libata: Correct IORDY handling
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
9af5c9c9 238 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0 606 if (ata_dev_enabled(dev)) {
9af5c9c9 607 if (ata_msg_drv(dev->link->ap))
09d7f9b0 608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
9af5c9c9 738 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
A
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
A
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
9af5c9c9 1153 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
9af5c9c9
TH
1349 struct ata_link *link = dev->link;
1350 struct ata_port *ap = link->ap;
a2a7a662
TH
1351 u8 command = tf->command;
1352 struct ata_queued_cmd *qc;
2ab7db1f 1353 unsigned int tag, preempted_tag;
dedaf2b0 1354 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1355 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1356 unsigned long flags;
77853bf2 1357 unsigned int err_mask;
d95a717f 1358 int rc;
a2a7a662 1359
ba6a1308 1360 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1361
e3180499 1362 /* no internal command while frozen */
b51e9e5d 1363 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1364 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1365 return AC_ERR_SYSTEM;
1366 }
1367
2ab7db1f 1368 /* initialize internal qc */
a2a7a662 1369
2ab7db1f
TH
1370 /* XXX: Tag 0 is used for drivers with legacy EH as some
1371 * drivers choke if any other tag is given. This breaks
1372 * ata_tag_internal() test for those drivers. Don't use new
1373 * EH stuff without converting to it.
1374 */
1375 if (ap->ops->error_handler)
1376 tag = ATA_TAG_INTERNAL;
1377 else
1378 tag = 0;
1379
6cec4a39 1380 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1381 BUG();
f69499f4 1382 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1383
1384 qc->tag = tag;
1385 qc->scsicmd = NULL;
1386 qc->ap = ap;
1387 qc->dev = dev;
1388 ata_qc_reinit(qc);
1389
9af5c9c9
TH
1390 preempted_tag = link->active_tag;
1391 preempted_sactive = link->sactive;
dedaf2b0 1392 preempted_qc_active = ap->qc_active;
9af5c9c9
TH
1393 link->active_tag = ATA_TAG_POISON;
1394 link->sactive = 0;
dedaf2b0 1395 ap->qc_active = 0;
2ab7db1f
TH
1396
1397 /* prepare & issue qc */
a2a7a662 1398 qc->tf = *tf;
d69cf37d
TH
1399 if (cdb)
1400 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1401 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1402 qc->dma_dir = dma_dir;
1403 if (dma_dir != DMA_NONE) {
2432697b
TH
1404 unsigned int i, buflen = 0;
1405
1406 for (i = 0; i < n_elem; i++)
1407 buflen += sg[i].length;
1408
1409 ata_sg_init(qc, sg, n_elem);
49c80429 1410 qc->nbytes = buflen;
a2a7a662
TH
1411 }
1412
77853bf2 1413 qc->private_data = &wait;
a2a7a662
TH
1414 qc->complete_fn = ata_qc_complete_internal;
1415
8e0e694a 1416 ata_qc_issue(qc);
a2a7a662 1417
ba6a1308 1418 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1419
a8601e5f 1420 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1421
1422 ata_port_flush_task(ap);
41ade50c 1423
d95a717f 1424 if (!rc) {
ba6a1308 1425 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1426
1427 /* We're racing with irq here. If we lose, the
1428 * following test prevents us from completing the qc
d95a717f
TH
1429 * twice. If we win, the port is frozen and will be
1430 * cleaned up by ->post_internal_cmd().
a2a7a662 1431 */
77853bf2 1432 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1433 qc->err_mask |= AC_ERR_TIMEOUT;
1434
1435 if (ap->ops->error_handler)
1436 ata_port_freeze(ap);
1437 else
1438 ata_qc_complete(qc);
f15a1daf 1439
0dd4b21f
BP
1440 if (ata_msg_warn(ap))
1441 ata_dev_printk(dev, KERN_WARNING,
88574551 1442 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1443 }
1444
ba6a1308 1445 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1446 }
1447
d95a717f
TH
1448 /* do post_internal_cmd */
1449 if (ap->ops->post_internal_cmd)
1450 ap->ops->post_internal_cmd(qc);
1451
a51d644a
TH
1452 /* perform minimal error analysis */
1453 if (qc->flags & ATA_QCFLAG_FAILED) {
1454 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1455 qc->err_mask |= AC_ERR_DEV;
1456
1457 if (!qc->err_mask)
1458 qc->err_mask |= AC_ERR_OTHER;
1459
1460 if (qc->err_mask & ~AC_ERR_OTHER)
1461 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1462 }
1463
15869303 1464 /* finish up */
ba6a1308 1465 spin_lock_irqsave(ap->lock, flags);
15869303 1466
e61e0672 1467 *tf = qc->result_tf;
77853bf2
TH
1468 err_mask = qc->err_mask;
1469
1470 ata_qc_free(qc);
9af5c9c9
TH
1471 link->active_tag = preempted_tag;
1472 link->sactive = preempted_sactive;
dedaf2b0 1473 ap->qc_active = preempted_qc_active;
77853bf2 1474
1f7dd3e9
TH
1475 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1476 * Until those drivers are fixed, we detect the condition
1477 * here, fail the command with AC_ERR_SYSTEM and reenable the
1478 * port.
1479 *
1480 * Note that this doesn't change any behavior as internal
1481 * command failure results in disabling the device in the
1482 * higher layer for LLDDs without new reset/EH callbacks.
1483 *
1484 * Kill the following code as soon as those drivers are fixed.
1485 */
198e0fed 1486 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1487 err_mask |= AC_ERR_SYSTEM;
1488 ata_port_probe(ap);
1489 }
1490
ba6a1308 1491 spin_unlock_irqrestore(ap->lock, flags);
15869303 1492
77853bf2 1493 return err_mask;
a2a7a662
TH
1494}
1495
2432697b 1496/**
33480a0e 1497 * ata_exec_internal - execute libata internal command
2432697b
TH
1498 * @dev: Device to which the command is sent
1499 * @tf: Taskfile registers for the command and the result
1500 * @cdb: CDB for packet command
1501 * @dma_dir: Data tranfer direction of the command
1502 * @buf: Data buffer of the command
1503 * @buflen: Length of data buffer
1504 *
1505 * Wrapper around ata_exec_internal_sg() which takes simple
1506 * buffer instead of sg list.
1507 *
1508 * LOCKING:
1509 * None. Should be called with kernel context, might sleep.
1510 *
1511 * RETURNS:
1512 * Zero on success, AC_ERR_* mask on failure
1513 */
1514unsigned ata_exec_internal(struct ata_device *dev,
1515 struct ata_taskfile *tf, const u8 *cdb,
1516 int dma_dir, void *buf, unsigned int buflen)
1517{
33480a0e
TH
1518 struct scatterlist *psg = NULL, sg;
1519 unsigned int n_elem = 0;
2432697b 1520
33480a0e
TH
1521 if (dma_dir != DMA_NONE) {
1522 WARN_ON(!buf);
1523 sg_init_one(&sg, buf, buflen);
1524 psg = &sg;
1525 n_elem++;
1526 }
2432697b 1527
33480a0e 1528 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1529}
1530
977e6b9f
TH
1531/**
1532 * ata_do_simple_cmd - execute simple internal command
1533 * @dev: Device to which the command is sent
1534 * @cmd: Opcode to execute
1535 *
1536 * Execute a 'simple' command, that only consists of the opcode
1537 * 'cmd' itself, without filling any other registers
1538 *
1539 * LOCKING:
1540 * Kernel thread context (may sleep).
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
e58eb583 1544 */
77b08fb5 1545unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1546{
1547 struct ata_taskfile tf;
e58eb583
TH
1548
1549 ata_tf_init(dev, &tf);
1550
1551 tf.command = cmd;
1552 tf.flags |= ATA_TFLAG_DEVICE;
1553 tf.protocol = ATA_PROT_NODATA;
1554
977e6b9f 1555 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1556}
1557
1bc4ccff
AC
1558/**
1559 * ata_pio_need_iordy - check if iordy needed
1560 * @adev: ATA device
1561 *
1562 * Check if the current speed of the device requires IORDY. Used
1563 * by various controllers for chip configuration.
1564 */
a617c09f 1565
1bc4ccff
AC
1566unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567{
432729f0
AC
1568 /* Controller doesn't support IORDY. Probably a pointless check
1569 as the caller should know this */
9af5c9c9 1570 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1571 return 0;
432729f0
AC
1572 /* PIO3 and higher it is mandatory */
1573 if (adev->pio_mode > XFER_PIO_2)
1574 return 1;
1575 /* We turn it on when possible */
1576 if (ata_id_has_iordy(adev->id))
1bc4ccff 1577 return 1;
432729f0
AC
1578 return 0;
1579}
2e9edbf8 1580
432729f0
AC
1581/**
1582 * ata_pio_mask_no_iordy - Return the non IORDY mask
1583 * @adev: ATA device
1584 *
1585 * Compute the highest mode possible if we are not using iordy. Return
1586 * -1 if no iordy mode is available.
1587 */
a617c09f 1588
432729f0
AC
1589static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590{
1bc4ccff 1591 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1592 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1593 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1594 /* Is the speed faster than the drive allows non IORDY ? */
1595 if (pio) {
1596 /* This is cycle times not frequency - watch the logic! */
1597 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1598 return 3 << ATA_SHIFT_PIO;
1599 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1600 }
1601 }
432729f0 1602 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1603}
1604
1da177e4 1605/**
49016aca 1606 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1607 * @dev: target device
1608 * @p_class: pointer to class of the target device (may be changed)
bff04647 1609 * @flags: ATA_READID_* flags
fe635c7e 1610 * @id: buffer to read IDENTIFY data into
1da177e4 1611 *
49016aca
TH
1612 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1613 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1614 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1615 * for pre-ATA4 drives.
1da177e4
LT
1616 *
1617 * LOCKING:
49016aca
TH
1618 * Kernel thread context (may sleep)
1619 *
1620 * RETURNS:
1621 * 0 on success, -errno otherwise.
1da177e4 1622 */
a9beec95 1623int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1624 unsigned int flags, u16 *id)
1da177e4 1625{
9af5c9c9 1626 struct ata_port *ap = dev->link->ap;
49016aca 1627 unsigned int class = *p_class;
a0123703 1628 struct ata_taskfile tf;
49016aca
TH
1629 unsigned int err_mask = 0;
1630 const char *reason;
54936f8b 1631 int may_fallback = 1, tried_spinup = 0;
49016aca 1632 int rc;
1da177e4 1633
0dd4b21f 1634 if (ata_msg_ctl(ap))
44877b4e 1635 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1636
49016aca 1637 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1638 retry:
3373efd8 1639 ata_tf_init(dev, &tf);
a0123703 1640
49016aca
TH
1641 switch (class) {
1642 case ATA_DEV_ATA:
a0123703 1643 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1644 break;
1645 case ATA_DEV_ATAPI:
a0123703 1646 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1647 break;
1648 default:
1649 rc = -ENODEV;
1650 reason = "unsupported class";
1651 goto err_out;
1da177e4
LT
1652 }
1653
a0123703 1654 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1655
1656 /* Some devices choke if TF registers contain garbage. Make
1657 * sure those are properly initialized.
1658 */
1659 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660
1661 /* Device presence detection is unreliable on some
1662 * controllers. Always poll IDENTIFY if available.
1663 */
1664 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1665
3373efd8 1666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1667 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1668 if (err_mask) {
800b3996 1669 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1670 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1671 ap->print_id, dev->devno);
55a8e2c8
TH
1672 return -ENOENT;
1673 }
1674
54936f8b
TH
1675 /* Device or controller might have reported the wrong
1676 * device class. Give a shot at the other IDENTIFY if
1677 * the current one is aborted by the device.
1678 */
1679 if (may_fallback &&
1680 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1681 may_fallback = 0;
1682
1683 if (class == ATA_DEV_ATA)
1684 class = ATA_DEV_ATAPI;
1685 else
1686 class = ATA_DEV_ATA;
1687 goto retry;
1688 }
1689
49016aca
TH
1690 rc = -EIO;
1691 reason = "I/O error";
1da177e4
LT
1692 goto err_out;
1693 }
1694
54936f8b
TH
1695 /* Falling back doesn't make sense if ID data was read
1696 * successfully at least once.
1697 */
1698 may_fallback = 0;
1699
49016aca 1700 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1701
49016aca 1702 /* sanity check */
a4f5749b 1703 rc = -EINVAL;
6070068b 1704 reason = "device reports invalid type";
a4f5749b
TH
1705
1706 if (class == ATA_DEV_ATA) {
1707 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1708 goto err_out;
1709 } else {
1710 if (ata_id_is_ata(id))
1711 goto err_out;
49016aca
TH
1712 }
1713
169439c2
ML
1714 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1715 tried_spinup = 1;
1716 /*
1717 * Drive powered-up in standby mode, and requires a specific
1718 * SET_FEATURES spin-up subcommand before it will accept
1719 * anything other than the original IDENTIFY command.
1720 */
1721 ata_tf_init(dev, &tf);
1722 tf.command = ATA_CMD_SET_FEATURES;
1723 tf.feature = SETFEATURES_SPINUP;
1724 tf.protocol = ATA_PROT_NODATA;
1725 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1727 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1728 rc = -EIO;
1729 reason = "SPINUP failed";
1730 goto err_out;
1731 }
1732 /*
1733 * If the drive initially returned incomplete IDENTIFY info,
1734 * we now must reissue the IDENTIFY command.
1735 */
1736 if (id[2] == 0x37c8)
1737 goto retry;
1738 }
1739
bff04647 1740 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1741 /*
1742 * The exact sequence expected by certain pre-ATA4 drives is:
1743 * SRST RESET
1744 * IDENTIFY
1745 * INITIALIZE DEVICE PARAMETERS
1746 * anything else..
1747 * Some drives were very specific about that exact sequence.
1748 */
1749 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1750 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1751 if (err_mask) {
1752 rc = -EIO;
1753 reason = "INIT_DEV_PARAMS failed";
1754 goto err_out;
1755 }
1756
1757 /* current CHS translation info (id[53-58]) might be
1758 * changed. reread the identify device info.
1759 */
bff04647 1760 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1761 goto retry;
1762 }
1763 }
1764
1765 *p_class = class;
fe635c7e 1766
49016aca
TH
1767 return 0;
1768
1769 err_out:
88574551 1770 if (ata_msg_warn(ap))
0dd4b21f 1771 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1772 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1773 return rc;
1774}
1775
3373efd8 1776static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1777{
9af5c9c9
TH
1778 struct ata_port *ap = dev->link->ap;
1779 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1780}
1781
a6e6ce8e
TH
1782static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784{
9af5c9c9 1785 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
75683fe7 1792 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
a6e6ce8e 1796 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805}
1806
49016aca 1807/**
ffeae418 1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
49016aca
TH
1813 *
1814 * LOCKING:
ffeae418
TH
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
49016aca 1819 */
efdaedc4 1820int ata_dev_configure(struct ata_device *dev)
49016aca 1821{
9af5c9c9
TH
1822 struct ata_port *ap = dev->link->ap;
1823 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1824 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1825 const u16 *id = dev->id;
ff8854b2 1826 unsigned int xfer_mask;
b352e57d 1827 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1828 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1829 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1830 int rc;
49016aca 1831
0dd4b21f 1832 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1833 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1834 __FUNCTION__);
ffeae418 1835 return 0;
49016aca
TH
1836 }
1837
0dd4b21f 1838 if (ata_msg_probe(ap))
44877b4e 1839 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1840
75683fe7
TH
1841 /* set horkage */
1842 dev->horkage |= ata_dev_blacklisted(dev);
1843
6746544c
TH
1844 /* let ACPI work its magic */
1845 rc = ata_acpi_on_devcfg(dev);
1846 if (rc)
1847 return rc;
08573a86 1848
c39f5ebe 1849 /* print device capabilities */
0dd4b21f 1850 if (ata_msg_probe(ap))
88574551
TH
1851 ata_dev_printk(dev, KERN_DEBUG,
1852 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1853 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1854 __FUNCTION__,
f15a1daf
TH
1855 id[49], id[82], id[83], id[84],
1856 id[85], id[86], id[87], id[88]);
c39f5ebe 1857
208a9933 1858 /* initialize to-be-configured parameters */
ea1dd4e1 1859 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1860 dev->max_sectors = 0;
1861 dev->cdb_len = 0;
1862 dev->n_sectors = 0;
1863 dev->cylinders = 0;
1864 dev->heads = 0;
1865 dev->sectors = 0;
1866
1da177e4
LT
1867 /*
1868 * common ATA, ATAPI feature tests
1869 */
1870
ff8854b2 1871 /* find max transfer mode; for printk only */
1148c3a7 1872 xfer_mask = ata_id_xfermask(id);
1da177e4 1873
0dd4b21f
BP
1874 if (ata_msg_probe(ap))
1875 ata_dump_id(id);
1da177e4 1876
ef143d57
AL
1877 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1878 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1879 sizeof(fwrevbuf));
1880
1881 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1882 sizeof(modelbuf));
1883
1da177e4
LT
1884 /* ATA-specific feature tests */
1885 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1886 if (ata_id_is_cfa(id)) {
1887 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1888 ata_dev_printk(dev, KERN_WARNING,
1889 "supports DRM functions and may "
1890 "not be fully accessable.\n");
b352e57d
AC
1891 snprintf(revbuf, 7, "CFA");
1892 }
1893 else
1894 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1895
1148c3a7 1896 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1897
3f64f565
EM
1898 if (dev->id[59] & 0x100)
1899 dev->multi_count = dev->id[59] & 0xff;
1900
1148c3a7 1901 if (ata_id_has_lba(id)) {
4c2d721a 1902 const char *lba_desc;
a6e6ce8e 1903 char ncq_desc[20];
8bf62ece 1904
4c2d721a
TH
1905 lba_desc = "LBA";
1906 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1907 if (ata_id_has_lba48(id)) {
8bf62ece 1908 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1909 lba_desc = "LBA48";
6fc49adb
TH
1910
1911 if (dev->n_sectors >= (1UL << 28) &&
1912 ata_id_has_flush_ext(id))
1913 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1914 }
8bf62ece 1915
16c55b03
TH
1916 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1917 ata_id_hpa_enabled(dev->id))
1918 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1919
a6e6ce8e
TH
1920 /* config NCQ */
1921 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1922
8bf62ece 1923 /* print device info to dmesg */
3f64f565
EM
1924 if (ata_msg_drv(ap) && print_info) {
1925 ata_dev_printk(dev, KERN_INFO,
1926 "%s: %s, %s, max %s\n",
1927 revbuf, modelbuf, fwrevbuf,
1928 ata_mode_string(xfer_mask));
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1931 (unsigned long long)dev->n_sectors,
3f64f565
EM
1932 dev->multi_count, lba_desc, ncq_desc);
1933 }
ffeae418 1934 } else {
8bf62ece
AL
1935 /* CHS */
1936
1937 /* Default translation */
1148c3a7
TH
1938 dev->cylinders = id[1];
1939 dev->heads = id[3];
1940 dev->sectors = id[6];
8bf62ece 1941
1148c3a7 1942 if (ata_id_current_chs_valid(id)) {
8bf62ece 1943 /* Current CHS translation is valid. */
1148c3a7
TH
1944 dev->cylinders = id[54];
1945 dev->heads = id[55];
1946 dev->sectors = id[56];
8bf62ece
AL
1947 }
1948
1949 /* print device info to dmesg */
3f64f565 1950 if (ata_msg_drv(ap) && print_info) {
88574551 1951 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1952 "%s: %s, %s, max %s\n",
1953 revbuf, modelbuf, fwrevbuf,
1954 ata_mode_string(xfer_mask));
a84471fe 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1957 (unsigned long long)dev->n_sectors,
1958 dev->multi_count, dev->cylinders,
1959 dev->heads, dev->sectors);
1960 }
07f6f7d0
AL
1961 }
1962
6e7846e9 1963 dev->cdb_len = 16;
1da177e4
LT
1964 }
1965
1966 /* ATAPI-specific feature tests */
2c13b7ce 1967 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1968 char *cdb_intr_string = "";
1969
1148c3a7 1970 rc = atapi_cdb_len(id);
1da177e4 1971 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1972 if (ata_msg_warn(ap))
88574551
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "unsupported CDB len\n");
ffeae418 1975 rc = -EINVAL;
1da177e4
LT
1976 goto err_out_nosup;
1977 }
6e7846e9 1978 dev->cdb_len = (unsigned int) rc;
1da177e4 1979
08a556db 1980 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1981 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1982 cdb_intr_string = ", CDB intr";
1983 }
312f7da2 1984
1da177e4 1985 /* print device info to dmesg */
5afc8142 1986 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1987 ata_dev_printk(dev, KERN_INFO,
1988 "ATAPI: %s, %s, max %s%s\n",
1989 modelbuf, fwrevbuf,
12436c30
TH
1990 ata_mode_string(xfer_mask),
1991 cdb_intr_string);
1da177e4
LT
1992 }
1993
914ed354
TH
1994 /* determine max_sectors */
1995 dev->max_sectors = ATA_MAX_SECTORS;
1996 if (dev->flags & ATA_DFLAG_LBA48)
1997 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1998
93590859
AC
1999 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2000 /* Let the user know. We don't want to disallow opens for
2001 rescue purposes, or in case the vendor is just a blithering
2002 idiot */
2003 if (print_info) {
2004 ata_dev_printk(dev, KERN_WARNING,
2005"Drive reports diagnostics failure. This may indicate a drive\n");
2006 ata_dev_printk(dev, KERN_WARNING,
2007"fault or invalid emulation. Contact drive vendor for information.\n");
2008 }
2009 }
2010
4b2f3ede 2011 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2012 if (ata_dev_knobble(dev)) {
5afc8142 2013 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2014 ata_dev_printk(dev, KERN_INFO,
2015 "applying bridge limits\n");
5a529139 2016 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2017 dev->max_sectors = ATA_MAX_SECTORS;
2018 }
2019
75683fe7 2020 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2021 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2022 dev->max_sectors);
18d6e9d5 2023
4b2f3ede 2024 if (ap->ops->dev_config)
cd0d3bbc 2025 ap->ops->dev_config(dev);
4b2f3ede 2026
0dd4b21f
BP
2027 if (ata_msg_probe(ap))
2028 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2029 __FUNCTION__, ata_chk_status(ap));
ffeae418 2030 return 0;
1da177e4
LT
2031
2032err_out_nosup:
0dd4b21f 2033 if (ata_msg_probe(ap))
88574551
TH
2034 ata_dev_printk(dev, KERN_DEBUG,
2035 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2036 return rc;
1da177e4
LT
2037}
2038
be0d18df 2039/**
2e41e8e6 2040 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2041 * @ap: port
2042 *
2e41e8e6 2043 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2044 * detection.
