libata: clean up port_ops->sff_irq_clear()
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
67846b30 57#include <linux/jiffies.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
1da177e4 60#include <scsi/scsi.h>
193515d5 61#include <scsi/scsi_cmnd.h>
1da177e4
LT
62#include <scsi/scsi_host.h>
63#include <linux/libata.h>
1da177e4
LT
64#include <asm/semaphore.h>
65#include <asm/byteorder.h>
140b5e59 66#include <linux/cdrom.h>
1da177e4
LT
67
68#include "libata.h"
69
fda0efc5 70
d7bb4cc7 71/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
72const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 75
029cfd6b 76const struct ata_port_operations ata_base_port_ops = {
9363c382
TH
77 .prereset = ata_sff_prereset,
78 .hardreset = sata_sff_hardreset,
79 .postreset = ata_sff_postreset,
a1efdaba 80 .error_handler = ata_std_error_handler,
029cfd6b
TH
81};
82
83const struct ata_port_operations sata_port_ops = {
84 .inherits = &ata_base_port_ops,
85
86 .qc_defer = ata_std_qc_defer,
5682ed33 87 .sff_dev_select = ata_noop_dev_select,
029cfd6b
TH
88};
89
90const struct ata_port_operations sata_pmp_port_ops = {
91 .inherits = &sata_port_ops,
a1efdaba
TH
92
93 .pmp_prereset = sata_pmp_std_prereset,
94 .pmp_hardreset = sata_pmp_std_hardreset,
95 .pmp_postreset = sata_pmp_std_postreset,
96 .error_handler = sata_pmp_error_handler,
029cfd6b
TH
97};
98
3373efd8
TH
99static unsigned int ata_dev_init_params(struct ata_device *dev,
100 u16 heads, u16 sectors);
101static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
102static unsigned int ata_dev_set_feature(struct ata_device *dev,
103 u8 enable, u8 feature);
3373efd8 104static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 105static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 106
f3187195 107unsigned int ata_print_id = 1;
1da177e4
LT
108static struct workqueue_struct *ata_wq;
109
453b07ac
TH
110struct workqueue_struct *ata_aux_wq;
111
33267325
TH
112struct ata_force_param {
113 const char *name;
114 unsigned int cbl;
115 int spd_limit;
116 unsigned long xfer_mask;
117 unsigned int horkage_on;
118 unsigned int horkage_off;
119};
120
121struct ata_force_ent {
122 int port;
123 int device;
124 struct ata_force_param param;
125};
126
127static struct ata_force_ent *ata_force_tbl;
128static int ata_force_tbl_size;
129
130static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
131/* param_buf is thrown away after initialization, disallow read */
132module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
133MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
134
418dc1f5 135int atapi_enabled = 1;
1623c81e
JG
136module_param(atapi_enabled, int, 0444);
137MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
138
c5c61bda 139static int atapi_dmadir = 0;
95de719a
AL
140module_param(atapi_dmadir, int, 0444);
141MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
142
baf4fdfa
ML
143int atapi_passthru16 = 1;
144module_param(atapi_passthru16, int, 0444);
145MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
146
c3c013a2
JG
147int libata_fua = 0;
148module_param_named(fua, libata_fua, int, 0444);
149MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
150
2dcb407e 151static int ata_ignore_hpa;
1e999736
AC
152module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
153MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
154
b3a70601
AC
155static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
156module_param_named(dma, libata_dma_mask, int, 0444);
157MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
158
a8601e5f
AM
159static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
160module_param(ata_probe_timeout, int, 0444);
161MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
162
6ebe9d86 163int libata_noacpi = 0;
d7d0dad6 164module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 165MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 166
ae8d4ee7
AC
167int libata_allow_tpm = 0;
168module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
169MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
170
1da177e4
LT
171MODULE_AUTHOR("Jeff Garzik");
172MODULE_DESCRIPTION("Library module for ATA devices");
173MODULE_LICENSE("GPL");
174MODULE_VERSION(DRV_VERSION);
175
0baab86b 176
33267325
TH
177/**
178 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 179 * @ap: ATA port of interest
33267325
TH
180 *
181 * Force cable type according to libata.force and whine about it.
182 * The last entry which has matching port number is used, so it
183 * can be specified as part of device force parameters. For
184 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
185 * same effect.
186 *
187 * LOCKING:
188 * EH context.
189 */
190void ata_force_cbl(struct ata_port *ap)
191{
192 int i;
193
194 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
195 const struct ata_force_ent *fe = &ata_force_tbl[i];
196
197 if (fe->port != -1 && fe->port != ap->print_id)
198 continue;
199
200 if (fe->param.cbl == ATA_CBL_NONE)
201 continue;
202
203 ap->cbl = fe->param.cbl;
204 ata_port_printk(ap, KERN_NOTICE,
205 "FORCE: cable set to %s\n", fe->param.name);
206 return;
207 }
208}
209
210/**
211 * ata_force_spd_limit - force SATA spd limit according to libata.force
212 * @link: ATA link of interest
213 *
214 * Force SATA spd limit according to libata.force and whine about
215 * it. When only the port part is specified (e.g. 1:), the limit
216 * applies to all links connected to both the host link and all
217 * fan-out ports connected via PMP. If the device part is
218 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
219 * link not the host link. Device number 15 always points to the
220 * host link whether PMP is attached or not.
221 *
222 * LOCKING:
223 * EH context.
224 */
225static void ata_force_spd_limit(struct ata_link *link)
226{
227 int linkno, i;
228
229 if (ata_is_host_link(link))
230 linkno = 15;
231 else
232 linkno = link->pmp;
233
234 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
235 const struct ata_force_ent *fe = &ata_force_tbl[i];
236
237 if (fe->port != -1 && fe->port != link->ap->print_id)
238 continue;
239
240 if (fe->device != -1 && fe->device != linkno)
241 continue;
242
243 if (!fe->param.spd_limit)
244 continue;
245
246 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
247 ata_link_printk(link, KERN_NOTICE,
248 "FORCE: PHY spd limit set to %s\n", fe->param.name);
249 return;
250 }
251}
252
253/**
254 * ata_force_xfermask - force xfermask according to libata.force
255 * @dev: ATA device of interest
256 *
257 * Force xfer_mask according to libata.force and whine about it.
258 * For consistency with link selection, device number 15 selects
259 * the first device connected to the host link.
260 *
261 * LOCKING:
262 * EH context.
263 */
264static void ata_force_xfermask(struct ata_device *dev)
265{
266 int devno = dev->link->pmp + dev->devno;
267 int alt_devno = devno;
268 int i;
269
270 /* allow n.15 for the first device attached to host port */
271 if (ata_is_host_link(dev->link) && devno == 0)
272 alt_devno = 15;
273
274 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
275 const struct ata_force_ent *fe = &ata_force_tbl[i];
276 unsigned long pio_mask, mwdma_mask, udma_mask;
277
278 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
279 continue;
280
281 if (fe->device != -1 && fe->device != devno &&
282 fe->device != alt_devno)
283 continue;
284
285 if (!fe->param.xfer_mask)
286 continue;
287
288 ata_unpack_xfermask(fe->param.xfer_mask,
289 &pio_mask, &mwdma_mask, &udma_mask);
290 if (udma_mask)
291 dev->udma_mask = udma_mask;
292 else if (mwdma_mask) {
293 dev->udma_mask = 0;
294 dev->mwdma_mask = mwdma_mask;
295 } else {
296 dev->udma_mask = 0;
297 dev->mwdma_mask = 0;
298 dev->pio_mask = pio_mask;
299 }
300
301 ata_dev_printk(dev, KERN_NOTICE,
302 "FORCE: xfer_mask set to %s\n", fe->param.name);
303 return;
304 }
305}
306
307/**
308 * ata_force_horkage - force horkage according to libata.force
309 * @dev: ATA device of interest
310 *
311 * Force horkage according to libata.force and whine about it.
312 * For consistency with link selection, device number 15 selects
313 * the first device connected to the host link.
314 *
315 * LOCKING:
316 * EH context.
317 */
318static void ata_force_horkage(struct ata_device *dev)
319{
320 int devno = dev->link->pmp + dev->devno;
321 int alt_devno = devno;
322 int i;
323
324 /* allow n.15 for the first device attached to host port */
325 if (ata_is_host_link(dev->link) && devno == 0)
326 alt_devno = 15;
327
328 for (i = 0; i < ata_force_tbl_size; i++) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
332 continue;
333
334 if (fe->device != -1 && fe->device != devno &&
335 fe->device != alt_devno)
336 continue;
337
338 if (!(~dev->horkage & fe->param.horkage_on) &&
339 !(dev->horkage & fe->param.horkage_off))
340 continue;
341
342 dev->horkage |= fe->param.horkage_on;
343 dev->horkage &= ~fe->param.horkage_off;
344
345 ata_dev_printk(dev, KERN_NOTICE,
346 "FORCE: horkage modified (%s)\n", fe->param.name);
347 }
348}
349
436d34b3
TH
350/**
351 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
352 * @opcode: SCSI opcode
353 *
354 * Determine ATAPI command type from @opcode.
355 *
356 * LOCKING:
357 * None.
358 *
359 * RETURNS:
360 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
361 */
362int atapi_cmd_type(u8 opcode)
363{
364 switch (opcode) {
365 case GPCMD_READ_10:
366 case GPCMD_READ_12:
367 return ATAPI_READ;
368
369 case GPCMD_WRITE_10:
370 case GPCMD_WRITE_12:
371 case GPCMD_WRITE_AND_VERIFY_10:
372 return ATAPI_WRITE;
373
374 case GPCMD_READ_CD:
375 case GPCMD_READ_CD_MSF:
376 return ATAPI_READ_CD;
377
e52dcc48
TH
378 case ATA_16:
379 case ATA_12:
380 if (atapi_passthru16)
381 return ATAPI_PASS_THRU;
382 /* fall thru */
436d34b3
TH
383 default:
384 return ATAPI_MISC;
385 }
386}
387
1da177e4
LT
388/**
389 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
390 * @tf: Taskfile to convert
1da177e4 391 * @pmp: Port multiplier port
9977126c
TH
392 * @is_cmd: This FIS is for command
393 * @fis: Buffer into which data will output
1da177e4
LT
394 *
395 * Converts a standard ATA taskfile to a Serial ATA
396 * FIS structure (Register - Host to Device).
397 *
398 * LOCKING:
399 * Inherited from caller.
400 */
9977126c 401void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 402{
9977126c
TH
403 fis[0] = 0x27; /* Register - Host to Device FIS */
404 fis[1] = pmp & 0xf; /* Port multiplier number*/
405 if (is_cmd)
406 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
407
1da177e4
LT
408 fis[2] = tf->command;
409 fis[3] = tf->feature;
410
411 fis[4] = tf->lbal;
412 fis[5] = tf->lbam;
413 fis[6] = tf->lbah;
414 fis[7] = tf->device;
415
416 fis[8] = tf->hob_lbal;
417 fis[9] = tf->hob_lbam;
418 fis[10] = tf->hob_lbah;
419 fis[11] = tf->hob_feature;
420
421 fis[12] = tf->nsect;
422 fis[13] = tf->hob_nsect;
423 fis[14] = 0;
424 fis[15] = tf->ctl;
425
426 fis[16] = 0;
427 fis[17] = 0;
428 fis[18] = 0;
429 fis[19] = 0;
430}
431
432/**
433 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
434 * @fis: Buffer from which data will be input
435 * @tf: Taskfile to output
436 *
e12a1be6 437 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
438 *
439 * LOCKING:
440 * Inherited from caller.
441 */
442
057ace5e 443void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
444{
445 tf->command = fis[2]; /* status */
446 tf->feature = fis[3]; /* error */
447
448 tf->lbal = fis[4];
449 tf->lbam = fis[5];
450 tf->lbah = fis[6];
451 tf->device = fis[7];
452
453 tf->hob_lbal = fis[8];
454 tf->hob_lbam = fis[9];
455 tf->hob_lbah = fis[10];
456
457 tf->nsect = fis[12];
458 tf->hob_nsect = fis[13];
459}
460
8cbd6df1
AL
461static const u8 ata_rw_cmds[] = {
462 /* pio multi */
463 ATA_CMD_READ_MULTI,
464 ATA_CMD_WRITE_MULTI,
465 ATA_CMD_READ_MULTI_EXT,
466 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
467 0,
468 0,
469 0,
470 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
471 /* pio */
472 ATA_CMD_PIO_READ,
473 ATA_CMD_PIO_WRITE,
474 ATA_CMD_PIO_READ_EXT,
475 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
476 0,
477 0,
478 0,
479 0,
8cbd6df1
AL
480 /* dma */
481 ATA_CMD_READ,
482 ATA_CMD_WRITE,
483 ATA_CMD_READ_EXT,
9a3dccc4
TH
484 ATA_CMD_WRITE_EXT,
485 0,
486 0,
487 0,
488 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 489};
1da177e4
LT
490
491/**
8cbd6df1 492 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
493 * @tf: command to examine and configure
494 * @dev: device tf belongs to
1da177e4 495 *
2e9edbf8 496 * Examine the device configuration and tf->flags to calculate
8cbd6df1 497 * the proper read/write commands and protocol to use.
1da177e4
LT
498 *
499 * LOCKING:
500 * caller.
501 */
bd056d7e 502static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 503{
9a3dccc4 504 u8 cmd;
1da177e4 505
9a3dccc4 506 int index, fua, lba48, write;
2e9edbf8 507
9a3dccc4 508 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
509 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
510 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 511
8cbd6df1
AL
512 if (dev->flags & ATA_DFLAG_PIO) {
513 tf->protocol = ATA_PROT_PIO;
9a3dccc4 514 index = dev->multi_count ? 0 : 8;
9af5c9c9 515 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
516 /* Unable to use DMA due to host limitation */
517 tf->protocol = ATA_PROT_PIO;
0565c26d 518 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
519 } else {
520 tf->protocol = ATA_PROT_DMA;
9a3dccc4 521 index = 16;
8cbd6df1 522 }
1da177e4 523
9a3dccc4
TH
524 cmd = ata_rw_cmds[index + fua + lba48 + write];
525 if (cmd) {
526 tf->command = cmd;
527 return 0;
528 }
529 return -1;
1da177e4
LT
530}
531
35b649fe
TH
532/**
533 * ata_tf_read_block - Read block address from ATA taskfile
534 * @tf: ATA taskfile of interest
535 * @dev: ATA device @tf belongs to
536 *
537 * LOCKING:
538 * None.
539 *
540 * Read block address from @tf. This function can handle all
541 * three address formats - LBA, LBA48 and CHS. tf->protocol and
542 * flags select the address format to use.
543 *
544 * RETURNS:
545 * Block address read from @tf.
546 */
547u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
548{
549 u64 block = 0;
550
551 if (tf->flags & ATA_TFLAG_LBA) {
552 if (tf->flags & ATA_TFLAG_LBA48) {
553 block |= (u64)tf->hob_lbah << 40;
554 block |= (u64)tf->hob_lbam << 32;
555 block |= tf->hob_lbal << 24;
556 } else
557 block |= (tf->device & 0xf) << 24;
558
559 block |= tf->lbah << 16;
560 block |= tf->lbam << 8;
561 block |= tf->lbal;
562 } else {
563 u32 cyl, head, sect;
564
565 cyl = tf->lbam | (tf->lbah << 8);
566 head = tf->device & 0xf;
567 sect = tf->lbal;
568
569 block = (cyl * dev->heads + head) * dev->sectors + sect;
570 }
571
572 return block;
573}
574
bd056d7e
TH
575/**
576 * ata_build_rw_tf - Build ATA taskfile for given read/write request
577 * @tf: Target ATA taskfile
578 * @dev: ATA device @tf belongs to
579 * @block: Block address
580 * @n_block: Number of blocks
581 * @tf_flags: RW/FUA etc...
582 * @tag: tag
583 *
584 * LOCKING:
585 * None.
586 *
587 * Build ATA taskfile @tf for read/write request described by
588 * @block, @n_block, @tf_flags and @tag on @dev.
589 *
590 * RETURNS:
591 *
592 * 0 on success, -ERANGE if the request is too large for @dev,
593 * -EINVAL if the request is invalid.
594 */
595int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
596 u64 block, u32 n_block, unsigned int tf_flags,
597 unsigned int tag)
598{
599 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
600 tf->flags |= tf_flags;
601
6d1245bf 602 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
603 /* yay, NCQ */
604 if (!lba_48_ok(block, n_block))
605 return -ERANGE;
606
607 tf->protocol = ATA_PROT_NCQ;
608 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
609
610 if (tf->flags & ATA_TFLAG_WRITE)
611 tf->command = ATA_CMD_FPDMA_WRITE;
612 else
613 tf->command = ATA_CMD_FPDMA_READ;
614
615 tf->nsect = tag << 3;
616 tf->hob_feature = (n_block >> 8) & 0xff;
617 tf->feature = n_block & 0xff;
618
619 tf->hob_lbah = (block >> 40) & 0xff;
620 tf->hob_lbam = (block >> 32) & 0xff;
621 tf->hob_lbal = (block >> 24) & 0xff;
622 tf->lbah = (block >> 16) & 0xff;
623 tf->lbam = (block >> 8) & 0xff;
624 tf->lbal = block & 0xff;
625
626 tf->device = 1 << 6;
627 if (tf->flags & ATA_TFLAG_FUA)
628 tf->device |= 1 << 7;
629 } else if (dev->flags & ATA_DFLAG_LBA) {
630 tf->flags |= ATA_TFLAG_LBA;
631
632 if (lba_28_ok(block, n_block)) {
633 /* use LBA28 */
634 tf->device |= (block >> 24) & 0xf;
635 } else if (lba_48_ok(block, n_block)) {
636 if (!(dev->flags & ATA_DFLAG_LBA48))
637 return -ERANGE;
638
639 /* use LBA48 */
640 tf->flags |= ATA_TFLAG_LBA48;
641
642 tf->hob_nsect = (n_block >> 8) & 0xff;
643
644 tf->hob_lbah = (block >> 40) & 0xff;
645 tf->hob_lbam = (block >> 32) & 0xff;
646 tf->hob_lbal = (block >> 24) & 0xff;
647 } else
648 /* request too large even for LBA48 */
649 return -ERANGE;
650
651 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
652 return -EINVAL;
653
654 tf->nsect = n_block & 0xff;
655
656 tf->lbah = (block >> 16) & 0xff;
657 tf->lbam = (block >> 8) & 0xff;
658 tf->lbal = block & 0xff;
659
660 tf->device |= ATA_LBA;
661 } else {
662 /* CHS */
663 u32 sect, head, cyl, track;
664
665 /* The request -may- be too large for CHS addressing. */
666 if (!lba_28_ok(block, n_block))
667 return -ERANGE;
668
669 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
670 return -EINVAL;
671
672 /* Convert LBA to CHS */
673 track = (u32)block / dev->sectors;
674 cyl = track / dev->heads;
675 head = track % dev->heads;
676 sect = (u32)block % dev->sectors + 1;
677
678 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
679 (u32)block, track, cyl, head, sect);
680
681 /* Check whether the converted CHS can fit.
682 Cylinder: 0-65535
683 Head: 0-15
684 Sector: 1-255*/
685 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
686 return -ERANGE;
687
688 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
689 tf->lbal = sect;
690 tf->lbam = cyl;
691 tf->lbah = cyl >> 8;
692 tf->device |= head;
693 }
694
695 return 0;
696}
697
cb95d562
TH
698/**
699 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
700 * @pio_mask: pio_mask
701 * @mwdma_mask: mwdma_mask
702 * @udma_mask: udma_mask
703 *
704 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
705 * unsigned int xfer_mask.
706 *
707 * LOCKING:
708 * None.
709 *
710 * RETURNS:
711 * Packed xfer_mask.
712 */
7dc951ae
TH
713unsigned long ata_pack_xfermask(unsigned long pio_mask,
714 unsigned long mwdma_mask,
715 unsigned long udma_mask)
cb95d562
TH
716{
717 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
718 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
719 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
720}
721
c0489e4e
TH
722/**
723 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
724 * @xfer_mask: xfer_mask to unpack
725 * @pio_mask: resulting pio_mask
726 * @mwdma_mask: resulting mwdma_mask
727 * @udma_mask: resulting udma_mask
728 *
729 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
730 * Any NULL distination masks will be ignored.
731 */
7dc951ae
TH
732void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
733 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
734{
735 if (pio_mask)
736 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
737 if (mwdma_mask)
738 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
739 if (udma_mask)
740 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
741}
742
cb95d562 743static const struct ata_xfer_ent {
be9a50c8 744 int shift, bits;
cb95d562
TH
745 u8 base;
746} ata_xfer_tbl[] = {
70cd071e
TH
747 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
748 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
749 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
750 { -1, },
751};
752
753/**
754 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
755 * @xfer_mask: xfer_mask of interest
756 *
757 * Return matching XFER_* value for @xfer_mask. Only the highest
758 * bit of @xfer_mask is considered.
759 *
760 * LOCKING:
761 * None.
762 *
763 * RETURNS:
70cd071e 764 * Matching XFER_* value, 0xff if no match found.
cb95d562 765 */
7dc951ae 766u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
767{
768 int highbit = fls(xfer_mask) - 1;
769 const struct ata_xfer_ent *ent;
770
771 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
772 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
773 return ent->base + highbit - ent->shift;
70cd071e 774 return 0xff;
cb95d562
TH
775}
776
777/**
778 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
779 * @xfer_mode: XFER_* of interest
780 *
781 * Return matching xfer_mask for @xfer_mode.
782 *
783 * LOCKING:
784 * None.
785 *
786 * RETURNS:
787 * Matching xfer_mask, 0 if no match found.
788 */
7dc951ae 789unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
790{
791 const struct ata_xfer_ent *ent;
792
793 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
794 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
795 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
796 & ~((1 << ent->shift) - 1);
cb95d562
TH
797 return 0;
798}
799
800/**
801 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
802 * @xfer_mode: XFER_* of interest
803 *
804 * Return matching xfer_shift for @xfer_mode.
805 *
806 * LOCKING:
807 * None.
808 *
809 * RETURNS:
810 * Matching xfer_shift, -1 if no match found.
811 */
7dc951ae 812int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
813{
814 const struct ata_xfer_ent *ent;
815
816 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
817 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
818 return ent->shift;
819 return -1;
820}
821
1da177e4 822/**
1da7b0d0
TH
823 * ata_mode_string - convert xfer_mask to string
824 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
825 *
826 * Determine string which represents the highest speed
1da7b0d0 827 * (highest bit in @modemask).
1da177e4
LT
828 *
829 * LOCKING:
830 * None.
831 *
832 * RETURNS:
833 * Constant C string representing highest speed listed in
1da7b0d0 834 * @mode_mask, or the constant C string "<n/a>".
