libata: ignore deverr on SETXFER if mode is configured
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
7dc951ae
TH
457unsigned long ata_pack_xfermask(unsigned long pio_mask,
458 unsigned long mwdma_mask,
459 unsigned long udma_mask)
cb95d562
TH
460{
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464}
465
c0489e4e
TH
466/**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
7dc951ae
TH
476void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
477 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
478{
479 if (pio_mask)
480 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
481 if (mwdma_mask)
482 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
483 if (udma_mask)
484 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
485}
486
cb95d562 487static const struct ata_xfer_ent {
be9a50c8 488 int shift, bits;
cb95d562
TH
489 u8 base;
490} ata_xfer_tbl[] = {
70cd071e
TH
491 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
492 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
493 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
494 { -1, },
495};
496
497/**
498 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
499 * @xfer_mask: xfer_mask of interest
500 *
501 * Return matching XFER_* value for @xfer_mask. Only the highest
502 * bit of @xfer_mask is considered.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
70cd071e 508 * Matching XFER_* value, 0xff if no match found.
cb95d562 509 */
7dc951ae 510u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
511{
512 int highbit = fls(xfer_mask) - 1;
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
517 return ent->base + highbit - ent->shift;
70cd071e 518 return 0xff;
cb95d562
TH
519}
520
521/**
522 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_mask for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_mask, 0 if no match found.
532 */
7dc951ae 533unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
539 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
540 & ~((1 << ent->shift) - 1);
cb95d562
TH
541 return 0;
542}
543
544/**
545 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
546 * @xfer_mode: XFER_* of interest
547 *
548 * Return matching xfer_shift for @xfer_mode.
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Matching xfer_shift, -1 if no match found.
555 */
7dc951ae 556int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
557{
558 const struct ata_xfer_ent *ent;
559
560 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
561 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
562 return ent->shift;
563 return -1;
564}
565
1da177e4 566/**
1da7b0d0
TH
567 * ata_mode_string - convert xfer_mask to string
568 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
569 *
570 * Determine string which represents the highest speed
1da7b0d0 571 * (highest bit in @modemask).
1da177e4
LT
572 *
573 * LOCKING:
574 * None.
575 *
576 * RETURNS:
577 * Constant C string representing highest speed listed in
1da7b0d0 578 * @mode_mask, or the constant C string "<n/a>".
1da177e4 579 */
7dc951ae 580const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 581{
75f554bc
TH
582 static const char * const xfer_mode_str[] = {
583 "PIO0",
584 "PIO1",
585 "PIO2",
586 "PIO3",
587 "PIO4",
b352e57d
AC
588 "PIO5",
589 "PIO6",
75f554bc
TH
590 "MWDMA0",
591 "MWDMA1",
592 "MWDMA2",
b352e57d
AC
593 "MWDMA3",
594 "MWDMA4",
75f554bc
TH
595 "UDMA/16",
596 "UDMA/25",
597 "UDMA/33",
598 "UDMA/44",
599 "UDMA/66",
600 "UDMA/100",
601 "UDMA/133",
602 "UDMA7",
603 };
1da7b0d0 604 int highbit;
1da177e4 605
1da7b0d0
TH
606 highbit = fls(xfer_mask) - 1;
607 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
608 return xfer_mode_str[highbit];
1da177e4 609 return "<n/a>";
1da177e4
LT
610}
611
4c360c81
TH
612static const char *sata_spd_string(unsigned int spd)
613{
614 static const char * const spd_str[] = {
615 "1.5 Gbps",
616 "3.0 Gbps",
617 };
618
619 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
620 return "<unknown>";
621 return spd_str[spd - 1];
622}
623
3373efd8 624void ata_dev_disable(struct ata_device *dev)
0b8efb0a 625{
09d7f9b0 626 if (ata_dev_enabled(dev)) {
9af5c9c9 627 if (ata_msg_drv(dev->link->ap))
09d7f9b0 628 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 629 ata_acpi_on_disable(dev);
4ae72a1e
TH
630 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
631 ATA_DNXFER_QUIET);
0b8efb0a
TH
632 dev->class++;
633 }
634}
635
ca77329f
KCA
636static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
637{
638 struct ata_link *link = dev->link;
639 struct ata_port *ap = link->ap;
640 u32 scontrol;
641 unsigned int err_mask;
642 int rc;
643
644 /*
645 * disallow DIPM for drivers which haven't set
646 * ATA_FLAG_IPM. This is because when DIPM is enabled,
647 * phy ready will be set in the interrupt status on
648 * state changes, which will cause some drivers to
649 * think there are errors - additionally drivers will
650 * need to disable hot plug.
651 */
652 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
653 ap->pm_policy = NOT_AVAILABLE;
654 return -EINVAL;
655 }
656
657 /*
658 * For DIPM, we will only enable it for the
659 * min_power setting.
660 *
661 * Why? Because Disks are too stupid to know that
662 * If the host rejects a request to go to SLUMBER
663 * they should retry at PARTIAL, and instead it
664 * just would give up. So, for medium_power to
665 * work at all, we need to only allow HIPM.
666 */
667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
668 if (rc)
669 return rc;
670
671 switch (policy) {
672 case MIN_POWER:
673 /* no restrictions on IPM transitions */
674 scontrol &= ~(0x3 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
679 /* enable DIPM */
680 if (dev->flags & ATA_DFLAG_DIPM)
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_ENABLE, SATA_DIPM);
683 break;
684 case MEDIUM_POWER:
685 /* allow IPM to PARTIAL */
686 scontrol &= ~(0x1 << 8);
687 scontrol |= (0x2 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
689 if (rc)
690 return rc;
691
f5456b63
KCA
692 /*
693 * we don't have to disable DIPM since IPM flags
694 * disallow transitions to SLUMBER, which effectively
695 * disable DIPM if it does not support PARTIAL
696 */
ca77329f
KCA
697 break;
698 case NOT_AVAILABLE:
699 case MAX_PERFORMANCE:
700 /* disable all IPM transitions */
701 scontrol |= (0x3 << 8);
702 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
703 if (rc)
704 return rc;
705
f5456b63
KCA
706 /*
707 * we don't have to disable DIPM since IPM flags
708 * disallow all transitions which effectively
709 * disable DIPM anyway.
710 */
ca77329f
KCA
711 break;
712 }
713
714 /* FIXME: handle SET FEATURES failure */
715 (void) err_mask;
716
717 return 0;
718}
719
720/**
721 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
722 * @dev: device to enable power management
723 * @policy: the link power management policy
ca77329f
KCA
724 *
725 * Enable SATA Interface power management. This will enable
726 * Device Interface Power Management (DIPM) for min_power
727 * policy, and then call driver specific callbacks for
728 * enabling Host Initiated Power management.
729 *
730 * Locking: Caller.
731 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
732 */
733void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
734{
735 int rc = 0;
736 struct ata_port *ap = dev->link->ap;
737
738 /* set HIPM first, then DIPM */
739 if (ap->ops->enable_pm)
740 rc = ap->ops->enable_pm(ap, policy);
741 if (rc)
742 goto enable_pm_out;
743 rc = ata_dev_set_dipm(dev, policy);
744
745enable_pm_out:
746 if (rc)
747 ap->pm_policy = MAX_PERFORMANCE;
748 else
749 ap->pm_policy = policy;
750 return /* rc */; /* hopefully we can use 'rc' eventually */
751}
752
1992a5ed 753#ifdef CONFIG_PM
ca77329f
KCA
754/**
755 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 756 * @dev: device to disable power management
ca77329f
KCA
757 *
758 * Disable SATA Interface power management. This will disable
759 * Device Interface Power Management (DIPM) without changing
760 * policy, call driver specific callbacks for disabling Host
761 * Initiated Power management.