2045 */
2046
2047int ata_cable_40wire(struct ata_port *ap)
2048{
2049 return ATA_CBL_PATA40;
2050}
2051
2052/**
2e41e8e6 2053 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2054 * @ap: port
2055 *
2e41e8e6 2056 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2057 * detection.
2058 */
2059
2060int ata_cable_80wire(struct ata_port *ap)
2061{
2062 return ATA_CBL_PATA80;
2063}
2064
2065/**
2066 * ata_cable_unknown - return unknown PATA cable.
2067 * @ap: port
2068 *
2069 * Helper method for drivers which have no PATA cable detection.
2070 */
2071
2072int ata_cable_unknown(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA_UNK;
2075}
2076
2077/**
2078 * ata_cable_sata - return SATA cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which have SATA cables
2082 */
2083
2084int ata_cable_sata(struct ata_port *ap)
2085{
2086 return ATA_CBL_SATA;
2087}
2088
1da177e4
LT
2089/**
2090 * ata_bus_probe - Reset and probe ATA bus
2091 * @ap: Bus to probe
2092 *
0cba632b
JG
2093 * Master ATA bus probing function. Initiates a hardware-dependent
2094 * bus reset, then attempts to identify any devices found on
2095 * the bus.
2096 *
1da177e4 2097 * LOCKING:
0cba632b 2098 * PCI/etc. bus probe sem.
1da177e4
LT
2099 *
2100 * RETURNS:
96072e69 2101 * Zero on success, negative errno otherwise.
1da177e4
LT
2102 */
2103
80289167 2104int ata_bus_probe(struct ata_port *ap)
1da177e4 2105{
28ca5c57 2106 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2107 int tries[ATA_MAX_DEVICES];
f58229f8 2108 int rc;
e82cbdb9 2109 struct ata_device *dev;
1da177e4 2110
28ca5c57 2111 ata_port_probe(ap);
c19ba8af 2112
f58229f8
TH
2113 ata_link_for_each_dev(dev, &ap->link)
2114 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2115
2116 retry:
2044470c 2117 /* reset and determine device classes */
52783c5d 2118 ap->ops->phy_reset(ap);
2061a47a 2119
f58229f8 2120 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2126
52783c5d 2127 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2128 }
1da177e4 2129
52783c5d 2130 ata_port_probe(ap);
2044470c 2131
b6079ca4
AC
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
f58229f8
TH
2135 ata_link_for_each_dev(dev, &ap->link)
2136 dev->pio_mode = XFER_PIO_0;
b6079ca4 2137
f31f0cc2
JG
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
f58229f8
TH
2142 ata_link_for_each_dev(dev, &ap->link) {
2143 if (tries[dev->devno])
2144 dev->class = classes[dev->devno];
ffeae418 2145
14d2bac1 2146 if (!ata_dev_enabled(dev))
ffeae418 2147 continue;
ffeae418 2148
bff04647
TH
2149 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2150 dev->id);
14d2bac1
TH
2151 if (rc)
2152 goto fail;
f31f0cc2
JG
2153 }
2154
be0d18df
AC
2155 /* Now ask for the cable type as PDIAG- should have been released */
2156 if (ap->ops->cable_detect)
2157 ap->cbl = ap->ops->cable_detect(ap);
2158
f31f0cc2
JG
2159 /* After the identify sequence we can now set up the devices. We do
2160 this in the normal order so that the user doesn't get confused */
2161
f58229f8 2162 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2163 if (!ata_dev_enabled(dev))
2164 continue;
14d2bac1 2165
9af5c9c9 2166 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2167 rc = ata_dev_configure(dev);
9af5c9c9 2168 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2169 if (rc)
2170 goto fail;
1da177e4
LT
2171 }
2172
e82cbdb9 2173 /* configure transfer mode */
0260731f 2174 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2175 if (rc)
51713d35 2176 goto fail;
1da177e4 2177
f58229f8
TH
2178 ata_link_for_each_dev(dev, &ap->link)
2179 if (ata_dev_enabled(dev))
e82cbdb9 2180 return 0;
1da177e4 2181
e82cbdb9
TH
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
1da177e4 2184 ap->ops->port_disable(ap);
96072e69 2185 return -ENODEV;
14d2bac1
TH
2186
2187 fail:
4ae72a1e
TH
2188 tries[dev->devno]--;
2189
14d2bac1
TH
2190 switch (rc) {
2191 case -EINVAL:
4ae72a1e 2192 /* eeek, something went very wrong, give up */
14d2bac1
TH
2193 tries[dev->devno] = 0;
2194 break;
4ae72a1e
TH
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2199 case -EIO:
4ae72a1e
TH
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
936fd732 2204 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
14d2bac1
TH
2207 }
2208
4ae72a1e 2209 if (!tries[dev->devno])
3373efd8 2210 ata_dev_disable(dev);
ec573755 2211
14d2bac1 2212 goto retry;
1da177e4
LT
2213}
2214
2215/**
0cba632b
JG
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
1da177e4 2218 *
0cba632b
JG
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
cca3974e 2222 * LOCKING: host lock, or some other form of
0cba632b 2223 * serialization.
1da177e4
LT
2224 */
2225
2226void ata_port_probe(struct ata_port *ap)
2227{
198e0fed 2228 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2229}
2230
3be680b7
TH
2231/**
2232 * sata_print_link_status - Print SATA link status
936fd732 2233 * @link: SATA link to printk link status about
3be680b7
TH
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
936fd732 2240void sata_print_link_status(struct ata_link *link)
3be680b7 2241{
6d5f9732 2242 u32 sstatus, scontrol, tmp;
3be680b7 2243
936fd732 2244 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2245 return;
936fd732 2246 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2247
936fd732 2248 if (ata_link_online(link)) {
3be680b7 2249 tmp = (sstatus >> 4) & 0xf;
936fd732 2250 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2253 } else {
936fd732 2254 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
3be680b7
TH
2257 }
2258}
2259
1da177e4 2260/**
780a87f7
JG
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
1da177e4 2263 *
780a87f7
JG
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
1da177e4
LT
2267 *
2268 * LOCKING:
0cba632b 2269 * PCI/etc. bus probe sem.
1da177e4
LT
2270 *
2271 */
2272void __sata_phy_reset(struct ata_port *ap)
2273{
936fd732 2274 struct ata_link *link = &ap->link;
1da177e4 2275 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2276 u32 sstatus;
1da177e4
LT
2277
2278 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2279 /* issue phy wake/reset */
936fd732 2280 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2281 /* Couldn't find anything in SATA I/II specs, but
2282 * AHCI-1.1 10.4.2 says at least 1 ms. */
2283 mdelay(1);
1da177e4 2284 }
81952c54 2285 /* phy wake/clear reset */
936fd732 2286 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2287
2288 /* wait for phy to become ready, if necessary */
2289 do {
2290 msleep(200);
936fd732 2291 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2292 if ((sstatus & 0xf) != 1)
2293 break;
2294 } while (time_before(jiffies, timeout));
2295
3be680b7 2296 /* print link status */
936fd732 2297 sata_print_link_status(link);
656563e3 2298
3be680b7 2299 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2300 if (!ata_link_offline(link))
1da177e4 2301 ata_port_probe(ap);
3be680b7 2302 else
1da177e4 2303 ata_port_disable(ap);
1da177e4 2304
198e0fed 2305 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2306 return;
2307
2308 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2309 ata_port_disable(ap);
2310 return;
2311 }
2312
2313 ap->cbl = ATA_CBL_SATA;
2314}
2315
2316/**
780a87f7
JG
2317 * sata_phy_reset - Reset SATA bus.
2318 * @ap: SATA port associated with target SATA PHY.
1da177e4 2319 *
780a87f7
JG
2320 * This function resets the SATA bus, and then probes
2321 * the bus for devices.
1da177e4
LT
2322 *
2323 * LOCKING:
0cba632b 2324 * PCI/etc. bus probe sem.
1da177e4
LT
2325 *
2326 */
2327void sata_phy_reset(struct ata_port *ap)
2328{
2329 __sata_phy_reset(ap);
198e0fed 2330 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2331 return;
2332 ata_bus_reset(ap);
2333}
2334
ebdfca6e
AC
2335/**
2336 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2337 * @adev: device
2338 *
2339 * Obtain the other device on the same cable, or if none is
2340 * present NULL is returned
2341 */
2e9edbf8 2342
3373efd8 2343struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2344{
9af5c9c9
TH
2345 struct ata_link *link = adev->link;
2346 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2347 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2348 return NULL;
2349 return pair;
2350}
2351
1da177e4 2352/**
780a87f7
JG
2353 * ata_port_disable - Disable port.
2354 * @ap: Port to be disabled.
1da177e4 2355 *
780a87f7
JG
2356 * Modify @ap data structure such that the system
2357 * thinks that the entire port is disabled, and should
2358 * never attempt to probe or communicate with devices
2359 * on this port.
2360 *
cca3974e 2361 * LOCKING: host lock, or some other form of
780a87f7 2362 * serialization.
1da177e4
LT
2363 */
2364
2365void ata_port_disable(struct ata_port *ap)
2366{
9af5c9c9
TH
2367 ap->link.device[0].class = ATA_DEV_NONE;
2368 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2369 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2370}
2371
1c3fae4d 2372/**
3c567b7d 2373 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2374 * @link: Link to adjust SATA spd limit for
1c3fae4d 2375 *
936fd732 2376 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2377 * function only adjusts the limit. The change must be applied
3c567b7d 2378 * using sata_set_spd().
1c3fae4d
TH
2379 *
2380 * LOCKING:
2381 * Inherited from caller.
2382 *
2383 * RETURNS:
2384 * 0 on success, negative errno on failure
2385 */
936fd732 2386int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2387{
81952c54
TH
2388 u32 sstatus, spd, mask;
2389 int rc, highbit;
1c3fae4d 2390
936fd732 2391 if (!sata_scr_valid(link))
008a7896
TH
2392 return -EOPNOTSUPP;
2393
2394 /* If SCR can be read, use it to determine the current SPD.
936fd732 2395 * If not, use cached value in link->sata_spd.
008a7896 2396 */
936fd732 2397 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2398 if (rc == 0)
2399 spd = (sstatus >> 4) & 0xf;
2400 else
936fd732 2401 spd = link->sata_spd;
1c3fae4d 2402
936fd732 2403 mask = link->sata_spd_limit;
1c3fae4d
TH
2404 if (mask <= 1)
2405 return -EINVAL;
008a7896
TH
2406
2407 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
008a7896
TH
2411 /* Mask off all speeds higher than or equal to the current
2412 * one. Force 1.5Gbps if current SPD is not available.
2413 */
2414 if (spd > 1)
2415 mask &= (1 << (spd - 1)) - 1;
2416 else
2417 mask &= 1;
2418
2419 /* were we already at the bottom? */
1c3fae4d
TH
2420 if (!mask)
2421 return -EINVAL;
2422
936fd732 2423 link->sata_spd_limit = mask;
1c3fae4d 2424
936fd732 2425 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2426 sata_spd_string(fls(mask)));
1c3fae4d
TH
2427
2428 return 0;
2429}
2430
936fd732 2431static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2432{
2433 u32 spd, limit;
2434
936fd732 2435 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2436 limit = 0;
2437 else
936fd732 2438 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2439
2440 spd = (*scontrol >> 4) & 0xf;
2441 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2442
2443 return spd != limit;
2444}
2445
2446/**
3c567b7d 2447 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2448 * @link: Link in question
1c3fae4d
TH
2449 *
2450 * Test whether the spd limit in SControl matches
936fd732 2451 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2452 * whether hardreset is necessary to apply SATA spd
2453 * configuration.
2454 *
2455 * LOCKING:
2456 * Inherited from caller.
2457 *
2458 * RETURNS:
2459 * 1 if SATA spd configuration is needed, 0 otherwise.
2460 */
936fd732 2461int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2462{
2463 u32 scontrol;
2464
936fd732 2465 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2466 return 0;
2467
936fd732 2468 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2469}
2470
2471/**
3c567b7d 2472 * sata_set_spd - set SATA spd according to spd limit
936fd732 2473 * @link: Link to set SATA spd for
1c3fae4d 2474 *
936fd732 2475 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2476 *
2477 * LOCKING:
2478 * Inherited from caller.
2479 *
2480 * RETURNS:
2481 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2482 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2483 */
936fd732 2484int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2485{
2486 u32 scontrol;
81952c54 2487 int rc;
1c3fae4d 2488
936fd732 2489 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2490 return rc;
1c3fae4d 2491
936fd732 2492 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2493 return 0;
2494
936fd732 2495 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2496 return rc;
2497
1c3fae4d
TH
2498 return 1;
2499}
2500
452503f9
AC
2501/*
2502 * This mode timing computation functionality is ported over from
2503 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2504 */
2505/*
b352e57d 2506 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2507 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2508 * for UDMA6, which is currently supported only by Maxtor drives.
2509 *
2510 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2511 */
2512
2513static const struct ata_timing ata_timing[] = {
2514
2515 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2516 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2517 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2518 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2519
b352e57d
AC
2520 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2521 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2522 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2523 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2524 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2525
2526/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2527
452503f9
AC
2528 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2529 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2530 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2531
452503f9
AC
2532 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2533 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2534 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2535
b352e57d
AC
2536 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2537 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2538 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2539 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2540
2541 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2542 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2543 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2544
2545/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546
2547 { 0xFF }
2548};
2549
2550#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2551#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2552
2553static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2554{
2555 q->setup = EZ(t->setup * 1000, T);
2556 q->act8b = EZ(t->act8b * 1000, T);
2557 q->rec8b = EZ(t->rec8b * 1000, T);
2558 q->cyc8b = EZ(t->cyc8b * 1000, T);
2559 q->active = EZ(t->active * 1000, T);
2560 q->recover = EZ(t->recover * 1000, T);
2561 q->cycle = EZ(t->cycle * 1000, T);
2562 q->udma = EZ(t->udma * 1000, UT);
2563}
2564
2565void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2566 struct ata_timing *m, unsigned int what)
2567{
2568 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2569 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2570 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2571 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2572 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2573 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2574 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2575 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2576}
2577
2578static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2579{
2580 const struct ata_timing *t;
2581
2582 for (t = ata_timing; t->mode != speed; t++)
91190758 2583 if (t->mode == 0xFF)
452503f9 2584 return NULL;
2e9edbf8 2585 return t;
452503f9
AC
2586}
2587
2588int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2589 struct ata_timing *t, int T, int UT)
2590{
2591 const struct ata_timing *s;
2592 struct ata_timing p;
2593
2594 /*
2e9edbf8 2595 * Find the mode.
75b1f2f8 2596 */
452503f9
AC
2597
2598 if (!(s = ata_timing_find_mode(speed)))
2599 return -EINVAL;
2600
75b1f2f8
AL
2601 memcpy(t, s, sizeof(*s));
2602
452503f9
AC
2603 /*
2604 * If the drive is an EIDE drive, it can tell us it needs extended
2605 * PIO/MW_DMA cycle timing.
2606 */
2607
2608 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2609 memset(&p, 0, sizeof(p));
2610 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2611 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2612 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2613 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2614 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2615 }
2616 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2617 }
2618
2619 /*
2620 * Convert the timing to bus clock counts.
2621 */
2622
75b1f2f8 2623 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2624
2625 /*
c893a3ae
RD
2626 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2627 * S.M.A.R.T * and some other commands. We have to ensure that the
2628 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2629 */
2630
fd3367af 2631 if (speed > XFER_PIO_6) {
452503f9
AC
2632 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2633 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2634 }
2635
2636 /*
c893a3ae 2637 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2638 */
2639
2640 if (t->act8b + t->rec8b < t->cyc8b) {
2641 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2642 t->rec8b = t->cyc8b - t->act8b;
2643 }
2644
2645 if (t->active + t->recover < t->cycle) {
2646 t->active += (t->cycle - (t->active + t->recover)) / 2;
2647 t->recover = t->cycle - t->active;
2648 }
a617c09f 2649
4f701d1e
AC
2650 /* In a few cases quantisation may produce enough errors to
2651 leave t->cycle too low for the sum of active and recovery
2652 if so we must correct this */
2653 if (t->active + t->recover > t->cycle)
2654 t->cycle = t->active + t->recover;
452503f9
AC
2655
2656 return 0;
2657}
2658
cf176e1a
TH
2659/**
2660 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2661 * @dev: Device to adjust xfer masks
458337db 2662 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2663 *
2664 * Adjust xfer masks of @dev downward. Note that this function
2665 * does not apply the change. Invoking ata_set_mode() afterwards
2666 * will apply the limit.
2667 *
2668 * LOCKING:
2669 * Inherited from caller.
2670 *
2671 * RETURNS:
2672 * 0 on success, negative errno on failure
2673 */
458337db 2674int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2675{
458337db
TH
2676 char buf[32];
2677 unsigned int orig_mask, xfer_mask;
2678 unsigned int pio_mask, mwdma_mask, udma_mask;
2679 int quiet, highbit;
cf176e1a 2680
458337db
TH
2681 quiet = !!(sel & ATA_DNXFER_QUIET);
2682 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2683
458337db
TH
2684 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2685 dev->mwdma_mask,
2686 dev->udma_mask);
2687 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2688
458337db
TH
2689 switch (sel) {
2690 case ATA_DNXFER_PIO:
2691 highbit = fls(pio_mask) - 1;
2692 pio_mask &= ~(1 << highbit);
2693 break;
2694
2695 case ATA_DNXFER_DMA:
2696 if (udma_mask) {
2697 highbit = fls(udma_mask) - 1;
2698 udma_mask &= ~(1 << highbit);
2699 if (!udma_mask)
2700 return -ENOENT;
2701 } else if (mwdma_mask) {
2702 highbit = fls(mwdma_mask) - 1;
2703 mwdma_mask &= ~(1 << highbit);
2704 if (!mwdma_mask)
2705 return -ENOENT;
2706 }
2707 break;
2708
2709 case ATA_DNXFER_40C:
2710 udma_mask &= ATA_UDMA_MASK_40C;
2711 break;
2712
2713 case ATA_DNXFER_FORCE_PIO0:
2714 pio_mask &= 1;
2715 case ATA_DNXFER_FORCE_PIO:
2716 mwdma_mask = 0;
2717 udma_mask = 0;
2718 break;
2719
458337db
TH
2720 default:
2721 BUG();
2722 }
2723
2724 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2725
2726 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2727 return -ENOENT;
2728
2729 if (!quiet) {
2730 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2731 snprintf(buf, sizeof(buf), "%s:%s",
2732 ata_mode_string(xfer_mask),
2733 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2734 else
2735 snprintf(buf, sizeof(buf), "%s",
2736 ata_mode_string(xfer_mask));
2737
2738 ata_dev_printk(dev, KERN_WARNING,
2739 "limiting speed to %s\n", buf);
2740 }
cf176e1a
TH
2741
2742 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2743 &dev->udma_mask);
2744
cf176e1a 2745 return 0;
cf176e1a
TH
2746}
2747
3373efd8 2748static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2749{
9af5c9c9 2750 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2751 unsigned int err_mask;
2752 int rc;
1da177e4 2753
e8384607 2754 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2755 if (dev->xfer_shift == ATA_SHIFT_PIO)
2756 dev->flags |= ATA_DFLAG_PIO;
2757
3373efd8 2758 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2759 /* Old CFA may refuse this command, which is just fine */
2760 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2761 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2762 /* Some very old devices and some bad newer ones fail any kind of
2763 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2764 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2765 dev->pio_mode <= XFER_PIO_2)
2766 err_mask &= ~AC_ERR_DEV;
83206a29 2767 if (err_mask) {
f15a1daf
TH
2768 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2769 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2770 return -EIO;
2771 }
1da177e4 2772
baa1e78a 2773 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2774 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2775 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2776 if (rc)
83206a29 2777 return rc;
48a8a14f 2778
23e71c3d
TH
2779 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2780 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2781
f15a1daf
TH
2782 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2783 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2784 return 0;
1da177e4
LT
2785}
2786
1da177e4 2787/**
04351821 2788 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2789 * @link: link on which timings will be programmed
e82cbdb9 2790 * @r_failed_dev: out paramter for failed device
1da177e4 2791 *
04351821
A
2792 * Standard implementation of the function used to tune and set
2793 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2794 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2795 * returned in @r_failed_dev.
780a87f7 2796 *
1da177e4 2797 * LOCKING:
0cba632b 2798 * PCI/etc. bus probe sem.
e82cbdb9
TH
2799 *
2800 * RETURNS:
2801 * 0 on success, negative errno otherwise
1da177e4 2802 */
04351821 2803
0260731f 2804int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2805{
0260731f 2806 struct ata_port *ap = link->ap;
e8e0619f 2807 struct ata_device *dev;
f58229f8 2808 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2809
a6d5a51c 2810 /* step 1: calculate xfer_mask */
f58229f8 2811 ata_link_for_each_dev(dev, link) {
acf356b1 2812 unsigned int pio_mask, dma_mask;
a6d5a51c 2813
e1211e3f 2814 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2815 continue;
2816
3373efd8 2817 ata_dev_xfermask(dev);
1da177e4 2818
acf356b1
TH
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2823
4f65977d 2824 found = 1;
5444a6f4
AC
2825 if (dev->dma_mode)
2826 used_dma = 1;
a6d5a51c 2827 }
4f65977d 2828 if (!found)
e82cbdb9 2829 goto out;
a6d5a51c
TH
2830
2831 /* step 2: always set host PIO timings */
f58229f8 2832 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
f15a1daf 2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2838 rc = -EINVAL;
e82cbdb9 2839 goto out;
e8e0619f
TH
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
1da177e4 2847
a6d5a51c 2848 /* step 3: set host DMA timings */
f58229f8 2849 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2850 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2851 continue;
2852
2853 dev->xfer_mode = dev->dma_mode;
2854 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2855 if (ap->ops->set_dmamode)
2856 ap->ops->set_dmamode(ap, dev);
2857 }
1da177e4
LT
2858
2859 /* step 4: update devices' xfer mode */
f58229f8 2860 ata_link_for_each_dev(dev, link) {
18d90deb 2861 /* don't update suspended devices' xfer mode */
9666f400 2862 if (!ata_dev_enabled(dev))
83206a29
TH
2863 continue;
2864
3373efd8 2865 rc = ata_dev_set_mode(dev);
5bbc53f4 2866 if (rc)
e82cbdb9 2867 goto out;
83206a29 2868 }
1da177e4 2869
e8e0619f
TH
2870 /* Record simplex status. If we selected DMA then the other
2871 * host channels are not permitted to do so.
5444a6f4 2872 */
cca3974e 2873 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2874 ap->host->simplex_claimed = ap;
5444a6f4 2875
e82cbdb9
TH
2876 out:
2877 if (rc)
2878 *r_failed_dev = dev;
2879 return rc;
1da177e4
LT
2880}
2881
04351821
A
2882/**
2883 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2884 * @link: link on which timings will be programmed
04351821
A
2885 * @r_failed_dev: out paramter for failed device
2886 *
2887 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2888 * ata_set_mode() fails, pointer to the failing device is
2889 * returned in @r_failed_dev.
2890 *
2891 * LOCKING:
2892 * PCI/etc. bus probe sem.
2893 *
2894 * RETURNS:
2895 * 0 on success, negative errno otherwise
2896 */
0260731f 2897int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 2898{
0260731f
TH
2899 struct ata_port *ap = link->ap;
2900
04351821
A
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
0260731f
TH
2903 return ap->ops->set_mode(link, r_failed_dev);
2904 return ata_do_set_mode(link, r_failed_dev);
04351821
A
2905}
2906
1fdffbce
JG
2907/**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
cca3974e 2917 * spin_lock_irqsave(host lock)
1fdffbce
JG
2918 */
2919
2920static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922{
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925}
2926
1da177e4
LT
2927/**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
780a87f7
JG
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
d1adc1bb
TH
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
1da177e4 2941 */
d1adc1bb
TH
2942int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2944{
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
1da177e4
LT
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
d1adc1bb 2957 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2958 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
1da177e4
LT
2961
2962 timeout = timer_start + tmout;
d1adc1bb
TH
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
1da177e4
LT
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
d1adc1bb
TH
2969 if (status == 0xff)
2970 return -ENODEV;
2971
1da177e4 2972 if (status & ATA_BUSY) {
f15a1daf 2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
d1adc1bb 2976 return -EBUSY;
1da177e4
LT
2977 }
2978
2979 return 0;
2980}
2981
d4b2bab4
TH
2982/**
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2986 *
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2988 * occurs.
2989 *
2990 * LOCKING:
2991 * Kernel thread context (may sleep).
2992 *
2993 * RETURNS:
2994 * 0 on success, -errno otherwise.
2995 */
2996int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2997{
2998 unsigned long start = jiffies;
2999 int warned = 0;
3000
3001 while (1) {
3002 u8 status = ata_chk_status(ap);
3003 unsigned long now = jiffies;
3004
3005 if (!(status & ATA_BUSY))
3006 return 0;
936fd732 3007 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3008 return -ENODEV;
3009 if (time_after(now, deadline))
3010 return -EBUSY;
3011
3012 if (!warned && time_after(now, start + 5 * HZ) &&
3013 (deadline - now > 3 * HZ)) {
3014 ata_port_printk(ap, KERN_WARNING,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status);
3017 warned = 1;
3018 }
3019
3020 msleep(50);
3021 }
3022}
3023
3024static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3025 unsigned long deadline)
1da177e4
LT
3026{
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028 unsigned int dev0 = devmask & (1 << 0);
3029 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3030 int rc, ret = 0;
1da177e4
LT
3031
3032 /* if device 0 was found in ata_devchk, wait for its
3033 * BSY bit to clear
3034 */
d4b2bab4
TH
3035 if (dev0) {
3036 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3037 if (rc) {
3038 if (rc != -ENODEV)
3039 return rc;
3040 ret = rc;
3041 }
d4b2bab4 3042 }
1da177e4 3043
e141d999
TH
3044 /* if device 1 was found in ata_devchk, wait for register
3045 * access briefly, then wait for BSY to clear.
1da177e4 3046 */
e141d999
TH
3047 if (dev1) {
3048 int i;
1da177e4
LT
3049
3050 ap->ops->dev_select(ap, 1);
e141d999
TH
3051
3052 /* Wait for register access. Some ATAPI devices fail
3053 * to set nsect/lbal after reset, so don't waste too
3054 * much time on it. We're gonna wait for !BSY anyway.
3055 */
3056 for (i = 0; i < 2; i++) {
3057 u8 nsect, lbal;
3058
3059 nsect = ioread8(ioaddr->nsect_addr);
3060 lbal = ioread8(ioaddr->lbal_addr);
3061 if ((nsect == 1) && (lbal == 1))
3062 break;
3063 msleep(50); /* give drive a breather */
3064 }
3065
d4b2bab4 3066 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3067 if (rc) {
3068 if (rc != -ENODEV)
3069 return rc;
3070 ret = rc;
3071 }
d4b2bab4 3072 }
1da177e4
LT
3073
3074 /* is all this really necessary? */
3075 ap->ops->dev_select(ap, 0);
3076 if (dev1)
3077 ap->ops->dev_select(ap, 1);
3078 if (dev0)
3079 ap->ops->dev_select(ap, 0);
d4b2bab4 3080
9b89391c 3081 return ret;
1da177e4
LT
3082}
3083
d4b2bab4
TH
3084static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3085 unsigned long deadline)
1da177e4
LT
3086{
3087 struct ata_ioports *ioaddr = &ap->ioaddr;
3088
44877b4e 3089 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3090
3091 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
3093 udelay(20); /* FIXME: flush */
3094 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3097
3098 /* spec mandates ">= 2ms" before checking status.
3099 * We wait 150ms, because that was the magic delay used for
3100 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3101 * between when the ATA command register is written, and then
3102 * status is checked. Because waiting for "a while" before
3103 * checking status is fine, post SRST, we perform this magic
3104 * delay here as well.
09c7ad79
AC
3105 *
3106 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3107 */
3108 msleep(150);
3109
2e9edbf8 3110 /* Before we perform post reset processing we want to see if
298a41ca
TH
3111 * the bus shows 0xFF because the odd clown forgets the D7
3112 * pulldown resistor.
3113 */
d1adc1bb 3114 if (ata_check_status(ap) == 0xFF)
9b89391c 3115 return -ENODEV;
09c7ad79 3116
d4b2bab4 3117 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3118}
3119
3120/**
3121 * ata_bus_reset - reset host port and associated ATA channel
3122 * @ap: port to reset
3123 *
3124 * This is typically the first time we actually start issuing
3125 * commands to the ATA channel. We wait for BSY to clear, then
3126 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3127 * result. Determine what devices, if any, are on the channel
3128 * by looking at the device 0/1 error register. Look at the signature
3129 * stored in each device's taskfile registers, to determine if
3130 * the device is ATA or ATAPI.
3131 *
3132 * LOCKING:
0cba632b 3133 * PCI/etc. bus probe sem.
cca3974e 3134 * Obtains host lock.
1da177e4
LT
3135 *
3136 * SIDE EFFECTS:
198e0fed 3137 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3138 */
3139
3140void ata_bus_reset(struct ata_port *ap)
3141{
9af5c9c9 3142 struct ata_device *device = ap->link.device;
1da177e4
LT
3143 struct ata_ioports *ioaddr = &ap->ioaddr;
3144 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3145 u8 err;
aec5c3c1 3146 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3147 int rc;
1da177e4 3148
44877b4e 3149 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3150
3151 /* determine if device 0/1 are present */
3152 if (ap->flags & ATA_FLAG_SATA_RESET)
3153 dev0 = 1;
3154 else {
3155 dev0 = ata_devchk(ap, 0);
3156 if (slave_possible)
3157 dev1 = ata_devchk(ap, 1);
3158 }
3159
3160 if (dev0)
3161 devmask |= (1 << 0);
3162 if (dev1)
3163 devmask |= (1 << 1);
3164
3165 /* select device 0 again */
3166 ap->ops->dev_select(ap, 0);
3167
3168 /* issue bus reset */
9b89391c
TH
3169 if (ap->flags & ATA_FLAG_SRST) {
3170 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3171 if (rc && rc != -ENODEV)
aec5c3c1 3172 goto err_out;
9b89391c 3173 }
1da177e4
LT
3174
3175 /*
3176 * determine by signature whether we have ATA or ATAPI devices
3177 */
9af5c9c9 3178 device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3179 if ((slave_possible) && (err != 0x81))
9af5c9c9 3180 device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3181
1da177e4 3182 /* is double-select really necessary? */
9af5c9c9 3183 if (device[1].class != ATA_DEV_NONE)
1da177e4 3184 ap->ops->dev_select(ap, 1);
9af5c9c9 3185 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3186 ap->ops->dev_select(ap, 0);
3187
3188 /* if no devices were detected, disable this port */
9af5c9c9
TH
3189 if ((device[0].class == ATA_DEV_NONE) &&
3190 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3191 goto err_out;
3192
3193 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3194 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3195 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3196 }
3197
3198 DPRINTK("EXIT\n");
3199 return;
3200
3201err_out:
f15a1daf 3202 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3203 ap->ops->port_disable(ap);
3204
3205 DPRINTK("EXIT\n");
3206}
3207
d7bb4cc7 3208/**
936fd732
TH
3209 * sata_link_debounce - debounce SATA phy status
3210 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3211 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3212 * @deadline: deadline jiffies for the operation
d7bb4cc7 3213 *
936fd732 3214* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3215 * holding the same value where DET is not 1 for @duration polled
3216 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3217 * beginning of the stable state. Because DET gets stuck at 1 on
3218 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3219 * until timeout then returns 0 if DET is stable at 1.
3220 *
d4b2bab4
TH
3221 * @timeout is further limited by @deadline. The sooner of the
3222 * two is used.
3223 *
d7bb4cc7
TH
3224 * LOCKING:
3225 * Kernel thread context (may sleep)
3226 *
3227 * RETURNS:
3228 * 0 on success, -errno on failure.
3229 */
936fd732
TH
3230int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3231 unsigned long deadline)
7a7921e8 3232{
d7bb4cc7 3233 unsigned long interval_msec = params[0];
d4b2bab4
TH
3234 unsigned long duration = msecs_to_jiffies(params[1]);
3235 unsigned long last_jiffies, t;
d7bb4cc7
TH
3236 u32 last, cur;
3237 int rc;
3238
d4b2bab4
TH
3239 t = jiffies + msecs_to_jiffies(params[2]);
3240 if (time_before(t, deadline))
3241 deadline = t;
3242
936fd732 3243 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3244 return rc;
3245 cur &= 0xf;
3246
3247 last = cur;
3248 last_jiffies = jiffies;
3249
3250 while (1) {
3251 msleep(interval_msec);
936fd732 3252 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3253 return rc;
3254 cur &= 0xf;
3255
3256 /* DET stable? */
3257 if (cur == last) {
d4b2bab4 3258 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3259 continue;
3260 if (time_after(jiffies, last_jiffies + duration))
3261 return 0;
3262 continue;
3263 }
3264
3265 /* unstable, start over */
3266 last = cur;
3267 last_jiffies = jiffies;
3268
f1545154
TH
3269 /* Check deadline. If debouncing failed, return
3270 * -EPIPE to tell upper layer to lower link speed.
3271 */
d4b2bab4 3272 if (time_after(jiffies, deadline))
f1545154 3273 return -EPIPE;
d7bb4cc7
TH
3274 }
3275}
3276
3277/**
936fd732
TH
3278 * sata_link_resume - resume SATA link
3279 * @link: ATA link to resume SATA
d7bb4cc7 3280 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3281 * @deadline: deadline jiffies for the operation
d7bb4cc7 3282 *
936fd732 3283 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3284 *
3285 * LOCKING:
3286 * Kernel thread context (may sleep)
3287 *
3288 * RETURNS:
3289 * 0 on success, -errno on failure.
3290 */
936fd732
TH
3291int sata_link_resume(struct ata_link *link, const unsigned long *params,
3292 unsigned long deadline)
d7bb4cc7
TH
3293{
3294 u32 scontrol;
81952c54
TH
3295 int rc;
3296
936fd732 3297 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3298 return rc;
7a7921e8 3299
852ee16a 3300 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3301
936fd732 3302 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3303 return rc;
7a7921e8 3304
d7bb4cc7
TH
3305 /* Some PHYs react badly if SStatus is pounded immediately
3306 * after resuming. Delay 200ms before debouncing.
3307 */
3308 msleep(200);
7a7921e8 3309
936fd732 3310 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3311}
3312
f5914a46
TH
3313/**
3314 * ata_std_prereset - prepare for reset
cc0680a5 3315 * @link: ATA link to be reset
d4b2bab4 3316 * @deadline: deadline jiffies for the operation
f5914a46 3317 *
cc0680a5 3318 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3319 * prereset makes libata abort whole reset sequence and give up
3320 * that port, so prereset should be best-effort. It does its
3321 * best to prepare for reset sequence but if things go wrong, it
3322 * should just whine, not fail.
f5914a46
TH
3323 *
3324 * LOCKING:
3325 * Kernel thread context (may sleep)
3326 *
3327 * RETURNS:
3328 * 0 on success, -errno otherwise.
3329 */
cc0680a5 3330int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3331{
cc0680a5 3332 struct ata_port *ap = link->ap;
936fd732 3333 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3335 int rc;
3336
31daabda 3337 /* handle link resume */
28324304 3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3339 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
f5914a46
TH
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
936fd732 3346 /* if SATA, resume link */
a16abc0b 3347 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3348 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3351 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3352 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
0c88758b 3358 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3359 rc = ata_wait_ready(ap, deadline);
6dffaf61 3360 if (rc && rc != -ENODEV) {
cc0680a5 3361 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
f5914a46
TH
3366
3367 return 0;
3368}
3369
c2bd5804
TH
3370/**
3371 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3372 * @link: ATA link to reset
c2bd5804 3373 * @classes: resulting classes of attached devices
d4b2bab4 3374 * @deadline: deadline jiffies for the operation
c2bd5804 3375 *
52783c5d 3376 * Reset host port using ATA SRST.
c2bd5804
TH
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
cc0680a5 3384int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3385 unsigned long deadline)
c2bd5804 3386{
cc0680a5 3387 struct ata_port *ap = link->ap;
c2bd5804 3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3389 unsigned int devmask = 0;
3390 int rc;
c2bd5804
TH
3391 u8 err;
3392
3393 DPRINTK("ENTER\n");
3394
936fd732 3395 if (ata_link_offline(link)) {
3a39746a
TH
3396 classes[0] = ATA_DEV_NONE;
3397 goto out;
3398 }
3399
c2bd5804
TH
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3405
c2bd5804
TH
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3408
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3411 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3412 /* if link is occupied, -ENODEV too is an error */
936fd732 3413 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3414 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3415 return rc;
c2bd5804
TH
3416 }
3417
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3422
3a39746a 3423 out:
c2bd5804
TH
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 return 0;
3426}
3427
3428/**
cc0680a5
TH
3429 * sata_link_hardreset - reset link via SATA phy reset
3430 * @link: link to reset
b6103f6d 3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3432 * @deadline: deadline jiffies for the operation
c2bd5804 3433 *
cc0680a5 3434 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3435 *
3436 * LOCKING:
3437 * Kernel thread context (may sleep)
3438 *
3439 * RETURNS:
3440 * 0 on success, -errno otherwise.
3441 */
cc0680a5 3442int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3443 unsigned long deadline)
c2bd5804 3444{
852ee16a 3445 u32 scontrol;
81952c54 3446 int rc;
852ee16a 3447
c2bd5804
TH
3448 DPRINTK("ENTER\n");
3449
936fd732 3450 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3454 * and Sil3124.
3455 */
936fd732 3456 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3457 goto out;
81952c54 3458
a34b6fc0 3459 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3460
936fd732 3461 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3462 goto out;
1c3fae4d 3463
936fd732 3464 sata_set_spd(link);
1c3fae4d
TH
3465 }
3466
3467 /* issue phy wake/reset */
936fd732 3468 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3469 goto out;
81952c54 3470
852ee16a 3471 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3472
936fd732 3473 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3474 goto out;
c2bd5804 3475
1c3fae4d 3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3477 * 10.4.2 says at least 1 ms.
3478 */
3479 msleep(1);
3480
936fd732
TH
3481 /* bring link back */
3482 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3483 out:
3484 DPRINTK("EXIT, rc=%d\n", rc);
3485 return rc;
3486}
3487
3488/**
3489 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3490 * @link: link to reset
b6103f6d 3491 * @class: resulting class of attached device
d4b2bab4 3492 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3493 *
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3496 *
3497 * LOCKING:
3498 * Kernel thread context (may sleep)
3499 *
3500 * RETURNS:
3501 * 0 on success, -errno otherwise.
3502 */
cc0680a5 3503int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3504 unsigned long deadline)
b6103f6d 3505{
cc0680a5 3506 struct ata_port *ap = link->ap;
936fd732 3507 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3508 int rc;
3509
3510 DPRINTK("ENTER\n");
3511
3512 /* do hardreset */
cc0680a5 3513 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3514 if (rc) {
cc0680a5 3515 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3516 "COMRESET failed (errno=%d)\n", rc);
3517 return rc;
3518 }
c2bd5804 3519
c2bd5804 3520 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3521 if (ata_link_offline(link)) {
c2bd5804
TH
3522 *class = ATA_DEV_NONE;
3523 DPRINTK("EXIT, link offline\n");
3524 return 0;
3525 }
3526
34fee227
TH
3527 /* wait a while before checking status, see SRST for more info */
3528 msleep(150);
3529
d4b2bab4 3530 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3531 /* link occupied, -ENODEV too is an error */
3532 if (rc) {
cc0680a5 3533 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3534 "COMRESET failed (errno=%d)\n", rc);
3535 return rc;
c2bd5804
TH
3536 }
3537
3a39746a
TH
3538 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3539
c2bd5804
TH
3540 *class = ata_dev_try_classify(ap, 0, NULL);
3541
3542 DPRINTK("EXIT, class=%u\n", *class);
3543 return 0;
3544}
3545
3546/**
3547 * ata_std_postreset - standard postreset callback
cc0680a5 3548 * @link: the target ata_link
c2bd5804
TH
3549 * @classes: classes of attached devices
3550 *
3551 * This function is invoked after a successful reset. Note that
3552 * the device might have been reset more than once using
3553 * different reset methods before postreset is invoked.
c2bd5804 3554 *
c2bd5804
TH
3555 * LOCKING:
3556 * Kernel thread context (may sleep)
3557 */
cc0680a5 3558void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3559{
cc0680a5 3560 struct ata_port *ap = link->ap;
dc2b3515
TH
3561 u32 serror;
3562
c2bd5804
TH
3563 DPRINTK("ENTER\n");
3564
c2bd5804 3565 /* print link status */
936fd732 3566 sata_print_link_status(link);
c2bd5804 3567
dc2b3515 3568 /* clear SError */
936fd732
TH
3569 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3570 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3571
c2bd5804
TH
3572 /* is double-select really necessary? */
3573 if (classes[0] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 1);
3575 if (classes[1] != ATA_DEV_NONE)
3576 ap->ops->dev_select(ap, 0);
3577
3a39746a
TH
3578 /* bail out if no device is present */
3579 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3580 DPRINTK("EXIT, no device\n");
3581 return;
3582 }
3583
3584 /* set up device control */
0d5ff566
TH
3585 if (ap->ioaddr.ctl_addr)
3586 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3587
3588 DPRINTK("EXIT\n");
3589}
3590
623a3128
TH
3591/**
3592 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3593 * @dev: device to compare against
3594 * @new_class: class of the new device
3595 * @new_id: IDENTIFY page of the new device
3596 *
3597 * Compare @new_class and @new_id against @dev and determine
3598 * whether @dev is the device indicated by @new_class and
3599 * @new_id.
3600 *
3601 * LOCKING:
3602 * None.
3603 *
3604 * RETURNS:
3605 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3606 */
3373efd8
TH
3607static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3608 const u16 *new_id)
623a3128
TH
3609{
3610 const u16 *old_id = dev->id;
a0cf733b
TH
3611 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3612 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3613
3614 if (dev->class != new_class) {
f15a1daf
TH
3615 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3616 dev->class, new_class);
623a3128
TH
3617 return 0;
3618 }
3619
a0cf733b
TH
3620 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3621 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3622 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3623 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3624
3625 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3626 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3627 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3628 return 0;
3629 }
3630
3631 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3632 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3633 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3634 return 0;
3635 }
3636
623a3128
TH
3637 return 1;
3638}
3639
3640/**
fe30911b 3641 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3642 * @dev: target ATA device
bff04647 3643 * @readid_flags: read ID flags
623a3128
TH
3644 *
3645 * Re-read IDENTIFY page and make sure @dev is still attached to
3646 * the port.
3647 *
3648 * LOCKING:
3649 * Kernel thread context (may sleep)
3650 *
3651 * RETURNS:
3652 * 0 on success, negative errno otherwise
3653 */
fe30911b 3654int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3655{
5eb45c02 3656 unsigned int class = dev->class;
9af5c9c9 3657 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3658 int rc;
3659
fe635c7e 3660 /* read ID data */
bff04647 3661 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3662 if (rc)
fe30911b 3663 return rc;
623a3128
TH
3664
3665 /* is the device still there? */
fe30911b
TH
3666 if (!ata_dev_same_device(dev, class, id))
3667 return -ENODEV;
623a3128 3668
fe635c7e 3669 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3670 return 0;
3671}
3672
3673/**
3674 * ata_dev_revalidate - Revalidate ATA device
3675 * @dev: device to revalidate
3676 * @readid_flags: read ID flags
3677 *
3678 * Re-read IDENTIFY page, make sure @dev is still attached to the
3679 * port and reconfigure it according to the new IDENTIFY page.
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 *
3684 * RETURNS:
3685 * 0 on success, negative errno otherwise
3686 */
3687int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3688{
6ddcd3b0 3689 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3690 int rc;
3691
3692 if (!ata_dev_enabled(dev))
3693 return -ENODEV;
3694
3695 /* re-read ID */
3696 rc = ata_dev_reread_id(dev, readid_flags);
3697 if (rc)
3698 goto fail;
623a3128
TH
3699
3700 /* configure device according to the new ID */
efdaedc4 3701 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3702 if (rc)
3703 goto fail;
3704
3705 /* verify n_sectors hasn't changed */
b54eebd6
TH
3706 if (dev->class == ATA_DEV_ATA && n_sectors &&
3707 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3708 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3709 "%llu != %llu\n",
3710 (unsigned long long)n_sectors,
3711 (unsigned long long)dev->n_sectors);
8270bec4
TH
3712
3713 /* restore original n_sectors */
3714 dev->n_sectors = n_sectors;
3715
6ddcd3b0
TH
3716 rc = -ENODEV;
3717 goto fail;
3718 }
3719
3720 return 0;
623a3128
TH
3721
3722 fail:
f15a1daf 3723 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3724 return rc;
3725}
3726
6919a0a6
AC
3727struct ata_blacklist_entry {
3728 const char *model_num;
3729 const char *model_rev;
3730 unsigned long horkage;
3731};
3732
3733static const struct ata_blacklist_entry ata_device_blacklist [] = {
3734 /* Devices with DMA related problems under Linux */
3735 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3739 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3740 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3741 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3742 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3745 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3746 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3747 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3748 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3749 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3751 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3752 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3753 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3754 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3755 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3756 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3757 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3758 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3759 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3760 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3761 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3762 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3763 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3764 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3765 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3766 { "IOMEGA ZIP 250 ATAPI Floppy",
3767 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3768
18d6e9d5 3769 /* Weird ATAPI devices */
40a1d531 3770 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3771
6919a0a6
AC
3772 /* Devices we expect to fail diagnostics */
3773
3774 /* Devices where NCQ should be avoided */
3775 /* NCQ is slow */
3776 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3777 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3778 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3779 /* NCQ is broken */
3780 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3781 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3782 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
0e3dbc01
AC
3783 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3784 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3785 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3786 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3787 ATA_HORKAGE_NONCQ },
96442925
JA
3788 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3789 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3790 /* Blacklist entries taken from Silicon Image 3124/3132
3791 Windows driver .inf file - also several Linux problem reports */
3792 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3794 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3795 /* Drives which do spurious command completion */
3796 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3797 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3798 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3799 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3800 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3801 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3802 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3803 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3804
16c55b03
TH
3805 /* devices which puke on READ_NATIVE_MAX */
3806 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3807 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3808 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3809 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3810
3811 /* End Marker */
3812 { }
1da177e4 3813};
2e9edbf8 3814
75683fe7 3815static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3816{
8bfa79fc
TH
3817 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3818 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3819 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3820
8bfa79fc
TH
3821 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3822 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3823
6919a0a6 3824 while (ad->model_num) {
8bfa79fc 3825 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3826 if (ad->model_rev == NULL)
3827 return ad->horkage;
8bfa79fc 3828 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3829 return ad->horkage;
f4b15fef 3830 }
6919a0a6 3831 ad++;
f4b15fef 3832 }
1da177e4
LT
3833 return 0;
3834}
3835
6919a0a6
AC
3836static int ata_dma_blacklisted(const struct ata_device *dev)
3837{
3838 /* We don't support polling DMA.
3839 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3840 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3841 */
9af5c9c9 3842 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3843 (dev->flags & ATA_DFLAG_CDB_INTR))
3844 return 1;
75683fe7 3845 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3846}
3847
a6d5a51c
TH
3848/**
3849 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3850 * @dev: Device to compute xfermask for
3851 *
acf356b1
TH
3852 * Compute supported xfermask of @dev and store it in
3853 * dev->*_mask. This function is responsible for applying all
3854 * known limits including host controller limits, device
3855 * blacklist, etc...
a6d5a51c
TH
3856 *
3857 * LOCKING:
3858 * None.
a6d5a51c 3859 */
3373efd8 3860static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3861{
9af5c9c9
TH
3862 struct ata_link *link = dev->link;
3863 struct ata_port *ap = link->ap;
cca3974e 3864 struct ata_host *host = ap->host;
a6d5a51c 3865 unsigned long xfer_mask;
1da177e4 3866
37deecb5 3867 /* controller modes available */
565083e1
TH
3868 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3869 ap->mwdma_mask, ap->udma_mask);
3870
8343f889 3871 /* drive modes available */
37deecb5
TH
3872 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3873 dev->mwdma_mask, dev->udma_mask);
3874 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3875
b352e57d
AC
3876 /*
3877 * CFA Advanced TrueIDE timings are not allowed on a shared
3878 * cable
3879 */
3880 if (ata_dev_pair(dev)) {
3881 /* No PIO5 or PIO6 */
3882 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3883 /* No MWDMA3 or MWDMA 4 */
3884 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3885 }
3886
37deecb5
TH
3887 if (ata_dma_blacklisted(dev)) {
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3889 ata_dev_printk(dev, KERN_WARNING,
3890 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3891 }
a6d5a51c 3892
14d66ab7
PV
3893 if ((host->flags & ATA_HOST_SIMPLEX) &&
3894 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3895 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3896 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3897 "other device, disabling DMA\n");
5444a6f4 3898 }
565083e1 3899
e424675f
JG
3900 if (ap->flags & ATA_FLAG_NO_IORDY)
3901 xfer_mask &= ata_pio_mask_no_iordy(dev);
3902
5444a6f4 3903 if (ap->ops->mode_filter)
a76b62ca 3904 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3905
8343f889
RH
3906 /* Apply cable rule here. Don't apply it early because when
3907 * we handle hot plug the cable type can itself change.
3908 * Check this last so that we know if the transfer rate was
3909 * solely limited by the cable.
3910 * Unknown or 80 wire cables reported host side are checked
3911 * drive side as well. Cases where we know a 40wire cable
3912 * is used safely for 80 are not checked here.
3913 */
3914 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3915 /* UDMA/44 or higher would be available */
3916 if((ap->cbl == ATA_CBL_PATA40) ||
3917 (ata_drive_40wire(dev->id) &&
3918 (ap->cbl == ATA_CBL_PATA_UNK ||
3919 ap->cbl == ATA_CBL_PATA80))) {
3920 ata_dev_printk(dev, KERN_WARNING,
3921 "limited to UDMA/33 due to 40-wire cable\n");
3922 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3923 }
3924
565083e1
TH
3925 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3926 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3927}
3928
1da177e4
LT
3929/**
3930 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3931 * @dev: Device to which command will be sent
3932 *
780a87f7
JG
3933 * Issue SET FEATURES - XFER MODE command to device @dev
3934 * on port @ap.
3935 *
1da177e4 3936 * LOCKING:
0cba632b 3937 * PCI/etc. bus probe sem.
83206a29
TH
3938 *
3939 * RETURNS:
3940 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3941 */
3942
3373efd8 3943static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3944{
a0123703 3945 struct ata_taskfile tf;
83206a29 3946 unsigned int err_mask;
1da177e4
LT
3947
3948 /* set up set-features taskfile */
3949 DPRINTK("set features - xfer mode\n");
3950
464cf177
TH
3951 /* Some controllers and ATAPI devices show flaky interrupt
3952 * behavior after setting xfer mode. Use polling instead.
3953 */
3373efd8 3954 ata_tf_init(dev, &tf);
a0123703
TH
3955 tf.command = ATA_CMD_SET_FEATURES;
3956 tf.feature = SETFEATURES_XFER;
464cf177 3957 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3958 tf.protocol = ATA_PROT_NODATA;
3959 tf.nsect = dev->xfer_mode;
1da177e4 3960
3373efd8 3961 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3962
83206a29
TH
3963 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3964 return err_mask;
1da177e4
LT
3965}
3966
8bf62ece
AL
3967/**
3968 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3969 * @dev: Device to which command will be sent
e2a7f77a
RD
3970 * @heads: Number of heads (taskfile parameter)
3971 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3972 *
3973 * LOCKING:
6aff8f1f
TH
3974 * Kernel thread context (may sleep)
3975 *
3976 * RETURNS:
3977 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3978 */
3373efd8
TH
3979static unsigned int ata_dev_init_params(struct ata_device *dev,
3980 u16 heads, u16 sectors)
8bf62ece 3981{
a0123703 3982 struct ata_taskfile tf;
6aff8f1f 3983 unsigned int err_mask;
8bf62ece
AL
3984
3985 /* Number of sectors per track 1-255. Number of heads 1-16 */
3986 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3987 return AC_ERR_INVALID;
8bf62ece
AL
3988
3989 /* set up init dev params taskfile */
3990 DPRINTK("init dev params \n");
3991
3373efd8 3992 ata_tf_init(dev, &tf);
a0123703
TH
3993 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3994 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3995 tf.protocol = ATA_PROT_NODATA;
3996 tf.nsect = sectors;
3997 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3998
3373efd8 3999 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
4000 /* A clean abort indicates an original or just out of spec drive
4001 and we should continue as we issue the setup based on the
4002 drive reported working geometry */
4003 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4004 err_mask = 0;
8bf62ece 4005
6aff8f1f
TH
4006 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4007 return err_mask;
8bf62ece
AL
4008}
4009
1da177e4 4010/**
0cba632b
JG
4011 * ata_sg_clean - Unmap DMA memory associated with command
4012 * @qc: Command containing DMA memory to be released
4013 *
4014 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4015 *
4016 * LOCKING:
cca3974e 4017 * spin_lock_irqsave(host lock)
1da177e4 4018 */
70e6ad0c 4019void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4020{
4021 struct ata_port *ap = qc->ap;
cedc9a47 4022 struct scatterlist *sg = qc->__sg;
1da177e4 4023 int dir = qc->dma_dir;
cedc9a47 4024 void *pad_buf = NULL;
1da177e4 4025
a4631474
TH
4026 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4027 WARN_ON(sg == NULL);
1da177e4
LT
4028
4029 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4030 WARN_ON(qc->n_elem > 1);
1da177e4 4031
2c13b7ce 4032 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4033
cedc9a47
JG
4034 /* if we padded the buffer out to 32-bit bound, and data
4035 * xfer direction is from-device, we must copy from the
4036 * pad buffer back into the supplied buffer
4037 */
4038 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4039 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4040
4041 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4042 if (qc->n_elem)
2f1f610b 4043 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4044 /* restore last sg */
4045 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4046 if (pad_buf) {
4047 struct scatterlist *psg = &qc->pad_sgent;
4048 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4049 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4050 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4051 }
4052 } else {
2e242fa9 4053 if (qc->n_elem)
2f1f610b 4054 dma_unmap_single(ap->dev,
e1410f2d
JG
4055 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4056 dir);
cedc9a47
JG
4057 /* restore sg */
4058 sg->length += qc->pad_len;
4059 if (pad_buf)
4060 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4061 pad_buf, qc->pad_len);
4062 }
1da177e4
LT
4063
4064 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4065 qc->__sg = NULL;
1da177e4
LT
4066}
4067
4068/**
4069 * ata_fill_sg - Fill PCI IDE PRD table
4070 * @qc: Metadata associated with taskfile to be transferred
4071 *
780a87f7
JG
4072 * Fill PCI IDE PRD (scatter-gather) table with segments
4073 * associated with the current disk command.
4074 *
1da177e4 4075 * LOCKING:
cca3974e 4076 * spin_lock_irqsave(host lock)
1da177e4
LT
4077 *
4078 */
4079static void ata_fill_sg(struct ata_queued_cmd *qc)
4080{
1da177e4 4081 struct ata_port *ap = qc->ap;
cedc9a47
JG
4082 struct scatterlist *sg;
4083 unsigned int idx;
1da177e4 4084
a4631474 4085 WARN_ON(qc->__sg == NULL);
f131883e 4086 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4087
4088 idx = 0;
cedc9a47 4089 ata_for_each_sg(sg, qc) {
1da177e4
LT
4090 u32 addr, offset;
4091 u32 sg_len, len;
4092
4093 /* determine if physical DMA addr spans 64K boundary.
4094 * Note h/w doesn't support 64-bit, so we unconditionally
4095 * truncate dma_addr_t to u32.
4096 */
4097 addr = (u32) sg_dma_address(sg);
4098 sg_len = sg_dma_len(sg);
4099
4100 while (sg_len) {
4101 offset = addr & 0xffff;
4102 len = sg_len;
4103 if ((offset + sg_len) > 0x10000)
4104 len = 0x10000 - offset;
4105
4106 ap->prd[idx].addr = cpu_to_le32(addr);
4107 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4108 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4109
4110 idx++;
4111 sg_len -= len;
4112 addr += len;
4113 }
4114 }
4115
4116 if (idx)
4117 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4118}
b9a4197e 4119
d26fc955
AC
4120/**
4121 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4122 * @qc: Metadata associated with taskfile to be transferred
4123 *
4124 * Fill PCI IDE PRD (scatter-gather) table with segments
4125 * associated with the current disk command. Perform the fill
4126 * so that we avoid writing any length 64K records for
4127 * controllers that don't follow the spec.
4128 *
4129 * LOCKING:
4130 * spin_lock_irqsave(host lock)
4131 *
4132 */
4133static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4134{
4135 struct ata_port *ap = qc->ap;
4136 struct scatterlist *sg;
4137 unsigned int idx;
4138
4139 WARN_ON(qc->__sg == NULL);
4140 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4141
4142 idx = 0;
4143 ata_for_each_sg(sg, qc) {
4144 u32 addr, offset;
4145 u32 sg_len, len, blen;
4146
4147 /* determine if physical DMA addr spans 64K boundary.
4148 * Note h/w doesn't support 64-bit, so we unconditionally
4149 * truncate dma_addr_t to u32.
4150 */
4151 addr = (u32) sg_dma_address(sg);
4152 sg_len = sg_dma_len(sg);
4153
4154 while (sg_len) {
4155 offset = addr & 0xffff;
4156 len = sg_len;
4157 if ((offset + sg_len) > 0x10000)
4158 len = 0x10000 - offset;
4159
4160 blen = len & 0xffff;
4161 ap->prd[idx].addr = cpu_to_le32(addr);
4162 if (blen == 0) {
4163 /* Some PATA chipsets like the CS5530 can't
4164 cope with 0x0000 meaning 64K as the spec says */
4165 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4166 blen = 0x8000;
4167 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4168 }
4169 ap->prd[idx].flags_len = cpu_to_le32(blen);
4170 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4171
4172 idx++;
4173 sg_len -= len;
4174 addr += len;
4175 }
4176 }
4177
4178 if (idx)
4179 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4180}
4181
1da177e4
LT
4182/**
4183 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4184 * @qc: Metadata associated with taskfile to check
4185 *
780a87f7
JG
4186 * Allow low-level driver to filter ATA PACKET commands, returning
4187 * a status indicating whether or not it is OK to use DMA for the
4188 * supplied PACKET command.
4189 *
1da177e4 4190 * LOCKING:
cca3974e 4191 * spin_lock_irqsave(host lock)
0cba632b 4192 *
1da177e4
LT
4193 * RETURNS: 0 when ATAPI DMA can be used
4194 * nonzero otherwise
4195 */
4196int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4197{
4198 struct ata_port *ap = qc->ap;
b9a4197e
TH
4199
4200 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4201 * few ATAPI devices choke on such DMA requests.
4202 */
4203 if (unlikely(qc->nbytes & 15))
4204 return 1;
6f23a31d 4205
1da177e4 4206 if (ap->ops->check_atapi_dma)
b9a4197e 4207 return ap->ops->check_atapi_dma(qc);
1da177e4 4208
b9a4197e 4209 return 0;
1da177e4 4210}
b9a4197e 4211
1da177e4
LT
4212/**
4213 * ata_qc_prep - Prepare taskfile for submission
4214 * @qc: Metadata associated with taskfile to be prepared
4215 *
780a87f7
JG
4216 * Prepare ATA taskfile for submission.
4217 *
1da177e4 4218 * LOCKING:
cca3974e 4219 * spin_lock_irqsave(host lock)
1da177e4
LT
4220 */
4221void ata_qc_prep(struct ata_queued_cmd *qc)
4222{
4223 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4224 return;
4225
4226 ata_fill_sg(qc);
4227}
4228
d26fc955
AC
4229/**
4230 * ata_dumb_qc_prep - Prepare taskfile for submission
4231 * @qc: Metadata associated with taskfile to be prepared
4232 *
4233 * Prepare ATA taskfile for submission.
4234 *
4235 * LOCKING:
4236 * spin_lock_irqsave(host lock)
4237 */
4238void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4239{
4240 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4241 return;
4242
4243 ata_fill_sg_dumb(qc);
4244}
4245
e46834cd
BK
4246void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4247
0cba632b
JG
4248/**
4249 * ata_sg_init_one - Associate command with memory buffer
4250 * @qc: Command to be associated
4251 * @buf: Memory buffer
4252 * @buflen: Length of memory buffer, in bytes.
4253 *
4254 * Initialize the data-related elements of queued_cmd @qc
4255 * to point to a single memory buffer, @buf of byte length @buflen.
4256 *
4257 * LOCKING:
cca3974e 4258 * spin_lock_irqsave(host lock)
0cba632b
JG
4259 */
4260
1da177e4
LT
4261void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4262{
1da177e4
LT
4263 qc->flags |= ATA_QCFLAG_SINGLE;
4264
cedc9a47 4265 qc->__sg = &qc->sgent;
1da177e4 4266 qc->n_elem = 1;
cedc9a47 4267 qc->orig_n_elem = 1;
1da177e4 4268 qc->buf_virt = buf;
233277ca 4269 qc->nbytes = buflen;
1da177e4 4270
61c0596c 4271 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4272}
4273
0cba632b
JG
4274/**
4275 * ata_sg_init - Associate command with scatter-gather table.
4276 * @qc: Command to be associated
4277 * @sg: Scatter-gather table.
4278 * @n_elem: Number of elements in s/g table.
4279 *
4280 * Initialize the data-related elements of queued_cmd @qc
4281 * to point to a scatter-gather table @sg, containing @n_elem
4282 * elements.
4283 *
4284 * LOCKING:
cca3974e 4285 * spin_lock_irqsave(host lock)
0cba632b
JG
4286 */
4287
1da177e4
LT
4288void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4289 unsigned int n_elem)
4290{
4291 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4292 qc->__sg = sg;
1da177e4 4293 qc->n_elem = n_elem;
cedc9a47 4294 qc->orig_n_elem = n_elem;
1da177e4
LT
4295}
4296
4297/**
0cba632b
JG
4298 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4299 * @qc: Command with memory buffer to be mapped.
4300 *
4301 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4302 *
4303 * LOCKING:
cca3974e 4304 * spin_lock_irqsave(host lock)
1da177e4
LT
4305 *
4306 * RETURNS:
0cba632b 4307 * Zero on success, negative on error.
1da177e4
LT
4308 */
4309
4310static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4311{
4312 struct ata_port *ap = qc->ap;
4313 int dir = qc->dma_dir;
cedc9a47 4314 struct scatterlist *sg = qc->__sg;
1da177e4 4315 dma_addr_t dma_address;
2e242fa9 4316 int trim_sg = 0;
1da177e4 4317
cedc9a47
JG
4318 /* we must lengthen transfers to end on a 32-bit boundary */
4319 qc->pad_len = sg->length & 3;
4320 if (qc->pad_len) {
4321 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4322 struct scatterlist *psg = &qc->pad_sgent;
4323
a4631474 4324 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4325
4326 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4327
4328 if (qc->tf.flags & ATA_TFLAG_WRITE)
4329 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4330 qc->pad_len);
4331
4332 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4333 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4334 /* trim sg */
4335 sg->length -= qc->pad_len;
2e242fa9
TH
4336 if (sg->length == 0)
4337 trim_sg = 1;
cedc9a47
JG
4338
4339 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4340 sg->length, qc->pad_len);
4341 }
4342
2e242fa9
TH
4343 if (trim_sg) {
4344 qc->n_elem--;
e1410f2d
JG
4345 goto skip_map;
4346 }
4347
2f1f610b 4348 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4349 sg->length, dir);
537a95d9
TH
4350 if (dma_mapping_error(dma_address)) {
4351 /* restore sg */
4352 sg->length += qc->pad_len;
1da177e4 4353 return -1;
537a95d9 4354 }
1da177e4
LT
4355
4356 sg_dma_address(sg) = dma_address;
32529e01 4357 sg_dma_len(sg) = sg->length;
1da177e4 4358
2e242fa9 4359skip_map:
1da177e4
LT
4360 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4361 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4362
4363 return 0;
4364}
4365
4366/**
0cba632b
JG
4367 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4368 * @qc: Command with scatter-gather table to be mapped.
4369 *
4370 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4371 *
4372 * LOCKING:
cca3974e 4373 * spin_lock_irqsave(host lock)
1da177e4
LT
4374 *
4375 * RETURNS:
0cba632b 4376 * Zero on success, negative on error.
1da177e4
LT
4377 *
4378 */
4379
4380static int ata_sg_setup(struct ata_queued_cmd *qc)
4381{
4382 struct ata_port *ap = qc->ap;
cedc9a47
JG
4383 struct scatterlist *sg = qc->__sg;
4384 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4385 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4386
44877b4e 4387 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4388 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4389
cedc9a47
JG
4390 /* we must lengthen transfers to end on a 32-bit boundary */
4391 qc->pad_len = lsg->length & 3;
4392 if (qc->pad_len) {
4393 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4394 struct scatterlist *psg = &qc->pad_sgent;
4395 unsigned int offset;
4396
a4631474 4397 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4398
4399 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4400
4401 /*
4402 * psg->page/offset are used to copy to-be-written
4403 * data in this function or read data in ata_sg_clean.
4404 */
4405 offset = lsg->offset + lsg->length - qc->pad_len;
4406 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4407 psg->offset = offset_in_page(offset);
4408
4409 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4410 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4411 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4412 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4413 }
4414
4415 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4416 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4417 /* trim last sg */
4418 lsg->length -= qc->pad_len;
e1410f2d
JG
4419 if (lsg->length == 0)
4420 trim_sg = 1;
cedc9a47
JG
4421
4422 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4423 qc->n_elem - 1, lsg->length, qc->pad_len);
4424 }
4425
e1410f2d
JG
4426 pre_n_elem = qc->n_elem;
4427 if (trim_sg && pre_n_elem)
4428 pre_n_elem--;
4429
4430 if (!pre_n_elem) {
4431 n_elem = 0;
4432 goto skip_map;
4433 }
4434
1da177e4 4435 dir = qc->dma_dir;
2f1f610b 4436 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4437 if (n_elem < 1) {
4438 /* restore last sg */
4439 lsg->length += qc->pad_len;
1da177e4 4440 return -1;
537a95d9 4441 }
1da177e4
LT
4442
4443 DPRINTK("%d sg elements mapped\n", n_elem);
4444
e1410f2d 4445skip_map:
1da177e4
LT
4446 qc->n_elem = n_elem;
4447
4448 return 0;
4449}
4450
0baab86b 4451/**
c893a3ae 4452 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4453 * @buf: Buffer to swap
4454 * @buf_words: Number of 16-bit words in buffer.
4455 *
4456 * Swap halves of 16-bit words if needed to convert from
4457 * little-endian byte order to native cpu byte order, or
4458 * vice-versa.
4459 *
4460 * LOCKING:
6f0ef4fa 4461 * Inherited from caller.
0baab86b 4462 */
1da177e4
LT
4463void swap_buf_le16(u16 *buf, unsigned int buf_words)
4464{
4465#ifdef __BIG_ENDIAN
4466 unsigned int i;
4467
4468 for (i = 0; i < buf_words; i++)
4469 buf[i] = le16_to_cpu(buf[i]);
4470#endif /* __BIG_ENDIAN */
4471}
4472
6ae4cfb5 4473/**
0d5ff566 4474 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4475 * @adev: device to target
6ae4cfb5
AL
4476 * @buf: data buffer
4477 * @buflen: buffer length
344babaa 4478 * @write_data: read/write
6ae4cfb5
AL
4479 *
4480 * Transfer data from/to the device data register by PIO.
4481 *
4482 * LOCKING:
4483 * Inherited from caller.
6ae4cfb5 4484 */
0d5ff566
TH
4485void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4486 unsigned int buflen, int write_data)
1da177e4 4487{
9af5c9c9 4488 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4489 unsigned int words = buflen >> 1;
1da177e4 4490
6ae4cfb5 4491 /* Transfer multiple of 2 bytes */
1da177e4 4492 if (write_data)
0d5ff566 4493 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4494 else
0d5ff566 4495 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4496
4497 /* Transfer trailing 1 byte, if any. */
4498 if (unlikely(buflen & 0x01)) {
4499 u16 align_buf[1] = { 0 };
4500 unsigned char *trailing_buf = buf + buflen - 1;
4501
4502 if (write_data) {
4503 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4504 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4505 } else {
0d5ff566 4506 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4507 memcpy(trailing_buf, align_buf, 1);
4508 }
4509 }
1da177e4
LT
4510}
4511
75e99585 4512/**
0d5ff566 4513 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4514 * @adev: device to target
4515 * @buf: data buffer
4516 * @buflen: buffer length
4517 * @write_data: read/write
4518 *
88574551 4519 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4520 * transfer with interrupts disabled.
4521 *
4522 * LOCKING:
4523 * Inherited from caller.
4524 */
0d5ff566
TH
4525void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4526 unsigned int buflen, int write_data)
75e99585
AC
4527{
4528 unsigned long flags;
4529 local_irq_save(flags);
0d5ff566 4530 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4531 local_irq_restore(flags);
4532}
4533
4534
6ae4cfb5 4535/**
5a5dbd18 4536 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4537 * @qc: Command on going
4538 *
5a5dbd18 4539 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4540 *
4541 * LOCKING:
4542 * Inherited from caller.
4543 */
4544
1da177e4
LT
4545static void ata_pio_sector(struct ata_queued_cmd *qc)
4546{
4547 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4548 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4549 struct ata_port *ap = qc->ap;
4550 struct page *page;
4551 unsigned int offset;
4552 unsigned char *buf;
4553
5a5dbd18 4554 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4555 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4556
4557 page = sg[qc->cursg].page;
726f0785 4558 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4559
4560 /* get the current page and offset */
4561 page = nth_page(page, (offset >> PAGE_SHIFT));
4562 offset %= PAGE_SIZE;
4563
1da177e4
LT
4564 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4565
91b8b313
AL
4566 if (PageHighMem(page)) {
4567 unsigned long flags;
4568
a6b2c5d4 4569 /* FIXME: use a bounce buffer */
91b8b313
AL
4570 local_irq_save(flags);
4571 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4572
91b8b313 4573 /* do the actual data transfer */
5a5dbd18 4574 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4575
91b8b313
AL
4576 kunmap_atomic(buf, KM_IRQ0);
4577 local_irq_restore(flags);
4578 } else {
4579 buf = page_address(page);
5a5dbd18 4580 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4581 }
1da177e4 4582
5a5dbd18
ML
4583 qc->curbytes += qc->sect_size;
4584 qc->cursg_ofs += qc->sect_size;
1da177e4 4585
726f0785 4586 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4587 qc->cursg++;
4588 qc->cursg_ofs = 0;
4589 }
1da177e4 4590}
1da177e4 4591
07f6f7d0 4592/**
5a5dbd18 4593 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4594 * @qc: Command on going
4595 *
5a5dbd18 4596 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4597 * ATA device for the DRQ request.
4598 *
4599 * LOCKING:
4600 * Inherited from caller.
4601 */
1da177e4 4602
07f6f7d0
AL
4603static void ata_pio_sectors(struct ata_queued_cmd *qc)
4604{
4605 if (is_multi_taskfile(&qc->tf)) {
4606 /* READ/WRITE MULTIPLE */
4607 unsigned int nsect;
4608
587005de 4609 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4610
5a5dbd18 4611 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4612 qc->dev->multi_count);
07f6f7d0
AL
4613 while (nsect--)
4614 ata_pio_sector(qc);
4615 } else
4616 ata_pio_sector(qc);
4617}
4618
c71c1857
AL
4619/**
4620 * atapi_send_cdb - Write CDB bytes to hardware
4621 * @ap: Port to which ATAPI device is attached.
4622 * @qc: Taskfile currently active
4623 *
4624 * When device has indicated its readiness to accept
4625 * a CDB, this function is called. Send the CDB.
4626 *
4627 * LOCKING:
4628 * caller.
4629 */
4630
4631static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4632{
4633 /* send SCSI cdb */
4634 DPRINTK("send cdb\n");
db024d53 4635 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4636
a6b2c5d4 4637 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4638 ata_altstatus(ap); /* flush */
4639
4640 switch (qc->tf.protocol) {
4641 case ATA_PROT_ATAPI:
4642 ap->hsm_task_state = HSM_ST;
4643 break;
4644 case ATA_PROT_ATAPI_NODATA:
4645 ap->hsm_task_state = HSM_ST_LAST;
4646 break;
4647 case ATA_PROT_ATAPI_DMA:
4648 ap->hsm_task_state = HSM_ST_LAST;
4649 /* initiate bmdma */
4650 ap->ops->bmdma_start(qc);
4651 break;
4652 }
1da177e4
LT
4653}
4654
6ae4cfb5
AL
4655/**
4656 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4657 * @qc: Command on going
4658 * @bytes: number of bytes
4659 *
4660 * Transfer Transfer data from/to the ATAPI device.
4661 *
4662 * LOCKING:
4663 * Inherited from caller.
4664 *
4665 */
4666
1da177e4
LT
4667static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4668{
4669 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4670 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4671 struct ata_port *ap = qc->ap;
4672 struct page *page;
4673 unsigned char *buf;
4674 unsigned int offset, count;
4675
563a6e1f 4676 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4677 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4678
4679next_sg:
563a6e1f 4680 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4681 /*
563a6e1f
AL
4682 * The end of qc->sg is reached and the device expects
4683 * more data to transfer. In order not to overrun qc->sg
4684 * and fulfill length specified in the byte count register,
4685 * - for read case, discard trailing data from the device
4686 * - for write case, padding zero data to the device
4687 */
4688 u16 pad_buf[1] = { 0 };
4689 unsigned int words = bytes >> 1;
4690 unsigned int i;
4691
4692 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4693 ata_dev_printk(qc->dev, KERN_WARNING,
4694 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4695
4696 for (i = 0; i < words; i++)
a6b2c5d4 4697 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4698
14be71f4 4699 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4700 return;
4701 }
4702
cedc9a47 4703 sg = &qc->__sg[qc->cursg];
1da177e4 4704
1da177e4
LT
4705 page = sg->page;
4706 offset = sg->offset + qc->cursg_ofs;
4707
4708 /* get the current page and offset */
4709 page = nth_page(page, (offset >> PAGE_SHIFT));
4710 offset %= PAGE_SIZE;
4711
6952df03 4712 /* don't overrun current sg */
32529e01 4713 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4714
4715 /* don't cross page boundaries */
4716 count = min(count, (unsigned int)PAGE_SIZE - offset);
4717
7282aa4b
AL
4718 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4719
91b8b313
AL
4720 if (PageHighMem(page)) {
4721 unsigned long flags;
4722
a6b2c5d4 4723 /* FIXME: use bounce buffer */
91b8b313
AL
4724 local_irq_save(flags);
4725 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4726
91b8b313 4727 /* do the actual data transfer */
a6b2c5d4 4728 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4729
91b8b313
AL
4730 kunmap_atomic(buf, KM_IRQ0);
4731 local_irq_restore(flags);
4732 } else {
4733 buf = page_address(page);
a6b2c5d4 4734 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4735 }
1da177e4
LT
4736
4737 bytes -= count;
4738 qc->curbytes += count;
4739 qc->cursg_ofs += count;
4740
32529e01 4741 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4742 qc->cursg++;
4743 qc->cursg_ofs = 0;
4744 }
4745
563a6e1f 4746 if (bytes)
1da177e4 4747 goto next_sg;
1da177e4
LT
4748}
4749
6ae4cfb5
AL
4750/**
4751 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4752 * @qc: Command on going
4753 *
4754 * Transfer Transfer data from/to the ATAPI device.
4755 *
4756 * LOCKING:
4757 * Inherited from caller.
6ae4cfb5
AL
4758 */
4759
1da177e4
LT
4760static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4761{
4762 struct ata_port *ap = qc->ap;
4763 struct ata_device *dev = qc->dev;
4764 unsigned int ireason, bc_lo, bc_hi, bytes;
4765 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4766
eec4c3f3
AL
4767 /* Abuse qc->result_tf for temp storage of intermediate TF
4768 * here to save some kernel stack usage.
4769 * For normal completion, qc->result_tf is not relevant. For
4770 * error, qc->result_tf is later overwritten by ata_qc_complete().
4771 * So, the correctness of qc->result_tf is not affected.
4772 */
4773 ap->ops->tf_read(ap, &qc->result_tf);
4774 ireason = qc->result_tf.nsect;
4775 bc_lo = qc->result_tf.lbam;
4776 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4777 bytes = (bc_hi << 8) | bc_lo;
4778
4779 /* shall be cleared to zero, indicating xfer of data */
4780 if (ireason & (1 << 0))
4781 goto err_out;
4782
4783 /* make sure transfer direction matches expected */
4784 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4785 if (do_write != i_write)
4786 goto err_out;
4787
44877b4e 4788 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4789
1da177e4
LT
4790 __atapi_pio_bytes(qc, bytes);
4791
4792 return;
4793
4794err_out:
f15a1daf 4795 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4796 qc->err_mask |= AC_ERR_HSM;
14be71f4 4797 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4798}
4799
4800/**
c234fb00
AL
4801 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4802 * @ap: the target ata_port
4803 * @qc: qc on going
1da177e4 4804 *
c234fb00
AL
4805 * RETURNS:
4806 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4807 */
c234fb00
AL
4808
4809static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4810{
c234fb00
AL
4811 if (qc->tf.flags & ATA_TFLAG_POLLING)
4812 return 1;
1da177e4 4813
c234fb00
AL
4814 if (ap->hsm_task_state == HSM_ST_FIRST) {
4815 if (qc->tf.protocol == ATA_PROT_PIO &&
4816 (qc->tf.flags & ATA_TFLAG_WRITE))
4817 return 1;
1da177e4 4818
c234fb00
AL
4819 if (is_atapi_taskfile(&qc->tf) &&
4820 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4821 return 1;
fe79e683
AL
4822 }
4823
c234fb00
AL
4824 return 0;
4825}
1da177e4 4826
c17ea20d
TH
4827/**
4828 * ata_hsm_qc_complete - finish a qc running on standard HSM
4829 * @qc: Command to complete
4830 * @in_wq: 1 if called from workqueue, 0 otherwise
4831 *
4832 * Finish @qc which is running on standard HSM.
4833 *
4834 * LOCKING:
cca3974e 4835 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4836 * Otherwise, none on entry and grabs host lock.
4837 */
4838static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4839{
4840 struct ata_port *ap = qc->ap;
4841 unsigned long flags;
4842
4843 if (ap->ops->error_handler) {
4844 if (in_wq) {
ba6a1308 4845 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4846
cca3974e
JG
4847 /* EH might have kicked in while host lock is
4848 * released.
c17ea20d
TH
4849 */
4850 qc = ata_qc_from_tag(ap, qc->tag);
4851 if (qc) {
4852 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4853 ap->ops->irq_on(ap);
c17ea20d
TH
4854 ata_qc_complete(qc);
4855 } else
4856 ata_port_freeze(ap);
4857 }
4858
ba6a1308 4859 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4860 } else {
4861 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4862 ata_qc_complete(qc);
4863 else
4864 ata_port_freeze(ap);
4865 }
4866 } else {
4867 if (in_wq) {
ba6a1308 4868 spin_lock_irqsave(ap->lock, flags);
83625006 4869 ap->ops->irq_on(ap);
c17ea20d 4870 ata_qc_complete(qc);
ba6a1308 4871 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4872 } else
4873 ata_qc_complete(qc);
4874 }
4875}
4876
bb5cb290
AL
4877/**
4878 * ata_hsm_move - move the HSM to the next state.
4879 * @ap: the target ata_port
4880 * @qc: qc on going
4881 * @status: current device status
4882 * @in_wq: 1 if called from workqueue, 0 otherwise
4883 *
4884 * RETURNS:
4885 * 1 when poll next status needed, 0 otherwise.
4886 */
9a1004d0
TH
4887int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4888 u8 status, int in_wq)
e2cec771 4889{
bb5cb290
AL
4890 unsigned long flags = 0;
4891 int poll_next;
4892
6912ccd5
AL
4893 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4894
bb5cb290
AL
4895 /* Make sure ata_qc_issue_prot() does not throw things
4896 * like DMA polling into the workqueue. Notice that
4897 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4898 */
c234fb00 4899 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4900
e2cec771 4901fsm_start:
999bb6f4 4902 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4903 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4904
e2cec771
AL
4905 switch (ap->hsm_task_state) {
4906 case HSM_ST_FIRST:
bb5cb290
AL
4907 /* Send first data block or PACKET CDB */
4908
4909 /* If polling, we will stay in the work queue after
4910 * sending the data. Otherwise, interrupt handler
4911 * takes over after sending the data.
4912 */
4913 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4914
e2cec771 4915 /* check device status */
3655d1d3
AL
4916 if (unlikely((status & ATA_DRQ) == 0)) {
4917 /* handle BSY=0, DRQ=0 as error */
4918 if (likely(status & (ATA_ERR | ATA_DF)))
4919 /* device stops HSM for abort/error */
4920 qc->err_mask |= AC_ERR_DEV;
4921 else
4922 /* HSM violation. Let EH handle this */
4923 qc->err_mask |= AC_ERR_HSM;
4924
14be71f4 4925 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4926 goto fsm_start;
1da177e4
LT
4927 }
4928
71601958
AL
4929 /* Device should not ask for data transfer (DRQ=1)
4930 * when it finds something wrong.
eee6c32f
AL
4931 * We ignore DRQ here and stop the HSM by
4932 * changing hsm_task_state to HSM_ST_ERR and
4933 * let the EH abort the command or reset the device.
71601958
AL
4934 */
4935 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4936 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4937 "error, dev_stat 0x%X\n", status);
3655d1d3 4938 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4939 ap->hsm_task_state = HSM_ST_ERR;
4940 goto fsm_start;
71601958 4941 }
1da177e4 4942
bb5cb290
AL
4943 /* Send the CDB (atapi) or the first data block (ata pio out).
4944 * During the state transition, interrupt handler shouldn't
4945 * be invoked before the data transfer is complete and
4946 * hsm_task_state is changed. Hence, the following locking.
4947 */
4948 if (in_wq)
ba6a1308 4949 spin_lock_irqsave(ap->lock, flags);
1da177e4 4950
bb5cb290
AL
4951 if (qc->tf.protocol == ATA_PROT_PIO) {
4952 /* PIO data out protocol.
4953 * send first data block.
4954 */
0565c26d 4955
bb5cb290
AL
4956 /* ata_pio_sectors() might change the state
4957 * to HSM_ST_LAST. so, the state is changed here
4958 * before ata_pio_sectors().
4959 */
4960 ap->hsm_task_state = HSM_ST;
4961 ata_pio_sectors(qc);
4962 ata_altstatus(ap); /* flush */
4963 } else
4964 /* send CDB */
4965 atapi_send_cdb(ap, qc);
4966
4967 if (in_wq)
ba6a1308 4968 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4969
4970 /* if polling, ata_pio_task() handles the rest.
4971 * otherwise, interrupt handler takes over from here.
4972 */
e2cec771 4973 break;
1c848984 4974
e2cec771
AL
4975 case HSM_ST:
4976 /* complete command or read/write the data register */
4977 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4978 /* ATAPI PIO protocol */
4979 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4980 /* No more data to transfer or device error.
4981 * Device error will be tagged in HSM_ST_LAST.
4982 */
e2cec771
AL
4983 ap->hsm_task_state = HSM_ST_LAST;
4984 goto fsm_start;
4985 }
1da177e4 4986
71601958
AL
4987 /* Device should not ask for data transfer (DRQ=1)
4988 * when it finds something wrong.
eee6c32f
AL
4989 * We ignore DRQ here and stop the HSM by
4990 * changing hsm_task_state to HSM_ST_ERR and
4991 * let the EH abort the command or reset the device.
71601958
AL
4992 */
4993 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4994 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4995 "device error, dev_stat 0x%X\n",
4996 status);
3655d1d3 4997 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4998 ap->hsm_task_state = HSM_ST_ERR;
4999 goto fsm_start;
71601958 5000 }
1da177e4 5001
e2cec771 5002 atapi_pio_bytes(qc);
7fb6ec28 5003
e2cec771
AL
5004 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5005 /* bad ireason reported by device */
5006 goto fsm_start;
1da177e4 5007
e2cec771
AL
5008 } else {
5009 /* ATA PIO protocol */
5010 if (unlikely((status & ATA_DRQ) == 0)) {
5011 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5012 if (likely(status & (ATA_ERR | ATA_DF)))
5013 /* device stops HSM for abort/error */
5014 qc->err_mask |= AC_ERR_DEV;
5015 else
55a8e2c8
TH
5016 /* HSM violation. Let EH handle this.
5017 * Phantom devices also trigger this
5018 * condition. Mark hint.
5019 */
5020 qc->err_mask |= AC_ERR_HSM |
5021 AC_ERR_NODEV_HINT;
3655d1d3 5022
e2cec771
AL
5023 ap->hsm_task_state = HSM_ST_ERR;
5024 goto fsm_start;
5025 }
1da177e4 5026
eee6c32f
AL
5027 /* For PIO reads, some devices may ask for
5028 * data transfer (DRQ=1) alone with ERR=1.
5029 * We respect DRQ here and transfer one
5030 * block of junk data before changing the
5031 * hsm_task_state to HSM_ST_ERR.
5032 *
5033 * For PIO writes, ERR=1 DRQ=1 doesn't make
5034 * sense since the data block has been
5035 * transferred to the device.
71601958
AL
5036 */
5037 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5038 /* data might be corrputed */
5039 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5040
5041 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5042 ata_pio_sectors(qc);
5043 ata_altstatus(ap);
5044 status = ata_wait_idle(ap);
5045 }
5046
3655d1d3
AL
5047 if (status & (ATA_BUSY | ATA_DRQ))
5048 qc->err_mask |= AC_ERR_HSM;
5049
eee6c32f
AL
5050 /* ata_pio_sectors() might change the
5051 * state to HSM_ST_LAST. so, the state
5052 * is changed after ata_pio_sectors().
5053 */
5054 ap->hsm_task_state = HSM_ST_ERR;
5055 goto fsm_start;
71601958
AL
5056 }
5057
e2cec771
AL
5058 ata_pio_sectors(qc);
5059
5060 if (ap->hsm_task_state == HSM_ST_LAST &&
5061 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5062 /* all data read */
5063 ata_altstatus(ap);
52a32205 5064 status = ata_wait_idle(ap);
e2cec771
AL
5065 goto fsm_start;
5066 }
5067 }
5068
5069 ata_altstatus(ap); /* flush */
bb5cb290 5070 poll_next = 1;
1da177e4
LT
5071 break;
5072
14be71f4 5073 case HSM_ST_LAST:
6912ccd5
AL
5074 if (unlikely(!ata_ok(status))) {
5075 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5076 ap->hsm_task_state = HSM_ST_ERR;
5077 goto fsm_start;
5078 }
5079
5080 /* no more data to transfer */
4332a771 5081 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5082 ap->print_id, qc->dev->devno, status);
e2cec771 5083
6912ccd5
AL
5084 WARN_ON(qc->err_mask);
5085
e2cec771 5086 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5087
e2cec771 5088 /* complete taskfile transaction */
c17ea20d 5089 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5090
5091 poll_next = 0;
1da177e4
LT
5092 break;
5093
14be71f4 5094 case HSM_ST_ERR:
e2cec771
AL
5095 /* make sure qc->err_mask is available to
5096 * know what's wrong and recover
5097 */
5098 WARN_ON(qc->err_mask == 0);
5099
5100 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5101
999bb6f4 5102 /* complete taskfile transaction */
c17ea20d 5103 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5104
5105 poll_next = 0;
e2cec771
AL
5106 break;
5107 default:
bb5cb290 5108 poll_next = 0;
6912ccd5 5109 BUG();
1da177e4
LT
5110 }
5111
bb5cb290 5112 return poll_next;
1da177e4
LT
5113}
5114
65f27f38 5115static void ata_pio_task(struct work_struct *work)
8061f5f0 5116{
65f27f38
DH
5117 struct ata_port *ap =
5118 container_of(work, struct ata_port, port_task.work);
5119 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5120 u8 status;
a1af3734 5121 int poll_next;
8061f5f0 5122
7fb6ec28 5123fsm_start:
a1af3734 5124 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5125
a1af3734
AL
5126 /*
5127 * This is purely heuristic. This is a fast path.
5128 * Sometimes when we enter, BSY will be cleared in
5129 * a chk-status or two. If not, the drive is probably seeking
5130 * or something. Snooze for a couple msecs, then
5131 * chk-status again. If still busy, queue delayed work.
5132 */
5133 status = ata_busy_wait(ap, ATA_BUSY, 5);
5134 if (status & ATA_BUSY) {
5135 msleep(2);
5136 status = ata_busy_wait(ap, ATA_BUSY, 10);
5137 if (status & ATA_BUSY) {
31ce6dae 5138 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5139 return;
5140 }
8061f5f0
TH
5141 }
5142
a1af3734
AL
5143 /* move the HSM */
5144 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5145
a1af3734
AL
5146 /* another command or interrupt handler
5147 * may be running at this point.
5148 */
5149 if (poll_next)
7fb6ec28 5150 goto fsm_start;
8061f5f0
TH
5151}
5152
1da177e4
LT
5153/**
5154 * ata_qc_new - Request an available ATA command, for queueing
5155 * @ap: Port associated with device @dev
5156 * @dev: Device from whom we request an available command structure
5157 *
5158 * LOCKING:
0cba632b 5159 * None.
1da177e4
LT
5160 */
5161
5162static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5163{
5164 struct ata_queued_cmd *qc = NULL;
5165 unsigned int i;
5166
e3180499 5167 /* no command while frozen */
b51e9e5d 5168 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5169 return NULL;
5170
2ab7db1f
TH
5171 /* the last tag is reserved for internal command. */
5172 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5173 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5174 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5175 break;
5176 }
5177
5178 if (qc)
5179 qc->tag = i;
5180
5181 return qc;
5182}
5183
5184/**
5185 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5186 * @dev: Device from whom we request an available command structure
5187 *
5188 * LOCKING:
0cba632b 5189 * None.
1da177e4
LT
5190 */
5191
3373efd8 5192struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5193{
9af5c9c9 5194 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5195 struct ata_queued_cmd *qc;
5196
5197 qc = ata_qc_new(ap);
5198 if (qc) {
1da177e4
LT
5199 qc->scsicmd = NULL;
5200 qc->ap = ap;
5201 qc->dev = dev;
1da177e4 5202
2c13b7ce 5203 ata_qc_reinit(qc);
1da177e4
LT
5204 }
5205
5206 return qc;
5207}
5208
1da177e4
LT
5209/**
5210 * ata_qc_free - free unused ata_queued_cmd
5211 * @qc: Command to complete
5212 *
5213 * Designed to free unused ata_queued_cmd object
5214 * in case something prevents using it.
5215 *
5216 * LOCKING:
cca3974e 5217 * spin_lock_irqsave(host lock)
1da177e4
LT
5218 */
5219void ata_qc_free(struct ata_queued_cmd *qc)
5220{
4ba946e9
TH
5221 struct ata_port *ap = qc->ap;
5222 unsigned int tag;
5223
a4631474 5224 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5225
4ba946e9
TH
5226 qc->flags = 0;
5227 tag = qc->tag;
5228 if (likely(ata_tag_valid(tag))) {
4ba946e9 5229 qc->tag = ATA_TAG_POISON;
6cec4a39 5230 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5231 }
1da177e4
LT
5232}
5233
76014427 5234void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5235{
dedaf2b0 5236 struct ata_port *ap = qc->ap;
9af5c9c9 5237 struct ata_link *link = qc->dev->link;
dedaf2b0 5238
a4631474
TH
5239 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5240 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5241
5242 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5243 ata_sg_clean(qc);
5244
7401abf2 5245 /* command should be marked inactive atomically with qc completion */
dedaf2b0 5246 if (qc->tf.protocol == ATA_PROT_NCQ)
9af5c9c9 5247 link->sactive &= ~(1 << qc->tag);
dedaf2b0 5248 else
9af5c9c9 5249 link->active_tag = ATA_TAG_POISON;
7401abf2 5250
3f3791d3
AL
5251 /* atapi: mark qc as inactive to prevent the interrupt handler
5252 * from completing the command twice later, before the error handler
5253 * is called. (when rc != 0 and atapi request sense is needed)
5254 */
5255 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5256 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5257
1da177e4 5258 /* call completion callback */
77853bf2 5259 qc->complete_fn(qc);
1da177e4
LT
5260}
5261
39599a53
TH
5262static void fill_result_tf(struct ata_queued_cmd *qc)
5263{
5264 struct ata_port *ap = qc->ap;
5265
39599a53 5266 qc->result_tf.flags = qc->tf.flags;
4742d54f 5267 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5268}
5269
f686bcb8
TH
5270/**
5271 * ata_qc_complete - Complete an active ATA command
5272 * @qc: Command to complete
5273 * @err_mask: ATA Status register contents
5274 *
5275 * Indicate to the mid and upper layers that an ATA
5276 * command has completed, with either an ok or not-ok status.
5277 *
5278 * LOCKING:
cca3974e 5279 * spin_lock_irqsave(host lock)
f686bcb8
TH
5280 */
5281void ata_qc_complete(struct ata_queued_cmd *qc)
5282{
5283 struct ata_port *ap = qc->ap;
5284
5285 /* XXX: New EH and old EH use different mechanisms to
5286 * synchronize EH with regular execution path.
5287 *
5288 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5289 * Normal execution path is responsible for not accessing a
5290 * failed qc. libata core enforces the rule by returning NULL
5291 * from ata_qc_from_tag() for failed qcs.
5292 *
5293 * Old EH depends on ata_qc_complete() nullifying completion
5294 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5295 * not synchronize with interrupt handler. Only PIO task is
5296 * taken care of.
5297 */
5298 if (ap->ops->error_handler) {
b51e9e5d 5299 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5300
5301 if (unlikely(qc->err_mask))
5302 qc->flags |= ATA_QCFLAG_FAILED;
5303
5304 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5305 if (!ata_tag_internal(qc->tag)) {
5306 /* always fill result TF for failed qc */
39599a53 5307 fill_result_tf(qc);
f686bcb8
TH
5308 ata_qc_schedule_eh(qc);
5309 return;
5310 }
5311 }
5312
5313 /* read result TF if requested */
5314 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5315 fill_result_tf(qc);
f686bcb8
TH
5316
5317 __ata_qc_complete(qc);
5318 } else {
5319 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5320 return;
5321
5322 /* read result TF if failed or requested */
5323 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5324 fill_result_tf(qc);
f686bcb8
TH
5325
5326 __ata_qc_complete(qc);
5327 }
5328}
5329
dedaf2b0
TH
5330/**
5331 * ata_qc_complete_multiple - Complete multiple qcs successfully
5332 * @ap: port in question
5333 * @qc_active: new qc_active mask
5334 * @finish_qc: LLDD callback invoked before completing a qc
5335 *
5336 * Complete in-flight commands. This functions is meant to be
5337 * called from low-level driver's interrupt routine to complete
5338 * requests normally. ap->qc_active and @qc_active is compared
5339 * and commands are completed accordingly.
5340 *
5341 * LOCKING:
cca3974e 5342 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5343 *
5344 * RETURNS:
5345 * Number of completed commands on success, -errno otherwise.
5346 */
5347int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5348 void (*finish_qc)(struct ata_queued_cmd *))
5349{
5350 int nr_done = 0;
5351 u32 done_mask;
5352 int i;
5353
5354 done_mask = ap->qc_active ^ qc_active;
5355
5356 if (unlikely(done_mask & qc_active)) {
5357 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5358 "(%08x->%08x)\n", ap->qc_active, qc_active);
5359 return -EINVAL;
5360 }
5361
5362 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5363 struct ata_queued_cmd *qc;
5364
5365 if (!(done_mask & (1 << i)))
5366 continue;
5367
5368 if ((qc = ata_qc_from_tag(ap, i))) {
5369 if (finish_qc)
5370 finish_qc(qc);
5371 ata_qc_complete(qc);
5372 nr_done++;
5373 }
5374 }
5375
5376 return nr_done;
5377}
5378
1da177e4
LT
5379static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5380{
5381 struct ata_port *ap = qc->ap;
5382
5383 switch (qc->tf.protocol) {
3dc1d881 5384 case ATA_PROT_NCQ:
1da177e4
LT
5385 case ATA_PROT_DMA:
5386 case ATA_PROT_ATAPI_DMA:
5387 return 1;
5388
5389 case ATA_PROT_ATAPI:
5390 case ATA_PROT_PIO:
1da177e4
LT
5391 if (ap->flags & ATA_FLAG_PIO_DMA)
5392 return 1;
5393
5394 /* fall through */
5395
5396 default:
5397 return 0;
5398 }
5399
5400 /* never reached */
5401}
5402
5403/**
5404 * ata_qc_issue - issue taskfile to device
5405 * @qc: command to issue to device
5406 *
5407 * Prepare an ATA command to submission to device.
5408 * This includes mapping the data into a DMA-able
5409 * area, filling in the S/G table, and finally
5410 * writing the taskfile to hardware, starting the command.
5411 *
5412 * LOCKING:
cca3974e 5413 * spin_lock_irqsave(host lock)
1da177e4 5414 */
8e0e694a 5415void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5416{
5417 struct ata_port *ap = qc->ap;
9af5c9c9 5418 struct ata_link *link = qc->dev->link;
1da177e4 5419
dedaf2b0
TH
5420 /* Make sure only one non-NCQ command is outstanding. The
5421 * check is skipped for old EH because it reuses active qc to
5422 * request ATAPI sense.
5423 */
9af5c9c9 5424 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5425
5426 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9
TH
5427 WARN_ON(link->sactive & (1 << qc->tag));
5428 link->sactive |= 1 << qc->tag;
dedaf2b0 5429 } else {
9af5c9c9
TH
5430 WARN_ON(link->sactive);
5431 link->active_tag = qc->tag;
dedaf2b0
TH
5432 }
5433
e4a70e76 5434 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5435 ap->qc_active |= 1 << qc->tag;
e4a70e76 5436
1da177e4
LT
5437 if (ata_should_dma_map(qc)) {
5438 if (qc->flags & ATA_QCFLAG_SG) {
5439 if (ata_sg_setup(qc))
8e436af9 5440 goto sg_err;
1da177e4
LT
5441 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5442 if (ata_sg_setup_one(qc))
8e436af9 5443 goto sg_err;
1da177e4
LT
5444 }
5445 } else {
5446 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5447 }
5448
5449 ap->ops->qc_prep(qc);
5450
8e0e694a
TH
5451 qc->err_mask |= ap->ops->qc_issue(qc);
5452 if (unlikely(qc->err_mask))
5453 goto err;
5454 return;
1da177e4 5455
8e436af9
TH
5456sg_err:
5457 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5458 qc->err_mask |= AC_ERR_SYSTEM;
5459err:
5460 ata_qc_complete(qc);
1da177e4
LT
5461}
5462
5463/**
5464 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5465 * @qc: command to issue to device
5466 *
5467 * Using various libata functions and hooks, this function
5468 * starts an ATA command. ATA commands are grouped into
5469 * classes called "protocols", and issuing each type of protocol
5470 * is slightly different.
5471 *
0baab86b
EF
5472 * May be used as the qc_issue() entry in ata_port_operations.
5473 *
1da177e4 5474 * LOCKING:
cca3974e 5475 * spin_lock_irqsave(host lock)
1da177e4
LT
5476 *
5477 * RETURNS:
9a3d9eb0 5478 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5479 */
5480
9a3d9eb0 5481unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5482{
5483 struct ata_port *ap = qc->ap;
5484
e50362ec
AL
5485 /* Use polling pio if the LLD doesn't handle
5486 * interrupt driven pio and atapi CDB interrupt.
5487 */
5488 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5489 switch (qc->tf.protocol) {
5490 case ATA_PROT_PIO:
e3472cbe 5491 case ATA_PROT_NODATA:
e50362ec
AL
5492 case ATA_PROT_ATAPI:
5493 case ATA_PROT_ATAPI_NODATA:
5494 qc->tf.flags |= ATA_TFLAG_POLLING;
5495 break;
5496 case ATA_PROT_ATAPI_DMA:
5497 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5498 /* see ata_dma_blacklisted() */
e50362ec
AL
5499 BUG();
5500 break;
5501 default:
5502 break;
5503 }
5504 }
5505
312f7da2 5506 /* select the device */
1da177e4
LT
5507 ata_dev_select(ap, qc->dev->devno, 1, 0);
5508
312f7da2 5509 /* start the command */
1da177e4
LT
5510 switch (qc->tf.protocol) {
5511 case ATA_PROT_NODATA:
312f7da2
AL
5512 if (qc->tf.flags & ATA_TFLAG_POLLING)
5513 ata_qc_set_polling(qc);
5514
e5338254 5515 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5516 ap->hsm_task_state = HSM_ST_LAST;
5517
5518 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5519 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5520
1da177e4
LT
5521 break;
5522
5523 case ATA_PROT_DMA:
587005de 5524 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5525
1da177e4
LT
5526 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5527 ap->ops->bmdma_setup(qc); /* set up bmdma */
5528 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5529 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5530 break;
5531
312f7da2
AL
5532 case ATA_PROT_PIO:
5533 if (qc->tf.flags & ATA_TFLAG_POLLING)
5534 ata_qc_set_polling(qc);
1da177e4 5535
e5338254 5536 ata_tf_to_host(ap, &qc->tf);
312f7da2 5537
54f00389
AL
5538 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5539 /* PIO data out protocol */
5540 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5541 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5542
5543 /* always send first data block using
e27486db 5544 * the ata_pio_task() codepath.
54f00389 5545 */
312f7da2 5546 } else {
54f00389
AL
5547 /* PIO data in protocol */
5548 ap->hsm_task_state = HSM_ST;
5549
5550 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5551 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5552
5553 /* if polling, ata_pio_task() handles the rest.
5554 * otherwise, interrupt handler takes over from here.
5555 */
312f7da2
AL
5556 }
5557
1da177e4
LT
5558 break;
5559
1da177e4 5560 case ATA_PROT_ATAPI:
1da177e4 5561 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5562 if (qc->tf.flags & ATA_TFLAG_POLLING)
5563 ata_qc_set_polling(qc);
5564
e5338254 5565 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5566
312f7da2
AL
5567 ap->hsm_task_state = HSM_ST_FIRST;
5568
5569 /* send cdb by polling if no cdb interrupt */
5570 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5571 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5572 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5573 break;
5574
5575 case ATA_PROT_ATAPI_DMA:
587005de 5576 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5577
1da177e4
LT
5578 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5579 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5580 ap->hsm_task_state = HSM_ST_FIRST;
5581
5582 /* send cdb by polling if no cdb interrupt */
5583 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5584 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5585 break;
5586
5587 default:
5588 WARN_ON(1);
9a3d9eb0 5589 return AC_ERR_SYSTEM;
1da177e4
LT
5590 }
5591
5592 return 0;
5593}
5594
1da177e4
LT
5595/**
5596 * ata_host_intr - Handle host interrupt for given (port, task)
5597 * @ap: Port on which interrupt arrived (possibly...)
5598 * @qc: Taskfile currently active in engine
5599 *
5600 * Handle host interrupt for given queued command. Currently,
5601 * only DMA interrupts are handled. All other commands are
5602 * handled via polling with interrupts disabled (nIEN bit).
5603 *
5604 * LOCKING:
cca3974e 5605 * spin_lock_irqsave(host lock)
1da177e4
LT
5606 *
5607 * RETURNS:
5608 * One if interrupt was handled, zero if not (shared irq).
5609 */
5610
5611inline unsigned int ata_host_intr (struct ata_port *ap,
5612 struct ata_queued_cmd *qc)
5613{
9af5c9c9 5614 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5615 u8 status, host_stat = 0;
1da177e4 5616
312f7da2 5617 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5618 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5619
312f7da2
AL
5620 /* Check whether we are expecting interrupt in this state */
5621 switch (ap->hsm_task_state) {
5622 case HSM_ST_FIRST:
6912ccd5
AL
5623 /* Some pre-ATAPI-4 devices assert INTRQ
5624 * at this state when ready to receive CDB.
5625 */
1da177e4 5626
312f7da2
AL
5627 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5628 * The flag was turned on only for atapi devices.
5629 * No need to check is_atapi_taskfile(&qc->tf) again.
5630 */
5631 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5632 goto idle_irq;
1da177e4 5633 break;
312f7da2
AL
5634 case HSM_ST_LAST:
5635 if (qc->tf.protocol == ATA_PROT_DMA ||
5636 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5637 /* check status of DMA engine */
5638 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5639 VPRINTK("ata%u: host_stat 0x%X\n",
5640 ap->print_id, host_stat);
312f7da2
AL
5641
5642 /* if it's not our irq... */
5643 if (!(host_stat & ATA_DMA_INTR))
5644 goto idle_irq;
5645
5646 /* before we do anything else, clear DMA-Start bit */
5647 ap->ops->bmdma_stop(qc);
a4f16610
AL
5648
5649 if (unlikely(host_stat & ATA_DMA_ERR)) {
5650 /* error when transfering data to/from memory */
5651 qc->err_mask |= AC_ERR_HOST_BUS;
5652 ap->hsm_task_state = HSM_ST_ERR;
5653 }
312f7da2
AL
5654 }
5655 break;
5656 case HSM_ST:
5657 break;
1da177e4
LT
5658 default:
5659 goto idle_irq;
5660 }
5661
312f7da2
AL
5662 /* check altstatus */
5663 status = ata_altstatus(ap);
5664 if (status & ATA_BUSY)
5665 goto idle_irq;
1da177e4 5666
312f7da2
AL
5667 /* check main status, clearing INTRQ */
5668 status = ata_chk_status(ap);
5669 if (unlikely(status & ATA_BUSY))
5670 goto idle_irq;
1da177e4 5671
312f7da2
AL
5672 /* ack bmdma irq events */
5673 ap->ops->irq_clear(ap);
1da177e4 5674
bb5cb290 5675 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5676
5677 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5678 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5679 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5680
1da177e4
LT
5681 return 1; /* irq handled */
5682
5683idle_irq:
5684 ap->stats.idle_irq++;
5685
5686#ifdef ATA_IRQ_TRAP
5687 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5688 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5689 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5690 return 1;
1da177e4
LT
5691 }
5692#endif
5693 return 0; /* irq not handled */
5694}
5695
5696/**
5697 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5698 * @irq: irq line (unused)
cca3974e 5699 * @dev_instance: pointer to our ata_host information structure
1da177e4 5700 *
0cba632b
JG
5701 * Default interrupt handler for PCI IDE devices. Calls
5702 * ata_host_intr() for each port that is not disabled.
5703 *
1da177e4 5704 * LOCKING:
cca3974e 5705 * Obtains host lock during operation.
1da177e4
LT
5706 *
5707 * RETURNS:
0cba632b 5708 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5709 */
5710
7d12e780 5711irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5712{
cca3974e 5713 struct ata_host *host = dev_instance;
1da177e4
LT
5714 unsigned int i;
5715 unsigned int handled = 0;
5716 unsigned long flags;
5717
5718 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5719 spin_lock_irqsave(&host->lock, flags);
1da177e4 5720
cca3974e 5721 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5722 struct ata_port *ap;
5723
cca3974e 5724 ap = host->ports[i];
c1389503 5725 if (ap &&
029f5468 5726 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5727 struct ata_queued_cmd *qc;
5728
9af5c9c9 5729 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5730 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5731 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5732 handled |= ata_host_intr(ap, qc);
5733 }
5734 }
5735
cca3974e 5736 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5737
5738 return IRQ_RETVAL(handled);
5739}
5740
34bf2170
TH
5741/**
5742 * sata_scr_valid - test whether SCRs are accessible
936fd732 5743 * @link: ATA link to test SCR accessibility for
34bf2170 5744 *
936fd732 5745 * Test whether SCRs are accessible for @link.
34bf2170
TH
5746 *
5747 * LOCKING:
5748 * None.
5749 *
5750 * RETURNS:
5751 * 1 if SCRs are accessible, 0 otherwise.
5752 */
936fd732 5753int sata_scr_valid(struct ata_link *link)
34bf2170 5754{
936fd732
TH
5755 struct ata_port *ap = link->ap;
5756
a16abc0b 5757 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5758}
5759
5760/**
5761 * sata_scr_read - read SCR register of the specified port
936fd732 5762 * @link: ATA link to read SCR for
34bf2170
TH
5763 * @reg: SCR to read
5764 * @val: Place to store read value
5765 *
936fd732 5766 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5767 * guaranteed to succeed if the cable type of the port is SATA
5768 * and the port implements ->scr_read.
5769 *
5770 * LOCKING:
5771 * None.
5772 *
5773 * RETURNS:
5774 * 0 on success, negative errno on failure.
5775 */
936fd732 5776int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5777{
936fd732
TH
5778 struct ata_port *ap = link->ap;
5779
5780 if (sata_scr_valid(link))
da3dbb17 5781 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5782 return -EOPNOTSUPP;
5783}
5784
5785/**
5786 * sata_scr_write - write SCR register of the specified port
936fd732 5787 * @link: ATA link to write SCR for
34bf2170
TH
5788 * @reg: SCR to write
5789 * @val: value to write
5790 *
936fd732 5791 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5792 * guaranteed to succeed if the cable type of the port is SATA
5793 * and the port implements ->scr_read.
5794 *
5795 * LOCKING:
5796 * None.
5797 *
5798 * RETURNS:
5799 * 0 on success, negative errno on failure.
5800 */
936fd732 5801int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5802{
936fd732
TH
5803 struct ata_port *ap = link->ap;
5804
5805 if (sata_scr_valid(link))
da3dbb17 5806 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5807 return -EOPNOTSUPP;
5808}
5809
5810/**
5811 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5812 * @link: ATA link to write SCR for
34bf2170
TH
5813 * @reg: SCR to write
5814 * @val: value to write
5815 *
5816 * This function is identical to sata_scr_write() except that this
5817 * function performs flush after writing to the register.
5818 *
5819 * LOCKING:
5820 * None.
5821 *
5822 * RETURNS:
5823 * 0 on success, negative errno on failure.
5824 */
936fd732 5825int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5826{
936fd732 5827 struct ata_port *ap = link->ap;
da3dbb17
TH
5828 int rc;
5829
936fd732 5830 if (sata_scr_valid(link)) {
da3dbb17
TH
5831 rc = ap->ops->scr_write(ap, reg, val);
5832 if (rc == 0)
5833 rc = ap->ops->scr_read(ap, reg, &val);
5834 return rc;
34bf2170
TH
5835 }
5836 return -EOPNOTSUPP;
5837}
5838
5839/**
936fd732
TH
5840 * ata_link_online - test whether the given link is online
5841 * @link: ATA link to test
34bf2170 5842 *
936fd732
TH
5843 * Test whether @link is online. Note that this function returns
5844 * 0 if online status of @link cannot be obtained, so
5845 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5846 *
5847 * LOCKING:
5848 * None.
5849 *
5850 * RETURNS:
5851 * 1 if the port online status is available and online.
5852 */
936fd732 5853int ata_link_online(struct ata_link *link)
34bf2170
TH
5854{
5855 u32 sstatus;
5856
936fd732
TH
5857 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5858 (sstatus & 0xf) == 0x3)
34bf2170
TH
5859 return 1;
5860 return 0;
5861}
5862
5863/**
936fd732
TH
5864 * ata_link_offline - test whether the given link is offline
5865 * @link: ATA link to test
34bf2170 5866 *
936fd732
TH
5867 * Test whether @link is offline. Note that this function
5868 * returns 0 if offline status of @link cannot be obtained, so
5869 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5870 *
5871 * LOCKING:
5872 * None.
5873 *
5874 * RETURNS:
5875 * 1 if the port offline status is available and offline.
5876 */
936fd732 5877int ata_link_offline(struct ata_link *link)
34bf2170
TH
5878{
5879 u32 sstatus;
5880
936fd732
TH
5881 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5882 (sstatus & 0xf) != 0x3)
34bf2170
TH
5883 return 1;
5884 return 0;
5885}
0baab86b 5886
77b08fb5 5887int ata_flush_cache(struct ata_device *dev)
9b847548 5888{
977e6b9f 5889 unsigned int err_mask;
9b847548
JA
5890 u8 cmd;
5891
5892 if (!ata_try_flush_cache(dev))
5893 return 0;
5894
6fc49adb 5895 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5896 cmd = ATA_CMD_FLUSH_EXT;
5897 else
5898 cmd = ATA_CMD_FLUSH;
5899
977e6b9f
TH
5900 err_mask = ata_do_simple_cmd(dev, cmd);
5901 if (err_mask) {
5902 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5903 return -EIO;
5904 }
5905
5906 return 0;
9b847548
JA
5907}
5908
6ffa01d8 5909#ifdef CONFIG_PM
cca3974e
JG
5910static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5911 unsigned int action, unsigned int ehi_flags,
5912 int wait)
500530f6
TH
5913{
5914 unsigned long flags;
5915 int i, rc;
5916
cca3974e
JG
5917 for (i = 0; i < host->n_ports; i++) {
5918 struct ata_port *ap = host->ports[i];
e3667ebf 5919 struct ata_link *link;
500530f6
TH
5920
5921 /* Previous resume operation might still be in
5922 * progress. Wait for PM_PENDING to clear.
5923 */
5924 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5925 ata_port_wait_eh(ap);
5926 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5927 }
5928
5929 /* request PM ops to EH */
5930 spin_lock_irqsave(ap->lock, flags);
5931
5932 ap->pm_mesg = mesg;
5933 if (wait) {
5934 rc = 0;
5935 ap->pm_result = &rc;
5936 }
5937
5938 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
5939 __ata_port_for_each_link(link, ap) {
5940 link->eh_info.action |= action;
5941 link->eh_info.flags |= ehi_flags;
5942 }
500530f6
TH
5943
5944 ata_port_schedule_eh(ap);
5945
5946 spin_unlock_irqrestore(ap->lock, flags);
5947
5948 /* wait and check result */
5949 if (wait) {
5950 ata_port_wait_eh(ap);
5951 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5952 if (rc)
5953 return rc;
5954 }
5955 }
5956
5957 return 0;
5958}
5959
5960/**
cca3974e
JG
5961 * ata_host_suspend - suspend host
5962 * @host: host to suspend
500530f6
TH
5963 * @mesg: PM message
5964 *
cca3974e 5965 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5966 * function requests EH to perform PM operations and waits for EH
5967 * to finish.
5968 *
5969 * LOCKING:
5970 * Kernel thread context (may sleep).
5971 *
5972 * RETURNS:
5973 * 0 on success, -errno on failure.
5974 */
cca3974e 5975int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5976{
9666f400 5977 int rc;
500530f6 5978
cca3974e 5979 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5980 if (rc == 0)
5981 host->dev->power.power_state = mesg;
500530f6
TH
5982 return rc;
5983}
5984
5985/**
cca3974e
JG
5986 * ata_host_resume - resume host
5987 * @host: host to resume
500530f6 5988 *
cca3974e 5989 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5990 * function requests EH to perform PM operations and returns.
5991 * Note that all resume operations are performed parallely.
5992 *
5993 * LOCKING:
5994 * Kernel thread context (may sleep).
5995 */
cca3974e 5996void ata_host_resume(struct ata_host *host)
500530f6 5997{
cca3974e
JG
5998 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5999 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6000 host->dev->power.power_state = PMSG_ON;
500530f6 6001}
6ffa01d8 6002#endif
500530f6 6003
c893a3ae
RD
6004/**
6005 * ata_port_start - Set port up for dma.
6006 * @ap: Port to initialize
6007 *
6008 * Called just after data structures for each port are
6009 * initialized. Allocates space for PRD table.
6010 *
6011 * May be used as the port_start() entry in ata_port_operations.
6012 *
6013 * LOCKING:
6014 * Inherited from caller.
6015 */
f0d36efd 6016int ata_port_start(struct ata_port *ap)
1da177e4 6017{
2f1f610b 6018 struct device *dev = ap->dev;
6037d6bb 6019 int rc;
1da177e4 6020
f0d36efd
TH
6021 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6022 GFP_KERNEL);
1da177e4
LT
6023 if (!ap->prd)
6024 return -ENOMEM;
6025
6037d6bb 6026 rc = ata_pad_alloc(ap, dev);
f0d36efd 6027 if (rc)
6037d6bb 6028 return rc;
1da177e4 6029
f0d36efd
TH
6030 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6031 (unsigned long long)ap->prd_dma);
1da177e4
LT
6032 return 0;
6033}
6034
3ef3b43d
TH
6035/**
6036 * ata_dev_init - Initialize an ata_device structure
6037 * @dev: Device structure to initialize
6038 *
6039 * Initialize @dev in preparation for probing.
6040 *
6041 * LOCKING:
6042 * Inherited from caller.
6043 */
6044void ata_dev_init(struct ata_device *dev)
6045{
9af5c9c9
TH
6046 struct ata_link *link = dev->link;
6047 struct ata_port *ap = link->ap;
72fa4b74
TH
6048 unsigned long flags;
6049
5a04bf4b 6050 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6051 link->sata_spd_limit = link->hw_sata_spd_limit;
6052 link->sata_spd = 0;
5a04bf4b 6053
72fa4b74
TH
6054 /* High bits of dev->flags are used to record warm plug
6055 * requests which occur asynchronously. Synchronize using
cca3974e 6056 * host lock.
72fa4b74 6057 */
ba6a1308 6058 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6059 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6060 dev->horkage = 0;
ba6a1308 6061 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6062
72fa4b74
TH
6063 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6064 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6065 dev->pio_mask = UINT_MAX;
6066 dev->mwdma_mask = UINT_MAX;
6067 dev->udma_mask = UINT_MAX;
6068}
6069
4fb37a25
TH
6070/**
6071 * ata_link_init - Initialize an ata_link structure
6072 * @ap: ATA port link is attached to
6073 * @link: Link structure to initialize
8989805d 6074 * @pmp: Port multiplier port number
4fb37a25
TH
6075 *
6076 * Initialize @link.
6077 *
6078 * LOCKING:
6079 * Kernel thread context (may sleep)
6080 */
8989805d 6081static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6082{
6083 int i;
6084
6085 /* clear everything except for devices */
6086 memset(link, 0, offsetof(struct ata_link, device[0]));
6087
6088 link->ap = ap;
8989805d 6089 link->pmp = pmp;
4fb37a25
TH
6090 link->active_tag = ATA_TAG_POISON;
6091 link->hw_sata_spd_limit = UINT_MAX;
6092
6093 /* can't use iterator, ap isn't initialized yet */
6094 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6095 struct ata_device *dev = &link->device[i];
6096
6097 dev->link = link;
6098 dev->devno = dev - link->device;
6099 ata_dev_init(dev);
6100 }
6101}
6102
6103/**
6104 * sata_link_init_spd - Initialize link->sata_spd_limit
6105 * @link: Link to configure sata_spd_limit for
6106 *
6107 * Initialize @link->[hw_]sata_spd_limit to the currently
6108 * configured value.
6109 *
6110 * LOCKING:
6111 * Kernel thread context (may sleep).
6112 *
6113 * RETURNS:
6114 * 0 on success, -errno on failure.
6115 */
6116static int sata_link_init_spd(struct ata_link *link)
6117{
6118 u32 scontrol, spd;
6119 int rc;
6120
6121 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6122 if (rc)
6123 return rc;
6124
6125 spd = (scontrol >> 4) & 0xf;
6126 if (spd)
6127 link->hw_sata_spd_limit &= (1 << spd) - 1;
6128
6129 link->sata_spd_limit = link->hw_sata_spd_limit;
6130
6131 return 0;
6132}
6133
1da177e4 6134/**
f3187195
TH
6135 * ata_port_alloc - allocate and initialize basic ATA port resources
6136 * @host: ATA host this allocated port belongs to
1da177e4 6137 *
f3187195
TH
6138 * Allocate and initialize basic ATA port resources.
6139 *
6140 * RETURNS:
6141 * Allocate ATA port on success, NULL on failure.
0cba632b 6142 *
1da177e4 6143 * LOCKING:
f3187195 6144 * Inherited from calling layer (may sleep).
1da177e4 6145 */
f3187195 6146struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6147{
f3187195 6148 struct ata_port *ap;
1da177e4 6149
f3187195
TH
6150 DPRINTK("ENTER\n");
6151
6152 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6153 if (!ap)
6154 return NULL;
6155
f4d6d004 6156 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6157 ap->lock = &host->lock;
198e0fed 6158 ap->flags = ATA_FLAG_DISABLED;
f3187195 6159 ap->print_id = -1;
1da177e4 6160 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6161 ap->host = host;
f3187195 6162 ap->dev = host->dev;
1da177e4 6163 ap->last_ctl = 0xFF;
bd5d825c
BP
6164
6165#if defined(ATA_VERBOSE_DEBUG)
6166 /* turn on all debugging levels */
6167 ap->msg_enable = 0x00FF;
6168#elif defined(ATA_DEBUG)
6169 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6170#else
0dd4b21f 6171 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6172#endif
1da177e4 6173
65f27f38
DH
6174 INIT_DELAYED_WORK(&ap->port_task, NULL);
6175 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6176 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6177 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6178 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6179 init_timer_deferrable(&ap->fastdrain_timer);
6180 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6181 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6182
838df628 6183 ap->cbl = ATA_CBL_NONE;
838df628 6184
8989805d 6185 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6186
6187#ifdef ATA_IRQ_TRAP
6188 ap->stats.unhandled_irq = 1;
6189 ap->stats.idle_irq = 1;
6190#endif
1da177e4 6191 return ap;
1da177e4
LT
6192}
6193
f0d36efd
TH
6194static void ata_host_release(struct device *gendev, void *res)
6195{
6196 struct ata_host *host = dev_get_drvdata(gendev);
6197 int i;
6198
6199 for (i = 0; i < host->n_ports; i++) {
6200 struct ata_port *ap = host->ports[i];
6201
ecef7253
TH
6202 if (!ap)
6203 continue;
6204
6205 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6206 ap->ops->port_stop(ap);
f0d36efd
TH
6207 }
6208
ecef7253 6209 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6210 host->ops->host_stop(host);
1aa56cca 6211
1aa506e4
TH
6212 for (i = 0; i < host->n_ports; i++) {
6213 struct ata_port *ap = host->ports[i];
6214
4911487a
TH
6215 if (!ap)
6216 continue;
6217
6218 if (ap->scsi_host)
1aa506e4
TH
6219 scsi_host_put(ap->scsi_host);
6220
4911487a 6221 kfree(ap);
1aa506e4
TH
6222 host->ports[i] = NULL;
6223 }
6224
1aa56cca 6225 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6226}
6227
f3187195
TH
6228/**
6229 * ata_host_alloc - allocate and init basic ATA host resources
6230 * @dev: generic device this host is associated with
6231 * @max_ports: maximum number of ATA ports associated with this host
6232 *
6233 * Allocate and initialize basic ATA host resources. LLD calls
6234 * this function to allocate a host, initializes it fully and
6235 * attaches it using ata_host_register().
6236 *
6237 * @max_ports ports are allocated and host->n_ports is
6238 * initialized to @max_ports. The caller is allowed to decrease
6239 * host->n_ports before calling ata_host_register(). The unused
6240 * ports will be automatically freed on registration.
6241 *
6242 * RETURNS:
6243 * Allocate ATA host on success, NULL on failure.
6244 *
6245 * LOCKING:
6246 * Inherited from calling layer (may sleep).
6247 */
6248struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6249{
6250 struct ata_host *host;
6251 size_t sz;
6252 int i;
6253
6254 DPRINTK("ENTER\n");
6255
6256 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6257 return NULL;
6258
6259 /* alloc a container for our list of ATA ports (buses) */
6260 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6261 /* alloc a container for our list of ATA ports (buses) */
6262 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6263 if (!host)
6264 goto err_out;
6265
6266 devres_add(dev, host);
6267 dev_set_drvdata(dev, host);
6268
6269 spin_lock_init(&host->lock);
6270 host->dev = dev;
6271 host->n_ports = max_ports;
6272
6273 /* allocate ports bound to this host */
6274 for (i = 0; i < max_ports; i++) {
6275 struct ata_port *ap;
6276
6277 ap = ata_port_alloc(host);
6278 if (!ap)
6279 goto err_out;
6280
6281 ap->port_no = i;
6282 host->ports[i] = ap;
6283 }
6284
6285 devres_remove_group(dev, NULL);
6286 return host;
6287
6288 err_out:
6289 devres_release_group(dev, NULL);
6290 return NULL;
6291}
6292
f5cda257
TH
6293/**
6294 * ata_host_alloc_pinfo - alloc host and init with port_info array
6295 * @dev: generic device this host is associated with
6296 * @ppi: array of ATA port_info to initialize host with
6297 * @n_ports: number of ATA ports attached to this host
6298 *
6299 * Allocate ATA host and initialize with info from @ppi. If NULL
6300 * terminated, @ppi may contain fewer entries than @n_ports. The
6301 * last entry will be used for the remaining ports.
6302 *
6303 * RETURNS:
6304 * Allocate ATA host on success, NULL on failure.
6305 *
6306 * LOCKING:
6307 * Inherited from calling layer (may sleep).
6308 */
6309struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6310 const struct ata_port_info * const * ppi,
6311 int n_ports)
6312{
6313 const struct ata_port_info *pi;
6314 struct ata_host *host;
6315 int i, j;
6316
6317 host = ata_host_alloc(dev, n_ports);
6318 if (!host)
6319 return NULL;
6320
6321 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6322 struct ata_port *ap = host->ports[i];
6323
6324 if (ppi[j])
6325 pi = ppi[j++];
6326
6327 ap->pio_mask = pi->pio_mask;
6328 ap->mwdma_mask = pi->mwdma_mask;
6329 ap->udma_mask = pi->udma_mask;
6330 ap->flags |= pi->flags;
0c88758b 6331 ap->link.flags |= pi->link_flags;
f5cda257
TH
6332 ap->ops = pi->port_ops;
6333
6334 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6335 host->ops = pi->port_ops;
6336 if (!host->private_data && pi->private_data)
6337 host->private_data = pi->private_data;
6338 }
6339
6340 return host;
6341}
6342
ecef7253
TH
6343/**
6344 * ata_host_start - start and freeze ports of an ATA host
6345 * @host: ATA host to start ports for
6346 *
6347 * Start and then freeze ports of @host. Started status is
6348 * recorded in host->flags, so this function can be called
6349 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6350 * once. If host->ops isn't initialized yet, its set to the
6351 * first non-dummy port ops.
ecef7253
TH
6352 *
6353 * LOCKING:
6354 * Inherited from calling layer (may sleep).
6355 *
6356 * RETURNS:
6357 * 0 if all ports are started successfully, -errno otherwise.
6358 */
6359int ata_host_start(struct ata_host *host)
6360{
6361 int i, rc;
6362
6363 if (host->flags & ATA_HOST_STARTED)
6364 return 0;
6365
6366 for (i = 0; i < host->n_ports; i++) {
6367 struct ata_port *ap = host->ports[i];
6368
f3187195
TH
6369 if (!host->ops && !ata_port_is_dummy(ap))
6370 host->ops = ap->ops;
6371
ecef7253
TH
6372 if (ap->ops->port_start) {
6373 rc = ap->ops->port_start(ap);
6374 if (rc) {
6375 ata_port_printk(ap, KERN_ERR, "failed to "
6376 "start port (errno=%d)\n", rc);
6377 goto err_out;
6378 }
6379 }
6380
6381 ata_eh_freeze_port(ap);
6382 }
6383
6384 host->flags |= ATA_HOST_STARTED;
6385 return 0;
6386
6387 err_out:
6388 while (--i >= 0) {
6389 struct ata_port *ap = host->ports[i];
6390
6391 if (ap->ops->port_stop)
6392 ap->ops->port_stop(ap);
6393 }
6394 return rc;
6395}
6396
b03732f0 6397/**
cca3974e
JG
6398 * ata_sas_host_init - Initialize a host struct
6399 * @host: host to initialize
6400 * @dev: device host is attached to
6401 * @flags: host flags
6402 * @ops: port_ops
b03732f0
BK
6403 *
6404 * LOCKING:
6405 * PCI/etc. bus probe sem.
6406 *
6407 */
f3187195 6408/* KILLME - the only user left is ipr */
cca3974e
JG
6409void ata_host_init(struct ata_host *host, struct device *dev,
6410 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6411{
cca3974e
JG
6412 spin_lock_init(&host->lock);
6413 host->dev = dev;
6414 host->flags = flags;
6415 host->ops = ops;
b03732f0
BK
6416}
6417
f3187195
TH
6418/**
6419 * ata_host_register - register initialized ATA host
6420 * @host: ATA host to register
6421 * @sht: template for SCSI host
6422 *
6423 * Register initialized ATA host. @host is allocated using
6424 * ata_host_alloc() and fully initialized by LLD. This function
6425 * starts ports, registers @host with ATA and SCSI layers and
6426 * probe registered devices.
6427 *
6428 * LOCKING:
6429 * Inherited from calling layer (may sleep).
6430 *
6431 * RETURNS:
6432 * 0 on success, -errno otherwise.
6433 */
6434int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6435{
6436 int i, rc;
6437
6438 /* host must have been started */
6439 if (!(host->flags & ATA_HOST_STARTED)) {
6440 dev_printk(KERN_ERR, host->dev,
6441 "BUG: trying to register unstarted host\n");
6442 WARN_ON(1);
6443 return -EINVAL;
6444 }
6445
6446 /* Blow away unused ports. This happens when LLD can't
6447 * determine the exact number of ports to allocate at
6448 * allocation time.
6449 */
6450 for (i = host->n_ports; host->ports[i]; i++)
6451 kfree(host->ports[i]);
6452
6453 /* give ports names and add SCSI hosts */
6454 for (i = 0; i < host->n_ports; i++)
6455 host->ports[i]->print_id = ata_print_id++;
6456
6457 rc = ata_scsi_add_hosts(host, sht);
6458 if (rc)
6459 return rc;
6460
fafbae87
TH
6461 /* associate with ACPI nodes */
6462 ata_acpi_associate(host);
6463
f3187195
TH
6464 /* set cable, sata_spd_limit and report */
6465 for (i = 0; i < host->n_ports; i++) {
6466 struct ata_port *ap = host->ports[i];
6467 int irq_line;
f3187195
TH
6468 unsigned long xfer_mask;
6469
6470 /* set SATA cable type if still unset */
6471 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6472 ap->cbl = ATA_CBL_SATA;
6473
6474 /* init sata_spd_limit to the current value */
4fb37a25 6475 sata_link_init_spd(&ap->link);
f3187195
TH
6476
6477 /* report the secondary IRQ for second channel legacy */
6478 irq_line = host->irq;
6479 if (i == 1 && host->irq2)
6480 irq_line = host->irq2;
6481
6482 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6483 ap->udma_mask);
6484
6485 /* print per-port info to dmesg */
6486 if (!ata_port_is_dummy(ap))
6487 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6488 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6489 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6490 ata_mode_string(xfer_mask),
6491 ap->ioaddr.cmd_addr,
6492 ap->ioaddr.ctl_addr,
6493 ap->ioaddr.bmdma_addr,
6494 irq_line);
6495 else
6496 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6497 }
6498
6499 /* perform each probe synchronously */
6500 DPRINTK("probe begin\n");
6501 for (i = 0; i < host->n_ports; i++) {
6502 struct ata_port *ap = host->ports[i];
6503 int rc;
6504
6505 /* probe */
6506 if (ap->ops->error_handler) {
9af5c9c9 6507 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6508 unsigned long flags;
6509
6510 ata_port_probe(ap);
6511
6512 /* kick EH for boot probing */
6513 spin_lock_irqsave(ap->lock, flags);
6514
f58229f8
TH
6515 ehi->probe_mask =
6516 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6517 ehi->action |= ATA_EH_SOFTRESET;
6518 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6519
f4d6d004 6520 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6521 ap->pflags |= ATA_PFLAG_LOADING;
6522 ata_port_schedule_eh(ap);
6523
6524 spin_unlock_irqrestore(ap->lock, flags);
6525
6526 /* wait for EH to finish */
6527 ata_port_wait_eh(ap);
6528 } else {
6529 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6530 rc = ata_bus_probe(ap);
6531 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6532
6533 if (rc) {
6534 /* FIXME: do something useful here?
6535 * Current libata behavior will
6536 * tear down everything when
6537 * the module is removed
6538 * or the h/w is unplugged.
6539 */
6540 }
6541 }
6542 }
6543
6544 /* probes are done, now scan each port's disk(s) */
6545 DPRINTK("host probe begin\n");
6546 for (i = 0; i < host->n_ports; i++) {
6547 struct ata_port *ap = host->ports[i];
6548
1ae46317 6549 ata_scsi_scan_host(ap, 1);
f3187195
TH
6550 }
6551
6552 return 0;
6553}
6554
f5cda257
TH
6555/**
6556 * ata_host_activate - start host, request IRQ and register it
6557 * @host: target ATA host
6558 * @irq: IRQ to request
6559 * @irq_handler: irq_handler used when requesting IRQ
6560 * @irq_flags: irq_flags used when requesting IRQ
6561 * @sht: scsi_host_template to use when registering the host
6562 *
6563 * After allocating an ATA host and initializing it, most libata
6564 * LLDs perform three steps to activate the host - start host,
6565 * request IRQ and register it. This helper takes necessasry
6566 * arguments and performs the three steps in one go.
6567 *
6568 * LOCKING:
6569 * Inherited from calling layer (may sleep).
6570 *
6571 * RETURNS:
6572 * 0 on success, -errno otherwise.
6573 */
6574int ata_host_activate(struct ata_host *host, int irq,
6575 irq_handler_t irq_handler, unsigned long irq_flags,
6576 struct scsi_host_template *sht)
6577{
6578 int rc;
6579
6580 rc = ata_host_start(host);
6581 if (rc)
6582 return rc;
6583
6584 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6585 dev_driver_string(host->dev), host);
6586 if (rc)
6587 return rc;
6588
4031826b
TH
6589 /* Used to print device info at probe */
6590 host->irq = irq;
6591
f5cda257
TH
6592 rc = ata_host_register(host, sht);
6593 /* if failed, just free the IRQ and leave ports alone */
6594 if (rc)
6595 devm_free_irq(host->dev, irq, host);
6596
6597 return rc;
6598}
6599
720ba126
TH
6600/**
6601 * ata_port_detach - Detach ATA port in prepration of device removal
6602 * @ap: ATA port to be detached
6603 *
6604 * Detach all ATA devices and the associated SCSI devices of @ap;
6605 * then, remove the associated SCSI host. @ap is guaranteed to
6606 * be quiescent on return from this function.
6607 *
6608 * LOCKING:
6609 * Kernel thread context (may sleep).
6610 */
6611void ata_port_detach(struct ata_port *ap)
6612{
6613 unsigned long flags;
41bda9c9 6614 struct ata_link *link;
f58229f8 6615 struct ata_device *dev;
720ba126
TH
6616
6617 if (!ap->ops->error_handler)
c3cf30a9 6618 goto skip_eh;
720ba126
TH
6619
6620 /* tell EH we're leaving & flush EH */
ba6a1308 6621 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6622 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6623 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6624
6625 ata_port_wait_eh(ap);
6626
6627 /* EH is now guaranteed to see UNLOADING, so no new device
6628 * will be attached. Disable all existing devices.
6629 */
ba6a1308 6630 spin_lock_irqsave(ap->lock, flags);
720ba126 6631
41bda9c9
TH
6632 ata_port_for_each_link(link, ap) {
6633 ata_link_for_each_dev(dev, link)
6634 ata_dev_disable(dev);
6635 }
720ba126 6636
ba6a1308 6637 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6638
6639 /* Final freeze & EH. All in-flight commands are aborted. EH
6640 * will be skipped and retrials will be terminated with bad
6641 * target.
6642 */
ba6a1308 6643 spin_lock_irqsave(ap->lock, flags);
720ba126 6644 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6645 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6646
6647 ata_port_wait_eh(ap);
45a66c1c 6648 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6649
c3cf30a9 6650 skip_eh:
720ba126 6651 /* remove the associated SCSI host */
cca3974e 6652 scsi_remove_host(ap->scsi_host);
720ba126
TH
6653}
6654
0529c159
TH
6655/**
6656 * ata_host_detach - Detach all ports of an ATA host
6657 * @host: Host to detach
6658 *
6659 * Detach all ports of @host.
6660 *
6661 * LOCKING:
6662 * Kernel thread context (may sleep).
6663 */
6664void ata_host_detach(struct ata_host *host)
6665{
6666 int i;
6667
6668 for (i = 0; i < host->n_ports; i++)
6669 ata_port_detach(host->ports[i]);
6670}
6671
1da177e4
LT
6672/**
6673 * ata_std_ports - initialize ioaddr with standard port offsets.
6674 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6675 *
6676 * Utility function which initializes data_addr, error_addr,
6677 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6678 * device_addr, status_addr, and command_addr to standard offsets
6679 * relative to cmd_addr.
6680 *
6681 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6682 */
0baab86b 6683
1da177e4
LT
6684void ata_std_ports(struct ata_ioports *ioaddr)
6685{
6686 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6687 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6688 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6689 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6690 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6691 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6692 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6693 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6694 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6695 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6696}
6697
0baab86b 6698
374b1873
JG
6699#ifdef CONFIG_PCI
6700
1da177e4
LT
6701/**
6702 * ata_pci_remove_one - PCI layer callback for device removal
6703 * @pdev: PCI device that was removed
6704 *
b878ca5d
TH
6705 * PCI layer indicates to libata via this hook that hot-unplug or
6706 * module unload event has occurred. Detach all ports. Resource
6707 * release is handled via devres.
1da177e4
LT
6708 *
6709 * LOCKING:
6710 * Inherited from PCI layer (may sleep).
6711 */
f0d36efd 6712void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6713{
6714 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6715 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6716
b878ca5d 6717 ata_host_detach(host);
1da177e4
LT
6718}
6719
6720/* move to PCI subsystem */
057ace5e 6721int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6722{
6723 unsigned long tmp = 0;
6724
6725 switch (bits->width) {
6726 case 1: {
6727 u8 tmp8 = 0;
6728 pci_read_config_byte(pdev, bits->reg, &tmp8);
6729 tmp = tmp8;
6730 break;
6731 }
6732 case 2: {
6733 u16 tmp16 = 0;
6734 pci_read_config_word(pdev, bits->reg, &tmp16);
6735 tmp = tmp16;
6736 break;
6737 }
6738 case 4: {
6739 u32 tmp32 = 0;
6740 pci_read_config_dword(pdev, bits->reg, &tmp32);
6741 tmp = tmp32;
6742 break;
6743 }
6744
6745 default:
6746 return -EINVAL;
6747 }
6748
6749 tmp &= bits->mask;
6750
6751 return (tmp == bits->val) ? 1 : 0;
6752}
9b847548 6753
6ffa01d8 6754#ifdef CONFIG_PM
3c5100c1 6755void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6756{
6757 pci_save_state(pdev);
4c90d971 6758 pci_disable_device(pdev);
500530f6 6759
4c90d971 6760 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6761 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6762}
6763
553c4aa6 6764int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6765{
553c4aa6
TH
6766 int rc;
6767
9b847548
JA
6768 pci_set_power_state(pdev, PCI_D0);
6769 pci_restore_state(pdev);
553c4aa6 6770
b878ca5d 6771 rc = pcim_enable_device(pdev);
553c4aa6
TH
6772 if (rc) {
6773 dev_printk(KERN_ERR, &pdev->dev,
6774 "failed to enable device after resume (%d)\n", rc);
6775 return rc;
6776 }
6777
9b847548 6778 pci_set_master(pdev);
553c4aa6 6779 return 0;
500530f6
TH
6780}
6781
3c5100c1 6782int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6783{
cca3974e 6784 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6785 int rc = 0;
6786
cca3974e 6787 rc = ata_host_suspend(host, mesg);
500530f6
TH
6788 if (rc)
6789 return rc;
6790
3c5100c1 6791 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6792
6793 return 0;
6794}
6795
6796int ata_pci_device_resume(struct pci_dev *pdev)
6797{
cca3974e 6798 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6799 int rc;
500530f6 6800
553c4aa6
TH
6801 rc = ata_pci_device_do_resume(pdev);
6802 if (rc == 0)
6803 ata_host_resume(host);
6804 return rc;
9b847548 6805}
6ffa01d8
TH
6806#endif /* CONFIG_PM */
6807
1da177e4
LT
6808#endif /* CONFIG_PCI */
6809
6810
1da177e4
LT
6811static int __init ata_init(void)
6812{
a8601e5f 6813 ata_probe_timeout *= HZ;
1da177e4
LT
6814 ata_wq = create_workqueue("ata");
6815 if (!ata_wq)
6816 return -ENOMEM;
6817
453b07ac
TH
6818 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6819 if (!ata_aux_wq) {
6820 destroy_workqueue(ata_wq);
6821 return -ENOMEM;
6822 }
6823
1da177e4
LT
6824 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6825 return 0;
6826}
6827
6828static void __exit ata_exit(void)
6829{
6830 destroy_workqueue(ata_wq);
453b07ac 6831 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6832}
6833
a4625085 6834subsys_initcall(ata_init);
1da177e4
LT
6835module_exit(ata_exit);
6836
67846b30 6837static unsigned long ratelimit_time;
34af946a 6838static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6839
6840int ata_ratelimit(void)
6841{
6842 int rc;
6843 unsigned long flags;
6844
6845 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6846
6847 if (time_after(jiffies, ratelimit_time)) {
6848 rc = 1;
6849 ratelimit_time = jiffies + (HZ/5);
6850 } else
6851 rc = 0;
6852
6853 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6854
6855 return rc;
6856}
6857
c22daff4
TH
6858/**
6859 * ata_wait_register - wait until register value changes
6860 * @reg: IO-mapped register
6861 * @mask: Mask to apply to read register value
6862 * @val: Wait condition
6863 * @interval_msec: polling interval in milliseconds
6864 * @timeout_msec: timeout in milliseconds
6865 *
6866 * Waiting for some bits of register to change is a common
6867 * operation for ATA controllers. This function reads 32bit LE
6868 * IO-mapped register @reg and tests for the following condition.
6869 *
6870 * (*@reg & mask) != val
6871 *
6872 * If the condition is met, it returns; otherwise, the process is
6873 * repeated after @interval_msec until timeout.
6874 *
6875 * LOCKING:
6876 * Kernel thread context (may sleep)
6877 *
6878 * RETURNS:
6879 * The final register value.
6880 */
6881u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6882 unsigned long interval_msec,
6883 unsigned long timeout_msec)
6884{
6885 unsigned long timeout;
6886 u32 tmp;
6887
6888 tmp = ioread32(reg);
6889
6890 /* Calculate timeout _after_ the first read to make sure
6891 * preceding writes reach the controller before starting to
6892 * eat away the timeout.
6893 */
6894 timeout = jiffies + (timeout_msec * HZ) / 1000;
6895
6896 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6897 msleep(interval_msec);
6898 tmp = ioread32(reg);
6899 }
6900
6901 return tmp;
6902}
6903
dd5b06c4
TH
6904/*
6905 * Dummy port_ops
6906 */
6907static void ata_dummy_noret(struct ata_port *ap) { }
6908static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6909static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6910
6911static u8 ata_dummy_check_status(struct ata_port *ap)
6912{
6913 return ATA_DRDY;
6914}
6915
6916static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6917{
6918 return AC_ERR_SYSTEM;
6919}
6920
6921const struct ata_port_operations ata_dummy_port_ops = {
6922 .port_disable = ata_port_disable,
6923 .check_status = ata_dummy_check_status,
6924 .check_altstatus = ata_dummy_check_status,
6925 .dev_select = ata_noop_dev_select,
6926 .qc_prep = ata_noop_qc_prep,
6927 .qc_issue = ata_dummy_qc_issue,
6928 .freeze = ata_dummy_noret,
6929 .thaw = ata_dummy_noret,
6930 .error_handler = ata_dummy_noret,
6931 .post_internal_cmd = ata_dummy_qc_noret,
6932 .irq_clear = ata_dummy_noret,
6933 .port_start = ata_dummy_ret0,
6934 .port_stop = ata_dummy_noret,
6935};
6936
21b0ad4f
TH
6937const struct ata_port_info ata_dummy_port_info = {
6938 .port_ops = &ata_dummy_port_ops,
6939};
6940
1da177e4
LT
6941/*
6942 * libata is essentially a library of internal helper functions for
6943 * low-level ATA host controller drivers. As such, the API/ABI is
6944 * likely to change as new drivers are added and updated.
6945 * Do not depend on ABI/API stability.
6946 */
6947
e9c83914
TH
6948EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6949EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6950EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6951EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6952EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6953EXPORT_SYMBOL_GPL(ata_std_bios_param);
6954EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6955EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6956EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6957EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6958EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6959EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6960EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6961EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6962EXPORT_SYMBOL_GPL(ata_sg_init);
6963EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6964EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6965EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6966EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6967EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6968EXPORT_SYMBOL_GPL(ata_tf_load);
6969EXPORT_SYMBOL_GPL(ata_tf_read);
6970EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6971EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6972EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6973EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6974EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6975EXPORT_SYMBOL_GPL(ata_check_status);
6976EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6977EXPORT_SYMBOL_GPL(ata_exec_command);
6978EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6979EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6980EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6981EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6982EXPORT_SYMBOL_GPL(ata_data_xfer);
6983EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6984EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6985EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6986EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6987EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6988EXPORT_SYMBOL_GPL(ata_bmdma_start);
6989EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6990EXPORT_SYMBOL_GPL(ata_bmdma_status);
6991EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6992EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6993EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6994EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6995EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6996EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6997EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6998EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6999EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7000EXPORT_SYMBOL_GPL(sata_link_debounce);
7001EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7002EXPORT_SYMBOL_GPL(sata_phy_reset);
7003EXPORT_SYMBOL_GPL(__sata_phy_reset);
7004EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7005EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7006EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7007EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7008EXPORT_SYMBOL_GPL(sata_std_hardreset);
7009EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7010EXPORT_SYMBOL_GPL(ata_dev_classify);
7011EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7012EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7013EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7014EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7015EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7016EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7017EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7018EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7019EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7020EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7021EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7022EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7023EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7024EXPORT_SYMBOL_GPL(sata_scr_valid);
7025EXPORT_SYMBOL_GPL(sata_scr_read);
7026EXPORT_SYMBOL_GPL(sata_scr_write);
7027EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7028EXPORT_SYMBOL_GPL(ata_link_online);
7029EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7030#ifdef CONFIG_PM
cca3974e
JG
7031EXPORT_SYMBOL_GPL(ata_host_suspend);
7032EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7033#endif /* CONFIG_PM */
6a62a04d
TH
7034EXPORT_SYMBOL_GPL(ata_id_string);
7035EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7036EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7037EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7038
1bc4ccff 7039EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7040EXPORT_SYMBOL_GPL(ata_timing_compute);
7041EXPORT_SYMBOL_GPL(ata_timing_merge);
7042
1da177e4
LT
7043#ifdef CONFIG_PCI
7044EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7045EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7046EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7047EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7048EXPORT_SYMBOL_GPL(ata_pci_init_one);
7049EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7050#ifdef CONFIG_PM
500530f6
TH
7051EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7052EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7053EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7054EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7055#endif /* CONFIG_PM */
67951ade
AC
7056EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7057EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7058#endif /* CONFIG_PCI */
9b847548 7059
b64bbc39
TH
7060EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7061EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7062EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 7063EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7064EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7065EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7066EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
7067EXPORT_SYMBOL_GPL(ata_port_freeze);
7068EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7069EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7070EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7071EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7072EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
7073EXPORT_SYMBOL_GPL(ata_irq_on);
7074EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7075EXPORT_SYMBOL_GPL(ata_irq_ack);
7076EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 7077EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7078
7079EXPORT_SYMBOL_GPL(ata_cable_40wire);
7080EXPORT_SYMBOL_GPL(ata_cable_80wire);
7081EXPORT_SYMBOL_GPL(ata_cable_unknown);
7082EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.46435 seconds and 5 git commands to generate.