Commit | Line | Data |
---|---|---|
c494e070 RS |
1 | /* gf128mul.c - GF(2^128) multiplication functions |
2 | * | |
3 | * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | |
4 | * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> | |
5 | * | |
6 | * Based on Dr Brian Gladman's (GPL'd) work published at | |
7 | * http://fp.gladman.plus.com/cryptography_technology/index.htm | |
8 | * See the original copyright notice below. | |
9 | * | |
10 | * This program is free software; you can redistribute it and/or modify it | |
11 | * under the terms of the GNU General Public License as published by the Free | |
12 | * Software Foundation; either version 2 of the License, or (at your option) | |
13 | * any later version. | |
14 | */ | |
15 | ||
16 | /* | |
17 | --------------------------------------------------------------------------- | |
18 | Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. | |
19 | ||
20 | LICENSE TERMS | |
21 | ||
22 | The free distribution and use of this software in both source and binary | |
23 | form is allowed (with or without changes) provided that: | |
24 | ||
25 | 1. distributions of this source code include the above copyright | |
26 | notice, this list of conditions and the following disclaimer; | |
27 | ||
28 | 2. distributions in binary form include the above copyright | |
29 | notice, this list of conditions and the following disclaimer | |
30 | in the documentation and/or other associated materials; | |
31 | ||
32 | 3. the copyright holder's name is not used to endorse products | |
33 | built using this software without specific written permission. | |
34 | ||
35 | ALTERNATIVELY, provided that this notice is retained in full, this product | |
36 | may be distributed under the terms of the GNU General Public License (GPL), | |
37 | in which case the provisions of the GPL apply INSTEAD OF those given above. | |
38 | ||
39 | DISCLAIMER | |
40 | ||
41 | This software is provided 'as is' with no explicit or implied warranties | |
42 | in respect of its properties, including, but not limited to, correctness | |
43 | and/or fitness for purpose. | |
44 | --------------------------------------------------------------------------- | |
45 | Issue 31/01/2006 | |
46 | ||
47 | This file provides fast multiplication in GF(128) as required by several | |
48 | cryptographic authentication modes | |
49 | */ | |
50 | ||
51 | #include <crypto/gf128mul.h> | |
52 | #include <linux/kernel.h> | |
53 | #include <linux/module.h> | |
54 | #include <linux/slab.h> | |
55 | ||
56 | #define gf128mul_dat(q) { \ | |
57 | q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ | |
58 | q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ | |
59 | q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ | |
60 | q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ | |
61 | q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ | |
62 | q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ | |
63 | q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ | |
64 | q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ | |
65 | q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ | |
66 | q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ | |
67 | q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ | |
68 | q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ | |
69 | q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ | |
70 | q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ | |
71 | q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ | |
72 | q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ | |
73 | q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ | |
74 | q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ | |
75 | q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ | |
76 | q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ | |
77 | q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ | |
78 | q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ | |
79 | q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ | |
80 | q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ | |
81 | q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ | |
82 | q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ | |
83 | q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ | |
84 | q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ | |
85 | q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ | |
86 | q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ | |
87 | q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ | |
88 | q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ | |
89 | } | |
90 | ||
91 | /* Given the value i in 0..255 as the byte overflow when a field element | |
92 | in GHASH is multipled by x^8, this function will return the values that | |
93 | are generated in the lo 16-bit word of the field value by applying the | |
94 | modular polynomial. The values lo_byte and hi_byte are returned via the | |
95 | macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into | |
96 | memory as required by a suitable definition of this macro operating on | |
97 | the table above | |
98 | */ | |
99 | ||
100 | #define xx(p, q) 0x##p##q | |
101 | ||
102 | #define xda_bbe(i) ( \ | |
103 | (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ | |
104 | (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ | |
105 | (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ | |
106 | (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ | |
107 | ) | |
108 | ||
109 | #define xda_lle(i) ( \ | |
110 | (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ | |
111 | (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ | |
112 | (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ | |
113 | (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ | |
114 | ) | |
115 | ||
116 | static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); | |
117 | static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); | |
118 | ||
119 | /* These functions multiply a field element by x, by x^4 and by x^8 | |
120 | * in the polynomial field representation. It uses 32-bit word operations | |
121 | * to gain speed but compensates for machine endianess and hence works | |
122 | * correctly on both styles of machine. | |
123 | */ | |
124 | ||
125 | static void gf128mul_x_lle(be128 *r, const be128 *x) | |
126 | { | |
127 | u64 a = be64_to_cpu(x->a); | |
128 | u64 b = be64_to_cpu(x->b); | |
129 | u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; | |
130 | ||
131 | r->b = cpu_to_be64((b >> 1) | (a << 63)); | |
132 | r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); | |
133 | } | |
134 | ||
135 | static void gf128mul_x_bbe(be128 *r, const be128 *x) | |
136 | { | |
137 | u64 a = be64_to_cpu(x->a); | |
138 | u64 b = be64_to_cpu(x->b); | |
139 | u64 _tt = gf128mul_table_bbe[a >> 63]; | |
140 | ||
141 | r->a = cpu_to_be64((a << 1) | (b >> 63)); | |
142 | r->b = cpu_to_be64((b << 1) ^ _tt); | |
143 | } | |
144 | ||
f19f5111 RS |
145 | void gf128mul_x_ble(be128 *r, const be128 *x) |
146 | { | |
147 | u64 a = le64_to_cpu(x->a); | |
148 | u64 b = le64_to_cpu(x->b); | |
149 | u64 _tt = gf128mul_table_bbe[b >> 63]; | |
150 | ||
151 | r->a = cpu_to_le64((a << 1) ^ _tt); | |
152 | r->b = cpu_to_le64((b << 1) | (a >> 63)); | |
153 | } | |
154 | EXPORT_SYMBOL(gf128mul_x_ble); | |
155 | ||
c494e070 RS |
156 | static void gf128mul_x8_lle(be128 *x) |
157 | { | |
158 | u64 a = be64_to_cpu(x->a); | |
159 | u64 b = be64_to_cpu(x->b); | |
160 | u64 _tt = gf128mul_table_lle[b & 0xff]; | |
161 | ||
162 | x->b = cpu_to_be64((b >> 8) | (a << 56)); | |
163 | x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | |
164 | } | |
165 | ||
166 | static void gf128mul_x8_bbe(be128 *x) | |
167 | { | |
168 | u64 a = be64_to_cpu(x->a); | |
169 | u64 b = be64_to_cpu(x->b); | |
170 | u64 _tt = gf128mul_table_bbe[a >> 56]; | |
171 | ||
172 | x->a = cpu_to_be64((a << 8) | (b >> 56)); | |
173 | x->b = cpu_to_be64((b << 8) ^ _tt); | |
174 | } | |
175 | ||
176 | void gf128mul_lle(be128 *r, const be128 *b) | |
177 | { | |
178 | be128 p[8]; | |
179 | int i; | |
180 | ||
181 | p[0] = *r; | |
182 | for (i = 0; i < 7; ++i) | |
183 | gf128mul_x_lle(&p[i + 1], &p[i]); | |
184 | ||
185 | memset(r, 0, sizeof(r)); | |
186 | for (i = 0;;) { | |
187 | u8 ch = ((u8 *)b)[15 - i]; | |
188 | ||
189 | if (ch & 0x80) | |
190 | be128_xor(r, r, &p[0]); | |
191 | if (ch & 0x40) | |
192 | be128_xor(r, r, &p[1]); | |
