bio->bi_bdev->bd_dev;
1521
c07e2b41
JA
1522 if (bio_check_eod(bio, nr_sectors))
1523 goto end_io;
a7384677 1524
1e87901e
TH
1525 /*
1526 * Filter flush bio's early so that make_request based
1527 * drivers without flush support don't have to worry
1528 * about them.
1529 */
1530 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1531 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1532 if (!nr_sectors) {
1533 err = 0;
1534 goto end_io;
1535 }
1536 }
1537
8d57a98c
AH
1538 if ((bio->bi_rw & REQ_DISCARD) &&
1539 (!blk_queue_discard(q) ||
1540 ((bio->bi_rw & REQ_SECURE) &&
1541 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1542 err = -EOPNOTSUPP;
1543 goto end_io;
1544 }
5ddfe969 1545
e43473b7
VG
1546 blk_throtl_bio(q, &bio);
1547
1548 /*
1549 * If bio = NULL, bio has been throttled and will be submitted
1550 * later.
1551 */
1552 if (!bio)
1553 break;
1554
01edede4
MK
1555 trace_block_bio_queue(q, bio);
1556
1da177e4
LT
1557 ret = q->make_request_fn(q, bio);
1558 } while (ret);
a7384677
TH
1559
1560 return;
1561
1562end_io:
1563 bio_endio(bio, err);
1da177e4
LT
1564}
1565
d89d8796
NB
1566/*
1567 * We only want one ->make_request_fn to be active at a time,
1568 * else stack usage with stacked devices could be a problem.
bddd87c7 1569 * So use current->bio_list to keep a list of requests
d89d8796 1570 * submited by a make_request_fn function.
bddd87c7 1571 * current->bio_list is also used as a flag to say if
d89d8796
NB
1572 * generic_make_request is currently active in this task or not.
1573 * If it is NULL, then no make_request is active. If it is non-NULL,
1574 * then a make_request is active, and new requests should be added
1575 * at the tail
1576 */
1577void generic_make_request(struct bio *bio)
1578{
bddd87c7
AM
1579 struct bio_list bio_list_on_stack;
1580
1581 if (current->bio_list) {
d89d8796 1582 /* make_request is active */
bddd87c7 1583 bio_list_add(current->bio_list, bio);
d89d8796
NB
1584 return;
1585 }
1586 /* following loop may be a bit non-obvious, and so deserves some
1587 * explanation.
1588 * Before entering the loop, bio->bi_next is NULL (as all callers
1589 * ensure that) so we have a list with a single bio.
1590 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1591 * we assign bio_list to a pointer to the bio_list_on_stack,
1592 * thus initialising the bio_list of new bios to be
d89d8796
NB
1593 * added. __generic_make_request may indeed add some more bios
1594 * through a recursive call to generic_make_request. If it
1595 * did, we find a non-NULL value in bio_list and re-enter the loop
1596 * from the top. In this case we really did just take the bio
bddd87c7
AM
1597 * of the top of the list (no pretending) and so remove it from
1598 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1599 *
1600 * The loop was structured like this to make only one call to
1601 * __generic_make_request (which is important as it is large and
1602 * inlined) and to keep the structure simple.
1603 */
1604 BUG_ON(bio->bi_next);
bddd87c7
AM
1605 bio_list_init(&bio_list_on_stack);
1606 current->bio_list = &bio_list_on_stack;
d89d8796 1607 do {
d89d8796 1608 __generic_make_request(bio);
bddd87c7 1609 bio = bio_list_pop(current->bio_list);
d89d8796 1610 } while (bio);
bddd87c7 1611 current->bio_list = NULL; /* deactivate */
d89d8796 1612}
1da177e4
LT
1613EXPORT_SYMBOL(generic_make_request);
1614
1615/**
710027a4 1616 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1617 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1618 * @bio: The &struct bio which describes the I/O
1619 *
1620 * submit_bio() is very similar in purpose to generic_make_request(), and
1621 * uses that function to do most of the work. Both are fairly rough
710027a4 1622 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1623 *
1624 */
1625void submit_bio(int rw, struct bio *bio)
1626{
1627 int count = bio_sectors(bio);
1628
22e2c507 1629 bio->bi_rw |= rw;
1da177e4 1630
bf2de6f5
JA
1631 /*
1632 * If it's a regular read/write or a barrier with data attached,
1633 * go through the normal accounting stuff before submission.
1634 */
3ffb52e7 1635 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1636 if (rw & WRITE) {
1637 count_vm_events(PGPGOUT, count);
1638 } else {
1639 task_io_account_read(bio->bi_size);
1640 count_vm_events(PGPGIN, count);
1641 }
1642
1643 if (unlikely(block_dump)) {
1644 char b[BDEVNAME_SIZE];
8dcbdc74 1645 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1646 current->comm, task_pid_nr(current),
bf2de6f5
JA
1647 (rw & WRITE) ? "WRITE" : "READ",
1648 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1649 bdevname(bio->bi_bdev, b),
1650 count);
bf2de6f5 1651 }
1da177e4
LT
1652 }
1653
1654 generic_make_request(bio);
1655}
1da177e4
LT
1656EXPORT_SYMBOL(submit_bio);
1657
82124d60
KU
1658/**
1659 * blk_rq_check_limits - Helper function to check a request for the queue limit
1660 * @q: the queue
1661 * @rq: the request being checked
1662 *
1663 * Description:
1664 * @rq may have been made based on weaker limitations of upper-level queues
1665 * in request stacking drivers, and it may violate the limitation of @q.
