ide: separate PCI specific init from generic init in ide_pci_setup_ports()
[deliverable/linux.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
1da177e4
LT
14
15/*
16 * tunables
17 */
fe094d98
JA
18/* max queue in one round of service */
19static const int cfq_quantum = 4;
64100099 20static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
21/* maximum backwards seek, in KiB */
22static const int cfq_back_max = 16 * 1024;
23/* penalty of a backwards seek */
24static const int cfq_back_penalty = 2;
64100099 25static const int cfq_slice_sync = HZ / 10;
3b18152c 26static int cfq_slice_async = HZ / 25;
64100099 27static const int cfq_slice_async_rq = 2;
caaa5f9f 28static int cfq_slice_idle = HZ / 125;
22e2c507 29
d9e7620e 30/*
0871714e 31 * offset from end of service tree
d9e7620e 32 */
0871714e 33#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
34
35/*
36 * below this threshold, we consider thinktime immediate
37 */
38#define CFQ_MIN_TT (2)
39
22e2c507
JA
40#define CFQ_SLICE_SCALE (5)
41
fe094d98
JA
42#define RQ_CIC(rq) \
43 ((struct cfq_io_context *) (rq)->elevator_private)
5e705374 44#define RQ_CFQQ(rq) ((rq)->elevator_private2)
1da177e4 45
e18b890b
CL
46static struct kmem_cache *cfq_pool;
47static struct kmem_cache *cfq_ioc_pool;
1da177e4 48
4050cf16 49static DEFINE_PER_CPU(unsigned long, ioc_count);
334e94de
AV
50static struct completion *ioc_gone;
51
22e2c507
JA
52#define CFQ_PRIO_LISTS IOPRIO_BE_NR
53#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
54#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
3b18152c
JA
56#define ASYNC (0)
57#define SYNC (1)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
22e2c507
JA
73/*
74 * Per block device queue structure
75 */
1da177e4 76struct cfq_data {
165125e1 77 struct request_queue *queue;
22e2c507
JA
78
79 /*
80 * rr list of queues with requests and the count of them
81 */
cc09e299 82 struct cfq_rb_root service_tree;
22e2c507
JA
83 unsigned int busy_queues;
84
22e2c507 85 int rq_in_driver;
3ed9a296 86 int sync_flight;
25776e35 87 int hw_tag;
1da177e4 88
22e2c507
JA
89 /*
90 * idle window management
91 */
92 struct timer_list idle_slice_timer;
93 struct work_struct unplug_work;
1da177e4 94
22e2c507
JA
95 struct cfq_queue *active_queue;
96 struct cfq_io_context *active_cic;
22e2c507 97
c2dea2d1
VT
98 /*
99 * async queue for each priority case
100 */
101 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
102 struct cfq_queue *async_idle_cfqq;
15c31be4 103
6d048f53 104 sector_t last_position;
22e2c507 105 unsigned long last_end_request;
1da177e4 106
1da177e4
LT
107 /*
108 * tunables, see top of file
109 */
110 unsigned int cfq_quantum;
22e2c507 111 unsigned int cfq_fifo_expire[2];
1da177e4
LT
112 unsigned int cfq_back_penalty;
113 unsigned int cfq_back_max;
22e2c507
JA
114 unsigned int cfq_slice[2];
115 unsigned int cfq_slice_async_rq;
116 unsigned int cfq_slice_idle;
d9ff4187
AV
117
118 struct list_head cic_list;
1da177e4
LT
119};
120
22e2c507
JA
121/*
122 * Per process-grouping structure
123 */
1da177e4
LT
124struct cfq_queue {
125 /* reference count */
126 atomic_t ref;
127 /* parent cfq_data */
128 struct cfq_data *cfqd;
d9e7620e
JA
129 /* service_tree member */
130 struct rb_node rb_node;
131 /* service_tree key */
132 unsigned long rb_key;
1da177e4
LT
133 /* sorted list of pending requests */
134 struct rb_root sort_list;
135 /* if fifo isn't expired, next request to serve */
5e705374 136 struct request *next_rq;
1da177e4
LT
137 /* requests queued in sort_list */
138 int queued[2];
139 /* currently allocated requests */
140 int allocated[2];
374f84ac
JA
141 /* pending metadata requests */
142 int meta_pending;
1da177e4 143 /* fifo list of requests in sort_list */
22e2c507 144 struct list_head fifo;
1da177e4 145
22e2c507 146 unsigned long slice_end;
c5b680f3 147 long slice_resid;
1da177e4 148
6d048f53
JA
149 /* number of requests that are on the dispatch list or inside driver */
150 int dispatched;
22e2c507
JA
151
152 /* io prio of this group */
153 unsigned short ioprio, org_ioprio;
154 unsigned short ioprio_class, org_ioprio_class;
155
3b18152c
JA
156 /* various state flags, see below */
157 unsigned int flags;
1da177e4
LT
158};
159
3b18152c 160enum cfqq_state_flags {
b0b8d749
JA
161 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
162 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
163 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
164 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
165 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
166 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
167 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
168 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
169 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
44f7c160 170 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 171 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
3b18152c
JA
172};
173
174#define CFQ_CFQQ_FNS(name) \
175static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
176{ \
fe094d98 177 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
178} \
179static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
180{ \
fe094d98 181 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
182} \
183static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
184{ \
fe094d98 185 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
186}
187
188CFQ_CFQQ_FNS(on_rr);
189CFQ_CFQQ_FNS(wait_request);
190CFQ_CFQQ_FNS(must_alloc);
191CFQ_CFQQ_FNS(must_alloc_slice);
192CFQ_CFQQ_FNS(must_dispatch);
193CFQ_CFQQ_FNS(fifo_expire);
194CFQ_CFQQ_FNS(idle_window);
195CFQ_CFQQ_FNS(prio_changed);
53b03744 196CFQ_CFQQ_FNS(queue_new);
44f7c160 197CFQ_CFQQ_FNS(slice_new);
91fac317 198CFQ_CFQQ_FNS(sync);
3b18152c
JA
199#undef CFQ_CFQQ_FNS
200
165125e1 201static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 202static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 203 struct io_context *, gfp_t);
4ac845a2 204static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
205 struct io_context *);
206
207static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
208 int is_sync)
209{
210 return cic->cfqq[!!is_sync];
211}
212
213static inline void cic_set_cfqq(struct cfq_io_context *cic,
214 struct cfq_queue *cfqq, int is_sync)
215{
216 cic->cfqq[!!is_sync] = cfqq;
217}
218
219/*
220 * We regard a request as SYNC, if it's either a read or has the SYNC bit
221 * set (in which case it could also be direct WRITE).
222 */
223static inline int cfq_bio_sync(struct bio *bio)
224{
225 if (bio_data_dir(bio) == READ || bio_sync(bio))
226 return 1;
227
228 return 0;
229}
1da177e4 230
99f95e52
AM
231/*
232 * scheduler run of queue, if there are requests pending and no one in the
233 * driver that will restart queueing
234 */
235static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
236{
7b14e3b5 237 if (cfqd->busy_queues)
99f95e52
AM
238 kblockd_schedule_work(&cfqd->unplug_work);
239}
240
165125e1 241static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
242{
243 struct cfq_data *cfqd = q->elevator->elevator_data;
244
b4878f24 245 return !cfqd->busy_queues;
99f95e52
AM
246}
247
44f7c160
JA
248/*
249 * Scale schedule slice based on io priority. Use the sync time slice only
250 * if a queue is marked sync and has sync io queued. A sync queue with async
251 * io only, should not get full sync slice length.
252 */
d9e7620e
JA
253static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
254 unsigned short prio)
44f7c160 255{
d9e7620e 256 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 257
d9e7620e
JA
258 WARN_ON(prio >= IOPRIO_BE_NR);
259
260 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
261}
44f7c160 262
d9e7620e
JA
263static inline int
264cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
265{
266 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
267}
268
269static inline void
270cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
271{
272 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273}
274
275/*
276 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
277 * isn't valid until the first request from the dispatch is activated
278 * and the slice time set.
279 */
280static inline int cfq_slice_used(struct cfq_queue *cfqq)
281{
282 if (cfq_cfqq_slice_new(cfqq))
283 return 0;
284 if (time_before(jiffies, cfqq->slice_end))
285 return 0;
286
287 return 1;
288}
289
1da177e4 290/*
5e705374 291 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 292 * We choose the request that is closest to the head right now. Distance
e8a99053 293 * behind the head is penalized and only allowed to a certain extent.
1da177e4 294 */
5e705374
JA
295static struct request *
296cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
297{
298 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 299 unsigned long back_max;
e8a99053
AM
300#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
301#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
302 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 303
5e705374
JA
304 if (rq1 == NULL || rq1 == rq2)
305 return rq2;
306 if (rq2 == NULL)
307 return rq1;
9c2c38a1 308
5e705374
JA
309 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
310 return rq1;
311 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
312 return rq2;
374f84ac
JA
313 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
314 return rq1;
315 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
316 return rq2;
1da177e4 317
5e705374
JA
318 s1 = rq1->sector;
319 s2 = rq2->sector;
1da177e4 320
6d048f53 321 last = cfqd->last_position;
1da177e4 322
1da177e4
LT
323 /*
324 * by definition, 1KiB is 2 sectors
325 */
326 back_max = cfqd->cfq_back_max * 2;
327
328 /*
329 * Strict one way elevator _except_ in the case where we allow
330 * short backward seeks which are biased as twice the cost of a
331 * similar forward seek.
332 */
333 if (s1 >= last)
334 d1 = s1 - last;
335 else if (s1 + back_max >= last)
336 d1 = (last - s1) * cfqd->cfq_back_penalty;
337 else
e8a99053 338 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
339
340 if (s2 >= last)
341 d2 = s2 - last;
342 else if (s2 + back_max >= last)
343 d2 = (last - s2) * cfqd->cfq_back_penalty;
344 else
e8a99053 345 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
346
347 /* Found required data */
e8a99053
AM
348
349 /*
350 * By doing switch() on the bit mask "wrap" we avoid having to
351 * check two variables for all permutations: --> faster!
352 */
353 switch (wrap) {
5e705374 354 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 355 if (d1 < d2)
5e705374 356 return rq1;
e8a99053 357 else if (d2 < d1)
5e705374 358 return rq2;
e8a99053
AM
359 else {
360 if (s1 >= s2)
5e705374 361 return rq1;
e8a99053 362 else
5e705374 363 return rq2;
e8a99053 364 }
1da177e4 365
e8a99053 366 case CFQ_RQ2_WRAP:
5e705374 367 return rq1;
e8a99053 368 case CFQ_RQ1_WRAP:
5e705374
JA
369 return rq2;
370 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
371 default:
372 /*
373 * Since both rqs are wrapped,
374 * start with the one that's further behind head
375 * (--> only *one* back seek required),
376 * since back seek takes more time than forward.
377 */
378 if (s1 <= s2)
5e705374 379 return rq1;
1da177e4 380 else
5e705374 381 return rq2;
1da177e4
LT
382 }
383}
384
498d3aa2
JA
385/*
386 * The below is leftmost cache rbtree addon
387 */
0871714e 388static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
389{
390 if (!root->left)
391 root->left = rb_first(&root->rb);
392
0871714e
JA
393 if (root->left)
394 return rb_entry(root->left, struct cfq_queue, rb_node);
395
396 return NULL;
cc09e299
JA
397}
398
399static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
400{
401 if (root->left == n)
402 root->left = NULL;
403
404 rb_erase(n, &root->rb);
405 RB_CLEAR_NODE(n);
406}
407
1da177e4
LT
408/*
409 * would be nice to take fifo expire time into account as well
410 */
5e705374
JA
411static struct request *
412cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
413 struct request *last)
1da177e4 414{
21183b07
JA
415 struct rb_node *rbnext = rb_next(&last->rb_node);
416 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 417 struct request *next = NULL, *prev = NULL;
1da177e4 418
21183b07 419 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
420
421 if (rbprev)
5e705374 422 prev = rb_entry_rq(rbprev);
1da177e4 423
21183b07 424 if (rbnext)
5e705374 425 next = rb_entry_rq(rbnext);
21183b07
JA
426 else {
427 rbnext = rb_first(&cfqq->sort_list);
428 if (rbnext && rbnext != &last->rb_node)
5e705374 429 next = rb_entry_rq(rbnext);
21183b07 430 }
1da177e4 431
21183b07 432 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
433}
434
d9e7620e
JA
435static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
436 struct cfq_queue *cfqq)
1da177e4 437{
d9e7620e
JA
438 /*
439 * just an approximation, should be ok.
440 */
67e6b49e
JA
441 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
442 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
443}
444
498d3aa2
JA
445/*
446 * The cfqd->service_tree holds all pending cfq_queue's that have
447 * requests waiting to be processed. It is sorted in the order that
448 * we will service the queues.
449 */
d9e7620e 450static void cfq_service_tree_add(struct cfq_data *cfqd,
edd75ffd 451 struct cfq_queue *cfqq, int add_front)
d9e7620e 452{
0871714e
JA
453 struct rb_node **p, *parent;
454 struct cfq_queue *__cfqq;
d9e7620e 455 unsigned long rb_key;
498d3aa2 456 int left;
d9e7620e 457
0871714e
JA
458 if (cfq_class_idle(cfqq)) {
459 rb_key = CFQ_IDLE_DELAY;
460 parent = rb_last(&cfqd->service_tree.rb);
461 if (parent && parent != &cfqq->rb_node) {
462 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
463 rb_key += __cfqq->rb_key;
464 } else
465 rb_key += jiffies;
466 } else if (!add_front) {
edd75ffd
JA
467 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
468 rb_key += cfqq->slice_resid;
469 cfqq->slice_resid = 0;
470 } else
471 rb_key = 0;
1da177e4 472
d9e7620e 473 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 474 /*
d9e7620e 475 * same position, nothing more to do
99f9628a 476 */
d9e7620e
JA
477 if (rb_key == cfqq->rb_key)
478 return;
1da177e4 479
cc09e299 480 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 481 }
d9e7620e 482
498d3aa2 483 left = 1;
0871714e
JA
484 parent = NULL;
485 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 486 while (*p) {
67060e37 487 struct rb_node **n;
cc09e299 488
d9e7620e
JA
489 parent = *p;
490 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
491
0c534e0a
JA
492 /*
493 * sort RT queues first, we always want to give
67060e37
JA
494 * preference to them. IDLE queues goes to the back.
495 * after that, sort on the next service time.
0c534e0a
JA
496 */
497 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 498 n = &(*p)->rb_left;
0c534e0a 499 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
500 n = &(*p)->rb_right;
501 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
502 n = &(*p)->rb_left;
503 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
504 n = &(*p)->rb_right;
0c534e0a 505 else if (rb_key < __cfqq->rb_key)
67060e37
JA
506 n = &(*p)->rb_left;
507 else
508 n = &(*p)->rb_right;
509
510 if (n == &(*p)->rb_right)
cc09e299 511 left = 0;
67060e37
JA
512
513 p = n;
d9e7620e
JA
514 }
515
cc09e299
JA
516 if (left)
517 cfqd->service_tree.left = &cfqq->rb_node;
518
d9e7620e
JA
519 cfqq->rb_key = rb_key;
520 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 521 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
522}
523
498d3aa2
JA
524/*
525 * Update cfqq's position in the service tree.
526 */
edd75ffd 527static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 528{
6d048f53
JA
529 /*
530 * Resorting requires the cfqq to be on the RR list already.
531 */
498d3aa2 532 if (cfq_cfqq_on_rr(cfqq))
edd75ffd 533 cfq_service_tree_add(cfqd, cfqq, 0);
6d048f53
JA
534}
535
1da177e4
LT
536/*
537 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 538 * the pending list according to last request service
1da177e4 539 */
febffd61 540static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 541{
3b18152c
JA
542 BUG_ON(cfq_cfqq_on_rr(cfqq));
543 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
544 cfqd->busy_queues++;
545
edd75ffd 546 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
547}
548
498d3aa2
JA
549/*
550 * Called when the cfqq no longer has requests pending, remove it from
551 * the service tree.
552 */
febffd61 553static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 554{
3b18152c
JA
555 BUG_ON(!cfq_cfqq_on_rr(cfqq));
556 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 557
cc09e299
JA
558 if (!RB_EMPTY_NODE(&cfqq->rb_node))
559 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
d9e7620e 560
1da177e4
LT
561 BUG_ON(!cfqd->busy_queues);
562 cfqd->busy_queues--;
563}
564
565/*
566 * rb tree support functions
567 */
febffd61 568static void cfq_del_rq_rb(struct request *rq)
1da177e4 569{
5e705374 570 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 571 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 572 const int sync = rq_is_sync(rq);
1da177e4 573
b4878f24
JA
574 BUG_ON(!cfqq->queued[sync]);
575 cfqq->queued[sync]--;
1da177e4 576
5e705374 577 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 578
dd67d051 579 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 580 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
581}
582
5e705374 583static void cfq_add_rq_rb(struct request *rq)
1da177e4 584{
5e705374 585 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 586 struct cfq_data *cfqd = cfqq->cfqd;
21183b07 587 struct request *__alias;
1da177e4 588
5380a101 589 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
590
591 /*
592 * looks a little odd, but the first insert might return an alias.
593 * if that happens, put the alias on the dispatch list
594 */
21183b07 595 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 596 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
597
598 if (!cfq_cfqq_on_rr(cfqq))
599 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
600
601 /*
602 * check if this request is a better next-serve candidate
603 */
604 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
605 BUG_ON(!cfqq->next_rq);
1da177e4
LT
606}
607
febffd61 608static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 609{
5380a101
JA
610 elv_rb_del(&cfqq->sort_list, rq);
611 cfqq->queued[rq_is_sync(rq)]--;
5e705374 612 cfq_add_rq_rb(rq);
1da177e4
LT
613}
614
206dc69b
JA
615static struct request *
616cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 617{
206dc69b 618 struct task_struct *tsk = current;
91fac317 619 struct cfq_io_context *cic;
206dc69b 620 struct cfq_queue *cfqq;
1da177e4 621
4ac845a2 622 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
623 if (!cic)
624 return NULL;
625
626 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
627 if (cfqq) {
628 sector_t sector = bio->bi_sector + bio_sectors(bio);
629
21183b07 630 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 631 }
1da177e4 632
1da177e4
LT
633 return NULL;
634}
635
165125e1 636static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 637{
22e2c507 638 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 639
b4878f24 640 cfqd->rq_in_driver++;
25776e35
JA
641
642 /*
643 * If the depth is larger 1, it really could be queueing. But lets
644 * make the mark a little higher - idling could still be good for
645 * low queueing, and a low queueing number could also just indicate
646 * a SCSI mid layer like behaviour where limit+1 is often seen.
647 */
648 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
649 cfqd->hw_tag = 1;
6d048f53
JA
650
651 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
1da177e4
LT
652}
653
165125e1 654static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 655{
b4878f24
JA
656 struct cfq_data *cfqd = q->elevator->elevator_data;
657
658 WARN_ON(!cfqd->rq_in_driver);
659 cfqd->rq_in_driver--;
1da177e4
LT
660}
661
b4878f24 662static void cfq_remove_request(struct request *rq)
1da177e4 663{
5e705374 664 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 665
5e705374
JA
666 if (cfqq->next_rq == rq)
667 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 668
b4878f24 669 list_del_init(&rq->queuelist);
5e705374 670 cfq_del_rq_rb(rq);
374f84ac
JA
671
672 if (rq_is_meta(rq)) {
673 WARN_ON(!cfqq->meta_pending);
674 cfqq->meta_pending--;
675 }
1da177e4
LT
676}
677
165125e1
JA
678static int cfq_merge(struct request_queue *q, struct request **req,
679 struct bio *bio)
1da177e4
LT
680{
681 struct cfq_data *cfqd = q->elevator->elevator_data;
682 struct request *__rq;
1da177e4 683
206dc69b 684 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 685 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
686 *req = __rq;
687 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
688 }
689
690 return ELEVATOR_NO_MERGE;
1da177e4
LT
691}
692
165125e1 693static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 694 int type)
1da177e4 695{
21183b07 696 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 697 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 698
5e705374 699 cfq_reposition_rq_rb(cfqq, req);
1da177e4 700 }
1da177e4
LT
701}
702
703static void
165125e1 704cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
705 struct request *next)
706{
22e2c507
JA
707 /*
708 * reposition in fifo if next is older than rq
709 */
710 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
711 time_before(next->start_time, rq->start_time))
712 list_move(&rq->queuelist, &next->queuelist);
713
b4878f24 714 cfq_remove_request(next);
22e2c507
JA
715}
716
165125e1 717static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
718 struct bio *bio)
719{
720 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 721 struct cfq_io_context *cic;
da775265 722 struct cfq_queue *cfqq;
da775265
JA
723
724 /*
ec8acb69 725 * Disallow merge of a sync bio into an async request.
da775265 726 */
91fac317 727 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
728 return 0;
729
730 /*
719d3402
JA
731 * Lookup the cfqq that this bio will be queued with. Allow
732 * merge only if rq is queued there.
da775265 733 */
4ac845a2 734 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
735 if (!cic)
736 return 0;
719d3402 737
91fac317 738 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
739 if (cfqq == RQ_CFQQ(rq))
740 return 1;
da775265 741
ec8acb69 742 return 0;
da775265
JA
743}
744
febffd61
JA
745static void __cfq_set_active_queue(struct cfq_data *cfqd,
746 struct cfq_queue *cfqq)
22e2c507
JA
747{
748 if (cfqq) {
22e2c507 749 cfqq->slice_end = 0;
3b18152c
JA
750 cfq_clear_cfqq_must_alloc_slice(cfqq);
751 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 752 cfq_mark_cfqq_slice_new(cfqq);
1afba045 753 cfq_clear_cfqq_queue_new(cfqq);
22e2c507
JA
754 }
755
756 cfqd->active_queue = cfqq;
757}
758
7b14e3b5
JA
759/*
760 * current cfqq expired its slice (or was too idle), select new one
761 */
762static void
763__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 764 int timed_out)
7b14e3b5 765{
7b14e3b5
JA
766 if (cfq_cfqq_wait_request(cfqq))
767 del_timer(&cfqd->idle_slice_timer);
768
7b14e3b5
JA
769 cfq_clear_cfqq_must_dispatch(cfqq);
770 cfq_clear_cfqq_wait_request(cfqq);
771
772 /*
6084cdda 773 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 774 */
3c6bd2f8 775 if (timed_out && !cfq_cfqq_slice_new(cfqq))
c5b680f3 776 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b14e3b5 777
edd75ffd 778 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
779
780 if (cfqq == cfqd->active_queue)
781 cfqd->active_queue = NULL;
782
783 if (cfqd->active_cic) {
784 put_io_context(cfqd->active_cic->ioc);
785 cfqd->active_cic = NULL;
786 }
7b14e3b5
JA
787}
788
6084cdda 789static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
790{
791 struct cfq_queue *cfqq = cfqd->active_queue;
792
793 if (cfqq)
6084cdda 794 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
795}
796
498d3aa2
JA
797/*
798 * Get next queue for service. Unless we have a queue preemption,
799 * we'll simply select the first cfqq in the service tree.
800 */
6d048f53 801static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 802{
edd75ffd
JA
803 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
804 return NULL;
d9e7620e 805
0871714e 806 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
807}
808
498d3aa2
JA
809/*
810 * Get and set a new active queue for service.
811 */
6d048f53
JA
812static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
813{
814 struct cfq_queue *cfqq;
815
d9e7620e 816 cfqq = cfq_get_next_queue(cfqd);
22e2c507 817 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 818 return cfqq;
22e2c507
JA
819}
820
d9e7620e
JA
821static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
822 struct request *rq)
823{
824 if (rq->sector >= cfqd->last_position)
825 return rq->sector - cfqd->last_position;
826 else
827 return cfqd->last_position - rq->sector;
828}
829
6d048f53
JA
830static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
831{
832 struct cfq_io_context *cic = cfqd->active_cic;
833
834 if (!sample_valid(cic->seek_samples))
835 return 0;
836
837 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
838}
839
d9e7620e
JA
840static int cfq_close_cooperator(struct cfq_data *cfq_data,
841 struct cfq_queue *cfqq)
6d048f53 842{
6d048f53 843 /*
d9e7620e
JA
844 * We should notice if some of the queues are cooperating, eg
845 * working closely on the same area of the disk. In that case,
846 * we can group them together and don't waste time idling.
6d048f53 847 */
d9e7620e 848 return 0;
6d048f53
JA
849}
850
851#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
caaa5f9f 852
6d048f53 853static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 854{
1792669c 855 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 856 struct cfq_io_context *cic;
7b14e3b5
JA
857 unsigned long sl;
858
dd67d051 859 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 860 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
861
862 /*
863 * idle is disabled, either manually or by past process history
864 */
6d048f53
JA
865 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
866 return;
867
22e2c507
JA
868 /*
869 * task has exited, don't wait
870 */
206dc69b 871 cic = cfqd->active_cic;
66dac98e 872 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
873 return;
874
875 /*
876 * See if this prio level has a good candidate
877 */
1afba045
JA
878 if (cfq_close_cooperator(cfqd, cfqq) &&
879 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
6d048f53 880 return;
22e2c507 881
3b18152c
JA
882 cfq_mark_cfqq_must_dispatch(cfqq);
883 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 884
206dc69b
JA
885 /*
886 * we don't want to idle for seeks, but we do want to allow
887 * fair distribution of slice time for a process doing back-to-back
888 * seeks. so allow a little bit of time for him to submit a new rq
889 */
6d048f53 890 sl = cfqd->cfq_slice_idle;
caaa5f9f 891 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 892 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 893
7b14e3b5 894 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1da177e4
LT
895}
896
498d3aa2
JA
897/*
898 * Move request from internal lists to the request queue dispatch list.
899 */
165125e1 900static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 901{
3ed9a296 902 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 903 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 904
5380a101 905 cfq_remove_request(rq);
6d048f53 906 cfqq->dispatched++;
5380a101 907 elv_dispatch_sort(q, rq);
3ed9a296
JA
908
909 if (cfq_cfqq_sync(cfqq))
910 cfqd->sync_flight++;
1da177e4
LT
911}
912
913/*
914 * return expired entry, or NULL to just start from scratch in rbtree
915 */
febffd61 916static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
917{
918 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 919 struct request *rq;
89850f7e 920 int fifo;
1da177e4 921
3b18152c 922 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 923 return NULL;
cb887411
JA
924
925 cfq_mark_cfqq_fifo_expire(cfqq);
926
89850f7e
JA
927 if (list_empty(&cfqq->fifo))
928 return NULL;
1da177e4 929
6d048f53 930 fifo = cfq_cfqq_sync(cfqq);
89850f7e 931 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 932
6d048f53
JA
933 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
934 return NULL;
1da177e4 935
6d048f53 936 return rq;
1da177e4
LT
937}
938
22e2c507
JA
939static inline int
940cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
941{
942 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 943
22e2c507 944 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 945
22e2c507 946 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
947}
948
22e2c507 949/*
498d3aa2
JA
950 * Select a queue for service. If we have a current active queue,
951 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 952 */
1b5ed5e1 953static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 954{
1da177e4 955 struct cfq_queue *cfqq;
1da177e4 956
22e2c507
JA
957 cfqq = cfqd->active_queue;
958 if (!cfqq)
959 goto new_queue;
1da177e4 960
22e2c507 961 /*
6d048f53 962 * The active queue has run out of time, expire it and select new.
22e2c507 963 */
6d048f53 964 if (cfq_slice_used(cfqq))
3b18152c 965 goto expire;
1da177e4 966
22e2c507 967 /*
6d048f53
JA
968 * The active queue has requests and isn't expired, allow it to
969 * dispatch.
22e2c507 970 */
dd67d051 971 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 972 goto keep_queue;
6d048f53
JA
973
974 /*
975 * No requests pending. If the active queue still has requests in
976 * flight or is idling for a new request, allow either of these
977 * conditions to happen (or time out) before selecting a new queue.
978 */
cc197479
JA
979 if (timer_pending(&cfqd->idle_slice_timer) ||
980 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
981 cfqq = NULL;
982 goto keep_queue;
22e2c507
JA
983 }
984
3b18152c 985expire:
6084cdda 986 cfq_slice_expired(cfqd, 0);
3b18152c
JA
987new_queue:
988 cfqq = cfq_set_active_queue(cfqd);
22e2c507 989keep_queue:
3b18152c 990 return cfqq;
22e2c507
JA
991}
992
498d3aa2
JA
993/*
994 * Dispatch some requests from cfqq, moving them to the request queue
995 * dispatch list.
996 */
22e2c507
JA
997static int
998__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
999 int max_dispatch)
1000{
1001 int dispatched = 0;
1002
dd67d051 1003 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
22e2c507
JA
1004
1005 do {
5e705374 1006 struct request *rq;
1da177e4
LT
1007
1008 /*
22e2c507 1009 * follow expired path, else get first next available
1da177e4 1010 */
fe094d98
JA
1011 rq = cfq_check_fifo(cfqq);
1012 if (rq == NULL)
5e705374 1013 rq = cfqq->next_rq;
22e2c507
JA
1014
1015 /*
1016 * finally, insert request into driver dispatch list
1017 */
5e705374 1018 cfq_dispatch_insert(cfqd->queue, rq);
1da177e4 1019
22e2c507 1020 dispatched++;
1da177e4 1021
22e2c507 1022 if (!cfqd->active_cic) {
5e705374
JA
1023 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1024 cfqd->active_cic = RQ_CIC(rq);
22e2c507 1025 }
1da177e4 1026
dd67d051 1027 if (RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507
JA
1028 break;
1029
1030 } while (dispatched < max_dispatch);
1031
22e2c507
JA
1032 /*
1033 * expire an async queue immediately if it has used up its slice. idle
1034 * queue always expire after 1 dispatch round.
1035 */
a9938006 1036 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
20e493a8 1037 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
a9938006 1038 cfq_class_idle(cfqq))) {
44f7c160 1039 cfqq->slice_end = jiffies + 1;
6084cdda 1040 cfq_slice_expired(cfqd, 0);
44f7c160 1041 }
22e2c507
JA
1042
1043 return dispatched;
1044}
1045
febffd61 1046static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1047{
1048 int dispatched = 0;
1049
1050 while (cfqq->next_rq) {
1051 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1052 dispatched++;
1053 }
1054
1055 BUG_ON(!list_empty(&cfqq->fifo));
1056 return dispatched;
1057}
1058
498d3aa2
JA
1059/*
1060 * Drain our current requests. Used for barriers and when switching
1061 * io schedulers on-the-fly.
1062 */
d9e7620e 1063static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1064{
0871714e 1065 struct cfq_queue *cfqq;
d9e7620e 1066 int dispatched = 0;
1b5ed5e1 1067
0871714e 1068 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1069 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1070
6084cdda 1071 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1072
1073 BUG_ON(cfqd->busy_queues);
1074
1075 return dispatched;
1076}
1077
165125e1 1078static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1079{
1080 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1081 struct cfq_queue *cfqq;
caaa5f9f 1082 int dispatched;
22e2c507
JA
1083
1084 if (!cfqd->busy_queues)
1085 return 0;
1086
1b5ed5e1
TH
1087 if (unlikely(force))
1088 return cfq_forced_dispatch(cfqd);
1089
caaa5f9f 1090 dispatched = 0;
caaa5f9f 1091 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
b4878f24
JA
1092 int max_dispatch;
1093
3ed9a296
JA
1094 max_dispatch = cfqd->cfq_quantum;
1095 if (cfq_class_idle(cfqq))
1096 max_dispatch = 1;
1097
1098 if (cfqq->dispatched >= max_dispatch) {
1099 if (cfqd->busy_queues > 1)
6d048f53 1100 break;
3ed9a296 1101 if (cfqq->dispatched >= 4 * max_dispatch)
a9938006
JA
1102 break;
1103 }
9ede209e 1104
3ed9a296
JA
1105 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1106 break;
1107
3b18152c
JA
1108 cfq_clear_cfqq_must_dispatch(cfqq);
1109 cfq_clear_cfqq_wait_request(cfqq);
22e2c507
JA
1110 del_timer(&cfqd->idle_slice_timer);
1111
caaa5f9f 1112 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1da177e4
LT
1113 }
1114
caaa5f9f 1115 return dispatched;
1da177e4
LT
1116}
1117
1da177e4 1118/*
5e705374
JA
1119 * task holds one reference to the queue, dropped when task exits. each rq
1120 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1121 *
1122 * queue lock must be held here.
1123 */
1124static void cfq_put_queue(struct cfq_queue *cfqq)
1125{
22e2c507
JA
1126 struct cfq_data *cfqd = cfqq->cfqd;
1127
1128 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1129
1130 if (!atomic_dec_and_test(&cfqq->ref))
1131 return;
1132
1133 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1134 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1135 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1136
28f95cbc 1137 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1138 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1139 cfq_schedule_dispatch(cfqd);
1140 }
22e2c507 1141
1da177e4
LT
1142 kmem_cache_free(cfq_pool, cfqq);
1143}
1144
4ac845a2
JA
1145/*
1146 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1147 */
1148#define CIC_GANG_NR 16
1149static unsigned int
1150call_for_each_cic(struct io_context *ioc,
1151 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1152{
4ac845a2
JA
1153 struct cfq_io_context *cics[CIC_GANG_NR];
1154 unsigned long index = 0;
1155 unsigned int called = 0;
1156 int nr;
1da177e4 1157
4ac845a2 1158 rcu_read_lock();
597bc485 1159
4ac845a2
JA
1160 do {
1161 int i;
66dac98e 1162
4ac845a2
JA
1163 /*
1164 * Perhaps there's a better way - this just gang lookups from
1165 * 0 to the end, restarting after each CIC_GANG_NR from the
1166 * last key + 1.
1167 */
1168 nr = radix_tree_gang_lookup(&ioc->radix_root, (void **) cics,
1169 index, CIC_GANG_NR);
1170 if (!nr)
1171 break;
1172
1173 called += nr;
1174 index = 1 + (unsigned long) cics[nr - 1]->key;
1175
1176 for (i = 0; i < nr; i++)
1177 func(ioc, cics[i]);
1178 } while (nr == CIC_GANG_NR);
1179
1180 rcu_read_unlock();
1181
1182 return called;
1183}
1184
1185static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1186{
1187 unsigned long flags;
1188
1189 BUG_ON(!cic->dead_key);
1190
1191 spin_lock_irqsave(&ioc->lock, flags);
1192 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1193 spin_unlock_irqrestore(&ioc->lock, flags);
1194
1195 kmem_cache_free(cfq_ioc_pool, cic);
1196}
1197
1198static void cfq_free_io_context(struct io_context *ioc)
1199{
1200 int freed;
1201
1202 /*
1203 * ioc->refcount is zero here, so no more cic's are allowed to be
1204 * linked into this ioc. So it should be ok to iterate over the known
1205 * list, we will see all cic's since no new ones are added.
1206 */
1207 freed = call_for_each_cic(ioc, cic_free_func);
1da177e4 1208
4050cf16
JA
1209 elv_ioc_count_mod(ioc_count, -freed);
1210
1211 if (ioc_gone && !elv_ioc_count_read(ioc_count))
334e94de 1212 complete(ioc_gone);
1da177e4
LT
1213}
1214
89850f7e 1215static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1216{
28f95cbc 1217 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1218 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1219 cfq_schedule_dispatch(cfqd);
1220 }
22e2c507 1221
89850f7e
JA
1222 cfq_put_queue(cfqq);
1223}
22e2c507 1224
89850f7e
JA
1225static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1226 struct cfq_io_context *cic)
1227{
fc46379d 1228 list_del_init(&cic->queue_list);
4ac845a2
JA
1229
1230 /*
1231 * Make sure key == NULL is seen for dead queues
1232 */
fc46379d 1233 smp_wmb();
4ac845a2 1234 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1235 cic->key = NULL;
1236
12a05732 1237 if (cic->cfqq[ASYNC]) {
89850f7e 1238 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
12a05732
AV
1239 cic->cfqq[ASYNC] = NULL;
1240 }
1241
1242 if (cic->cfqq[SYNC]) {
89850f7e 1243 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
12a05732
AV
1244 cic->cfqq[SYNC] = NULL;
1245 }
89850f7e
JA
1246}
1247
4ac845a2
JA
1248static void cfq_exit_single_io_context(struct io_context *ioc,
1249 struct cfq_io_context *cic)
89850f7e
JA
1250{
1251 struct cfq_data *cfqd = cic->key;
1252
89850f7e 1253 if (cfqd) {
165125e1 1254 struct request_queue *q = cfqd->queue;
4ac845a2 1255 unsigned long flags;
89850f7e 1256
4ac845a2 1257 spin_lock_irqsave(q->queue_lock, flags);
89850f7e 1258 __cfq_exit_single_io_context(cfqd, cic);
4ac845a2 1259 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1260 }
1da177e4
LT
1261}
1262
498d3aa2
JA
1263/*
1264 * The process that ioc belongs to has exited, we need to clean up
1265 * and put the internal structures we have that belongs to that process.
1266 */
e2d74ac0 1267static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1268{
4ac845a2
JA
1269 rcu_assign_pointer(ioc->ioc_data, NULL);
1270 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1271}
1272
22e2c507 1273static struct cfq_io_context *
8267e268 1274cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1275{
b5deef90 1276 struct cfq_io_context *cic;
1da177e4 1277
94f6030c
CL
1278 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1279 cfqd->queue->node);
1da177e4 1280 if (cic) {
22e2c507 1281 cic->last_end_request = jiffies;
553698f9 1282 INIT_LIST_HEAD(&cic->queue_list);
22e2c507
JA
1283 cic->dtor = cfq_free_io_context;
1284 cic->exit = cfq_exit_io_context;
4050cf16 1285 elv_ioc_count_inc(ioc_count);
1da177e4
LT
1286 }
1287
1288 return cic;
1289}
1290
fd0928df 1291static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1292{
1293 struct task_struct *tsk = current;
1294 int ioprio_class;
1295
3b18152c 1296 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1297 return;
1298
fd0928df 1299 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1300 switch (ioprio_class) {
fe094d98
JA
1301 default:
1302 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1303 case IOPRIO_CLASS_NONE:
1304 /*
1305 * no prio set, place us in the middle of the BE classes
1306 */
1307 cfqq->ioprio = task_nice_ioprio(tsk);
1308 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1309 break;
1310 case IOPRIO_CLASS_RT:
1311 cfqq->ioprio = task_ioprio(ioc);
1312 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1313 break;
1314 case IOPRIO_CLASS_BE:
1315 cfqq->ioprio = task_ioprio(ioc);
1316 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1317 break;
1318 case IOPRIO_CLASS_IDLE:
1319 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1320 cfqq->ioprio = 7;
1321 cfq_clear_cfqq_idle_window(cfqq);
1322 break;
22e2c507
JA
1323 }
1324
1325 /*
1326 * keep track of original prio settings in case we have to temporarily
1327 * elevate the priority of this queue
1328 */
1329 cfqq->org_ioprio = cfqq->ioprio;
1330 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1331 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1332}
1333
febffd61 1334static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1335{
478a82b0
AV
1336 struct cfq_data *cfqd = cic->key;
1337 struct cfq_queue *cfqq;
c1b707d2 1338 unsigned long flags;
35e6077c 1339
caaa5f9f
JA
1340 if (unlikely(!cfqd))
1341 return;
1342
c1b707d2 1343 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f
JA
1344
1345 cfqq = cic->cfqq[ASYNC];
1346 if (cfqq) {
1347 struct cfq_queue *new_cfqq;
fd0928df 1348 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
caaa5f9f
JA
1349 if (new_cfqq) {
1350 cic->cfqq[ASYNC] = new_cfqq;
1351 cfq_put_queue(cfqq);
1352 }
22e2c507 1353 }
caaa5f9f
JA
1354
1355 cfqq = cic->cfqq[SYNC];
1356 if (cfqq)
1357 cfq_mark_cfqq_prio_changed(cfqq);
1358
c1b707d2 1359 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1360}
1361
fc46379d 1362static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1363{
4ac845a2 1364 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1365 ioc->ioprio_changed = 0;
22e2c507
JA
1366}
1367
1368static struct cfq_queue *
15c31be4 1369cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1370 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1371{
22e2c507 1372 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1373 struct cfq_io_context *cic;
22e2c507
JA
1374
1375retry:
4ac845a2 1376 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1377 /* cic always exists here */
1378 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507
JA
1379
1380 if (!cfqq) {
1381 if (new_cfqq) {
1382 cfqq = new_cfqq;
1383 new_cfqq = NULL;
1384 } else if (gfp_mask & __GFP_WAIT) {
89850f7e
JA
1385 /*
1386 * Inform the allocator of the fact that we will
1387 * just repeat this allocation if it fails, to allow
1388 * the allocator to do whatever it needs to attempt to
1389 * free memory.
1390 */
22e2c507 1391 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c
CL
1392 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1393 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1394 cfqd->queue->node);
22e2c507
JA
1395 spin_lock_irq(cfqd->queue->queue_lock);
1396 goto retry;
1397 } else {
94f6030c
CL
1398 cfqq = kmem_cache_alloc_node(cfq_pool,
1399 gfp_mask | __GFP_ZERO,
1400 cfqd->queue->node);
22e2c507
JA
1401 if (!cfqq)
1402 goto out;
1403 }
1404
d9e7620e 1405 RB_CLEAR_NODE(&cfqq->rb_node);
22e2c507
JA
1406 INIT_LIST_HEAD(&cfqq->fifo);
1407
22e2c507
JA
1408 atomic_set(&cfqq->ref, 0);
1409 cfqq->cfqd = cfqd;
c5b680f3 1410
3b18152c 1411 cfq_mark_cfqq_prio_changed(cfqq);
53b03744 1412 cfq_mark_cfqq_queue_new(cfqq);
91fac317 1413
fd0928df 1414 cfq_init_prio_data(cfqq, ioc);
0871714e
JA
1415
1416 if (is_sync) {
1417 if (!cfq_class_idle(cfqq))
1418 cfq_mark_cfqq_idle_window(cfqq);
1419 cfq_mark_cfqq_sync(cfqq);
1420 }
22e2c507
JA
1421 }
1422
1423 if (new_cfqq)
1424 kmem_cache_free(cfq_pool, new_cfqq);
1425
22e2c507
JA
1426out:
1427 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1428 return cfqq;
1429}
1430
c2dea2d1
VT
1431static struct cfq_queue **
1432cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1433{
fe094d98 1434 switch (ioprio_class) {
c2dea2d1
VT
1435 case IOPRIO_CLASS_RT:
1436 return &cfqd->async_cfqq[0][ioprio];
1437 case IOPRIO_CLASS_BE:
1438 return &cfqd->async_cfqq[1][ioprio];
1439 case IOPRIO_CLASS_IDLE:
1440 return &cfqd->async_idle_cfqq;
1441 default:
1442 BUG();
1443 }
1444}
1445
15c31be4 1446static struct cfq_queue *
fd0928df 1447cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1448 gfp_t gfp_mask)
1449{
fd0928df
JA
1450 const int ioprio = task_ioprio(ioc);
1451 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1452 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1453 struct cfq_queue *cfqq = NULL;
1454
c2dea2d1
VT
1455 if (!is_sync) {
1456 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1457 cfqq = *async_cfqq;
1458 }
1459
0a0836a0 1460 if (!cfqq) {
fd0928df 1461 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
0a0836a0
ON
1462 if (!cfqq)
1463 return NULL;
1464 }
15c31be4
JA
1465
1466 /*
1467 * pin the queue now that it's allocated, scheduler exit will prune it
1468 */
c2dea2d1 1469 if (!is_sync && !(*async_cfqq)) {
15c31be4 1470 atomic_inc(&cfqq->ref);
c2dea2d1 1471 *async_cfqq = cfqq;
15c31be4
JA
1472 }
1473
1474 atomic_inc(&cfqq->ref);
1475 return cfqq;
1476}
1477
4ac845a2
JA
1478static void cfq_cic_free(struct cfq_io_context *cic)
1479{
1480 kmem_cache_free(cfq_ioc_pool, cic);
1481 elv_ioc_count_dec(ioc_count);
1482
1483 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1484 complete(ioc_gone);
1485}
1486
498d3aa2
JA
1487/*
1488 * We drop cfq io contexts lazily, so we may find a dead one.
1489 */
dbecf3ab 1490static void
4ac845a2
JA
1491cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1492 struct cfq_io_context *cic)
dbecf3ab 1493{
4ac845a2
JA
1494 unsigned long flags;
1495
fc46379d 1496 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1497
4ac845a2
JA
1498 spin_lock_irqsave(&ioc->lock, flags);
1499
597bc485 1500 if (ioc->ioc_data == cic)
4ac845a2 1501 rcu_assign_pointer(ioc->ioc_data, NULL);
597bc485 1502
4ac845a2
JA
1503 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1504 spin_unlock_irqrestore(&ioc->lock, flags);
1505
1506 cfq_cic_free(cic);
dbecf3ab
OH
1507}
1508
e2d74ac0 1509static struct cfq_io_context *
4ac845a2 1510cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1511{
e2d74ac0 1512 struct cfq_io_context *cic;
4ac845a2 1513 void *k;
e2d74ac0 1514
91fac317
VT
1515 if (unlikely(!ioc))
1516 return NULL;
1517
597bc485
JA
1518 /*
1519 * we maintain a last-hit cache, to avoid browsing over the tree
1520 */
4ac845a2 1521 cic = rcu_dereference(ioc->ioc_data);
597bc485
JA
1522 if (cic && cic->key == cfqd)
1523 return cic;
1524
4ac845a2
JA
1525 do {
1526 rcu_read_lock();
1527 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1528 rcu_read_unlock();
1529 if (!cic)
1530 break;
be3b0753
OH
1531 /* ->key must be copied to avoid race with cfq_exit_queue() */
1532 k = cic->key;
1533 if (unlikely(!k)) {
4ac845a2
JA
1534 cfq_drop_dead_cic(cfqd, ioc, cic);
1535 continue;
dbecf3ab 1536 }
e2d74ac0 1537
4ac845a2
JA
1538 rcu_assign_pointer(ioc->ioc_data, cic);
1539 break;
1540 } while (1);
e2d74ac0 1541
4ac845a2 1542 return cic;
e2d74ac0
JA
1543}
1544
4ac845a2
JA
1545/*
1546 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1547 * the process specific cfq io context when entered from the block layer.
1548 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1549 */
febffd61
JA
1550static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1551 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1552{
0261d688 1553 unsigned long flags;
4ac845a2 1554 int ret;
e2d74ac0 1555
4ac845a2
JA
1556 ret = radix_tree_preload(gfp_mask);
1557 if (!ret) {
1558 cic->ioc = ioc;
1559 cic->key = cfqd;
e2d74ac0 1560
4ac845a2
JA
1561 spin_lock_irqsave(&ioc->lock, flags);
1562 ret = radix_tree_insert(&ioc->radix_root,
1563 (unsigned long) cfqd, cic);
1564 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1565
4ac845a2
JA
1566 radix_tree_preload_end();
1567
1568 if (!ret) {
1569 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1570 list_add(&cic->queue_list, &cfqd->cic_list);
1571 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1572 }
e2d74ac0
JA
1573 }
1574
4ac845a2
JA
1575 if (ret)
1576 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1577
4ac845a2 1578 return ret;
e2d74ac0
JA
1579}
1580
1da177e4
LT
1581/*
1582 * Setup general io context and cfq io context. There can be several cfq
1583 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1584 * than one device managed by cfq.
1da177e4
LT
1585 */
1586static struct cfq_io_context *
e2d74ac0 1587cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1588{
22e2c507 1589 struct io_context *ioc = NULL;
1da177e4 1590 struct cfq_io_context *cic;
1da177e4 1591
22e2c507 1592 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1593
b5deef90 1594 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1595 if (!ioc)
1596 return NULL;
1597
4ac845a2 1598 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1599 if (cic)
1600 goto out;
1da177e4 1601
e2d74ac0
JA
1602 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1603 if (cic == NULL)
1604 goto err;
1da177e4 1605
4ac845a2
JA
1606 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1607 goto err_free;
1608
1da177e4 1609out:
fc46379d
JA
1610 smp_read_barrier_depends();
1611 if (unlikely(ioc->ioprio_changed))
1612 cfq_ioc_set_ioprio(ioc);
1613
1da177e4 1614 return cic;
4ac845a2
JA
1615err_free:
1616 cfq_cic_free(cic);
1da177e4
LT
1617err:
1618 put_io_context(ioc);
1619 return NULL;
1620}
1621
22e2c507
JA
1622static void
1623cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1624{
aaf1228d
JA
1625 unsigned long elapsed = jiffies - cic->last_end_request;
1626 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1627
22e2c507
JA
1628 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1629 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1630 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1631}
1da177e4 1632
206dc69b 1633static void
6d048f53
JA
1634cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1635 struct request *rq)
206dc69b
JA
1636{
1637 sector_t sdist;
1638 u64 total;
1639
5e705374
JA
1640 if (cic->last_request_pos < rq->sector)
1641 sdist = rq->sector - cic->last_request_pos;
206dc69b 1642 else
5e705374 1643 sdist = cic->last_request_pos - rq->sector;
206dc69b
JA
1644
1645 /*
1646 * Don't allow the seek distance to get too large from the
1647 * odd fragment, pagein, etc
1648 */
1649 if (cic->seek_samples <= 60) /* second&third seek */
1650 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1651 else
1652 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1653
1654 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1655 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1656 total = cic->seek_total + (cic->seek_samples/2);
1657 do_div(total, cic->seek_samples);
1658 cic->seek_mean = (sector_t)total;
1659}
1da177e4 1660
22e2c507
JA
1661/*
1662 * Disable idle window if the process thinks too long or seeks so much that
1663 * it doesn't matter
1664 */
1665static void
1666cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1667 struct cfq_io_context *cic)
1668{
1be92f2f
JA
1669 int enable_idle;
1670
0871714e
JA
1671 /*
1672 * Don't idle for async or idle io prio class
1673 */
1674 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1675 return;
1676
1677 enable_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1678
66dac98e 1679 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
caaa5f9f 1680 (cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1681 enable_idle = 0;
1682 else if (sample_valid(cic->ttime_samples)) {
1683 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1684 enable_idle = 0;
1685 else
1686 enable_idle = 1;
1da177e4
LT
1687 }
1688
3b18152c
JA
1689 if (enable_idle)
1690 cfq_mark_cfqq_idle_window(cfqq);
1691 else
1692 cfq_clear_cfqq_idle_window(cfqq);
22e2c507 1693}
1da177e4 1694
22e2c507
JA
1695/*
1696 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1697 * no or if we aren't sure, a 1 will cause a preempt.
1698 */
1699static int
1700cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1701 struct request *rq)
22e2c507 1702{
6d048f53 1703 struct cfq_queue *cfqq;
22e2c507 1704
6d048f53
JA
1705 cfqq = cfqd->active_queue;
1706 if (!cfqq)
22e2c507
JA
1707 return 0;
1708
6d048f53
JA
1709 if (cfq_slice_used(cfqq))
1710 return 1;
1711
1712 if (cfq_class_idle(new_cfqq))
caaa5f9f 1713 return 0;
22e2c507
JA
1714
1715 if (cfq_class_idle(cfqq))
1716 return 1;
1e3335de 1717
374f84ac
JA
1718 /*
1719 * if the new request is sync, but the currently running queue is
1720 * not, let the sync request have priority.
1721 */
5e705374 1722 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 1723 return 1;
1e3335de 1724
374f84ac
JA
1725 /*
1726 * So both queues are sync. Let the new request get disk time if
1727 * it's a metadata request and the current queue is doing regular IO.
1728 */
1729 if (rq_is_meta(rq) && !cfqq->meta_pending)
1730 return 1;
22e2c507 1731
1e3335de
JA
1732 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1733 return 0;
1734
1735 /*
1736 * if this request is as-good as one we would expect from the
1737 * current cfqq, let it preempt
1738 */
6d048f53 1739 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
1740 return 1;
1741
22e2c507
JA
1742 return 0;
1743}
1744
1745/*
1746 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1747 * let it have half of its nominal slice.
1748 */
1749static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1750{
6084cdda 1751 cfq_slice_expired(cfqd, 1);
22e2c507 1752
bf572256
JA
1753 /*
1754 * Put the new queue at the front of the of the current list,
1755 * so we know that it will be selected next.