1da177e4 835 */
7dc951ae 836const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 837{
75f554bc
TH
838 static const char * const xfer_mode_str[] = {
839 "PIO0",
840 "PIO1",
841 "PIO2",
842 "PIO3",
843 "PIO4",
b352e57d
AC
844 "PIO5",
845 "PIO6",
75f554bc
TH
846 "MWDMA0",
847 "MWDMA1",
848 "MWDMA2",
b352e57d
AC
849 "MWDMA3",
850 "MWDMA4",
75f554bc
TH
851 "UDMA/16",
852 "UDMA/25",
853 "UDMA/33",
854 "UDMA/44",
855 "UDMA/66",
856 "UDMA/100",
857 "UDMA/133",
858 "UDMA7",
859 };
1da7b0d0 860 int highbit;
1da177e4 861
1da7b0d0
TH
862 highbit = fls(xfer_mask) - 1;
863 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
864 return xfer_mode_str[highbit];
1da177e4 865 return "<n/a>";
1da177e4
LT
866}
867
4c360c81
TH
868static const char *sata_spd_string(unsigned int spd)
869{
870 static const char * const spd_str[] = {
871 "1.5 Gbps",
872 "3.0 Gbps",
873 };
874
875 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
876 return "<unknown>";
877 return spd_str[spd - 1];
878}
879
3373efd8 880void ata_dev_disable(struct ata_device *dev)
0b8efb0a 881{
09d7f9b0 882 if (ata_dev_enabled(dev)) {
9af5c9c9 883 if (ata_msg_drv(dev->link->ap))
09d7f9b0 884 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 885 ata_acpi_on_disable(dev);
4ae72a1e
TH
886 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
887 ATA_DNXFER_QUIET);
0b8efb0a
TH
888 dev->class++;
889 }
890}
891
ca77329f
KCA
892static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
893{
894 struct ata_link *link = dev->link;
895 struct ata_port *ap = link->ap;
896 u32 scontrol;
897 unsigned int err_mask;
898 int rc;
899
900 /*
901 * disallow DIPM for drivers which haven't set
902 * ATA_FLAG_IPM. This is because when DIPM is enabled,
903 * phy ready will be set in the interrupt status on
904 * state changes, which will cause some drivers to
905 * think there are errors - additionally drivers will
906 * need to disable hot plug.
907 */
908 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
909 ap->pm_policy = NOT_AVAILABLE;
910 return -EINVAL;
911 }
912
913 /*
914 * For DIPM, we will only enable it for the
915 * min_power setting.
916 *
917 * Why? Because Disks are too stupid to know that
918 * If the host rejects a request to go to SLUMBER
919 * they should retry at PARTIAL, and instead it
920 * just would give up. So, for medium_power to
921 * work at all, we need to only allow HIPM.
922 */
923 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
924 if (rc)
925 return rc;
926
927 switch (policy) {
928 case MIN_POWER:
929 /* no restrictions on IPM transitions */
930 scontrol &= ~(0x3 << 8);
931 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
932 if (rc)
933 return rc;
934
935 /* enable DIPM */
936 if (dev->flags & ATA_DFLAG_DIPM)
937 err_mask = ata_dev_set_feature(dev,
938 SETFEATURES_SATA_ENABLE, SATA_DIPM);
939 break;
940 case MEDIUM_POWER:
941 /* allow IPM to PARTIAL */
942 scontrol &= ~(0x1 << 8);
943 scontrol |= (0x2 << 8);
944 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
945 if (rc)
946 return rc;
947
f5456b63
KCA
948 /*
949 * we don't have to disable DIPM since IPM flags
950 * disallow transitions to SLUMBER, which effectively
951 * disable DIPM if it does not support PARTIAL
952 */
ca77329f
KCA
953 break;
954 case NOT_AVAILABLE:
955 case MAX_PERFORMANCE:
956 /* disable all IPM transitions */
957 scontrol |= (0x3 << 8);
958 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
959 if (rc)
960 return rc;
961
f5456b63
KCA
962 /*
963 * we don't have to disable DIPM since IPM flags
964 * disallow all transitions which effectively
965 * disable DIPM anyway.
966 */
ca77329f
KCA
967 break;
968 }
969
970 /* FIXME: handle SET FEATURES failure */
971 (void) err_mask;
972
973 return 0;
974}
975
976/**
977 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
978 * @dev: device to enable power management
979 * @policy: the link power management policy
ca77329f
KCA
980 *
981 * Enable SATA Interface power management. This will enable
982 * Device Interface Power Management (DIPM) for min_power
983 * policy, and then call driver specific callbacks for
984 * enabling Host Initiated Power management.
985 *
986 * Locking: Caller.
987 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
988 */
989void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
990{
991 int rc = 0;
992 struct ata_port *ap = dev->link->ap;
993
994 /* set HIPM first, then DIPM */
995 if (ap->ops->enable_pm)
996 rc = ap->ops->enable_pm(ap, policy);
997 if (rc)
998 goto enable_pm_out;
999 rc = ata_dev_set_dipm(dev, policy);
1000
1001enable_pm_out:
1002 if (rc)
1003 ap->pm_policy = MAX_PERFORMANCE;
1004 else
1005 ap->pm_policy = policy;
1006 return /* rc */; /* hopefully we can use 'rc' eventually */
1007}
1008
1992a5ed 1009#ifdef CONFIG_PM
ca77329f
KCA
1010/**
1011 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1012 * @dev: device to disable power management
ca77329f
KCA
1013 *
1014 * Disable SATA Interface power management. This will disable
1015 * Device Interface Power Management (DIPM) without changing
1016 * policy, call driver specific callbacks for disabling Host
1017 * Initiated Power management.
1018 *
1019 * Locking: Caller.
1020 * Returns: void
1021 */
1022static void ata_dev_disable_pm(struct ata_device *dev)
1023{
1024 struct ata_port *ap = dev->link->ap;
1025
1026 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1027 if (ap->ops->disable_pm)
1028 ap->ops->disable_pm(ap);
1029}
1992a5ed 1030#endif /* CONFIG_PM */
ca77329f
KCA
1031
1032void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1033{
1034 ap->pm_policy = policy;
3ec25ebd 1035 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1036 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1037 ata_port_schedule_eh(ap);
1038}
1039
1992a5ed 1040#ifdef CONFIG_PM
ca77329f
KCA
1041static void ata_lpm_enable(struct ata_host *host)
1042{
1043 struct ata_link *link;
1044 struct ata_port *ap;
1045 struct ata_device *dev;
1046 int i;
1047
1048 for (i = 0; i < host->n_ports; i++) {
1049 ap = host->ports[i];
1050 ata_port_for_each_link(link, ap) {
1051 ata_link_for_each_dev(dev, link)
1052 ata_dev_disable_pm(dev);
1053 }
1054 }
1055}
1056
1057static void ata_lpm_disable(struct ata_host *host)
1058{
1059 int i;
1060
1061 for (i = 0; i < host->n_ports; i++) {
1062 struct ata_port *ap = host->ports[i];
1063 ata_lpm_schedule(ap, ap->pm_policy);
1064 }
1065}
1992a5ed 1066#endif /* CONFIG_PM */
ca77329f 1067
1da177e4
LT
1068/**
1069 * ata_dev_classify - determine device type based on ATA-spec signature
1070 * @tf: ATA taskfile register set for device to be identified
1071 *
1072 * Determine from taskfile register contents whether a device is
1073 * ATA or ATAPI, as per "Signature and persistence" section
1074 * of ATA/PI spec (volume 1, sect 5.14).
1075 *
1076 * LOCKING:
1077 * None.
1078 *
1079 * RETURNS:
633273a3
TH
1080 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1081 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1082 */
057ace5e 1083unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1084{
1085 /* Apple's open source Darwin code hints that some devices only
1086 * put a proper signature into the LBA mid/high registers,
1087 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1088 *
1089 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1090 * signatures for ATA and ATAPI devices attached on SerialATA,
1091 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1092 * spec has never mentioned about using different signatures
1093 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1094 * Multiplier specification began to use 0x69/0x96 to identify
1095 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1096 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1097 * 0x69/0x96 shortly and described them as reserved for
1098 * SerialATA.
1099 *
1100 * We follow the current spec and consider that 0x69/0x96
1101 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 1102 */
633273a3 1103 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1104 DPRINTK("found ATA device by sig\n");
1105 return ATA_DEV_ATA;
1106 }
1107
633273a3 1108 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1109 DPRINTK("found ATAPI device by sig\n");
1110 return ATA_DEV_ATAPI;
1111 }
1112
633273a3
TH
1113 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1114 DPRINTK("found PMP device by sig\n");
1115 return ATA_DEV_PMP;
1116 }
1117
1118 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 1119 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
1120 return ATA_DEV_SEMB_UNSUP; /* not yet */
1121 }
1122
1da177e4
LT
1123 DPRINTK("unknown device\n");
1124 return ATA_DEV_UNKNOWN;
1125}
1126
1da177e4 1127/**
6a62a04d 1128 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1129 * @id: IDENTIFY DEVICE results we will examine
1130 * @s: string into which data is output
1131 * @ofs: offset into identify device page
1132 * @len: length of string to return. must be an even number.
1133 *
1134 * The strings in the IDENTIFY DEVICE page are broken up into
1135 * 16-bit chunks. Run through the string, and output each
1136 * 8-bit chunk linearly, regardless of platform.
1137 *
1138 * LOCKING:
1139 * caller.
1140 */
1141
6a62a04d
TH
1142void ata_id_string(const u16 *id, unsigned char *s,
1143 unsigned int ofs, unsigned int len)
1da177e4
LT
1144{
1145 unsigned int c;
1146
1147 while (len > 0) {
1148 c = id[ofs] >> 8;
1149 *s = c;
1150 s++;
1151
1152 c = id[ofs] & 0xff;
1153 *s = c;
1154 s++;
1155
1156 ofs++;
1157 len -= 2;
1158 }
1159}
1160
0e949ff3 1161/**
6a62a04d 1162 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1163 * @id: IDENTIFY DEVICE results we will examine
1164 * @s: string into which data is output
1165 * @ofs: offset into identify device page
1166 * @len: length of string to return. must be an odd number.
1167 *
6a62a04d 1168 * This function is identical to ata_id_string except that it
0e949ff3
TH
1169 * trims trailing spaces and terminates the resulting string with
1170 * null. @len must be actual maximum length (even number) + 1.
1171 *
1172 * LOCKING:
1173 * caller.
1174 */
6a62a04d
TH
1175void ata_id_c_string(const u16 *id, unsigned char *s,
1176 unsigned int ofs, unsigned int len)
0e949ff3
TH
1177{
1178 unsigned char *p;
1179
1180 WARN_ON(!(len & 1));
1181
6a62a04d 1182 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1183
1184 p = s + strnlen(s, len - 1);
1185 while (p > s && p[-1] == ' ')
1186 p--;
1187 *p = '\0';
1188}
0baab86b 1189
db6f8759
TH
1190static u64 ata_id_n_sectors(const u16 *id)
1191{
1192 if (ata_id_has_lba(id)) {
1193 if (ata_id_has_lba48(id))
1194 return ata_id_u64(id, 100);
1195 else
1196 return ata_id_u32(id, 60);
1197 } else {
1198 if (ata_id_current_chs_valid(id))
1199 return ata_id_u32(id, 57);
1200 else
1201 return id[1] * id[3] * id[6];
1202 }
1203}
1204
a5987e0a 1205u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1206{
1207 u64 sectors = 0;
1208
1209 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1210 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1211 sectors |= (tf->hob_lbal & 0xff) << 24;
1212 sectors |= (tf->lbah & 0xff) << 16;
1213 sectors |= (tf->lbam & 0xff) << 8;
1214 sectors |= (tf->lbal & 0xff);
1215
a5987e0a 1216 return sectors;
1e999736
AC
1217}
1218
a5987e0a 1219u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1220{
1221 u64 sectors = 0;
1222
1223 sectors |= (tf->device & 0x0f) << 24;
1224 sectors |= (tf->lbah & 0xff) << 16;
1225 sectors |= (tf->lbam & 0xff) << 8;
1226 sectors |= (tf->lbal & 0xff);
1227
a5987e0a 1228 return sectors;
1e999736
AC
1229}
1230
1231/**
c728a914
TH
1232 * ata_read_native_max_address - Read native max address
1233 * @dev: target device
1234 * @max_sectors: out parameter for the result native max address
1e999736 1235 *
c728a914
TH
1236 * Perform an LBA48 or LBA28 native size query upon the device in
1237 * question.
1e999736 1238 *
c728a914
TH
1239 * RETURNS:
1240 * 0 on success, -EACCES if command is aborted by the drive.
1241 * -EIO on other errors.
1e999736 1242 */
c728a914 1243static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1244{
c728a914 1245 unsigned int err_mask;
1e999736 1246 struct ata_taskfile tf;
c728a914 1247 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1248
1249 ata_tf_init(dev, &tf);
1250
c728a914 1251 /* always clear all address registers */
1e999736 1252 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1253
c728a914
TH
1254 if (lba48) {
1255 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1256 tf.flags |= ATA_TFLAG_LBA48;
1257 } else
1258 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1259
1e999736 1260 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1261 tf.device |= ATA_LBA;
1262
2b789108 1263 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1264 if (err_mask) {
1265 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1266 "max address (err_mask=0x%x)\n", err_mask);
1267 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1268 return -EACCES;
1269 return -EIO;
1270 }
1e999736 1271
c728a914 1272 if (lba48)
a5987e0a 1273 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1274 else
a5987e0a 1275 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1276 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1277 (*max_sectors)--;
c728a914 1278 return 0;
1e999736
AC
1279}
1280
1281/**
c728a914
TH
1282 * ata_set_max_sectors - Set max sectors
1283 * @dev: target device
6b38d1d1 1284 * @new_sectors: new max sectors value to set for the device
1e999736 1285 *
c728a914
TH
1286 * Set max sectors of @dev to @new_sectors.
1287 *
1288 * RETURNS:
1289 * 0 on success, -EACCES if command is aborted or denied (due to
1290 * previous non-volatile SET_MAX) by the drive. -EIO on other
1291 * errors.
1e999736 1292 */
05027adc 1293static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1294{
c728a914 1295 unsigned int err_mask;
1e999736 1296 struct ata_taskfile tf;
c728a914 1297 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1298
1299 new_sectors--;
1300
1301 ata_tf_init(dev, &tf);
1302
1e999736 1303 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1304
1305 if (lba48) {
1306 tf.command = ATA_CMD_SET_MAX_EXT;
1307 tf.flags |= ATA_TFLAG_LBA48;
1308
1309 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1310 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1311 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1312 } else {
c728a914
TH
1313 tf.command = ATA_CMD_SET_MAX;
1314
1e582ba4
TH
1315 tf.device |= (new_sectors >> 24) & 0xf;
1316 }
1317
1e999736 1318 tf.protocol |= ATA_PROT_NODATA;
c728a914 1319 tf.device |= ATA_LBA;
1e999736
AC
1320
1321 tf.lbal = (new_sectors >> 0) & 0xff;
1322 tf.lbam = (new_sectors >> 8) & 0xff;
1323 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1324
2b789108 1325 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1326 if (err_mask) {
1327 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1328 "max address (err_mask=0x%x)\n", err_mask);
1329 if (err_mask == AC_ERR_DEV &&
1330 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1331 return -EACCES;
1332 return -EIO;
1333 }
1334
c728a914 1335 return 0;
1e999736
AC
1336}
1337
1338/**
1339 * ata_hpa_resize - Resize a device with an HPA set
1340 * @dev: Device to resize
1341 *
1342 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1343 * it if required to the full size of the media. The caller must check
1344 * the drive has the HPA feature set enabled.
05027adc
TH
1345 *
1346 * RETURNS:
1347 * 0 on success, -errno on failure.
1e999736 1348 */
05027adc 1349static int ata_hpa_resize(struct ata_device *dev)
1e999736 1350{
05027adc
TH
1351 struct ata_eh_context *ehc = &dev->link->eh_context;
1352 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1353 u64 sectors = ata_id_n_sectors(dev->id);
1354 u64 native_sectors;
c728a914 1355 int rc;
a617c09f 1356
05027adc
TH
1357 /* do we need to do it? */
1358 if (dev->class != ATA_DEV_ATA ||
1359 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1360 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1361 return 0;
1e999736 1362
05027adc
TH
1363 /* read native max address */
1364 rc = ata_read_native_max_address(dev, &native_sectors);
1365 if (rc) {
dda7aba1
TH
1366 /* If device aborted the command or HPA isn't going to
1367 * be unlocked, skip HPA resizing.
05027adc 1368 */
dda7aba1 1369 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1370 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1371 "broken, skipping HPA handling\n");
05027adc
TH
1372 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1373
1374 /* we can continue if device aborted the command */
1375 if (rc == -EACCES)
1376 rc = 0;
1e999736 1377 }
37301a55 1378
05027adc
TH
1379 return rc;
1380 }
1381
1382 /* nothing to do? */
1383 if (native_sectors <= sectors || !ata_ignore_hpa) {
1384 if (!print_info || native_sectors == sectors)
1385 return 0;
1386
1387 if (native_sectors > sectors)
1388 ata_dev_printk(dev, KERN_INFO,
1389 "HPA detected: current %llu, native %llu\n",
1390 (unsigned long long)sectors,
1391 (unsigned long long)native_sectors);
1392 else if (native_sectors < sectors)
1393 ata_dev_printk(dev, KERN_WARNING,
1394 "native sectors (%llu) is smaller than "
1395 "sectors (%llu)\n",
1396 (unsigned long long)native_sectors,
1397 (unsigned long long)sectors);
1398 return 0;
1399 }
1400
1401 /* let's unlock HPA */
1402 rc = ata_set_max_sectors(dev, native_sectors);
1403 if (rc == -EACCES) {
1404 /* if device aborted the command, skip HPA resizing */
1405 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1406 "(%llu -> %llu), skipping HPA handling\n",
1407 (unsigned long long)sectors,
1408 (unsigned long long)native_sectors);
1409 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1410 return 0;
1411 } else if (rc)
1412 return rc;
1413
1414 /* re-read IDENTIFY data */
1415 rc = ata_dev_reread_id(dev, 0);
1416 if (rc) {
1417 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1418 "data after HPA resizing\n");
1419 return rc;
1420 }
1421
1422 if (print_info) {
1423 u64 new_sectors = ata_id_n_sectors(dev->id);
1424 ata_dev_printk(dev, KERN_INFO,
1425 "HPA unlocked: %llu -> %llu, native %llu\n",
1426 (unsigned long long)sectors,
1427 (unsigned long long)new_sectors,
1428 (unsigned long long)native_sectors);
1429 }
1430
1431 return 0;
1e999736
AC
1432}
1433
0baab86b
EF
1434/**
1435 * ata_noop_dev_select - Select device 0/1 on ATA bus
1436 * @ap: ATA channel to manipulate
1437 * @device: ATA device (numbered from zero) to select
1438 *
1439 * This function performs no actual function.
1440 *
1441 * May be used as the dev_select() entry in ata_port_operations.
1442 *
1443 * LOCKING:
1444 * caller.
1445 */
2dcb407e 1446void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1447{
1448}
1449
1da177e4
LT
1450/**
1451 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1452 * @id: IDENTIFY DEVICE page to dump
1da177e4 1453 *
0bd3300a
TH
1454 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1455 * page.
1da177e4
LT
1456 *
1457 * LOCKING:
1458 * caller.
1459 */
1460
0bd3300a 1461static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1462{
1463 DPRINTK("49==0x%04x "
1464 "53==0x%04x "
1465 "63==0x%04x "
1466 "64==0x%04x "
1467 "75==0x%04x \n",
0bd3300a
TH
1468 id[49],
1469 id[53],
1470 id[63],
1471 id[64],
1472 id[75]);
1da177e4
LT
1473 DPRINTK("80==0x%04x "
1474 "81==0x%04x "
1475 "82==0x%04x "
1476 "83==0x%04x "
1477 "84==0x%04x \n",
0bd3300a
TH
1478 id[80],
1479 id[81],
1480 id[82],
1481 id[83],
1482 id[84]);
1da177e4
LT
1483 DPRINTK("88==0x%04x "
1484 "93==0x%04x\n",
0bd3300a
TH
1485 id[88],
1486 id[93]);
1da177e4
LT
1487}
1488
cb95d562
TH
1489/**
1490 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1491 * @id: IDENTIFY data to compute xfer mask from
1492 *
1493 * Compute the xfermask for this device. This is not as trivial
1494 * as it seems if we must consider early devices correctly.
1495 *
1496 * FIXME: pre IDE drive timing (do we care ?).
1497 *
1498 * LOCKING:
1499 * None.
1500 *
1501 * RETURNS:
1502 * Computed xfermask
1503 */
7dc951ae 1504unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1505{
7dc951ae 1506 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1507
1508 /* Usual case. Word 53 indicates word 64 is valid */
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1510 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1511 pio_mask <<= 3;
1512 pio_mask |= 0x7;
1513 } else {
1514 /* If word 64 isn't valid then Word 51 high byte holds
1515 * the PIO timing number for the maximum. Turn it into
1516 * a mask.
1517 */
7a0f1c8a 1518 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1519 if (mode < 5) /* Valid PIO range */
2dcb407e 1520 pio_mask = (2 << mode) - 1;
46767aeb
AC
1521 else
1522 pio_mask = 1;
cb95d562
TH
1523
1524 /* But wait.. there's more. Design your standards by
1525 * committee and you too can get a free iordy field to
1526 * process. However its the speeds not the modes that
1527 * are supported... Note drivers using the timing API
1528 * will get this right anyway
1529 */
1530 }
1531
1532 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1533
b352e57d
AC
1534 if (ata_id_is_cfa(id)) {
1535 /*
1536 * Process compact flash extended modes
1537 */
1538 int pio = id[163] & 0x7;
1539 int dma = (id[163] >> 3) & 7;
1540
1541 if (pio)
1542 pio_mask |= (1 << 5);
1543 if (pio > 1)
1544 pio_mask |= (1 << 6);
1545 if (dma)
1546 mwdma_mask |= (1 << 3);
1547 if (dma > 1)
1548 mwdma_mask |= (1 << 4);
1549 }
1550
fb21f0d0
TH
1551 udma_mask = 0;
1552 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1553 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1554
1555 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1556}
1557
86e45b6b 1558/**
442eacc3 1559 * ata_pio_queue_task - Queue port_task
86e45b6b 1560 * @ap: The ata_port to queue port_task for
e2a7f77a 1561 * @fn: workqueue function to be scheduled
65f27f38 1562 * @data: data for @fn to use
e2a7f77a 1563 * @delay: delay time for workqueue function
86e45b6b
TH
1564 *
1565 * Schedule @fn(@data) for execution after @delay jiffies using
1566 * port_task. There is one port_task per port and it's the
1567 * user(low level driver)'s responsibility to make sure that only
1568 * one task is active at any given time.
1569 *
1570 * libata core layer takes care of synchronization between
442eacc3 1571 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1572 * synchronization.
1573 *
1574 * LOCKING:
1575 * Inherited from caller.
1576 */
624d5c51 1577void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1578{
65f27f38 1579 ap->port_task_data = data;
86e45b6b 1580
45a66c1c
ON
1581 /* may fail if ata_port_flush_task() in progress */
1582 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1583}
1584
1585/**
1586 * ata_port_flush_task - Flush port_task
1587 * @ap: The ata_port to flush port_task for
1588 *
1589 * After this function completes, port_task is guranteed not to
1590 * be running or scheduled.
1591 *
1592 * LOCKING:
1593 * Kernel thread context (may sleep)
1594 */
1595void ata_port_flush_task(struct ata_port *ap)
1596{
86e45b6b
TH
1597 DPRINTK("ENTER\n");
1598
45a66c1c 1599 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1600
0dd4b21f 1601 if (ata_msg_ctl(ap))
7f5e4e8d 1602 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1603}
1604
7102d230 1605static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1606{
77853bf2 1607 struct completion *waiting = qc->private_data;
a2a7a662 1608
a2a7a662 1609 complete(waiting);
a2a7a662
TH
1610}
1611
1612/**
2432697b 1613 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1614 * @dev: Device to which the command is sent
1615 * @tf: Taskfile registers for the command and the result
d69cf37d 1616 * @cdb: CDB for packet command
a2a7a662 1617 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1618 * @sgl: sg list for the data buffer of the command
2432697b 1619 * @n_elem: Number of sg entries
2b789108 1620 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1621 *
1622 * Executes libata internal command with timeout. @tf contains
1623 * command on entry and result on return. Timeout and error
1624 * conditions are reported via return value. No recovery action
1625 * is taken after a command times out. It's caller's duty to
1626 * clean up after timeout.
1627 *
1628 * LOCKING:
1629 * None. Should be called with kernel context, might sleep.
551e8889
TH
1630 *
1631 * RETURNS:
1632 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1633 */
2432697b
TH
1634unsigned ata_exec_internal_sg(struct ata_device *dev,
1635 struct ata_taskfile *tf, const u8 *cdb,
87260216 1636 int dma_dir, struct scatterlist *sgl,
2b789108 1637 unsigned int n_elem, unsigned long timeout)
a2a7a662 1638{
9af5c9c9
TH
1639 struct ata_link *link = dev->link;
1640 struct ata_port *ap = link->ap;
a2a7a662
TH
1641 u8 command = tf->command;
1642 struct ata_queued_cmd *qc;
2ab7db1f 1643 unsigned int tag, preempted_tag;
dedaf2b0 1644 u32 preempted_sactive, preempted_qc_active;
da917d69 1645 int preempted_nr_active_links;
60be6b9a 1646 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1647 unsigned long flags;
77853bf2 1648 unsigned int err_mask;
d95a717f 1649 int rc;
a2a7a662 1650
ba6a1308 1651 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1652
e3180499 1653 /* no internal command while frozen */
b51e9e5d 1654 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1655 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1656 return AC_ERR_SYSTEM;
1657 }
1658
2ab7db1f 1659 /* initialize internal qc */
a2a7a662 1660
2ab7db1f
TH
1661 /* XXX: Tag 0 is used for drivers with legacy EH as some
1662 * drivers choke if any other tag is given. This breaks
1663 * ata_tag_internal() test for those drivers. Don't use new
1664 * EH stuff without converting to it.
1665 */
1666 if (ap->ops->error_handler)
1667 tag = ATA_TAG_INTERNAL;
1668 else
1669 tag = 0;
1670
6cec4a39 1671 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1672 BUG();
f69499f4 1673 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1674
1675 qc->tag = tag;
1676 qc->scsicmd = NULL;
1677 qc->ap = ap;
1678 qc->dev = dev;
1679 ata_qc_reinit(qc);
1680
9af5c9c9
TH
1681 preempted_tag = link->active_tag;
1682 preempted_sactive = link->sactive;
dedaf2b0 1683 preempted_qc_active = ap->qc_active;
da917d69 1684 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1685 link->active_tag = ATA_TAG_POISON;
1686 link->sactive = 0;
dedaf2b0 1687 ap->qc_active = 0;
da917d69 1688 ap->nr_active_links = 0;
2ab7db1f
TH
1689
1690 /* prepare & issue qc */
a2a7a662 1691 qc->tf = *tf;
d69cf37d
TH
1692 if (cdb)
1693 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1694 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1695 qc->dma_dir = dma_dir;
1696 if (dma_dir != DMA_NONE) {
2432697b 1697 unsigned int i, buflen = 0;
87260216 1698 struct scatterlist *sg;
2432697b 1699
87260216
JA
1700 for_each_sg(sgl, sg, n_elem, i)
1701 buflen += sg->length;
2432697b 1702
87260216 1703 ata_sg_init(qc, sgl, n_elem);
49c80429 1704 qc->nbytes = buflen;
a2a7a662
TH
1705 }
1706
77853bf2 1707 qc->private_data = &wait;
a2a7a662
TH
1708 qc->complete_fn = ata_qc_complete_internal;
1709
8e0e694a 1710 ata_qc_issue(qc);
a2a7a662 1711
ba6a1308 1712 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1713
2b789108
TH
1714 if (!timeout)
1715 timeout = ata_probe_timeout * 1000 / HZ;
1716
1717 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1718
1719 ata_port_flush_task(ap);
41ade50c 1720
d95a717f 1721 if (!rc) {
ba6a1308 1722 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1723
1724 /* We're racing with irq here. If we lose, the
1725 * following test prevents us from completing the qc
d95a717f
TH
1726 * twice. If we win, the port is frozen and will be
1727 * cleaned up by ->post_internal_cmd().
a2a7a662 1728 */
77853bf2 1729 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1730 qc->err_mask |= AC_ERR_TIMEOUT;
1731
1732 if (ap->ops->error_handler)
1733 ata_port_freeze(ap);
1734 else
1735 ata_qc_complete(qc);
f15a1daf 1736
0dd4b21f
BP
1737 if (ata_msg_warn(ap))
1738 ata_dev_printk(dev, KERN_WARNING,
88574551 1739 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1740 }
1741
ba6a1308 1742 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1743 }
1744
d95a717f
TH
1745 /* do post_internal_cmd */
1746 if (ap->ops->post_internal_cmd)
1747 ap->ops->post_internal_cmd(qc);
1748
a51d644a
TH
1749 /* perform minimal error analysis */
1750 if (qc->flags & ATA_QCFLAG_FAILED) {
1751 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1752 qc->err_mask |= AC_ERR_DEV;
1753
1754 if (!qc->err_mask)
1755 qc->err_mask |= AC_ERR_OTHER;
1756
1757 if (qc->err_mask & ~AC_ERR_OTHER)
1758 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1759 }
1760
15869303 1761 /* finish up */
ba6a1308 1762 spin_lock_irqsave(ap->lock, flags);
15869303 1763
e61e0672 1764 *tf = qc->result_tf;
77853bf2
TH
1765 err_mask = qc->err_mask;
1766
1767 ata_qc_free(qc);
9af5c9c9
TH
1768 link->active_tag = preempted_tag;
1769 link->sactive = preempted_sactive;
dedaf2b0 1770 ap->qc_active = preempted_qc_active;
da917d69 1771 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1772
1f7dd3e9
TH
1773 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1774 * Until those drivers are fixed, we detect the condition
1775 * here, fail the command with AC_ERR_SYSTEM and reenable the
1776 * port.
1777 *
1778 * Note that this doesn't change any behavior as internal
1779 * command failure results in disabling the device in the
1780 * higher layer for LLDDs without new reset/EH callbacks.
1781 *
1782 * Kill the following code as soon as those drivers are fixed.
1783 */
198e0fed 1784 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1785 err_mask |= AC_ERR_SYSTEM;
1786 ata_port_probe(ap);
1787 }
1788
ba6a1308 1789 spin_unlock_irqrestore(ap->lock, flags);
15869303 1790
77853bf2 1791 return err_mask;
a2a7a662
TH
1792}
1793
2432697b 1794/**
33480a0e 1795 * ata_exec_internal - execute libata internal command
2432697b
TH
1796 * @dev: Device to which the command is sent
1797 * @tf: Taskfile registers for the command and the result
1798 * @cdb: CDB for packet command
1799 * @dma_dir: Data tranfer direction of the command
1800 * @buf: Data buffer of the command
1801 * @buflen: Length of data buffer
2b789108 1802 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1803 *
1804 * Wrapper around ata_exec_internal_sg() which takes simple
1805 * buffer instead of sg list.
1806 *
1807 * LOCKING:
1808 * None. Should be called with kernel context, might sleep.
1809 *
1810 * RETURNS:
1811 * Zero on success, AC_ERR_* mask on failure
1812 */
1813unsigned ata_exec_internal(struct ata_device *dev,
1814 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1815 int dma_dir, void *buf, unsigned int buflen,
1816 unsigned long timeout)
2432697b 1817{
33480a0e
TH
1818 struct scatterlist *psg = NULL, sg;
1819 unsigned int n_elem = 0;
2432697b 1820
33480a0e
TH
1821 if (dma_dir != DMA_NONE) {
1822 WARN_ON(!buf);
1823 sg_init_one(&sg, buf, buflen);
1824 psg = &sg;
1825 n_elem++;
1826 }
2432697b 1827
2b789108
TH
1828 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1829 timeout);
2432697b
TH
1830}
1831
977e6b9f
TH
1832/**
1833 * ata_do_simple_cmd - execute simple internal command
1834 * @dev: Device to which the command is sent
1835 * @cmd: Opcode to execute
1836 *
1837 * Execute a 'simple' command, that only consists of the opcode
1838 * 'cmd' itself, without filling any other registers
1839 *
1840 * LOCKING:
1841 * Kernel thread context (may sleep).
1842 *
1843 * RETURNS:
1844 * Zero on success, AC_ERR_* mask on failure
e58eb583 1845 */
77b08fb5 1846unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1847{
1848 struct ata_taskfile tf;
e58eb583
TH
1849
1850 ata_tf_init(dev, &tf);
1851
1852 tf.command = cmd;
1853 tf.flags |= ATA_TFLAG_DEVICE;
1854 tf.protocol = ATA_PROT_NODATA;
1855
2b789108 1856 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1857}
1858
1bc4ccff
AC
1859/**
1860 * ata_pio_need_iordy - check if iordy needed
1861 * @adev: ATA device
1862 *
1863 * Check if the current speed of the device requires IORDY. Used
1864 * by various controllers for chip configuration.
1865 */
a617c09f 1866
1bc4ccff
AC
1867unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1868{
432729f0
AC
1869 /* Controller doesn't support IORDY. Probably a pointless check
1870 as the caller should know this */
9af5c9c9 1871 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1872 return 0;
432729f0
AC
1873 /* PIO3 and higher it is mandatory */
1874 if (adev->pio_mode > XFER_PIO_2)
1875 return 1;
1876 /* We turn it on when possible */
1877 if (ata_id_has_iordy(adev->id))
1bc4ccff 1878 return 1;
432729f0
AC
1879 return 0;
1880}
2e9edbf8 1881
432729f0
AC
1882/**
1883 * ata_pio_mask_no_iordy - Return the non IORDY mask
1884 * @adev: ATA device
1885 *
1886 * Compute the highest mode possible if we are not using iordy. Return
1887 * -1 if no iordy mode is available.
1888 */
a617c09f 1889
432729f0
AC
1890static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1891{
1bc4ccff 1892 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1893 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1894 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1895 /* Is the speed faster than the drive allows non IORDY ? */
1896 if (pio) {
1897 /* This is cycle times not frequency - watch the logic! */
1898 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1899 return 3 << ATA_SHIFT_PIO;
1900 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1901 }
1902 }
432729f0 1903 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1904}
1905
1da177e4 1906/**
49016aca 1907 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1908 * @dev: target device
1909 * @p_class: pointer to class of the target device (may be changed)
bff04647 1910 * @flags: ATA_READID_* flags
fe635c7e 1911 * @id: buffer to read IDENTIFY data into
1da177e4 1912 *
49016aca
TH
1913 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1914 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1915 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1916 * for pre-ATA4 drives.
1da177e4 1917 *
50a99018 1918 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1919 * now we abort if we hit that case.
50a99018 1920 *
1da177e4 1921 * LOCKING:
49016aca
TH
1922 * Kernel thread context (may sleep)
1923 *
1924 * RETURNS:
1925 * 0 on success, -errno otherwise.
1da177e4 1926 */
a9beec95 1927int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1928 unsigned int flags, u16 *id)
1da177e4 1929{
9af5c9c9 1930 struct ata_port *ap = dev->link->ap;
49016aca 1931 unsigned int class = *p_class;
a0123703 1932 struct ata_taskfile tf;
49016aca
TH
1933 unsigned int err_mask = 0;
1934 const char *reason;
54936f8b 1935 int may_fallback = 1, tried_spinup = 0;
49016aca 1936 int rc;
1da177e4 1937
0dd4b21f 1938 if (ata_msg_ctl(ap))
7f5e4e8d 1939 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 1940
49016aca 1941 retry:
3373efd8 1942 ata_tf_init(dev, &tf);
a0123703 1943
49016aca
TH
1944 switch (class) {
1945 case ATA_DEV_ATA:
a0123703 1946 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1947 break;
1948 case ATA_DEV_ATAPI:
a0123703 1949 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1950 break;
1951 default:
1952 rc = -ENODEV;
1953 reason = "unsupported class";
1954 goto err_out;
1da177e4
LT
1955 }
1956
a0123703 1957 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1958
1959 /* Some devices choke if TF registers contain garbage. Make
1960 * sure those are properly initialized.
1961 */
1962 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1963
1964 /* Device presence detection is unreliable on some
1965 * controllers. Always poll IDENTIFY if available.
1966 */
1967 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1968
3373efd8 1969 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1970 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1971 if (err_mask) {
800b3996 1972 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
1973 ata_dev_printk(dev, KERN_DEBUG,
1974 "NODEV after polling detection\n");
55a8e2c8
TH
1975 return -ENOENT;
1976 }
1977
1ffc151f
TH
1978 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1979 /* Device or controller might have reported
1980 * the wrong device class. Give a shot at the
1981 * other IDENTIFY if the current one is
1982 * aborted by the device.
1983 */
1984 if (may_fallback) {
1985 may_fallback = 0;
1986
1987 if (class == ATA_DEV_ATA)
1988 class = ATA_DEV_ATAPI;
1989 else
1990 class = ATA_DEV_ATA;
1991 goto retry;
1992 }
1993
1994 /* Control reaches here iff the device aborted
1995 * both flavors of IDENTIFYs which happens
1996 * sometimes with phantom devices.
1997 */
1998 ata_dev_printk(dev, KERN_DEBUG,
1999 "both IDENTIFYs aborted, assuming NODEV\n");
2000 return -ENOENT;
54936f8b
TH
2001 }
2002
49016aca
TH
2003 rc = -EIO;
2004 reason = "I/O error";
1da177e4
LT
2005 goto err_out;
2006 }
2007
54936f8b
TH
2008 /* Falling back doesn't make sense if ID data was read
2009 * successfully at least once.
2010 */
2011 may_fallback = 0;
2012
49016aca 2013 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2014
49016aca 2015 /* sanity check */
a4f5749b 2016 rc = -EINVAL;
6070068b 2017 reason = "device reports invalid type";
a4f5749b
TH
2018
2019 if (class == ATA_DEV_ATA) {
2020 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2021 goto err_out;
2022 } else {
2023 if (ata_id_is_ata(id))
2024 goto err_out;
49016aca
TH
2025 }
2026
169439c2
ML
2027 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2028 tried_spinup = 1;
2029 /*
2030 * Drive powered-up in standby mode, and requires a specific
2031 * SET_FEATURES spin-up subcommand before it will accept
2032 * anything other than the original IDENTIFY command.
2033 */
218f3d30 2034 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2035 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2036 rc = -EIO;
2037 reason = "SPINUP failed";
2038 goto err_out;
2039 }
2040 /*
2041 * If the drive initially returned incomplete IDENTIFY info,
2042 * we now must reissue the IDENTIFY command.
2043 */
2044 if (id[2] == 0x37c8)
2045 goto retry;
2046 }
2047
bff04647 2048 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2049 /*
2050 * The exact sequence expected by certain pre-ATA4 drives is:
2051 * SRST RESET
50a99018
AC
2052 * IDENTIFY (optional in early ATA)
2053 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2054 * anything else..
2055 * Some drives were very specific about that exact sequence.
50a99018
AC
2056 *
2057 * Note that ATA4 says lba is mandatory so the second check
2058 * shoud never trigger.
49016aca
TH
2059 */
2060 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2061 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2062 if (err_mask) {
2063 rc = -EIO;
2064 reason = "INIT_DEV_PARAMS failed";
2065 goto err_out;
2066 }
2067
2068 /* current CHS translation info (id[53-58]) might be
2069 * changed. reread the identify device info.
2070 */
bff04647 2071 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2072 goto retry;
2073 }
2074 }
2075
2076 *p_class = class;
fe635c7e 2077
49016aca
TH
2078 return 0;
2079
2080 err_out:
88574551 2081 if (ata_msg_warn(ap))
0dd4b21f 2082 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2083 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2084 return rc;
2085}
2086
3373efd8 2087static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2088{
9af5c9c9
TH
2089 struct ata_port *ap = dev->link->ap;
2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2091}
2092
a6e6ce8e
TH
2093static void ata_dev_config_ncq(struct ata_device *dev,
2094 char *desc, size_t desc_sz)
2095{
9af5c9c9 2096 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098
2099 if (!ata_id_has_ncq(dev->id)) {
2100 desc[0] = '\0';
2101 return;
2102 }
75683fe7 2103 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2104 snprintf(desc, desc_sz, "NCQ (not used)");
2105 return;
2106 }
a6e6ce8e 2107 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2108 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2109 dev->flags |= ATA_DFLAG_NCQ;
2110 }
2111
2112 if (hdepth >= ddepth)
2113 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2114 else
2115 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2116}
2117
49016aca 2118/**
ffeae418 2119 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2120 * @dev: Target device to configure
2121 *
2122 * Configure @dev according to @dev->id. Generic and low-level
2123 * driver specific fixups are also applied.
49016aca
TH
2124 *
2125 * LOCKING:
ffeae418
TH
2126 * Kernel thread context (may sleep)
2127 *
2128 * RETURNS:
2129 * 0 on success, -errno otherwise
49016aca 2130 */
efdaedc4 2131int ata_dev_configure(struct ata_device *dev)
49016aca 2132{
9af5c9c9
TH
2133 struct ata_port *ap = dev->link->ap;
2134 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2135 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2136 const u16 *id = dev->id;
7dc951ae 2137 unsigned long xfer_mask;
b352e57d 2138 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2139 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2140 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2141 int rc;
49016aca 2142
0dd4b21f 2143 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2144 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2145 __func__);
ffeae418 2146 return 0;
49016aca
TH
2147 }
2148
0dd4b21f 2149 if (ata_msg_probe(ap))
7f5e4e8d 2150 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2151
75683fe7
TH
2152 /* set horkage */
2153 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2154 ata_force_horkage(dev);
75683fe7 2155
6746544c
TH
2156 /* let ACPI work its magic */
2157 rc = ata_acpi_on_devcfg(dev);
2158 if (rc)
2159 return rc;
08573a86 2160
05027adc
TH
2161 /* massage HPA, do it early as it might change IDENTIFY data */
2162 rc = ata_hpa_resize(dev);
2163 if (rc)
2164 return rc;
2165
c39f5ebe 2166 /* print device capabilities */
0dd4b21f 2167 if (ata_msg_probe(ap))
88574551
TH
2168 ata_dev_printk(dev, KERN_DEBUG,
2169 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2170 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2171 __func__,
f15a1daf
TH
2172 id[49], id[82], id[83], id[84],
2173 id[85], id[86], id[87], id[88]);
c39f5ebe 2174
208a9933 2175 /* initialize to-be-configured parameters */
ea1dd4e1 2176 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2177 dev->max_sectors = 0;
2178 dev->cdb_len = 0;
2179 dev->n_sectors = 0;
2180 dev->cylinders = 0;
2181 dev->heads = 0;
2182 dev->sectors = 0;
2183
1da177e4
LT
2184 /*
2185 * common ATA, ATAPI feature tests
2186 */
2187
ff8854b2 2188 /* find max transfer mode; for printk only */
1148c3a7 2189 xfer_mask = ata_id_xfermask(id);
1da177e4 2190
0dd4b21f
BP
2191 if (ata_msg_probe(ap))
2192 ata_dump_id(id);
1da177e4 2193
ef143d57
AL
2194 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2195 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2196 sizeof(fwrevbuf));
2197
2198 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2199 sizeof(modelbuf));
2200
1da177e4
LT
2201 /* ATA-specific feature tests */
2202 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2203 if (ata_id_is_cfa(id)) {
2204 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2205 ata_dev_printk(dev, KERN_WARNING,
2206 "supports DRM functions and may "
2207 "not be fully accessable.\n");
b352e57d 2208 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2209 } else {
2dcb407e 2210 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2211 /* Warn the user if the device has TPM extensions */
2212 if (ata_id_has_tpm(id))
2213 ata_dev_printk(dev, KERN_WARNING,
2214 "supports DRM functions and may "
2215 "not be fully accessable.\n");
2216 }
b352e57d 2217
1148c3a7 2218 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2219
3f64f565
EM
2220 if (dev->id[59] & 0x100)
2221 dev->multi_count = dev->id[59] & 0xff;
2222
1148c3a7 2223 if (ata_id_has_lba(id)) {
4c2d721a 2224 const char *lba_desc;
a6e6ce8e 2225 char ncq_desc[20];
8bf62ece 2226
4c2d721a
TH
2227 lba_desc = "LBA";
2228 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2229 if (ata_id_has_lba48(id)) {
8bf62ece 2230 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2231 lba_desc = "LBA48";
6fc49adb
TH
2232
2233 if (dev->n_sectors >= (1UL << 28) &&
2234 ata_id_has_flush_ext(id))
2235 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2236 }
8bf62ece 2237
a6e6ce8e
TH
2238 /* config NCQ */
2239 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2240
8bf62ece 2241 /* print device info to dmesg */
3f64f565
EM
2242 if (ata_msg_drv(ap) && print_info) {
2243 ata_dev_printk(dev, KERN_INFO,
2244 "%s: %s, %s, max %s\n",
2245 revbuf, modelbuf, fwrevbuf,
2246 ata_mode_string(xfer_mask));
2247 ata_dev_printk(dev, KERN_INFO,
2248 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2249 (unsigned long long)dev->n_sectors,
3f64f565
EM
2250 dev->multi_count, lba_desc, ncq_desc);
2251 }
ffeae418 2252 } else {
8bf62ece
AL
2253 /* CHS */
2254
2255 /* Default translation */
1148c3a7
TH
2256 dev->cylinders = id[1];
2257 dev->heads = id[3];
2258 dev->sectors = id[6];
8bf62ece 2259
1148c3a7 2260 if (ata_id_current_chs_valid(id)) {
8bf62ece 2261 /* Current CHS translation is valid. */
1148c3a7
TH
2262 dev->cylinders = id[54];
2263 dev->heads = id[55];
2264 dev->sectors = id[56];
8bf62ece
AL
2265 }
2266
2267 /* print device info to dmesg */
3f64f565 2268 if (ata_msg_drv(ap) && print_info) {
88574551 2269 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2270 "%s: %s, %s, max %s\n",
2271 revbuf, modelbuf, fwrevbuf,
2272 ata_mode_string(xfer_mask));
a84471fe 2273 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2274 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2275 (unsigned long long)dev->n_sectors,
2276 dev->multi_count, dev->cylinders,
2277 dev->heads, dev->sectors);
2278 }
07f6f7d0
AL
2279 }
2280
6e7846e9 2281 dev->cdb_len = 16;
1da177e4
LT
2282 }
2283
2284 /* ATAPI-specific feature tests */
2c13b7ce 2285 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2286 const char *cdb_intr_string = "";
2287 const char *atapi_an_string = "";
91163006 2288 const char *dma_dir_string = "";
7d77b247 2289 u32 sntf;
08a556db 2290
1148c3a7 2291 rc = atapi_cdb_len(id);
1da177e4 2292 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2293 if (ata_msg_warn(ap))
88574551
TH
2294 ata_dev_printk(dev, KERN_WARNING,
2295 "unsupported CDB len\n");
ffeae418 2296 rc = -EINVAL;
1da177e4
LT
2297 goto err_out_nosup;
2298 }
6e7846e9 2299 dev->cdb_len = (unsigned int) rc;
1da177e4 2300
7d77b247
TH
2301 /* Enable ATAPI AN if both the host and device have
2302 * the support. If PMP is attached, SNTF is required
2303 * to enable ATAPI AN to discern between PHY status
2304 * changed notifications and ATAPI ANs.
9f45cbd3 2305 */
7d77b247
TH
2306 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2307 (!ap->nr_pmp_links ||
2308 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2309 unsigned int err_mask;
2310
9f45cbd3 2311 /* issue SET feature command to turn this on */
218f3d30
JG
2312 err_mask = ata_dev_set_feature(dev,
2313 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2314 if (err_mask)
9f45cbd3 2315 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2316 "failed to enable ATAPI AN "
2317 "(err_mask=0x%x)\n", err_mask);
2318 else {
9f45cbd3 2319 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2320 atapi_an_string = ", ATAPI AN";
2321 }
9f45cbd3
KCA
2322 }
2323
08a556db 2324 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2325 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2326 cdb_intr_string = ", CDB intr";
2327 }
312f7da2 2328
91163006
TH
2329 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2330 dev->flags |= ATA_DFLAG_DMADIR;
2331 dma_dir_string = ", DMADIR";
2332 }
2333
1da177e4 2334 /* print device info to dmesg */
5afc8142 2335 if (ata_msg_drv(ap) && print_info)
ef143d57 2336 ata_dev_printk(dev, KERN_INFO,
91163006 2337 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2338 modelbuf, fwrevbuf,
12436c30 2339 ata_mode_string(xfer_mask),
91163006
TH
2340 cdb_intr_string, atapi_an_string,
2341 dma_dir_string);
1da177e4
LT
2342 }
2343
914ed354
TH
2344 /* determine max_sectors */
2345 dev->max_sectors = ATA_MAX_SECTORS;
2346 if (dev->flags & ATA_DFLAG_LBA48)
2347 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2348
ca77329f
KCA
2349 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2350 if (ata_id_has_hipm(dev->id))
2351 dev->flags |= ATA_DFLAG_HIPM;
2352 if (ata_id_has_dipm(dev->id))
2353 dev->flags |= ATA_DFLAG_DIPM;
2354 }
2355
c5038fc0
AC
2356 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2357 200 sectors */
3373efd8 2358 if (ata_dev_knobble(dev)) {
5afc8142 2359 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2360 ata_dev_printk(dev, KERN_INFO,
2361 "applying bridge limits\n");
5a529139 2362 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2363 dev->max_sectors = ATA_MAX_SECTORS;
2364 }
2365
f8d8e579 2366 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2367 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2368 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2369 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2370 }
f8d8e579 2371
75683fe7 2372 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2373 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2374 dev->max_sectors);
18d6e9d5 2375
ca77329f
KCA
2376 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2377 dev->horkage |= ATA_HORKAGE_IPM;
2378
2379 /* reset link pm_policy for this port to no pm */
2380 ap->pm_policy = MAX_PERFORMANCE;
2381 }
2382
4b2f3ede 2383 if (ap->ops->dev_config)
cd0d3bbc 2384 ap->ops->dev_config(dev);
4b2f3ede 2385
c5038fc0
AC
2386 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2387 /* Let the user know. We don't want to disallow opens for
2388 rescue purposes, or in case the vendor is just a blithering
2389 idiot. Do this after the dev_config call as some controllers
2390 with buggy firmware may want to avoid reporting false device
2391 bugs */
2392
2393 if (print_info) {
2394 ata_dev_printk(dev, KERN_WARNING,
2395"Drive reports diagnostics failure. This may indicate a drive\n");
2396 ata_dev_printk(dev, KERN_WARNING,
2397"fault or invalid emulation. Contact drive vendor for information.\n");
2398 }
2399 }
2400
ffeae418 2401 return 0;
1da177e4
LT
2402
2403err_out_nosup:
0dd4b21f 2404 if (ata_msg_probe(ap))
88574551 2405 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2406 "%s: EXIT, err\n", __func__);
ffeae418 2407 return rc;
1da177e4
LT
2408}
2409
be0d18df 2410/**
2e41e8e6 2411 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2412 * @ap: port
2413 *
2e41e8e6 2414 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2415 * detection.
2416 */
2417
2418int ata_cable_40wire(struct ata_port *ap)
2419{
2420 return ATA_CBL_PATA40;
2421}
2422
2423/**
2e41e8e6 2424 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2425 * @ap: port
2426 *
2e41e8e6 2427 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2428 * detection.
2429 */
2430
2431int ata_cable_80wire(struct ata_port *ap)
2432{
2433 return ATA_CBL_PATA80;
2434}
2435
2436/**
2437 * ata_cable_unknown - return unknown PATA cable.
2438 * @ap: port
2439 *
2440 * Helper method for drivers which have no PATA cable detection.
2441 */
2442
2443int ata_cable_unknown(struct ata_port *ap)
2444{
2445 return ATA_CBL_PATA_UNK;
2446}
2447
c88f90c3
TH
2448/**
2449 * ata_cable_ignore - return ignored PATA cable.
2450 * @ap: port
2451 *
2452 * Helper method for drivers which don't use cable type to limit
2453 * transfer mode.
2454 */
2455int ata_cable_ignore(struct ata_port *ap)
2456{
2457 return ATA_CBL_PATA_IGN;
2458}
2459
be0d18df
AC
2460/**
2461 * ata_cable_sata - return SATA cable type
2462 * @ap: port
2463 *
2464 * Helper method for drivers which have SATA cables
2465 */
2466
2467int ata_cable_sata(struct ata_port *ap)
2468{
2469 return ATA_CBL_SATA;
2470}
2471
1da177e4
LT
2472/**
2473 * ata_bus_probe - Reset and probe ATA bus
2474 * @ap: Bus to probe
2475 *
0cba632b
JG
2476 * Master ATA bus probing function. Initiates a hardware-dependent
2477 * bus reset, then attempts to identify any devices found on
2478 * the bus.
2479 *
1da177e4 2480 * LOCKING:
0cba632b 2481 * PCI/etc. bus probe sem.
1da177e4
LT
2482 *
2483 * RETURNS:
96072e69 2484 * Zero on success, negative errno otherwise.
1da177e4
LT
2485 */
2486
80289167 2487int ata_bus_probe(struct ata_port *ap)
1da177e4 2488{
28ca5c57 2489 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2490 int tries[ATA_MAX_DEVICES];
f58229f8 2491 int rc;
e82cbdb9 2492 struct ata_device *dev;
1da177e4 2493
28ca5c57 2494 ata_port_probe(ap);
c19ba8af 2495
f58229f8
TH
2496 ata_link_for_each_dev(dev, &ap->link)
2497 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2498
2499 retry:
cdeab114
TH
2500 ata_link_for_each_dev(dev, &ap->link) {
2501 /* If we issue an SRST then an ATA drive (not ATAPI)
2502 * may change configuration and be in PIO0 timing. If
2503 * we do a hard reset (or are coming from power on)
2504 * this is true for ATA or ATAPI. Until we've set a
2505 * suitable controller mode we should not touch the
2506 * bus as we may be talking too fast.
2507 */
2508 dev->pio_mode = XFER_PIO_0;
2509
2510 /* If the controller has a pio mode setup function
2511 * then use it to set the chipset to rights. Don't
2512 * touch the DMA setup as that will be dealt with when
2513 * configuring devices.
2514 */
2515 if (ap->ops->set_piomode)
2516 ap->ops->set_piomode(ap, dev);
2517 }
2518
2044470c 2519 /* reset and determine device classes */
52783c5d 2520 ap->ops->phy_reset(ap);
2061a47a 2521
f58229f8 2522 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2523 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2524 dev->class != ATA_DEV_UNKNOWN)
2525 classes[dev->devno] = dev->class;
2526 else
2527 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2528
52783c5d 2529 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2530 }
1da177e4 2531
52783c5d 2532 ata_port_probe(ap);
2044470c 2533
f31f0cc2
JG
2534 /* read IDENTIFY page and configure devices. We have to do the identify
2535 specific sequence bass-ackwards so that PDIAG- is released by
2536 the slave device */
2537
a4ba7fe2 2538 ata_link_for_each_dev_reverse(dev, &ap->link) {
f58229f8
TH
2539 if (tries[dev->devno])
2540 dev->class = classes[dev->devno];
ffeae418 2541
14d2bac1 2542 if (!ata_dev_enabled(dev))
ffeae418 2543 continue;
ffeae418 2544
bff04647
TH
2545 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2546 dev->id);
14d2bac1
TH
2547 if (rc)
2548 goto fail;
f31f0cc2
JG
2549 }
2550
be0d18df
AC
2551 /* Now ask for the cable type as PDIAG- should have been released */
2552 if (ap->ops->cable_detect)
2553 ap->cbl = ap->ops->cable_detect(ap);
2554
614fe29b
AC
2555 /* We may have SATA bridge glue hiding here irrespective of the
2556 reported cable types and sensed types */
2557 ata_link_for_each_dev(dev, &ap->link) {
2558 if (!ata_dev_enabled(dev))
2559 continue;
2560 /* SATA drives indicate we have a bridge. We don't know which
2561 end of the link the bridge is which is a problem */
2562 if (ata_id_is_sata(dev->id))
2563 ap->cbl = ATA_CBL_SATA;
2564 }
2565
f31f0cc2
JG
2566 /* After the identify sequence we can now set up the devices. We do
2567 this in the normal order so that the user doesn't get confused */
2568
f58229f8 2569 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2570 if (!ata_dev_enabled(dev))
2571 continue;
14d2bac1 2572
9af5c9c9 2573 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2574 rc = ata_dev_configure(dev);
9af5c9c9 2575 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2576 if (rc)
2577 goto fail;
1da177e4
LT
2578 }
2579
e82cbdb9 2580 /* configure transfer mode */
0260731f 2581 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2582 if (rc)
51713d35 2583 goto fail;
1da177e4 2584
f58229f8
TH
2585 ata_link_for_each_dev(dev, &ap->link)
2586 if (ata_dev_enabled(dev))
e82cbdb9 2587 return 0;
1da177e4 2588
e82cbdb9
TH
2589 /* no device present, disable port */
2590 ata_port_disable(ap);
96072e69 2591 return -ENODEV;
14d2bac1
TH
2592
2593 fail:
4ae72a1e
TH
2594 tries[dev->devno]--;
2595
14d2bac1
TH
2596 switch (rc) {
2597 case -EINVAL:
4ae72a1e 2598 /* eeek, something went very wrong, give up */
14d2bac1
TH
2599 tries[dev->devno] = 0;
2600 break;
4ae72a1e
TH
2601
2602 case -ENODEV:
2603 /* give it just one more chance */
2604 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2605 case -EIO:
4ae72a1e
TH
2606 if (tries[dev->devno] == 1) {
2607 /* This is the last chance, better to slow
2608 * down than lose it.
2609 */
936fd732 2610 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2611 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2612 }
14d2bac1
TH
2613 }
2614
4ae72a1e 2615 if (!tries[dev->devno])
3373efd8 2616 ata_dev_disable(dev);
ec573755 2617
14d2bac1 2618 goto retry;
1da177e4
LT
2619}
2620
2621/**
0cba632b
JG
2622 * ata_port_probe - Mark port as enabled
2623 * @ap: Port for which we indicate enablement
1da177e4 2624 *
0cba632b
JG
2625 * Modify @ap data structure such that the system
2626 * thinks that the entire port is enabled.
2627 *
cca3974e 2628 * LOCKING: host lock, or some other form of
0cba632b 2629 * serialization.
1da177e4
LT
2630 */
2631
2632void ata_port_probe(struct ata_port *ap)
2633{
198e0fed 2634 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2635}
2636
3be680b7
TH
2637/**
2638 * sata_print_link_status - Print SATA link status
936fd732 2639 * @link: SATA link to printk link status about
3be680b7
TH
2640 *
2641 * This function prints link speed and status of a SATA link.
2642 *
2643 * LOCKING:
2644 * None.
2645 */
936fd732 2646void sata_print_link_status(struct ata_link *link)
3be680b7 2647{
6d5f9732 2648 u32 sstatus, scontrol, tmp;
3be680b7 2649
936fd732 2650 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2651 return;
936fd732 2652 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2653
936fd732 2654 if (ata_link_online(link)) {
3be680b7 2655 tmp = (sstatus >> 4) & 0xf;
936fd732 2656 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2657 "SATA link up %s (SStatus %X SControl %X)\n",
2658 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2659 } else {
936fd732 2660 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2661 "SATA link down (SStatus %X SControl %X)\n",
2662 sstatus, scontrol);
3be680b7
TH
2663 }
2664}
2665
ebdfca6e
AC
2666/**
2667 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2668 * @adev: device
2669 *
2670 * Obtain the other device on the same cable, or if none is
2671 * present NULL is returned
2672 */
2e9edbf8 2673
3373efd8 2674struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2675{
9af5c9c9
TH
2676 struct ata_link *link = adev->link;
2677 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2678 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2679 return NULL;
2680 return pair;
2681}
2682
1da177e4 2683/**
780a87f7
JG
2684 * ata_port_disable - Disable port.
2685 * @ap: Port to be disabled.
1da177e4 2686 *
780a87f7
JG
2687 * Modify @ap data structure such that the system
2688 * thinks that the entire port is disabled, and should
2689 * never attempt to probe or communicate with devices
2690 * on this port.
2691 *
cca3974e 2692 * LOCKING: host lock, or some other form of
780a87f7 2693 * serialization.
1da177e4
LT
2694 */
2695
2696void ata_port_disable(struct ata_port *ap)
2697{
9af5c9c9
TH
2698 ap->link.device[0].class = ATA_DEV_NONE;
2699 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2700 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2701}
2702
1c3fae4d 2703/**
3c567b7d 2704 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2705 * @link: Link to adjust SATA spd limit for
1c3fae4d 2706 *
936fd732 2707 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2708 * function only adjusts the limit. The change must be applied
3c567b7d 2709 * using sata_set_spd().
1c3fae4d
TH
2710 *
2711 * LOCKING:
2712 * Inherited from caller.
2713 *
2714 * RETURNS:
2715 * 0 on success, negative errno on failure
2716 */
936fd732 2717int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2718{
81952c54
TH
2719 u32 sstatus, spd, mask;
2720 int rc, highbit;
1c3fae4d 2721
936fd732 2722 if (!sata_scr_valid(link))
008a7896
TH
2723 return -EOPNOTSUPP;
2724
2725 /* If SCR can be read, use it to determine the current SPD.
936fd732 2726 * If not, use cached value in link->sata_spd.
008a7896 2727 */
936fd732 2728 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2729 if (rc == 0)
2730 spd = (sstatus >> 4) & 0xf;
2731 else
936fd732 2732 spd = link->sata_spd;
1c3fae4d 2733
936fd732 2734 mask = link->sata_spd_limit;
1c3fae4d
TH
2735 if (mask <= 1)
2736 return -EINVAL;
008a7896
TH
2737
2738 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2739 highbit = fls(mask) - 1;
2740 mask &= ~(1 << highbit);
2741
008a7896
TH
2742 /* Mask off all speeds higher than or equal to the current
2743 * one. Force 1.5Gbps if current SPD is not available.
2744 */
2745 if (spd > 1)
2746 mask &= (1 << (spd - 1)) - 1;
2747 else
2748 mask &= 1;
2749
2750 /* were we already at the bottom? */
1c3fae4d
TH
2751 if (!mask)
2752 return -EINVAL;
2753
936fd732 2754 link->sata_spd_limit = mask;
1c3fae4d 2755
936fd732 2756 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2757 sata_spd_string(fls(mask)));
1c3fae4d
TH
2758
2759 return 0;
2760}
2761
936fd732 2762static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2763{
5270222f
TH
2764 struct ata_link *host_link = &link->ap->link;
2765 u32 limit, target, spd;
1c3fae4d 2766
5270222f
TH
2767 limit = link->sata_spd_limit;
2768
2769 /* Don't configure downstream link faster than upstream link.
2770 * It doesn't speed up anything and some PMPs choke on such
2771 * configuration.
2772 */
2773 if (!ata_is_host_link(link) && host_link->sata_spd)
2774 limit &= (1 << host_link->sata_spd) - 1;
2775
2776 if (limit == UINT_MAX)
2777 target = 0;
1c3fae4d 2778 else
5270222f 2779 target = fls(limit);
1c3fae4d
TH
2780
2781 spd = (*scontrol >> 4) & 0xf;
5270222f 2782 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2783
5270222f 2784 return spd != target;
1c3fae4d
TH
2785}
2786
2787/**
3c567b7d 2788 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2789 * @link: Link in question
1c3fae4d
TH
2790 *
2791 * Test whether the spd limit in SControl matches
936fd732 2792 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2793 * whether hardreset is necessary to apply SATA spd
2794 * configuration.
2795 *
2796 * LOCKING:
2797 * Inherited from caller.
2798 *
2799 * RETURNS:
2800 * 1 if SATA spd configuration is needed, 0 otherwise.
2801 */
936fd732 2802int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2803{
2804 u32 scontrol;
2805
936fd732 2806 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2807 return 1;
1c3fae4d 2808
936fd732 2809 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2810}
2811
2812/**
3c567b7d 2813 * sata_set_spd - set SATA spd according to spd limit
936fd732 2814 * @link: Link to set SATA spd for
1c3fae4d 2815 *
936fd732 2816 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2817 *
2818 * LOCKING:
2819 * Inherited from caller.
2820 *
2821 * RETURNS:
2822 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2823 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2824 */
936fd732 2825int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2826{
2827 u32 scontrol;
81952c54 2828 int rc;
1c3fae4d 2829
936fd732 2830 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2831 return rc;
1c3fae4d 2832
936fd732 2833 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2834 return 0;
2835
936fd732 2836 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2837 return rc;
2838
1c3fae4d
TH
2839 return 1;
2840}
2841
452503f9
AC
2842/*
2843 * This mode timing computation functionality is ported over from
2844 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2845 */
2846/*
b352e57d 2847 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2848 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2849 * for UDMA6, which is currently supported only by Maxtor drives.
2850 *
2851 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2852 */
2853
2854static const struct ata_timing ata_timing[] = {
70cd071e
TH
2855/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2856 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2857 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2858 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2859 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2860 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2861 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2862 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2863
70cd071e
TH
2864 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2865 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2866 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2867
70cd071e
TH
2868 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2869 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2870 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2871 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2872 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2873
2874/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2875 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2876 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2877 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2878 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2879 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2880 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2881 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2882
2883 { 0xFF }
2884};
2885
2dcb407e
JG
2886#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2887#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2888
2889static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2890{
2891 q->setup = EZ(t->setup * 1000, T);
2892 q->act8b = EZ(t->act8b * 1000, T);
2893 q->rec8b = EZ(t->rec8b * 1000, T);
2894 q->cyc8b = EZ(t->cyc8b * 1000, T);
2895 q->active = EZ(t->active * 1000, T);
2896 q->recover = EZ(t->recover * 1000, T);
2897 q->cycle = EZ(t->cycle * 1000, T);
2898 q->udma = EZ(t->udma * 1000, UT);
2899}
2900
2901void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2902 struct ata_timing *m, unsigned int what)
2903{
2904 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2905 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2906 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2907 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2908 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2909 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2910 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2911 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2912}
2913
6357357c 2914const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2915{
70cd071e
TH
2916 const struct ata_timing *t = ata_timing;
2917
2918 while (xfer_mode > t->mode)
2919 t++;
452503f9 2920
70cd071e
TH
2921 if (xfer_mode == t->mode)
2922 return t;
2923 return NULL;
452503f9
AC
2924}
2925
2926int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2927 struct ata_timing *t, int T, int UT)
2928{
2929 const struct ata_timing *s;
2930 struct ata_timing p;
2931
2932 /*
2e9edbf8 2933 * Find the mode.
75b1f2f8 2934 */
452503f9
AC
2935
2936 if (!(s = ata_timing_find_mode(speed)))
2937 return -EINVAL;
2938
75b1f2f8
AL
2939 memcpy(t, s, sizeof(*s));
2940
452503f9
AC
2941 /*
2942 * If the drive is an EIDE drive, it can tell us it needs extended
2943 * PIO/MW_DMA cycle timing.
2944 */
2945
2946 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2947 memset(&p, 0, sizeof(p));
2dcb407e 2948 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2949 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2950 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2951 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2952 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2953 }
2954 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2955 }
2956
2957 /*
2958 * Convert the timing to bus clock counts.
2959 */
2960
75b1f2f8 2961 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2962
2963 /*
c893a3ae
RD
2964 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2965 * S.M.A.R.T * and some other commands. We have to ensure that the
2966 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2967 */
2968
fd3367af 2969 if (speed > XFER_PIO_6) {
452503f9
AC
2970 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2971 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2972 }
2973
2974 /*
c893a3ae 2975 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2976 */
2977
2978 if (t->act8b + t->rec8b < t->cyc8b) {
2979 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2980 t->rec8b = t->cyc8b - t->act8b;
2981 }
2982
2983 if (t->active + t->recover < t->cycle) {
2984 t->active += (t->cycle - (t->active + t->recover)) / 2;
2985 t->recover = t->cycle - t->active;
2986 }
a617c09f 2987
4f701d1e
AC
2988 /* In a few cases quantisation may produce enough errors to
2989 leave t->cycle too low for the sum of active and recovery
2990 if so we must correct this */
2991 if (t->active + t->recover > t->cycle)
2992 t->cycle = t->active + t->recover;
452503f9
AC
2993
2994 return 0;
2995}
2996
a0f79b92
TH
2997/**
2998 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2999 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3000 * @cycle: cycle duration in ns
3001 *
3002 * Return matching xfer mode for @cycle. The returned mode is of
3003 * the transfer type specified by @xfer_shift. If @cycle is too
3004 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3005 * than the fastest known mode, the fasted mode is returned.
3006 *
3007 * LOCKING:
3008 * None.
3009 *
3010 * RETURNS:
3011 * Matching xfer_mode, 0xff if no match found.
3012 */
3013u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3014{
3015 u8 base_mode = 0xff, last_mode = 0xff;
3016 const struct ata_xfer_ent *ent;
3017 const struct ata_timing *t;
3018
3019 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3020 if (ent->shift == xfer_shift)
3021 base_mode = ent->base;
3022
3023 for (t = ata_timing_find_mode(base_mode);
3024 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3025 unsigned short this_cycle;
3026
3027 switch (xfer_shift) {
3028 case ATA_SHIFT_PIO:
3029 case ATA_SHIFT_MWDMA:
3030 this_cycle = t->cycle;
3031 break;
3032 case ATA_SHIFT_UDMA:
3033 this_cycle = t->udma;
3034 break;
3035 default:
3036 return 0xff;
3037 }
3038
3039 if (cycle > this_cycle)
3040 break;
3041
3042 last_mode = t->mode;
3043 }
3044
3045 return last_mode;
3046}
3047
cf176e1a
TH
3048/**
3049 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3050 * @dev: Device to adjust xfer masks
458337db 3051 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3052 *
3053 * Adjust xfer masks of @dev downward. Note that this function
3054 * does not apply the change. Invoking ata_set_mode() afterwards
3055 * will apply the limit.
3056 *
3057 * LOCKING:
3058 * Inherited from caller.
3059 *
3060 * RETURNS:
3061 * 0 on success, negative errno on failure
3062 */
458337db 3063int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3064{
458337db 3065 char buf[32];
7dc951ae
TH
3066 unsigned long orig_mask, xfer_mask;
3067 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3068 int quiet, highbit;
cf176e1a 3069
458337db
TH
3070 quiet = !!(sel & ATA_DNXFER_QUIET);
3071 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3072
458337db
TH
3073 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3074 dev->mwdma_mask,
3075 dev->udma_mask);
3076 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3077
458337db
TH
3078 switch (sel) {
3079 case ATA_DNXFER_PIO:
3080 highbit = fls(pio_mask) - 1;
3081 pio_mask &= ~(1 << highbit);
3082 break;
3083
3084 case ATA_DNXFER_DMA:
3085 if (udma_mask) {
3086 highbit = fls(udma_mask) - 1;
3087 udma_mask &= ~(1 << highbit);
3088 if (!udma_mask)
3089 return -ENOENT;
3090 } else if (mwdma_mask) {
3091 highbit = fls(mwdma_mask) - 1;
3092 mwdma_mask &= ~(1 << highbit);
3093 if (!mwdma_mask)
3094 return -ENOENT;
3095 }
3096 break;
3097
3098 case ATA_DNXFER_40C:
3099 udma_mask &= ATA_UDMA_MASK_40C;
3100 break;
3101
3102 case ATA_DNXFER_FORCE_PIO0:
3103 pio_mask &= 1;
3104 case ATA_DNXFER_FORCE_PIO:
3105 mwdma_mask = 0;
3106 udma_mask = 0;
3107 break;
3108
458337db
TH
3109 default:
3110 BUG();
3111 }
3112
3113 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3114
3115 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3116 return -ENOENT;
3117
3118 if (!quiet) {
3119 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3120 snprintf(buf, sizeof(buf), "%s:%s",
3121 ata_mode_string(xfer_mask),
3122 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3123 else
3124 snprintf(buf, sizeof(buf), "%s",
3125 ata_mode_string(xfer_mask));
3126
3127 ata_dev_printk(dev, KERN_WARNING,
3128 "limiting speed to %s\n", buf);
3129 }
cf176e1a
TH
3130
3131 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3132 &dev->udma_mask);
3133
cf176e1a 3134 return 0;
cf176e1a
TH
3135}
3136
3373efd8 3137static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3138{
9af5c9c9 3139 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3140 const char *dev_err_whine = "";
3141 int ign_dev_err = 0;
83206a29
TH
3142 unsigned int err_mask;
3143 int rc;
1da177e4 3144
e8384607 3145 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3146 if (dev->xfer_shift == ATA_SHIFT_PIO)
3147 dev->flags |= ATA_DFLAG_PIO;
3148
3373efd8 3149 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3150
4055dee7
TH
3151 if (err_mask & ~AC_ERR_DEV)
3152 goto fail;
3153
3154 /* revalidate */
3155 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3156 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3157 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3158 if (rc)
3159 return rc;
3160
11750a40
A
3161 /* Old CFA may refuse this command, which is just fine */
3162 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
4055dee7 3163 ign_dev_err = 1;
2dcb407e 3164
0bc2a79a
AC
3165 /* Some very old devices and some bad newer ones fail any kind of
3166 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3167 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3168 dev->pio_mode <= XFER_PIO_2)
4055dee7 3169 ign_dev_err = 1;
2dcb407e 3170
3acaf94b
AC
3171 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3172 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3173 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3174 dev->dma_mode == XFER_MW_DMA_0 &&
3175 (dev->id[63] >> 8) & 1)
4055dee7 3176 ign_dev_err = 1;
3acaf94b 3177
4055dee7
TH
3178 /* if the device is actually configured correctly, ignore dev err */
3179 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3180 ign_dev_err = 1;
1da177e4 3181
4055dee7
TH
3182 if (err_mask & AC_ERR_DEV) {
3183 if (!ign_dev_err)
3184 goto fail;
3185 else
3186 dev_err_whine = " (device error ignored)";
3187 }
48a8a14f 3188
23e71c3d
TH
3189 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3190 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3191
4055dee7
TH
3192 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3193 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3194 dev_err_whine);
3195
83206a29 3196 return 0;
4055dee7
TH
3197
3198 fail:
3199 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3200 "(err_mask=0x%x)\n", err_mask);
3201 return -EIO;
1da177e4
LT
3202}
3203
1da177e4 3204/**
04351821 3205 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3206 * @link: link on which timings will be programmed
1967b7ff 3207 * @r_failed_dev: out parameter for failed device
1da177e4 3208 *
04351821
A
3209 * Standard implementation of the function used to tune and set
3210 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3211 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3212 * returned in @r_failed_dev.
780a87f7 3213 *
1da177e4 3214 * LOCKING:
0cba632b 3215 * PCI/etc. bus probe sem.
e82cbdb9
TH
3216 *
3217 * RETURNS:
3218 * 0 on success, negative errno otherwise
1da177e4 3219 */
04351821 3220
0260731f 3221int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3222{
0260731f 3223 struct ata_port *ap = link->ap;
e8e0619f 3224 struct ata_device *dev;
f58229f8 3225 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3226
a6d5a51c 3227 /* step 1: calculate xfer_mask */
f58229f8 3228 ata_link_for_each_dev(dev, link) {
7dc951ae 3229 unsigned long pio_mask, dma_mask;
b3a70601 3230 unsigned int mode_mask;
a6d5a51c 3231
e1211e3f 3232 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3233 continue;
3234
b3a70601
AC
3235 mode_mask = ATA_DMA_MASK_ATA;
3236 if (dev->class == ATA_DEV_ATAPI)
3237 mode_mask = ATA_DMA_MASK_ATAPI;
3238 else if (ata_id_is_cfa(dev->id))
3239 mode_mask = ATA_DMA_MASK_CFA;
3240
3373efd8 3241 ata_dev_xfermask(dev);
33267325 3242 ata_force_xfermask(dev);
1da177e4 3243
acf356b1
TH
3244 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3245 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3246
3247 if (libata_dma_mask & mode_mask)
3248 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3249 else
3250 dma_mask = 0;
3251
acf356b1
TH
3252 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3253 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3254
4f65977d 3255 found = 1;
70cd071e 3256 if (dev->dma_mode != 0xff)
5444a6f4 3257 used_dma = 1;
a6d5a51c 3258 }
4f65977d 3259 if (!found)
e82cbdb9 3260 goto out;
a6d5a51c
TH
3261
3262 /* step 2: always set host PIO timings */
f58229f8 3263 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3264 if (!ata_dev_enabled(dev))
3265 continue;
3266
70cd071e 3267 if (dev->pio_mode == 0xff) {
f15a1daf 3268 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3269 rc = -EINVAL;
e82cbdb9 3270 goto out;
e8e0619f
TH
3271 }
3272
3273 dev->xfer_mode = dev->pio_mode;
3274 dev->xfer_shift = ATA_SHIFT_PIO;
3275 if (ap->ops->set_piomode)
3276 ap->ops->set_piomode(ap, dev);
3277 }
1da177e4 3278
a6d5a51c 3279 /* step 3: set host DMA timings */
f58229f8 3280 ata_link_for_each_dev(dev, link) {
70cd071e 3281 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3282 continue;
3283
3284 dev->xfer_mode = dev->dma_mode;
3285 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3286 if (ap->ops->set_dmamode)
3287 ap->ops->set_dmamode(ap, dev);
3288 }
1da177e4
LT
3289
3290 /* step 4: update devices' xfer mode */
f58229f8 3291 ata_link_for_each_dev(dev, link) {
18d90deb 3292 /* don't update suspended devices' xfer mode */
9666f400 3293 if (!ata_dev_enabled(dev))
83206a29
TH
3294 continue;
3295
3373efd8 3296 rc = ata_dev_set_mode(dev);
5bbc53f4 3297 if (rc)
e82cbdb9 3298 goto out;
83206a29 3299 }
1da177e4 3300
e8e0619f
TH
3301 /* Record simplex status. If we selected DMA then the other
3302 * host channels are not permitted to do so.
5444a6f4 3303 */
cca3974e 3304 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3305 ap->host->simplex_claimed = ap;
5444a6f4 3306
e82cbdb9
TH
3307 out:
3308 if (rc)
3309 *r_failed_dev = dev;
3310 return rc;
1da177e4
LT
3311}
3312
d7bb4cc7 3313/**
936fd732
TH
3314 * sata_link_debounce - debounce SATA phy status
3315 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3316 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3317 * @deadline: deadline jiffies for the operation
d7bb4cc7 3318 *
936fd732 3319* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3320 * holding the same value where DET is not 1 for @duration polled
3321 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3322 * beginning of the stable state. Because DET gets stuck at 1 on
3323 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3324 * until timeout then returns 0 if DET is stable at 1.
3325 *
d4b2bab4
TH
3326 * @timeout is further limited by @deadline. The sooner of the
3327 * two is used.
3328 *
d7bb4cc7
TH
3329 * LOCKING:
3330 * Kernel thread context (may sleep)
3331 *
3332 * RETURNS:
3333 * 0 on success, -errno on failure.
3334 */
936fd732
TH
3335int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3336 unsigned long deadline)
7a7921e8 3337{
d7bb4cc7 3338 unsigned long interval_msec = params[0];
d4b2bab4
TH
3339 unsigned long duration = msecs_to_jiffies(params[1]);
3340 unsigned long last_jiffies, t;
d7bb4cc7
TH
3341 u32 last, cur;
3342 int rc;
3343
d4b2bab4
TH
3344 t = jiffies + msecs_to_jiffies(params[2]);
3345 if (time_before(t, deadline))
3346 deadline = t;
3347
936fd732 3348 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3349 return rc;
3350 cur &= 0xf;
3351
3352 last = cur;
3353 last_jiffies = jiffies;
3354
3355 while (1) {
3356 msleep(interval_msec);
936fd732 3357 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3358 return rc;
3359 cur &= 0xf;
3360
3361 /* DET stable? */
3362 if (cur == last) {
d4b2bab4 3363 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3364 continue;
3365 if (time_after(jiffies, last_jiffies + duration))
3366 return 0;
3367 continue;
3368 }
3369
3370 /* unstable, start over */
3371 last = cur;
3372 last_jiffies = jiffies;
3373
f1545154
TH
3374 /* Check deadline. If debouncing failed, return
3375 * -EPIPE to tell upper layer to lower link speed.
3376 */
d4b2bab4 3377 if (time_after(jiffies, deadline))
f1545154 3378 return -EPIPE;
d7bb4cc7
TH
3379 }
3380}
3381
3382/**
936fd732
TH
3383 * sata_link_resume - resume SATA link
3384 * @link: ATA link to resume SATA
d7bb4cc7 3385 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3386 * @deadline: deadline jiffies for the operation
d7bb4cc7 3387 *
936fd732 3388 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3389 *
3390 * LOCKING:
3391 * Kernel thread context (may sleep)
3392 *
3393 * RETURNS:
3394 * 0 on success, -errno on failure.
3395 */
936fd732
TH
3396int sata_link_resume(struct ata_link *link, const unsigned long *params,
3397 unsigned long deadline)
d7bb4cc7
TH
3398{
3399 u32 scontrol;
81952c54
TH
3400 int rc;
3401
936fd732 3402 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3403 return rc;
7a7921e8 3404
852ee16a 3405 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3406
936fd732 3407 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3408 return rc;
7a7921e8 3409
d7bb4cc7
TH
3410 /* Some PHYs react badly if SStatus is pounded immediately
3411 * after resuming. Delay 200ms before debouncing.
3412 */
3413 msleep(200);
7a7921e8 3414
936fd732 3415 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3416}
3417
f5914a46 3418/**
9363c382 3419 * ata_sff_prereset - prepare for reset
cc0680a5 3420 * @link: ATA link to be reset
d4b2bab4 3421 * @deadline: deadline jiffies for the operation
f5914a46 3422 *
cc0680a5 3423 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3424 * prereset makes libata abort whole reset sequence and give up
3425 * that port, so prereset should be best-effort. It does its
3426 * best to prepare for reset sequence but if things go wrong, it
3427 * should just whine, not fail.
f5914a46
TH
3428 *
3429 * LOCKING:
3430 * Kernel thread context (may sleep)
3431 *
3432 * RETURNS:
3433 * 0 on success, -errno otherwise.
3434 */
9363c382 3435int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3436{
cc0680a5 3437 struct ata_port *ap = link->ap;
936fd732 3438 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3439 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3440 int rc;
3441
f5914a46
TH
3442 /* if we're about to do hardreset, nothing more to do */
3443 if (ehc->i.action & ATA_EH_HARDRESET)
3444 return 0;
3445
936fd732 3446 /* if SATA, resume link */
a16abc0b 3447 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3448 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3449 /* whine about phy resume failure but proceed */
3450 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3451 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3452 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3453 }
3454
8cebf274
TH
3455 /* wait for !BSY if we don't know that no device is attached */
3456 if (!ata_link_offline(link)) {
9363c382 3457 rc = ata_sff_wait_ready(ap, deadline);
6dffaf61 3458 if (rc && rc != -ENODEV) {
cc0680a5 3459 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3460 "(errno=%d), forcing hardreset\n", rc);
3461 ehc->i.action |= ATA_EH_HARDRESET;
3462 }
3463 }
f5914a46
TH
3464
3465 return 0;
3466}
3467
c2bd5804 3468/**
624d5c51
TH
3469 * sata_link_hardreset - reset link via SATA phy reset
3470 * @link: link to reset
3471 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3472 * @deadline: deadline jiffies for the operation
c2bd5804 3473 *
624d5c51 3474 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3475 *
3476 * LOCKING:
3477 * Kernel thread context (may sleep)
3478 *
3479 * RETURNS:
3480 * 0 on success, -errno otherwise.
3481 */
624d5c51
TH
3482int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3483 unsigned long deadline)
c2bd5804 3484{
624d5c51 3485 u32 scontrol;
81952c54 3486 int rc;
852ee16a 3487
c2bd5804
TH
3488 DPRINTK("ENTER\n");
3489
936fd732 3490 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3491 /* SATA spec says nothing about how to reconfigure
3492 * spd. To be on the safe side, turn off phy during
3493 * reconfiguration. This works for at least ICH7 AHCI
3494 * and Sil3124.
3495 */
936fd732 3496 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3497 goto out;
81952c54 3498
a34b6fc0 3499 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3500
936fd732 3501 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3502 goto out;
1c3fae4d 3503
936fd732 3504 sata_set_spd(link);
1c3fae4d
TH
3505 }
3506
3507 /* issue phy wake/reset */
936fd732 3508 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3509 goto out;
81952c54 3510
852ee16a 3511 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3512
936fd732 3513 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3514 goto out;
c2bd5804 3515
1c3fae4d 3516 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3517 * 10.4.2 says at least 1 ms.
3518 */
3519 msleep(1);
3520
936fd732
TH
3521 /* bring link back */
3522 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3523 out:
3524 DPRINTK("EXIT, rc=%d\n", rc);
3525 return rc;
3526}
3527
c2bd5804 3528/**
9363c382 3529 * ata_sff_postreset - standard postreset callback
cc0680a5 3530 * @link: the target ata_link
c2bd5804
TH
3531 * @classes: classes of attached devices
3532 *
3533 * This function is invoked after a successful reset. Note that
3534 * the device might have been reset more than once using
3535 * different reset methods before postreset is invoked.
c2bd5804 3536 *
c2bd5804
TH
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 */
9363c382 3540void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3541{
cc0680a5 3542 struct ata_port *ap = link->ap;
dc2b3515
TH
3543 u32 serror;
3544
c2bd5804
TH
3545 DPRINTK("ENTER\n");
3546
c2bd5804 3547 /* print link status */
936fd732 3548 sata_print_link_status(link);
c2bd5804 3549
dc2b3515 3550 /* clear SError */
936fd732
TH
3551 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3552 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3553 link->eh_info.serror = 0;
dc2b3515 3554
c2bd5804
TH
3555 /* is double-select really necessary? */
3556 if (classes[0] != ATA_DEV_NONE)
5682ed33 3557 ap->ops->sff_dev_select(ap, 1);
c2bd5804 3558 if (classes[1] != ATA_DEV_NONE)
5682ed33 3559 ap->ops->sff_dev_select(ap, 0);
c2bd5804 3560
3a39746a
TH
3561 /* bail out if no device is present */
3562 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3563 DPRINTK("EXIT, no device\n");
3564 return;
3565 }
3566
3567 /* set up device control */
0d5ff566
TH
3568 if (ap->ioaddr.ctl_addr)
3569 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3570
3571 DPRINTK("EXIT\n");
3572}
3573
623a3128
TH
3574/**
3575 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3576 * @dev: device to compare against
3577 * @new_class: class of the new device
3578 * @new_id: IDENTIFY page of the new device
3579 *
3580 * Compare @new_class and @new_id against @dev and determine
3581 * whether @dev is the device indicated by @new_class and
3582 * @new_id.
3583 *
3584 * LOCKING:
3585 * None.
3586 *
3587 * RETURNS:
3588 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3589 */
3373efd8
TH
3590static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3591 const u16 *new_id)
623a3128
TH
3592{
3593 const u16 *old_id = dev->id;
a0cf733b
TH
3594 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3595 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3596
3597 if (dev->class != new_class) {
f15a1daf
TH
3598 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3599 dev->class, new_class);
623a3128
TH
3600 return 0;
3601 }
3602
a0cf733b
TH
3603 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3604 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3605 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3606 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3607
3608 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3609 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3610 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3611 return 0;
3612 }
3613
3614 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3615 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3616 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3617 return 0;
3618 }
3619
623a3128
TH
3620 return 1;
3621}
3622
3623/**
fe30911b 3624 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3625 * @dev: target ATA device
bff04647 3626 * @readid_flags: read ID flags
623a3128
TH
3627 *
3628 * Re-read IDENTIFY page and make sure @dev is still attached to
3629 * the port.
3630 *
3631 * LOCKING:
3632 * Kernel thread context (may sleep)
3633 *
3634 * RETURNS:
3635 * 0 on success, negative errno otherwise
3636 */
fe30911b 3637int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3638{
5eb45c02 3639 unsigned int class = dev->class;
9af5c9c9 3640 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3641 int rc;
3642
fe635c7e 3643 /* read ID data */
bff04647 3644 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3645 if (rc)
fe30911b 3646 return rc;
623a3128
TH
3647
3648 /* is the device still there? */
fe30911b
TH
3649 if (!ata_dev_same_device(dev, class, id))
3650 return -ENODEV;
623a3128 3651
fe635c7e 3652 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3653 return 0;
3654}
3655
3656/**
3657 * ata_dev_revalidate - Revalidate ATA device
3658 * @dev: device to revalidate
422c9daa 3659 * @new_class: new class code
fe30911b
TH
3660 * @readid_flags: read ID flags
3661 *
3662 * Re-read IDENTIFY page, make sure @dev is still attached to the
3663 * port and reconfigure it according to the new IDENTIFY page.
3664 *
3665 * LOCKING:
3666 * Kernel thread context (may sleep)
3667 *
3668 * RETURNS:
3669 * 0 on success, negative errno otherwise
3670 */
422c9daa
TH
3671int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3672 unsigned int readid_flags)
fe30911b 3673{
6ddcd3b0 3674 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3675 int rc;
3676
3677 if (!ata_dev_enabled(dev))
3678 return -ENODEV;
3679
422c9daa
TH
3680 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3681 if (ata_class_enabled(new_class) &&
3682 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3683 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3684 dev->class, new_class);
3685 rc = -ENODEV;
3686 goto fail;
3687 }
3688
fe30911b
TH
3689 /* re-read ID */
3690 rc = ata_dev_reread_id(dev, readid_flags);
3691 if (rc)
3692 goto fail;
623a3128
TH
3693
3694 /* configure device according to the new ID */
efdaedc4 3695 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3696 if (rc)
3697 goto fail;
3698
3699 /* verify n_sectors hasn't changed */
b54eebd6
TH
3700 if (dev->class == ATA_DEV_ATA && n_sectors &&
3701 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3702 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3703 "%llu != %llu\n",
3704 (unsigned long long)n_sectors,
3705 (unsigned long long)dev->n_sectors);
8270bec4
TH
3706
3707 /* restore original n_sectors */
3708 dev->n_sectors = n_sectors;
3709
6ddcd3b0
TH
3710 rc = -ENODEV;
3711 goto fail;
3712 }
3713
3714 return 0;
623a3128
TH
3715
3716 fail:
f15a1daf 3717 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3718 return rc;
3719}
3720
6919a0a6
AC
3721struct ata_blacklist_entry {
3722 const char *model_num;
3723 const char *model_rev;
3724 unsigned long horkage;
3725};
3726
3727static const struct ata_blacklist_entry ata_device_blacklist [] = {
3728 /* Devices with DMA related problems under Linux */
3729 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3730 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3731 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3735 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3736 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3737 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3738 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3739 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3741 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3742 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3743 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3744 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3745 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3746 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3747 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3748 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3749 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3750 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3751 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3752 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3753 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3754 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3755 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3756 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 3757 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 3758 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3759 /* Odd clown on sil3726/4726 PMPs */
3760 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3761 ATA_HORKAGE_SKIP_PM },
6919a0a6 3762
18d6e9d5 3763 /* Weird ATAPI devices */
40a1d531 3764 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3765
6919a0a6
AC
3766 /* Devices we expect to fail diagnostics */
3767
3768 /* Devices where NCQ should be avoided */
3769 /* NCQ is slow */
2dcb407e 3770 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 3771 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
3772 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3773 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3774 /* NCQ is broken */
539cc7c7 3775 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3776 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 3777 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 3778 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 3779
36e337d0
RH
3780 /* Blacklist entries taken from Silicon Image 3124/3132
3781 Windows driver .inf file - also several Linux problem reports */
3782 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3783 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3784 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 3785
16c55b03
TH
3786 /* devices which puke on READ_NATIVE_MAX */
3787 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3788 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3789 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3790 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 3791
93328e11
AC
3792 /* Devices which report 1 sector over size HPA */
3793 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3794 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 3795 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 3796
6bbfd53d
AC
3797 /* Devices which get the IVB wrong */
3798 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3799 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
3800 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
3801 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
3802 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 3803
6919a0a6
AC
3804 /* End Marker */
3805 { }
1da177e4 3806};
2e9edbf8 3807
741b7763 3808static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
3809{
3810 const char *p;
3811 int len;
3812
3813 /*
3814 * check for trailing wildcard: *\0
3815 */
3816 p = strchr(patt, wildchar);
3817 if (p && ((*(p + 1)) == 0))
3818 len = p - patt;
317b50b8 3819 else {
539cc7c7 3820 len = strlen(name);
317b50b8
AP
3821 if (!len) {
3822 if (!*patt)
3823 return 0;
3824 return -1;
3825 }
3826 }
539cc7c7
JG
3827
3828 return strncmp(patt, name, len);
3829}
3830
75683fe7 3831static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3832{
8bfa79fc
TH
3833 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3834 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3835 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3836
8bfa79fc
TH
3837 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3838 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3839
6919a0a6 3840 while (ad->model_num) {
539cc7c7 3841 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
3842 if (ad->model_rev == NULL)
3843 return ad->horkage;
539cc7c7 3844 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 3845 return ad->horkage;
f4b15fef 3846 }
6919a0a6 3847 ad++;
f4b15fef 3848 }
1da177e4
LT
3849 return 0;
3850}
3851
6919a0a6
AC
3852static int ata_dma_blacklisted(const struct ata_device *dev)
3853{
3854 /* We don't support polling DMA.
3855 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3856 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3857 */
9af5c9c9 3858 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3859 (dev->flags & ATA_DFLAG_CDB_INTR))
3860 return 1;
75683fe7 3861 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3862}
3863
6bbfd53d
AC
3864/**
3865 * ata_is_40wire - check drive side detection
3866 * @dev: device
3867 *
3868 * Perform drive side detection decoding, allowing for device vendors
3869 * who can't follow the documentation.
3870 */
3871
3872static int ata_is_40wire(struct ata_device *dev)
3873{
3874 if (dev->horkage & ATA_HORKAGE_IVB)
3875 return ata_drive_40wire_relaxed(dev->id);
3876 return ata_drive_40wire(dev->id);
3877}
3878
15a5551c
AC
3879/**
3880 * cable_is_40wire - 40/80/SATA decider
3881 * @ap: port to consider
3882 *
3883 * This function encapsulates the policy for speed management
3884 * in one place. At the moment we don't cache the result but
3885 * there is a good case for setting ap->cbl to the result when
3886 * we are called with unknown cables (and figuring out if it
3887 * impacts hotplug at all).
3888 *
3889 * Return 1 if the cable appears to be 40 wire.
3890 */
3891
3892static int cable_is_40wire(struct ata_port *ap)
3893{
3894 struct ata_link *link;
3895 struct ata_device *dev;
3896
3897 /* If the controller thinks we are 40 wire, we are */
3898 if (ap->cbl == ATA_CBL_PATA40)
3899 return 1;
3900 /* If the controller thinks we are 80 wire, we are */
3901 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
3902 return 0;
3903 /* If the controller doesn't know we scan
3904
3905 - Note: We look for all 40 wire detects at this point.
3906 Any 80 wire detect is taken to be 80 wire cable
3907 because
3908 - In many setups only the one drive (slave if present)
3909 will give a valid detect
3910 - If you have a non detect capable drive you don't
3911 want it to colour the choice
3912 */
3913 ata_port_for_each_link(link, ap) {
3914 ata_link_for_each_dev(dev, link) {
3915 if (!ata_is_40wire(dev))
3916 return 0;
3917 }
3918 }
3919 return 1;
3920}
3921
a6d5a51c
TH
3922/**
3923 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3924 * @dev: Device to compute xfermask for
3925 *
acf356b1
TH
3926 * Compute supported xfermask of @dev and store it in
3927 * dev->*_mask. This function is responsible for applying all
3928 * known limits including host controller limits, device
3929 * blacklist, etc...
a6d5a51c
TH
3930 *
3931 * LOCKING:
3932 * None.
a6d5a51c 3933 */
3373efd8 3934static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3935{
9af5c9c9
TH
3936 struct ata_link *link = dev->link;
3937 struct ata_port *ap = link->ap;
cca3974e 3938 struct ata_host *host = ap->host;
a6d5a51c 3939 unsigned long xfer_mask;
1da177e4 3940
37deecb5 3941 /* controller modes available */
565083e1
TH
3942 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3943 ap->mwdma_mask, ap->udma_mask);
3944
8343f889 3945 /* drive modes available */
37deecb5
TH
3946 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3947 dev->mwdma_mask, dev->udma_mask);
3948 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3949
b352e57d
AC
3950 /*
3951 * CFA Advanced TrueIDE timings are not allowed on a shared
3952 * cable
3953 */
3954 if (ata_dev_pair(dev)) {
3955 /* No PIO5 or PIO6 */
3956 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3957 /* No MWDMA3 or MWDMA 4 */
3958 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3959 }
3960
37deecb5
TH
3961 if (ata_dma_blacklisted(dev)) {
3962 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3963 ata_dev_printk(dev, KERN_WARNING,
3964 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3965 }
a6d5a51c 3966
14d66ab7 3967 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 3968 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3969 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3970 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3971 "other device, disabling DMA\n");
5444a6f4 3972 }
565083e1 3973
e424675f
JG
3974 if (ap->flags & ATA_FLAG_NO_IORDY)
3975 xfer_mask &= ata_pio_mask_no_iordy(dev);
3976
5444a6f4 3977 if (ap->ops->mode_filter)
a76b62ca 3978 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3979
8343f889
RH
3980 /* Apply cable rule here. Don't apply it early because when
3981 * we handle hot plug the cable type can itself change.
3982 * Check this last so that we know if the transfer rate was
3983 * solely limited by the cable.
3984 * Unknown or 80 wire cables reported host side are checked
3985 * drive side as well. Cases where we know a 40wire cable
3986 * is used safely for 80 are not checked here.
3987 */
3988 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3989 /* UDMA/44 or higher would be available */
15a5551c 3990 if (cable_is_40wire(ap)) {
2dcb407e 3991 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
3992 "limited to UDMA/33 due to 40-wire cable\n");
3993 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3994 }
3995
565083e1
TH
3996 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3997 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3998}
3999
1da177e4
LT
4000/**
4001 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4002 * @dev: Device to which command will be sent
4003 *
780a87f7
JG
4004 * Issue SET FEATURES - XFER MODE command to device @dev
4005 * on port @ap.
4006 *
1da177e4 4007 * LOCKING:
0cba632b 4008 * PCI/etc. bus probe sem.
83206a29
TH
4009 *
4010 * RETURNS:
4011 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4012 */
4013
3373efd8 4014static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4015{
a0123703 4016 struct ata_taskfile tf;
83206a29 4017 unsigned int err_mask;
1da177e4
LT
4018
4019 /* set up set-features taskfile */
4020 DPRINTK("set features - xfer mode\n");
4021
464cf177
TH
4022 /* Some controllers and ATAPI devices show flaky interrupt
4023 * behavior after setting xfer mode. Use polling instead.
4024 */
3373efd8 4025 ata_tf_init(dev, &tf);
a0123703
TH
4026 tf.command = ATA_CMD_SET_FEATURES;
4027 tf.feature = SETFEATURES_XFER;
464cf177 4028 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4029 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4030 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4031 if (ata_pio_need_iordy(dev))
4032 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4033 /* If the device has IORDY and the controller does not - turn it off */
4034 else if (ata_id_has_iordy(dev->id))
11b7becc 4035 tf.nsect = 0x01;
b9f8ab2d
AC
4036 else /* In the ancient relic department - skip all of this */
4037 return 0;
1da177e4 4038
2b789108 4039 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4040
4041 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4042 return err_mask;
4043}
9f45cbd3 4044/**
218f3d30 4045 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4046 * @dev: Device to which command will be sent
4047 * @enable: Whether to enable or disable the feature
218f3d30 4048 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4049 *
4050 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4051 * on port @ap with sector count
9f45cbd3
KCA
4052 *
4053 * LOCKING:
4054 * PCI/etc. bus probe sem.
4055 *
4056 * RETURNS:
4057 * 0 on success, AC_ERR_* mask otherwise.
4058 */
218f3d30
JG
4059static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4060 u8 feature)
9f45cbd3
KCA
4061{
4062 struct ata_taskfile tf;
4063 unsigned int err_mask;
4064
4065 /* set up set-features taskfile */
4066 DPRINTK("set features - SATA features\n");
4067
4068 ata_tf_init(dev, &tf);
4069 tf.command = ATA_CMD_SET_FEATURES;
4070 tf.feature = enable;
4071 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4072 tf.protocol = ATA_PROT_NODATA;
218f3d30 4073 tf.nsect = feature;
9f45cbd3 4074
2b789108 4075 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4076
83206a29
TH
4077 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4078 return err_mask;
1da177e4
LT
4079}
4080
8bf62ece
AL
4081/**
4082 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4083 * @dev: Device to which command will be sent
e2a7f77a
RD
4084 * @heads: Number of heads (taskfile parameter)
4085 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4086 *
4087 * LOCKING:
6aff8f1f
TH
4088 * Kernel thread context (may sleep)
4089 *
4090 * RETURNS:
4091 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4092 */
3373efd8
TH
4093static unsigned int ata_dev_init_params(struct ata_device *dev,
4094 u16 heads, u16 sectors)
8bf62ece 4095{
a0123703 4096 struct ata_taskfile tf;
6aff8f1f 4097 unsigned int err_mask;
8bf62ece
AL
4098
4099 /* Number of sectors per track 1-255. Number of heads 1-16 */
4100 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4101 return AC_ERR_INVALID;
8bf62ece
AL
4102
4103 /* set up init dev params taskfile */
4104 DPRINTK("init dev params \n");
4105
3373efd8 4106 ata_tf_init(dev, &tf);
a0123703
TH
4107 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4108 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4109 tf.protocol = ATA_PROT_NODATA;
4110 tf.nsect = sectors;
4111 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4112
2b789108 4113 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4114 /* A clean abort indicates an original or just out of spec drive
4115 and we should continue as we issue the setup based on the
4116 drive reported working geometry */
4117 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4118 err_mask = 0;
8bf62ece 4119
6aff8f1f
TH
4120 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4121 return err_mask;
8bf62ece
AL
4122}
4123
1da177e4 4124/**
0cba632b
JG
4125 * ata_sg_clean - Unmap DMA memory associated with command
4126 * @qc: Command containing DMA memory to be released
4127 *
4128 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4129 *
4130 * LOCKING:
cca3974e 4131 * spin_lock_irqsave(host lock)
1da177e4 4132 */
70e6ad0c 4133void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4134{
4135 struct ata_port *ap = qc->ap;
ff2aeb1e 4136 struct scatterlist *sg = qc->sg;
1da177e4
LT
4137 int dir = qc->dma_dir;
4138
a4631474 4139 WARN_ON(sg == NULL);
1da177e4 4140
dde20207 4141 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4142
dde20207
JB
4143 if (qc->n_elem)
4144 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
1da177e4
LT
4145
4146 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4147 qc->sg = NULL;
1da177e4
LT
4148}
4149
1da177e4
LT
4150/**
4151 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4152 * @qc: Metadata associated with taskfile to check
4153 *
780a87f7
JG
4154 * Allow low-level driver to filter ATA PACKET commands, returning
4155 * a status indicating whether or not it is OK to use DMA for the
4156 * supplied PACKET command.
4157 *
1da177e4 4158 * LOCKING:
624d5c51
TH
4159 * spin_lock_irqsave(host lock)
4160 *
4161 * RETURNS: 0 when ATAPI DMA can be used
4162 * nonzero otherwise
4163 */
4164int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4165{
4166 struct ata_port *ap = qc->ap;
71601958 4167
624d5c51
TH
4168 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4169 * few ATAPI devices choke on such DMA requests.
4170 */
4171 if (unlikely(qc->nbytes & 15))
4172 return 1;
e2cec771 4173
624d5c51
TH
4174 if (ap->ops->check_atapi_dma)
4175 return ap->ops->check_atapi_dma(qc);
e2cec771 4176
624d5c51
TH
4177 return 0;
4178}
1da177e4 4179
624d5c51
TH
4180/**
4181 * ata_std_qc_defer - Check whether a qc needs to be deferred
4182 * @qc: ATA command in question
4183 *
4184 * Non-NCQ commands cannot run with any other command, NCQ or
4185 * not. As upper layer only knows the queue depth, we are
4186 * responsible for maintaining exclusion. This function checks
4187 * whether a new command @qc can be issued.
4188 *
4189 * LOCKING:
4190 * spin_lock_irqsave(host lock)
4191 *
4192 * RETURNS:
4193 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4194 */
4195int ata_std_qc_defer(struct ata_queued_cmd *qc)
4196{
4197 struct ata_link *link = qc->dev->link;
e2cec771 4198
624d5c51
TH
4199 if (qc->tf.protocol == ATA_PROT_NCQ) {
4200 if (!ata_tag_valid(link->active_tag))
4201 return 0;
4202 } else {
4203 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4204 return 0;
4205 }
e2cec771 4206
624d5c51
TH
4207 return ATA_DEFER_LINK;
4208}
6912ccd5 4209
624d5c51 4210void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4211
624d5c51
TH
4212/**
4213 * ata_sg_init - Associate command with scatter-gather table.
4214 * @qc: Command to be associated
4215 * @sg: Scatter-gather table.
4216 * @n_elem: Number of elements in s/g table.
4217 *
4218 * Initialize the data-related elements of queued_cmd @qc
4219 * to point to a scatter-gather table @sg, containing @n_elem
4220 * elements.
4221 *
4222 * LOCKING:
4223 * spin_lock_irqsave(host lock)
4224 */
4225void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4226 unsigned int n_elem)
4227{
4228 qc->sg = sg;
4229 qc->n_elem = n_elem;
4230 qc->cursg = qc->sg;
4231}
bb5cb290 4232
624d5c51
TH
4233/**
4234 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4235 * @qc: Command with scatter-gather table to be mapped.
4236 *
4237 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4238 *
4239 * LOCKING:
4240 * spin_lock_irqsave(host lock)
4241 *
4242 * RETURNS:
4243 * Zero on success, negative on error.
4244 *
4245 */
4246static int ata_sg_setup(struct ata_queued_cmd *qc)
4247{
4248 struct ata_port *ap = qc->ap;
4249 unsigned int n_elem;
1da177e4 4250
624d5c51 4251 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4252
624d5c51
TH
4253 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4254 if (n_elem < 1)
4255 return -1;
bb5cb290 4256
624d5c51 4257 DPRINTK("%d sg elements mapped\n", n_elem);
bb5cb290 4258
624d5c51
TH
4259 qc->n_elem = n_elem;
4260 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4261
624d5c51 4262 return 0;
1da177e4
LT
4263}
4264
624d5c51
TH
4265/**
4266 * swap_buf_le16 - swap halves of 16-bit words in place
4267 * @buf: Buffer to swap
4268 * @buf_words: Number of 16-bit words in buffer.
4269 *
4270 * Swap halves of 16-bit words if needed to convert from
4271 * little-endian byte order to native cpu byte order, or
4272 * vice-versa.
4273 *
4274 * LOCKING:
4275 * Inherited from caller.
4276 */
4277void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4278{
624d5c51
TH
4279#ifdef __BIG_ENDIAN
4280 unsigned int i;
8061f5f0 4281
624d5c51
TH
4282 for (i = 0; i < buf_words; i++)
4283 buf[i] = le16_to_cpu(buf[i]);
4284#endif /* __BIG_ENDIAN */
8061f5f0
TH
4285}
4286
1da177e4
LT
4287/**
4288 * ata_qc_new - Request an available ATA command, for queueing
4289 * @ap: Port associated with device @dev
4290 * @dev: Device from whom we request an available command structure
4291 *
4292 * LOCKING:
0cba632b 4293 * None.
1da177e4
LT
4294 */
4295
4296static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4297{
4298 struct ata_queued_cmd *qc = NULL;
4299 unsigned int i;
4300
e3180499 4301 /* no command while frozen */
b51e9e5d 4302 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4303 return NULL;
4304
2ab7db1f
TH
4305 /* the last tag is reserved for internal command. */
4306 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4307 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4308 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4309 break;
4310 }
4311
4312 if (qc)
4313 qc->tag = i;
4314
4315 return qc;
4316}
4317
4318/**
4319 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4320 * @dev: Device from whom we request an available command structure
4321 *
4322 * LOCKING:
0cba632b 4323 * None.
1da177e4
LT
4324 */
4325
3373efd8 4326struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4327{
9af5c9c9 4328 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4329 struct ata_queued_cmd *qc;
4330
4331 qc = ata_qc_new(ap);
4332 if (qc) {
1da177e4
LT
4333 qc->scsicmd = NULL;
4334 qc->ap = ap;
4335 qc->dev = dev;
1da177e4 4336
2c13b7ce 4337 ata_qc_reinit(qc);
1da177e4
LT
4338 }
4339
4340 return qc;
4341}
4342
1da177e4
LT
4343/**
4344 * ata_qc_free - free unused ata_queued_cmd
4345 * @qc: Command to complete
4346 *
4347 * Designed to free unused ata_queued_cmd object
4348 * in case something prevents using it.
4349 *
4350 * LOCKING:
cca3974e 4351 * spin_lock_irqsave(host lock)
1da177e4
LT
4352 */
4353void ata_qc_free(struct ata_queued_cmd *qc)
4354{
4ba946e9
TH
4355 struct ata_port *ap = qc->ap;
4356 unsigned int tag;
4357
a4631474 4358 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4359
4ba946e9
TH
4360 qc->flags = 0;
4361 tag = qc->tag;
4362 if (likely(ata_tag_valid(tag))) {
4ba946e9 4363 qc->tag = ATA_TAG_POISON;
6cec4a39 4364 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4365 }
1da177e4
LT
4366}
4367
76014427 4368void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4369{
dedaf2b0 4370 struct ata_port *ap = qc->ap;
9af5c9c9 4371 struct ata_link *link = qc->dev->link;
dedaf2b0 4372
a4631474
TH
4373 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4374 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4375
4376 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4377 ata_sg_clean(qc);
4378
7401abf2 4379 /* command should be marked inactive atomically with qc completion */
da917d69 4380 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4381 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4382 if (!link->sactive)
4383 ap->nr_active_links--;
4384 } else {
9af5c9c9 4385 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4386 ap->nr_active_links--;
4387 }
4388
4389 /* clear exclusive status */
4390 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4391 ap->excl_link == link))
4392 ap->excl_link = NULL;
7401abf2 4393
3f3791d3
AL
4394 /* atapi: mark qc as inactive to prevent the interrupt handler
4395 * from completing the command twice later, before the error handler
4396 * is called. (when rc != 0 and atapi request sense is needed)
4397 */
4398 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4399 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4400
1da177e4 4401 /* call completion callback */
77853bf2 4402 qc->complete_fn(qc);
1da177e4
LT
4403}
4404
39599a53
TH
4405static void fill_result_tf(struct ata_queued_cmd *qc)
4406{
4407 struct ata_port *ap = qc->ap;
4408
39599a53 4409 qc->result_tf.flags = qc->tf.flags;
5682ed33 4410 ap->ops->sff_tf_read(ap, &qc->result_tf);
39599a53
TH
4411}
4412
00115e0f
TH
4413static void ata_verify_xfer(struct ata_queued_cmd *qc)
4414{
4415 struct ata_device *dev = qc->dev;
4416
4417 if (ata_tag_internal(qc->tag))
4418 return;
4419
4420 if (ata_is_nodata(qc->tf.protocol))
4421 return;
4422
4423 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4424 return;
4425
4426 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4427}
4428
f686bcb8
TH
4429/**
4430 * ata_qc_complete - Complete an active ATA command
4431 * @qc: Command to complete
4432 * @err_mask: ATA Status register contents
4433 *
4434 * Indicate to the mid and upper layers that an ATA
4435 * command has completed, with either an ok or not-ok status.
4436 *
4437 * LOCKING:
cca3974e 4438 * spin_lock_irqsave(host lock)
f686bcb8
TH
4439 */
4440void ata_qc_complete(struct ata_queued_cmd *qc)
4441{
4442 struct ata_port *ap = qc->ap;
4443
4444 /* XXX: New EH and old EH use different mechanisms to
4445 * synchronize EH with regular execution path.
4446 *
4447 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4448 * Normal execution path is responsible for not accessing a
4449 * failed qc. libata core enforces the rule by returning NULL
4450 * from ata_qc_from_tag() for failed qcs.
4451 *
4452 * Old EH depends on ata_qc_complete() nullifying completion
4453 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4454 * not synchronize with interrupt handler. Only PIO task is
4455 * taken care of.
4456 */
4457 if (ap->ops->error_handler) {
4dbfa39b
TH
4458 struct ata_device *dev = qc->dev;
4459 struct ata_eh_info *ehi = &dev->link->eh_info;
4460
b51e9e5d 4461 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4462
4463 if (unlikely(qc->err_mask))
4464 qc->flags |= ATA_QCFLAG_FAILED;
4465
4466 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4467 if (!ata_tag_internal(qc->tag)) {
4468 /* always fill result TF for failed qc */
39599a53 4469 fill_result_tf(qc);
f686bcb8
TH
4470 ata_qc_schedule_eh(qc);
4471 return;
4472 }
4473 }
4474
4475 /* read result TF if requested */
4476 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4477 fill_result_tf(qc);
f686bcb8 4478
4dbfa39b
TH
4479 /* Some commands need post-processing after successful
4480 * completion.
4481 */
4482 switch (qc->tf.command) {
4483 case ATA_CMD_SET_FEATURES:
4484 if (qc->tf.feature != SETFEATURES_WC_ON &&
4485 qc->tf.feature != SETFEATURES_WC_OFF)
4486 break;
4487 /* fall through */
4488 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4489 case ATA_CMD_SET_MULTI: /* multi_count changed */
4490 /* revalidate device */
4491 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4492 ata_port_schedule_eh(ap);
4493 break;
054a5fba
TH
4494
4495 case ATA_CMD_SLEEP:
4496 dev->flags |= ATA_DFLAG_SLEEPING;
4497 break;
4dbfa39b
TH
4498 }
4499
00115e0f
TH
4500 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4501 ata_verify_xfer(qc);
4502
f686bcb8
TH
4503 __ata_qc_complete(qc);
4504 } else {
4505 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4506 return;
4507
4508 /* read result TF if failed or requested */
4509 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4510 fill_result_tf(qc);
f686bcb8
TH
4511
4512 __ata_qc_complete(qc);
4513 }
4514}
4515
dedaf2b0
TH
4516/**
4517 * ata_qc_complete_multiple - Complete multiple qcs successfully
4518 * @ap: port in question
4519 * @qc_active: new qc_active mask
4520 * @finish_qc: LLDD callback invoked before completing a qc
4521 *
4522 * Complete in-flight commands. This functions is meant to be
4523 * called from low-level driver's interrupt routine to complete
4524 * requests normally. ap->qc_active and @qc_active is compared
4525 * and commands are completed accordingly.
4526 *
4527 * LOCKING:
cca3974e 4528 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4529 *
4530 * RETURNS:
4531 * Number of completed commands on success, -errno otherwise.
4532 */
4533int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4534 void (*finish_qc)(struct ata_queued_cmd *))
4535{
4536 int nr_done = 0;
4537 u32 done_mask;
4538 int i;
4539
4540 done_mask = ap->qc_active ^ qc_active;
4541
4542 if (unlikely(done_mask & qc_active)) {
4543 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4544 "(%08x->%08x)\n", ap->qc_active, qc_active);
4545 return -EINVAL;
4546 }
4547
4548 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4549 struct ata_queued_cmd *qc;
4550
4551 if (!(done_mask & (1 << i)))
4552 continue;
4553
4554 if ((qc = ata_qc_from_tag(ap, i))) {
4555 if (finish_qc)
4556 finish_qc(qc);
4557 ata_qc_complete(qc);
4558 nr_done++;
4559 }
4560 }
4561
4562 return nr_done;
4563}
4564
1da177e4
LT
4565/**
4566 * ata_qc_issue - issue taskfile to device
4567 * @qc: command to issue to device
4568 *
4569 * Prepare an ATA command to submission to device.
4570 * This includes mapping the data into a DMA-able
4571 * area, filling in the S/G table, and finally
4572 * writing the taskfile to hardware, starting the command.
4573 *
4574 * LOCKING:
cca3974e 4575 * spin_lock_irqsave(host lock)
1da177e4 4576 */
8e0e694a 4577void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4578{
4579 struct ata_port *ap = qc->ap;
9af5c9c9 4580 struct ata_link *link = qc->dev->link;
405e66b3 4581 u8 prot = qc->tf.protocol;
1da177e4 4582
dedaf2b0
TH
4583 /* Make sure only one non-NCQ command is outstanding. The
4584 * check is skipped for old EH because it reuses active qc to
4585 * request ATAPI sense.
4586 */
9af5c9c9 4587 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 4588
1973a023 4589 if (ata_is_ncq(prot)) {
9af5c9c9 4590 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
4591
4592 if (!link->sactive)
4593 ap->nr_active_links++;
9af5c9c9 4594 link->sactive |= 1 << qc->tag;
dedaf2b0 4595 } else {
9af5c9c9 4596 WARN_ON(link->sactive);
da917d69
TH
4597
4598 ap->nr_active_links++;
9af5c9c9 4599 link->active_tag = qc->tag;
dedaf2b0
TH
4600 }
4601
e4a70e76 4602 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4603 ap->qc_active |= 1 << qc->tag;
e4a70e76 4604
f92a2636
TH
4605 /* We guarantee to LLDs that they will have at least one
4606 * non-zero sg if the command is a data command.
4607 */
ff2aeb1e 4608 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 4609
405e66b3 4610 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 4611 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
4612 if (ata_sg_setup(qc))
4613 goto sg_err;
1da177e4 4614
cf480626 4615 /* if device is sleeping, schedule reset and abort the link */
054a5fba 4616 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 4617 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
4618 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4619 ata_link_abort(link);
4620 return;
4621 }
4622
1da177e4
LT
4623 ap->ops->qc_prep(qc);
4624
8e0e694a
TH
4625 qc->err_mask |= ap->ops->qc_issue(qc);
4626 if (unlikely(qc->err_mask))
4627 goto err;
4628 return;
1da177e4 4629
8e436af9 4630sg_err:
8e0e694a
TH
4631 qc->err_mask |= AC_ERR_SYSTEM;
4632err:
4633 ata_qc_complete(qc);
1da177e4
LT
4634}
4635
34bf2170
TH
4636/**
4637 * sata_scr_valid - test whether SCRs are accessible
936fd732 4638 * @link: ATA link to test SCR accessibility for
34bf2170 4639 *
936fd732 4640 * Test whether SCRs are accessible for @link.
34bf2170
TH
4641 *
4642 * LOCKING:
4643 * None.
4644 *
4645 * RETURNS:
4646 * 1 if SCRs are accessible, 0 otherwise.
4647 */
936fd732 4648int sata_scr_valid(struct ata_link *link)
34bf2170 4649{
936fd732
TH
4650 struct ata_port *ap = link->ap;
4651
a16abc0b 4652 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
4653}
4654
4655/**
4656 * sata_scr_read - read SCR register of the specified port
936fd732 4657 * @link: ATA link to read SCR for
34bf2170
TH
4658 * @reg: SCR to read
4659 * @val: Place to store read value
4660 *
936fd732 4661 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
4662 * guaranteed to succeed if @link is ap->link, the cable type of
4663 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
4664 *
4665 * LOCKING:
633273a3 4666 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4667 *
4668 * RETURNS:
4669 * 0 on success, negative errno on failure.
4670 */
936fd732 4671int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 4672{
633273a3
TH
4673 if (ata_is_host_link(link)) {
4674 struct ata_port *ap = link->ap;
936fd732 4675
633273a3
TH
4676 if (sata_scr_valid(link))
4677 return ap->ops->scr_read(ap, reg, val);
4678 return -EOPNOTSUPP;
4679 }
4680
4681 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
4682}
4683
4684/**
4685 * sata_scr_write - write SCR register of the specified port
936fd732 4686 * @link: ATA link to write SCR for
34bf2170
TH
4687 * @reg: SCR to write
4688 * @val: value to write
4689 *
936fd732 4690 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
4691 * guaranteed to succeed if @link is ap->link, the cable type of
4692 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
4693 *
4694 * LOCKING:
633273a3 4695 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4696 *
4697 * RETURNS:
4698 * 0 on success, negative errno on failure.
4699 */
936fd732 4700int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 4701{
633273a3
TH
4702 if (ata_is_host_link(link)) {
4703 struct ata_port *ap = link->ap;
4704
4705 if (sata_scr_valid(link))
4706 return ap->ops->scr_write(ap, reg, val);
4707 return -EOPNOTSUPP;
4708 }
936fd732 4709
633273a3 4710 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
4711}
4712
4713/**
4714 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 4715 * @link: ATA link to write SCR for
34bf2170
TH
4716 * @reg: SCR to write
4717 * @val: value to write
4718 *
4719 * This function is identical to sata_scr_write() except that this
4720 * function performs flush after writing to the register.
4721 *
4722 * LOCKING:
633273a3 4723 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
4724 *
4725 * RETURNS:
4726 * 0 on success, negative errno on failure.
4727 */
936fd732 4728int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 4729{
633273a3
TH
4730 if (ata_is_host_link(link)) {
4731 struct ata_port *ap = link->ap;
4732 int rc;
da3dbb17 4733
633273a3
TH
4734 if (sata_scr_valid(link)) {
4735 rc = ap->ops->scr_write(ap, reg, val);
4736 if (rc == 0)
4737 rc = ap->ops->scr_read(ap, reg, &val);
4738 return rc;
4739 }
4740 return -EOPNOTSUPP;
34bf2170 4741 }
633273a3
TH
4742
4743 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
4744}
4745
4746/**
936fd732
TH
4747 * ata_link_online - test whether the given link is online
4748 * @link: ATA link to test
34bf2170 4749 *
936fd732
TH
4750 * Test whether @link is online. Note that this function returns
4751 * 0 if online status of @link cannot be obtained, so
4752 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
4753 *
4754 * LOCKING:
4755 * None.
4756 *
4757 * RETURNS:
4758 * 1 if the port online status is available and online.
4759 */
936fd732 4760int ata_link_online(struct ata_link *link)
34bf2170
TH
4761{
4762 u32 sstatus;
4763
936fd732
TH
4764 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4765 (sstatus & 0xf) == 0x3)
34bf2170
TH
4766 return 1;
4767 return 0;
4768}
4769
4770/**
936fd732
TH
4771 * ata_link_offline - test whether the given link is offline
4772 * @link: ATA link to test
34bf2170 4773 *
936fd732
TH
4774 * Test whether @link is offline. Note that this function
4775 * returns 0 if offline status of @link cannot be obtained, so
4776 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
4777 *
4778 * LOCKING:
4779 * None.
4780 *
4781 * RETURNS:
4782 * 1 if the port offline status is available and offline.
4783 */
936fd732 4784int ata_link_offline(struct ata_link *link)
34bf2170
TH
4785{
4786 u32 sstatus;
4787
936fd732
TH
4788 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4789 (sstatus & 0xf) != 0x3)
34bf2170
TH
4790 return 1;
4791 return 0;
4792}
0baab86b 4793
6ffa01d8 4794#ifdef CONFIG_PM
cca3974e
JG
4795static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
4796 unsigned int action, unsigned int ehi_flags,
4797 int wait)
500530f6
TH
4798{
4799 unsigned long flags;
4800 int i, rc;
4801
cca3974e
JG
4802 for (i = 0; i < host->n_ports; i++) {
4803 struct ata_port *ap = host->ports[i];
e3667ebf 4804 struct ata_link *link;
500530f6
TH
4805
4806 /* Previous resume operation might still be in
4807 * progress. Wait for PM_PENDING to clear.
4808 */
4809 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4810 ata_port_wait_eh(ap);
4811 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4812 }
4813
4814 /* request PM ops to EH */
4815 spin_lock_irqsave(ap->lock, flags);
4816
4817 ap->pm_mesg = mesg;
4818 if (wait) {
4819 rc = 0;
4820 ap->pm_result = &rc;
4821 }
4822
4823 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
4824 __ata_port_for_each_link(link, ap) {
4825 link->eh_info.action |= action;
4826 link->eh_info.flags |= ehi_flags;
4827 }
500530f6
TH
4828
4829 ata_port_schedule_eh(ap);
4830
4831 spin_unlock_irqrestore(ap->lock, flags);
4832
4833 /* wait and check result */
4834 if (wait) {
4835 ata_port_wait_eh(ap);
4836 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4837 if (rc)
4838 return rc;
4839 }
4840 }
4841
4842 return 0;
4843}
4844
4845/**
cca3974e
JG
4846 * ata_host_suspend - suspend host
4847 * @host: host to suspend
500530f6
TH
4848 * @mesg: PM message
4849 *
cca3974e 4850 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
4851 * function requests EH to perform PM operations and waits for EH
4852 * to finish.
4853 *
4854 * LOCKING:
4855 * Kernel thread context (may sleep).
4856 *
4857 * RETURNS:
4858 * 0 on success, -errno on failure.
4859 */
cca3974e 4860int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 4861{
9666f400 4862 int rc;
500530f6 4863
ca77329f
KCA
4864 /*
4865 * disable link pm on all ports before requesting
4866 * any pm activity
4867 */
4868 ata_lpm_enable(host);
4869
cca3974e 4870 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
4871 if (rc == 0)
4872 host->dev->power.power_state = mesg;
500530f6
TH
4873 return rc;
4874}
4875
4876/**
cca3974e
JG
4877 * ata_host_resume - resume host
4878 * @host: host to resume
500530f6 4879 *
cca3974e 4880 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
4881 * function requests EH to perform PM operations and returns.
4882 * Note that all resume operations are performed parallely.
4883 *
4884 * LOCKING:
4885 * Kernel thread context (may sleep).
4886 */
cca3974e 4887void ata_host_resume(struct ata_host *host)
500530f6 4888{
cf480626 4889 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 4890 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 4891 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
4892
4893 /* reenable link pm */
4894 ata_lpm_disable(host);
500530f6 4895}
6ffa01d8 4896#endif
500530f6 4897
c893a3ae
RD
4898/**
4899 * ata_port_start - Set port up for dma.
4900 * @ap: Port to initialize
4901 *
4902 * Called just after data structures for each port are
4903 * initialized. Allocates space for PRD table.
4904 *
4905 * May be used as the port_start() entry in ata_port_operations.
4906 *
4907 * LOCKING:
4908 * Inherited from caller.
4909 */
f0d36efd 4910int ata_port_start(struct ata_port *ap)
1da177e4 4911{
2f1f610b 4912 struct device *dev = ap->dev;
1da177e4 4913
f0d36efd
TH
4914 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
4915 GFP_KERNEL);
1da177e4
LT
4916 if (!ap->prd)
4917 return -ENOMEM;
4918
1da177e4
LT
4919 return 0;
4920}
4921
3ef3b43d
TH
4922/**
4923 * ata_dev_init - Initialize an ata_device structure
4924 * @dev: Device structure to initialize
4925 *
4926 * Initialize @dev in preparation for probing.
4927 *
4928 * LOCKING:
4929 * Inherited from caller.
4930 */
4931void ata_dev_init(struct ata_device *dev)
4932{
9af5c9c9
TH
4933 struct ata_link *link = dev->link;
4934 struct ata_port *ap = link->ap;
72fa4b74
TH
4935 unsigned long flags;
4936
5a04bf4b 4937 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
4938 link->sata_spd_limit = link->hw_sata_spd_limit;
4939 link->sata_spd = 0;
5a04bf4b 4940
72fa4b74
TH
4941 /* High bits of dev->flags are used to record warm plug
4942 * requests which occur asynchronously. Synchronize using
cca3974e 4943 * host lock.
72fa4b74 4944 */
ba6a1308 4945 spin_lock_irqsave(ap->lock, flags);
72fa4b74 4946 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 4947 dev->horkage = 0;
ba6a1308 4948 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 4949
72fa4b74
TH
4950 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
4951 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
4952 dev->pio_mask = UINT_MAX;
4953 dev->mwdma_mask = UINT_MAX;
4954 dev->udma_mask = UINT_MAX;
4955}
4956
4fb37a25
TH
4957/**
4958 * ata_link_init - Initialize an ata_link structure
4959 * @ap: ATA port link is attached to
4960 * @link: Link structure to initialize
8989805d 4961 * @pmp: Port multiplier port number
4fb37a25
TH
4962 *
4963 * Initialize @link.
4964 *
4965 * LOCKING:
4966 * Kernel thread context (may sleep)
4967 */
fb7fd614 4968void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
4969{
4970 int i;
4971
4972 /* clear everything except for devices */
4973 memset(link, 0, offsetof(struct ata_link, device[0]));
4974
4975 link->ap = ap;
8989805d 4976 link->pmp = pmp;
4fb37a25
TH
4977 link->active_tag = ATA_TAG_POISON;
4978 link->hw_sata_spd_limit = UINT_MAX;
4979
4980 /* can't use iterator, ap isn't initialized yet */
4981 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4982 struct ata_device *dev = &link->device[i];
4983
4984 dev->link = link;
4985 dev->devno = dev - link->device;
4986 ata_dev_init(dev);
4987 }
4988}
4989
4990/**
4991 * sata_link_init_spd - Initialize link->sata_spd_limit
4992 * @link: Link to configure sata_spd_limit for
4993 *
4994 * Initialize @link->[hw_]sata_spd_limit to the currently
4995 * configured value.
4996 *
4997 * LOCKING:
4998 * Kernel thread context (may sleep).
4999 *
5000 * RETURNS:
5001 * 0 on success, -errno on failure.
5002 */
fb7fd614 5003int sata_link_init_spd(struct ata_link *link)
4fb37a25 5004{
33267325
TH
5005 u32 scontrol;
5006 u8 spd;
4fb37a25
TH
5007 int rc;
5008
5009 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
5010 if (rc)
5011 return rc;
5012
5013 spd = (scontrol >> 4) & 0xf;
5014 if (spd)
5015 link->hw_sata_spd_limit &= (1 << spd) - 1;
5016
33267325
TH
5017 ata_force_spd_limit(link);
5018
4fb37a25
TH
5019 link->sata_spd_limit = link->hw_sata_spd_limit;
5020
5021 return 0;
5022}
5023
1da177e4 5024/**
f3187195
TH
5025 * ata_port_alloc - allocate and initialize basic ATA port resources
5026 * @host: ATA host this allocated port belongs to
1da177e4 5027 *
f3187195
TH
5028 * Allocate and initialize basic ATA port resources.
5029 *
5030 * RETURNS:
5031 * Allocate ATA port on success, NULL on failure.
0cba632b 5032 *
1da177e4 5033 * LOCKING:
f3187195 5034 * Inherited from calling layer (may sleep).
1da177e4 5035 */
f3187195 5036struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5037{
f3187195 5038 struct ata_port *ap;
1da177e4 5039
f3187195
TH
5040 DPRINTK("ENTER\n");
5041
5042 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5043 if (!ap)
5044 return NULL;
5045
f4d6d004 5046 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5047 ap->lock = &host->lock;
198e0fed 5048 ap->flags = ATA_FLAG_DISABLED;
f3187195 5049 ap->print_id = -1;
1da177e4 5050 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5051 ap->host = host;
f3187195 5052 ap->dev = host->dev;
1da177e4 5053 ap->last_ctl = 0xFF;
bd5d825c
BP
5054
5055#if defined(ATA_VERBOSE_DEBUG)
5056 /* turn on all debugging levels */
5057 ap->msg_enable = 0x00FF;
5058#elif defined(ATA_DEBUG)
5059 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5060#else
0dd4b21f 5061 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5062#endif
1da177e4 5063
442eacc3 5064 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
65f27f38
DH
5065 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5066 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5067 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5068 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
5069 init_timer_deferrable(&ap->fastdrain_timer);
5070 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5071 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5072
838df628 5073 ap->cbl = ATA_CBL_NONE;
838df628 5074
8989805d 5075 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5076
5077#ifdef ATA_IRQ_TRAP
5078 ap->stats.unhandled_irq = 1;
5079 ap->stats.idle_irq = 1;
5080#endif
1da177e4 5081 return ap;
1da177e4
LT
5082}
5083
f0d36efd
TH
5084static void ata_host_release(struct device *gendev, void *res)
5085{
5086 struct ata_host *host = dev_get_drvdata(gendev);
5087 int i;
5088
1aa506e4
TH
5089 for (i = 0; i < host->n_ports; i++) {
5090 struct ata_port *ap = host->ports[i];
5091
4911487a
TH
5092 if (!ap)
5093 continue;
5094
5095 if (ap->scsi_host)
1aa506e4
TH
5096 scsi_host_put(ap->scsi_host);
5097
633273a3 5098 kfree(ap->pmp_link);
4911487a 5099 kfree(ap);
1aa506e4
TH
5100 host->ports[i] = NULL;
5101 }
5102
1aa56cca 5103 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5104}
5105
f3187195
TH
5106/**
5107 * ata_host_alloc - allocate and init basic ATA host resources
5108 * @dev: generic device this host is associated with
5109 * @max_ports: maximum number of ATA ports associated with this host
5110 *
5111 * Allocate and initialize basic ATA host resources. LLD calls
5112 * this function to allocate a host, initializes it fully and
5113 * attaches it using ata_host_register().
5114 *
5115 * @max_ports ports are allocated and host->n_ports is
5116 * initialized to @max_ports. The caller is allowed to decrease
5117 * host->n_ports before calling ata_host_register(). The unused
5118 * ports will be automatically freed on registration.
5119 *
5120 * RETURNS:
5121 * Allocate ATA host on success, NULL on failure.
5122 *
5123 * LOCKING:
5124 * Inherited from calling layer (may sleep).
5125 */
5126struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5127{
5128 struct ata_host *host;
5129 size_t sz;
5130 int i;
5131
5132 DPRINTK("ENTER\n");
5133
5134 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5135 return NULL;
5136
5137 /* alloc a container for our list of ATA ports (buses) */
5138 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5139 /* alloc a container for our list of ATA ports (buses) */
5140 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5141 if (!host)
5142 goto err_out;
5143
5144 devres_add(dev, host);
5145 dev_set_drvdata(dev, host);
5146
5147 spin_lock_init(&host->lock);
5148 host->dev = dev;
5149 host->n_ports = max_ports;
5150
5151 /* allocate ports bound to this host */
5152 for (i = 0; i < max_ports; i++) {
5153 struct ata_port *ap;
5154
5155 ap = ata_port_alloc(host);
5156 if (!ap)
5157 goto err_out;
5158
5159 ap->port_no = i;
5160 host->ports[i] = ap;
5161 }
5162
5163 devres_remove_group(dev, NULL);
5164 return host;
5165
5166 err_out:
5167 devres_release_group(dev, NULL);
5168 return NULL;
5169}
5170
f5cda257
TH
5171/**
5172 * ata_host_alloc_pinfo - alloc host and init with port_info array
5173 * @dev: generic device this host is associated with
5174 * @ppi: array of ATA port_info to initialize host with
5175 * @n_ports: number of ATA ports attached to this host
5176 *
5177 * Allocate ATA host and initialize with info from @ppi. If NULL
5178 * terminated, @ppi may contain fewer entries than @n_ports. The
5179 * last entry will be used for the remaining ports.
5180 *
5181 * RETURNS:
5182 * Allocate ATA host on success, NULL on failure.
5183 *
5184 * LOCKING:
5185 * Inherited from calling layer (may sleep).
5186 */
5187struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5188 const struct ata_port_info * const * ppi,
5189 int n_ports)
5190{
5191 const struct ata_port_info *pi;
5192 struct ata_host *host;
5193 int i, j;
5194
5195 host = ata_host_alloc(dev, n_ports);
5196 if (!host)
5197 return NULL;
5198
5199 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5200 struct ata_port *ap = host->ports[i];
5201
5202 if (ppi[j])
5203 pi = ppi[j++];
5204
5205 ap->pio_mask = pi->pio_mask;
5206 ap->mwdma_mask = pi->mwdma_mask;
5207 ap->udma_mask = pi->udma_mask;
5208 ap->flags |= pi->flags;
0c88758b 5209 ap->link.flags |= pi->link_flags;
f5cda257
TH
5210 ap->ops = pi->port_ops;
5211
5212 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5213 host->ops = pi->port_ops;
f5cda257
TH
5214 }
5215
5216 return host;
5217}
5218
32ebbc0c
TH
5219static void ata_host_stop(struct device *gendev, void *res)
5220{
5221 struct ata_host *host = dev_get_drvdata(gendev);
5222 int i;
5223
5224 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5225
5226 for (i = 0; i < host->n_ports; i++) {
5227 struct ata_port *ap = host->ports[i];
5228
5229 if (ap->ops->port_stop)
5230 ap->ops->port_stop(ap);
5231 }
5232
5233 if (host->ops->host_stop)
5234 host->ops->host_stop(host);
5235}
5236
029cfd6b
TH
5237/**
5238 * ata_finalize_port_ops - finalize ata_port_operations
5239 * @ops: ata_port_operations to finalize
5240 *
5241 * An ata_port_operations can inherit from another ops and that
5242 * ops can again inherit from another. This can go on as many
5243 * times as necessary as long as there is no loop in the
5244 * inheritance chain.
5245 *
5246 * Ops tables are finalized when the host is started. NULL or
5247 * unspecified entries are inherited from the closet ancestor
5248 * which has the method and the entry is populated with it.
5249 * After finalization, the ops table directly points to all the
5250 * methods and ->inherits is no longer necessary and cleared.
5251 *
5252 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5253 *
5254 * LOCKING:
5255 * None.
5256 */
5257static void ata_finalize_port_ops(struct ata_port_operations *ops)
5258{
5259 static spinlock_t lock = SPIN_LOCK_UNLOCKED;
5260 const struct ata_port_operations *cur;
5261 void **begin = (void **)ops;
5262 void **end = (void **)&ops->inherits;
5263 void **pp;
5264
5265 if (!ops || !ops->inherits)
5266 return;
5267
5268 spin_lock(&lock);
5269
5270 for (cur = ops->inherits; cur; cur = cur->inherits) {
5271 void **inherit = (void **)cur;
5272
5273 for (pp = begin; pp < end; pp++, inherit++)
5274 if (!*pp)
5275 *pp = *inherit;
5276 }
5277
5278 for (pp = begin; pp < end; pp++)
5279 if (IS_ERR(*pp))
5280 *pp = NULL;
5281
5282 ops->inherits = NULL;
5283
5284 spin_unlock(&lock);
5285}
5286
ecef7253
TH
5287/**
5288 * ata_host_start - start and freeze ports of an ATA host
5289 * @host: ATA host to start ports for
5290 *
5291 * Start and then freeze ports of @host. Started status is
5292 * recorded in host->flags, so this function can be called
5293 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5294 * once. If host->ops isn't initialized yet, its set to the
5295 * first non-dummy port ops.
ecef7253
TH
5296 *
5297 * LOCKING:
5298 * Inherited from calling layer (may sleep).
5299 *
5300 * RETURNS:
5301 * 0 if all ports are started successfully, -errno otherwise.
5302 */
5303int ata_host_start(struct ata_host *host)
5304{
32ebbc0c
TH
5305 int have_stop = 0;
5306 void *start_dr = NULL;
ecef7253
TH
5307 int i, rc;
5308
5309 if (host->flags & ATA_HOST_STARTED)
5310 return 0;
5311
029cfd6b
TH
5312 ata_finalize_port_ops(host->ops);
5313
ecef7253
TH
5314 for (i = 0; i < host->n_ports; i++) {
5315 struct ata_port *ap = host->ports[i];
5316
029cfd6b
TH
5317 ata_finalize_port_ops(ap->ops);
5318
f3187195
TH
5319 if (!host->ops && !ata_port_is_dummy(ap))
5320 host->ops = ap->ops;
5321
32ebbc0c
TH
5322 if (ap->ops->port_stop)
5323 have_stop = 1;
5324 }
5325
5326 if (host->ops->host_stop)
5327 have_stop = 1;
5328
5329 if (have_stop) {
5330 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5331 if (!start_dr)
5332 return -ENOMEM;
5333 }
5334
5335 for (i = 0; i < host->n_ports; i++) {
5336 struct ata_port *ap = host->ports[i];
5337
ecef7253
TH
5338 if (ap->ops->port_start) {
5339 rc = ap->ops->port_start(ap);
5340 if (rc) {
0f9fe9b7 5341 if (rc != -ENODEV)
0f757743
AM
5342 dev_printk(KERN_ERR, host->dev,
5343 "failed to start port %d "
5344 "(errno=%d)\n", i, rc);
ecef7253
TH
5345 goto err_out;
5346 }
5347 }
ecef7253
TH
5348 ata_eh_freeze_port(ap);
5349 }
5350
32ebbc0c
TH
5351 if (start_dr)
5352 devres_add(host->dev, start_dr);
ecef7253
TH
5353 host->flags |= ATA_HOST_STARTED;
5354 return 0;
5355
5356 err_out:
5357 while (--i >= 0) {
5358 struct ata_port *ap = host->ports[i];
5359
5360 if (ap->ops->port_stop)
5361 ap->ops->port_stop(ap);
5362 }
32ebbc0c 5363 devres_free(start_dr);
ecef7253
TH
5364 return rc;
5365}
5366
b03732f0 5367/**
cca3974e
JG
5368 * ata_sas_host_init - Initialize a host struct
5369 * @host: host to initialize
5370 * @dev: device host is attached to
5371 * @flags: host flags
5372 * @ops: port_ops
b03732f0
BK
5373 *
5374 * LOCKING:
5375 * PCI/etc. bus probe sem.
5376 *
5377 */
f3187195 5378/* KILLME - the only user left is ipr */
cca3974e 5379void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5380 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5381{
cca3974e
JG
5382 spin_lock_init(&host->lock);
5383 host->dev = dev;
5384 host->flags = flags;
5385 host->ops = ops;
b03732f0
BK
5386}
5387
f3187195
TH
5388/**
5389 * ata_host_register - register initialized ATA host
5390 * @host: ATA host to register
5391 * @sht: template for SCSI host
5392 *
5393 * Register initialized ATA host. @host is allocated using
5394 * ata_host_alloc() and fully initialized by LLD. This function
5395 * starts ports, registers @host with ATA and SCSI layers and
5396 * probe registered devices.
5397 *
5398 * LOCKING:
5399 * Inherited from calling layer (may sleep).
5400 *
5401 * RETURNS:
5402 * 0 on success, -errno otherwise.
5403 */
5404int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5405{
5406 int i, rc;
5407
5408 /* host must have been started */
5409 if (!(host->flags & ATA_HOST_STARTED)) {
5410 dev_printk(KERN_ERR, host->dev,
5411 "BUG: trying to register unstarted host\n");
5412 WARN_ON(1);
5413 return -EINVAL;
5414 }
5415
5416 /* Blow away unused ports. This happens when LLD can't
5417 * determine the exact number of ports to allocate at
5418 * allocation time.
5419 */
5420 for (i = host->n_ports; host->ports[i]; i++)
5421 kfree(host->ports[i]);
5422
5423 /* give ports names and add SCSI hosts */
5424 for (i = 0; i < host->n_ports; i++)
5425 host->ports[i]->print_id = ata_print_id++;
5426
5427 rc = ata_scsi_add_hosts(host, sht);
5428 if (rc)
5429 return rc;
5430
fafbae87
TH
5431 /* associate with ACPI nodes */
5432 ata_acpi_associate(host);
5433
f3187195
TH
5434 /* set cable, sata_spd_limit and report */
5435 for (i = 0; i < host->n_ports; i++) {
5436 struct ata_port *ap = host->ports[i];
f3187195
TH
5437 unsigned long xfer_mask;
5438
5439 /* set SATA cable type if still unset */
5440 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5441 ap->cbl = ATA_CBL_SATA;
5442
5443 /* init sata_spd_limit to the current value */
4fb37a25 5444 sata_link_init_spd(&ap->link);
f3187195 5445
cbcdd875 5446 /* print per-port info to dmesg */
f3187195
TH
5447 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5448 ap->udma_mask);
5449
abf6e8ed 5450 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
5451 ata_port_printk(ap, KERN_INFO,
5452 "%cATA max %s %s\n",
a16abc0b 5453 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 5454 ata_mode_string(xfer_mask),
cbcdd875 5455 ap->link.eh_info.desc);
abf6e8ed
TH
5456 ata_ehi_clear_desc(&ap->link.eh_info);
5457 } else
f3187195
TH
5458 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5459 }
5460
5461 /* perform each probe synchronously */
5462 DPRINTK("probe begin\n");
5463 for (i = 0; i < host->n_ports; i++) {
5464 struct ata_port *ap = host->ports[i];
f3187195
TH
5465
5466 /* probe */
5467 if (ap->ops->error_handler) {
9af5c9c9 5468 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
5469 unsigned long flags;
5470
5471 ata_port_probe(ap);
5472
5473 /* kick EH for boot probing */
5474 spin_lock_irqsave(ap->lock, flags);
5475
b558eddd 5476 ehi->probe_mask |= ATA_ALL_DEVICES;
cf480626 5477 ehi->action |= ATA_EH_RESET;
f3187195
TH
5478 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5479
f4d6d004 5480 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
5481 ap->pflags |= ATA_PFLAG_LOADING;
5482 ata_port_schedule_eh(ap);
5483
5484 spin_unlock_irqrestore(ap->lock, flags);
5485
5486 /* wait for EH to finish */
5487 ata_port_wait_eh(ap);
5488 } else {
5489 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5490 rc = ata_bus_probe(ap);
5491 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5492
5493 if (rc) {
5494 /* FIXME: do something useful here?
5495 * Current libata behavior will
5496 * tear down everything when
5497 * the module is removed
5498 * or the h/w is unplugged.
5499 */
5500 }
5501 }
5502 }
5503
5504 /* probes are done, now scan each port's disk(s) */
5505 DPRINTK("host probe begin\n");
5506 for (i = 0; i < host->n_ports; i++) {
5507 struct ata_port *ap = host->ports[i];
5508
1ae46317 5509 ata_scsi_scan_host(ap, 1);
ca77329f 5510 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
5511 }
5512
5513 return 0;
5514}
5515
f5cda257
TH
5516/**
5517 * ata_host_activate - start host, request IRQ and register it
5518 * @host: target ATA host
5519 * @irq: IRQ to request
5520 * @irq_handler: irq_handler used when requesting IRQ
5521 * @irq_flags: irq_flags used when requesting IRQ
5522 * @sht: scsi_host_template to use when registering the host
5523 *
5524 * After allocating an ATA host and initializing it, most libata
5525 * LLDs perform three steps to activate the host - start host,
5526 * request IRQ and register it. This helper takes necessasry
5527 * arguments and performs the three steps in one go.
5528 *
3d46b2e2
PM
5529 * An invalid IRQ skips the IRQ registration and expects the host to
5530 * have set polling mode on the port. In this case, @irq_handler
5531 * should be NULL.
5532 *
f5cda257
TH
5533 * LOCKING:
5534 * Inherited from calling layer (may sleep).
5535 *
5536 * RETURNS:
5537 * 0 on success, -errno otherwise.
5538 */
5539int ata_host_activate(struct ata_host *host, int irq,
5540 irq_handler_t irq_handler, unsigned long irq_flags,
5541 struct scsi_host_template *sht)
5542{
cbcdd875 5543 int i, rc;
f5cda257
TH
5544
5545 rc = ata_host_start(host);
5546 if (rc)
5547 return rc;
5548
3d46b2e2
PM
5549 /* Special case for polling mode */
5550 if (!irq) {
5551 WARN_ON(irq_handler);
5552 return ata_host_register(host, sht);
5553 }
5554
f5cda257
TH
5555 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5556 dev_driver_string(host->dev), host);
5557 if (rc)
5558 return rc;
5559
cbcdd875
TH
5560 for (i = 0; i < host->n_ports; i++)
5561 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 5562
f5cda257
TH
5563 rc = ata_host_register(host, sht);
5564 /* if failed, just free the IRQ and leave ports alone */
5565 if (rc)
5566 devm_free_irq(host->dev, irq, host);
5567
5568 return rc;
5569}
5570
720ba126
TH
5571/**
5572 * ata_port_detach - Detach ATA port in prepration of device removal
5573 * @ap: ATA port to be detached
5574 *
5575 * Detach all ATA devices and the associated SCSI devices of @ap;
5576 * then, remove the associated SCSI host. @ap is guaranteed to
5577 * be quiescent on return from this function.
5578 *
5579 * LOCKING:
5580 * Kernel thread context (may sleep).
5581 */
741b7763 5582static void ata_port_detach(struct ata_port *ap)
720ba126
TH
5583{
5584 unsigned long flags;
41bda9c9 5585 struct ata_link *link;
f58229f8 5586 struct ata_device *dev;
720ba126
TH
5587
5588 if (!ap->ops->error_handler)
c3cf30a9 5589 goto skip_eh;
720ba126
TH
5590
5591 /* tell EH we're leaving & flush EH */
ba6a1308 5592 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5593 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5594 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5595
5596 ata_port_wait_eh(ap);
5597
7f9ad9b8
TH
5598 /* EH is now guaranteed to see UNLOADING - EH context belongs
5599 * to us. Disable all existing devices.
720ba126 5600 */
41bda9c9
TH
5601 ata_port_for_each_link(link, ap) {
5602 ata_link_for_each_dev(dev, link)
5603 ata_dev_disable(dev);
5604 }
720ba126 5605
720ba126
TH
5606 /* Final freeze & EH. All in-flight commands are aborted. EH
5607 * will be skipped and retrials will be terminated with bad
5608 * target.
5609 */
ba6a1308 5610 spin_lock_irqsave(ap->lock, flags);
720ba126 5611 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5612 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5613
5614 ata_port_wait_eh(ap);
45a66c1c 5615 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 5616
c3cf30a9 5617 skip_eh:
720ba126 5618 /* remove the associated SCSI host */
cca3974e 5619 scsi_remove_host(ap->scsi_host);
720ba126
TH
5620}
5621
0529c159
TH
5622/**
5623 * ata_host_detach - Detach all ports of an ATA host
5624 * @host: Host to detach
5625 *
5626 * Detach all ports of @host.
5627 *
5628 * LOCKING:
5629 * Kernel thread context (may sleep).
5630 */
5631void ata_host_detach(struct ata_host *host)
5632{
5633 int i;
5634
5635 for (i = 0; i < host->n_ports; i++)
5636 ata_port_detach(host->ports[i]);
562f0c2d
TH
5637
5638 /* the host is dead now, dissociate ACPI */
5639 ata_acpi_dissociate(host);
0529c159
TH
5640}
5641
374b1873
JG
5642#ifdef CONFIG_PCI
5643
1da177e4
LT
5644/**
5645 * ata_pci_remove_one - PCI layer callback for device removal
5646 * @pdev: PCI device that was removed
5647 *
b878ca5d
TH
5648 * PCI layer indicates to libata via this hook that hot-unplug or
5649 * module unload event has occurred. Detach all ports. Resource
5650 * release is handled via devres.
1da177e4
LT
5651 *
5652 * LOCKING:
5653 * Inherited from PCI layer (may sleep).
5654 */
f0d36efd 5655void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 5656{
2855568b 5657 struct device *dev = &pdev->dev;
cca3974e 5658 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5659
b878ca5d 5660 ata_host_detach(host);
1da177e4
LT
5661}
5662
5663/* move to PCI subsystem */
057ace5e 5664int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5665{
5666 unsigned long tmp = 0;
5667
5668 switch (bits->width) {
5669 case 1: {
5670 u8 tmp8 = 0;
5671 pci_read_config_byte(pdev, bits->reg, &tmp8);
5672 tmp = tmp8;
5673 break;
5674 }
5675 case 2: {
5676 u16 tmp16 = 0;
5677 pci_read_config_word(pdev, bits->reg, &tmp16);
5678 tmp = tmp16;
5679 break;
5680 }
5681 case 4: {
5682 u32 tmp32 = 0;
5683 pci_read_config_dword(pdev, bits->reg, &tmp32);
5684 tmp = tmp32;
5685 break;
5686 }
5687
5688 default:
5689 return -EINVAL;
5690 }
5691
5692 tmp &= bits->mask;
5693
5694 return (tmp == bits->val) ? 1 : 0;
5695}
9b847548 5696
6ffa01d8 5697#ifdef CONFIG_PM
3c5100c1 5698void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5699{
5700 pci_save_state(pdev);
4c90d971 5701 pci_disable_device(pdev);
500530f6 5702
3a2d5b70 5703 if (mesg.event & PM_EVENT_SLEEP)
500530f6 5704 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
5705}
5706
553c4aa6 5707int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 5708{
553c4aa6
TH
5709 int rc;
5710
9b847548
JA
5711 pci_set_power_state(pdev, PCI_D0);
5712 pci_restore_state(pdev);
553c4aa6 5713
b878ca5d 5714 rc = pcim_enable_device(pdev);
553c4aa6
TH
5715 if (rc) {
5716 dev_printk(KERN_ERR, &pdev->dev,
5717 "failed to enable device after resume (%d)\n", rc);
5718 return rc;
5719 }
5720
9b847548 5721 pci_set_master(pdev);
553c4aa6 5722 return 0;
500530f6
TH
5723}
5724
3c5100c1 5725int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 5726{
cca3974e 5727 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5728 int rc = 0;
5729
cca3974e 5730 rc = ata_host_suspend(host, mesg);
500530f6
TH
5731 if (rc)
5732 return rc;
5733
3c5100c1 5734 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5735
5736 return 0;
5737}
5738
5739int ata_pci_device_resume(struct pci_dev *pdev)
5740{
cca3974e 5741 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 5742 int rc;
500530f6 5743
553c4aa6
TH
5744 rc = ata_pci_device_do_resume(pdev);
5745 if (rc == 0)
5746 ata_host_resume(host);
5747 return rc;
9b847548 5748}
6ffa01d8
TH
5749#endif /* CONFIG_PM */
5750
1da177e4
LT
5751#endif /* CONFIG_PCI */
5752
33267325
TH
5753static int __init ata_parse_force_one(char **cur,
5754 struct ata_force_ent *force_ent,
5755 const char **reason)
5756{
5757 /* FIXME: Currently, there's no way to tag init const data and
5758 * using __initdata causes build failure on some versions of
5759 * gcc. Once __initdataconst is implemented, add const to the
5760 * following structure.
5761 */
5762 static struct ata_force_param force_tbl[] __initdata = {
5763 { "40c", .cbl = ATA_CBL_PATA40 },
5764 { "80c", .cbl = ATA_CBL_PATA80 },
5765 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
5766 { "unk", .cbl = ATA_CBL_PATA_UNK },
5767 { "ign", .cbl = ATA_CBL_PATA_IGN },
5768 { "sata", .cbl = ATA_CBL_SATA },
5769 { "1.5Gbps", .spd_limit = 1 },
5770 { "3.0Gbps", .spd_limit = 2 },
5771 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
5772 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
5773 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
5774 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
5775 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
5776 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
5777 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
5778 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
5779 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
5780 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
5781 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
5782 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
5783 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
5784 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
5785 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5786 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5787 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
5788 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5789 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5790 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
5791 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5792 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5793 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
5794 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5795 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5796 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
5797 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5798 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5799 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
5800 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5801 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5802 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
5803 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5804 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5805 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
5806 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
5807 };
5808 char *start = *cur, *p = *cur;
5809 char *id, *val, *endp;
5810 const struct ata_force_param *match_fp = NULL;
5811 int nr_matches = 0, i;
5812
5813 /* find where this param ends and update *cur */
5814 while (*p != '\0' && *p != ',')
5815 p++;
5816
5817 if (*p == '\0')
5818 *cur = p;
5819 else
5820 *cur = p + 1;
5821
5822 *p = '\0';
5823
5824 /* parse */
5825 p = strchr(start, ':');
5826 if (!p) {
5827 val = strstrip(start);
5828 goto parse_val;
5829 }
5830 *p = '\0';
5831
5832 id = strstrip(start);
5833 val = strstrip(p + 1);
5834
5835 /* parse id */
5836 p = strchr(id, '.');
5837 if (p) {
5838 *p++ = '\0';
5839 force_ent->device = simple_strtoul(p, &endp, 10);
5840 if (p == endp || *endp != '\0') {
5841 *reason = "invalid device";
5842 return -EINVAL;
5843 }
5844 }
5845
5846 force_ent->port = simple_strtoul(id, &endp, 10);
5847 if (p == endp || *endp != '\0') {
5848 *reason = "invalid port/link";
5849 return -EINVAL;
5850 }
5851
5852 parse_val:
5853 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
5854 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
5855 const struct ata_force_param *fp = &force_tbl[i];
5856
5857 if (strncasecmp(val, fp->name, strlen(val)))
5858 continue;
5859
5860 nr_matches++;
5861 match_fp = fp;
5862
5863 if (strcasecmp(val, fp->name) == 0) {
5864 nr_matches = 1;
5865 break;
5866 }
5867 }
5868
5869 if (!nr_matches) {
5870 *reason = "unknown value";
5871 return -EINVAL;
5872 }
5873 if (nr_matches > 1) {
5874 *reason = "ambigious value";
5875 return -EINVAL;
5876 }
5877
5878 force_ent->param = *match_fp;
5879
5880 return 0;
5881}
5882
5883static void __init ata_parse_force_param(void)
5884{
5885 int idx = 0, size = 1;
5886 int last_port = -1, last_device = -1;
5887 char *p, *cur, *next;
5888
5889 /* calculate maximum number of params and allocate force_tbl */
5890 for (p = ata_force_param_buf; *p; p++)
5891 if (*p == ',')
5892 size++;
5893
5894 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
5895 if (!ata_force_tbl) {
5896 printk(KERN_WARNING "ata: failed to extend force table, "
5897 "libata.force ignored\n");
5898 return;
5899 }
5900
5901 /* parse and populate the table */
5902 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
5903 const char *reason = "";
5904 struct ata_force_ent te = { .port = -1, .device = -1 };
5905
5906 next = cur;
5907 if (ata_parse_force_one(&next, &te, &reason)) {
5908 printk(KERN_WARNING "ata: failed to parse force "
5909 "parameter \"%s\" (%s)\n",
5910 cur, reason);
5911 continue;
5912 }
5913
5914 if (te.port == -1) {
5915 te.port = last_port;
5916 te.device = last_device;
5917 }
5918
5919 ata_force_tbl[idx++] = te;
5920
5921 last_port = te.port;
5922 last_device = te.device;
5923 }
5924
5925 ata_force_tbl_size = idx;
5926}
1da177e4 5927
1da177e4
LT
5928static int __init ata_init(void)
5929{
a8601e5f 5930 ata_probe_timeout *= HZ;
33267325
TH
5931
5932 ata_parse_force_param();
5933
1da177e4
LT
5934 ata_wq = create_workqueue("ata");
5935 if (!ata_wq)
5936 return -ENOMEM;
5937
453b07ac
TH
5938 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5939 if (!ata_aux_wq) {
5940 destroy_workqueue(ata_wq);
5941 return -ENOMEM;
5942 }
5943
1da177e4
LT
5944 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5945 return 0;
5946}
5947
5948static void __exit ata_exit(void)
5949{
33267325 5950 kfree(ata_force_tbl);
1da177e4 5951 destroy_workqueue(ata_wq);
453b07ac 5952 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5953}
5954
a4625085 5955subsys_initcall(ata_init);
1da177e4
LT
5956module_exit(ata_exit);
5957
67846b30 5958static unsigned long ratelimit_time;
34af946a 5959static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5960
5961int ata_ratelimit(void)
5962{
5963 int rc;
5964 unsigned long flags;
5965
5966 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5967
5968 if (time_after(jiffies, ratelimit_time)) {
5969 rc = 1;
5970 ratelimit_time = jiffies + (HZ/5);
5971 } else
5972 rc = 0;
5973
5974 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5975
5976 return rc;
5977}
5978
c22daff4
TH
5979/**
5980 * ata_wait_register - wait until register value changes
5981 * @reg: IO-mapped register
5982 * @mask: Mask to apply to read register value
5983 * @val: Wait condition
5984 * @interval_msec: polling interval in milliseconds
5985 * @timeout_msec: timeout in milliseconds
5986 *
5987 * Waiting for some bits of register to change is a common
5988 * operation for ATA controllers. This function reads 32bit LE
5989 * IO-mapped register @reg and tests for the following condition.
5990 *
5991 * (*@reg & mask) != val
5992 *
5993 * If the condition is met, it returns; otherwise, the process is
5994 * repeated after @interval_msec until timeout.
5995 *
5996 * LOCKING:
5997 * Kernel thread context (may sleep)
5998 *
5999 * RETURNS:
6000 * The final register value.
6001 */
6002u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6003 unsigned long interval_msec,
6004 unsigned long timeout_msec)
6005{
6006 unsigned long timeout;
6007 u32 tmp;
6008
6009 tmp = ioread32(reg);
6010
6011 /* Calculate timeout _after_ the first read to make sure
6012 * preceding writes reach the controller before starting to
6013 * eat away the timeout.
6014 */
6015 timeout = jiffies + (timeout_msec * HZ) / 1000;
6016
6017 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6018 msleep(interval_msec);
6019 tmp = ioread32(reg);
6020 }
6021
6022 return tmp;
6023}
6024
dd5b06c4
TH
6025/*
6026 * Dummy port_ops
6027 */
6028static void ata_dummy_noret(struct ata_port *ap) { }
6029static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6030static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6031
6032static u8 ata_dummy_check_status(struct ata_port *ap)
6033{
6034 return ATA_DRDY;
6035}
6036
6037static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6038{
6039 return AC_ERR_SYSTEM;
6040}
6041
029cfd6b 6042struct ata_port_operations ata_dummy_port_ops = {
5682ed33
TH
6043 .sff_check_status = ata_dummy_check_status,
6044 .sff_check_altstatus = ata_dummy_check_status,
6045 .sff_dev_select = ata_noop_dev_select,
dd5b06c4
TH
6046 .qc_prep = ata_noop_qc_prep,
6047 .qc_issue = ata_dummy_qc_issue,
6048 .freeze = ata_dummy_noret,
6049 .thaw = ata_dummy_noret,
6050 .error_handler = ata_dummy_noret,
6051 .post_internal_cmd = ata_dummy_qc_noret,
5682ed33 6052 .sff_irq_clear = ata_dummy_noret,
dd5b06c4
TH
6053 .port_start = ata_dummy_ret0,
6054 .port_stop = ata_dummy_noret,
6055};
6056
21b0ad4f
TH
6057const struct ata_port_info ata_dummy_port_info = {
6058 .port_ops = &ata_dummy_port_ops,
6059};
6060
1da177e4
LT
6061/*
6062 * libata is essentially a library of internal helper functions for
6063 * low-level ATA host controller drivers. As such, the API/ABI is
6064 * likely to change as new drivers are added and updated.
6065 * Do not depend on ABI/API stability.
6066 */
e9c83914
TH
6067EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6068EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6069EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6070EXPORT_SYMBOL_GPL(ata_base_port_ops);
6071EXPORT_SYMBOL_GPL(sata_port_ops);
6072EXPORT_SYMBOL_GPL(sata_pmp_port_ops);
dd5b06c4 6073EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6074EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4 6075EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6076EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6077EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6078EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6079EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6080EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6081EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6082EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6083EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6084EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6085EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6086EXPORT_SYMBOL_GPL(ata_noop_dev_select);
43727fbc 6087EXPORT_SYMBOL_GPL(sata_print_link_status);
436d34b3 6088EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6089EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6090EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6091EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6092EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6093EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6094EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6095EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6096EXPORT_SYMBOL_GPL(ata_mode_string);
6097EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6098EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6099EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6100EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6101EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6102EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6103EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6104EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
6105EXPORT_SYMBOL_GPL(sata_link_debounce);
6106EXPORT_SYMBOL_GPL(sata_link_resume);
cc0680a5 6107EXPORT_SYMBOL_GPL(sata_link_hardreset);
2e9edbf8
JG
6108EXPORT_SYMBOL_GPL(ata_dev_classify);
6109EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6110EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6111EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6112EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4
LT
6113EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6114EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6115EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6116EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6117EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6118EXPORT_SYMBOL_GPL(sata_scr_valid);
6119EXPORT_SYMBOL_GPL(sata_scr_read);
6120EXPORT_SYMBOL_GPL(sata_scr_write);
6121EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6122EXPORT_SYMBOL_GPL(ata_link_online);
6123EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6124#ifdef CONFIG_PM
cca3974e
JG
6125EXPORT_SYMBOL_GPL(ata_host_suspend);
6126EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6127#endif /* CONFIG_PM */
6a62a04d
TH
6128EXPORT_SYMBOL_GPL(ata_id_string);
6129EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
6130EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6131
1bc4ccff 6132EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6133EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6134EXPORT_SYMBOL_GPL(ata_timing_compute);
6135EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6136EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6137
1da177e4
LT
6138#ifdef CONFIG_PCI
6139EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6140EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6141#ifdef CONFIG_PM
500530f6
TH
6142EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6143EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6144EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6145EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6146#endif /* CONFIG_PM */
1da177e4 6147#endif /* CONFIG_PCI */
9b847548 6148
31f88384 6149EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
6150EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
6151EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
6152EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
a1efdaba 6153EXPORT_SYMBOL_GPL(sata_pmp_error_handler);
3af9a77a 6154
b64bbc39
TH
6155EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6156EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6157EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6158EXPORT_SYMBOL_GPL(ata_port_desc);
6159#ifdef CONFIG_PCI
6160EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6161#endif /* CONFIG_PCI */
7b70fc03 6162EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6163EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6164EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6165EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6166EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6167EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6168EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6169EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6170EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6171EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6172EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6173
6174EXPORT_SYMBOL_GPL(ata_cable_40wire);
6175EXPORT_SYMBOL_GPL(ata_cable_80wire);
6176EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6177EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6178EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.958156 seconds and 5 git commands to generate.