1666 * Since the block layer and the underlying device driver trust @rq
1667 * after it is inserted to @q, it should be checked against @q before
1668 * the insertion using this generic function.
1669 *
1670 * This function should also be useful for request stacking drivers
eef35c2d 1671 * in some cases below, so export this function.
82124d60
KU
1672 * Request stacking drivers like request-based dm may change the queue
1673 * limits while requests are in the queue (e.g. dm's table swapping).
1674 * Such request stacking drivers should check those requests agaist
1675 * the new queue limits again when they dispatch those requests,
1676 * although such checkings are also done against the old queue limits
1677 * when submitting requests.
1678 */
1679int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1680{
3383977f
S
1681 if (rq->cmd_flags & REQ_DISCARD)
1682 return 0;
1683
ae03bf63
MP
1684 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1685 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1686 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1687 return -EIO;
1688 }
1689
1690 /*
1691 * queue's settings related to segment counting like q->bounce_pfn
1692 * may differ from that of other stacking queues.
1693 * Recalculate it to check the request correctly on this queue's
1694 * limitation.
1695 */
1696 blk_recalc_rq_segments(rq);
8a78362c 1697 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1698 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1699 return -EIO;
1700 }
1701
1702 return 0;
1703}
1704EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1705
1706/**
1707 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1708 * @q: the queue to submit the request
1709 * @rq: the request being queued
1710 */
1711int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1712{
1713 unsigned long flags;
1714
1715 if (blk_rq_check_limits(q, rq))
1716 return -EIO;
1717
1718#ifdef CONFIG_FAIL_MAKE_REQUEST
1719 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1720 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1721 return -EIO;
1722#endif
1723
1724 spin_lock_irqsave(q->queue_lock, flags);
1725
1726 /*
1727 * Submitting request must be dequeued before calling this function
1728 * because it will be linked to another request_queue
1729 */
1730 BUG_ON(blk_queued_rq(rq));
1731
73c10101 1732 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
82124d60
KU
1733 spin_unlock_irqrestore(q->queue_lock, flags);
1734
1735 return 0;
1736}
1737EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1738
80a761fd
TH
1739/**
1740 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1741 * @rq: request to examine
1742 *
1743 * Description:
1744 * A request could be merge of IOs which require different failure
1745 * handling. This function determines the number of bytes which
1746 * can be failed from the beginning of the request without
1747 * crossing into area which need to be retried further.
1748 *
1749 * Return:
1750 * The number of bytes to fail.
1751 *
1752 * Context:
1753 * queue_lock must be held.
1754 */
1755unsigned int blk_rq_err_bytes(const struct request *rq)
1756{
1757 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1758 unsigned int bytes = 0;
1759 struct bio *bio;
1760
1761 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1762 return blk_rq_bytes(rq);
1763
1764 /*
1765 * Currently the only 'mixing' which can happen is between
1766 * different fastfail types. We can safely fail portions
1767 * which have all the failfast bits that the first one has -
1768 * the ones which are at least as eager to fail as the first
1769 * one.
1770 */
1771 for (bio = rq->bio; bio; bio = bio->bi_next) {
1772 if ((bio->bi_rw & ff) != ff)
1773 break;
1774 bytes += bio->bi_size;
1775 }
1776
1777 /* this could lead to infinite loop */
1778 BUG_ON(blk_rq_bytes(rq) && !bytes);
1779 return bytes;
1780}
1781EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1782
bc58ba94
JA
1783static void blk_account_io_completion(struct request *req, unsigned int bytes)
1784{
c2553b58 1785 if (blk_do_io_stat(req)) {
bc58ba94
JA
1786 const int rw = rq_data_dir(req);
1787 struct hd_struct *part;
1788 int cpu;
1789
1790 cpu = part_stat_lock();
09e099d4 1791 part = req->part;
bc58ba94
JA
1792 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1793 part_stat_unlock();
1794 }
1795}
1796
1797static void blk_account_io_done(struct request *req)
1798{
bc58ba94 1799 /*
dd4c133f
TH
1800 * Account IO completion. flush_rq isn't accounted as a
1801 * normal IO on queueing nor completion. Accounting the
1802 * containing request is enough.
bc58ba94 1803 */
414b4ff5 1804 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1805 unsigned long duration = jiffies - req->start_time;
1806 const int rw = rq_data_dir(req);
1807 struct hd_struct *part;
1808 int cpu;
1809
1810 cpu = part_stat_lock();
09e099d4 1811 part = req->part;
bc58ba94
JA
1812
1813 part_stat_inc(cpu, part, ios[rw]);
1814 part_stat_add(cpu, part, ticks[rw], duration);
1815 part_round_stats(cpu, part);
316d315b 1816 part_dec_in_flight(part, rw);
bc58ba94 1817
6c23a968 1818 hd_struct_put(part);
bc58ba94
JA
1819 part_stat_unlock();
1820 }
1821}
1822
3bcddeac 1823/**
9934c8c0
TH
1824 * blk_peek_request - peek at the top of a request queue
1825 * @q: request queue to peek at
1826 *
1827 * Description:
1828 * Return the request at the top of @q. The returned request
1829 * should be started using blk_start_request() before LLD starts
1830 * processing it.