193 | if (ch & 0x20) | |
194 | be128_xor(r, r, &p[2]); | |
195 | if (ch & 0x10) | |
196 | be128_xor(r, r, &p[3]); | |
197 | if (ch & 0x08) | |
198 | be128_xor(r, r, &p[4]); | |
199 | if (ch & 0x04) | |
200 | be128_xor(r, r, &p[5]); | |
201 | if (ch & 0x02) | |
202 | be128_xor(r, r, &p[6]); | |
203 | if (ch & 0x01) | |
204 | be128_xor(r, r, &p[7]); | |
205 | ||
206 | if (++i >= 16) | |
207 | break; | |
208 | ||
209 | gf128mul_x8_lle(r); | |
210 | } | |
211 | } | |
212 | EXPORT_SYMBOL(gf128mul_lle); | |
213 | ||
214 | void gf128mul_bbe(be128 *r, const be128 *b) | |
215 | { | |
216 | be128 p[8]; | |
217 | int i; | |
218 | ||
219 | p[0] = *r; | |
220 | for (i = 0; i < 7; ++i) | |
221 | gf128mul_x_bbe(&p[i + 1], &p[i]); | |
222 | ||
223 | memset(r, 0, sizeof(r)); | |
224 | for (i = 0;;) { | |
225 | u8 ch = ((u8 *)b)[i]; | |
226 | ||
227 | if (ch & 0x80) | |
228 | be128_xor(r, r, &p[7]); | |
229 | if (ch & 0x40) | |
230 | be128_xor(r, r, &p[6]); | |
231 | if (ch & 0x20) | |
232 | be128_xor(r, r, &p[5]); | |
233 | if (ch & 0x10) | |
234 | be128_xor(r, r, &p[4]); | |
235 | if (ch & 0x08) | |
236 | be128_xor(r, r, &p[3]); | |
237 | if (ch & 0x04) | |
238 | be128_xor(r, r, &p[2]); | |
239 | if (ch & 0x02) | |
240 | be128_xor(r, r, &p[1]); | |
241 | if (ch & 0x01) | |
242 | be128_xor(r, r, &p[0]); | |
243 | ||
244 | if (++i >= 16) | |
245 | break; | |
246 | ||
247 | gf128mul_x8_bbe(r); | |
248 | } | |
249 | } | |
250 | EXPORT_SYMBOL(gf128mul_bbe); | |
251 | ||
252 | /* This version uses 64k bytes of table space. | |
253 | A 16 byte buffer has to be multiplied by a 16 byte key | |
254 | value in GF(128). If we consider a GF(128) value in | |
255 | the buffer's lowest byte, we can construct a table of | |
256 | the 256 16 byte values that result from the 256 values | |
257 | of this byte. This requires 4096 bytes. But we also | |
258 | need tables for each of the 16 higher bytes in the | |
259 | buffer as well, which makes 64 kbytes in total. | |
260 | */ | |
261 | /* additional explanation | |
262 | * t[0][BYTE] contains g*BYTE | |
263 | * t[1][BYTE] contains g*x^8*BYTE | |
264 | * .. | |
265 | * t[15][BYTE] contains g*x^120*BYTE */ | |
266 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) | |
267 | { | |
268 | struct gf128mul_64k *t; | |
269 | int i, j, k; | |
270 | ||
271 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
272 | if (!t) | |
273 | goto out; | |
274 | ||
275 | for (i = 0; i < 16; i++) { | |
276 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | |
277 | if (!t->t[i]) { | |
278 | gf128mul_free_64k(t); | |
279 | t = NULL; | |
280 | goto out; | |
281 | } | |
282 | } | |
283 | ||
284 | t->t[0]->t[128] = *g; | |
285 | for (j = 64; j > 0; j >>= 1) | |
286 | gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); | |
287 | ||
288 | for (i = 0;;) { | |
289 | for (j = 2; j < 256; j += j) | |
290 | for (k = 1; k < j; ++k) | |
291 | be128_xor(&t->t[i]->t[j + k], | |
292 | &t->t[i]->t[j], &t->t[i]->t[k]); | |
293 | ||
294 | if (++i >= 16) | |
295 | break; | |
296 | ||
297 | for (j = 128; j > 0; j >>= 1) { | |
298 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | |
299 | gf128mul_x8_lle(&t->t[i]->t[j]); | |
300 | } | |
301 | } | |
302 | ||
303 | out: | |
304 | return t; | |
305 | } | |
306 | EXPORT_SYMBOL(gf128mul_init_64k_lle); | |
307 | ||
308 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) | |
309 | { | |
310 | struct gf128mul_64k *t; | |
311 | int i, j, k; | |
312 | ||
313 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
314 | if (!t) | |
315 | goto out; | |
316 | ||
317 | for (i = 0; i < 16; i++) { | |
318 | t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | |
319 | if (!t->t[i]) { | |
320 | gf128mul_free_64k(t); | |
321 | t = NULL; | |
322 | goto out; | |
323 | } | |
324 | } | |
325 | ||
326 | t->t[0]->t[1] = *g; | |
327 | for (j = 1; j <= 64; j <<= 1) | |
328 | gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); | |
329 | ||
330 | for (i = 0;;) { | |
331 | for (j = 2; j < 256; j += j) | |
332 | for (k = 1; k < j; ++k) | |
333 | be128_xor(&t->t[i]->t[j + k], | |
334 | &t->t[i]->t[j], &t->t[i]->t[k]); | |
335 | ||
336 | if (++i >= 16) | |
337 | break; | |
338 | ||
339 | for (j = 128; j > 0; j >>= 1) { | |
340 | t->t[i]->t[j] = t->t[i - 1]->t[j]; | |
