[PATCH] Propagate down request sync flag
[deliverable/linux.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4
LT
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
65f27f38 39static void blk_unplug_work(struct work_struct *work);
1da177e4 40static void blk_unplug_timeout(unsigned long data);
93d17d3d 41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
42static void init_request_from_bio(struct request *req, struct bio *bio);
43static int __make_request(request_queue_t *q, struct bio *bio);
b5deef90 44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
1da177e4
LT
45
46/*
47 * For the allocated request tables
48 */
e18b890b 49static struct kmem_cache *request_cachep;
1da177e4
LT
50
51/*
52 * For queue allocation
53 */
e18b890b 54static struct kmem_cache *requestq_cachep;
1da177e4
LT
55
56/*
57 * For io context allocations
58 */
e18b890b 59static struct kmem_cache *iocontext_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
ff856bad
JA
71static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72
1da177e4
LT
73/* Amount of time in which a process may batch requests */
74#define BLK_BATCH_TIME (HZ/50UL)
75
76/* Number of requests a "batching" process may submit */
77#define BLK_BATCH_REQ 32
78
79/*
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
83 */
84static inline int queue_congestion_on_threshold(struct request_queue *q)
85{
86 return q->nr_congestion_on;
87}
88
89/*
90 * The threshold at which a queue is considered to be uncongested
91 */
92static inline int queue_congestion_off_threshold(struct request_queue *q)
93{
94 return q->nr_congestion_off;
95}
96
97static void blk_queue_congestion_threshold(struct request_queue *q)
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
1da177e4
LT
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
124 request_queue_t *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
1da177e4
LT
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
1da177e4
LT
132/**
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q: queue
135 * @pfn: prepare_request function
136 *
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
141 *
142 */
143void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
144{
145 q->prep_rq_fn = pfn;
146}
147
148EXPORT_SYMBOL(blk_queue_prep_rq);
149
150/**
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q: queue
153 * @mbfn: merge_bvec_fn
154 *
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
165 */
166void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
167{
168 q->merge_bvec_fn = mbfn;
169}
170
171EXPORT_SYMBOL(blk_queue_merge_bvec);
172
ff856bad
JA
173void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
174{
175 q->softirq_done_fn = fn;
176}
177
178EXPORT_SYMBOL(blk_queue_softirq_done);
179
1da177e4
LT
180/**
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
184 *
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
195 *
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
201 **/
202void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
203{
204 /*
205 * set defaults
206 */
207 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
219
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
223 q->unplug_delay = 1;
224
65f27f38 225 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
226
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
229
230 /*
231 * by default assume old behaviour and bounce for any highmem page
232 */
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
234}
235
236EXPORT_SYMBOL(blk_queue_make_request);
237
1ea25ecb 238static void rq_init(request_queue_t *q, struct request *rq)
1da177e4
LT
239{
240 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 241 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
242
243 rq->errors = 0;
1da177e4 244 rq->bio = rq->biotail = NULL;
2e662b65
JA
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 247 rq->ioprio = 0;
1da177e4
LT
248 rq->buffer = NULL;
249 rq->ref_count = 1;
250 rq->q = q;
1da177e4
LT
251 rq->special = NULL;
252 rq->data_len = 0;
253 rq->data = NULL;
df46b9a4 254 rq->nr_phys_segments = 0;
1da177e4
LT
255 rq->sense = NULL;
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
ff856bad 258 rq->completion_data = NULL;
1da177e4
LT
259}
260
261/**
262 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
263 * @q: the request queue
264 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 265 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
266 *
267 * Description:
268 * For journalled file systems, doing ordered writes on a commit
269 * block instead of explicitly doing wait_on_buffer (which is bad
270 * for performance) can be a big win. Block drivers supporting this
271 * feature should call this function and indicate so.
272 *
273 **/
797e7dbb
TH
274int blk_queue_ordered(request_queue_t *q, unsigned ordered,
275 prepare_flush_fn *prepare_flush_fn)
276{
277 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
278 prepare_flush_fn == NULL) {
279 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
280 return -EINVAL;
281 }
282
283 if (ordered != QUEUE_ORDERED_NONE &&
284 ordered != QUEUE_ORDERED_DRAIN &&
285 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
286 ordered != QUEUE_ORDERED_DRAIN_FUA &&
287 ordered != QUEUE_ORDERED_TAG &&
288 ordered != QUEUE_ORDERED_TAG_FLUSH &&
289 ordered != QUEUE_ORDERED_TAG_FUA) {
290 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
291 return -EINVAL;
1da177e4 292 }
797e7dbb 293
60481b12 294 q->ordered = ordered;
797e7dbb
TH
295 q->next_ordered = ordered;
296 q->prepare_flush_fn = prepare_flush_fn;
297
298 return 0;
1da177e4
LT
299}
300
301EXPORT_SYMBOL(blk_queue_ordered);
302
303/**
304 * blk_queue_issue_flush_fn - set function for issuing a flush
305 * @q: the request queue
306 * @iff: the function to be called issuing the flush
307 *
308 * Description:
309 * If a driver supports issuing a flush command, the support is notified
310 * to the block layer by defining it through this call.
311 *
312 **/
313void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
314{
315 q->issue_flush_fn = iff;
316}
317
318EXPORT_SYMBOL(blk_queue_issue_flush_fn);
319
320/*
321 * Cache flushing for ordered writes handling
322 */
797e7dbb 323inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 324{
797e7dbb
TH
325 if (!q->ordseq)
326 return 0;
327 return 1 << ffz(q->ordseq);
1da177e4
LT
328}
329
797e7dbb 330unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 331{
1da177e4
LT
332 request_queue_t *q = rq->q;
333
797e7dbb 334 BUG_ON(q->ordseq == 0);
8922e16c 335
797e7dbb
TH
336 if (rq == &q->pre_flush_rq)
337 return QUEUE_ORDSEQ_PREFLUSH;
338 if (rq == &q->bar_rq)
339 return QUEUE_ORDSEQ_BAR;
340 if (rq == &q->post_flush_rq)
341 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 342
4aff5e23
JA
343 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
344 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
345 return QUEUE_ORDSEQ_DRAIN;
346 else
347 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
348}
349
797e7dbb 350void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 351{
797e7dbb
TH
352 struct request *rq;
353 int uptodate;
1da177e4 354
797e7dbb
TH
355 if (error && !q->orderr)
356 q->orderr = error;
1da177e4 357
797e7dbb
TH
358 BUG_ON(q->ordseq & seq);
359 q->ordseq |= seq;
1da177e4 360
797e7dbb
TH
361 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
362 return;
1da177e4
LT
363
364 /*
797e7dbb 365 * Okay, sequence complete.
1da177e4 366 */
797e7dbb
TH
367 rq = q->orig_bar_rq;
368 uptodate = q->orderr ? q->orderr : 1;
1da177e4 369
797e7dbb 370 q->ordseq = 0;
1da177e4 371
797e7dbb
TH
372 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
373 end_that_request_last(rq, uptodate);
1da177e4
LT
374}
375
797e7dbb 376static void pre_flush_end_io(struct request *rq, int error)
1da177e4 377{
797e7dbb
TH
378 elv_completed_request(rq->q, rq);
379 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
380}
1da177e4 381
797e7dbb
TH
382static void bar_end_io(struct request *rq, int error)
383{
384 elv_completed_request(rq->q, rq);
385 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
386}
1da177e4 387
797e7dbb
TH
388static void post_flush_end_io(struct request *rq, int error)
389{
390 elv_completed_request(rq->q, rq);
391 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
392}
1da177e4 393
797e7dbb
TH
394static void queue_flush(request_queue_t *q, unsigned which)
395{
396 struct request *rq;
397 rq_end_io_fn *end_io;
1da177e4 398
797e7dbb
TH
399 if (which == QUEUE_ORDERED_PREFLUSH) {
400 rq = &q->pre_flush_rq;
401 end_io = pre_flush_end_io;
402 } else {
403 rq = &q->post_flush_rq;
404 end_io = post_flush_end_io;
1da177e4 405 }
797e7dbb 406
4aff5e23 407 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 408 rq_init(q, rq);
797e7dbb 409 rq->elevator_private = NULL;
c00895ab 410 rq->elevator_private2 = NULL;
797e7dbb 411 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
412 rq->end_io = end_io;
413 q->prepare_flush_fn(q, rq);
414
30e9656c 415 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
416}
417
797e7dbb
TH
418static inline struct request *start_ordered(request_queue_t *q,
419 struct request *rq)
1da177e4 420{
797e7dbb
TH
421 q->bi_size = 0;
422 q->orderr = 0;
423 q->ordered = q->next_ordered;
424 q->ordseq |= QUEUE_ORDSEQ_STARTED;
425
426 /*
427 * Prep proxy barrier request.
428 */
429 blkdev_dequeue_request(rq);
430 q->orig_bar_rq = rq;
431 rq = &q->bar_rq;
4aff5e23 432 rq->cmd_flags = 0;
797e7dbb 433 rq_init(q, rq);
4aff5e23
JA
434 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
435 rq->cmd_flags |= REQ_RW;
436 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb 437 rq->elevator_private = NULL;
c00895ab 438 rq->elevator_private2 = NULL;
797e7dbb
TH
439 init_request_from_bio(rq, q->orig_bar_rq->bio);
440 rq->end_io = bar_end_io;
441
442 /*
443 * Queue ordered sequence. As we stack them at the head, we
444 * need to queue in reverse order. Note that we rely on that
445 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
446 * request gets inbetween ordered sequence.
447 */
448 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
449 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
450 else
451 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
452
30e9656c 453 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
454
455 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
456 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
457 rq = &q->pre_flush_rq;
458 } else
459 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 460
797e7dbb
TH
461 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
462 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
463 else
464 rq = NULL;
465
466 return rq;
1da177e4
LT
467}
468
797e7dbb 469int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 470{
9a7a67af 471 struct request *rq = *rqp;
797e7dbb 472 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 473
797e7dbb
TH
474 if (!q->ordseq) {
475 if (!is_barrier)
476 return 1;
1da177e4 477
797e7dbb
TH
478 if (q->next_ordered != QUEUE_ORDERED_NONE) {
479 *rqp = start_ordered(q, rq);
480 return 1;
481 } else {
482 /*
483 * This can happen when the queue switches to
484 * ORDERED_NONE while this request is on it.
485 */
486 blkdev_dequeue_request(rq);
487 end_that_request_first(rq, -EOPNOTSUPP,
488 rq->hard_nr_sectors);
489 end_that_request_last(rq, -EOPNOTSUPP);
490 *rqp = NULL;
491 return 0;
492 }
493 }
1da177e4 494
9a7a67af
JA
495 /*
496 * Ordered sequence in progress
497 */
498
499 /* Special requests are not subject to ordering rules. */
500 if (!blk_fs_request(rq) &&
501 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
502 return 1;
503
797e7dbb 504 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 505 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
506 if (is_barrier && rq != &q->bar_rq)
507 *rqp = NULL;
9a7a67af
JA
508 } else {
509 /* Ordered by draining. Wait for turn. */
510 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
511 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
512 *rqp = NULL;
1da177e4
LT
513 }
514
515 return 1;
516}
517
797e7dbb 518static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 519{
797e7dbb
TH
520 request_queue_t *q = bio->bi_private;
521 struct bio_vec *bvec;
522 int i;
523
524 /*
525 * This is dry run, restore bio_sector and size. We'll finish
526 * this request again with the original bi_end_io after an
527 * error occurs or post flush is complete.
528 */
529 q->bi_size += bytes;
530
531 if (bio->bi_size)
532 return 1;
533
534 /* Rewind bvec's */
535 bio->bi_idx = 0;
536 bio_for_each_segment(bvec, bio, i) {
537 bvec->bv_len += bvec->bv_offset;
538 bvec->bv_offset = 0;
539 }
540
541 /* Reset bio */
542 set_bit(BIO_UPTODATE, &bio->bi_flags);
543 bio->bi_size = q->bi_size;
544 bio->bi_sector -= (q->bi_size >> 9);
545 q->bi_size = 0;
546
547 return 0;
1da177e4 548}
1da177e4 549
1ea25ecb
JA
550static int ordered_bio_endio(struct request *rq, struct bio *bio,
551 unsigned int nbytes, int error)
1da177e4 552{
797e7dbb
TH
553 request_queue_t *q = rq->q;
554 bio_end_io_t *endio;
555 void *private;
556
557 if (&q->bar_rq != rq)
558 return 0;
559
560 /*
561 * Okay, this is the barrier request in progress, dry finish it.
562 */
563 if (error && !q->orderr)
564 q->orderr = error;
565
566 endio = bio->bi_end_io;
567 private = bio->bi_private;
568 bio->bi_end_io = flush_dry_bio_endio;
569 bio->bi_private = q;
570
571 bio_endio(bio, nbytes, error);
572
573 bio->bi_end_io = endio;
574 bio->bi_private = private;
575
576 return 1;
1da177e4 577}
1da177e4
LT
578
579/**
580 * blk_queue_bounce_limit - set bounce buffer limit for queue
581 * @q: the request queue for the device
582 * @dma_addr: bus address limit
583 *
584 * Description:
585 * Different hardware can have different requirements as to what pages
586 * it can do I/O directly to. A low level driver can call
587 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 588 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
589 **/
590void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
591{
592 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
593 int dma = 0;
594
595 q->bounce_gfp = GFP_NOIO;
596#if BITS_PER_LONG == 64
597 /* Assume anything <= 4GB can be handled by IOMMU.
598 Actually some IOMMUs can handle everything, but I don't
599 know of a way to test this here. */
8269730b 600 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
601 dma = 1;
602 q->bounce_pfn = max_low_pfn;
603#else
604 if (bounce_pfn < blk_max_low_pfn)
605 dma = 1;
606 q->bounce_pfn = bounce_pfn;
607#endif
608 if (dma) {
1da177e4
LT
609 init_emergency_isa_pool();
610 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
611 q->bounce_pfn = bounce_pfn;
612 }
1da177e4
LT
613}
614
615EXPORT_SYMBOL(blk_queue_bounce_limit);
616
617/**
618 * blk_queue_max_sectors - set max sectors for a request for this queue
619 * @q: the request queue for the device
620 * @max_sectors: max sectors in the usual 512b unit
621 *
622 * Description:
623 * Enables a low level driver to set an upper limit on the size of
624 * received requests.
625 **/
2cb2e147 626void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
627{
628 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
629 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
630 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
631 }
632
defd94b7
MC
633 if (BLK_DEF_MAX_SECTORS > max_sectors)
634 q->max_hw_sectors = q->max_sectors = max_sectors;
635 else {
636 q->max_sectors = BLK_DEF_MAX_SECTORS;
637 q->max_hw_sectors = max_sectors;
638 }
1da177e4
LT
639}
640
641EXPORT_SYMBOL(blk_queue_max_sectors);
642
643/**
644 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
645 * @q: the request queue for the device
646 * @max_segments: max number of segments
647 *
648 * Description:
649 * Enables a low level driver to set an upper limit on the number of
650 * physical data segments in a request. This would be the largest sized
651 * scatter list the driver could handle.
652 **/
653void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
654{
655 if (!max_segments) {
656 max_segments = 1;
657 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
658 }
659
660 q->max_phys_segments = max_segments;
661}
662
663EXPORT_SYMBOL(blk_queue_max_phys_segments);
664
665/**
666 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
667 * @q: the request queue for the device
668 * @max_segments: max number of segments
669 *
670 * Description:
671 * Enables a low level driver to set an upper limit on the number of
672 * hw data segments in a request. This would be the largest number of
673 * address/length pairs the host adapter can actually give as once
674 * to the device.
675 **/
676void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
677{
678 if (!max_segments) {
679 max_segments = 1;
680 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
681 }
682
683 q->max_hw_segments = max_segments;
684}
685
686EXPORT_SYMBOL(blk_queue_max_hw_segments);
687
688/**
689 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
690 * @q: the request queue for the device
691 * @max_size: max size of segment in bytes
692 *
693 * Description:
694 * Enables a low level driver to set an upper limit on the size of a
695 * coalesced segment
696 **/
697void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
698{
699 if (max_size < PAGE_CACHE_SIZE) {
700 max_size = PAGE_CACHE_SIZE;
701 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
702 }
703
704 q->max_segment_size = max_size;
705}
706
707EXPORT_SYMBOL(blk_queue_max_segment_size);
708
709/**
710 * blk_queue_hardsect_size - set hardware sector size for the queue
711 * @q: the request queue for the device
712 * @size: the hardware sector size, in bytes
713 *
714 * Description:
715 * This should typically be set to the lowest possible sector size
716 * that the hardware can operate on (possible without reverting to
717 * even internal read-modify-write operations). Usually the default
718 * of 512 covers most hardware.
719 **/
720void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
721{
722 q->hardsect_size = size;
723}
724
725EXPORT_SYMBOL(blk_queue_hardsect_size);
726
727/*
728 * Returns the minimum that is _not_ zero, unless both are zero.
729 */
730#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
731
732/**
733 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
734 * @t: the stacking driver (top)
735 * @b: the underlying device (bottom)
736 **/
737void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
738{
739 /* zero is "infinity" */
defd94b7
MC
740 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
741 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
742
743 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
744 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
745 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
746 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
747 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
748 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
749}
750
751EXPORT_SYMBOL(blk_queue_stack_limits);
752
753/**
754 * blk_queue_segment_boundary - set boundary rules for segment merging
755 * @q: the request queue for the device
756 * @mask: the memory boundary mask
757 **/
758void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
759{
760 if (mask < PAGE_CACHE_SIZE - 1) {
761 mask = PAGE_CACHE_SIZE - 1;
762 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
763 }
764
765 q->seg_boundary_mask = mask;
766}
767
768EXPORT_SYMBOL(blk_queue_segment_boundary);
769
770/**
771 * blk_queue_dma_alignment - set dma length and memory alignment
772 * @q: the request queue for the device
773 * @mask: alignment mask
774 *
775 * description:
776 * set required memory and length aligment for direct dma transactions.
777 * this is used when buiding direct io requests for the queue.
778 *
779 **/
780void blk_queue_dma_alignment(request_queue_t *q, int mask)
781{
782 q->dma_alignment = mask;
783}
784
785EXPORT_SYMBOL(blk_queue_dma_alignment);
786
787/**
788 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
789 * @q: The request queue for the device
790 * @tag: The tag of the request
791 *
792 * Notes:
793 * Should be used when a device returns a tag and you want to match
794 * it with a request.
795 *
796 * no locks need be held.
797 **/
798struct request *blk_queue_find_tag(request_queue_t *q, int tag)
799{
f583f492 800 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
801}
802
803EXPORT_SYMBOL(blk_queue_find_tag);
804
805/**
492dfb48
JB
806 * __blk_free_tags - release a given set of tag maintenance info
807 * @bqt: the tag map to free
1da177e4 808 *
492dfb48
JB
809 * Tries to free the specified @bqt@. Returns true if it was
810 * actually freed and false if there are still references using it
811 */
812static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 813{
492dfb48 814 int retval;
1da177e4 815
492dfb48
JB
816 retval = atomic_dec_and_test(&bqt->refcnt);
817 if (retval) {
1da177e4
LT
818 BUG_ON(bqt->busy);
819 BUG_ON(!list_empty(&bqt->busy_list));
820
821 kfree(bqt->tag_index);
822 bqt->tag_index = NULL;
823
824 kfree(bqt->tag_map);
825 bqt->tag_map = NULL;
826
827 kfree(bqt);
492dfb48 828
1da177e4
LT
829 }
830
492dfb48
JB
831 return retval;
832}
833
834/**
835 * __blk_queue_free_tags - release tag maintenance info
836 * @q: the request queue for the device
837 *
838 * Notes:
839 * blk_cleanup_queue() will take care of calling this function, if tagging
840 * has been used. So there's no need to call this directly.
841 **/
842static void __blk_queue_free_tags(request_queue_t *q)
843{
844 struct blk_queue_tag *bqt = q->queue_tags;
845
846 if (!bqt)
847 return;
848
849 __blk_free_tags(bqt);
850
1da177e4
LT
851 q->queue_tags = NULL;
852 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
853}
854
492dfb48
JB
855
856/**
857 * blk_free_tags - release a given set of tag maintenance info
858 * @bqt: the tag map to free
859 *
860 * For externally managed @bqt@ frees the map. Callers of this
861 * function must guarantee to have released all the queues that
862 * might have been using this tag map.
863 */
864void blk_free_tags(struct blk_queue_tag *bqt)
865{
866 if (unlikely(!__blk_free_tags(bqt)))
867 BUG();
868}
869EXPORT_SYMBOL(blk_free_tags);
870
1da177e4
LT
871/**
872 * blk_queue_free_tags - release tag maintenance info
873 * @q: the request queue for the device
874 *
875 * Notes:
876 * This is used to disabled tagged queuing to a device, yet leave
877 * queue in function.
878 **/
879void blk_queue_free_tags(request_queue_t *q)
880{
881 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
882}
883
884EXPORT_SYMBOL(blk_queue_free_tags);
885
886static int
887init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
888{
1da177e4
LT
889 struct request **tag_index;
890 unsigned long *tag_map;
fa72b903 891 int nr_ulongs;
1da177e4 892
492dfb48 893 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
894 depth = q->nr_requests * 2;
895 printk(KERN_ERR "%s: adjusted depth to %d\n",
896 __FUNCTION__, depth);
897 }
898
f68110fc 899 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
900 if (!tag_index)
901 goto fail;
902
f7d37d02 903 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 904 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
905 if (!tag_map)
906 goto fail;
907
ba025082 908 tags->real_max_depth = depth;
1da177e4 909 tags->max_depth = depth;
1da177e4
LT
910 tags->tag_index = tag_index;
911 tags->tag_map = tag_map;
912
1da177e4
LT
913 return 0;
914fail:
915 kfree(tag_index);
916 return -ENOMEM;
917}
918
492dfb48
JB
919static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
920 int depth)
921{
922 struct blk_queue_tag *tags;
923
924 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
925 if (!tags)
926 goto fail;
927
928 if (init_tag_map(q, tags, depth))
929 goto fail;
930
931 INIT_LIST_HEAD(&tags->busy_list);
932 tags->busy = 0;
933 atomic_set(&tags->refcnt, 1);
934 return tags;
935fail:
936 kfree(tags);
937 return NULL;
938}
939
940/**
941 * blk_init_tags - initialize the tag info for an external tag map
942 * @depth: the maximum queue depth supported
943 * @tags: the tag to use
944 **/
945struct blk_queue_tag *blk_init_tags(int depth)
946{
947 return __blk_queue_init_tags(NULL, depth);
948}
949EXPORT_SYMBOL(blk_init_tags);
950
1da177e4
LT
951/**
952 * blk_queue_init_tags - initialize the queue tag info
953 * @q: the request queue for the device
954 * @depth: the maximum queue depth supported
955 * @tags: the tag to use
956 **/
957int blk_queue_init_tags(request_queue_t *q, int depth,
958 struct blk_queue_tag *tags)
959{
960 int rc;
961
962 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
963
964 if (!tags && !q->queue_tags) {
492dfb48 965 tags = __blk_queue_init_tags(q, depth);
1da177e4 966
492dfb48 967 if (!tags)
1da177e4 968 goto fail;
1da177e4
LT
969 } else if (q->queue_tags) {
970 if ((rc = blk_queue_resize_tags(q, depth)))
971 return rc;
972 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
973 return 0;
974 } else
975 atomic_inc(&tags->refcnt);
976
977 /*
978 * assign it, all done
979 */
980 q->queue_tags = tags;
981 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
982 return 0;
983fail:
984 kfree(tags);
985 return -ENOMEM;
986}
987
988EXPORT_SYMBOL(blk_queue_init_tags);
989
990/**
991 * blk_queue_resize_tags - change the queueing depth
992 * @q: the request queue for the device
993 * @new_depth: the new max command queueing depth
994 *
995 * Notes:
996 * Must be called with the queue lock held.
997 **/
998int blk_queue_resize_tags(request_queue_t *q, int new_depth)
999{
1000 struct blk_queue_tag *bqt = q->queue_tags;
1001 struct request **tag_index;
1002 unsigned long *tag_map;
fa72b903 1003 int max_depth, nr_ulongs;
1da177e4
LT
1004
1005 if (!bqt)
1006 return -ENXIO;
1007
ba025082
TH
1008 /*
1009 * if we already have large enough real_max_depth. just
1010 * adjust max_depth. *NOTE* as requests with tag value
1011 * between new_depth and real_max_depth can be in-flight, tag
1012 * map can not be shrunk blindly here.
1013 */
1014 if (new_depth <= bqt->real_max_depth) {
1015 bqt->max_depth = new_depth;
1016 return 0;
1017 }
1018
492dfb48
JB
1019 /*
1020 * Currently cannot replace a shared tag map with a new
1021 * one, so error out if this is the case
1022 */
1023 if (atomic_read(&bqt->refcnt) != 1)
1024 return -EBUSY;
1025
1da177e4
LT
1026 /*
1027 * save the old state info, so we can copy it back
1028 */
1029 tag_index = bqt->tag_index;
1030 tag_map = bqt->tag_map;
ba025082 1031 max_depth = bqt->real_max_depth;
1da177e4
LT
1032
1033 if (init_tag_map(q, bqt, new_depth))
1034 return -ENOMEM;
1035
1036 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1037 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1038 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1039
1040 kfree(tag_index);
1041 kfree(tag_map);
1042 return 0;
1043}
1044
1045EXPORT_SYMBOL(blk_queue_resize_tags);
1046
1047/**
1048 * blk_queue_end_tag - end tag operations for a request
1049 * @q: the request queue for the device
1050 * @rq: the request that has completed
1051 *
1052 * Description:
1053 * Typically called when end_that_request_first() returns 0, meaning
1054 * all transfers have been done for a request. It's important to call
1055 * this function before end_that_request_last(), as that will put the
1056 * request back on the free list thus corrupting the internal tag list.
1057 *
1058 * Notes:
1059 * queue lock must be held.
1060 **/
1061void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1062{
1063 struct blk_queue_tag *bqt = q->queue_tags;
1064 int tag = rq->tag;
1065
1066 BUG_ON(tag == -1);
1067
ba025082 1068 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1069 /*
1070 * This can happen after tag depth has been reduced.
1071 * FIXME: how about a warning or info message here?
1072 */
1da177e4
LT
1073 return;
1074
1075 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1076 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1077 __FUNCTION__, tag);
1da177e4
LT
1078 return;
1079 }
1080
1081 list_del_init(&rq->queuelist);
4aff5e23 1082 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1083 rq->tag = -1;
1084
1085 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1086 printk(KERN_ERR "%s: tag %d is missing\n",
1087 __FUNCTION__, tag);
1da177e4
LT
1088
1089 bqt->tag_index[tag] = NULL;
1090 bqt->busy--;
1091}
1092
1093EXPORT_SYMBOL(blk_queue_end_tag);
1094
1095/**
1096 * blk_queue_start_tag - find a free tag and assign it
1097 * @q: the request queue for the device
1098 * @rq: the block request that needs tagging
1099 *
1100 * Description:
1101 * This can either be used as a stand-alone helper, or possibly be
1102 * assigned as the queue &prep_rq_fn (in which case &struct request
1103 * automagically gets a tag assigned). Note that this function
1104 * assumes that any type of request can be queued! if this is not
1105 * true for your device, you must check the request type before
1106 * calling this function. The request will also be removed from
1107 * the request queue, so it's the drivers responsibility to readd
1108 * it if it should need to be restarted for some reason.
1109 *
1110 * Notes:
1111 * queue lock must be held.
1112 **/
1113int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1114{
1115 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1116 int tag;
1da177e4 1117
4aff5e23 1118 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1119 printk(KERN_ERR
040c928c
TH
1120 "%s: request %p for device [%s] already tagged %d",
1121 __FUNCTION__, rq,
1122 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1123 BUG();
1124 }
1125
059af497
JA
1126 /*
1127 * Protect against shared tag maps, as we may not have exclusive
1128 * access to the tag map.
1129 */
1130 do {
1131 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1132 if (tag >= bqt->max_depth)
1133 return 1;
1da177e4 1134
059af497 1135 } while (test_and_set_bit(tag, bqt->tag_map));
1da177e4 1136
4aff5e23 1137 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1138 rq->tag = tag;
1139 bqt->tag_index[tag] = rq;
1140 blkdev_dequeue_request(rq);
1141 list_add(&rq->queuelist, &bqt->busy_list);
1142 bqt->busy++;
1143 return 0;
1144}
1145
1146EXPORT_SYMBOL(blk_queue_start_tag);
1147
1148/**
1149 * blk_queue_invalidate_tags - invalidate all pending tags
1150 * @q: the request queue for the device
1151 *
1152 * Description:
1153 * Hardware conditions may dictate a need to stop all pending requests.
1154 * In this case, we will safely clear the block side of the tag queue and
1155 * readd all requests to the request queue in the right order.
1156 *
1157 * Notes:
1158 * queue lock must be held.
1159 **/
1160void blk_queue_invalidate_tags(request_queue_t *q)
1161{
1162 struct blk_queue_tag *bqt = q->queue_tags;
1163 struct list_head *tmp, *n;
1164 struct request *rq;
1165
1166 list_for_each_safe(tmp, n, &bqt->busy_list) {
1167 rq = list_entry_rq(tmp);
1168
1169 if (rq->tag == -1) {
040c928c
TH
1170 printk(KERN_ERR
1171 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1172 list_del_init(&rq->queuelist);
4aff5e23 1173 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1174 } else
1175 blk_queue_end_tag(q, rq);
1176
4aff5e23 1177 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1178 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1179 }
1180}
1181
1182EXPORT_SYMBOL(blk_queue_invalidate_tags);
1183
1da177e4
LT
1184void blk_dump_rq_flags(struct request *rq, char *msg)
1185{
1186 int bit;
1187
4aff5e23
JA
1188 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1189 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1190 rq->cmd_flags);
1da177e4
LT
1191
1192 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1193 rq->nr_sectors,
1194 rq->current_nr_sectors);
1195 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1196
4aff5e23 1197 if (blk_pc_request(rq)) {
1da177e4
LT
1198 printk("cdb: ");
1199 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1200 printk("%02x ", rq->cmd[bit]);
1201 printk("\n");
1202 }
1203}
1204
1205EXPORT_SYMBOL(blk_dump_rq_flags);
1206
1207void blk_recount_segments(request_queue_t *q, struct bio *bio)
1208{
1209 struct bio_vec *bv, *bvprv = NULL;
1210 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1211 int high, highprv = 1;
1212
1213 if (unlikely(!bio->bi_io_vec))
1214 return;
1215
1216 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1217 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1218 bio_for_each_segment(bv, bio, i) {
1219 /*
1220 * the trick here is making sure that a high page is never
1221 * considered part of another segment, since that might
1222 * change with the bounce page.
1223 */
1224 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1225 if (high || highprv)
1226 goto new_hw_segment;
1227 if (cluster) {
1228 if (seg_size + bv->bv_len > q->max_segment_size)
1229 goto new_segment;
1230 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1231 goto new_segment;
1232 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1233 goto new_segment;
1234 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1235 goto new_hw_segment;
1236
1237 seg_size += bv->bv_len;
1238 hw_seg_size += bv->bv_len;
1239 bvprv = bv;
1240 continue;
1241 }
1242new_segment:
1243 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1244 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1245 hw_seg_size += bv->bv_len;
1246 } else {
1247new_hw_segment:
1248 if (hw_seg_size > bio->bi_hw_front_size)
1249 bio->bi_hw_front_size = hw_seg_size;
1250 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1251 nr_hw_segs++;
1252 }
1253
1254 nr_phys_segs++;
1255 bvprv = bv;
1256 seg_size = bv->bv_len;
1257 highprv = high;
1258 }
1259 if (hw_seg_size > bio->bi_hw_back_size)
1260 bio->bi_hw_back_size = hw_seg_size;
1261 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1262 bio->bi_hw_front_size = hw_seg_size;
1263 bio->bi_phys_segments = nr_phys_segs;
1264 bio->bi_hw_segments = nr_hw_segs;
1265 bio->bi_flags |= (1 << BIO_SEG_VALID);
1266}
1267
1268
93d17d3d 1269static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1270 struct bio *nxt)
1271{
1272 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1273 return 0;
1274
1275 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1276 return 0;
1277 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1278 return 0;
1279
1280 /*
1281 * bio and nxt are contigous in memory, check if the queue allows
1282 * these two to be merged into one
1283 */
1284 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1285 return 1;
1286
1287 return 0;
1288}
1289
93d17d3d 1290static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1291 struct bio *nxt)
1292{
1293 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1294 blk_recount_segments(q, bio);
1295 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1296 blk_recount_segments(q, nxt);
1297 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1298 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1299 return 0;
1300 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1301 return 0;
1302
1303 return 1;
1304}
1305
1da177e4
LT
1306/*
1307 * map a request to scatterlist, return number of sg entries setup. Caller
1308 * must make sure sg can hold rq->nr_phys_segments entries
1309 */
1310int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1311{
1312 struct bio_vec *bvec, *bvprv;
1313 struct bio *bio;
1314 int nsegs, i, cluster;
1315
1316 nsegs = 0;
1317 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1318
1319 /*
1320 * for each bio in rq
1321 */
1322 bvprv = NULL;
1323 rq_for_each_bio(bio, rq) {
1324 /*
1325 * for each segment in bio
1326 */
1327 bio_for_each_segment(bvec, bio, i) {
1328 int nbytes = bvec->bv_len;
1329
1330 if (bvprv && cluster) {
1331 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1332 goto new_segment;
1333
1334 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1335 goto new_segment;
1336 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1337 goto new_segment;
1338
1339 sg[nsegs - 1].length += nbytes;
1340 } else {
1341new_segment:
1342 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1343 sg[nsegs].page = bvec->bv_page;
1344 sg[nsegs].length = nbytes;
1345 sg[nsegs].offset = bvec->bv_offset;
1346
1347 nsegs++;
1348 }
1349 bvprv = bvec;
1350 } /* segments in bio */
1351 } /* bios in rq */
1352
1353 return nsegs;
1354}
1355
1356EXPORT_SYMBOL(blk_rq_map_sg);
1357
1358/*
1359 * the standard queue merge functions, can be overridden with device
1360 * specific ones if so desired
1361 */
1362
1363static inline int ll_new_mergeable(request_queue_t *q,
1364 struct request *req,
1365 struct bio *bio)
1366{
1367 int nr_phys_segs = bio_phys_segments(q, bio);
1368
1369 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1370 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1371 if (req == q->last_merge)
1372 q->last_merge = NULL;
1373 return 0;
1374 }
1375
1376 /*
1377 * A hw segment is just getting larger, bump just the phys
1378 * counter.
1379 */
1380 req->nr_phys_segments += nr_phys_segs;
1381 return 1;
1382}
1383
1384static inline int ll_new_hw_segment(request_queue_t *q,
1385 struct request *req,
1386 struct bio *bio)
1387{
1388 int nr_hw_segs = bio_hw_segments(q, bio);
1389 int nr_phys_segs = bio_phys_segments(q, bio);
1390
1391 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1392 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1393 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1394 if (req == q->last_merge)
1395 q->last_merge = NULL;
1396 return 0;
1397 }
1398
1399 /*
1400 * This will form the start of a new hw segment. Bump both
1401 * counters.
1402 */
1403 req->nr_hw_segments += nr_hw_segs;
1404 req->nr_phys_segments += nr_phys_segs;
1405 return 1;
1406}
1407
1408static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1409 struct bio *bio)
1410{
defd94b7 1411 unsigned short max_sectors;
1da177e4
LT
1412 int len;
1413
defd94b7
MC
1414 if (unlikely(blk_pc_request(req)))
1415 max_sectors = q->max_hw_sectors;
1416 else
1417 max_sectors = q->max_sectors;
1418
1419 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1420 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1421 if (req == q->last_merge)
1422 q->last_merge = NULL;
1423 return 0;
1424 }
1425 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1426 blk_recount_segments(q, req->biotail);
1427 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1428 blk_recount_segments(q, bio);
1429 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1430 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1431 !BIOVEC_VIRT_OVERSIZE(len)) {
1432 int mergeable = ll_new_mergeable(q, req, bio);
1433
1434 if (mergeable) {
1435 if (req->nr_hw_segments == 1)
1436 req->bio->bi_hw_front_size = len;
1437 if (bio->bi_hw_segments == 1)
1438 bio->bi_hw_back_size = len;
1439 }
1440 return mergeable;
1441 }
1442
1443 return ll_new_hw_segment(q, req, bio);
1444}
1445
1446static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1447 struct bio *bio)
1448{
defd94b7 1449 unsigned short max_sectors;
1da177e4
LT
1450 int len;
1451
defd94b7
MC
1452 if (unlikely(blk_pc_request(req)))
1453 max_sectors = q->max_hw_sectors;
1454 else
1455 max_sectors = q->max_sectors;
1456
1457
1458 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1459 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1460 if (req == q->last_merge)
1461 q->last_merge = NULL;
1462 return 0;
1463 }
1464 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1465 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1466 blk_recount_segments(q, bio);
1467 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1468 blk_recount_segments(q, req->bio);
1469 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1470 !BIOVEC_VIRT_OVERSIZE(len)) {
1471 int mergeable = ll_new_mergeable(q, req, bio);
1472
1473 if (mergeable) {
1474 if (bio->bi_hw_segments == 1)
1475 bio->bi_hw_front_size = len;
1476 if (req->nr_hw_segments == 1)
1477 req->biotail->bi_hw_back_size = len;
1478 }
1479 return mergeable;
1480 }
1481
1482 return ll_new_hw_segment(q, req, bio);
1483}
1484
1485static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1486 struct request *next)
1487{
dfa1a553
ND
1488 int total_phys_segments;
1489 int total_hw_segments;
1da177e4
LT
1490
1491 /*
1492 * First check if the either of the requests are re-queued
1493 * requests. Can't merge them if they are.
1494 */
1495 if (req->special || next->special)
1496 return 0;
1497
1498 /*
dfa1a553 1499 * Will it become too large?
1da177e4
LT
1500 */
1501 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1502 return 0;
1503
1504 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1505 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1506 total_phys_segments--;
1507
1508 if (total_phys_segments > q->max_phys_segments)
1509 return 0;
1510
1511 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1512 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1513 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1514 /*
1515 * propagate the combined length to the end of the requests
1516 */
1517 if (req->nr_hw_segments == 1)
1518 req->bio->bi_hw_front_size = len;
1519 if (next->nr_hw_segments == 1)
1520 next->biotail->bi_hw_back_size = len;
1521 total_hw_segments--;
1522 }
1523
1524 if (total_hw_segments > q->max_hw_segments)
1525 return 0;
1526
1527 /* Merge is OK... */
1528 req->nr_phys_segments = total_phys_segments;
1529 req->nr_hw_segments = total_hw_segments;
1530 return 1;
1531}
1532
1533/*
1534 * "plug" the device if there are no outstanding requests: this will
1535 * force the transfer to start only after we have put all the requests
1536 * on the list.
1537 *
1538 * This is called with interrupts off and no requests on the queue and
1539 * with the queue lock held.
1540 */
1541void blk_plug_device(request_queue_t *q)
1542{
1543 WARN_ON(!irqs_disabled());
1544
1545 /*
1546 * don't plug a stopped queue, it must be paired with blk_start_queue()
1547 * which will restart the queueing
1548 */
7daac490 1549 if (blk_queue_stopped(q))
1da177e4
LT
1550 return;
1551
2056a782 1552 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1553 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1554 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1555 }
1da177e4
LT
1556}
1557
1558EXPORT_SYMBOL(blk_plug_device);
1559
1560/*
1561 * remove the queue from the plugged list, if present. called with
1562 * queue lock held and interrupts disabled.
1563 */
1564int blk_remove_plug(request_queue_t *q)
1565{
1566 WARN_ON(!irqs_disabled());
1567
1568 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1569 return 0;
1570
1571 del_timer(&q->unplug_timer);
1572 return 1;
1573}
1574
1575EXPORT_SYMBOL(blk_remove_plug);
1576
1577/*
1578 * remove the plug and let it rip..
1579 */
1580void __generic_unplug_device(request_queue_t *q)
1581{
7daac490 1582 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1583 return;
1584
1585 if (!blk_remove_plug(q))
1586 return;
1587
22e2c507 1588 q->request_fn(q);
1da177e4
LT
1589}
1590EXPORT_SYMBOL(__generic_unplug_device);
1591
1592/**
1593 * generic_unplug_device - fire a request queue
1594 * @q: The &request_queue_t in question
1595 *
1596 * Description:
1597 * Linux uses plugging to build bigger requests queues before letting
1598 * the device have at them. If a queue is plugged, the I/O scheduler
1599 * is still adding and merging requests on the queue. Once the queue
1600 * gets unplugged, the request_fn defined for the queue is invoked and
1601 * transfers started.
1602 **/
1603void generic_unplug_device(request_queue_t *q)
1604{
1605 spin_lock_irq(q->queue_lock);
1606 __generic_unplug_device(q);
1607 spin_unlock_irq(q->queue_lock);
1608}
1609EXPORT_SYMBOL(generic_unplug_device);
1610
1611static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1612 struct page *page)
1613{
1614 request_queue_t *q = bdi->unplug_io_data;
1615
1616 /*
1617 * devices don't necessarily have an ->unplug_fn defined
1618 */
2056a782
JA
1619 if (q->unplug_fn) {
1620 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1621 q->rq.count[READ] + q->rq.count[WRITE]);
1622
1da177e4 1623 q->unplug_fn(q);
2056a782 1624 }
1da177e4
LT
1625}
1626
65f27f38 1627static void blk_unplug_work(struct work_struct *work)
1da177e4 1628{
65f27f38 1629 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1da177e4 1630
2056a782
JA
1631 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1632 q->rq.count[READ] + q->rq.count[WRITE]);
1633
1da177e4
LT
1634 q->unplug_fn(q);
1635}
1636
1637static void blk_unplug_timeout(unsigned long data)
1638{
1639 request_queue_t *q = (request_queue_t *)data;
1640
2056a782
JA
1641 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1642 q->rq.count[READ] + q->rq.count[WRITE]);
1643
1da177e4
LT
1644 kblockd_schedule_work(&q->unplug_work);
1645}
1646
1647/**
1648 * blk_start_queue - restart a previously stopped queue
1649 * @q: The &request_queue_t in question
1650 *
1651 * Description:
1652 * blk_start_queue() will clear the stop flag on the queue, and call
1653 * the request_fn for the queue if it was in a stopped state when
1654 * entered. Also see blk_stop_queue(). Queue lock must be held.
1655 **/
1656void blk_start_queue(request_queue_t *q)
1657{
a038e253
PBG
1658 WARN_ON(!irqs_disabled());
1659
1da177e4
LT
1660 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1661
1662 /*
1663 * one level of recursion is ok and is much faster than kicking
1664 * the unplug handling
1665 */
1666 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1667 q->request_fn(q);
1668 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1669 } else {
1670 blk_plug_device(q);
1671 kblockd_schedule_work(&q->unplug_work);
1672 }
1673}
1674
1675EXPORT_SYMBOL(blk_start_queue);
1676
1677/**
1678 * blk_stop_queue - stop a queue
1679 * @q: The &request_queue_t in question
1680 *
1681 * Description:
1682 * The Linux block layer assumes that a block driver will consume all
1683 * entries on the request queue when the request_fn strategy is called.
1684 * Often this will not happen, because of hardware limitations (queue
1685 * depth settings). If a device driver gets a 'queue full' response,
1686 * or if it simply chooses not to queue more I/O at one point, it can
1687 * call this function to prevent the request_fn from being called until
1688 * the driver has signalled it's ready to go again. This happens by calling
1689 * blk_start_queue() to restart queue operations. Queue lock must be held.
1690 **/
1691void blk_stop_queue(request_queue_t *q)
1692{
1693 blk_remove_plug(q);
1694 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1695}
1696EXPORT_SYMBOL(blk_stop_queue);
1697
1698/**
1699 * blk_sync_queue - cancel any pending callbacks on a queue
1700 * @q: the queue
1701 *
1702 * Description:
1703 * The block layer may perform asynchronous callback activity
1704 * on a queue, such as calling the unplug function after a timeout.
1705 * A block device may call blk_sync_queue to ensure that any
1706 * such activity is cancelled, thus allowing it to release resources
1707 * the the callbacks might use. The caller must already have made sure
1708 * that its ->make_request_fn will not re-add plugging prior to calling
1709 * this function.
1710 *
1711 */
1712void blk_sync_queue(struct request_queue *q)
1713{
1714 del_timer_sync(&q->unplug_timer);
1715 kblockd_flush();
1716}
1717EXPORT_SYMBOL(blk_sync_queue);
1718
1719/**
1720 * blk_run_queue - run a single device queue
1721 * @q: The queue to run
1722 */
1723void blk_run_queue(struct request_queue *q)
1724{
1725 unsigned long flags;
1726
1727 spin_lock_irqsave(q->queue_lock, flags);
1728 blk_remove_plug(q);
dac07ec1
JA
1729
1730 /*
1731 * Only recurse once to avoid overrunning the stack, let the unplug
1732 * handling reinvoke the handler shortly if we already got there.
1733 */
1734 if (!elv_queue_empty(q)) {
1735 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1736 q->request_fn(q);
1737 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1738 } else {
1739 blk_plug_device(q);
1740 kblockd_schedule_work(&q->unplug_work);
1741 }
1742 }
1743
1da177e4
LT
1744 spin_unlock_irqrestore(q->queue_lock, flags);
1745}
1746EXPORT_SYMBOL(blk_run_queue);
1747
1748/**
1749 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
a580290c 1750 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1751 *
1752 * Description:
1753 * blk_cleanup_queue is the pair to blk_init_queue() or
1754 * blk_queue_make_request(). It should be called when a request queue is
1755 * being released; typically when a block device is being de-registered.
1756 * Currently, its primary task it to free all the &struct request
1757 * structures that were allocated to the queue and the queue itself.
1758 *
1759 * Caveat:
1760 * Hopefully the low level driver will have finished any
1761 * outstanding requests first...
1762 **/
483f4afc 1763static void blk_release_queue(struct kobject *kobj)
1da177e4 1764{
483f4afc 1765 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1766 struct request_list *rl = &q->rq;
1767
1da177e4
LT
1768 blk_sync_queue(q);
1769
1770 if (rl->rq_pool)
1771 mempool_destroy(rl->rq_pool);
1772
1773 if (q->queue_tags)
1774 __blk_queue_free_tags(q);
1775
6c5c9341 1776 blk_trace_shutdown(q);
2056a782 1777
1da177e4
LT
1778 kmem_cache_free(requestq_cachep, q);
1779}
1780
483f4afc
AV
1781void blk_put_queue(request_queue_t *q)
1782{
1783 kobject_put(&q->kobj);
1784}
1785EXPORT_SYMBOL(blk_put_queue);
1786
1787void blk_cleanup_queue(request_queue_t * q)
1788{
1789 mutex_lock(&q->sysfs_lock);
1790 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1791 mutex_unlock(&q->sysfs_lock);
1792
1793 if (q->elevator)
1794 elevator_exit(q->elevator);
1795
1796 blk_put_queue(q);
1797}
1798
1da177e4
LT
1799EXPORT_SYMBOL(blk_cleanup_queue);
1800
1801static int blk_init_free_list(request_queue_t *q)
1802{
1803 struct request_list *rl = &q->rq;
1804
1805 rl->count[READ] = rl->count[WRITE] = 0;
1806 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1807 rl->elvpriv = 0;
1da177e4
LT
1808 init_waitqueue_head(&rl->wait[READ]);
1809 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1810
1946089a
CL
1811 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1812 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1813
1814 if (!rl->rq_pool)
1815 return -ENOMEM;
1816
1817 return 0;
1818}
1819
8267e268 1820request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1821{
1946089a
CL
1822 return blk_alloc_queue_node(gfp_mask, -1);
1823}
1824EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1825
483f4afc
AV
1826static struct kobj_type queue_ktype;
1827
8267e268 1828request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1829{
1830 request_queue_t *q;
1831
1832 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1833 if (!q)
1834 return NULL;
1835
1836 memset(q, 0, sizeof(*q));
1837 init_timer(&q->unplug_timer);
483f4afc
AV
1838
1839 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1840 q->kobj.ktype = &queue_ktype;
1841 kobject_init(&q->kobj);
1da177e4
LT
1842
1843 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1844 q->backing_dev_info.unplug_io_data = q;
1845
483f4afc
AV
1846 mutex_init(&q->sysfs_lock);
1847
1da177e4
LT
1848 return q;
1849}
1946089a 1850EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1851
1852/**
1853 * blk_init_queue - prepare a request queue for use with a block device
1854 * @rfn: The function to be called to process requests that have been
1855 * placed on the queue.
1856 * @lock: Request queue spin lock
1857 *
1858 * Description:
1859 * If a block device wishes to use the standard request handling procedures,
1860 * which sorts requests and coalesces adjacent requests, then it must
1861 * call blk_init_queue(). The function @rfn will be called when there
1862 * are requests on the queue that need to be processed. If the device
1863 * supports plugging, then @rfn may not be called immediately when requests
1864 * are available on the queue, but may be called at some time later instead.
1865 * Plugged queues are generally unplugged when a buffer belonging to one
1866 * of the requests on the queue is needed, or due to memory pressure.
1867 *
1868 * @rfn is not required, or even expected, to remove all requests off the
1869 * queue, but only as many as it can handle at a time. If it does leave
1870 * requests on the queue, it is responsible for arranging that the requests
1871 * get dealt with eventually.
1872 *
1873 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1874 * request queue; this lock will be taken also from interrupt context, so irq
1875 * disabling is needed for it.
1da177e4
LT
1876 *
1877 * Function returns a pointer to the initialized request queue, or NULL if
1878 * it didn't succeed.
1879 *
1880 * Note:
1881 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1882 * when the block device is deactivated (such as at module unload).
1883 **/
1946089a 1884
1da177e4
LT
1885request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1886{
1946089a
CL
1887 return blk_init_queue_node(rfn, lock, -1);
1888}
1889EXPORT_SYMBOL(blk_init_queue);
1890
1891request_queue_t *
1892blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1893{
1894 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1895
1896 if (!q)
1897 return NULL;
1898
1946089a 1899 q->node = node_id;
8669aafd
AV
1900 if (blk_init_free_list(q)) {
1901 kmem_cache_free(requestq_cachep, q);
1902 return NULL;
1903 }
1da177e4 1904
152587de 1905 /*
1906 * if caller didn't supply a lock, they get per-queue locking with
1907 * our embedded lock
1908 */
1909 if (!lock) {
1910 spin_lock_init(&q->__queue_lock);
1911 lock = &q->__queue_lock;
1912 }
1913
1da177e4
LT
1914 q->request_fn = rfn;
1915 q->back_merge_fn = ll_back_merge_fn;
1916 q->front_merge_fn = ll_front_merge_fn;
1917 q->merge_requests_fn = ll_merge_requests_fn;
1918 q->prep_rq_fn = NULL;
1919 q->unplug_fn = generic_unplug_device;
1920 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1921 q->queue_lock = lock;
1922
1923 blk_queue_segment_boundary(q, 0xffffffff);
1924
1925 blk_queue_make_request(q, __make_request);
1926 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1927
1928 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1929 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1930
1931 /*
1932 * all done
1933 */
1934 if (!elevator_init(q, NULL)) {
1935 blk_queue_congestion_threshold(q);
1936 return q;
1937 }
1938
8669aafd 1939 blk_put_queue(q);
1da177e4
LT
1940 return NULL;
1941}
1946089a 1942EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1943
1944int blk_get_queue(request_queue_t *q)
1945{
fde6ad22 1946 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1947 kobject_get(&q->kobj);
1da177e4
LT
1948 return 0;
1949 }
1950
1951 return 1;
1952}
1953
1954EXPORT_SYMBOL(blk_get_queue);
1955
1956static inline void blk_free_request(request_queue_t *q, struct request *rq)
1957{
4aff5e23 1958 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1959 elv_put_request(q, rq);
1da177e4
LT
1960 mempool_free(rq, q->rq.rq_pool);
1961}
1962
1ea25ecb 1963static struct request *
cb78b285 1964blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1965{
1966 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1967
1968 if (!rq)
1969 return NULL;
1970
1971 /*
4aff5e23 1972 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1973 * see bio.h and blkdev.h
1974 */
49171e5c 1975 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1976
cb98fc8b 1977 if (priv) {
cb78b285 1978 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1979 mempool_free(rq, q->rq.rq_pool);
1980 return NULL;
1981 }
4aff5e23 1982 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 1983 }
1da177e4 1984
cb98fc8b 1985 return rq;
1da177e4
LT
1986}
1987
1988/*
1989 * ioc_batching returns true if the ioc is a valid batching request and
1990 * should be given priority access to a request.
1991 */
1992static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1993{
1994 if (!ioc)
1995 return 0;
1996
1997 /*
1998 * Make sure the process is able to allocate at least 1 request
1999 * even if the batch times out, otherwise we could theoretically
2000 * lose wakeups.
2001 */
2002 return ioc->nr_batch_requests == q->nr_batching ||
2003 (ioc->nr_batch_requests > 0
2004 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2005}
2006
2007/*
2008 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2009 * will cause the process to be a "batcher" on all queues in the system. This
2010 * is the behaviour we want though - once it gets a wakeup it should be given
2011 * a nice run.
2012 */
93d17d3d 2013static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2014{
2015 if (!ioc || ioc_batching(q, ioc))
2016 return;
2017
2018 ioc->nr_batch_requests = q->nr_batching;
2019 ioc->last_waited = jiffies;
2020}
2021
2022static void __freed_request(request_queue_t *q, int rw)
2023{
2024 struct request_list *rl = &q->rq;
2025
2026 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2027 blk_clear_queue_congested(q, rw);
1da177e4
LT
2028
2029 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2030 if (waitqueue_active(&rl->wait[rw]))
2031 wake_up(&rl->wait[rw]);
2032
2033 blk_clear_queue_full(q, rw);
2034 }
2035}
2036
2037/*
2038 * A request has just been released. Account for it, update the full and
2039 * congestion status, wake up any waiters. Called under q->queue_lock.
2040 */
cb98fc8b 2041static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2042{
2043 struct request_list *rl = &q->rq;
2044
2045 rl->count[rw]--;
cb98fc8b
TH
2046 if (priv)
2047 rl->elvpriv--;
1da177e4
LT
2048
2049 __freed_request(q, rw);
2050
2051 if (unlikely(rl->starved[rw ^ 1]))
2052 __freed_request(q, rw ^ 1);
1da177e4
LT
2053}
2054
2055#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2056/*
d6344532
NP
2057 * Get a free request, queue_lock must be held.
2058 * Returns NULL on failure, with queue_lock held.
2059 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2060 */
7749a8d4
JA
2061static struct request *get_request(request_queue_t *q, int rw_flags,
2062 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2063{
2064 struct request *rq = NULL;
2065 struct request_list *rl = &q->rq;
88ee5ef1 2066 struct io_context *ioc = NULL;
7749a8d4 2067 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2068 int may_queue, priv;
2069
7749a8d4 2070 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2071 if (may_queue == ELV_MQUEUE_NO)
2072 goto rq_starved;
2073
2074 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2075 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2076 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2077 /*
2078 * The queue will fill after this allocation, so set
2079 * it as full, and mark this process as "batching".
2080 * This process will be allowed to complete a batch of
2081 * requests, others will be blocked.
2082 */
2083 if (!blk_queue_full(q, rw)) {
2084 ioc_set_batching(q, ioc);
2085 blk_set_queue_full(q, rw);
2086 } else {
2087 if (may_queue != ELV_MQUEUE_MUST
2088 && !ioc_batching(q, ioc)) {
2089 /*
2090 * The queue is full and the allocating
2091 * process is not a "batcher", and not
2092 * exempted by the IO scheduler
2093 */
2094 goto out;
2095 }
2096 }
1da177e4 2097 }
79e2de4b 2098 blk_set_queue_congested(q, rw);
1da177e4
LT
2099 }
2100
082cf69e
JA
2101 /*
2102 * Only allow batching queuers to allocate up to 50% over the defined
2103 * limit of requests, otherwise we could have thousands of requests
2104 * allocated with any setting of ->nr_requests
2105 */
fd782a4a 2106 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2107 goto out;
fd782a4a 2108
1da177e4
LT
2109 rl->count[rw]++;
2110 rl->starved[rw] = 0;
cb98fc8b 2111
64521d1a 2112 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2113 if (priv)
2114 rl->elvpriv++;
2115
1da177e4
LT
2116 spin_unlock_irq(q->queue_lock);
2117
7749a8d4 2118 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2119 if (unlikely(!rq)) {
1da177e4
LT
2120 /*
2121 * Allocation failed presumably due to memory. Undo anything
2122 * we might have messed up.
2123 *
2124 * Allocating task should really be put onto the front of the
2125 * wait queue, but this is pretty rare.
2126 */
2127 spin_lock_irq(q->queue_lock);
cb98fc8b 2128 freed_request(q, rw, priv);
1da177e4
LT
2129
2130 /*
2131 * in the very unlikely event that allocation failed and no
2132 * requests for this direction was pending, mark us starved
2133 * so that freeing of a request in the other direction will
2134 * notice us. another possible fix would be to split the
2135 * rq mempool into READ and WRITE
2136 */
2137rq_starved:
2138 if (unlikely(rl->count[rw] == 0))
2139 rl->starved[rw] = 1;
2140
1da177e4
LT
2141 goto out;
2142 }
2143
88ee5ef1
JA
2144 /*
2145 * ioc may be NULL here, and ioc_batching will be false. That's
2146 * OK, if the queue is under the request limit then requests need
2147 * not count toward the nr_batch_requests limit. There will always
2148 * be some limit enforced by BLK_BATCH_TIME.
2149 */
1da177e4
LT
2150 if (ioc_batching(q, ioc))
2151 ioc->nr_batch_requests--;
2152
2153 rq_init(q, rq);
2056a782
JA
2154
2155 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2156out:
1da177e4
LT
2157 return rq;
2158}
2159
2160/*
2161 * No available requests for this queue, unplug the device and wait for some
2162 * requests to become available.
d6344532
NP
2163 *
2164 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2165 */
7749a8d4 2166static struct request *get_request_wait(request_queue_t *q, int rw_flags,
22e2c507 2167 struct bio *bio)
1da177e4 2168{
7749a8d4 2169 const int rw = rw_flags & 0x01;
1da177e4
LT
2170 struct request *rq;
2171
7749a8d4 2172 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2173 while (!rq) {
2174 DEFINE_WAIT(wait);
1da177e4
LT
2175 struct request_list *rl = &q->rq;
2176
2177 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2178 TASK_UNINTERRUPTIBLE);
2179
7749a8d4 2180 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2181
2182 if (!rq) {
2183 struct io_context *ioc;
2184
2056a782
JA
2185 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2186
d6344532
NP
2187 __generic_unplug_device(q);
2188 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2189 io_schedule();
2190
2191 /*
2192 * After sleeping, we become a "batching" process and
2193 * will be able to allocate at least one request, and
2194 * up to a big batch of them for a small period time.
2195 * See ioc_batching, ioc_set_batching
2196 */
b5deef90 2197 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2198 ioc_set_batching(q, ioc);
d6344532
NP
2199
2200 spin_lock_irq(q->queue_lock);
1da177e4
LT
2201 }
2202 finish_wait(&rl->wait[rw], &wait);
450991bc 2203 }
1da177e4
LT
2204
2205 return rq;
2206}
2207
8267e268 2208struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2209{
2210 struct request *rq;
2211
2212 BUG_ON(rw != READ && rw != WRITE);
2213
d6344532
NP
2214 spin_lock_irq(q->queue_lock);
2215 if (gfp_mask & __GFP_WAIT) {
22e2c507 2216 rq = get_request_wait(q, rw, NULL);
d6344532 2217 } else {
22e2c507 2218 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2219 if (!rq)
2220 spin_unlock_irq(q->queue_lock);
2221 }
2222 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2223
2224 return rq;
2225}
1da177e4
LT
2226EXPORT_SYMBOL(blk_get_request);
2227
dc72ef4a
JA
2228/**
2229 * blk_start_queueing - initiate dispatch of requests to device
2230 * @q: request queue to kick into gear
2231 *
2232 * This is basically a helper to remove the need to know whether a queue
2233 * is plugged or not if someone just wants to initiate dispatch of requests
2234 * for this queue.
2235 *
2236 * The queue lock must be held with interrupts disabled.
2237 */
2238void blk_start_queueing(request_queue_t *q)
2239{
2240 if (!blk_queue_plugged(q))
2241 q->request_fn(q);
2242 else
2243 __generic_unplug_device(q);
2244}
2245EXPORT_SYMBOL(blk_start_queueing);
2246
1da177e4
LT
2247/**
2248 * blk_requeue_request - put a request back on queue
2249 * @q: request queue where request should be inserted
2250 * @rq: request to be inserted
2251 *
2252 * Description:
2253 * Drivers often keep queueing requests until the hardware cannot accept
2254 * more, when that condition happens we need to put the request back
2255 * on the queue. Must be called with queue lock held.
2256 */
2257void blk_requeue_request(request_queue_t *q, struct request *rq)
2258{
2056a782
JA
2259 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2260
1da177e4
LT
2261 if (blk_rq_tagged(rq))
2262 blk_queue_end_tag(q, rq);
2263
2264 elv_requeue_request(q, rq);
2265}
2266
2267EXPORT_SYMBOL(blk_requeue_request);
2268
2269/**
2270 * blk_insert_request - insert a special request in to a request queue
2271 * @q: request queue where request should be inserted
2272 * @rq: request to be inserted
2273 * @at_head: insert request at head or tail of queue
2274 * @data: private data
1da177e4
LT
2275 *
2276 * Description:
2277 * Many block devices need to execute commands asynchronously, so they don't
2278 * block the whole kernel from preemption during request execution. This is
2279 * accomplished normally by inserting aritficial requests tagged as
2280 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2281 * scheduled for actual execution by the request queue.
2282 *
2283 * We have the option of inserting the head or the tail of the queue.
2284 * Typically we use the tail for new ioctls and so forth. We use the head
2285 * of the queue for things like a QUEUE_FULL message from a device, or a
2286 * host that is unable to accept a particular command.
2287 */
2288void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2289 int at_head, void *data)
1da177e4 2290{
867d1191 2291 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2292 unsigned long flags;
2293
2294 /*
2295 * tell I/O scheduler that this isn't a regular read/write (ie it
2296 * must not attempt merges on this) and that it acts as a soft
2297 * barrier
2298 */
4aff5e23
JA
2299 rq->cmd_type = REQ_TYPE_SPECIAL;
2300 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2301
2302 rq->special = data;
2303
2304 spin_lock_irqsave(q->queue_lock, flags);
2305
2306 /*
2307 * If command is tagged, release the tag
2308 */
867d1191
TH
2309 if (blk_rq_tagged(rq))
2310 blk_queue_end_tag(q, rq);
1da177e4 2311
867d1191
TH
2312 drive_stat_acct(rq, rq->nr_sectors, 1);
2313 __elv_add_request(q, rq, where, 0);
dc72ef4a 2314 blk_start_queueing(q);
1da177e4
LT
2315 spin_unlock_irqrestore(q->queue_lock, flags);
2316}
2317
2318EXPORT_SYMBOL(blk_insert_request);
2319
0e75f906
MC
2320static int __blk_rq_unmap_user(struct bio *bio)
2321{
2322 int ret = 0;
2323
2324 if (bio) {
2325 if (bio_flagged(bio, BIO_USER_MAPPED))
2326 bio_unmap_user(bio);
2327 else
2328 ret = bio_uncopy_user(bio);
2329 }
2330
2331 return ret;
2332}
2333
2334static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2335 void __user *ubuf, unsigned int len)
2336{
2337 unsigned long uaddr;
2338 struct bio *bio, *orig_bio;
2339 int reading, ret;
2340
2341 reading = rq_data_dir(rq) == READ;
2342
2343 /*
2344 * if alignment requirement is satisfied, map in user pages for
2345 * direct dma. else, set up kernel bounce buffers
2346 */
2347 uaddr = (unsigned long) ubuf;
2348 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2349 bio = bio_map_user(q, NULL, uaddr, len, reading);
2350 else
2351 bio = bio_copy_user(q, uaddr, len, reading);
2352
2353 if (IS_ERR(bio)) {
2354 return PTR_ERR(bio);
2355 }
2356
2357 orig_bio = bio;
2358 blk_queue_bounce(q, &bio);
2359 /*
2360 * We link the bounce buffer in and could have to traverse it
2361 * later so we have to get a ref to prevent it from being freed
2362 */
2363 bio_get(bio);
2364
2365 /*
2366 * for most (all? don't know of any) queues we could
2367 * skip grabbing the queue lock here. only drivers with
2368 * funky private ->back_merge_fn() function could be
2369 * problematic.
2370 */
2371 spin_lock_irq(q->queue_lock);
2372 if (!rq->bio)
2373 blk_rq_bio_prep(q, rq, bio);
2374 else if (!q->back_merge_fn(q, rq, bio)) {
2375 ret = -EINVAL;
2376 spin_unlock_irq(q->queue_lock);
2377 goto unmap_bio;
2378 } else {
2379 rq->biotail->bi_next = bio;
2380 rq->biotail = bio;
2381
2382 rq->nr_sectors += bio_sectors(bio);
2383 rq->hard_nr_sectors = rq->nr_sectors;
2384 rq->data_len += bio->bi_size;
2385 }
2386 spin_unlock_irq(q->queue_lock);
2387
2388 return bio->bi_size;
2389
2390unmap_bio:
2391 /* if it was boucned we must call the end io function */
2392 bio_endio(bio, bio->bi_size, 0);
2393 __blk_rq_unmap_user(orig_bio);
2394 bio_put(bio);
2395 return ret;
2396}
2397
1da177e4
LT
2398/**
2399 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2400 * @q: request queue where request should be inserted
73747aed 2401 * @rq: request structure to fill
1da177e4
LT
2402 * @ubuf: the user buffer
2403 * @len: length of user data
2404 *
2405 * Description:
2406 * Data will be mapped directly for zero copy io, if possible. Otherwise
2407 * a kernel bounce buffer is used.
2408 *
2409 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2410 * still in process context.
2411 *
2412 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2413 * before being submitted to the device, as pages mapped may be out of
2414 * reach. It's the callers responsibility to make sure this happens. The
2415 * original bio must be passed back in to blk_rq_unmap_user() for proper
2416 * unmapping.
2417 */
dd1cab95 2418int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
0e75f906 2419 unsigned long len)
1da177e4 2420{
0e75f906
MC
2421 unsigned long bytes_read = 0;
2422 int ret;
1da177e4 2423
defd94b7 2424 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2425 return -EINVAL;
2426 if (!len || !ubuf)
2427 return -EINVAL;
1da177e4 2428
0e75f906
MC
2429 while (bytes_read != len) {
2430 unsigned long map_len, end, start;
1da177e4 2431
0e75f906
MC
2432 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2433 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2434 >> PAGE_SHIFT;
2435 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2436
0e75f906
MC
2437 /*
2438 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2439 * pages. If this happens we just lower the requested
2440 * mapping len by a page so that we can fit
2441 */
2442 if (end - start > BIO_MAX_PAGES)
2443 map_len -= PAGE_SIZE;
1da177e4 2444
0e75f906
MC
2445 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2446 if (ret < 0)
2447 goto unmap_rq;
2448 bytes_read += ret;
2449 ubuf += ret;
1da177e4
LT
2450 }
2451
0e75f906
MC
2452 rq->buffer = rq->data = NULL;
2453 return 0;
2454unmap_rq:
2455 blk_rq_unmap_user(rq);
2456 return ret;
1da177e4
LT
2457}
2458
2459EXPORT_SYMBOL(blk_rq_map_user);
2460
f1970baf
JB
2461/**
2462 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2463 * @q: request queue where request should be inserted
2464 * @rq: request to map data to
2465 * @iov: pointer to the iovec
2466 * @iov_count: number of elements in the iovec
2467 *
2468 * Description:
2469 * Data will be mapped directly for zero copy io, if possible. Otherwise
2470 * a kernel bounce buffer is used.
2471 *
2472 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2473 * still in process context.
2474 *
2475 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2476 * before being submitted to the device, as pages mapped may be out of
2477 * reach. It's the callers responsibility to make sure this happens. The
2478 * original bio must be passed back in to blk_rq_unmap_user() for proper
2479 * unmapping.
2480 */
2481int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
0e75f906 2482 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2483{
2484 struct bio *bio;
2485
2486 if (!iov || iov_count <= 0)
2487 return -EINVAL;
2488
2489 /* we don't allow misaligned data like bio_map_user() does. If the
2490 * user is using sg, they're expected to know the alignment constraints
2491 * and respect them accordingly */
2492 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2493 if (IS_ERR(bio))
2494 return PTR_ERR(bio);
2495
0e75f906
MC
2496 if (bio->bi_size != len) {
2497 bio_endio(bio, bio->bi_size, 0);
2498 bio_unmap_user(bio);
2499 return -EINVAL;
2500 }
2501
2502 bio_get(bio);
f1970baf
JB
2503 blk_rq_bio_prep(q, rq, bio);
2504 rq->buffer = rq->data = NULL;
f1970baf
JB
2505 return 0;
2506}
2507
2508EXPORT_SYMBOL(blk_rq_map_user_iov);
2509
1da177e4
LT
2510/**
2511 * blk_rq_unmap_user - unmap a request with user data
0e75f906 2512 * @rq: rq to be unmapped
1da177e4
LT
2513 *
2514 * Description:
0e75f906
MC
2515 * Unmap a rq previously mapped by blk_rq_map_user().
2516 * rq->bio must be set to the original head of the request.
1da177e4 2517 */
0e75f906 2518int blk_rq_unmap_user(struct request *rq)
1da177e4 2519{
0e75f906 2520 struct bio *bio, *mapped_bio;
1da177e4 2521
0e75f906
MC
2522 while ((bio = rq->bio)) {
2523 if (bio_flagged(bio, BIO_BOUNCED))
2524 mapped_bio = bio->bi_private;
1da177e4 2525 else
0e75f906 2526 mapped_bio = bio;
1da177e4 2527
0e75f906
MC
2528 __blk_rq_unmap_user(mapped_bio);
2529 rq->bio = bio->bi_next;
2530 bio_put(bio);
2531 }
dd1cab95 2532 return 0;
1da177e4
LT
2533}
2534
2535EXPORT_SYMBOL(blk_rq_unmap_user);
2536
df46b9a4
MC
2537/**
2538 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2539 * @q: request queue where request should be inserted
73747aed 2540 * @rq: request to fill
df46b9a4
MC
2541 * @kbuf: the kernel buffer
2542 * @len: length of user data
73747aed 2543 * @gfp_mask: memory allocation flags
df46b9a4 2544 */
dd1cab95 2545int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2546 unsigned int len, gfp_t gfp_mask)
df46b9a4 2547{
df46b9a4
MC
2548 struct bio *bio;
2549
defd94b7 2550 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2551 return -EINVAL;
2552 if (!len || !kbuf)
2553 return -EINVAL;
df46b9a4
MC
2554
2555 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2556 if (IS_ERR(bio))
2557 return PTR_ERR(bio);
df46b9a4 2558
dd1cab95
JA
2559 if (rq_data_dir(rq) == WRITE)
2560 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2561
dd1cab95 2562 blk_rq_bio_prep(q, rq, bio);
dd1cab95 2563 rq->buffer = rq->data = NULL;
dd1cab95 2564 return 0;
df46b9a4
MC
2565}
2566
2567EXPORT_SYMBOL(blk_rq_map_kern);
2568
73747aed
CH
2569/**
2570 * blk_execute_rq_nowait - insert a request into queue for execution
2571 * @q: queue to insert the request in
2572 * @bd_disk: matching gendisk
2573 * @rq: request to insert
2574 * @at_head: insert request at head or tail of queue
2575 * @done: I/O completion handler
2576 *
2577 * Description:
2578 * Insert a fully prepared request at the back of the io scheduler queue
2579 * for execution. Don't wait for completion.
2580 */
f1970baf
JB
2581void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2582 struct request *rq, int at_head,
8ffdc655 2583 rq_end_io_fn *done)
f1970baf
JB
2584{
2585 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2586
2587 rq->rq_disk = bd_disk;
4aff5e23 2588 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2589 rq->end_io = done;
4c5d0bbd
AM
2590 WARN_ON(irqs_disabled());
2591 spin_lock_irq(q->queue_lock);
2592 __elv_add_request(q, rq, where, 1);
2593 __generic_unplug_device(q);
2594 spin_unlock_irq(q->queue_lock);
f1970baf 2595}
6e39b69e
MC
2596EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2597
1da177e4
LT
2598/**
2599 * blk_execute_rq - insert a request into queue for execution
2600 * @q: queue to insert the request in
2601 * @bd_disk: matching gendisk
2602 * @rq: request to insert
994ca9a1 2603 * @at_head: insert request at head or tail of queue
1da177e4
LT
2604 *
2605 * Description:
2606 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2607 * for execution and wait for completion.
1da177e4
LT
2608 */
2609int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2610 struct request *rq, int at_head)
1da177e4 2611{
60be6b9a 2612 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2613 char sense[SCSI_SENSE_BUFFERSIZE];
2614 int err = 0;
2615
1da177e4
LT
2616 /*
2617 * we need an extra reference to the request, so we can look at
2618 * it after io completion
2619 */
2620 rq->ref_count++;
2621
2622 if (!rq->sense) {
2623 memset(sense, 0, sizeof(sense));
2624 rq->sense = sense;
2625 rq->sense_len = 0;
2626 }
2627
c00895ab 2628 rq->end_io_data = &wait;
994ca9a1 2629 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2630 wait_for_completion(&wait);
1da177e4
LT
2631
2632 if (rq->errors)
2633 err = -EIO;
2634
2635 return err;
2636}
2637
2638EXPORT_SYMBOL(blk_execute_rq);
2639
2640/**
2641 * blkdev_issue_flush - queue a flush
2642 * @bdev: blockdev to issue flush for
2643 * @error_sector: error sector
2644 *
2645 * Description:
2646 * Issue a flush for the block device in question. Caller can supply
2647 * room for storing the error offset in case of a flush error, if they
2648 * wish to. Caller must run wait_for_completion() on its own.
2649 */
2650int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2651{
2652 request_queue_t *q;
2653
2654 if (bdev->bd_disk == NULL)
2655 return -ENXIO;
2656
2657 q = bdev_get_queue(bdev);
2658 if (!q)
2659 return -ENXIO;
2660 if (!q->issue_flush_fn)
2661 return -EOPNOTSUPP;
2662
2663 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2664}
2665
2666EXPORT_SYMBOL(blkdev_issue_flush);
2667
93d17d3d 2668static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2669{
2670 int rw = rq_data_dir(rq);
2671
2672 if (!blk_fs_request(rq) || !rq->rq_disk)
2673 return;
2674
d72d904a 2675 if (!new_io) {
a362357b 2676 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2677 } else {
1da177e4
LT
2678 disk_round_stats(rq->rq_disk);
2679 rq->rq_disk->in_flight++;
2680 }
2681}
2682
2683/*
2684 * add-request adds a request to the linked list.
2685 * queue lock is held and interrupts disabled, as we muck with the
2686 * request queue list.
2687 */
2688static inline void add_request(request_queue_t * q, struct request * req)
2689{
2690 drive_stat_acct(req, req->nr_sectors, 1);
2691
1da177e4
LT
2692 /*
2693 * elevator indicated where it wants this request to be
2694 * inserted at elevator_merge time
2695 */
2696 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2697}
2698
2699/*
2700 * disk_round_stats() - Round off the performance stats on a struct
2701 * disk_stats.
2702 *
2703 * The average IO queue length and utilisation statistics are maintained
2704 * by observing the current state of the queue length and the amount of
2705 * time it has been in this state for.
2706 *
2707 * Normally, that accounting is done on IO completion, but that can result
2708 * in more than a second's worth of IO being accounted for within any one
2709 * second, leading to >100% utilisation. To deal with that, we call this
2710 * function to do a round-off before returning the results when reading
2711 * /proc/diskstats. This accounts immediately for all queue usage up to
2712 * the current jiffies and restarts the counters again.
2713 */
2714void disk_round_stats(struct gendisk *disk)
2715{
2716 unsigned long now = jiffies;
2717
b2982649
CK
2718 if (now == disk->stamp)
2719 return;
1da177e4 2720
20e5c81f
CK
2721 if (disk->in_flight) {
2722 __disk_stat_add(disk, time_in_queue,
2723 disk->in_flight * (now - disk->stamp));
2724 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2725 }
1da177e4 2726 disk->stamp = now;
1da177e4
LT
2727}
2728
3eaf840e
JNN
2729EXPORT_SYMBOL_GPL(disk_round_stats);
2730
1da177e4
LT
2731/*
2732 * queue lock must be held
2733 */
6e39b69e 2734void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4 2735{
1da177e4
LT
2736 if (unlikely(!q))
2737 return;
2738 if (unlikely(--req->ref_count))
2739 return;
2740
8922e16c
TH
2741 elv_completed_request(q, req);
2742
1da177e4
LT
2743 /*
2744 * Request may not have originated from ll_rw_blk. if not,
2745 * it didn't come out of our reserved rq pools
2746 */
49171e5c 2747 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2748 int rw = rq_data_dir(req);
4aff5e23 2749 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2750
1da177e4 2751 BUG_ON(!list_empty(&req->queuelist));
9817064b 2752 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2753
2754 blk_free_request(q, req);
cb98fc8b 2755 freed_request(q, rw, priv);
1da177e4
LT
2756 }
2757}
2758
6e39b69e
MC
2759EXPORT_SYMBOL_GPL(__blk_put_request);
2760
1da177e4
LT
2761void blk_put_request(struct request *req)
2762{
8922e16c
TH
2763 unsigned long flags;
2764 request_queue_t *q = req->q;
2765
1da177e4 2766 /*
8922e16c
TH
2767 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2768 * following if (q) test.
1da177e4 2769 */
8922e16c 2770 if (q) {
1da177e4
LT
2771 spin_lock_irqsave(q->queue_lock, flags);
2772 __blk_put_request(q, req);
2773 spin_unlock_irqrestore(q->queue_lock, flags);
2774 }
2775}
2776
2777EXPORT_SYMBOL(blk_put_request);
2778
2779/**
2780 * blk_end_sync_rq - executes a completion event on a request
2781 * @rq: request to complete
fddfdeaf 2782 * @error: end io status of the request
1da177e4 2783 */
8ffdc655 2784void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2785{
c00895ab 2786 struct completion *waiting = rq->end_io_data;
1da177e4 2787
c00895ab 2788 rq->end_io_data = NULL;
1da177e4
LT
2789 __blk_put_request(rq->q, rq);
2790
2791 /*
2792 * complete last, if this is a stack request the process (and thus
2793 * the rq pointer) could be invalid right after this complete()
2794 */
2795 complete(waiting);
2796}
2797EXPORT_SYMBOL(blk_end_sync_rq);
2798
1da177e4
LT
2799/*
2800 * Has to be called with the request spinlock acquired
2801 */
2802static int attempt_merge(request_queue_t *q, struct request *req,
2803 struct request *next)
2804{
2805 if (!rq_mergeable(req) || !rq_mergeable(next))
2806 return 0;
2807
2808 /*
d6e05edc 2809 * not contiguous
1da177e4
LT
2810 */
2811 if (req->sector + req->nr_sectors != next->sector)
2812 return 0;
2813
2814 if (rq_data_dir(req) != rq_data_dir(next)
2815 || req->rq_disk != next->rq_disk
c00895ab 2816 || next->special)
1da177e4
LT
2817 return 0;
2818
2819 /*
2820 * If we are allowed to merge, then append bio list
2821 * from next to rq and release next. merge_requests_fn
2822 * will have updated segment counts, update sector
2823 * counts here.
2824 */
2825 if (!q->merge_requests_fn(q, req, next))
2826 return 0;
2827
2828 /*
2829 * At this point we have either done a back merge
2830 * or front merge. We need the smaller start_time of
2831 * the merged requests to be the current request
2832 * for accounting purposes.
2833 */
2834 if (time_after(req->start_time, next->start_time))
2835 req->start_time = next->start_time;
2836
2837 req->biotail->bi_next = next->bio;
2838 req->biotail = next->biotail;
2839
2840 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2841
2842 elv_merge_requests(q, req, next);
2843
2844 if (req->rq_disk) {
2845 disk_round_stats(req->rq_disk);
2846 req->rq_disk->in_flight--;
2847 }
2848
22e2c507
JA
2849 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2850
1da177e4
LT
2851 __blk_put_request(q, next);
2852 return 1;
2853}
2854
2855static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2856{
2857 struct request *next = elv_latter_request(q, rq);
2858
2859 if (next)
2860 return attempt_merge(q, rq, next);
2861
2862 return 0;
2863}
2864
2865static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2866{
2867 struct request *prev = elv_former_request(q, rq);
2868
2869 if (prev)
2870 return attempt_merge(q, prev, rq);
2871
2872 return 0;
2873}
2874
52d9e675
TH
2875static void init_request_from_bio(struct request *req, struct bio *bio)
2876{
4aff5e23 2877 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2878
2879 /*
2880 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2881 */
2882 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2883 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2884
2885 /*
2886 * REQ_BARRIER implies no merging, but lets make it explicit
2887 */
2888 if (unlikely(bio_barrier(bio)))
4aff5e23 2889 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2890
b31dc66a 2891 if (bio_sync(bio))
4aff5e23 2892 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2893 if (bio_rw_meta(bio))
2894 req->cmd_flags |= REQ_RW_META;
b31dc66a 2895
52d9e675
TH
2896 req->errors = 0;
2897 req->hard_sector = req->sector = bio->bi_sector;
2898 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2899 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2900 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2901 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2902 req->buffer = bio_data(bio); /* see ->buffer comment above */
52d9e675
TH
2903 req->bio = req->biotail = bio;
2904 req->ioprio = bio_prio(bio);
2905 req->rq_disk = bio->bi_bdev->bd_disk;
2906 req->start_time = jiffies;
2907}
2908
1da177e4
LT
2909static int __make_request(request_queue_t *q, struct bio *bio)
2910{
450991bc 2911 struct request *req;
51da90fc
JA
2912 int el_ret, nr_sectors, barrier, err;
2913 const unsigned short prio = bio_prio(bio);
2914 const int sync = bio_sync(bio);
7749a8d4 2915 int rw_flags;
1da177e4 2916
1da177e4 2917 nr_sectors = bio_sectors(bio);
1da177e4
LT
2918
2919 /*
2920 * low level driver can indicate that it wants pages above a
2921 * certain limit bounced to low memory (ie for highmem, or even
2922 * ISA dma in theory)
2923 */
2924 blk_queue_bounce(q, &bio);
2925
1da177e4 2926 barrier = bio_barrier(bio);
797e7dbb 2927 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2928 err = -EOPNOTSUPP;
2929 goto end_io;
2930 }
2931
1da177e4
LT
2932 spin_lock_irq(q->queue_lock);
2933
450991bc 2934 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2935 goto get_rq;
2936
2937 el_ret = elv_merge(q, &req, bio);
2938 switch (el_ret) {
2939 case ELEVATOR_BACK_MERGE:
2940 BUG_ON(!rq_mergeable(req));
2941
2942 if (!q->back_merge_fn(q, req, bio))
2943 break;
2944
2056a782
JA
2945 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2946
1da177e4
LT
2947 req->biotail->bi_next = bio;
2948 req->biotail = bio;
2949 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2950 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2951 drive_stat_acct(req, nr_sectors, 0);
2952 if (!attempt_back_merge(q, req))
2e662b65 2953 elv_merged_request(q, req, el_ret);
1da177e4
LT
2954 goto out;
2955
2956 case ELEVATOR_FRONT_MERGE:
2957 BUG_ON(!rq_mergeable(req));
2958
2959 if (!q->front_merge_fn(q, req, bio))
2960 break;
2961
2056a782
JA
2962 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2963
1da177e4
LT
2964 bio->bi_next = req->bio;
2965 req->bio = bio;
2966
2967 /*
2968 * may not be valid. if the low level driver said
2969 * it didn't need a bounce buffer then it better
2970 * not touch req->buffer either...
2971 */
2972 req->buffer = bio_data(bio);
51da90fc
JA
2973 req->current_nr_sectors = bio_cur_sectors(bio);
2974 req->hard_cur_sectors = req->current_nr_sectors;
2975 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 2976 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2977 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2978 drive_stat_acct(req, nr_sectors, 0);
2979 if (!attempt_front_merge(q, req))
2e662b65 2980 elv_merged_request(q, req, el_ret);
1da177e4
LT
2981 goto out;
2982
450991bc 2983 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2984 default:
450991bc 2985 ;
1da177e4
LT
2986 }
2987
450991bc 2988get_rq:
7749a8d4
JA
2989 /*
2990 * This sync check and mask will be re-done in init_request_from_bio(),
2991 * but we need to set it earlier to expose the sync flag to the
2992 * rq allocator and io schedulers.
2993 */
2994 rw_flags = bio_data_dir(bio);
2995 if (sync)
2996 rw_flags |= REQ_RW_SYNC;
2997
1da177e4 2998 /*
450991bc 2999 * Grab a free request. This is might sleep but can not fail.
d6344532 3000 * Returns with the queue unlocked.
450991bc 3001 */
7749a8d4 3002 req = get_request_wait(q, rw_flags, bio);
d6344532 3003
450991bc
NP
3004 /*
3005 * After dropping the lock and possibly sleeping here, our request
3006 * may now be mergeable after it had proven unmergeable (above).
3007 * We don't worry about that case for efficiency. It won't happen
3008 * often, and the elevators are able to handle it.
1da177e4 3009 */
52d9e675 3010 init_request_from_bio(req, bio);
1da177e4 3011
450991bc
NP
3012 spin_lock_irq(q->queue_lock);
3013 if (elv_queue_empty(q))
3014 blk_plug_device(q);
1da177e4
LT
3015 add_request(q, req);
3016out:
4a534f93 3017 if (sync)
1da177e4
LT
3018 __generic_unplug_device(q);
3019
3020 spin_unlock_irq(q->queue_lock);
3021 return 0;
3022
3023end_io:
3024 bio_endio(bio, nr_sectors << 9, err);
3025 return 0;
3026}
3027
3028/*
3029 * If bio->bi_dev is a partition, remap the location
3030 */
3031static inline void blk_partition_remap(struct bio *bio)
3032{
3033 struct block_device *bdev = bio->bi_bdev;
3034
3035 if (bdev != bdev->bd_contains) {
3036 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3037 const int rw = bio_data_dir(bio);
3038
3039 p->sectors[rw] += bio_sectors(bio);
3040 p->ios[rw]++;
1da177e4 3041
1da177e4
LT
3042 bio->bi_sector += p->start_sect;
3043 bio->bi_bdev = bdev->bd_contains;
3044 }
3045}
3046
1da177e4
LT
3047static void handle_bad_sector(struct bio *bio)
3048{
3049 char b[BDEVNAME_SIZE];
3050
3051 printk(KERN_INFO "attempt to access beyond end of device\n");
3052 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3053 bdevname(bio->bi_bdev, b),
3054 bio->bi_rw,
3055 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3056 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3057
3058 set_bit(BIO_EOF, &bio->bi_flags);
3059}
3060
c17bb495
AM
3061#ifdef CONFIG_FAIL_MAKE_REQUEST
3062
3063static DECLARE_FAULT_ATTR(fail_make_request);
3064
3065static int __init setup_fail_make_request(char *str)
3066{
3067 return setup_fault_attr(&fail_make_request, str);
3068}
3069__setup("fail_make_request=", setup_fail_make_request);
3070
3071static int should_fail_request(struct bio *bio)
3072{
3073 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3074 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3075 return should_fail(&fail_make_request, bio->bi_size);
3076
3077 return 0;
3078}
3079
3080static int __init fail_make_request_debugfs(void)
3081{
3082 return init_fault_attr_dentries(&fail_make_request,
3083 "fail_make_request");
3084}
3085
3086late_initcall(fail_make_request_debugfs);
3087
3088#else /* CONFIG_FAIL_MAKE_REQUEST */
3089
3090static inline int should_fail_request(struct bio *bio)
3091{
3092 return 0;
3093}
3094
3095#endif /* CONFIG_FAIL_MAKE_REQUEST */
3096
1da177e4
LT
3097/**
3098 * generic_make_request: hand a buffer to its device driver for I/O
3099 * @bio: The bio describing the location in memory and on the device.
3100 *
3101 * generic_make_request() is used to make I/O requests of block
3102 * devices. It is passed a &struct bio, which describes the I/O that needs
3103 * to be done.
3104 *
3105 * generic_make_request() does not return any status. The
3106 * success/failure status of the request, along with notification of
3107 * completion, is delivered asynchronously through the bio->bi_end_io
3108 * function described (one day) else where.
3109 *
3110 * The caller of generic_make_request must make sure that bi_io_vec
3111 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3112 * set to describe the device address, and the
3113 * bi_end_io and optionally bi_private are set to describe how
3114 * completion notification should be signaled.
3115 *
3116 * generic_make_request and the drivers it calls may use bi_next if this
3117 * bio happens to be merged with someone else, and may change bi_dev and
3118 * bi_sector for remaps as it sees fit. So the values of these fields
3119 * should NOT be depended on after the call to generic_make_request.
3120 */
3121void generic_make_request(struct bio *bio)
3122{
3123 request_queue_t *q;
3124 sector_t maxsector;
5ddfe969 3125 sector_t old_sector;
1da177e4 3126 int ret, nr_sectors = bio_sectors(bio);
2056a782 3127 dev_t old_dev;
1da177e4
LT
3128
3129 might_sleep();
3130 /* Test device or partition size, when known. */
3131 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3132 if (maxsector) {
3133 sector_t sector = bio->bi_sector;
3134
3135 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3136 /*
3137 * This may well happen - the kernel calls bread()
3138 * without checking the size of the device, e.g., when
3139 * mounting a device.
3140 */
3141 handle_bad_sector(bio);
3142 goto end_io;
3143 }
3144 }
3145
3146 /*
3147 * Resolve the mapping until finished. (drivers are
3148 * still free to implement/resolve their own stacking
3149 * by explicitly returning 0)
3150 *
3151 * NOTE: we don't repeat the blk_size check for each new device.
3152 * Stacking drivers are expected to know what they are doing.
3153 */
5ddfe969 3154 old_sector = -1;
2056a782 3155 old_dev = 0;
1da177e4
LT
3156 do {
3157 char b[BDEVNAME_SIZE];
3158
3159 q = bdev_get_queue(bio->bi_bdev);
3160 if (!q) {
3161 printk(KERN_ERR
3162 "generic_make_request: Trying to access "
3163 "nonexistent block-device %s (%Lu)\n",
3164 bdevname(bio->bi_bdev, b),
3165 (long long) bio->bi_sector);
3166end_io:
3167 bio_endio(bio, bio->bi_size, -EIO);
3168 break;
3169 }
3170
3171 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3172 printk("bio too big device %s (%u > %u)\n",
3173 bdevname(bio->bi_bdev, b),
3174 bio_sectors(bio),
3175 q->max_hw_sectors);
3176 goto end_io;
3177 }
3178
fde6ad22 3179 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3180 goto end_io;
3181
c17bb495
AM
3182 if (should_fail_request(bio))
3183 goto end_io;
3184
1da177e4
LT
3185 /*
3186 * If this device has partitions, remap block n
3187 * of partition p to block n+start(p) of the disk.
3188 */
3189 blk_partition_remap(bio);
3190
5ddfe969 3191 if (old_sector != -1)
2056a782 3192 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3193 old_sector);
2056a782
JA
3194
3195 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3196
5ddfe969 3197 old_sector = bio->bi_sector;
2056a782
JA
3198 old_dev = bio->bi_bdev->bd_dev;
3199
5ddfe969
N
3200 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3201 if (maxsector) {
3202 sector_t sector = bio->bi_sector;
3203
df66b855
AM
3204 if (maxsector < nr_sectors ||
3205 maxsector - nr_sectors < sector) {
5ddfe969 3206 /*
df66b855
AM
3207 * This may well happen - partitions are not
3208 * checked to make sure they are within the size
3209 * of the whole device.
5ddfe969
N
3210 */
3211 handle_bad_sector(bio);
3212 goto end_io;
3213 }
3214 }
3215
1da177e4
LT
3216 ret = q->make_request_fn(q, bio);
3217 } while (ret);
3218}
3219
3220EXPORT_SYMBOL(generic_make_request);
3221
3222/**
3223 * submit_bio: submit a bio to the block device layer for I/O
3224 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3225 * @bio: The &struct bio which describes the I/O
3226 *
3227 * submit_bio() is very similar in purpose to generic_make_request(), and
3228 * uses that function to do most of the work. Both are fairly rough
3229 * interfaces, @bio must be presetup and ready for I/O.
3230 *
3231 */
3232void submit_bio(int rw, struct bio *bio)
3233{
3234 int count = bio_sectors(bio);
3235
3236 BIO_BUG_ON(!bio->bi_size);
3237 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3238 bio->bi_rw |= rw;
faccbd4b 3239 if (rw & WRITE) {
f8891e5e 3240 count_vm_events(PGPGOUT, count);
faccbd4b
AM
3241 } else {
3242 task_io_account_read(bio->bi_size);
f8891e5e 3243 count_vm_events(PGPGIN, count);
faccbd4b 3244 }
1da177e4
LT
3245
3246 if (unlikely(block_dump)) {
3247 char b[BDEVNAME_SIZE];
3248 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3249 current->comm, current->pid,
3250 (rw & WRITE) ? "WRITE" : "READ",
3251 (unsigned long long)bio->bi_sector,
3252 bdevname(bio->bi_bdev,b));
3253 }
3254
3255 generic_make_request(bio);
3256}
3257
3258EXPORT_SYMBOL(submit_bio);
3259
93d17d3d 3260static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3261{
3262 struct bio *bio, *prevbio = NULL;
3263 int nr_phys_segs, nr_hw_segs;
3264 unsigned int phys_size, hw_size;
3265 request_queue_t *q = rq->q;
3266
3267 if (!rq->bio)
3268 return;
3269
3270 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3271 rq_for_each_bio(bio, rq) {
3272 /* Force bio hw/phys segs to be recalculated. */
3273 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3274
3275 nr_phys_segs += bio_phys_segments(q, bio);
3276 nr_hw_segs += bio_hw_segments(q, bio);
3277 if (prevbio) {
3278 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3279 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3280
3281 if (blk_phys_contig_segment(q, prevbio, bio) &&
3282 pseg <= q->max_segment_size) {
3283 nr_phys_segs--;
3284 phys_size += prevbio->bi_size + bio->bi_size;
3285 } else
3286 phys_size = 0;
3287
3288 if (blk_hw_contig_segment(q, prevbio, bio) &&
3289 hseg <= q->max_segment_size) {
3290 nr_hw_segs--;
3291 hw_size += prevbio->bi_size + bio->bi_size;
3292 } else
3293 hw_size = 0;
3294 }
3295 prevbio = bio;
3296 }
3297
3298 rq->nr_phys_segments = nr_phys_segs;
3299 rq->nr_hw_segments = nr_hw_segs;
3300}
3301
93d17d3d 3302static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3303{
3304 if (blk_fs_request(rq)) {
3305 rq->hard_sector += nsect;
3306 rq->hard_nr_sectors -= nsect;
3307
3308 /*
3309 * Move the I/O submission pointers ahead if required.
3310 */
3311 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3312 (rq->sector <= rq->hard_sector)) {
3313 rq->sector = rq->hard_sector;
3314 rq->nr_sectors = rq->hard_nr_sectors;
3315 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3316 rq->current_nr_sectors = rq->hard_cur_sectors;
3317 rq->buffer = bio_data(rq->bio);
3318 }
3319
3320 /*
3321 * if total number of sectors is less than the first segment
3322 * size, something has gone terribly wrong
3323 */
3324 if (rq->nr_sectors < rq->current_nr_sectors) {
3325 printk("blk: request botched\n");
3326 rq->nr_sectors = rq->current_nr_sectors;
3327 }
3328 }
3329}
3330
3331static int __end_that_request_first(struct request *req, int uptodate,
3332 int nr_bytes)
3333{
3334 int total_bytes, bio_nbytes, error, next_idx = 0;
3335 struct bio *bio;
3336
2056a782
JA
3337 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3338
1da177e4
LT
3339 /*
3340 * extend uptodate bool to allow < 0 value to be direct io error
3341 */
3342 error = 0;
3343 if (end_io_error(uptodate))
3344 error = !uptodate ? -EIO : uptodate;
3345
3346 /*
3347 * for a REQ_BLOCK_PC request, we want to carry any eventual
3348 * sense key with us all the way through
3349 */
3350 if (!blk_pc_request(req))
3351 req->errors = 0;
3352
3353 if (!uptodate) {
4aff5e23 3354 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3355 printk("end_request: I/O error, dev %s, sector %llu\n",
3356 req->rq_disk ? req->rq_disk->disk_name : "?",
3357 (unsigned long long)req->sector);
3358 }
3359
d72d904a 3360 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3361 const int rw = rq_data_dir(req);
3362
53e86061 3363 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3364 }
3365
1da177e4
LT
3366 total_bytes = bio_nbytes = 0;
3367 while ((bio = req->bio) != NULL) {
3368 int nbytes;
3369
3370 if (nr_bytes >= bio->bi_size) {
3371 req->bio = bio->bi_next;
3372 nbytes = bio->bi_size;
797e7dbb
TH
3373 if (!ordered_bio_endio(req, bio, nbytes, error))
3374 bio_endio(bio, nbytes, error);
1da177e4
LT
3375 next_idx = 0;
3376 bio_nbytes = 0;
3377 } else {
3378 int idx = bio->bi_idx + next_idx;
3379
3380 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3381 blk_dump_rq_flags(req, "__end_that");
3382 printk("%s: bio idx %d >= vcnt %d\n",
3383 __FUNCTION__,
3384 bio->bi_idx, bio->bi_vcnt);
3385 break;
3386 }
3387
3388 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3389 BIO_BUG_ON(nbytes > bio->bi_size);
3390
3391 /*
3392 * not a complete bvec done
3393 */
3394 if (unlikely(nbytes > nr_bytes)) {
3395 bio_nbytes += nr_bytes;
3396 total_bytes += nr_bytes;
3397 break;
3398 }
3399
3400 /*
3401 * advance to the next vector
3402 */
3403 next_idx++;
3404 bio_nbytes += nbytes;
3405 }
3406
3407 total_bytes += nbytes;
3408 nr_bytes -= nbytes;
3409
3410 if ((bio = req->bio)) {
3411 /*
3412 * end more in this run, or just return 'not-done'
3413 */
3414 if (unlikely(nr_bytes <= 0))
3415 break;
3416 }
3417 }
3418
3419 /*
3420 * completely done
3421 */
3422 if (!req->bio)
3423 return 0;
3424
3425 /*
3426 * if the request wasn't completed, update state
3427 */
3428 if (bio_nbytes) {
797e7dbb
TH
3429 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3430 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3431 bio->bi_idx += next_idx;
3432 bio_iovec(bio)->bv_offset += nr_bytes;
3433 bio_iovec(bio)->bv_len -= nr_bytes;
3434 }
3435
3436 blk_recalc_rq_sectors(req, total_bytes >> 9);
3437 blk_recalc_rq_segments(req);
3438 return 1;
3439}
3440
3441/**
3442 * end_that_request_first - end I/O on a request
3443 * @req: the request being processed
3444 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3445 * @nr_sectors: number of sectors to end I/O on
3446 *
3447 * Description:
3448 * Ends I/O on a number of sectors attached to @req, and sets it up
3449 * for the next range of segments (if any) in the cluster.
3450 *
3451 * Return:
3452 * 0 - we are done with this request, call end_that_request_last()
3453 * 1 - still buffers pending for this request
3454 **/
3455int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3456{
3457 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3458}
3459
3460EXPORT_SYMBOL(end_that_request_first);
3461
3462/**
3463 * end_that_request_chunk - end I/O on a request
3464 * @req: the request being processed
3465 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3466 * @nr_bytes: number of bytes to complete
3467 *
3468 * Description:
3469 * Ends I/O on a number of bytes attached to @req, and sets it up
3470 * for the next range of segments (if any). Like end_that_request_first(),
3471 * but deals with bytes instead of sectors.
3472 *
3473 * Return:
3474 * 0 - we are done with this request, call end_that_request_last()
3475 * 1 - still buffers pending for this request
3476 **/
3477int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3478{
3479 return __end_that_request_first(req, uptodate, nr_bytes);
3480}
3481
3482EXPORT_SYMBOL(end_that_request_chunk);
3483
ff856bad
JA
3484/*
3485 * splice the completion data to a local structure and hand off to
3486 * process_completion_queue() to complete the requests
3487 */
3488static void blk_done_softirq(struct softirq_action *h)
3489{
626ab0e6 3490 struct list_head *cpu_list, local_list;
ff856bad
JA
3491
3492 local_irq_disable();
3493 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3494 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3495 local_irq_enable();
3496
3497 while (!list_empty(&local_list)) {
3498 struct request *rq = list_entry(local_list.next, struct request, donelist);
3499
3500 list_del_init(&rq->donelist);
3501 rq->q->softirq_done_fn(rq);
3502 }
3503}
3504
ff856bad
JA
3505static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3506 void *hcpu)
3507{
3508 /*
3509 * If a CPU goes away, splice its entries to the current CPU
3510 * and trigger a run of the softirq
3511 */
3512 if (action == CPU_DEAD) {
3513 int cpu = (unsigned long) hcpu;
3514
3515 local_irq_disable();
3516 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3517 &__get_cpu_var(blk_cpu_done));
3518 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3519 local_irq_enable();
3520 }
3521
3522 return NOTIFY_OK;
3523}
3524
3525
054cc8a2 3526static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3527 .notifier_call = blk_cpu_notify,
3528};
3529
ff856bad
JA
3530/**
3531 * blk_complete_request - end I/O on a request
3532 * @req: the request being processed
3533 *
3534 * Description:
3535 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3536 * unless the driver actually implements this in its completion callback
ff856bad
JA
3537 * through requeueing. Theh actual completion happens out-of-order,
3538 * through a softirq handler. The user must have registered a completion
3539 * callback through blk_queue_softirq_done().
3540 **/
3541
3542void blk_complete_request(struct request *req)
3543{
3544 struct list_head *cpu_list;
3545 unsigned long flags;
3546
3547 BUG_ON(!req->q->softirq_done_fn);
3548
3549 local_irq_save(flags);
3550
3551 cpu_list = &__get_cpu_var(blk_cpu_done);
3552 list_add_tail(&req->donelist, cpu_list);
3553 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3554
3555 local_irq_restore(flags);
3556}
3557
3558EXPORT_SYMBOL(blk_complete_request);
3559
1da177e4
LT
3560/*
3561 * queue lock must be held
3562 */
8ffdc655 3563void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3564{
3565 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3566 int error;
3567
3568 /*
3569 * extend uptodate bool to allow < 0 value to be direct io error
3570 */
3571 error = 0;
3572 if (end_io_error(uptodate))
3573 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3574
3575 if (unlikely(laptop_mode) && blk_fs_request(req))
3576 laptop_io_completion();
3577
fd0ff8aa
JA
3578 /*
3579 * Account IO completion. bar_rq isn't accounted as a normal
3580 * IO on queueing nor completion. Accounting the containing
3581 * request is enough.