1831 *
1832 * Return:
1833 * Pointer to the request at the top of @q if available. Null
1834 * otherwise.
1835 *
1836 * Context:
1837 * queue_lock must be held.
1838 */
1839struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1840{
1841 struct request *rq;
1842 int ret;
1843
1844 while ((rq = __elv_next_request(q)) != NULL) {
1845 if (!(rq->cmd_flags & REQ_STARTED)) {
1846 /*
1847 * This is the first time the device driver
1848 * sees this request (possibly after
1849 * requeueing). Notify IO scheduler.
1850 */
33659ebb 1851 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1852 elv_activate_rq(q, rq);
1853
1854 /*
1855 * just mark as started even if we don't start
1856 * it, a request that has been delayed should
1857 * not be passed by new incoming requests
1858 */
1859 rq->cmd_flags |= REQ_STARTED;
1860 trace_block_rq_issue(q, rq);
1861 }
1862
1863 if (!q->boundary_rq || q->boundary_rq == rq) {
1864 q->end_sector = rq_end_sector(rq);
1865 q->boundary_rq = NULL;
1866 }
1867
1868 if (rq->cmd_flags & REQ_DONTPREP)
1869 break;
1870
2e46e8b2 1871 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1872 /*
1873 * make sure space for the drain appears we
1874 * know we can do this because max_hw_segments
1875 * has been adjusted to be one fewer than the
1876 * device can handle
1877 */
1878 rq->nr_phys_segments++;
1879 }
1880
1881 if (!q->prep_rq_fn)
1882 break;
1883
1884 ret = q->prep_rq_fn(q, rq);
1885 if (ret == BLKPREP_OK) {
1886 break;
1887 } else if (ret == BLKPREP_DEFER) {
1888 /*
1889 * the request may have been (partially) prepped.
1890 * we need to keep this request in the front to
1891 * avoid resource deadlock. REQ_STARTED will
1892 * prevent other fs requests from passing this one.
1893 */
2e46e8b2 1894 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1895 !(rq->cmd_flags & REQ_DONTPREP)) {
1896 /*
1897 * remove the space for the drain we added
1898 * so that we don't add it again
1899 */
1900 --rq->nr_phys_segments;
1901 }
1902
1903 rq = NULL;
1904 break;
1905 } else if (ret == BLKPREP_KILL) {
1906 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1907 /*
1908 * Mark this request as started so we don't trigger
1909 * any debug logic in the end I/O path.
1910 */
1911 blk_start_request(rq);
40cbbb78 1912 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1913 } else {
1914 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1915 break;
1916 }
1917 }
1918
1919 return rq;
1920}
9934c8c0 1921EXPORT_SYMBOL(blk_peek_request);
158dbda0 1922
9934c8c0 1923void blk_dequeue_request(struct request *rq)
158dbda0 1924{
9934c8c0
TH
1925 struct request_queue *q = rq->q;
1926
158dbda0
TH
1927 BUG_ON(list_empty(&rq->queuelist));
1928 BUG_ON(ELV_ON_HASH(rq));
1929
1930 list_del_init(&rq->queuelist);
1931
1932 /*
1933 * the time frame between a request being removed from the lists
1934 * and to it is freed is accounted as io that is in progress at
1935 * the driver side.
1936 */
9195291e 1937 if (blk_account_rq(rq)) {
0a7ae2ff 1938 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1939 set_io_start_time_ns(rq);
1940 }
158dbda0
TH
1941}
1942
9934c8c0
TH
1943/**
1944 * blk_start_request - start request processing on the driver
1945 * @req: request to dequeue
1946 *
1947 * Description:
1948 * Dequeue @req and start timeout timer on it. This hands off the
1949 * request to the driver.
1950 *
1951 * Block internal functions which don't want to start timer should
1952 * call blk_dequeue_request().
1953 *
1954 * Context:
1955 * queue_lock must be held.
1956 */
1957void blk_start_request(struct request *req)
1958{
1959 blk_dequeue_request(req);
1960
1961 /*
5f49f631
TH
1962 * We are now handing the request to the hardware, initialize
1963 * resid_len to full count and add the timeout handler.
9934c8c0 1964 */
5f49f631 1965 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1966 if (unlikely(blk_bidi_rq(req)))
1967 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1968
9934c8c0
TH
1969 blk_add_timer(req);
1970}
1971EXPORT_SYMBOL(blk_start_request);
1972
1973/**
1974 * blk_fetch_request - fetch a request from a request queue
1975 * @q: request queue to fetch a request from
1976 *
1977 * Description:
1978 * Return the request at the top of @q. The request is started on
1979 * return and LLD can start processing it immediately.
1980 *
1981 * Return:
1982 * Pointer to the request at the top of @q if available. Null
1983 * otherwise.
1984 *
1985 * Context:
1986 * queue_lock must be held.
1987 */
1988struct request *blk_fetch_request(struct request_queue *q)
1989{
1990 struct request *rq;
1991
1992 rq = blk_peek_request(q);
1993 if (rq)
1994 blk_start_request(rq);
1995 return rq;
1996}
1997EXPORT_SYMBOL(blk_fetch_request);
1998
3bcddeac 1999/**
2e60e022 2000 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2001 * @req: the request being processed
710027a4 2002 * @error: %0 for success, < %0 for error
8ebf9756 2003 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2004 *
2005 * Description:
8ebf9756
RD
2006 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2007 * the request structure even if @req doesn't have leftover.
2008 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2009 *
2010 * This special helper function is only for request stacking drivers
2011 * (e.g. request-based dm) so that they can handle partial completion.
2012 * Actual device drivers should use blk_end_request instead.
2013 *
2014 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2015 * %false return from this function.
3bcddeac
KU
2016 *
2017 * Return:
2e60e022
TH
2018 * %false - this request doesn't have any more data
2019 * %true - this request has more data
3bcddeac 2020 **/
2e60e022 2021bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2022{
5450d3e1 2023 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2024 struct bio *bio;
2025
2e60e022
TH
2026 if (!req->bio)
2027 return false;
2028
5f3ea37c 2029 trace_block_rq_complete(req->q, req);
2056a782 2030
1da177e4 2031 /*
6f41469c
TH
2032 * For fs requests, rq is just carrier of independent bio's
2033 * and each partial completion should be handled separately.
2034 * Reset per-request error on each partial completion.
2035 *
2036 * TODO: tj: This is too subtle. It would be better to let
2037 * low level drivers do what they see fit.
1da177e4 2038 */
33659ebb 2039 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2040 req->errors = 0;
2041
33659ebb
CH
2042 if (error && req->cmd_type == REQ_TYPE_FS &&
2043 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2044 char *error_type;
2045
2046 switch (error) {
2047 case -ENOLINK:
2048 error_type = "recoverable transport";
2049 break;
2050 case -EREMOTEIO:
2051 error_type = "critical target";
2052 break;
2053 case -EBADE:
2054 error_type = "critical nexus";
2055 break;
2056 case -EIO:
2057 default:
2058 error_type = "I/O";
2059 break;
2060 }
2061 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2062 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2063 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2064 }
2065
bc58ba94 2066 blk_account_io_completion(req, nr_bytes);
d72d904a 2067
1da177e4
LT
2068 total_bytes = bio_nbytes = 0;
2069 while ((bio = req->bio) != NULL) {
2070 int nbytes;
2071
2072 if (nr_bytes >= bio->bi_size) {
2073 req->bio = bio->bi_next;
2074 nbytes = bio->bi_size;
5bb23a68 2075 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2076 next_idx = 0;
2077 bio_nbytes = 0;
2078 } else {
2079 int idx = bio->bi_idx + next_idx;
2080
af498d7f 2081 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2082 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2083 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2084 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2085 break;
2086 }
2087
2088 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2089 BIO_BUG_ON(nbytes > bio->bi_size);
2090
2091 /*
2092 * not a complete bvec done
2093 */
2094 if (unlikely(nbytes > nr_bytes)) {
2095 bio_nbytes += nr_bytes;
2096 total_bytes += nr_bytes;
2097 break;
2098 }
2099
2100 /*
2101 * advance to the next vector
2102 */
2103 next_idx++;
2104 bio_nbytes += nbytes;
2105 }
2106
2107 total_bytes += nbytes;
2108 nr_bytes -= nbytes;
2109
6728cb0e
JA
2110 bio = req->bio;
2111 if (bio) {
1da177e4
LT
2112 /*
2113 * end more in this run, or just return 'not-done'
2114 */
2115 if (unlikely(nr_bytes <= 0))
2116 break;
2117 }
2118 }
2119
2120 /*
2121 * completely done
2122 */
2e60e022
TH
2123 if (!req->bio) {
2124 /*
2125 * Reset counters so that the request stacking driver
2126 * can find how many bytes remain in the request
2127 * later.
2128 */
a2dec7b3 2129 req->__data_len = 0;
2e60e022
TH
2130 return false;
2131 }
1da177e4
LT
2132
2133 /*
2134 * if the request wasn't completed, update state
2135 */
2136 if (bio_nbytes) {
5bb23a68 2137 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2138 bio->bi_idx += next_idx;
2139 bio_iovec(bio)->bv_offset += nr_bytes;
2140 bio_iovec(bio)->bv_len -= nr_bytes;
2141 }
2142
a2dec7b3 2143 req->__data_len -= total_bytes;
2e46e8b2
TH
2144 req->buffer = bio_data(req->bio);
2145
2146 /* update sector only for requests with clear definition of sector */
33659ebb 2147 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2148 req->__sector += total_bytes >> 9;
2e46e8b2 2149
80a761fd
TH
2150 /* mixed attributes always follow the first bio */
2151 if (req->cmd_flags & REQ_MIXED_MERGE) {
2152 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2153 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2154 }
2155
2e46e8b2
TH
2156 /*
2157 * If total number of sectors is less than the first segment
2158 * size, something has gone terribly wrong.
2159 */
2160 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2161 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2162 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2163 }
2164
2165 /* recalculate the number of segments */
1da177e4 2166 blk_recalc_rq_segments(req);
2e46e8b2 2167
2e60e022 2168 return true;
1da177e4 2169}
2e60e022 2170EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2171
2e60e022
TH
2172static bool blk_update_bidi_request(struct request *rq, int error,
2173 unsigned int nr_bytes,
2174 unsigned int bidi_bytes)
5efccd17 2175{
2e60e022
TH
2176 if (blk_update_request(rq, error, nr_bytes))
2177 return true;
5efccd17 2178
2e60e022
TH
2179 /* Bidi request must be completed as a whole */
2180 if (unlikely(blk_bidi_rq(rq)) &&
2181 blk_update_request(rq->next_rq, error, bidi_bytes))
2182 return true;
5efccd17 2183
e2e1a148
JA
2184 if (blk_queue_add_random(rq->q))
2185 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2186
2187 return false;
1da177e4
LT
2188}
2189
28018c24
JB
2190/**
2191 * blk_unprep_request - unprepare a request
2192 * @req: the request
2193 *
2194 * This function makes a request ready for complete resubmission (or
2195 * completion). It happens only after all error handling is complete,
2196 * so represents the appropriate moment to deallocate any resources
2197 * that were allocated to the request in the prep_rq_fn. The queue
2198 * lock is held when calling this.
2199 */
2200void blk_unprep_request(struct request *req)
2201{
2202 struct request_queue *q = req->q;
2203
2204 req->cmd_flags &= ~REQ_DONTPREP;
2205 if (q->unprep_rq_fn)
2206 q->unprep_rq_fn(q, req);
2207}
2208EXPORT_SYMBOL_GPL(blk_unprep_request);
2209
1da177e4
LT
2210/*
2211 * queue lock must be held
2212 */
2e60e022 2213static void blk_finish_request(struct request *req, int error)
1da177e4 2214{
b8286239
KU
2215 if (blk_rq_tagged(req))
2216 blk_queue_end_tag(req->q, req);
2217
ba396a6c 2218 BUG_ON(blk_queued_rq(req));
1da177e4 2219
33659ebb 2220 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2221 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2222
e78042e5
MA
2223 blk_delete_timer(req);
2224
28018c24
JB
2225 if (req->cmd_flags & REQ_DONTPREP)
2226 blk_unprep_request(req);
2227
2228
bc58ba94 2229 blk_account_io_done(req);
b8286239 2230
1da177e4 2231 if (req->end_io)
8ffdc655 2232 req->end_io(req, error);
b8286239
KU
2233 else {
2234 if (blk_bidi_rq(req))
2235 __blk_put_request(req->next_rq->q, req->next_rq);
2236
1da177e4 2237 __blk_put_request(req->q, req);
b8286239 2238 }
1da177e4
LT
2239}
2240
3b11313a 2241/**
2e60e022
TH
2242 * blk_end_bidi_request - Complete a bidi request
2243 * @rq: the request to complete
2244 * @error: %0 for success, < %0 for error
2245 * @nr_bytes: number of bytes to complete @rq
2246 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2247 *
2248 * Description:
e3a04fe3 2249 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2250 * Drivers that supports bidi can safely call this member for any
2251 * type of request, bidi or uni. In the later case @bidi_bytes is
2252 * just ignored.
336cdb40
KU
2253 *
2254 * Return:
2e60e022
TH
2255 * %false - we are done with this request
2256 * %true - still buffers pending for this request
a0cd1285 2257 **/
b1f74493 2258static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2259 unsigned int nr_bytes, unsigned int bidi_bytes)
2260{
336cdb40 2261 struct request_queue *q = rq->q;
2e60e022 2262 unsigned long flags;
32fab448 2263
2e60e022
TH
2264 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2265 return true;
32fab448 2266
336cdb40 2267 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2268 blk_finish_request(rq, error);
336cdb40
KU
2269 spin_unlock_irqrestore(q->queue_lock, flags);
2270
2e60e022 2271 return false;
32fab448
KU
2272}
2273
336cdb40 2274/**
2e60e022
TH
2275 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2276 * @rq: the request to complete
710027a4 2277 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2278 * @nr_bytes: number of bytes to complete @rq
2279 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2280 *
2281 * Description:
2e60e022
TH
2282 * Identical to blk_end_bidi_request() except that queue lock is
2283 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2284 *
2285 * Return:
2e60e022
TH
2286 * %false - we are done with this request
2287 * %true - still buffers pending for this request
336cdb40 2288 **/
b1f74493
FT
2289static bool __blk_end_bidi_request(struct request *rq, int error,
2290 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2291{
2e60e022
TH
2292 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2293 return true;
336cdb40 2294
2e60e022 2295 blk_finish_request(rq, error);
336cdb40 2296
2e60e022 2297 return false;
336cdb40 2298}
e19a3ab0
KU
2299
2300/**
2301 * blk_end_request - Helper function for drivers to complete the request.
2302 * @rq: the request being processed
710027a4 2303 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2304 * @nr_bytes: number of bytes to complete
2305 *
2306 * Description:
2307 * Ends I/O on a number of bytes attached to @rq.
2308 * If @rq has leftover, sets it up for the next range of segments.
2309 *
2310 * Return:
b1f74493
FT
2311 * %false - we are done with this request
2312 * %true - still buffers pending for this request
e19a3ab0 2313 **/
b1f74493 2314bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2315{
b1f74493 2316 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2317}
56ad1740 2318EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2319
2320/**
b1f74493
FT
2321 * blk_end_request_all - Helper function for drives to finish the request.
2322 * @rq: the request to finish
8ebf9756 2323 * @error: %0 for success, < %0 for error
336cdb40
KU
2324 *
2325 * Description:
b1f74493
FT
2326 * Completely finish @rq.
2327 */
2328void blk_end_request_all(struct request *rq, int error)
336cdb40 2329{
b1f74493
FT
2330 bool pending;
2331 unsigned int bidi_bytes = 0;
336cdb40 2332
b1f74493
FT
2333 if (unlikely(blk_bidi_rq(rq)))
2334 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2335
b1f74493
FT
2336 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2337 BUG_ON(pending);
2338}
56ad1740 2339EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2340
b1f74493
FT
2341/**
2342 * blk_end_request_cur - Helper function to finish the current request chunk.
2343 * @rq: the request to finish the current chunk for
8ebf9756 2344 * @error: %0 for success, < %0 for error
b1f74493
FT
2345 *
2346 * Description:
2347 * Complete the current consecutively mapped chunk from @rq.
2348 *
2349 * Return:
2350 * %false - we are done with this request
2351 * %true - still buffers pending for this request
2352 */
2353bool blk_end_request_cur(struct request *rq, int error)
2354{
2355 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2356}
56ad1740 2357EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2358
80a761fd
TH
2359/**
2360 * blk_end_request_err - Finish a request till the next failure boundary.
2361 * @rq: the request to finish till the next failure boundary for
2362 * @error: must be negative errno
2363 *
2364 * Description:
2365 * Complete @rq till the next failure boundary.
2366 *
2367 * Return:
2368 * %false - we are done with this request
2369 * %true - still buffers pending for this request
2370 */
2371bool blk_end_request_err(struct request *rq, int error)
2372{
2373 WARN_ON(error >= 0);
2374 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2375}
2376EXPORT_SYMBOL_GPL(blk_end_request_err);
2377
e3a04fe3 2378/**
b1f74493
FT
2379 * __blk_end_request - Helper function for drivers to complete the request.
2380 * @rq: the request being processed
2381 * @error: %0 for success, < %0 for error
2382 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2383 *
2384 * Description:
b1f74493 2385 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2386 *
2387 * Return:
b1f74493
FT
2388 * %false - we are done with this request
2389 * %true - still buffers pending for this request
e3a04fe3 2390 **/
b1f74493 2391bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2392{
b1f74493 2393 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2394}
56ad1740 2395EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2396
32fab448 2397/**
b1f74493
FT
2398 * __blk_end_request_all - Helper function for drives to finish the request.
2399 * @rq: the request to finish
8ebf9756 2400 * @error: %0 for success, < %0 for error
32fab448
KU
2401 *
2402 * Description:
b1f74493 2403 * Completely finish @rq. Must be called with queue lock held.
32fab448 2404 */
b1f74493 2405void __blk_end_request_all(struct request *rq, int error)
32fab448 2406{
b1f74493
FT
2407 bool pending;
2408 unsigned int bidi_bytes = 0;
2409
2410 if (unlikely(blk_bidi_rq(rq)))
2411 bidi_bytes = blk_rq_bytes(rq->next_rq);
2412
2413 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2414 BUG_ON(pending);
32fab448 2415}
56ad1740 2416EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2417
e19a3ab0 2418/**
b1f74493
FT
2419 * __blk_end_request_cur - Helper function to finish the current request chunk.
2420 * @rq: the request to finish the current chunk for
8ebf9756 2421 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2422 *
2423 * Description:
b1f74493
FT
2424 * Complete the current consecutively mapped chunk from @rq. Must
2425 * be called with queue lock held.
e19a3ab0
KU
2426 *
2427 * Return:
b1f74493
FT
2428 * %false - we are done with this request
2429 * %true - still buffers pending for this request
2430 */
2431bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2432{
b1f74493 2433 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2434}
56ad1740 2435EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2436
80a761fd
TH
2437/**
2438 * __blk_end_request_err - Finish a request till the next failure boundary.
2439 * @rq: the request to finish till the next failure boundary for
2440 * @error: must be negative errno
2441 *
2442 * Description:
2443 * Complete @rq till the next failure boundary. Must be called
2444 * with queue lock held.
2445 *
2446 * Return:
2447 * %false - we are done with this request
2448 * %true - still buffers pending for this request
2449 */
2450bool __blk_end_request_err(struct request *rq, int error)
2451{
2452 WARN_ON(error >= 0);
2453 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2454}
2455EXPORT_SYMBOL_GPL(__blk_end_request_err);
2456
86db1e29
JA
2457void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2458 struct bio *bio)
1da177e4 2459{
a82afdfc 2460 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2461 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2462
fb2dce86
DW
2463 if (bio_has_data(bio)) {
2464 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2465 rq->buffer = bio_data(bio);
2466 }
a2dec7b3 2467 rq->__data_len = bio->bi_size;
1da177e4 2468 rq->bio = rq->biotail = bio;
1da177e4 2469
66846572
N
2470 if (bio->bi_bdev)
2471 rq->rq_disk = bio->bi_bdev->bd_disk;
2472}
1da177e4 2473
2d4dc890
IL
2474#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2475/**
2476 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2477 * @rq: the request to be flushed
2478 *
2479 * Description:
2480 * Flush all pages in @rq.
2481 */
2482void rq_flush_dcache_pages(struct request *rq)
2483{
2484 struct req_iterator iter;
2485 struct bio_vec *bvec;
2486
2487 rq_for_each_segment(bvec, rq, iter)
2488 flush_dcache_page(bvec->bv_page);
2489}
2490EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2491#endif
2492
ef9e3fac
KU
2493/**
2494 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2495 * @q : the queue of the device being checked
2496 *
2497 * Description:
2498 * Check if underlying low-level drivers of a device are busy.
2499 * If the drivers want to export their busy state, they must set own
2500 * exporting function using blk_queue_lld_busy() first.
2501 *
2502 * Basically, this function is used only by request stacking drivers
2503 * to stop dispatching requests to underlying devices when underlying
2504 * devices are busy. This behavior helps more I/O merging on the queue
2505 * of the request stacking driver and prevents I/O throughput regression
2506 * on burst I/O load.
2507 *
2508 * Return:
2509 * 0 - Not busy (The request stacking driver should dispatch request)
2510 * 1 - Busy (The request stacking driver should stop dispatching request)
2511 */
2512int blk_lld_busy(struct request_queue *q)
2513{
2514 if (q->lld_busy_fn)
2515 return q->lld_busy_fn(q);
2516
2517 return 0;
2518}
2519EXPORT_SYMBOL_GPL(blk_lld_busy);
2520
b0fd271d
KU
2521/**
2522 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2523 * @rq: the clone request to be cleaned up
2524 *
2525 * Description:
2526 * Free all bios in @rq for a cloned request.
2527 */
2528void blk_rq_unprep_clone(struct request *rq)
2529{
2530 struct bio *bio;
2531
2532 while ((bio = rq->bio) != NULL) {
2533 rq->bio = bio->bi_next;
2534
2535 bio_put(bio);
2536 }
2537}
2538EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2539
2540/*
2541 * Copy attributes of the original request to the clone request.
2542 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2543 */
2544static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2545{
2546 dst->cpu = src->cpu;
3a2edd0d 2547 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2548 dst->cmd_type = src->cmd_type;
2549 dst->__sector = blk_rq_pos(src);
2550 dst->__data_len = blk_rq_bytes(src);
2551 dst->nr_phys_segments = src->nr_phys_segments;
2552 dst->ioprio = src->ioprio;
2553 dst->extra_len = src->extra_len;
2554}
2555
2556/**
2557 * blk_rq_prep_clone - Helper function to setup clone request
2558 * @rq: the request to be setup
2559 * @rq_src: original request to be cloned
2560 * @bs: bio_set that bios for clone are allocated from
2561 * @gfp_mask: memory allocation mask for bio
2562 * @bio_ctr: setup function to be called for each clone bio.
2563 * Returns %0 for success, non %0 for failure.
2564 * @data: private data to be passed to @bio_ctr
2565 *
2566 * Description:
2567 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2568 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2569 * are not copied, and copying such parts is the caller's responsibility.
2570 * Also, pages which the original bios are pointing to are not copied
2571 * and the cloned bios just point same pages.
2572 * So cloned bios must be completed before original bios, which means
2573 * the caller must complete @rq before @rq_src.
2574 */
2575int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2576 struct bio_set *bs, gfp_t gfp_mask,
2577 int (*bio_ctr)(struct bio *, struct bio *, void *),
2578 void *data)
2579{
2580 struct bio *bio, *bio_src;
2581
2582 if (!bs)
2583 bs = fs_bio_set;
2584
2585 blk_rq_init(NULL, rq);
2586
2587 __rq_for_each_bio(bio_src, rq_src) {
2588 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2589 if (!bio)
2590 goto free_and_out;
2591
2592 __bio_clone(bio, bio_src);
2593
2594 if (bio_integrity(bio_src) &&
7878cba9 2595 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2596 goto free_and_out;
2597
2598 if (bio_ctr && bio_ctr(bio, bio_src, data))
2599 goto free_and_out;
2600
2601 if (rq->bio) {
2602 rq->biotail->bi_next = bio;
2603 rq->biotail = bio;
2604 } else
2605 rq->bio = rq->biotail = bio;
2606 }
2607
2608 __blk_rq_prep_clone(rq, rq_src);
2609
2610 return 0;
2611
2612free_and_out:
2613 if (bio)
2614 bio_free(bio, bs);
2615 blk_rq_unprep_clone(rq);
2616
2617 return -ENOMEM;
2618}
2619EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2620
18887ad9 2621int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2622{
2623 return queue_work(kblockd_workqueue, work);
2624}
1da177e4
LT
2625EXPORT_SYMBOL(kblockd_schedule_work);
2626
e43473b7
VG
2627int kblockd_schedule_delayed_work(struct request_queue *q,
2628 struct delayed_work *dwork, unsigned long delay)
2629{
2630 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2631}
2632EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2633
73c10101
JA
2634#define PLUG_MAGIC 0x91827364
2635
2636void blk_start_plug(struct blk_plug *plug)
2637{
2638 struct task_struct *tsk = current;
2639
2640 plug->magic = PLUG_MAGIC;
2641 INIT_LIST_HEAD(&plug->list);
048c9374 2642 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2643 plug->should_sort = 0;
2644
2645 /*
2646 * If this is a nested plug, don't actually assign it. It will be
2647 * flushed on its own.
2648 */
2649 if (!tsk->plug) {
2650 /*
2651 * Store ordering should not be needed here, since a potential
2652 * preempt will imply a full memory barrier
2653 */
2654 tsk->plug = plug;
2655 }
2656}
2657EXPORT_SYMBOL(blk_start_plug);
2658
2659static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2660{
2661 struct request *rqa = container_of(a, struct request, queuelist);
2662 struct request *rqb = container_of(b, struct request, queuelist);
2663
f83e8261 2664 return !(rqa->q <= rqb->q);
73c10101
JA
2665}
2666
49cac01e
JA
2667/*
2668 * If 'from_schedule' is true, then postpone the dispatch of requests
2669 * until a safe kblockd context. We due this to avoid accidental big
2670 * additional stack usage in driver dispatch, in places where the originally
2671 * plugger did not intend it.
2672 */
f6603783 2673static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2674 bool from_schedule)
99e22598 2675 __releases(q->queue_lock)
94b5eb28 2676{
49cac01e 2677 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2678
2679 /*
2680 * If we are punting this to kblockd, then we can safely drop
2681 * the queue_lock before waking kblockd (which needs to take
2682 * this lock).
2683 */
2684 if (from_schedule) {
2685 spin_unlock(q->queue_lock);
2686 __blk_run_queue(q, true);
2687 } else {
2688 __blk_run_queue(q, false);
2689 spin_unlock(q->queue_lock);
2690 }
2691
94b5eb28
JA
2692}
2693
048c9374
N
2694static void flush_plug_callbacks(struct blk_plug *plug)
2695{
2696 LIST_HEAD(callbacks);
2697
2698 if (list_empty(&plug->cb_list))
2699 return;
2700
2701 list_splice_init(&plug->cb_list, &callbacks);
2702
2703 while (!list_empty(&callbacks)) {
2704 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2705 struct blk_plug_cb,
2706 list);
2707 list_del(&cb->list);
2708 cb->callback(cb);
2709 }
2710}
2711
49cac01e 2712void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2713{
2714 struct request_queue *q;
2715 unsigned long flags;
2716 struct request *rq;
109b8129 2717 LIST_HEAD(list);
94b5eb28 2718 unsigned int depth;
73c10101
JA
2719
2720 BUG_ON(plug->magic != PLUG_MAGIC);
2721
048c9374 2722 flush_plug_callbacks(plug);
73c10101
JA
2723 if (list_empty(&plug->list))
2724 return;
2725
109b8129
N
2726 list_splice_init(&plug->list, &list);
2727
2728 if (plug->should_sort) {
2729 list_sort(NULL, &list, plug_rq_cmp);
2730 plug->should_sort = 0;
2731 }
73c10101
JA
2732
2733 q = NULL;
94b5eb28 2734 depth = 0;
18811272
JA
2735
2736 /*
2737 * Save and disable interrupts here, to avoid doing it for every
2738 * queue lock we have to take.
2739 */
73c10101 2740 local_irq_save(flags);
109b8129
N
2741 while (!list_empty(&list)) {
2742 rq = list_entry_rq(list.next);
73c10101
JA
2743 list_del_init(&rq->queuelist);
2744 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2745 BUG_ON(!rq->q);
2746 if (rq->q != q) {
99e22598
JA
2747 /*
2748 * This drops the queue lock
2749 */
2750 if (q)
49cac01e 2751 queue_unplugged(q, depth, from_schedule);
73c10101 2752 q = rq->q;
94b5eb28 2753 depth = 0;
73c10101
JA
2754 spin_lock(q->queue_lock);
2755 }
2756 rq->cmd_flags &= ~REQ_ON_PLUG;
2757
2758 /*
2759 * rq is already accounted, so use raw insert
2760 */
401a18e9
JA
2761 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2762 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2763 else
2764 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2765
2766 depth++;
73c10101
JA
2767 }
2768
99e22598
JA
2769 /*
2770 * This drops the queue lock
2771 */
2772 if (q)
49cac01e 2773 queue_unplugged(q, depth, from_schedule);
73c10101 2774
73c10101
JA
2775 local_irq_restore(flags);
2776}
88b996cd 2777EXPORT_SYMBOL(blk_flush_plug_list);
73c10101
JA
2778
2779void blk_finish_plug(struct blk_plug *plug)
2780{
f6603783 2781 blk_flush_plug_list(plug, false);
73c10101 2782
88b996cd
CH
2783 if (plug == current->plug)
2784 current->plug = NULL;
73c10101 2785}
88b996cd 2786EXPORT_SYMBOL(blk_finish_plug);
73c10101 2787
1da177e4
LT
2788int __init blk_dev_init(void)
2789{
9eb55b03
NK
2790 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2791 sizeof(((struct request *)0)->cmd_flags));
2792
89b90be2
TH
2793 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2794 kblockd_workqueue = alloc_workqueue("kblockd",
2795 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2796 if (!kblockd_workqueue)
2797 panic("Failed to create kblockd\n");
2798
2799 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2800 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2801
8324aa91 2802 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2803 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2804
d38ecf93 2805 return 0;
1da177e4 2806}
This page took 0.824657 seconds and 5 git commands to generate.