1756 */
1757 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
1758
1759 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 1760
44f7c160
JA
1761 cfqq->slice_end = 0;
1762 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
1763}
1764
22e2c507 1765/*
5e705374 1766 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
1767 * something we should do about it
1768 */
1769static void
5e705374
JA
1770cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1771 struct request *rq)
22e2c507 1772{
5e705374 1773 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 1774
374f84ac
JA
1775 if (rq_is_meta(rq))
1776 cfqq->meta_pending++;
1777
9c2c38a1 1778 cfq_update_io_thinktime(cfqd, cic);
6d048f53 1779 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
1780 cfq_update_idle_window(cfqd, cfqq, cic);
1781
5e705374 1782 cic->last_request_pos = rq->sector + rq->nr_sectors;
22e2c507
JA
1783
1784 if (cfqq == cfqd->active_queue) {
1785 /*
1786 * if we are waiting for a request for this queue, let it rip
1787 * immediately and flag that we must not expire this queue
1788 * just now
1789 */
3b18152c
JA
1790 if (cfq_cfqq_wait_request(cfqq)) {
1791 cfq_mark_cfqq_must_dispatch(cfqq);
22e2c507 1792 del_timer(&cfqd->idle_slice_timer);
dc72ef4a 1793 blk_start_queueing(cfqd->queue);
22e2c507 1794 }
5e705374 1795 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
1796 /*
1797 * not the active queue - expire current slice if it is
1798 * idle and has expired it's mean thinktime or this new queue
1799 * has some old slice time left and is of higher priority
1800 */
1801 cfq_preempt_queue(cfqd, cfqq);
3b18152c 1802 cfq_mark_cfqq_must_dispatch(cfqq);
dc72ef4a 1803 blk_start_queueing(cfqd->queue);
22e2c507 1804 }
1da177e4
LT
1805}
1806
165125e1 1807static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 1808{
b4878f24 1809 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1810 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1811
fd0928df 1812 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 1813
5e705374 1814 cfq_add_rq_rb(rq);
1da177e4 1815
22e2c507
JA
1816 list_add_tail(&rq->queuelist, &cfqq->fifo);
1817
5e705374 1818 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
1819}
1820
165125e1 1821static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 1822{
5e705374 1823 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 1824 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 1825 const int sync = rq_is_sync(rq);
b4878f24 1826 unsigned long now;
1da177e4 1827
b4878f24 1828 now = jiffies;
1da177e4 1829
b4878f24 1830 WARN_ON(!cfqd->rq_in_driver);
6d048f53 1831 WARN_ON(!cfqq->dispatched);
b4878f24 1832 cfqd->rq_in_driver--;
6d048f53 1833 cfqq->dispatched--;
1da177e4 1834
3ed9a296
JA
1835 if (cfq_cfqq_sync(cfqq))
1836 cfqd->sync_flight--;
1837
b4878f24
JA
1838 if (!cfq_class_idle(cfqq))
1839 cfqd->last_end_request = now;
3b18152c 1840
caaa5f9f 1841 if (sync)
5e705374 1842 RQ_CIC(rq)->last_end_request = now;
caaa5f9f
JA
1843
1844 /*
1845 * If this is the active queue, check if it needs to be expired,
1846 * or if we want to idle in case it has no pending requests.
1847 */
1848 if (cfqd->active_queue == cfqq) {
44f7c160
JA
1849 if (cfq_cfqq_slice_new(cfqq)) {
1850 cfq_set_prio_slice(cfqd, cfqq);
1851 cfq_clear_cfqq_slice_new(cfqq);
1852 }
0871714e 1853 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 1854 cfq_slice_expired(cfqd, 1);
6d048f53
JA
1855 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1856 cfq_arm_slice_timer(cfqd);
caaa5f9f 1857 }
6d048f53
JA
1858
1859 if (!cfqd->rq_in_driver)
1860 cfq_schedule_dispatch(cfqd);
1da177e4
LT
1861}
1862
22e2c507
JA
1863/*
1864 * we temporarily boost lower priority queues if they are holding fs exclusive
1865 * resources. they are boosted to normal prio (CLASS_BE/4)
1866 */
1867static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 1868{
22e2c507
JA
1869 if (has_fs_excl()) {
1870 /*
1871 * boost idle prio on transactions that would lock out other
1872 * users of the filesystem
1873 */
1874 if (cfq_class_idle(cfqq))
1875 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1876 if (cfqq->ioprio > IOPRIO_NORM)
1877 cfqq->ioprio = IOPRIO_NORM;
1878 } else {
1879 /*
1880 * check if we need to unboost the queue
1881 */
1882 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1883 cfqq->ioprio_class = cfqq->org_ioprio_class;
1884 if (cfqq->ioprio != cfqq->org_ioprio)
1885 cfqq->ioprio = cfqq->org_ioprio;
1886 }
22e2c507 1887}
1da177e4 1888
89850f7e 1889static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 1890{
3b18152c 1891 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
99f95e52 1892 !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 1893 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 1894 return ELV_MQUEUE_MUST;
3b18152c 1895 }
1da177e4 1896
22e2c507 1897 return ELV_MQUEUE_MAY;
22e2c507
JA
1898}
1899
165125e1 1900static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
1901{
1902 struct cfq_data *cfqd = q->elevator->elevator_data;
1903 struct task_struct *tsk = current;
91fac317 1904 struct cfq_io_context *cic;
22e2c507
JA
1905 struct cfq_queue *cfqq;
1906
1907 /*
1908 * don't force setup of a queue from here, as a call to may_queue
1909 * does not necessarily imply that a request actually will be queued.
1910 * so just lookup a possibly existing queue, or return 'may queue'
1911 * if that fails
1912 */
4ac845a2 1913 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1914 if (!cic)
1915 return ELV_MQUEUE_MAY;
1916
1917 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
22e2c507 1918 if (cfqq) {
fd0928df 1919 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
1920 cfq_prio_boost(cfqq);
1921
89850f7e 1922 return __cfq_may_queue(cfqq);
22e2c507
JA
1923 }
1924
1925 return ELV_MQUEUE_MAY;
1da177e4
LT
1926}
1927
1da177e4
LT
1928/*
1929 * queue lock held here
1930 */
bb37b94c 1931static void cfq_put_request(struct request *rq)
1da177e4 1932{
5e705374 1933 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1934
5e705374 1935 if (cfqq) {
22e2c507 1936 const int rw = rq_data_dir(rq);
1da177e4 1937
22e2c507
JA
1938 BUG_ON(!cfqq->allocated[rw]);
1939 cfqq->allocated[rw]--;
1da177e4 1940
5e705374 1941 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 1942
1da177e4 1943 rq->elevator_private = NULL;
5e705374 1944 rq->elevator_private2 = NULL;
1da177e4 1945
1da177e4
LT
1946 cfq_put_queue(cfqq);
1947 }
1948}
1949
1950/*
22e2c507 1951 * Allocate cfq data structures associated with this request.
1da177e4 1952 */
22e2c507 1953static int
165125e1 1954cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
1955{
1956 struct cfq_data *cfqd = q->elevator->elevator_data;
1957 struct cfq_io_context *cic;
1958 const int rw = rq_data_dir(rq);
7749a8d4 1959 const int is_sync = rq_is_sync(rq);
22e2c507 1960 struct cfq_queue *cfqq;
1da177e4
LT
1961 unsigned long flags;
1962
1963 might_sleep_if(gfp_mask & __GFP_WAIT);
1964
e2d74ac0 1965 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 1966
1da177e4
LT
1967 spin_lock_irqsave(q->queue_lock, flags);
1968
22e2c507
JA
1969 if (!cic)
1970 goto queue_fail;
1971
91fac317
VT
1972 cfqq = cic_to_cfqq(cic, is_sync);
1973 if (!cfqq) {
fd0928df 1974 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 1975
22e2c507
JA
1976 if (!cfqq)
1977 goto queue_fail;
1da177e4 1978
91fac317
VT
1979 cic_set_cfqq(cic, cfqq, is_sync);
1980 }
1da177e4
LT
1981
1982 cfqq->allocated[rw]++;
3b18152c 1983 cfq_clear_cfqq_must_alloc(cfqq);
22e2c507 1984 atomic_inc(&cfqq->ref);
1da177e4 1985
5e705374 1986 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 1987
5e705374
JA
1988 rq->elevator_private = cic;
1989 rq->elevator_private2 = cfqq;
1990 return 0;
1da177e4 1991
22e2c507
JA
1992queue_fail:
1993 if (cic)
1994 put_io_context(cic->ioc);
89850f7e 1995
3b18152c 1996 cfq_schedule_dispatch(cfqd);
1da177e4
LT
1997 spin_unlock_irqrestore(q->queue_lock, flags);
1998 return 1;
1999}
2000
65f27f38 2001static void cfq_kick_queue(struct work_struct *work)
22e2c507 2002{
65f27f38
DH
2003 struct cfq_data *cfqd =
2004 container_of(work, struct cfq_data, unplug_work);
165125e1 2005 struct request_queue *q = cfqd->queue;
22e2c507
JA
2006 unsigned long flags;
2007
2008 spin_lock_irqsave(q->queue_lock, flags);
dc72ef4a 2009 blk_start_queueing(q);
22e2c507
JA
2010 spin_unlock_irqrestore(q->queue_lock, flags);
2011}
2012
2013/*
2014 * Timer running if the active_queue is currently idling inside its time slice
2015 */
2016static void cfq_idle_slice_timer(unsigned long data)
2017{
2018 struct cfq_data *cfqd = (struct cfq_data *) data;
2019 struct cfq_queue *cfqq;
2020 unsigned long flags;
3c6bd2f8 2021 int timed_out = 1;
22e2c507
JA
2022
2023 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2024
fe094d98
JA
2025 cfqq = cfqd->active_queue;
2026 if (cfqq) {
3c6bd2f8
JA
2027 timed_out = 0;
2028
22e2c507
JA
2029 /*
2030 * expired
2031 */
44f7c160 2032 if (cfq_slice_used(cfqq))
22e2c507
JA
2033 goto expire;
2034
2035 /*
2036 * only expire and reinvoke request handler, if there are
2037 * other queues with pending requests
2038 */
caaa5f9f 2039 if (!cfqd->busy_queues)
22e2c507 2040 goto out_cont;
22e2c507
JA
2041
2042 /*
2043 * not expired and it has a request pending, let it dispatch
2044 */
dd67d051 2045 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
3b18152c 2046 cfq_mark_cfqq_must_dispatch(cfqq);
22e2c507
JA
2047 goto out_kick;
2048 }
2049 }
2050expire:
6084cdda 2051 cfq_slice_expired(cfqd, timed_out);
22e2c507 2052out_kick:
3b18152c 2053 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2054out_cont:
2055 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2056}
2057
3b18152c
JA
2058static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2059{
2060 del_timer_sync(&cfqd->idle_slice_timer);
4310864b 2061 kblockd_flush_work(&cfqd->unplug_work);
3b18152c 2062}
22e2c507 2063
c2dea2d1
VT
2064static void cfq_put_async_queues(struct cfq_data *cfqd)
2065{
2066 int i;
2067
2068 for (i = 0; i < IOPRIO_BE_NR; i++) {
2069 if (cfqd->async_cfqq[0][i])
2070 cfq_put_queue(cfqd->async_cfqq[0][i]);
2071 if (cfqd->async_cfqq[1][i])
2072 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2073 }
2389d1ef
ON
2074
2075 if (cfqd->async_idle_cfqq)
2076 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2077}
2078
1da177e4
LT
2079static void cfq_exit_queue(elevator_t *e)
2080{
22e2c507 2081 struct cfq_data *cfqd = e->elevator_data;
165125e1 2082 struct request_queue *q = cfqd->queue;
22e2c507 2083
3b18152c 2084 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2085
d9ff4187 2086 spin_lock_irq(q->queue_lock);
e2d74ac0 2087
d9ff4187 2088 if (cfqd->active_queue)
6084cdda 2089 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2090
2091 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2092 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2093 struct cfq_io_context,
2094 queue_list);
89850f7e
JA
2095
2096 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2097 }
e2d74ac0 2098
c2dea2d1 2099 cfq_put_async_queues(cfqd);
15c31be4 2100
d9ff4187 2101 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2102
2103 cfq_shutdown_timer_wq(cfqd);
2104
a90d742e 2105 kfree(cfqd);
1da177e4
LT
2106}
2107
165125e1 2108static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2109{
2110 struct cfq_data *cfqd;
1da177e4 2111
94f6030c 2112 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2113 if (!cfqd)
bc1c1169 2114 return NULL;
1da177e4 2115
cc09e299 2116 cfqd->service_tree = CFQ_RB_ROOT;
d9ff4187 2117 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2118
1da177e4 2119 cfqd->queue = q;
1da177e4 2120
22e2c507
JA
2121 init_timer(&cfqd->idle_slice_timer);
2122 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2123 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2124
65f27f38 2125 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2126
b70c864d 2127 cfqd->last_end_request = jiffies;
1da177e4 2128 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2129 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2130 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2131 cfqd->cfq_back_max = cfq_back_max;
2132 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2133 cfqd->cfq_slice[0] = cfq_slice_async;
2134 cfqd->cfq_slice[1] = cfq_slice_sync;
2135 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2136 cfqd->cfq_slice_idle = cfq_slice_idle;
3b18152c 2137
bc1c1169 2138 return cfqd;
1da177e4
LT
2139}
2140
2141static void cfq_slab_kill(void)
2142{
1da177e4
LT
2143 if (cfq_pool)
2144 kmem_cache_destroy(cfq_pool);
2145 if (cfq_ioc_pool)
2146 kmem_cache_destroy(cfq_ioc_pool);
2147}
2148
2149static int __init cfq_slab_setup(void)
2150{
0a31bd5f 2151 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2152 if (!cfq_pool)
2153 goto fail;
2154
4ac845a2 2155 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
1da177e4
LT
2156 if (!cfq_ioc_pool)
2157 goto fail;
2158
2159 return 0;
2160fail:
2161 cfq_slab_kill();
2162 return -ENOMEM;
2163}
2164
1da177e4
LT
2165/*
2166 * sysfs parts below -->
2167 */
1da177e4
LT
2168static ssize_t
2169cfq_var_show(unsigned int var, char *page)
2170{
2171 return sprintf(page, "%d\n", var);
2172}
2173
2174static ssize_t
2175cfq_var_store(unsigned int *var, const char *page, size_t count)
2176{
2177 char *p = (char *) page;
2178
2179 *var = simple_strtoul(p, &p, 10);
2180 return count;
2181}
2182
1da177e4 2183#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3d1ab40f 2184static ssize_t __FUNC(elevator_t *e, char *page) \
1da177e4 2185{ \
3d1ab40f 2186 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2187 unsigned int __data = __VAR; \
2188 if (__CONV) \
2189 __data = jiffies_to_msecs(__data); \
2190 return cfq_var_show(__data, (page)); \
2191}
2192SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2193SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2194SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2195SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2196SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2197SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2198SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2199SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2200SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
1da177e4
LT
2201#undef SHOW_FUNCTION
2202
2203#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3d1ab40f 2204static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1da177e4 2205{ \
3d1ab40f 2206 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2207 unsigned int __data; \
2208 int ret = cfq_var_store(&__data, (page), count); \
2209 if (__data < (MIN)) \
2210 __data = (MIN); \
2211 else if (__data > (MAX)) \
2212 __data = (MAX); \
2213 if (__CONV) \
2214 *(__PTR) = msecs_to_jiffies(__data); \
2215 else \
2216 *(__PTR) = __data; \
2217 return ret; \
2218}
2219STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2220STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2221 UINT_MAX, 1);
2222STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2223 UINT_MAX, 1);
e572ec7e 2224STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2225STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2226 UINT_MAX, 0);
22e2c507
JA
2227STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2228STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2229STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2230STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2231 UINT_MAX, 0);
1da177e4
LT
2232#undef STORE_FUNCTION
2233
e572ec7e
AV
2234#define CFQ_ATTR(name) \
2235 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2236
2237static struct elv_fs_entry cfq_attrs[] = {
2238 CFQ_ATTR(quantum),
e572ec7e
AV
2239 CFQ_ATTR(fifo_expire_sync),
2240 CFQ_ATTR(fifo_expire_async),
2241 CFQ_ATTR(back_seek_max),
2242 CFQ_ATTR(back_seek_penalty),
2243 CFQ_ATTR(slice_sync),
2244 CFQ_ATTR(slice_async),
2245 CFQ_ATTR(slice_async_rq),
2246 CFQ_ATTR(slice_idle),
e572ec7e 2247 __ATTR_NULL
1da177e4
LT
2248};
2249
1da177e4
LT
2250static struct elevator_type iosched_cfq = {
2251 .ops = {
2252 .elevator_merge_fn = cfq_merge,
2253 .elevator_merged_fn = cfq_merged_request,
2254 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2255 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2256 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2257 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2258 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2259 .elevator_deactivate_req_fn = cfq_deactivate_request,
2260 .elevator_queue_empty_fn = cfq_queue_empty,
2261 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2262 .elevator_former_req_fn = elv_rb_former_request,
2263 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2264 .elevator_set_req_fn = cfq_set_request,
2265 .elevator_put_req_fn = cfq_put_request,
2266 .elevator_may_queue_fn = cfq_may_queue,
2267 .elevator_init_fn = cfq_init_queue,
2268 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2269 .trim = cfq_free_io_context,
1da177e4 2270 },
3d1ab40f 2271 .elevator_attrs = cfq_attrs,
1da177e4
LT
2272 .elevator_name = "cfq",
2273 .elevator_owner = THIS_MODULE,
2274};
2275
2276static int __init cfq_init(void)
2277{
22e2c507
JA
2278 /*
2279 * could be 0 on HZ < 1000 setups
2280 */
2281 if (!cfq_slice_async)
2282 cfq_slice_async = 1;
2283 if (!cfq_slice_idle)
2284 cfq_slice_idle = 1;
2285
1da177e4
LT
2286 if (cfq_slab_setup())
2287 return -ENOMEM;
2288
2fdd82bd 2289 elv_register(&iosched_cfq);
1da177e4 2290
2fdd82bd 2291 return 0;
1da177e4
LT
2292}
2293
2294static void __exit cfq_exit(void)
2295{
6e9a4738 2296 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2297 elv_unregister(&iosched_cfq);
334e94de 2298 ioc_gone = &all_gone;
fba82272
OH
2299 /* ioc_gone's update must be visible before reading ioc_count */
2300 smp_wmb();
4050cf16 2301 if (elv_ioc_count_read(ioc_count))
fba82272 2302 wait_for_completion(ioc_gone);
334e94de 2303 synchronize_rcu();
83521d3e 2304 cfq_slab_kill();
1da177e4
LT
2305}
2306
2307module_init(cfq_init);
2308module_exit(cfq_exit);
2309
2310MODULE_AUTHOR("Jens Axboe");
2311MODULE_LICENSE("GPL");
2312MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
This page took 0.464757 seconds and 5 git commands to generate.