3582 */
3583 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3584 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3585 const int rw = rq_data_dir(req);
3586
3587 __disk_stat_inc(disk, ios[rw]);
3588 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3589 disk_round_stats(disk);
3590 disk->in_flight--;
3591 }
3592 if (req->end_io)
8ffdc655 3593 req->end_io(req, error);
1da177e4
LT
3594 else
3595 __blk_put_request(req->q, req);
3596}
3597
3598EXPORT_SYMBOL(end_that_request_last);
3599
3600void end_request(struct request *req, int uptodate)
3601{
3602 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3603 add_disk_randomness(req->rq_disk);
3604 blkdev_dequeue_request(req);
8ffdc655 3605 end_that_request_last(req, uptodate);
1da177e4
LT
3606 }
3607}
3608
3609EXPORT_SYMBOL(end_request);
3610
3611void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3612{
4aff5e23
JA
3613 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3614 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3615
3616 rq->nr_phys_segments = bio_phys_segments(q, bio);
3617 rq->nr_hw_segments = bio_hw_segments(q, bio);
3618 rq->current_nr_sectors = bio_cur_sectors(bio);
3619 rq->hard_cur_sectors = rq->current_nr_sectors;
3620 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3621 rq->buffer = bio_data(bio);
0e75f906 3622 rq->data_len = bio->bi_size;
1da177e4
LT
3623
3624 rq->bio = rq->biotail = bio;
3625}
3626
3627EXPORT_SYMBOL(blk_rq_bio_prep);
3628
3629int kblockd_schedule_work(struct work_struct *work)
3630{
3631 return queue_work(kblockd_workqueue, work);
3632}
3633
3634EXPORT_SYMBOL(kblockd_schedule_work);
3635
3636void kblockd_flush(void)
3637{
3638 flush_workqueue(kblockd_workqueue);
3639}
3640EXPORT_SYMBOL(kblockd_flush);
3641
3642int __init blk_dev_init(void)
3643{
ff856bad
JA
3644 int i;
3645
1da177e4
LT
3646 kblockd_workqueue = create_workqueue("kblockd");
3647 if (!kblockd_workqueue)
3648 panic("Failed to create kblockd\n");
3649
3650 request_cachep = kmem_cache_create("blkdev_requests",
3651 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3652
3653 requestq_cachep = kmem_cache_create("blkdev_queue",
3654 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3655
3656 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3657 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3658
0a945022 3659 for_each_possible_cpu(i)
ff856bad
JA
3660 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3661
3662 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3663 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3664
1da177e4
LT
3665 blk_max_low_pfn = max_low_pfn;
3666 blk_max_pfn = max_pfn;
3667
3668 return 0;
3669}
3670
3671/*
3672 * IO Context helper functions
3673 */
3674void put_io_context(struct io_context *ioc)
3675{
3676 if (ioc == NULL)
3677 return;
3678
3679 BUG_ON(atomic_read(&ioc->refcount) == 0);
3680
3681 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3682 struct cfq_io_context *cic;
3683
334e94de 3684 rcu_read_lock();
1da177e4
LT
3685 if (ioc->aic && ioc->aic->dtor)
3686 ioc->aic->dtor(ioc->aic);
e2d74ac0 3687 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3688 struct rb_node *n = rb_first(&ioc->cic_root);
3689
3690 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3691 cic->dtor(ioc);
3692 }
334e94de 3693 rcu_read_unlock();
1da177e4
LT
3694
3695 kmem_cache_free(iocontext_cachep, ioc);
3696 }
3697}
3698EXPORT_SYMBOL(put_io_context);
3699
3700/* Called by the exitting task */
3701void exit_io_context(void)
3702{
1da177e4 3703 struct io_context *ioc;
e2d74ac0 3704 struct cfq_io_context *cic;
1da177e4 3705
22e2c507 3706 task_lock(current);
1da177e4
LT
3707 ioc = current->io_context;
3708 current->io_context = NULL;
22e2c507 3709 task_unlock(current);
1da177e4 3710
25034d7a 3711 ioc->task = NULL;
1da177e4
LT
3712 if (ioc->aic && ioc->aic->exit)
3713 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3714 if (ioc->cic_root.rb_node != NULL) {
3715 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3716 cic->exit(ioc);
3717 }
25034d7a 3718
1da177e4
LT
3719 put_io_context(ioc);
3720}
3721
3722/*
3723 * If the current task has no IO context then create one and initialise it.
fb3cc432 3724 * Otherwise, return its existing IO context.
1da177e4 3725 *
fb3cc432
NP
3726 * This returned IO context doesn't have a specifically elevated refcount,
3727 * but since the current task itself holds a reference, the context can be
3728 * used in general code, so long as it stays within `current` context.
1da177e4 3729 */
b5deef90 3730static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3731{
3732 struct task_struct *tsk = current;
1da177e4
LT
3733 struct io_context *ret;
3734
1da177e4 3735 ret = tsk->io_context;
fb3cc432
NP
3736 if (likely(ret))
3737 return ret;
1da177e4 3738
b5deef90 3739 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3740 if (ret) {
3741 atomic_set(&ret->refcount, 1);
22e2c507 3742 ret->task = current;
fc46379d 3743 ret->ioprio_changed = 0;
1da177e4
LT
3744 ret->last_waited = jiffies; /* doesn't matter... */
3745 ret->nr_batch_requests = 0; /* because this is 0 */
3746 ret->aic = NULL;
e2d74ac0 3747 ret->cic_root.rb_node = NULL;
9f83e45e
ON
3748 /* make sure set_task_ioprio() sees the settings above */
3749 smp_wmb();
fb3cc432
NP
3750 tsk->io_context = ret;
3751 }
1da177e4 3752
fb3cc432
NP
3753 return ret;
3754}
3755EXPORT_SYMBOL(current_io_context);
1da177e4 3756
fb3cc432
NP
3757/*
3758 * If the current task has no IO context then create one and initialise it.
3759 * If it does have a context, take a ref on it.
3760 *
3761 * This is always called in the context of the task which submitted the I/O.
3762 */
b5deef90 3763struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3764{
3765 struct io_context *ret;
b5deef90 3766 ret = current_io_context(gfp_flags, node);
fb3cc432 3767 if (likely(ret))
1da177e4 3768 atomic_inc(&ret->refcount);
1da177e4
LT
3769 return ret;
3770}
3771EXPORT_SYMBOL(get_io_context);
3772
3773void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3774{
3775 struct io_context *src = *psrc;
3776 struct io_context *dst = *pdst;
3777
3778 if (src) {
3779 BUG_ON(atomic_read(&src->refcount) == 0);
3780 atomic_inc(&src->refcount);
3781 put_io_context(dst);
3782 *pdst = src;
3783 }
3784}
3785EXPORT_SYMBOL(copy_io_context);
3786
3787void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3788{
3789 struct io_context *temp;
3790 temp = *ioc1;
3791 *ioc1 = *ioc2;
3792 *ioc2 = temp;
3793}
3794EXPORT_SYMBOL(swap_io_context);
3795
3796/*
3797 * sysfs parts below
3798 */
3799struct queue_sysfs_entry {
3800 struct attribute attr;
3801 ssize_t (*show)(struct request_queue *, char *);
3802 ssize_t (*store)(struct request_queue *, const char *, size_t);
3803};
3804
3805static ssize_t
3806queue_var_show(unsigned int var, char *page)
3807{
3808 return sprintf(page, "%d\n", var);
3809}
3810
3811static ssize_t
3812queue_var_store(unsigned long *var, const char *page, size_t count)
3813{
3814 char *p = (char *) page;
3815
3816 *var = simple_strtoul(p, &p, 10);
3817 return count;
3818}
3819
3820static ssize_t queue_requests_show(struct request_queue *q, char *page)
3821{
3822 return queue_var_show(q->nr_requests, (page));
3823}
3824
3825static ssize_t
3826queue_requests_store(struct request_queue *q, const char *page, size_t count)
3827{
3828 struct request_list *rl = &q->rq;
c981ff9f
AV
3829 unsigned long nr;
3830 int ret = queue_var_store(&nr, page, count);
3831 if (nr < BLKDEV_MIN_RQ)
3832 nr = BLKDEV_MIN_RQ;
1da177e4 3833
c981ff9f
AV
3834 spin_lock_irq(q->queue_lock);
3835 q->nr_requests = nr;
1da177e4
LT
3836 blk_queue_congestion_threshold(q);
3837
3838 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3839 blk_set_queue_congested(q, READ);
1da177e4 3840 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3841 blk_clear_queue_congested(q, READ);
1da177e4
LT
3842
3843 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3844 blk_set_queue_congested(q, WRITE);
1da177e4 3845 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3846 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3847
3848 if (rl->count[READ] >= q->nr_requests) {
3849 blk_set_queue_full(q, READ);
3850 } else if (rl->count[READ]+1 <= q->nr_requests) {
3851 blk_clear_queue_full(q, READ);
3852 wake_up(&rl->wait[READ]);
3853 }
3854
3855 if (rl->count[WRITE] >= q->nr_requests) {
3856 blk_set_queue_full(q, WRITE);
3857 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3858 blk_clear_queue_full(q, WRITE);
3859 wake_up(&rl->wait[WRITE]);
3860 }
c981ff9f 3861 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3862 return ret;
3863}
3864
3865static ssize_t queue_ra_show(struct request_queue *q, char *page)
3866{
3867 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3868
3869 return queue_var_show(ra_kb, (page));
3870}
3871
3872static ssize_t
3873queue_ra_store(struct request_queue *q, const char *page, size_t count)
3874{
3875 unsigned long ra_kb;
3876 ssize_t ret = queue_var_store(&ra_kb, page, count);
3877
3878 spin_lock_irq(q->queue_lock);
1da177e4
LT
3879 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3880 spin_unlock_irq(q->queue_lock);
3881
3882 return ret;
3883}
3884
3885static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3886{
3887 int max_sectors_kb = q->max_sectors >> 1;
3888
3889 return queue_var_show(max_sectors_kb, (page));
3890}
3891
3892static ssize_t
3893queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3894{
3895 unsigned long max_sectors_kb,
3896 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3897 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3898 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3899 int ra_kb;
3900
3901 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3902 return -EINVAL;
3903 /*
3904 * Take the queue lock to update the readahead and max_sectors
3905 * values synchronously:
3906 */
3907 spin_lock_irq(q->queue_lock);
3908 /*
3909 * Trim readahead window as well, if necessary:
3910 */
3911 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3912 if (ra_kb > max_sectors_kb)
3913 q->backing_dev_info.ra_pages =
3914 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3915
3916 q->max_sectors = max_sectors_kb << 1;
3917 spin_unlock_irq(q->queue_lock);
3918
3919 return ret;
3920}
3921
3922static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3923{
3924 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3925
3926 return queue_var_show(max_hw_sectors_kb, (page));
3927}
3928
3929
3930static struct queue_sysfs_entry queue_requests_entry = {
3931 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3932 .show = queue_requests_show,
3933 .store = queue_requests_store,
3934};
3935
3936static struct queue_sysfs_entry queue_ra_entry = {
3937 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3938 .show = queue_ra_show,
3939 .store = queue_ra_store,
3940};
3941
3942static struct queue_sysfs_entry queue_max_sectors_entry = {
3943 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3944 .show = queue_max_sectors_show,
3945 .store = queue_max_sectors_store,
3946};
3947
3948static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3949 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3950 .show = queue_max_hw_sectors_show,
3951};
3952
3953static struct queue_sysfs_entry queue_iosched_entry = {
3954 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3955 .show = elv_iosched_show,
3956 .store = elv_iosched_store,
3957};
3958
3959static struct attribute *default_attrs[] = {
3960 &queue_requests_entry.attr,
3961 &queue_ra_entry.attr,
3962 &queue_max_hw_sectors_entry.attr,
3963 &queue_max_sectors_entry.attr,
3964 &queue_iosched_entry.attr,
3965 NULL,
3966};
3967
3968#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3969
3970static ssize_t
3971queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3972{
3973 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3974 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3975 ssize_t res;
1da177e4 3976
1da177e4 3977 if (!entry->show)
6c1852a0 3978 return -EIO;
483f4afc
AV
3979 mutex_lock(&q->sysfs_lock);
3980 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3981 mutex_unlock(&q->sysfs_lock);
3982 return -ENOENT;
3983 }
3984 res = entry->show(q, page);
3985 mutex_unlock(&q->sysfs_lock);
3986 return res;
1da177e4
LT
3987}
3988
3989static ssize_t
3990queue_attr_store(struct kobject *kobj, struct attribute *attr,
3991 const char *page, size_t length)
3992{
3993 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3994 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3995
3996 ssize_t res;
1da177e4 3997
1da177e4 3998 if (!entry->store)
6c1852a0 3999 return -EIO;
483f4afc
AV
4000 mutex_lock(&q->sysfs_lock);
4001 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4002 mutex_unlock(&q->sysfs_lock);
4003 return -ENOENT;
4004 }
4005 res = entry->store(q, page, length);
4006 mutex_unlock(&q->sysfs_lock);
4007 return res;
1da177e4
LT
4008}
4009
4010static struct sysfs_ops queue_sysfs_ops = {
4011 .show = queue_attr_show,
4012 .store = queue_attr_store,
4013};
4014
93d17d3d 4015static struct kobj_type queue_ktype = {
1da177e4
LT
4016 .sysfs_ops = &queue_sysfs_ops,
4017 .default_attrs = default_attrs,
483f4afc 4018 .release = blk_release_queue,
1da177e4
LT
4019};
4020
4021int blk_register_queue(struct gendisk *disk)
4022{
4023 int ret;
4024
4025 request_queue_t *q = disk->queue;
4026
4027 if (!q || !q->request_fn)
4028 return -ENXIO;
4029
4030 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4031
483f4afc 4032 ret = kobject_add(&q->kobj);
1da177e4
LT
4033 if (ret < 0)
4034 return ret;
4035
483f4afc
AV
4036 kobject_uevent(&q->kobj, KOBJ_ADD);
4037
1da177e4
LT
4038 ret = elv_register_queue(q);
4039 if (ret) {
483f4afc
AV
4040 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4041 kobject_del(&q->kobj);
1da177e4
LT
4042 return ret;
4043 }
4044
4045 return 0;
4046}
4047
4048void blk_unregister_queue(struct gendisk *disk)
4049{
4050 request_queue_t *q = disk->queue;
4051
4052 if (q && q->request_fn) {
4053 elv_unregister_queue(q);
4054
483f4afc
AV
4055 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4056 kobject_del(&q->kobj);
1da177e4
LT
4057 kobject_put(&disk->kobj);
4058 }
4059}
This page took 0.443028 seconds and 5 git commands to generate.