341 | gf128mul_x8_bbe(&t->t[i]->t[j]); | |
342 | } | |
343 | } | |
344 | ||
345 | out: | |
346 | return t; | |
347 | } | |
348 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); | |
349 | ||
350 | void gf128mul_free_64k(struct gf128mul_64k *t) | |
351 | { | |
352 | int i; | |
353 | ||
354 | for (i = 0; i < 16; i++) | |
355 | kfree(t->t[i]); | |
356 | kfree(t); | |
357 | } | |
358 | EXPORT_SYMBOL(gf128mul_free_64k); | |
359 | ||
360 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) | |
361 | { | |
362 | u8 *ap = (u8 *)a; | |
363 | be128 r[1]; | |
364 | int i; | |
365 | ||
366 | *r = t->t[0]->t[ap[0]]; | |
367 | for (i = 1; i < 16; ++i) | |
368 | be128_xor(r, r, &t->t[i]->t[ap[i]]); | |
369 | *a = *r; | |
370 | } | |
371 | EXPORT_SYMBOL(gf128mul_64k_lle); | |
372 | ||
373 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) | |
374 | { | |
375 | u8 *ap = (u8 *)a; | |
376 | be128 r[1]; | |
377 | int i; | |
378 | ||
379 | *r = t->t[0]->t[ap[15]]; | |
380 | for (i = 1; i < 16; ++i) | |
381 | be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); | |
382 | *a = *r; | |
383 | } | |
384 | EXPORT_SYMBOL(gf128mul_64k_bbe); | |
385 | ||
386 | /* This version uses 4k bytes of table space. | |
387 | A 16 byte buffer has to be multiplied by a 16 byte key | |
388 | value in GF(128). If we consider a GF(128) value in a | |
389 | single byte, we can construct a table of the 256 16 byte | |
390 | values that result from the 256 values of this byte. | |
391 | This requires 4096 bytes. If we take the highest byte in | |
392 | the buffer and use this table to get the result, we then | |
393 | have to multiply by x^120 to get the final value. For the | |
394 | next highest byte the result has to be multiplied by x^112 | |
395 | and so on. But we can do this by accumulating the result | |
396 | in an accumulator starting with the result for the top | |
397 | byte. We repeatedly multiply the accumulator value by | |
398 | x^8 and then add in (i.e. xor) the 16 bytes of the next | |
399 | lower byte in the buffer, stopping when we reach the | |
400 | lowest byte. This requires a 4096 byte table. | |
401 | */ | |
402 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) | |
403 | { | |
404 | struct gf128mul_4k *t; | |
405 | int j, k; | |
406 | ||
407 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
408 | if (!t) | |
409 | goto out; | |
410 | ||
411 | t->t[128] = *g; | |
412 | for (j = 64; j > 0; j >>= 1) | |
413 | gf128mul_x_lle(&t->t[j], &t->t[j+j]); | |
414 | ||
415 | for (j = 2; j < 256; j += j) | |
416 | for (k = 1; k < j; ++k) | |
417 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | |
418 | ||
419 | out: | |
420 | return t; | |
421 | } | |
422 | EXPORT_SYMBOL(gf128mul_init_4k_lle); | |
423 | ||
424 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) | |
425 | { | |
426 | struct gf128mul_4k *t; | |
427 | int j, k; | |
428 | ||
429 | t = kzalloc(sizeof(*t), GFP_KERNEL); | |
430 | if (!t) | |
431 | goto out; | |
432 | ||
433 | t->t[1] = *g; | |
434 | for (j = 1; j <= 64; j <<= 1) | |
435 | gf128mul_x_bbe(&t->t[j + j], &t->t[j]); | |
436 | ||
437 | for (j = 2; j < 256; j += j) | |
438 | for (k = 1; k < j; ++k) | |
439 | be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | |
440 | ||
441 | out: | |
442 | return t; | |
443 | } | |
444 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); | |
445 | ||
446 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) | |
447 | { | |
448 | u8 *ap = (u8 *)a; | |
449 | be128 r[1]; | |
450 | int i = 15; | |
451 | ||
452 | *r = t->t[ap[15]]; | |
453 | while (i--) { | |
454 | gf128mul_x8_lle(r); | |
455 | be128_xor(r, r, &t->t[ap[i]]); | |
456 | } | |
457 | *a = *r; | |
458 | } | |
459 | EXPORT_SYMBOL(gf128mul_4k_lle); | |
460 | ||
461 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) | |
462 | { | |
463 | u8 *ap = (u8 *)a; | |
464 | be128 r[1]; | |
465 | int i = 0; | |
466 | ||
467 | *r = t->t[ap[0]]; | |
468 | while (++i < 16) { | |
469 | gf128mul_x8_bbe(r); | |
470 | be128_xor(r, r, &t->t[ap[i]]); | |
471 | } | |
472 | *a = *r; | |
473 | } | |
474 | EXPORT_SYMBOL(gf128mul_4k_bbe); | |
475 | ||
476 | MODULE_LICENSE("GPL"); | |
477 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |