x86: remove rogue default m in drivers/video/Kconfig
[deliverable/linux.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
93d17d3d 42static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
dd941252
NP
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
f3da54ba
JA
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1da177e4
LT
1072 bqt->busy--;
1073}
1074
1075EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077/**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
165125e1 1095int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1096{
1097 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1098 int tag;
1da177e4 1099
4aff5e23 1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1101 printk(KERN_ERR
040c928c
TH
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1105 BUG();
1106 }
1107
059af497
JA
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1da177e4 1116
059af497 1117 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1da177e4 1122
4aff5e23 1123 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130}
1131
1132EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134/**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
165125e1 1146void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1147{
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
040c928c
TH
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1158 list_del_init(&rq->queuelist);
4aff5e23 1159 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
4aff5e23 1163 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166}
1167
1168EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1da177e4
LT
1170void blk_dump_rq_flags(struct request *rq, char *msg)
1171{
1172 int bit;
1173
4aff5e23
JA
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1da177e4
LT
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
4aff5e23 1183 if (blk_pc_request(rq)) {
1da177e4
LT
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189}
1190
1191EXPORT_SYMBOL(blk_dump_rq_flags);
1192
165125e1 1193void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1194{
9dfa5283
N
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205}
1206EXPORT_SYMBOL(blk_recount_segments);
1207
1208static void blk_recalc_rq_segments(struct request *rq)
1209{
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1da177e4 1214 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
5705f702 1218 struct req_iterator iter;
1da177e4 1219 int high, highprv = 1;
9dfa5283 1220 struct request_queue *q = rq->q;
1da177e4 1221
9dfa5283 1222 if (!rq->bio)
1da177e4
LT
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1228 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
f772b3d9 1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1255 hw_seg_size += bv->bv_len;
9dfa5283 1256 else {
1da177e4 1257new_hw_segment:
9dfa5283
N
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
9dfa5283
N
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1278}
1da177e4 1279
165125e1 1280static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1281 struct bio *nxt)
1282{
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299}
1300
165125e1 1301static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1302 struct bio *nxt)
1303{
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1310 return 0;
32eef964 1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1312 return 0;
1313
1314 return 1;
1315}
1316
1da177e4
LT
1317/*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
165125e1 1321int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1322 struct scatterlist *sglist)
1da177e4
LT
1323{
1324 struct bio_vec *bvec, *bvprv;
f565913e 1325 struct scatterlist *next_sg, *sg;
5705f702
N
1326 struct req_iterator iter;
1327 int nsegs, cluster;
1da177e4
LT
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
f565913e 1336 sg = next_sg = &sglist[0];
5705f702 1337 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1338 int nbytes = bvec->bv_len;
1da177e4 1339
6c92e699 1340 if (bvprv && cluster) {
f565913e 1341 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1342 goto new_segment;
1da177e4 1343
6c92e699
JA
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1da177e4 1348
f565913e 1349 sg->length += nbytes;
6c92e699 1350 } else {
1da177e4 1351new_segment:
f565913e
JA
1352 sg = next_sg;
1353 next_sg = sg_next(sg);
6c92e699 1354
60573b87 1355 memset(sg, 0, sizeof(*sg));
f565913e
JA
1356 sg->page = bvec->bv_page;
1357 sg->length = nbytes;
1358 sg->offset = bvec->bv_offset;
6c92e699
JA
1359 nsegs++;
1360 }
1361 bvprv = bvec;
5705f702 1362 } /* segments in rq */
1da177e4
LT
1363
1364 return nsegs;
1365}
1366
1367EXPORT_SYMBOL(blk_rq_map_sg);
1368
1369/*
1370 * the standard queue merge functions, can be overridden with device
1371 * specific ones if so desired
1372 */
1373
165125e1 1374static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1375 struct request *req,
1376 struct bio *bio)
1377{
1378 int nr_phys_segs = bio_phys_segments(q, bio);
1379
1380 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1381 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1382 if (req == q->last_merge)
1383 q->last_merge = NULL;
1384 return 0;
1385 }
1386
1387 /*
1388 * A hw segment is just getting larger, bump just the phys
1389 * counter.
1390 */
1391 req->nr_phys_segments += nr_phys_segs;
1392 return 1;
1393}
1394
165125e1 1395static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1396 struct request *req,
1397 struct bio *bio)
1398{
1399 int nr_hw_segs = bio_hw_segments(q, bio);
1400 int nr_phys_segs = bio_phys_segments(q, bio);
1401
1402 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1403 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1404 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1405 if (req == q->last_merge)
1406 q->last_merge = NULL;
1407 return 0;
1408 }
1409
1410 /*
1411 * This will form the start of a new hw segment. Bump both
1412 * counters.
1413 */
1414 req->nr_hw_segments += nr_hw_segs;
1415 req->nr_phys_segments += nr_phys_segs;
1416 return 1;
1417}
1418
3001ca77
N
1419static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1420 struct bio *bio)
1da177e4 1421{
defd94b7 1422 unsigned short max_sectors;
1da177e4
LT
1423 int len;
1424
defd94b7
MC
1425 if (unlikely(blk_pc_request(req)))
1426 max_sectors = q->max_hw_sectors;
1427 else
1428 max_sectors = q->max_sectors;
1429
1430 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1431 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1432 if (req == q->last_merge)
1433 q->last_merge = NULL;
1434 return 0;
1435 }
1436 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1437 blk_recount_segments(q, req->biotail);
1438 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1439 blk_recount_segments(q, bio);
1440 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1441 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1442 !BIOVEC_VIRT_OVERSIZE(len)) {
1443 int mergeable = ll_new_mergeable(q, req, bio);
1444
1445 if (mergeable) {
1446 if (req->nr_hw_segments == 1)
1447 req->bio->bi_hw_front_size = len;
1448 if (bio->bi_hw_segments == 1)
1449 bio->bi_hw_back_size = len;
1450 }
1451 return mergeable;
1452 }
1453
1454 return ll_new_hw_segment(q, req, bio);
1455}
1456
165125e1 1457static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1458 struct bio *bio)
1459{
defd94b7 1460 unsigned short max_sectors;
1da177e4
LT
1461 int len;
1462
defd94b7
MC
1463 if (unlikely(blk_pc_request(req)))
1464 max_sectors = q->max_hw_sectors;
1465 else
1466 max_sectors = q->max_sectors;
1467
1468
1469 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1470 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1471 if (req == q->last_merge)
1472 q->last_merge = NULL;
1473 return 0;
1474 }
1475 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1476 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1477 blk_recount_segments(q, bio);
1478 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1479 blk_recount_segments(q, req->bio);
1480 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1481 !BIOVEC_VIRT_OVERSIZE(len)) {
1482 int mergeable = ll_new_mergeable(q, req, bio);
1483
1484 if (mergeable) {
1485 if (bio->bi_hw_segments == 1)
1486 bio->bi_hw_front_size = len;
1487 if (req->nr_hw_segments == 1)
1488 req->biotail->bi_hw_back_size = len;
1489 }
1490 return mergeable;
1491 }
1492
1493 return ll_new_hw_segment(q, req, bio);
1494}
1495
165125e1 1496static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1497 struct request *next)
1498{
dfa1a553
ND
1499 int total_phys_segments;
1500 int total_hw_segments;
1da177e4
LT
1501
1502 /*
1503 * First check if the either of the requests are re-queued
1504 * requests. Can't merge them if they are.
1505 */
1506 if (req->special || next->special)
1507 return 0;
1508
1509 /*
dfa1a553 1510 * Will it become too large?
1da177e4
LT
1511 */
1512 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1513 return 0;
1514
1515 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1516 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1517 total_phys_segments--;
1518
1519 if (total_phys_segments > q->max_phys_segments)
1520 return 0;
1521
1522 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1523 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1524 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1525 /*
1526 * propagate the combined length to the end of the requests
1527 */
1528 if (req->nr_hw_segments == 1)
1529 req->bio->bi_hw_front_size = len;
1530 if (next->nr_hw_segments == 1)
1531 next->biotail->bi_hw_back_size = len;
1532 total_hw_segments--;
1533 }
1534
1535 if (total_hw_segments > q->max_hw_segments)
1536 return 0;
1537
1538 /* Merge is OK... */
1539 req->nr_phys_segments = total_phys_segments;
1540 req->nr_hw_segments = total_hw_segments;
1541 return 1;
1542}
1543
1544/*
1545 * "plug" the device if there are no outstanding requests: this will
1546 * force the transfer to start only after we have put all the requests
1547 * on the list.
1548 *
1549 * This is called with interrupts off and no requests on the queue and
1550 * with the queue lock held.
1551 */
165125e1 1552void blk_plug_device(struct request_queue *q)
1da177e4
LT
1553{
1554 WARN_ON(!irqs_disabled());
1555
1556 /*
1557 * don't plug a stopped queue, it must be paired with blk_start_queue()
1558 * which will restart the queueing
1559 */
7daac490 1560 if (blk_queue_stopped(q))
1da177e4
LT
1561 return;
1562
2056a782 1563 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1564 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1565 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1566 }
1da177e4
LT
1567}
1568
1569EXPORT_SYMBOL(blk_plug_device);
1570
1571/*
1572 * remove the queue from the plugged list, if present. called with
1573 * queue lock held and interrupts disabled.
1574 */
165125e1 1575int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1576{
1577 WARN_ON(!irqs_disabled());
1578
1579 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1580 return 0;
1581
1582 del_timer(&q->unplug_timer);
1583 return 1;
1584}
1585
1586EXPORT_SYMBOL(blk_remove_plug);
1587
1588/*
1589 * remove the plug and let it rip..
1590 */
165125e1 1591void __generic_unplug_device(struct request_queue *q)
1da177e4 1592{
7daac490 1593 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1594 return;
1595
1596 if (!blk_remove_plug(q))
1597 return;
1598
22e2c507 1599 q->request_fn(q);
1da177e4
LT
1600}
1601EXPORT_SYMBOL(__generic_unplug_device);
1602
1603/**
1604 * generic_unplug_device - fire a request queue
165125e1 1605 * @q: The &struct request_queue in question
1da177e4
LT
1606 *
1607 * Description:
1608 * Linux uses plugging to build bigger requests queues before letting
1609 * the device have at them. If a queue is plugged, the I/O scheduler
1610 * is still adding and merging requests on the queue. Once the queue
1611 * gets unplugged, the request_fn defined for the queue is invoked and
1612 * transfers started.
1613 **/
165125e1 1614void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1615{
1616 spin_lock_irq(q->queue_lock);
1617 __generic_unplug_device(q);
1618 spin_unlock_irq(q->queue_lock);
1619}
1620EXPORT_SYMBOL(generic_unplug_device);
1621
1622static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1623 struct page *page)
1624{
165125e1 1625 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1626
1627 /*
1628 * devices don't necessarily have an ->unplug_fn defined
1629 */
2056a782
JA
1630 if (q->unplug_fn) {
1631 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1632 q->rq.count[READ] + q->rq.count[WRITE]);
1633
1da177e4 1634 q->unplug_fn(q);
2056a782 1635 }
1da177e4
LT
1636}
1637
65f27f38 1638static void blk_unplug_work(struct work_struct *work)
1da177e4 1639{
165125e1
JA
1640 struct request_queue *q =
1641 container_of(work, struct request_queue, unplug_work);
1da177e4 1642
2056a782
JA
1643 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1644 q->rq.count[READ] + q->rq.count[WRITE]);
1645
1da177e4
LT
1646 q->unplug_fn(q);
1647}
1648
1649static void blk_unplug_timeout(unsigned long data)
1650{
165125e1 1651 struct request_queue *q = (struct request_queue *)data;
1da177e4 1652
2056a782
JA
1653 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1654 q->rq.count[READ] + q->rq.count[WRITE]);
1655
1da177e4
LT
1656 kblockd_schedule_work(&q->unplug_work);
1657}
1658
1659/**
1660 * blk_start_queue - restart a previously stopped queue
165125e1 1661 * @q: The &struct request_queue in question
1da177e4
LT
1662 *
1663 * Description:
1664 * blk_start_queue() will clear the stop flag on the queue, and call
1665 * the request_fn for the queue if it was in a stopped state when
1666 * entered. Also see blk_stop_queue(). Queue lock must be held.
1667 **/
165125e1 1668void blk_start_queue(struct request_queue *q)
1da177e4 1669{
a038e253
PBG
1670 WARN_ON(!irqs_disabled());
1671
1da177e4
LT
1672 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1673
1674 /*
1675 * one level of recursion is ok and is much faster than kicking
1676 * the unplug handling
1677 */
1678 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1679 q->request_fn(q);
1680 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1681 } else {
1682 blk_plug_device(q);
1683 kblockd_schedule_work(&q->unplug_work);
1684 }
1685}
1686
1687EXPORT_SYMBOL(blk_start_queue);
1688
1689/**
1690 * blk_stop_queue - stop a queue
165125e1 1691 * @q: The &struct request_queue in question
1da177e4
LT
1692 *
1693 * Description:
1694 * The Linux block layer assumes that a block driver will consume all
1695 * entries on the request queue when the request_fn strategy is called.
1696 * Often this will not happen, because of hardware limitations (queue
1697 * depth settings). If a device driver gets a 'queue full' response,
1698 * or if it simply chooses not to queue more I/O at one point, it can
1699 * call this function to prevent the request_fn from being called until
1700 * the driver has signalled it's ready to go again. This happens by calling
1701 * blk_start_queue() to restart queue operations. Queue lock must be held.
1702 **/
165125e1 1703void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1704{
1705 blk_remove_plug(q);
1706 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1707}
1708EXPORT_SYMBOL(blk_stop_queue);
1709
1710/**
1711 * blk_sync_queue - cancel any pending callbacks on a queue
1712 * @q: the queue
1713 *
1714 * Description:
1715 * The block layer may perform asynchronous callback activity
1716 * on a queue, such as calling the unplug function after a timeout.
1717 * A block device may call blk_sync_queue to ensure that any
1718 * such activity is cancelled, thus allowing it to release resources
59c51591 1719 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1720 * that its ->make_request_fn will not re-add plugging prior to calling
1721 * this function.
1722 *
1723 */
1724void blk_sync_queue(struct request_queue *q)
1725{
1726 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1727}
1728EXPORT_SYMBOL(blk_sync_queue);
1729
1730/**
1731 * blk_run_queue - run a single device queue
1732 * @q: The queue to run
1733 */
1734void blk_run_queue(struct request_queue *q)
1735{
1736 unsigned long flags;
1737
1738 spin_lock_irqsave(q->queue_lock, flags);
1739 blk_remove_plug(q);
dac07ec1
JA
1740
1741 /*
1742 * Only recurse once to avoid overrunning the stack, let the unplug
1743 * handling reinvoke the handler shortly if we already got there.
1744 */
1745 if (!elv_queue_empty(q)) {
1746 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1747 q->request_fn(q);
1748 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1749 } else {
1750 blk_plug_device(q);
1751 kblockd_schedule_work(&q->unplug_work);
1752 }
1753 }
1754
1da177e4
LT
1755 spin_unlock_irqrestore(q->queue_lock, flags);
1756}
1757EXPORT_SYMBOL(blk_run_queue);
1758
1759/**
165125e1 1760 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1761 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1762 *
1763 * Description:
1764 * blk_cleanup_queue is the pair to blk_init_queue() or
1765 * blk_queue_make_request(). It should be called when a request queue is
1766 * being released; typically when a block device is being de-registered.
1767 * Currently, its primary task it to free all the &struct request
1768 * structures that were allocated to the queue and the queue itself.
1769 *
1770 * Caveat:
1771 * Hopefully the low level driver will have finished any
1772 * outstanding requests first...
1773 **/
483f4afc 1774static void blk_release_queue(struct kobject *kobj)
1da177e4 1775{
165125e1
JA
1776 struct request_queue *q =
1777 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1778 struct request_list *rl = &q->rq;
1779
1da177e4
LT
1780 blk_sync_queue(q);
1781
1782 if (rl->rq_pool)
1783 mempool_destroy(rl->rq_pool);
1784
1785 if (q->queue_tags)
1786 __blk_queue_free_tags(q);
1787
6c5c9341 1788 blk_trace_shutdown(q);
2056a782 1789
e0bf68dd 1790 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1791 kmem_cache_free(requestq_cachep, q);
1792}
1793
165125e1 1794void blk_put_queue(struct request_queue *q)
483f4afc
AV
1795{
1796 kobject_put(&q->kobj);
1797}
1798EXPORT_SYMBOL(blk_put_queue);
1799
165125e1 1800void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1801{
1802 mutex_lock(&q->sysfs_lock);
1803 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1804 mutex_unlock(&q->sysfs_lock);
1805
1806 if (q->elevator)
1807 elevator_exit(q->elevator);
1808
1809 blk_put_queue(q);
1810}
1811
1da177e4
LT
1812EXPORT_SYMBOL(blk_cleanup_queue);
1813
165125e1 1814static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1815{
1816 struct request_list *rl = &q->rq;
1817
1818 rl->count[READ] = rl->count[WRITE] = 0;
1819 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1820 rl->elvpriv = 0;
1da177e4
LT
1821 init_waitqueue_head(&rl->wait[READ]);
1822 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1823
1946089a
CL
1824 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1825 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1826
1827 if (!rl->rq_pool)
1828 return -ENOMEM;
1829
1830 return 0;
1831}
1832
165125e1 1833struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1834{
1946089a
CL
1835 return blk_alloc_queue_node(gfp_mask, -1);
1836}
1837EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1838
483f4afc
AV
1839static struct kobj_type queue_ktype;
1840
165125e1 1841struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1842{
165125e1 1843 struct request_queue *q;
e0bf68dd 1844 int err;
1946089a 1845
94f6030c
CL
1846 q = kmem_cache_alloc_node(requestq_cachep,
1847 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1848 if (!q)
1849 return NULL;
1850
e0bf68dd
PZ
1851 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1852 q->backing_dev_info.unplug_io_data = q;
1853 err = bdi_init(&q->backing_dev_info);
1854 if (err) {
1855 kmem_cache_free(requestq_cachep, q);
1856 return NULL;
1857 }
1858
1da177e4 1859 init_timer(&q->unplug_timer);
483f4afc 1860
19c38de8 1861 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1862 q->kobj.ktype = &queue_ktype;
1863 kobject_init(&q->kobj);
1da177e4 1864
483f4afc
AV
1865 mutex_init(&q->sysfs_lock);
1866
1da177e4
LT
1867 return q;
1868}
1946089a 1869EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1870
1871/**
1872 * blk_init_queue - prepare a request queue for use with a block device
1873 * @rfn: The function to be called to process requests that have been
1874 * placed on the queue.
1875 * @lock: Request queue spin lock
1876 *
1877 * Description:
1878 * If a block device wishes to use the standard request handling procedures,
1879 * which sorts requests and coalesces adjacent requests, then it must
1880 * call blk_init_queue(). The function @rfn will be called when there
1881 * are requests on the queue that need to be processed. If the device
1882 * supports plugging, then @rfn may not be called immediately when requests
1883 * are available on the queue, but may be called at some time later instead.
1884 * Plugged queues are generally unplugged when a buffer belonging to one
1885 * of the requests on the queue is needed, or due to memory pressure.
1886 *
1887 * @rfn is not required, or even expected, to remove all requests off the
1888 * queue, but only as many as it can handle at a time. If it does leave
1889 * requests on the queue, it is responsible for arranging that the requests
1890 * get dealt with eventually.
1891 *
1892 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1893 * request queue; this lock will be taken also from interrupt context, so irq
1894 * disabling is needed for it.
1da177e4
LT
1895 *
1896 * Function returns a pointer to the initialized request queue, or NULL if
1897 * it didn't succeed.
1898 *
1899 * Note:
1900 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1901 * when the block device is deactivated (such as at module unload).
1902 **/
1946089a 1903
165125e1 1904struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1905{
1946089a
CL
1906 return blk_init_queue_node(rfn, lock, -1);
1907}
1908EXPORT_SYMBOL(blk_init_queue);
1909
165125e1 1910struct request_queue *
1946089a
CL
1911blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1912{
165125e1 1913 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1914
1915 if (!q)
1916 return NULL;
1917
1946089a 1918 q->node = node_id;
8669aafd
AV
1919 if (blk_init_free_list(q)) {
1920 kmem_cache_free(requestq_cachep, q);
1921 return NULL;
1922 }
1da177e4 1923
152587de 1924 /*
1925 * if caller didn't supply a lock, they get per-queue locking with
1926 * our embedded lock
1927 */
1928 if (!lock) {
1929 spin_lock_init(&q->__queue_lock);
1930 lock = &q->__queue_lock;
1931 }
1932
1da177e4 1933 q->request_fn = rfn;
1da177e4
LT
1934 q->prep_rq_fn = NULL;
1935 q->unplug_fn = generic_unplug_device;
1936 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1937 q->queue_lock = lock;
1938
1939 blk_queue_segment_boundary(q, 0xffffffff);
1940
1941 blk_queue_make_request(q, __make_request);
1942 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1943
1944 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1945 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1946
44ec9542
AS
1947 q->sg_reserved_size = INT_MAX;
1948
1da177e4
LT
1949 /*
1950 * all done
1951 */
1952 if (!elevator_init(q, NULL)) {
1953 blk_queue_congestion_threshold(q);
1954 return q;
1955 }
1956
8669aafd 1957 blk_put_queue(q);
1da177e4
LT
1958 return NULL;
1959}
1946089a 1960EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1961
165125e1 1962int blk_get_queue(struct request_queue *q)
1da177e4 1963{
fde6ad22 1964 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1965 kobject_get(&q->kobj);
1da177e4
LT
1966 return 0;
1967 }
1968
1969 return 1;
1970}
1971
1972EXPORT_SYMBOL(blk_get_queue);
1973
165125e1 1974static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1975{
4aff5e23 1976 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1977 elv_put_request(q, rq);
1da177e4
LT
1978 mempool_free(rq, q->rq.rq_pool);
1979}
1980
1ea25ecb 1981static struct request *
165125e1 1982blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1983{
1984 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1985
1986 if (!rq)
1987 return NULL;
1988
1989 /*
4aff5e23 1990 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1991 * see bio.h and blkdev.h
1992 */
49171e5c 1993 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1994
cb98fc8b 1995 if (priv) {
cb78b285 1996 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1997 mempool_free(rq, q->rq.rq_pool);
1998 return NULL;
1999 }
4aff5e23 2000 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2001 }
1da177e4 2002
cb98fc8b 2003 return rq;
1da177e4
LT
2004}
2005
2006/*
2007 * ioc_batching returns true if the ioc is a valid batching request and
2008 * should be given priority access to a request.
2009 */
165125e1 2010static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2011{
2012 if (!ioc)
2013 return 0;
2014
2015 /*
2016 * Make sure the process is able to allocate at least 1 request
2017 * even if the batch times out, otherwise we could theoretically
2018 * lose wakeups.
2019 */
2020 return ioc->nr_batch_requests == q->nr_batching ||
2021 (ioc->nr_batch_requests > 0
2022 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2023}
2024
2025/*
2026 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2027 * will cause the process to be a "batcher" on all queues in the system. This
2028 * is the behaviour we want though - once it gets a wakeup it should be given
2029 * a nice run.
2030 */
165125e1 2031static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2032{
2033 if (!ioc || ioc_batching(q, ioc))
2034 return;
2035
2036 ioc->nr_batch_requests = q->nr_batching;
2037 ioc->last_waited = jiffies;
2038}
2039
165125e1 2040static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2041{
2042 struct request_list *rl = &q->rq;
2043
2044 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2045 blk_clear_queue_congested(q, rw);
1da177e4
LT
2046
2047 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2048 if (waitqueue_active(&rl->wait[rw]))
2049 wake_up(&rl->wait[rw]);
2050
2051 blk_clear_queue_full(q, rw);
2052 }
2053}
2054
2055/*
2056 * A request has just been released. Account for it, update the full and
2057 * congestion status, wake up any waiters. Called under q->queue_lock.
2058 */
165125e1 2059static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2060{
2061 struct request_list *rl = &q->rq;
2062
2063 rl->count[rw]--;
cb98fc8b
TH
2064 if (priv)
2065 rl->elvpriv--;
1da177e4
LT
2066
2067 __freed_request(q, rw);
2068
2069 if (unlikely(rl->starved[rw ^ 1]))
2070 __freed_request(q, rw ^ 1);
1da177e4
LT
2071}
2072
2073#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2074/*
d6344532
NP
2075 * Get a free request, queue_lock must be held.
2076 * Returns NULL on failure, with queue_lock held.
2077 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2078 */
165125e1 2079static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2080 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2081{
2082 struct request *rq = NULL;
2083 struct request_list *rl = &q->rq;
88ee5ef1 2084 struct io_context *ioc = NULL;
7749a8d4 2085 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2086 int may_queue, priv;
2087
7749a8d4 2088 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2089 if (may_queue == ELV_MQUEUE_NO)
2090 goto rq_starved;
2091
2092 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2093 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2094 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2095 /*
2096 * The queue will fill after this allocation, so set
2097 * it as full, and mark this process as "batching".
2098 * This process will be allowed to complete a batch of
2099 * requests, others will be blocked.
2100 */
2101 if (!blk_queue_full(q, rw)) {
2102 ioc_set_batching(q, ioc);
2103 blk_set_queue_full(q, rw);
2104 } else {
2105 if (may_queue != ELV_MQUEUE_MUST
2106 && !ioc_batching(q, ioc)) {
2107 /*
2108 * The queue is full and the allocating
2109 * process is not a "batcher", and not
2110 * exempted by the IO scheduler
2111 */
2112 goto out;
2113 }
2114 }
1da177e4 2115 }
79e2de4b 2116 blk_set_queue_congested(q, rw);
1da177e4
LT
2117 }
2118
082cf69e
JA
2119 /*
2120 * Only allow batching queuers to allocate up to 50% over the defined
2121 * limit of requests, otherwise we could have thousands of requests
2122 * allocated with any setting of ->nr_requests
2123 */
fd782a4a 2124 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2125 goto out;
fd782a4a 2126
1da177e4
LT
2127 rl->count[rw]++;
2128 rl->starved[rw] = 0;
cb98fc8b 2129
64521d1a 2130 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2131 if (priv)
2132 rl->elvpriv++;
2133
1da177e4
LT
2134 spin_unlock_irq(q->queue_lock);
2135
7749a8d4 2136 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2137 if (unlikely(!rq)) {
1da177e4
LT
2138 /*
2139 * Allocation failed presumably due to memory. Undo anything
2140 * we might have messed up.
2141 *
2142 * Allocating task should really be put onto the front of the
2143 * wait queue, but this is pretty rare.
2144 */
2145 spin_lock_irq(q->queue_lock);
cb98fc8b 2146 freed_request(q, rw, priv);
1da177e4
LT
2147
2148 /*
2149 * in the very unlikely event that allocation failed and no
2150 * requests for this direction was pending, mark us starved
2151 * so that freeing of a request in the other direction will
2152 * notice us. another possible fix would be to split the
2153 * rq mempool into READ and WRITE
2154 */
2155rq_starved:
2156 if (unlikely(rl->count[rw] == 0))
2157 rl->starved[rw] = 1;
2158
1da177e4
LT
2159 goto out;
2160 }
2161
88ee5ef1
JA
2162 /*
2163 * ioc may be NULL here, and ioc_batching will be false. That's
2164 * OK, if the queue is under the request limit then requests need
2165 * not count toward the nr_batch_requests limit. There will always
2166 * be some limit enforced by BLK_BATCH_TIME.
2167 */
1da177e4
LT
2168 if (ioc_batching(q, ioc))
2169 ioc->nr_batch_requests--;
2170
2171 rq_init(q, rq);
2056a782
JA
2172
2173 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2174out:
1da177e4
LT
2175 return rq;
2176}
2177
2178/*
2179 * No available requests for this queue, unplug the device and wait for some
2180 * requests to become available.
d6344532
NP
2181 *
2182 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2183 */
165125e1 2184static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2185 struct bio *bio)
1da177e4 2186{
7749a8d4 2187 const int rw = rw_flags & 0x01;
1da177e4
LT
2188 struct request *rq;
2189
7749a8d4 2190 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2191 while (!rq) {
2192 DEFINE_WAIT(wait);
1da177e4
LT
2193 struct request_list *rl = &q->rq;
2194
2195 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2196 TASK_UNINTERRUPTIBLE);
2197
7749a8d4 2198 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2199
2200 if (!rq) {
2201 struct io_context *ioc;
2202
2056a782
JA
2203 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2204
d6344532
NP
2205 __generic_unplug_device(q);
2206 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2207 io_schedule();
2208
2209 /*
2210 * After sleeping, we become a "batching" process and
2211 * will be able to allocate at least one request, and
2212 * up to a big batch of them for a small period time.
2213 * See ioc_batching, ioc_set_batching
2214 */
b5deef90 2215 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2216 ioc_set_batching(q, ioc);
d6344532
NP
2217
2218 spin_lock_irq(q->queue_lock);
1da177e4
LT
2219 }
2220 finish_wait(&rl->wait[rw], &wait);
450991bc 2221 }
1da177e4
LT
2222
2223 return rq;
2224}
2225
165125e1 2226struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2227{
2228 struct request *rq;
2229
2230 BUG_ON(rw != READ && rw != WRITE);
2231
d6344532
NP
2232 spin_lock_irq(q->queue_lock);
2233 if (gfp_mask & __GFP_WAIT) {
22e2c507 2234 rq = get_request_wait(q, rw, NULL);
d6344532 2235 } else {
22e2c507 2236 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2237 if (!rq)
2238 spin_unlock_irq(q->queue_lock);
2239 }
2240 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2241
2242 return rq;
2243}
1da177e4
LT
2244EXPORT_SYMBOL(blk_get_request);
2245
dc72ef4a
JA
2246/**
2247 * blk_start_queueing - initiate dispatch of requests to device
2248 * @q: request queue to kick into gear
2249 *
2250 * This is basically a helper to remove the need to know whether a queue
2251 * is plugged or not if someone just wants to initiate dispatch of requests
2252 * for this queue.
2253 *
2254 * The queue lock must be held with interrupts disabled.
2255 */
165125e1 2256void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2257{
2258 if (!blk_queue_plugged(q))
2259 q->request_fn(q);
2260 else
2261 __generic_unplug_device(q);
2262}
2263EXPORT_SYMBOL(blk_start_queueing);
2264
1da177e4
LT
2265/**
2266 * blk_requeue_request - put a request back on queue
2267 * @q: request queue where request should be inserted
2268 * @rq: request to be inserted
2269 *
2270 * Description:
2271 * Drivers often keep queueing requests until the hardware cannot accept
2272 * more, when that condition happens we need to put the request back
2273 * on the queue. Must be called with queue lock held.
2274 */
165125e1 2275void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2276{
2056a782
JA
2277 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2278
1da177e4
LT
2279 if (blk_rq_tagged(rq))
2280 blk_queue_end_tag(q, rq);
2281
2282 elv_requeue_request(q, rq);
2283}
2284
2285EXPORT_SYMBOL(blk_requeue_request);
2286
2287/**
2288 * blk_insert_request - insert a special request in to a request queue
2289 * @q: request queue where request should be inserted
2290 * @rq: request to be inserted
2291 * @at_head: insert request at head or tail of queue
2292 * @data: private data
1da177e4
LT
2293 *
2294 * Description:
2295 * Many block devices need to execute commands asynchronously, so they don't
2296 * block the whole kernel from preemption during request execution. This is
2297 * accomplished normally by inserting aritficial requests tagged as
2298 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2299 * scheduled for actual execution by the request queue.
2300 *
2301 * We have the option of inserting the head or the tail of the queue.
2302 * Typically we use the tail for new ioctls and so forth. We use the head
2303 * of the queue for things like a QUEUE_FULL message from a device, or a
2304 * host that is unable to accept a particular command.
2305 */
165125e1 2306void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2307 int at_head, void *data)
1da177e4 2308{
867d1191 2309 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2310 unsigned long flags;
2311
2312 /*
2313 * tell I/O scheduler that this isn't a regular read/write (ie it
2314 * must not attempt merges on this) and that it acts as a soft
2315 * barrier
2316 */
4aff5e23
JA
2317 rq->cmd_type = REQ_TYPE_SPECIAL;
2318 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2319
2320 rq->special = data;
2321
2322 spin_lock_irqsave(q->queue_lock, flags);
2323
2324 /*
2325 * If command is tagged, release the tag
2326 */
867d1191
TH
2327 if (blk_rq_tagged(rq))
2328 blk_queue_end_tag(q, rq);
1da177e4 2329
867d1191
TH
2330 drive_stat_acct(rq, rq->nr_sectors, 1);
2331 __elv_add_request(q, rq, where, 0);
dc72ef4a 2332 blk_start_queueing(q);
1da177e4
LT
2333 spin_unlock_irqrestore(q->queue_lock, flags);
2334}
2335
2336EXPORT_SYMBOL(blk_insert_request);
2337
0e75f906
MC
2338static int __blk_rq_unmap_user(struct bio *bio)
2339{
2340 int ret = 0;
2341
2342 if (bio) {
2343 if (bio_flagged(bio, BIO_USER_MAPPED))
2344 bio_unmap_user(bio);
2345 else
2346 ret = bio_uncopy_user(bio);
2347 }
2348
2349 return ret;
2350}
2351
3001ca77
N
2352int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2353 struct bio *bio)
2354{
2355 if (!rq->bio)
2356 blk_rq_bio_prep(q, rq, bio);
2357 else if (!ll_back_merge_fn(q, rq, bio))
2358 return -EINVAL;
2359 else {
2360 rq->biotail->bi_next = bio;
2361 rq->biotail = bio;
2362
2363 rq->data_len += bio->bi_size;
2364 }
2365 return 0;
2366}
2367EXPORT_SYMBOL(blk_rq_append_bio);
2368
165125e1 2369static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2370 void __user *ubuf, unsigned int len)
2371{
2372 unsigned long uaddr;
2373 struct bio *bio, *orig_bio;
2374 int reading, ret;
2375
2376 reading = rq_data_dir(rq) == READ;
2377
2378 /*
2379 * if alignment requirement is satisfied, map in user pages for
2380 * direct dma. else, set up kernel bounce buffers
2381 */
2382 uaddr = (unsigned long) ubuf;
2383 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2384 bio = bio_map_user(q, NULL, uaddr, len, reading);
2385 else
2386 bio = bio_copy_user(q, uaddr, len, reading);
2387
2985259b 2388 if (IS_ERR(bio))
0e75f906 2389 return PTR_ERR(bio);
0e75f906
MC
2390
2391 orig_bio = bio;
2392 blk_queue_bounce(q, &bio);
2985259b 2393
0e75f906
MC
2394 /*
2395 * We link the bounce buffer in and could have to traverse it
2396 * later so we have to get a ref to prevent it from being freed
2397 */
2398 bio_get(bio);
2399
3001ca77
N
2400 ret = blk_rq_append_bio(q, rq, bio);
2401 if (!ret)
2402 return bio->bi_size;
0e75f906 2403
0e75f906 2404 /* if it was boucned we must call the end io function */
6712ecf8 2405 bio_endio(bio, 0);
0e75f906
MC
2406 __blk_rq_unmap_user(orig_bio);
2407 bio_put(bio);
2408 return ret;
2409}
2410
1da177e4
LT
2411/**
2412 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2413 * @q: request queue where request should be inserted
73747aed 2414 * @rq: request structure to fill
1da177e4
LT
2415 * @ubuf: the user buffer
2416 * @len: length of user data
2417 *
2418 * Description:
2419 * Data will be mapped directly for zero copy io, if possible. Otherwise
2420 * a kernel bounce buffer is used.
2421 *
2422 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2423 * still in process context.
2424 *
2425 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2426 * before being submitted to the device, as pages mapped may be out of
2427 * reach. It's the callers responsibility to make sure this happens. The
2428 * original bio must be passed back in to blk_rq_unmap_user() for proper
2429 * unmapping.
2430 */
165125e1
JA
2431int blk_rq_map_user(struct request_queue *q, struct request *rq,
2432 void __user *ubuf, unsigned long len)
1da177e4 2433{
0e75f906 2434 unsigned long bytes_read = 0;
8e5cfc45 2435 struct bio *bio = NULL;
0e75f906 2436 int ret;
1da177e4 2437
defd94b7 2438 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2439 return -EINVAL;
2440 if (!len || !ubuf)
2441 return -EINVAL;
1da177e4 2442
0e75f906
MC
2443 while (bytes_read != len) {
2444 unsigned long map_len, end, start;
1da177e4 2445
0e75f906
MC
2446 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2447 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2448 >> PAGE_SHIFT;
2449 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2450
0e75f906
MC
2451 /*
2452 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2453 * pages. If this happens we just lower the requested
2454 * mapping len by a page so that we can fit
2455 */
2456 if (end - start > BIO_MAX_PAGES)
2457 map_len -= PAGE_SIZE;
1da177e4 2458
0e75f906
MC
2459 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2460 if (ret < 0)
2461 goto unmap_rq;
8e5cfc45
JA
2462 if (!bio)
2463 bio = rq->bio;
0e75f906
MC
2464 bytes_read += ret;
2465 ubuf += ret;
1da177e4
LT
2466 }
2467
0e75f906
MC
2468 rq->buffer = rq->data = NULL;
2469 return 0;
2470unmap_rq:
8e5cfc45 2471 blk_rq_unmap_user(bio);
0e75f906 2472 return ret;
1da177e4
LT
2473}
2474
2475EXPORT_SYMBOL(blk_rq_map_user);
2476
f1970baf
JB
2477/**
2478 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2479 * @q: request queue where request should be inserted
2480 * @rq: request to map data to
2481 * @iov: pointer to the iovec
2482 * @iov_count: number of elements in the iovec
af9997e4 2483 * @len: I/O byte count
f1970baf
JB
2484 *
2485 * Description:
2486 * Data will be mapped directly for zero copy io, if possible. Otherwise
2487 * a kernel bounce buffer is used.
2488 *
2489 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2490 * still in process context.
2491 *
2492 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2493 * before being submitted to the device, as pages mapped may be out of
2494 * reach. It's the callers responsibility to make sure this happens. The
2495 * original bio must be passed back in to blk_rq_unmap_user() for proper
2496 * unmapping.
2497 */
165125e1 2498int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2499 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2500{
2501 struct bio *bio;
2502
2503 if (!iov || iov_count <= 0)
2504 return -EINVAL;
2505
2506 /* we don't allow misaligned data like bio_map_user() does. If the
2507 * user is using sg, they're expected to know the alignment constraints
2508 * and respect them accordingly */
2509 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2510 if (IS_ERR(bio))
2511 return PTR_ERR(bio);
2512
0e75f906 2513 if (bio->bi_size != len) {
6712ecf8 2514 bio_endio(bio, 0);
0e75f906
MC
2515 bio_unmap_user(bio);
2516 return -EINVAL;
2517 }
2518
2519 bio_get(bio);
f1970baf
JB
2520 blk_rq_bio_prep(q, rq, bio);
2521 rq->buffer = rq->data = NULL;
f1970baf
JB
2522 return 0;
2523}
2524
2525EXPORT_SYMBOL(blk_rq_map_user_iov);
2526
1da177e4
LT
2527/**
2528 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2529 * @bio: start of bio list
1da177e4
LT
2530 *
2531 * Description:
8e5cfc45
JA
2532 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2533 * supply the original rq->bio from the blk_rq_map_user() return, since
2534 * the io completion may have changed rq->bio.
1da177e4 2535 */
8e5cfc45 2536int blk_rq_unmap_user(struct bio *bio)
1da177e4 2537{
8e5cfc45 2538 struct bio *mapped_bio;
48785bb9 2539 int ret = 0, ret2;
1da177e4 2540
8e5cfc45
JA
2541 while (bio) {
2542 mapped_bio = bio;
2543 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2544 mapped_bio = bio->bi_private;
1da177e4 2545
48785bb9
JA
2546 ret2 = __blk_rq_unmap_user(mapped_bio);
2547 if (ret2 && !ret)
2548 ret = ret2;
2549
8e5cfc45
JA
2550 mapped_bio = bio;
2551 bio = bio->bi_next;
2552 bio_put(mapped_bio);
0e75f906 2553 }
48785bb9
JA
2554
2555 return ret;
1da177e4
LT
2556}
2557
2558EXPORT_SYMBOL(blk_rq_unmap_user);
2559
df46b9a4
MC
2560/**
2561 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2562 * @q: request queue where request should be inserted
73747aed 2563 * @rq: request to fill
df46b9a4
MC
2564 * @kbuf: the kernel buffer
2565 * @len: length of user data
73747aed 2566 * @gfp_mask: memory allocation flags
df46b9a4 2567 */
165125e1 2568int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2569 unsigned int len, gfp_t gfp_mask)
df46b9a4 2570{
df46b9a4
MC
2571 struct bio *bio;
2572
defd94b7 2573 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2574 return -EINVAL;
2575 if (!len || !kbuf)
2576 return -EINVAL;
df46b9a4
MC
2577
2578 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2579 if (IS_ERR(bio))
2580 return PTR_ERR(bio);
df46b9a4 2581
dd1cab95
JA
2582 if (rq_data_dir(rq) == WRITE)
2583 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2584
dd1cab95 2585 blk_rq_bio_prep(q, rq, bio);
821de3a2 2586 blk_queue_bounce(q, &rq->bio);
dd1cab95 2587 rq->buffer = rq->data = NULL;
dd1cab95 2588 return 0;
df46b9a4
MC
2589}
2590
2591EXPORT_SYMBOL(blk_rq_map_kern);
2592
73747aed
CH
2593/**
2594 * blk_execute_rq_nowait - insert a request into queue for execution
2595 * @q: queue to insert the request in
2596 * @bd_disk: matching gendisk
2597 * @rq: request to insert
2598 * @at_head: insert request at head or tail of queue
2599 * @done: I/O completion handler
2600 *
2601 * Description:
2602 * Insert a fully prepared request at the back of the io scheduler queue
2603 * for execution. Don't wait for completion.
2604 */
165125e1 2605void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2606 struct request *rq, int at_head,
8ffdc655 2607 rq_end_io_fn *done)
f1970baf
JB
2608{
2609 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2610
2611 rq->rq_disk = bd_disk;
4aff5e23 2612 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2613 rq->end_io = done;
4c5d0bbd
AM
2614 WARN_ON(irqs_disabled());
2615 spin_lock_irq(q->queue_lock);
2616 __elv_add_request(q, rq, where, 1);
2617 __generic_unplug_device(q);
2618 spin_unlock_irq(q->queue_lock);
f1970baf 2619}
6e39b69e
MC
2620EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2621
1da177e4
LT
2622/**
2623 * blk_execute_rq - insert a request into queue for execution
2624 * @q: queue to insert the request in
2625 * @bd_disk: matching gendisk
2626 * @rq: request to insert
994ca9a1 2627 * @at_head: insert request at head or tail of queue
1da177e4
LT
2628 *
2629 * Description:
2630 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2631 * for execution and wait for completion.
1da177e4 2632 */
165125e1 2633int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2634 struct request *rq, int at_head)
1da177e4 2635{
60be6b9a 2636 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2637 char sense[SCSI_SENSE_BUFFERSIZE];
2638 int err = 0;
2639
1da177e4
LT
2640 /*
2641 * we need an extra reference to the request, so we can look at
2642 * it after io completion
2643 */
2644 rq->ref_count++;
2645
2646 if (!rq->sense) {
2647 memset(sense, 0, sizeof(sense));
2648 rq->sense = sense;
2649 rq->sense_len = 0;
2650 }
2651
c00895ab 2652 rq->end_io_data = &wait;
994ca9a1 2653 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2654 wait_for_completion(&wait);
1da177e4
LT
2655
2656 if (rq->errors)
2657 err = -EIO;
2658
2659 return err;
2660}
2661
2662EXPORT_SYMBOL(blk_execute_rq);
2663
fd5d8062
JA
2664static void bio_end_empty_barrier(struct bio *bio, int err)
2665{
2666 if (err)
2667 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2668
2669 complete(bio->bi_private);
2670}
2671
1da177e4
LT
2672/**
2673 * blkdev_issue_flush - queue a flush
2674 * @bdev: blockdev to issue flush for
2675 * @error_sector: error sector
2676 *
2677 * Description:
2678 * Issue a flush for the block device in question. Caller can supply
2679 * room for storing the error offset in case of a flush error, if they
2680 * wish to. Caller must run wait_for_completion() on its own.
2681 */
2682int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2683{
fd5d8062 2684 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2685 struct request_queue *q;
fd5d8062
JA
2686 struct bio *bio;
2687 int ret;
1da177e4
LT
2688
2689 if (bdev->bd_disk == NULL)
2690 return -ENXIO;
2691
2692 q = bdev_get_queue(bdev);
2693 if (!q)
2694 return -ENXIO;
1da177e4 2695
fd5d8062
JA
2696 bio = bio_alloc(GFP_KERNEL, 0);
2697 if (!bio)
2698 return -ENOMEM;
2699
2700 bio->bi_end_io = bio_end_empty_barrier;
2701 bio->bi_private = &wait;
2702 bio->bi_bdev = bdev;
2703 submit_bio(1 << BIO_RW_BARRIER, bio);
2704
2705 wait_for_completion(&wait);
2706
2707 /*
2708 * The driver must store the error location in ->bi_sector, if
2709 * it supports it. For non-stacked drivers, this should be copied
2710 * from rq->sector.
2711 */
2712 if (error_sector)
2713 *error_sector = bio->bi_sector;
2714
2715 ret = 0;
2716 if (!bio_flagged(bio, BIO_UPTODATE))
2717 ret = -EIO;
2718
2719 bio_put(bio);
2720 return ret;
1da177e4
LT
2721}
2722
2723EXPORT_SYMBOL(blkdev_issue_flush);
2724
93d17d3d 2725static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2726{
2727 int rw = rq_data_dir(rq);
2728
2729 if (!blk_fs_request(rq) || !rq->rq_disk)
2730 return;
2731
d72d904a 2732 if (!new_io) {
a362357b 2733 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2734 } else {
1da177e4
LT
2735 disk_round_stats(rq->rq_disk);
2736 rq->rq_disk->in_flight++;
2737 }
2738}
2739
2740/*
2741 * add-request adds a request to the linked list.
2742 * queue lock is held and interrupts disabled, as we muck with the
2743 * request queue list.
2744 */
165125e1 2745static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2746{
2747 drive_stat_acct(req, req->nr_sectors, 1);
2748
1da177e4
LT
2749 /*
2750 * elevator indicated where it wants this request to be
2751 * inserted at elevator_merge time
2752 */
2753 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2754}
2755
2756/*
2757 * disk_round_stats() - Round off the performance stats on a struct
2758 * disk_stats.
2759 *
2760 * The average IO queue length and utilisation statistics are maintained
2761 * by observing the current state of the queue length and the amount of
2762 * time it has been in this state for.
2763 *
2764 * Normally, that accounting is done on IO completion, but that can result
2765 * in more than a second's worth of IO being accounted for within any one
2766 * second, leading to >100% utilisation. To deal with that, we call this
2767 * function to do a round-off before returning the results when reading
2768 * /proc/diskstats. This accounts immediately for all queue usage up to
2769 * the current jiffies and restarts the counters again.
2770 */
2771void disk_round_stats(struct gendisk *disk)
2772{
2773 unsigned long now = jiffies;
2774
b2982649
CK
2775 if (now == disk->stamp)
2776 return;
1da177e4 2777
20e5c81f
CK
2778 if (disk->in_flight) {
2779 __disk_stat_add(disk, time_in_queue,
2780 disk->in_flight * (now - disk->stamp));
2781 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2782 }
1da177e4 2783 disk->stamp = now;
1da177e4
LT
2784}
2785
3eaf840e
JNN
2786EXPORT_SYMBOL_GPL(disk_round_stats);
2787
1da177e4
LT
2788/*
2789 * queue lock must be held
2790 */
165125e1 2791void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2792{
1da177e4
LT
2793 if (unlikely(!q))
2794 return;
2795 if (unlikely(--req->ref_count))
2796 return;
2797
8922e16c
TH
2798 elv_completed_request(q, req);
2799
1da177e4
LT
2800 /*
2801 * Request may not have originated from ll_rw_blk. if not,
2802 * it didn't come out of our reserved rq pools
2803 */
49171e5c 2804 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2805 int rw = rq_data_dir(req);
4aff5e23 2806 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2807
1da177e4 2808 BUG_ON(!list_empty(&req->queuelist));
9817064b 2809 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2810
2811 blk_free_request(q, req);
cb98fc8b 2812 freed_request(q, rw, priv);
1da177e4
LT
2813 }
2814}
2815
6e39b69e
MC
2816EXPORT_SYMBOL_GPL(__blk_put_request);
2817
1da177e4
LT
2818void blk_put_request(struct request *req)
2819{
8922e16c 2820 unsigned long flags;
165125e1 2821 struct request_queue *q = req->q;
8922e16c 2822
1da177e4 2823 /*
8922e16c
TH
2824 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2825 * following if (q) test.
1da177e4 2826 */
8922e16c 2827 if (q) {
1da177e4
LT
2828 spin_lock_irqsave(q->queue_lock, flags);
2829 __blk_put_request(q, req);
2830 spin_unlock_irqrestore(q->queue_lock, flags);
2831 }
2832}
2833
2834EXPORT_SYMBOL(blk_put_request);
2835
2836/**
2837 * blk_end_sync_rq - executes a completion event on a request
2838 * @rq: request to complete
fddfdeaf 2839 * @error: end io status of the request
1da177e4 2840 */
8ffdc655 2841void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2842{
c00895ab 2843 struct completion *waiting = rq->end_io_data;
1da177e4 2844
c00895ab 2845 rq->end_io_data = NULL;
1da177e4
LT
2846 __blk_put_request(rq->q, rq);
2847
2848 /*
2849 * complete last, if this is a stack request the process (and thus
2850 * the rq pointer) could be invalid right after this complete()
2851 */
2852 complete(waiting);
2853}
2854EXPORT_SYMBOL(blk_end_sync_rq);
2855
1da177e4
LT
2856/*
2857 * Has to be called with the request spinlock acquired
2858 */
165125e1 2859static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2860 struct request *next)
2861{
2862 if (!rq_mergeable(req) || !rq_mergeable(next))
2863 return 0;
2864
2865 /*
d6e05edc 2866 * not contiguous
1da177e4
LT
2867 */
2868 if (req->sector + req->nr_sectors != next->sector)
2869 return 0;
2870
2871 if (rq_data_dir(req) != rq_data_dir(next)
2872 || req->rq_disk != next->rq_disk
c00895ab 2873 || next->special)
1da177e4
LT
2874 return 0;
2875
2876 /*
2877 * If we are allowed to merge, then append bio list
2878 * from next to rq and release next. merge_requests_fn
2879 * will have updated segment counts, update sector
2880 * counts here.
2881 */
1aa4f24f 2882 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2883 return 0;
2884
2885 /*
2886 * At this point we have either done a back merge
2887 * or front merge. We need the smaller start_time of
2888 * the merged requests to be the current request
2889 * for accounting purposes.
2890 */
2891 if (time_after(req->start_time, next->start_time))
2892 req->start_time = next->start_time;
2893
2894 req->biotail->bi_next = next->bio;
2895 req->biotail = next->biotail;
2896
2897 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2898
2899 elv_merge_requests(q, req, next);
2900
2901 if (req->rq_disk) {
2902 disk_round_stats(req->rq_disk);
2903 req->rq_disk->in_flight--;
2904 }
2905
22e2c507
JA
2906 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2907
1da177e4
LT
2908 __blk_put_request(q, next);
2909 return 1;
2910}
2911
165125e1
JA
2912static inline int attempt_back_merge(struct request_queue *q,
2913 struct request *rq)
1da177e4
LT
2914{
2915 struct request *next = elv_latter_request(q, rq);
2916
2917 if (next)
2918 return attempt_merge(q, rq, next);
2919
2920 return 0;
2921}
2922
165125e1
JA
2923static inline int attempt_front_merge(struct request_queue *q,
2924 struct request *rq)
1da177e4
LT
2925{
2926 struct request *prev = elv_former_request(q, rq);
2927
2928 if (prev)
2929 return attempt_merge(q, prev, rq);
2930
2931 return 0;
2932}
2933
52d9e675
TH
2934static void init_request_from_bio(struct request *req, struct bio *bio)
2935{
4aff5e23 2936 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2937
2938 /*
2939 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2940 */
2941 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2942 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2943
2944 /*
2945 * REQ_BARRIER implies no merging, but lets make it explicit
2946 */
2947 if (unlikely(bio_barrier(bio)))
4aff5e23 2948 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2949
b31dc66a 2950 if (bio_sync(bio))
4aff5e23 2951 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2952 if (bio_rw_meta(bio))
2953 req->cmd_flags |= REQ_RW_META;
b31dc66a 2954
52d9e675
TH
2955 req->errors = 0;
2956 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2957 req->ioprio = bio_prio(bio);
52d9e675 2958 req->start_time = jiffies;
bc1c56fd 2959 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2960}
2961
165125e1 2962static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2963{
450991bc 2964 struct request *req;
51da90fc
JA
2965 int el_ret, nr_sectors, barrier, err;
2966 const unsigned short prio = bio_prio(bio);
2967 const int sync = bio_sync(bio);
7749a8d4 2968 int rw_flags;
1da177e4 2969
1da177e4 2970 nr_sectors = bio_sectors(bio);
1da177e4
LT
2971
2972 /*
2973 * low level driver can indicate that it wants pages above a
2974 * certain limit bounced to low memory (ie for highmem, or even
2975 * ISA dma in theory)
2976 */
2977 blk_queue_bounce(q, &bio);
2978
1da177e4 2979 barrier = bio_barrier(bio);
797e7dbb 2980 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2981 err = -EOPNOTSUPP;
2982 goto end_io;
2983 }
2984
1da177e4
LT
2985 spin_lock_irq(q->queue_lock);
2986
450991bc 2987 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2988 goto get_rq;
2989
2990 el_ret = elv_merge(q, &req, bio);
2991 switch (el_ret) {
2992 case ELEVATOR_BACK_MERGE:
2993 BUG_ON(!rq_mergeable(req));
2994
1aa4f24f 2995 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2996 break;
2997
2056a782
JA
2998 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2999
1da177e4
LT
3000 req->biotail->bi_next = bio;
3001 req->biotail = bio;
3002 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3003 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3004 drive_stat_acct(req, nr_sectors, 0);
3005 if (!attempt_back_merge(q, req))
2e662b65 3006 elv_merged_request(q, req, el_ret);
1da177e4
LT
3007 goto out;
3008
3009 case ELEVATOR_FRONT_MERGE:
3010 BUG_ON(!rq_mergeable(req));
3011
1aa4f24f 3012 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3013 break;
3014
2056a782
JA
3015 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3016
1da177e4
LT
3017 bio->bi_next = req->bio;
3018 req->bio = bio;
3019
3020 /*
3021 * may not be valid. if the low level driver said
3022 * it didn't need a bounce buffer then it better
3023 * not touch req->buffer either...
3024 */
3025 req->buffer = bio_data(bio);
51da90fc
JA
3026 req->current_nr_sectors = bio_cur_sectors(bio);
3027 req->hard_cur_sectors = req->current_nr_sectors;
3028 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3029 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3030 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3031 drive_stat_acct(req, nr_sectors, 0);
3032 if (!attempt_front_merge(q, req))
2e662b65 3033 elv_merged_request(q, req, el_ret);
1da177e4
LT
3034 goto out;
3035
450991bc 3036 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3037 default:
450991bc 3038 ;
1da177e4
LT
3039 }
3040
450991bc 3041get_rq:
7749a8d4
JA
3042 /*
3043 * This sync check and mask will be re-done in init_request_from_bio(),
3044 * but we need to set it earlier to expose the sync flag to the
3045 * rq allocator and io schedulers.
3046 */
3047 rw_flags = bio_data_dir(bio);
3048 if (sync)
3049 rw_flags |= REQ_RW_SYNC;
3050
1da177e4 3051 /*
450991bc 3052 * Grab a free request. This is might sleep but can not fail.
d6344532 3053 * Returns with the queue unlocked.
450991bc 3054 */
7749a8d4 3055 req = get_request_wait(q, rw_flags, bio);
d6344532 3056
450991bc
NP
3057 /*
3058 * After dropping the lock and possibly sleeping here, our request
3059 * may now be mergeable after it had proven unmergeable (above).
3060 * We don't worry about that case for efficiency. It won't happen
3061 * often, and the elevators are able to handle it.
1da177e4 3062 */
52d9e675 3063 init_request_from_bio(req, bio);
1da177e4 3064
450991bc
NP
3065 spin_lock_irq(q->queue_lock);
3066 if (elv_queue_empty(q))
3067 blk_plug_device(q);
1da177e4
LT
3068 add_request(q, req);
3069out:
4a534f93 3070 if (sync)
1da177e4
LT
3071 __generic_unplug_device(q);
3072
3073 spin_unlock_irq(q->queue_lock);
3074 return 0;
3075
3076end_io:
6712ecf8 3077 bio_endio(bio, err);
1da177e4
LT
3078 return 0;
3079}
3080
3081/*
3082 * If bio->bi_dev is a partition, remap the location
3083 */
3084static inline void blk_partition_remap(struct bio *bio)
3085{
3086 struct block_device *bdev = bio->bi_bdev;
3087
bf2de6f5 3088 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3089 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3090 const int rw = bio_data_dir(bio);
3091
3092 p->sectors[rw] += bio_sectors(bio);
3093 p->ios[rw]++;
1da177e4 3094
1da177e4
LT
3095 bio->bi_sector += p->start_sect;
3096 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3097
3098 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3099 bdev->bd_dev, bio->bi_sector,
3100 bio->bi_sector - p->start_sect);
1da177e4
LT
3101 }
3102}
3103
1da177e4
LT
3104static void handle_bad_sector(struct bio *bio)
3105{
3106 char b[BDEVNAME_SIZE];
3107
3108 printk(KERN_INFO "attempt to access beyond end of device\n");
3109 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3110 bdevname(bio->bi_bdev, b),
3111 bio->bi_rw,
3112 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3113 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3114
3115 set_bit(BIO_EOF, &bio->bi_flags);
3116}
3117
c17bb495
AM
3118#ifdef CONFIG_FAIL_MAKE_REQUEST
3119
3120static DECLARE_FAULT_ATTR(fail_make_request);
3121
3122static int __init setup_fail_make_request(char *str)
3123{
3124 return setup_fault_attr(&fail_make_request, str);
3125}
3126__setup("fail_make_request=", setup_fail_make_request);
3127
3128static int should_fail_request(struct bio *bio)
3129{
3130 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3131 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3132 return should_fail(&fail_make_request, bio->bi_size);
3133
3134 return 0;
3135}
3136
3137static int __init fail_make_request_debugfs(void)
3138{
3139 return init_fault_attr_dentries(&fail_make_request,
3140 "fail_make_request");
3141}
3142
3143late_initcall(fail_make_request_debugfs);
3144
3145#else /* CONFIG_FAIL_MAKE_REQUEST */
3146
3147static inline int should_fail_request(struct bio *bio)
3148{
3149 return 0;
3150}
3151
3152#endif /* CONFIG_FAIL_MAKE_REQUEST */
3153
c07e2b41
JA
3154/*
3155 * Check whether this bio extends beyond the end of the device.
3156 */
3157static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3158{
3159 sector_t maxsector;
3160
3161 if (!nr_sectors)
3162 return 0;
3163
3164 /* Test device or partition size, when known. */
3165 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3166 if (maxsector) {
3167 sector_t sector = bio->bi_sector;
3168
3169 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3170 /*
3171 * This may well happen - the kernel calls bread()
3172 * without checking the size of the device, e.g., when
3173 * mounting a device.
3174 */
3175 handle_bad_sector(bio);
3176 return 1;
3177 }
3178 }
3179
3180 return 0;
3181}
3182
1da177e4
LT
3183/**
3184 * generic_make_request: hand a buffer to its device driver for I/O
3185 * @bio: The bio describing the location in memory and on the device.
3186 *
3187 * generic_make_request() is used to make I/O requests of block
3188 * devices. It is passed a &struct bio, which describes the I/O that needs
3189 * to be done.
3190 *
3191 * generic_make_request() does not return any status. The
3192 * success/failure status of the request, along with notification of
3193 * completion, is delivered asynchronously through the bio->bi_end_io
3194 * function described (one day) else where.
3195 *
3196 * The caller of generic_make_request must make sure that bi_io_vec
3197 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3198 * set to describe the device address, and the
3199 * bi_end_io and optionally bi_private are set to describe how
3200 * completion notification should be signaled.
3201 *
3202 * generic_make_request and the drivers it calls may use bi_next if this
3203 * bio happens to be merged with someone else, and may change bi_dev and
3204 * bi_sector for remaps as it sees fit. So the values of these fields
3205 * should NOT be depended on after the call to generic_make_request.
3206 */
d89d8796 3207static inline void __generic_make_request(struct bio *bio)
1da177e4 3208{
165125e1 3209 struct request_queue *q;
5ddfe969 3210 sector_t old_sector;
1da177e4 3211 int ret, nr_sectors = bio_sectors(bio);
2056a782 3212 dev_t old_dev;
1da177e4
LT
3213
3214 might_sleep();
1da177e4 3215
c07e2b41
JA
3216 if (bio_check_eod(bio, nr_sectors))
3217 goto end_io;
1da177e4
LT
3218
3219 /*
3220 * Resolve the mapping until finished. (drivers are
3221 * still free to implement/resolve their own stacking
3222 * by explicitly returning 0)
3223 *
3224 * NOTE: we don't repeat the blk_size check for each new device.
3225 * Stacking drivers are expected to know what they are doing.
3226 */
5ddfe969 3227 old_sector = -1;
2056a782 3228 old_dev = 0;
1da177e4
LT
3229 do {
3230 char b[BDEVNAME_SIZE];
3231
3232 q = bdev_get_queue(bio->bi_bdev);
3233 if (!q) {
3234 printk(KERN_ERR
3235 "generic_make_request: Trying to access "
3236 "nonexistent block-device %s (%Lu)\n",
3237 bdevname(bio->bi_bdev, b),
3238 (long long) bio->bi_sector);
3239end_io:
6712ecf8 3240 bio_endio(bio, -EIO);
1da177e4
LT
3241 break;
3242 }
3243
4fa253f3 3244 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3245 printk("bio too big device %s (%u > %u)\n",
3246 bdevname(bio->bi_bdev, b),
3247 bio_sectors(bio),
3248 q->max_hw_sectors);
3249 goto end_io;
3250 }
3251
fde6ad22 3252 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3253 goto end_io;
3254
c17bb495
AM
3255 if (should_fail_request(bio))
3256 goto end_io;
3257
1da177e4
LT
3258 /*
3259 * If this device has partitions, remap block n
3260 * of partition p to block n+start(p) of the disk.
3261 */
3262 blk_partition_remap(bio);
3263
5ddfe969 3264 if (old_sector != -1)
4fa253f3 3265 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3266 old_sector);
2056a782
JA
3267
3268 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3269
5ddfe969 3270 old_sector = bio->bi_sector;
2056a782
JA
3271 old_dev = bio->bi_bdev->bd_dev;
3272
c07e2b41
JA
3273 if (bio_check_eod(bio, nr_sectors))
3274 goto end_io;
5ddfe969 3275
1da177e4
LT
3276 ret = q->make_request_fn(q, bio);
3277 } while (ret);
3278}
3279
d89d8796
NB
3280/*
3281 * We only want one ->make_request_fn to be active at a time,
3282 * else stack usage with stacked devices could be a problem.
3283 * So use current->bio_{list,tail} to keep a list of requests
3284 * submited by a make_request_fn function.
3285 * current->bio_tail is also used as a flag to say if
3286 * generic_make_request is currently active in this task or not.
3287 * If it is NULL, then no make_request is active. If it is non-NULL,
3288 * then a make_request is active, and new requests should be added
3289 * at the tail
3290 */
3291void generic_make_request(struct bio *bio)
3292{
3293 if (current->bio_tail) {
3294 /* make_request is active */
3295 *(current->bio_tail) = bio;
3296 bio->bi_next = NULL;
3297 current->bio_tail = &bio->bi_next;
3298 return;
3299 }
3300 /* following loop may be a bit non-obvious, and so deserves some
3301 * explanation.
3302 * Before entering the loop, bio->bi_next is NULL (as all callers
3303 * ensure that) so we have a list with a single bio.
3304 * We pretend that we have just taken it off a longer list, so
3305 * we assign bio_list to the next (which is NULL) and bio_tail
3306 * to &bio_list, thus initialising the bio_list of new bios to be
3307 * added. __generic_make_request may indeed add some more bios
3308 * through a recursive call to generic_make_request. If it
3309 * did, we find a non-NULL value in bio_list and re-enter the loop
3310 * from the top. In this case we really did just take the bio
3311 * of the top of the list (no pretending) and so fixup bio_list and
3312 * bio_tail or bi_next, and call into __generic_make_request again.
3313 *
3314 * The loop was structured like this to make only one call to
3315 * __generic_make_request (which is important as it is large and
3316 * inlined) and to keep the structure simple.
3317 */
3318 BUG_ON(bio->bi_next);
3319 do {
3320 current->bio_list = bio->bi_next;
3321 if (bio->bi_next == NULL)
3322 current->bio_tail = &current->bio_list;
3323 else
3324 bio->bi_next = NULL;
3325 __generic_make_request(bio);
3326 bio = current->bio_list;
3327 } while (bio);
3328 current->bio_tail = NULL; /* deactivate */
3329}
3330
1da177e4
LT
3331EXPORT_SYMBOL(generic_make_request);
3332
3333/**
3334 * submit_bio: submit a bio to the block device layer for I/O
3335 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3336 * @bio: The &struct bio which describes the I/O
3337 *
3338 * submit_bio() is very similar in purpose to generic_make_request(), and
3339 * uses that function to do most of the work. Both are fairly rough
3340 * interfaces, @bio must be presetup and ready for I/O.
3341 *
3342 */
3343void submit_bio(int rw, struct bio *bio)
3344{
3345 int count = bio_sectors(bio);
3346
22e2c507 3347 bio->bi_rw |= rw;
1da177e4 3348
bf2de6f5
JA
3349 /*
3350 * If it's a regular read/write or a barrier with data attached,
3351 * go through the normal accounting stuff before submission.
3352 */
3353 if (!bio_empty_barrier(bio)) {
3354
3355 BIO_BUG_ON(!bio->bi_size);
3356 BIO_BUG_ON(!bio->bi_io_vec);
3357
3358 if (rw & WRITE) {
3359 count_vm_events(PGPGOUT, count);
3360 } else {
3361 task_io_account_read(bio->bi_size);
3362 count_vm_events(PGPGIN, count);
3363 }
3364
3365 if (unlikely(block_dump)) {
3366 char b[BDEVNAME_SIZE];
3367 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3368 current->comm, current->pid,
3369 (rw & WRITE) ? "WRITE" : "READ",
3370 (unsigned long long)bio->bi_sector,
3371 bdevname(bio->bi_bdev,b));
3372 }
1da177e4
LT
3373 }
3374
3375 generic_make_request(bio);
3376}
3377
3378EXPORT_SYMBOL(submit_bio);
3379
93d17d3d 3380static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3381{
3382 if (blk_fs_request(rq)) {
3383 rq->hard_sector += nsect;
3384 rq->hard_nr_sectors -= nsect;
3385
3386 /*
3387 * Move the I/O submission pointers ahead if required.
3388 */
3389 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3390 (rq->sector <= rq->hard_sector)) {
3391 rq->sector = rq->hard_sector;
3392 rq->nr_sectors = rq->hard_nr_sectors;
3393 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3394 rq->current_nr_sectors = rq->hard_cur_sectors;
3395 rq->buffer = bio_data(rq->bio);
3396 }
3397
3398 /*
3399 * if total number of sectors is less than the first segment
3400 * size, something has gone terribly wrong
3401 */
3402 if (rq->nr_sectors < rq->current_nr_sectors) {
3403 printk("blk: request botched\n");
3404 rq->nr_sectors = rq->current_nr_sectors;
3405 }
3406 }
3407}
3408
3409static int __end_that_request_first(struct request *req, int uptodate,
3410 int nr_bytes)
3411{
3412 int total_bytes, bio_nbytes, error, next_idx = 0;
3413 struct bio *bio;
3414
2056a782
JA
3415 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3416
1da177e4
LT
3417 /*
3418 * extend uptodate bool to allow < 0 value to be direct io error
3419 */
3420 error = 0;
3421 if (end_io_error(uptodate))
3422 error = !uptodate ? -EIO : uptodate;
3423
3424 /*
3425 * for a REQ_BLOCK_PC request, we want to carry any eventual
3426 * sense key with us all the way through
3427 */
3428 if (!blk_pc_request(req))
3429 req->errors = 0;
3430
3431 if (!uptodate) {
4aff5e23 3432 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3433 printk("end_request: I/O error, dev %s, sector %llu\n",
3434 req->rq_disk ? req->rq_disk->disk_name : "?",
3435 (unsigned long long)req->sector);
3436 }
3437
d72d904a 3438 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3439 const int rw = rq_data_dir(req);
3440
53e86061 3441 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3442 }
3443
1da177e4
LT
3444 total_bytes = bio_nbytes = 0;
3445 while ((bio = req->bio) != NULL) {
3446 int nbytes;
3447
bf2de6f5
JA
3448 /*
3449 * For an empty barrier request, the low level driver must
3450 * store a potential error location in ->sector. We pass
3451 * that back up in ->bi_sector.
3452 */
3453 if (blk_empty_barrier(req))
3454 bio->bi_sector = req->sector;
3455
1da177e4
LT
3456 if (nr_bytes >= bio->bi_size) {
3457 req->bio = bio->bi_next;
3458 nbytes = bio->bi_size;
5bb23a68 3459 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3460 next_idx = 0;
3461 bio_nbytes = 0;
3462 } else {
3463 int idx = bio->bi_idx + next_idx;
3464
3465 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3466 blk_dump_rq_flags(req, "__end_that");
3467 printk("%s: bio idx %d >= vcnt %d\n",
3468 __FUNCTION__,
3469 bio->bi_idx, bio->bi_vcnt);
3470 break;
3471 }
3472
3473 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3474 BIO_BUG_ON(nbytes > bio->bi_size);
3475
3476 /*
3477 * not a complete bvec done
3478 */
3479 if (unlikely(nbytes > nr_bytes)) {
3480 bio_nbytes += nr_bytes;
3481 total_bytes += nr_bytes;
3482 break;
3483 }
3484
3485 /*
3486 * advance to the next vector
3487 */
3488 next_idx++;
3489 bio_nbytes += nbytes;
3490 }
3491
3492 total_bytes += nbytes;
3493 nr_bytes -= nbytes;
3494
3495 if ((bio = req->bio)) {
3496 /*
3497 * end more in this run, or just return 'not-done'
3498 */
3499 if (unlikely(nr_bytes <= 0))
3500 break;
3501 }
3502 }
3503
3504 /*
3505 * completely done
3506 */
3507 if (!req->bio)
3508 return 0;
3509
3510 /*
3511 * if the request wasn't completed, update state
3512 */
3513 if (bio_nbytes) {
5bb23a68 3514 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3515 bio->bi_idx += next_idx;
3516 bio_iovec(bio)->bv_offset += nr_bytes;
3517 bio_iovec(bio)->bv_len -= nr_bytes;
3518 }
3519
3520 blk_recalc_rq_sectors(req, total_bytes >> 9);
3521 blk_recalc_rq_segments(req);
3522 return 1;
3523}
3524
3525/**
3526 * end_that_request_first - end I/O on a request
3527 * @req: the request being processed
3528 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3529 * @nr_sectors: number of sectors to end I/O on
3530 *
3531 * Description:
3532 * Ends I/O on a number of sectors attached to @req, and sets it up
3533 * for the next range of segments (if any) in the cluster.
3534 *
3535 * Return:
3536 * 0 - we are done with this request, call end_that_request_last()
3537 * 1 - still buffers pending for this request
3538 **/
3539int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3540{
3541 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3542}
3543
3544EXPORT_SYMBOL(end_that_request_first);
3545
3546/**
3547 * end_that_request_chunk - end I/O on a request
3548 * @req: the request being processed
3549 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3550 * @nr_bytes: number of bytes to complete
3551 *
3552 * Description:
3553 * Ends I/O on a number of bytes attached to @req, and sets it up
3554 * for the next range of segments (if any). Like end_that_request_first(),
3555 * but deals with bytes instead of sectors.
3556 *
3557 * Return:
3558 * 0 - we are done with this request, call end_that_request_last()
3559 * 1 - still buffers pending for this request
3560 **/
3561int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3562{
3563 return __end_that_request_first(req, uptodate, nr_bytes);
3564}
3565
3566EXPORT_SYMBOL(end_that_request_chunk);
3567
ff856bad
JA
3568/*
3569 * splice the completion data to a local structure and hand off to
3570 * process_completion_queue() to complete the requests
3571 */
3572static void blk_done_softirq(struct softirq_action *h)
3573{
626ab0e6 3574 struct list_head *cpu_list, local_list;
ff856bad
JA
3575
3576 local_irq_disable();
3577 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3578 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3579 local_irq_enable();
3580
3581 while (!list_empty(&local_list)) {
3582 struct request *rq = list_entry(local_list.next, struct request, donelist);
3583
3584 list_del_init(&rq->donelist);
3585 rq->q->softirq_done_fn(rq);
3586 }
3587}
3588
db47d475 3589static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3590 void *hcpu)
3591{
3592 /*
3593 * If a CPU goes away, splice its entries to the current CPU
3594 * and trigger a run of the softirq
3595 */
8bb78442 3596 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3597 int cpu = (unsigned long) hcpu;
3598
3599 local_irq_disable();
3600 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3601 &__get_cpu_var(blk_cpu_done));
3602 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3603 local_irq_enable();
3604 }
3605
3606 return NOTIFY_OK;
3607}
3608
3609
db47d475 3610static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3611 .notifier_call = blk_cpu_notify,
3612};
3613
ff856bad
JA
3614/**
3615 * blk_complete_request - end I/O on a request
3616 * @req: the request being processed
3617 *
3618 * Description:
3619 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3620 * unless the driver actually implements this in its completion callback
4fa253f3 3621 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3622 * through a softirq handler. The user must have registered a completion
3623 * callback through blk_queue_softirq_done().
3624 **/
3625
3626void blk_complete_request(struct request *req)
3627{
3628 struct list_head *cpu_list;
3629 unsigned long flags;
3630
3631 BUG_ON(!req->q->softirq_done_fn);
3632
3633 local_irq_save(flags);
3634
3635 cpu_list = &__get_cpu_var(blk_cpu_done);
3636 list_add_tail(&req->donelist, cpu_list);
3637 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3638
3639 local_irq_restore(flags);
3640}
3641
3642EXPORT_SYMBOL(blk_complete_request);
3643
1da177e4
LT
3644/*
3645 * queue lock must be held
3646 */
8ffdc655 3647void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3648{
3649 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3650 int error;
3651
3652 /*
3653 * extend uptodate bool to allow < 0 value to be direct io error
3654 */
3655 error = 0;
3656 if (end_io_error(uptodate))
3657 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3658
3659 if (unlikely(laptop_mode) && blk_fs_request(req))
3660 laptop_io_completion();
3661
fd0ff8aa
JA
3662 /*
3663 * Account IO completion. bar_rq isn't accounted as a normal
3664 * IO on queueing nor completion. Accounting the containing
3665 * request is enough.
3666 */
3667 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3668 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3669 const int rw = rq_data_dir(req);
3670
3671 __disk_stat_inc(disk, ios[rw]);
3672 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3673 disk_round_stats(disk);
3674 disk->in_flight--;
3675 }
3676 if (req->end_io)
8ffdc655 3677 req->end_io(req, error);
1da177e4
LT
3678 else
3679 __blk_put_request(req->q, req);
3680}
3681
3682EXPORT_SYMBOL(end_that_request_last);
3683
a0cd1285
JA
3684static inline void __end_request(struct request *rq, int uptodate,
3685 unsigned int nr_bytes, int dequeue)
1da177e4 3686{
a0cd1285
JA
3687 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3688 if (dequeue)
3689 blkdev_dequeue_request(rq);
3690 add_disk_randomness(rq->rq_disk);
3691 end_that_request_last(rq, uptodate);
1da177e4
LT
3692 }
3693}
3694
a0cd1285
JA
3695static unsigned int rq_byte_size(struct request *rq)
3696{
3697 if (blk_fs_request(rq))
3698 return rq->hard_nr_sectors << 9;
3699
3700 return rq->data_len;
3701}
3702
3703/**
3704 * end_queued_request - end all I/O on a queued request
3705 * @rq: the request being processed
3706 * @uptodate: error value or 0/1 uptodate flag
3707 *
3708 * Description:
3709 * Ends all I/O on a request, and removes it from the block layer queues.
3710 * Not suitable for normal IO completion, unless the driver still has
3711 * the request attached to the block layer.
3712 *
3713 **/
3714void end_queued_request(struct request *rq, int uptodate)
3715{
3716 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3717}
3718EXPORT_SYMBOL(end_queued_request);
3719
3720/**
3721 * end_dequeued_request - end all I/O on a dequeued request
3722 * @rq: the request being processed
3723 * @uptodate: error value or 0/1 uptodate flag
3724 *
3725 * Description:
3726 * Ends all I/O on a request. The request must already have been
3727 * dequeued using blkdev_dequeue_request(), as is normally the case
3728 * for most drivers.
3729 *
3730 **/
3731void end_dequeued_request(struct request *rq, int uptodate)
3732{
3733 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3734}
3735EXPORT_SYMBOL(end_dequeued_request);
3736
3737
3738/**
3739 * end_request - end I/O on the current segment of the request
3740 * @rq: the request being processed
3741 * @uptodate: error value or 0/1 uptodate flag
3742 *
3743 * Description:
3744 * Ends I/O on the current segment of a request. If that is the only
3745 * remaining segment, the request is also completed and freed.
3746 *
3747 * This is a remnant of how older block drivers handled IO completions.
3748 * Modern drivers typically end IO on the full request in one go, unless
3749 * they have a residual value to account for. For that case this function
3750 * isn't really useful, unless the residual just happens to be the
3751 * full current segment. In other words, don't use this function in new
3752 * code. Either use end_request_completely(), or the
3753 * end_that_request_chunk() (along with end_that_request_last()) for
3754 * partial completions.
3755 *
3756 **/
3757void end_request(struct request *req, int uptodate)
3758{
3759 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3760}
1da177e4
LT
3761EXPORT_SYMBOL(end_request);
3762
66846572
N
3763static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3764 struct bio *bio)
1da177e4 3765{
4aff5e23
JA
3766 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3767 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3768
3769 rq->nr_phys_segments = bio_phys_segments(q, bio);
3770 rq->nr_hw_segments = bio_hw_segments(q, bio);
3771 rq->current_nr_sectors = bio_cur_sectors(bio);
3772 rq->hard_cur_sectors = rq->current_nr_sectors;
3773 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3774 rq->buffer = bio_data(bio);
0e75f906 3775 rq->data_len = bio->bi_size;
1da177e4
LT
3776
3777 rq->bio = rq->biotail = bio;
1da177e4 3778
66846572
N
3779 if (bio->bi_bdev)
3780 rq->rq_disk = bio->bi_bdev->bd_disk;
3781}
1da177e4
LT
3782
3783int kblockd_schedule_work(struct work_struct *work)
3784{
3785 return queue_work(kblockd_workqueue, work);
3786}
3787
3788EXPORT_SYMBOL(kblockd_schedule_work);
3789
19a75d83 3790void kblockd_flush_work(struct work_struct *work)
1da177e4 3791{
28e53bdd 3792 cancel_work_sync(work);
1da177e4 3793}
19a75d83 3794EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3795
3796int __init blk_dev_init(void)
3797{
ff856bad
JA
3798 int i;
3799
1da177e4
LT
3800 kblockd_workqueue = create_workqueue("kblockd");
3801 if (!kblockd_workqueue)
3802 panic("Failed to create kblockd\n");
3803
3804 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3805 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3806
3807 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3808 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3809
3810 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3811 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3812
0a945022 3813 for_each_possible_cpu(i)
ff856bad
JA
3814 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3815
3816 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3817 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3818
f772b3d9
VT
3819 blk_max_low_pfn = max_low_pfn - 1;
3820 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3821
3822 return 0;
3823}
3824
3825/*
3826 * IO Context helper functions
3827 */
3828void put_io_context(struct io_context *ioc)
3829{
3830 if (ioc == NULL)
3831 return;
3832
3833 BUG_ON(atomic_read(&ioc->refcount) == 0);
3834
3835 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3836 struct cfq_io_context *cic;
3837
334e94de 3838 rcu_read_lock();
1da177e4
LT
3839 if (ioc->aic && ioc->aic->dtor)
3840 ioc->aic->dtor(ioc->aic);
e2d74ac0 3841 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3842 struct rb_node *n = rb_first(&ioc->cic_root);
3843
3844 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3845 cic->dtor(ioc);
3846 }
334e94de 3847 rcu_read_unlock();
1da177e4
LT
3848
3849 kmem_cache_free(iocontext_cachep, ioc);
3850 }
3851}
3852EXPORT_SYMBOL(put_io_context);
3853
3854/* Called by the exitting task */
3855void exit_io_context(void)
3856{
1da177e4 3857 struct io_context *ioc;
e2d74ac0 3858 struct cfq_io_context *cic;
1da177e4 3859
22e2c507 3860 task_lock(current);
1da177e4
LT
3861 ioc = current->io_context;
3862 current->io_context = NULL;
22e2c507 3863 task_unlock(current);
1da177e4 3864
25034d7a 3865 ioc->task = NULL;
1da177e4
LT
3866 if (ioc->aic && ioc->aic->exit)
3867 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3868 if (ioc->cic_root.rb_node != NULL) {
3869 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3870 cic->exit(ioc);
3871 }
25034d7a 3872
1da177e4
LT
3873 put_io_context(ioc);
3874}
3875
3876/*
3877 * If the current task has no IO context then create one and initialise it.
fb3cc432 3878 * Otherwise, return its existing IO context.
1da177e4 3879 *
fb3cc432
NP
3880 * This returned IO context doesn't have a specifically elevated refcount,
3881 * but since the current task itself holds a reference, the context can be
3882 * used in general code, so long as it stays within `current` context.
1da177e4 3883 */
b5deef90 3884static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3885{
3886 struct task_struct *tsk = current;
1da177e4
LT
3887 struct io_context *ret;
3888
1da177e4 3889 ret = tsk->io_context;
fb3cc432
NP
3890 if (likely(ret))
3891 return ret;
1da177e4 3892
b5deef90 3893 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3894 if (ret) {
3895 atomic_set(&ret->refcount, 1);
22e2c507 3896 ret->task = current;
fc46379d 3897 ret->ioprio_changed = 0;
1da177e4
LT
3898 ret->last_waited = jiffies; /* doesn't matter... */
3899 ret->nr_batch_requests = 0; /* because this is 0 */
3900 ret->aic = NULL;
e2d74ac0 3901 ret->cic_root.rb_node = NULL;
4e521c27 3902 ret->ioc_data = NULL;
9f83e45e
ON
3903 /* make sure set_task_ioprio() sees the settings above */
3904 smp_wmb();
fb3cc432
NP
3905 tsk->io_context = ret;
3906 }
1da177e4 3907
fb3cc432
NP
3908 return ret;
3909}
1da177e4 3910
fb3cc432
NP
3911/*
3912 * If the current task has no IO context then create one and initialise it.
3913 * If it does have a context, take a ref on it.
3914 *
3915 * This is always called in the context of the task which submitted the I/O.
3916 */
b5deef90 3917struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3918{
3919 struct io_context *ret;
b5deef90 3920 ret = current_io_context(gfp_flags, node);
fb3cc432 3921 if (likely(ret))
1da177e4 3922 atomic_inc(&ret->refcount);
1da177e4
LT
3923 return ret;
3924}
3925EXPORT_SYMBOL(get_io_context);
3926
3927void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3928{
3929 struct io_context *src = *psrc;
3930 struct io_context *dst = *pdst;
3931
3932 if (src) {
3933 BUG_ON(atomic_read(&src->refcount) == 0);
3934 atomic_inc(&src->refcount);
3935 put_io_context(dst);
3936 *pdst = src;
3937 }
3938}
3939EXPORT_SYMBOL(copy_io_context);
3940
3941void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3942{
3943 struct io_context *temp;
3944 temp = *ioc1;
3945 *ioc1 = *ioc2;
3946 *ioc2 = temp;
3947}
3948EXPORT_SYMBOL(swap_io_context);
3949
3950/*
3951 * sysfs parts below
3952 */
3953struct queue_sysfs_entry {
3954 struct attribute attr;
3955 ssize_t (*show)(struct request_queue *, char *);
3956 ssize_t (*store)(struct request_queue *, const char *, size_t);
3957};
3958
3959static ssize_t
3960queue_var_show(unsigned int var, char *page)
3961{
3962 return sprintf(page, "%d\n", var);
3963}
3964
3965static ssize_t
3966queue_var_store(unsigned long *var, const char *page, size_t count)
3967{
3968 char *p = (char *) page;
3969
3970 *var = simple_strtoul(p, &p, 10);
3971 return count;
3972}
3973
3974static ssize_t queue_requests_show(struct request_queue *q, char *page)
3975{
3976 return queue_var_show(q->nr_requests, (page));
3977}
3978
3979static ssize_t
3980queue_requests_store(struct request_queue *q, const char *page, size_t count)
3981{
3982 struct request_list *rl = &q->rq;
c981ff9f
AV
3983 unsigned long nr;
3984 int ret = queue_var_store(&nr, page, count);
3985 if (nr < BLKDEV_MIN_RQ)
3986 nr = BLKDEV_MIN_RQ;
1da177e4 3987
c981ff9f
AV
3988 spin_lock_irq(q->queue_lock);
3989 q->nr_requests = nr;
1da177e4
LT
3990 blk_queue_congestion_threshold(q);
3991
3992 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3993 blk_set_queue_congested(q, READ);
1da177e4 3994 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3995 blk_clear_queue_congested(q, READ);
1da177e4
LT
3996
3997 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3998 blk_set_queue_congested(q, WRITE);
1da177e4 3999 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4000 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4001
4002 if (rl->count[READ] >= q->nr_requests) {
4003 blk_set_queue_full(q, READ);
4004 } else if (rl->count[READ]+1 <= q->nr_requests) {
4005 blk_clear_queue_full(q, READ);
4006 wake_up(&rl->wait[READ]);
4007 }
4008
4009 if (rl->count[WRITE] >= q->nr_requests) {
4010 blk_set_queue_full(q, WRITE);
4011 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4012 blk_clear_queue_full(q, WRITE);
4013 wake_up(&rl->wait[WRITE]);
4014 }
c981ff9f 4015 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4016 return ret;
4017}
4018
4019static ssize_t queue_ra_show(struct request_queue *q, char *page)
4020{
4021 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4022
4023 return queue_var_show(ra_kb, (page));
4024}
4025
4026static ssize_t
4027queue_ra_store(struct request_queue *q, const char *page, size_t count)
4028{
4029 unsigned long ra_kb;
4030 ssize_t ret = queue_var_store(&ra_kb, page, count);
4031
4032 spin_lock_irq(q->queue_lock);
1da177e4
LT
4033 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4034 spin_unlock_irq(q->queue_lock);
4035
4036 return ret;
4037}
4038
4039static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4040{
4041 int max_sectors_kb = q->max_sectors >> 1;
4042
4043 return queue_var_show(max_sectors_kb, (page));
4044}
4045
4046static ssize_t
4047queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4048{
4049 unsigned long max_sectors_kb,
4050 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4051 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4052 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4053
4054 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4055 return -EINVAL;
4056 /*
4057 * Take the queue lock to update the readahead and max_sectors
4058 * values synchronously:
4059 */
4060 spin_lock_irq(q->queue_lock);
1da177e4
LT
4061 q->max_sectors = max_sectors_kb << 1;
4062 spin_unlock_irq(q->queue_lock);
4063
4064 return ret;
4065}
4066
4067static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4068{
4069 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4070
4071 return queue_var_show(max_hw_sectors_kb, (page));
4072}
4073
563063a8
JA
4074static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4075{
4076 return queue_var_show(q->max_phys_segments, page);
4077}
4078
4079static ssize_t queue_max_segments_store(struct request_queue *q,
4080 const char *page, size_t count)
4081{
4082 unsigned long segments;
4083 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4084
563063a8
JA
4085 spin_lock_irq(q->queue_lock);
4086 q->max_phys_segments = segments;
4087 spin_unlock_irq(q->queue_lock);
1da177e4 4088
563063a8
JA
4089 return ret;
4090}
1da177e4
LT
4091static struct queue_sysfs_entry queue_requests_entry = {
4092 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4093 .show = queue_requests_show,
4094 .store = queue_requests_store,
4095};
4096
4097static struct queue_sysfs_entry queue_ra_entry = {
4098 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4099 .show = queue_ra_show,
4100 .store = queue_ra_store,
4101};
4102
4103static struct queue_sysfs_entry queue_max_sectors_entry = {
4104 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4105 .show = queue_max_sectors_show,
4106 .store = queue_max_sectors_store,
4107};
4108
4109static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4110 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4111 .show = queue_max_hw_sectors_show,
4112};
4113
563063a8
JA
4114static struct queue_sysfs_entry queue_max_segments_entry = {
4115 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4116 .show = queue_max_segments_show,
4117 .store = queue_max_segments_store,
4118};
4119
1da177e4
LT
4120static struct queue_sysfs_entry queue_iosched_entry = {
4121 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4122 .show = elv_iosched_show,
4123 .store = elv_iosched_store,
4124};
4125
4126static struct attribute *default_attrs[] = {
4127 &queue_requests_entry.attr,
4128 &queue_ra_entry.attr,
4129 &queue_max_hw_sectors_entry.attr,
4130 &queue_max_sectors_entry.attr,
563063a8 4131 &queue_max_segments_entry.attr,
1da177e4
LT
4132 &queue_iosched_entry.attr,
4133 NULL,
4134};
4135
4136#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4137
4138static ssize_t
4139queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4140{
4141 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4142 struct request_queue *q =
4143 container_of(kobj, struct request_queue, kobj);
483f4afc 4144 ssize_t res;
1da177e4 4145
1da177e4 4146 if (!entry->show)
6c1852a0 4147 return -EIO;
483f4afc
AV
4148 mutex_lock(&q->sysfs_lock);
4149 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4150 mutex_unlock(&q->sysfs_lock);
4151 return -ENOENT;
4152 }
4153 res = entry->show(q, page);
4154 mutex_unlock(&q->sysfs_lock);
4155 return res;
1da177e4
LT
4156}
4157
4158static ssize_t
4159queue_attr_store(struct kobject *kobj, struct attribute *attr,
4160 const char *page, size_t length)
4161{
4162 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4163 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4164
4165 ssize_t res;
1da177e4 4166
1da177e4 4167 if (!entry->store)
6c1852a0 4168 return -EIO;
483f4afc
AV
4169 mutex_lock(&q->sysfs_lock);
4170 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4171 mutex_unlock(&q->sysfs_lock);
4172 return -ENOENT;
4173 }
4174 res = entry->store(q, page, length);
4175 mutex_unlock(&q->sysfs_lock);
4176 return res;
1da177e4
LT
4177}
4178
4179static struct sysfs_ops queue_sysfs_ops = {
4180 .show = queue_attr_show,
4181 .store = queue_attr_store,
4182};
4183
93d17d3d 4184static struct kobj_type queue_ktype = {
1da177e4
LT
4185 .sysfs_ops = &queue_sysfs_ops,
4186 .default_attrs = default_attrs,
483f4afc 4187 .release = blk_release_queue,
1da177e4
LT
4188};
4189
4190int blk_register_queue(struct gendisk *disk)
4191{
4192 int ret;
4193
165125e1 4194 struct request_queue *q = disk->queue;
1da177e4
LT
4195
4196 if (!q || !q->request_fn)
4197 return -ENXIO;
4198
4199 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4200
483f4afc 4201 ret = kobject_add(&q->kobj);
1da177e4
LT
4202 if (ret < 0)
4203 return ret;
4204
483f4afc
AV
4205 kobject_uevent(&q->kobj, KOBJ_ADD);
4206
1da177e4
LT
4207 ret = elv_register_queue(q);
4208 if (ret) {
483f4afc
AV
4209 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4210 kobject_del(&q->kobj);
1da177e4
LT
4211 return ret;
4212 }
4213
4214 return 0;
4215}
4216
4217void blk_unregister_queue(struct gendisk *disk)
4218{
165125e1 4219 struct request_queue *q = disk->queue;
1da177e4
LT
4220
4221 if (q && q->request_fn) {
4222 elv_unregister_queue(q);
4223
483f4afc
AV
4224 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4225 kobject_del(&q->kobj);
1da177e4
LT
4226 kobject_put(&disk->kobj);
4227 }
4228}
This page took 0.639475 seconds and 5 git commands to generate.