762 *
763 * Locking: Caller.
764 * Returns: void
765 */
766static void ata_dev_disable_pm(struct ata_device *dev)
767{
768 struct ata_port *ap = dev->link->ap;
769
770 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
771 if (ap->ops->disable_pm)
772 ap->ops->disable_pm(ap);
773}
1992a5ed 774#endif /* CONFIG_PM */
ca77329f
KCA
775
776void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
777{
778 ap->pm_policy = policy;
779 ap->link.eh_info.action |= ATA_EHI_LPM;
780 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
781 ata_port_schedule_eh(ap);
782}
783
1992a5ed 784#ifdef CONFIG_PM
ca77329f
KCA
785static void ata_lpm_enable(struct ata_host *host)
786{
787 struct ata_link *link;
788 struct ata_port *ap;
789 struct ata_device *dev;
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 ap = host->ports[i];
794 ata_port_for_each_link(link, ap) {
795 ata_link_for_each_dev(dev, link)
796 ata_dev_disable_pm(dev);
797 }
798 }
799}
800
801static void ata_lpm_disable(struct ata_host *host)
802{
803 int i;
804
805 for (i = 0; i < host->n_ports; i++) {
806 struct ata_port *ap = host->ports[i];
807 ata_lpm_schedule(ap, ap->pm_policy);
808 }
809}
1992a5ed 810#endif /* CONFIG_PM */
ca77329f
KCA
811
812
1da177e4 813/**
0d5ff566 814 * ata_devchk - PATA device presence detection
1da177e4
LT
815 * @ap: ATA channel to examine
816 * @device: Device to examine (starting at zero)
817 *
818 * This technique was originally described in
819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
820 * later found its way into the ATA/ATAPI spec.
821 *
822 * Write a pattern to the ATA shadow registers,
823 * and if a device is present, it will respond by
824 * correctly storing and echoing back the
825 * ATA shadow register contents.
826 *
827 * LOCKING:
828 * caller.
829 */
830
0d5ff566 831static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
832{
833 struct ata_ioports *ioaddr = &ap->ioaddr;
834 u8 nsect, lbal;
835
836 ap->ops->dev_select(ap, device);
837
0d5ff566
TH
838 iowrite8(0x55, ioaddr->nsect_addr);
839 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 840
0d5ff566
TH
841 iowrite8(0xaa, ioaddr->nsect_addr);
842 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 843
0d5ff566
TH
844 iowrite8(0x55, ioaddr->nsect_addr);
845 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 846
0d5ff566
TH
847 nsect = ioread8(ioaddr->nsect_addr);
848 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
849
850 if ((nsect == 0x55) && (lbal == 0xaa))
851 return 1; /* we found a device */
852
853 return 0; /* nothing found */
854}
855
1da177e4
LT
856/**
857 * ata_dev_classify - determine device type based on ATA-spec signature
858 * @tf: ATA taskfile register set for device to be identified
859 *
860 * Determine from taskfile register contents whether a device is
861 * ATA or ATAPI, as per "Signature and persistence" section
862 * of ATA/PI spec (volume 1, sect 5.14).
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
633273a3
TH
868 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
869 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 870 */
057ace5e 871unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
872{
873 /* Apple's open source Darwin code hints that some devices only
874 * put a proper signature into the LBA mid/high registers,
875 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
876 *
877 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
878 * signatures for ATA and ATAPI devices attached on SerialATA,
879 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
880 * spec has never mentioned about using different signatures
881 * for ATA/ATAPI devices. Then, Serial ATA II: Port
882 * Multiplier specification began to use 0x69/0x96 to identify
883 * port multpliers and 0x3c/0xc3 to identify SEMB device.
884 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
885 * 0x69/0x96 shortly and described them as reserved for
886 * SerialATA.
887 *
888 * We follow the current spec and consider that 0x69/0x96
889 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 890 */
633273a3 891 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
892 DPRINTK("found ATA device by sig\n");
893 return ATA_DEV_ATA;
894 }
895
633273a3 896 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
897 DPRINTK("found ATAPI device by sig\n");
898 return ATA_DEV_ATAPI;
899 }
900
633273a3
TH
901 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
902 DPRINTK("found PMP device by sig\n");
903 return ATA_DEV_PMP;
904 }
905
906 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 907 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
908 return ATA_DEV_SEMB_UNSUP; /* not yet */
909 }
910
1da177e4
LT
911 DPRINTK("unknown device\n");
912 return ATA_DEV_UNKNOWN;
913}
914
915/**
916 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
917 * @dev: ATA device to classify (starting at zero)
918 * @present: device seems present
b4dc7623 919 * @r_err: Value of error register on completion
1da177e4
LT
920 *
921 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
922 * an ATA/ATAPI-defined set of values is placed in the ATA
923 * shadow registers, indicating the results of device detection
924 * and diagnostics.
925 *
926 * Select the ATA device, and read the values from the ATA shadow
927 * registers. Then parse according to the Error register value,
928 * and the spec-defined values examined by ata_dev_classify().
929 *
930 * LOCKING:
931 * caller.
b4dc7623
TH
932 *
933 * RETURNS:
934 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 935 */
3f19859e
TH
936unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
937 u8 *r_err)
1da177e4 938{
3f19859e 939 struct ata_port *ap = dev->link->ap;
1da177e4
LT
940 struct ata_taskfile tf;
941 unsigned int class;
942 u8 err;
943
3f19859e 944 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
945
946 memset(&tf, 0, sizeof(tf));
947
1da177e4 948 ap->ops->tf_read(ap, &tf);
0169e284 949 err = tf.feature;
b4dc7623
TH
950 if (r_err)
951 *r_err = err;
1da177e4 952
c5038fc0
AC
953 /* see if device passed diags: continue and warn later */
954 if (err == 0)
93590859 955 /* diagnostic fail : do nothing _YET_ */
3f19859e 956 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 957 else if (err == 1)
1da177e4 958 /* do nothing */ ;
3f19859e 959 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
960 /* do nothing */ ;
961 else
b4dc7623 962 return ATA_DEV_NONE;
1da177e4 963
b4dc7623 964 /* determine if device is ATA or ATAPI */
1da177e4 965 class = ata_dev_classify(&tf);
b4dc7623 966
d7fbee05
TH
967 if (class == ATA_DEV_UNKNOWN) {
968 /* If the device failed diagnostic, it's likely to
969 * have reported incorrect device signature too.
970 * Assume ATA device if the device seems present but
971 * device signature is invalid with diagnostic
972 * failure.
973 */
974 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
975 class = ATA_DEV_ATA;
976 else
977 class = ATA_DEV_NONE;
978 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
979 class = ATA_DEV_NONE;
980
b4dc7623 981 return class;
1da177e4
LT
982}
983
984/**
6a62a04d 985 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
986 * @id: IDENTIFY DEVICE results we will examine
987 * @s: string into which data is output
988 * @ofs: offset into identify device page
989 * @len: length of string to return. must be an even number.
990 *
991 * The strings in the IDENTIFY DEVICE page are broken up into
992 * 16-bit chunks. Run through the string, and output each
993 * 8-bit chunk linearly, regardless of platform.
994 *
995 * LOCKING:
996 * caller.
997 */
998
6a62a04d
TH
999void ata_id_string(const u16 *id, unsigned char *s,
1000 unsigned int ofs, unsigned int len)
1da177e4
LT
1001{
1002 unsigned int c;
1003
1004 while (len > 0) {
1005 c = id[ofs] >> 8;
1006 *s = c;
1007 s++;
1008
1009 c = id[ofs] & 0xff;
1010 *s = c;
1011 s++;
1012
1013 ofs++;
1014 len -= 2;
1015 }
1016}
1017
0e949ff3 1018/**
6a62a04d 1019 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1020 * @id: IDENTIFY DEVICE results we will examine
1021 * @s: string into which data is output
1022 * @ofs: offset into identify device page
1023 * @len: length of string to return. must be an odd number.
1024 *
6a62a04d 1025 * This function is identical to ata_id_string except that it
0e949ff3
TH
1026 * trims trailing spaces and terminates the resulting string with
1027 * null. @len must be actual maximum length (even number) + 1.
1028 *
1029 * LOCKING:
1030 * caller.
1031 */
6a62a04d
TH
1032void ata_id_c_string(const u16 *id, unsigned char *s,
1033 unsigned int ofs, unsigned int len)
0e949ff3
TH
1034{
1035 unsigned char *p;
1036
1037 WARN_ON(!(len & 1));
1038
6a62a04d 1039 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1040
1041 p = s + strnlen(s, len - 1);
1042 while (p > s && p[-1] == ' ')
1043 p--;
1044 *p = '\0';
1045}
0baab86b 1046
db6f8759
TH
1047static u64 ata_id_n_sectors(const u16 *id)
1048{
1049 if (ata_id_has_lba(id)) {
1050 if (ata_id_has_lba48(id))
1051 return ata_id_u64(id, 100);
1052 else
1053 return ata_id_u32(id, 60);
1054 } else {
1055 if (ata_id_current_chs_valid(id))
1056 return ata_id_u32(id, 57);
1057 else
1058 return id[1] * id[3] * id[6];
1059 }
1060}
1061
1e999736
AC
1062static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1063{
1064 u64 sectors = 0;
1065
1066 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1067 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1068 sectors |= (tf->hob_lbal & 0xff) << 24;
1069 sectors |= (tf->lbah & 0xff) << 16;
1070 sectors |= (tf->lbam & 0xff) << 8;
1071 sectors |= (tf->lbal & 0xff);
1072
1073 return ++sectors;
1074}
1075
1076static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1077{
1078 u64 sectors = 0;
1079
1080 sectors |= (tf->device & 0x0f) << 24;
1081 sectors |= (tf->lbah & 0xff) << 16;
1082 sectors |= (tf->lbam & 0xff) << 8;
1083 sectors |= (tf->lbal & 0xff);
1084
1085 return ++sectors;
1086}
1087
1088/**
c728a914
TH
1089 * ata_read_native_max_address - Read native max address
1090 * @dev: target device
1091 * @max_sectors: out parameter for the result native max address
1e999736 1092 *
c728a914
TH
1093 * Perform an LBA48 or LBA28 native size query upon the device in
1094 * question.
1e999736 1095 *
c728a914
TH
1096 * RETURNS:
1097 * 0 on success, -EACCES if command is aborted by the drive.
1098 * -EIO on other errors.
1e999736 1099 */
c728a914 1100static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1101{
c728a914 1102 unsigned int err_mask;
1e999736 1103 struct ata_taskfile tf;
c728a914 1104 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1105
1106 ata_tf_init(dev, &tf);
1107
c728a914 1108 /* always clear all address registers */
1e999736 1109 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1110
c728a914
TH
1111 if (lba48) {
1112 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1113 tf.flags |= ATA_TFLAG_LBA48;
1114 } else
1115 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1116
1e999736 1117 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1118 tf.device |= ATA_LBA;
1119
2b789108 1120 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1121 if (err_mask) {
1122 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1123 "max address (err_mask=0x%x)\n", err_mask);
1124 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1125 return -EACCES;
1126 return -EIO;
1127 }
1e999736 1128
c728a914
TH
1129 if (lba48)
1130 *max_sectors = ata_tf_to_lba48(&tf);
1131 else
1132 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1133 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1134 (*max_sectors)--;
c728a914 1135 return 0;
1e999736
AC
1136}
1137
1138/**
c728a914
TH
1139 * ata_set_max_sectors - Set max sectors
1140 * @dev: target device
6b38d1d1 1141 * @new_sectors: new max sectors value to set for the device
1e999736 1142 *
c728a914
TH
1143 * Set max sectors of @dev to @new_sectors.
1144 *
1145 * RETURNS:
1146 * 0 on success, -EACCES if command is aborted or denied (due to
1147 * previous non-volatile SET_MAX) by the drive. -EIO on other
1148 * errors.
1e999736 1149 */
05027adc 1150static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1151{
c728a914 1152 unsigned int err_mask;
1e999736 1153 struct ata_taskfile tf;
c728a914 1154 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1155
1156 new_sectors--;
1157
1158 ata_tf_init(dev, &tf);
1159
1e999736 1160 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1161
1162 if (lba48) {
1163 tf.command = ATA_CMD_SET_MAX_EXT;
1164 tf.flags |= ATA_TFLAG_LBA48;
1165
1166 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1167 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1168 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1169 } else {
c728a914
TH
1170 tf.command = ATA_CMD_SET_MAX;
1171
1e582ba4
TH
1172 tf.device |= (new_sectors >> 24) & 0xf;
1173 }
1174
1e999736 1175 tf.protocol |= ATA_PROT_NODATA;
c728a914 1176 tf.device |= ATA_LBA;
1e999736
AC
1177
1178 tf.lbal = (new_sectors >> 0) & 0xff;
1179 tf.lbam = (new_sectors >> 8) & 0xff;
1180 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1181
2b789108 1182 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1183 if (err_mask) {
1184 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1185 "max address (err_mask=0x%x)\n", err_mask);
1186 if (err_mask == AC_ERR_DEV &&
1187 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1188 return -EACCES;
1189 return -EIO;
1190 }
1191
c728a914 1192 return 0;
1e999736
AC
1193}
1194
1195/**
1196 * ata_hpa_resize - Resize a device with an HPA set
1197 * @dev: Device to resize
1198 *
1199 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1200 * it if required to the full size of the media. The caller must check
1201 * the drive has the HPA feature set enabled.
05027adc
TH
1202 *
1203 * RETURNS:
1204 * 0 on success, -errno on failure.
1e999736 1205 */
05027adc 1206static int ata_hpa_resize(struct ata_device *dev)
1e999736 1207{
05027adc
TH
1208 struct ata_eh_context *ehc = &dev->link->eh_context;
1209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1210 u64 sectors = ata_id_n_sectors(dev->id);
1211 u64 native_sectors;
c728a914 1212 int rc;
a617c09f 1213
05027adc
TH
1214 /* do we need to do it? */
1215 if (dev->class != ATA_DEV_ATA ||
1216 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1217 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1218 return 0;
1e999736 1219
05027adc
TH
1220 /* read native max address */
1221 rc = ata_read_native_max_address(dev, &native_sectors);
1222 if (rc) {
1223 /* If HPA isn't going to be unlocked, skip HPA
1224 * resizing from the next try.
1225 */
1226 if (!ata_ignore_hpa) {
1227 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1228 "broken, will skip HPA handling\n");
1229 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1230
1231 /* we can continue if device aborted the command */
1232 if (rc == -EACCES)
1233 rc = 0;
1e999736 1234 }
37301a55 1235
05027adc
TH
1236 return rc;
1237 }
1238
1239 /* nothing to do? */
1240 if (native_sectors <= sectors || !ata_ignore_hpa) {
1241 if (!print_info || native_sectors == sectors)
1242 return 0;
1243
1244 if (native_sectors > sectors)
1245 ata_dev_printk(dev, KERN_INFO,
1246 "HPA detected: current %llu, native %llu\n",
1247 (unsigned long long)sectors,
1248 (unsigned long long)native_sectors);
1249 else if (native_sectors < sectors)
1250 ata_dev_printk(dev, KERN_WARNING,
1251 "native sectors (%llu) is smaller than "
1252 "sectors (%llu)\n",
1253 (unsigned long long)native_sectors,
1254 (unsigned long long)sectors);
1255 return 0;
1256 }
1257
1258 /* let's unlock HPA */
1259 rc = ata_set_max_sectors(dev, native_sectors);
1260 if (rc == -EACCES) {
1261 /* if device aborted the command, skip HPA resizing */
1262 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1263 "(%llu -> %llu), skipping HPA handling\n",
1264 (unsigned long long)sectors,
1265 (unsigned long long)native_sectors);
1266 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1267 return 0;
1268 } else if (rc)
1269 return rc;
1270
1271 /* re-read IDENTIFY data */
1272 rc = ata_dev_reread_id(dev, 0);
1273 if (rc) {
1274 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1275 "data after HPA resizing\n");
1276 return rc;
1277 }
1278
1279 if (print_info) {
1280 u64 new_sectors = ata_id_n_sectors(dev->id);
1281 ata_dev_printk(dev, KERN_INFO,
1282 "HPA unlocked: %llu -> %llu, native %llu\n",
1283 (unsigned long long)sectors,
1284 (unsigned long long)new_sectors,
1285 (unsigned long long)native_sectors);
1286 }
1287
1288 return 0;
1e999736
AC
1289}
1290
0baab86b
EF
1291/**
1292 * ata_noop_dev_select - Select device 0/1 on ATA bus
1293 * @ap: ATA channel to manipulate
1294 * @device: ATA device (numbered from zero) to select
1295 *
1296 * This function performs no actual function.
1297 *
1298 * May be used as the dev_select() entry in ata_port_operations.
1299 *
1300 * LOCKING:
1301 * caller.
1302 */
2dcb407e 1303void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1304{
1305}
1306
0baab86b 1307
1da177e4
LT
1308/**
1309 * ata_std_dev_select - Select device 0/1 on ATA bus
1310 * @ap: ATA channel to manipulate
1311 * @device: ATA device (numbered from zero) to select
1312 *
1313 * Use the method defined in the ATA specification to
1314 * make either device 0, or device 1, active on the
0baab86b
EF
1315 * ATA channel. Works with both PIO and MMIO.
1316 *
1317 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1318 *
1319 * LOCKING:
1320 * caller.
1321 */
1322
2dcb407e 1323void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1324{
1325 u8 tmp;
1326
1327 if (device == 0)
1328 tmp = ATA_DEVICE_OBS;
1329 else
1330 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1331
0d5ff566 1332 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1333 ata_pause(ap); /* needed; also flushes, for mmio */
1334}
1335
1336/**
1337 * ata_dev_select - Select device 0/1 on ATA bus
1338 * @ap: ATA channel to manipulate
1339 * @device: ATA device (numbered from zero) to select
1340 * @wait: non-zero to wait for Status register BSY bit to clear
1341 * @can_sleep: non-zero if context allows sleeping
1342 *
1343 * Use the method defined in the ATA specification to
1344 * make either device 0, or device 1, active on the
1345 * ATA channel.
1346 *
1347 * This is a high-level version of ata_std_dev_select(),
1348 * which additionally provides the services of inserting
1349 * the proper pauses and status polling, where needed.
1350 *
1351 * LOCKING:
1352 * caller.
1353 */
1354
1355void ata_dev_select(struct ata_port *ap, unsigned int device,
1356 unsigned int wait, unsigned int can_sleep)
1357{
88574551 1358 if (ata_msg_probe(ap))
44877b4e
TH
1359 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1360 "device %u, wait %u\n", device, wait);
1da177e4
LT
1361
1362 if (wait)
1363 ata_wait_idle(ap);
1364
1365 ap->ops->dev_select(ap, device);
1366
1367 if (wait) {
9af5c9c9 1368 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1369 msleep(150);
1370 ata_wait_idle(ap);
1371 }
1372}
1373
1374/**
1375 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1376 * @id: IDENTIFY DEVICE page to dump
1da177e4 1377 *
0bd3300a
TH
1378 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1379 * page.
1da177e4
LT
1380 *
1381 * LOCKING:
1382 * caller.
1383 */
1384
0bd3300a 1385static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1386{
1387 DPRINTK("49==0x%04x "
1388 "53==0x%04x "
1389 "63==0x%04x "
1390 "64==0x%04x "
1391 "75==0x%04x \n",
0bd3300a
TH
1392 id[49],
1393 id[53],
1394 id[63],
1395 id[64],
1396 id[75]);
1da177e4
LT
1397 DPRINTK("80==0x%04x "
1398 "81==0x%04x "
1399 "82==0x%04x "
1400 "83==0x%04x "
1401 "84==0x%04x \n",
0bd3300a
TH
1402 id[80],
1403 id[81],
1404 id[82],
1405 id[83],
1406 id[84]);
1da177e4
LT
1407 DPRINTK("88==0x%04x "
1408 "93==0x%04x\n",
0bd3300a
TH
1409 id[88],
1410 id[93]);
1da177e4
LT
1411}
1412
cb95d562
TH
1413/**
1414 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1415 * @id: IDENTIFY data to compute xfer mask from
1416 *
1417 * Compute the xfermask for this device. This is not as trivial
1418 * as it seems if we must consider early devices correctly.
1419 *
1420 * FIXME: pre IDE drive timing (do we care ?).
1421 *
1422 * LOCKING:
1423 * None.
1424 *
1425 * RETURNS:
1426 * Computed xfermask
1427 */
7dc951ae 1428unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1429{
7dc951ae 1430 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1431
1432 /* Usual case. Word 53 indicates word 64 is valid */
1433 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1434 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1435 pio_mask <<= 3;
1436 pio_mask |= 0x7;
1437 } else {
1438 /* If word 64 isn't valid then Word 51 high byte holds
1439 * the PIO timing number for the maximum. Turn it into
1440 * a mask.
1441 */
7a0f1c8a 1442 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1443 if (mode < 5) /* Valid PIO range */
2dcb407e 1444 pio_mask = (2 << mode) - 1;
46767aeb
AC
1445 else
1446 pio_mask = 1;
cb95d562
TH
1447
1448 /* But wait.. there's more. Design your standards by
1449 * committee and you too can get a free iordy field to
1450 * process. However its the speeds not the modes that
1451 * are supported... Note drivers using the timing API
1452 * will get this right anyway
1453 */
1454 }
1455
1456 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1457
b352e57d
AC
1458 if (ata_id_is_cfa(id)) {
1459 /*
1460 * Process compact flash extended modes
1461 */
1462 int pio = id[163] & 0x7;
1463 int dma = (id[163] >> 3) & 7;
1464
1465 if (pio)
1466 pio_mask |= (1 << 5);
1467 if (pio > 1)
1468 pio_mask |= (1 << 6);
1469 if (dma)
1470 mwdma_mask |= (1 << 3);
1471 if (dma > 1)
1472 mwdma_mask |= (1 << 4);
1473 }
1474
fb21f0d0
TH
1475 udma_mask = 0;
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1477 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1478
1479 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1480}
1481
86e45b6b 1482/**
442eacc3 1483 * ata_pio_queue_task - Queue port_task
86e45b6b 1484 * @ap: The ata_port to queue port_task for
e2a7f77a 1485 * @fn: workqueue function to be scheduled
65f27f38 1486 * @data: data for @fn to use
e2a7f77a 1487 * @delay: delay time for workqueue function
86e45b6b
TH
1488 *
1489 * Schedule @fn(@data) for execution after @delay jiffies using
1490 * port_task. There is one port_task per port and it's the
1491 * user(low level driver)'s responsibility to make sure that only
1492 * one task is active at any given time.
1493 *
1494 * libata core layer takes care of synchronization between
442eacc3 1495 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1496 * synchronization.
1497 *
1498 * LOCKING:
1499 * Inherited from caller.
1500 */
442eacc3
JG
1501static void ata_pio_queue_task(struct ata_port *ap, void *data,
1502 unsigned long delay)
86e45b6b 1503{
65f27f38 1504 ap->port_task_data = data;
86e45b6b 1505
45a66c1c
ON
1506 /* may fail if ata_port_flush_task() in progress */
1507 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1508}
1509
1510/**
1511 * ata_port_flush_task - Flush port_task
1512 * @ap: The ata_port to flush port_task for
1513 *
1514 * After this function completes, port_task is guranteed not to
1515 * be running or scheduled.
1516 *
1517 * LOCKING:
1518 * Kernel thread context (may sleep)
1519 */
1520void ata_port_flush_task(struct ata_port *ap)
1521{
86e45b6b
TH
1522 DPRINTK("ENTER\n");
1523
45a66c1c 1524 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1525
0dd4b21f
BP
1526 if (ata_msg_ctl(ap))
1527 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1528}
1529
7102d230 1530static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1531{
77853bf2 1532 struct completion *waiting = qc->private_data;
a2a7a662 1533
a2a7a662 1534 complete(waiting);
a2a7a662
TH
1535}
1536
1537/**
2432697b 1538 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1539 * @dev: Device to which the command is sent
1540 * @tf: Taskfile registers for the command and the result
d69cf37d 1541 * @cdb: CDB for packet command
a2a7a662 1542 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1543 * @sgl: sg list for the data buffer of the command
2432697b 1544 * @n_elem: Number of sg entries
2b789108 1545 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1546 *
1547 * Executes libata internal command with timeout. @tf contains
1548 * command on entry and result on return. Timeout and error
1549 * conditions are reported via return value. No recovery action
1550 * is taken after a command times out. It's caller's duty to
1551 * clean up after timeout.
1552 *
1553 * LOCKING:
1554 * None. Should be called with kernel context, might sleep.
551e8889
TH
1555 *
1556 * RETURNS:
1557 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1558 */
2432697b
TH
1559unsigned ata_exec_internal_sg(struct ata_device *dev,
1560 struct ata_taskfile *tf, const u8 *cdb,
87260216 1561 int dma_dir, struct scatterlist *sgl,
2b789108 1562 unsigned int n_elem, unsigned long timeout)
a2a7a662 1563{
9af5c9c9
TH
1564 struct ata_link *link = dev->link;
1565 struct ata_port *ap = link->ap;
a2a7a662
TH
1566 u8 command = tf->command;
1567 struct ata_queued_cmd *qc;
2ab7db1f 1568 unsigned int tag, preempted_tag;
dedaf2b0 1569 u32 preempted_sactive, preempted_qc_active;
da917d69 1570 int preempted_nr_active_links;
60be6b9a 1571 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1572 unsigned long flags;
77853bf2 1573 unsigned int err_mask;
d95a717f 1574 int rc;
a2a7a662 1575
ba6a1308 1576 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1577
e3180499 1578 /* no internal command while frozen */
b51e9e5d 1579 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1580 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1581 return AC_ERR_SYSTEM;
1582 }
1583
2ab7db1f 1584 /* initialize internal qc */
a2a7a662 1585
2ab7db1f
TH
1586 /* XXX: Tag 0 is used for drivers with legacy EH as some
1587 * drivers choke if any other tag is given. This breaks
1588 * ata_tag_internal() test for those drivers. Don't use new
1589 * EH stuff without converting to it.
1590 */
1591 if (ap->ops->error_handler)
1592 tag = ATA_TAG_INTERNAL;
1593 else
1594 tag = 0;
1595
6cec4a39 1596 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1597 BUG();
f69499f4 1598 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1599
1600 qc->tag = tag;
1601 qc->scsicmd = NULL;
1602 qc->ap = ap;
1603 qc->dev = dev;
1604 ata_qc_reinit(qc);
1605
9af5c9c9
TH
1606 preempted_tag = link->active_tag;
1607 preempted_sactive = link->sactive;
dedaf2b0 1608 preempted_qc_active = ap->qc_active;
da917d69 1609 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1610 link->active_tag = ATA_TAG_POISON;
1611 link->sactive = 0;
dedaf2b0 1612 ap->qc_active = 0;
da917d69 1613 ap->nr_active_links = 0;
2ab7db1f
TH
1614
1615 /* prepare & issue qc */
a2a7a662 1616 qc->tf = *tf;
d69cf37d
TH
1617 if (cdb)
1618 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
2b789108
TH
1639 if (!timeout)
1640 timeout = ata_probe_timeout * 1000 / HZ;
1641
1642 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1643
1644 ata_port_flush_task(ap);
41ade50c 1645
d95a717f 1646 if (!rc) {
ba6a1308 1647 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1648
1649 /* We're racing with irq here. If we lose, the
1650 * following test prevents us from completing the qc
d95a717f
TH
1651 * twice. If we win, the port is frozen and will be
1652 * cleaned up by ->post_internal_cmd().
a2a7a662 1653 */
77853bf2 1654 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1655 qc->err_mask |= AC_ERR_TIMEOUT;
1656
1657 if (ap->ops->error_handler)
1658 ata_port_freeze(ap);
1659 else
1660 ata_qc_complete(qc);
f15a1daf 1661
0dd4b21f
BP
1662 if (ata_msg_warn(ap))
1663 ata_dev_printk(dev, KERN_WARNING,
88574551 1664 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1665 }
1666
ba6a1308 1667 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1668 }
1669
d95a717f
TH
1670 /* do post_internal_cmd */
1671 if (ap->ops->post_internal_cmd)
1672 ap->ops->post_internal_cmd(qc);
1673
a51d644a
TH
1674 /* perform minimal error analysis */
1675 if (qc->flags & ATA_QCFLAG_FAILED) {
1676 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1677 qc->err_mask |= AC_ERR_DEV;
1678
1679 if (!qc->err_mask)
1680 qc->err_mask |= AC_ERR_OTHER;
1681
1682 if (qc->err_mask & ~AC_ERR_OTHER)
1683 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1684 }
1685
15869303 1686 /* finish up */
ba6a1308 1687 spin_lock_irqsave(ap->lock, flags);
15869303 1688
e61e0672 1689 *tf = qc->result_tf;
77853bf2
TH
1690 err_mask = qc->err_mask;
1691
1692 ata_qc_free(qc);
9af5c9c9
TH
1693 link->active_tag = preempted_tag;
1694 link->sactive = preempted_sactive;
dedaf2b0 1695 ap->qc_active = preempted_qc_active;
da917d69 1696 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1697
1f7dd3e9
TH
1698 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1699 * Until those drivers are fixed, we detect the condition
1700 * here, fail the command with AC_ERR_SYSTEM and reenable the
1701 * port.
1702 *
1703 * Note that this doesn't change any behavior as internal
1704 * command failure results in disabling the device in the
1705 * higher layer for LLDDs without new reset/EH callbacks.
1706 *
1707 * Kill the following code as soon as those drivers are fixed.
1708 */
198e0fed 1709 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1710 err_mask |= AC_ERR_SYSTEM;
1711 ata_port_probe(ap);
1712 }
1713
ba6a1308 1714 spin_unlock_irqrestore(ap->lock, flags);
15869303 1715
77853bf2 1716 return err_mask;
a2a7a662
TH
1717}
1718
2432697b 1719/**
33480a0e 1720 * ata_exec_internal - execute libata internal command
2432697b
TH
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data tranfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
2b789108 1727 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
2432697b 1742{
33480a0e
TH
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
2432697b 1745
33480a0e
TH
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
2432697b 1752
2b789108
TH
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
2432697b
TH
1755}
1756
977e6b9f
TH
1757/**
1758 * ata_do_simple_cmd - execute simple internal command
1759 * @dev: Device to which the command is sent
1760 * @cmd: Opcode to execute
1761 *
1762 * Execute a 'simple' command, that only consists of the opcode
1763 * 'cmd' itself, without filling any other registers
1764 *
1765 * LOCKING:
1766 * Kernel thread context (may sleep).
1767 *
1768 * RETURNS:
1769 * Zero on success, AC_ERR_* mask on failure
e58eb583 1770 */
77b08fb5 1771unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1772{
1773 struct ata_taskfile tf;
e58eb583
TH
1774
1775 ata_tf_init(dev, &tf);
1776
1777 tf.command = cmd;
1778 tf.flags |= ATA_TFLAG_DEVICE;
1779 tf.protocol = ATA_PROT_NODATA;
1780
2b789108 1781 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1782}
1783
1bc4ccff
AC
1784/**
1785 * ata_pio_need_iordy - check if iordy needed
1786 * @adev: ATA device
1787 *
1788 * Check if the current speed of the device requires IORDY. Used
1789 * by various controllers for chip configuration.
1790 */
a617c09f 1791
1bc4ccff
AC
1792unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1793{
432729f0
AC
1794 /* Controller doesn't support IORDY. Probably a pointless check
1795 as the caller should know this */
9af5c9c9 1796 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1797 return 0;
432729f0
AC
1798 /* PIO3 and higher it is mandatory */
1799 if (adev->pio_mode > XFER_PIO_2)
1800 return 1;
1801 /* We turn it on when possible */
1802 if (ata_id_has_iordy(adev->id))
1bc4ccff 1803 return 1;
432729f0
AC
1804 return 0;
1805}
2e9edbf8 1806
432729f0
AC
1807/**
1808 * ata_pio_mask_no_iordy - Return the non IORDY mask
1809 * @adev: ATA device
1810 *
1811 * Compute the highest mode possible if we are not using iordy. Return
1812 * -1 if no iordy mode is available.
1813 */
a617c09f 1814
432729f0
AC
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1bc4ccff 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1826 }
1827 }
432729f0 1828 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
54936f8b 1860 int may_fallback = 1, tried_spinup = 0;
49016aca 1861 int rc;
1da177e4 1862
0dd4b21f 1863 if (ata_msg_ctl(ap))
44877b4e 1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1865
49016aca 1866 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1867 retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca
TH
1870 switch (class) {
1871 case ATA_DEV_ATA:
a0123703 1872 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1873 break;
1874 case ATA_DEV_ATAPI:
a0123703 1875 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1da177e4
LT
1881 }
1882
a0123703 1883 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1894
3373efd8 1895 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1896 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1897 if (err_mask) {
800b3996 1898 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1899 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1900 ap->print_id, dev->devno);
55a8e2c8
TH
1901 return -ENOENT;
1902 }
1903
54936f8b
TH
1904 /* Device or controller might have reported the wrong
1905 * device class. Give a shot at the other IDENTIFY if
1906 * the current one is aborted by the device.
1907 */
1908 if (may_fallback &&
1909 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1910 may_fallback = 0;
1911
1912 if (class == ATA_DEV_ATA)
1913 class = ATA_DEV_ATAPI;
1914 else
1915 class = ATA_DEV_ATA;
1916 goto retry;
1917 }
1918
49016aca
TH
1919 rc = -EIO;
1920 reason = "I/O error";
1da177e4
LT
1921 goto err_out;
1922 }
1923
54936f8b
TH
1924 /* Falling back doesn't make sense if ID data was read
1925 * successfully at least once.
1926 */
1927 may_fallback = 0;
1928
49016aca 1929 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1930
49016aca 1931 /* sanity check */
a4f5749b 1932 rc = -EINVAL;
6070068b 1933 reason = "device reports invalid type";
a4f5749b
TH
1934
1935 if (class == ATA_DEV_ATA) {
1936 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1937 goto err_out;
1938 } else {
1939 if (ata_id_is_ata(id))
1940 goto err_out;
49016aca
TH
1941 }
1942
169439c2
ML
1943 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1944 tried_spinup = 1;
1945 /*
1946 * Drive powered-up in standby mode, and requires a specific
1947 * SET_FEATURES spin-up subcommand before it will accept
1948 * anything other than the original IDENTIFY command.
1949 */
218f3d30 1950 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1951 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1952 rc = -EIO;
1953 reason = "SPINUP failed";
1954 goto err_out;
1955 }
1956 /*
1957 * If the drive initially returned incomplete IDENTIFY info,
1958 * we now must reissue the IDENTIFY command.
1959 */
1960 if (id[2] == 0x37c8)
1961 goto retry;
1962 }
1963
bff04647 1964 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1965 /*
1966 * The exact sequence expected by certain pre-ATA4 drives is:
1967 * SRST RESET
50a99018
AC
1968 * IDENTIFY (optional in early ATA)
1969 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1970 * anything else..
1971 * Some drives were very specific about that exact sequence.
50a99018
AC
1972 *
1973 * Note that ATA4 says lba is mandatory so the second check
1974 * shoud never trigger.
49016aca
TH
1975 */
1976 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1977 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1978 if (err_mask) {
1979 rc = -EIO;
1980 reason = "INIT_DEV_PARAMS failed";
1981 goto err_out;
1982 }
1983
1984 /* current CHS translation info (id[53-58]) might be
1985 * changed. reread the identify device info.
1986 */
bff04647 1987 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1988 goto retry;
1989 }
1990 }
1991
1992 *p_class = class;
fe635c7e 1993
49016aca
TH
1994 return 0;
1995
1996 err_out:
88574551 1997 if (ata_msg_warn(ap))
0dd4b21f 1998 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1999 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2000 return rc;
2001}
2002
3373efd8 2003static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2004{
9af5c9c9
TH
2005 struct ata_port *ap = dev->link->ap;
2006 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2007}
2008
a6e6ce8e
TH
2009static void ata_dev_config_ncq(struct ata_device *dev,
2010 char *desc, size_t desc_sz)
2011{
9af5c9c9 2012 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2013 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2014
2015 if (!ata_id_has_ncq(dev->id)) {
2016 desc[0] = '\0';
2017 return;
2018 }
75683fe7 2019 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2020 snprintf(desc, desc_sz, "NCQ (not used)");
2021 return;
2022 }
a6e6ce8e 2023 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2024 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2025 dev->flags |= ATA_DFLAG_NCQ;
2026 }
2027
2028 if (hdepth >= ddepth)
2029 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2030 else
2031 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2032}
2033
49016aca 2034/**
ffeae418 2035 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2036 * @dev: Target device to configure
2037 *
2038 * Configure @dev according to @dev->id. Generic and low-level
2039 * driver specific fixups are also applied.
49016aca
TH
2040 *
2041 * LOCKING:
ffeae418
TH
2042 * Kernel thread context (may sleep)
2043 *
2044 * RETURNS:
2045 * 0 on success, -errno otherwise
49016aca 2046 */
efdaedc4 2047int ata_dev_configure(struct ata_device *dev)
49016aca 2048{
9af5c9c9
TH
2049 struct ata_port *ap = dev->link->ap;
2050 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2051 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2052 const u16 *id = dev->id;
7dc951ae 2053 unsigned long xfer_mask;
b352e57d 2054 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2055 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2056 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2057 int rc;
49016aca 2058
0dd4b21f 2059 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2060 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2061 __FUNCTION__);
ffeae418 2062 return 0;
49016aca
TH
2063 }
2064
0dd4b21f 2065 if (ata_msg_probe(ap))
44877b4e 2066 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2067
75683fe7
TH
2068 /* set horkage */
2069 dev->horkage |= ata_dev_blacklisted(dev);
2070
6746544c
TH
2071 /* let ACPI work its magic */
2072 rc = ata_acpi_on_devcfg(dev);
2073 if (rc)
2074 return rc;
08573a86 2075
05027adc
TH
2076 /* massage HPA, do it early as it might change IDENTIFY data */
2077 rc = ata_hpa_resize(dev);
2078 if (rc)
2079 return rc;
2080
c39f5ebe 2081 /* print device capabilities */
0dd4b21f 2082 if (ata_msg_probe(ap))
88574551
TH
2083 ata_dev_printk(dev, KERN_DEBUG,
2084 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2085 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2086 __FUNCTION__,
f15a1daf
TH
2087 id[49], id[82], id[83], id[84],
2088 id[85], id[86], id[87], id[88]);
c39f5ebe 2089
208a9933 2090 /* initialize to-be-configured parameters */
ea1dd4e1 2091 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2092 dev->max_sectors = 0;
2093 dev->cdb_len = 0;
2094 dev->n_sectors = 0;
2095 dev->cylinders = 0;
2096 dev->heads = 0;
2097 dev->sectors = 0;
2098
1da177e4
LT
2099 /*
2100 * common ATA, ATAPI feature tests
2101 */
2102
ff8854b2 2103 /* find max transfer mode; for printk only */
1148c3a7 2104 xfer_mask = ata_id_xfermask(id);
1da177e4 2105
0dd4b21f
BP
2106 if (ata_msg_probe(ap))
2107 ata_dump_id(id);
1da177e4 2108
ef143d57
AL
2109 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2110 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2111 sizeof(fwrevbuf));
2112
2113 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2114 sizeof(modelbuf));
2115
1da177e4
LT
2116 /* ATA-specific feature tests */
2117 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2118 if (ata_id_is_cfa(id)) {
2119 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2120 ata_dev_printk(dev, KERN_WARNING,
2121 "supports DRM functions and may "
2122 "not be fully accessable.\n");
b352e57d 2123 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2124 } else {
2dcb407e 2125 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2126 /* Warn the user if the device has TPM extensions */
2127 if (ata_id_has_tpm(id))
2128 ata_dev_printk(dev, KERN_WARNING,
2129 "supports DRM functions and may "
2130 "not be fully accessable.\n");
2131 }
b352e57d 2132
1148c3a7 2133 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2134
3f64f565
EM
2135 if (dev->id[59] & 0x100)
2136 dev->multi_count = dev->id[59] & 0xff;
2137
1148c3a7 2138 if (ata_id_has_lba(id)) {
4c2d721a 2139 const char *lba_desc;
a6e6ce8e 2140 char ncq_desc[20];
8bf62ece 2141
4c2d721a
TH
2142 lba_desc = "LBA";
2143 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2144 if (ata_id_has_lba48(id)) {
8bf62ece 2145 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2146 lba_desc = "LBA48";
6fc49adb
TH
2147
2148 if (dev->n_sectors >= (1UL << 28) &&
2149 ata_id_has_flush_ext(id))
2150 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2151 }
8bf62ece 2152
a6e6ce8e
TH
2153 /* config NCQ */
2154 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2155
8bf62ece 2156 /* print device info to dmesg */
3f64f565
EM
2157 if (ata_msg_drv(ap) && print_info) {
2158 ata_dev_printk(dev, KERN_INFO,
2159 "%s: %s, %s, max %s\n",
2160 revbuf, modelbuf, fwrevbuf,
2161 ata_mode_string(xfer_mask));
2162 ata_dev_printk(dev, KERN_INFO,
2163 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2164 (unsigned long long)dev->n_sectors,
3f64f565
EM
2165 dev->multi_count, lba_desc, ncq_desc);
2166 }
ffeae418 2167 } else {
8bf62ece
AL
2168 /* CHS */
2169
2170 /* Default translation */
1148c3a7
TH
2171 dev->cylinders = id[1];
2172 dev->heads = id[3];
2173 dev->sectors = id[6];
8bf62ece 2174
1148c3a7 2175 if (ata_id_current_chs_valid(id)) {
8bf62ece 2176 /* Current CHS translation is valid. */
1148c3a7
TH
2177 dev->cylinders = id[54];
2178 dev->heads = id[55];
2179 dev->sectors = id[56];
8bf62ece
AL
2180 }
2181
2182 /* print device info to dmesg */
3f64f565 2183 if (ata_msg_drv(ap) && print_info) {
88574551 2184 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2185 "%s: %s, %s, max %s\n",
2186 revbuf, modelbuf, fwrevbuf,
2187 ata_mode_string(xfer_mask));
a84471fe 2188 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2189 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2190 (unsigned long long)dev->n_sectors,
2191 dev->multi_count, dev->cylinders,
2192 dev->heads, dev->sectors);
2193 }
07f6f7d0
AL
2194 }
2195
6e7846e9 2196 dev->cdb_len = 16;
1da177e4
LT
2197 }
2198
2199 /* ATAPI-specific feature tests */
2c13b7ce 2200 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2201 const char *cdb_intr_string = "";
2202 const char *atapi_an_string = "";
7d77b247 2203 u32 sntf;
08a556db 2204
1148c3a7 2205 rc = atapi_cdb_len(id);
1da177e4 2206 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2207 if (ata_msg_warn(ap))
88574551
TH
2208 ata_dev_printk(dev, KERN_WARNING,
2209 "unsupported CDB len\n");
ffeae418 2210 rc = -EINVAL;
1da177e4
LT
2211 goto err_out_nosup;
2212 }
6e7846e9 2213 dev->cdb_len = (unsigned int) rc;
1da177e4 2214
7d77b247
TH
2215 /* Enable ATAPI AN if both the host and device have
2216 * the support. If PMP is attached, SNTF is required
2217 * to enable ATAPI AN to discern between PHY status
2218 * changed notifications and ATAPI ANs.
9f45cbd3 2219 */
7d77b247
TH
2220 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2221 (!ap->nr_pmp_links ||
2222 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2223 unsigned int err_mask;
2224
9f45cbd3 2225 /* issue SET feature command to turn this on */
218f3d30
JG
2226 err_mask = ata_dev_set_feature(dev,
2227 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2228 if (err_mask)
9f45cbd3 2229 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2230 "failed to enable ATAPI AN "
2231 "(err_mask=0x%x)\n", err_mask);
2232 else {
9f45cbd3 2233 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2234 atapi_an_string = ", ATAPI AN";
2235 }
9f45cbd3
KCA
2236 }
2237
08a556db 2238 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2239 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2240 cdb_intr_string = ", CDB intr";
2241 }
312f7da2 2242
1da177e4 2243 /* print device info to dmesg */
5afc8142 2244 if (ata_msg_drv(ap) && print_info)
ef143d57 2245 ata_dev_printk(dev, KERN_INFO,
854c73a2 2246 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2247 modelbuf, fwrevbuf,
12436c30 2248 ata_mode_string(xfer_mask),
854c73a2 2249 cdb_intr_string, atapi_an_string);
1da177e4
LT
2250 }
2251
914ed354
TH
2252 /* determine max_sectors */
2253 dev->max_sectors = ATA_MAX_SECTORS;
2254 if (dev->flags & ATA_DFLAG_LBA48)
2255 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2256
ca77329f
KCA
2257 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2258 if (ata_id_has_hipm(dev->id))
2259 dev->flags |= ATA_DFLAG_HIPM;
2260 if (ata_id_has_dipm(dev->id))
2261 dev->flags |= ATA_DFLAG_DIPM;
2262 }
2263
c5038fc0
AC
2264 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2265 200 sectors */
3373efd8 2266 if (ata_dev_knobble(dev)) {
5afc8142 2267 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2268 ata_dev_printk(dev, KERN_INFO,
2269 "applying bridge limits\n");
5a529139 2270 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2271 dev->max_sectors = ATA_MAX_SECTORS;
2272 }
2273
f8d8e579 2274 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2275 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2276 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2277 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2278 }
f8d8e579 2279
75683fe7 2280 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2281 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2282 dev->max_sectors);
18d6e9d5 2283
ca77329f
KCA
2284 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2285 dev->horkage |= ATA_HORKAGE_IPM;
2286
2287 /* reset link pm_policy for this port to no pm */
2288 ap->pm_policy = MAX_PERFORMANCE;
2289 }
2290
4b2f3ede 2291 if (ap->ops->dev_config)
cd0d3bbc 2292 ap->ops->dev_config(dev);
4b2f3ede 2293
c5038fc0
AC
2294 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2295 /* Let the user know. We don't want to disallow opens for
2296 rescue purposes, or in case the vendor is just a blithering
2297 idiot. Do this after the dev_config call as some controllers
2298 with buggy firmware may want to avoid reporting false device
2299 bugs */
2300
2301 if (print_info) {
2302 ata_dev_printk(dev, KERN_WARNING,
2303"Drive reports diagnostics failure. This may indicate a drive\n");
2304 ata_dev_printk(dev, KERN_WARNING,
2305"fault or invalid emulation. Contact drive vendor for information.\n");
2306 }
2307 }
2308
0dd4b21f
BP
2309 if (ata_msg_probe(ap))
2310 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2311 __FUNCTION__, ata_chk_status(ap));
ffeae418 2312 return 0;
1da177e4
LT
2313
2314err_out_nosup:
0dd4b21f 2315 if (ata_msg_probe(ap))
88574551
TH
2316 ata_dev_printk(dev, KERN_DEBUG,
2317 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2318 return rc;
1da177e4
LT
2319}
2320
be0d18df 2321/**
2e41e8e6 2322 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2323 * @ap: port
2324 *
2e41e8e6 2325 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2326 * detection.
2327 */
2328
2329int ata_cable_40wire(struct ata_port *ap)
2330{
2331 return ATA_CBL_PATA40;
2332}
2333
2334/**
2e41e8e6 2335 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2336 * @ap: port
2337 *
2e41e8e6 2338 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2339 * detection.
2340 */
2341
2342int ata_cable_80wire(struct ata_port *ap)
2343{
2344 return ATA_CBL_PATA80;
2345}
2346
2347/**
2348 * ata_cable_unknown - return unknown PATA cable.
2349 * @ap: port
2350 *
2351 * Helper method for drivers which have no PATA cable detection.
2352 */
2353
2354int ata_cable_unknown(struct ata_port *ap)
2355{
2356 return ATA_CBL_PATA_UNK;
2357}
2358
c88f90c3
TH
2359/**
2360 * ata_cable_ignore - return ignored PATA cable.
2361 * @ap: port
2362 *
2363 * Helper method for drivers which don't use cable type to limit
2364 * transfer mode.
2365 */
2366int ata_cable_ignore(struct ata_port *ap)
2367{
2368 return ATA_CBL_PATA_IGN;
2369}
2370
be0d18df
AC
2371/**
2372 * ata_cable_sata - return SATA cable type
2373 * @ap: port
2374 *
2375 * Helper method for drivers which have SATA cables
2376 */
2377
2378int ata_cable_sata(struct ata_port *ap)
2379{
2380 return ATA_CBL_SATA;
2381}
2382
1da177e4
LT
2383/**
2384 * ata_bus_probe - Reset and probe ATA bus
2385 * @ap: Bus to probe
2386 *
0cba632b
JG
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2389 * the bus.
2390 *
1da177e4 2391 * LOCKING:
0cba632b 2392 * PCI/etc. bus probe sem.
1da177e4
LT
2393 *
2394 * RETURNS:
96072e69 2395 * Zero on success, negative errno otherwise.
1da177e4
LT
2396 */
2397
80289167 2398int ata_bus_probe(struct ata_port *ap)
1da177e4 2399{
28ca5c57 2400 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2401 int tries[ATA_MAX_DEVICES];
f58229f8 2402 int rc;
e82cbdb9 2403 struct ata_device *dev;
1da177e4 2404
28ca5c57 2405 ata_port_probe(ap);
c19ba8af 2406
f58229f8
TH
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2409
2410 retry:
cdeab114
TH
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2418 */
2419 dev->pio_mode = XFER_PIO_0;
2420
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2425 */
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2428 }
2429
2044470c 2430 /* reset and determine device classes */
52783c5d 2431 ap->ops->phy_reset(ap);
2061a47a 2432
f58229f8 2433 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2437 else
2438 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2439
52783c5d 2440 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2441 }
1da177e4 2442
52783c5d 2443 ata_port_probe(ap);
2044470c 2444
f31f0cc2
JG
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2447 the slave device */
2448
f58229f8
TH
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
ffeae418 2452
14d2bac1 2453 if (!ata_dev_enabled(dev))
ffeae418 2454 continue;
ffeae418 2455
bff04647
TH
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2457 dev->id);
14d2bac1
TH
2458 if (rc)
2459 goto fail;
f31f0cc2
JG
2460 }
2461
be0d18df
AC
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2465
614fe29b
AC
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2470 continue;
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2475 }
2476
f31f0cc2
JG
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2479
f58229f8 2480 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2481 if (!ata_dev_enabled(dev))
2482 continue;
14d2bac1 2483
9af5c9c9 2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2485 rc = ata_dev_configure(dev);
9af5c9c9 2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2487 if (rc)
2488 goto fail;
1da177e4
LT
2489 }
2490
e82cbdb9 2491 /* configure transfer mode */
0260731f 2492 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2493 if (rc)
51713d35 2494 goto fail;
1da177e4 2495
f58229f8
TH
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
e82cbdb9 2498 return 0;
1da177e4 2499
e82cbdb9
TH
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
96072e69 2502 return -ENODEV;
14d2bac1
TH
2503
2504 fail:
4ae72a1e
TH
2505 tries[dev->devno]--;
2506
14d2bac1
TH
2507 switch (rc) {
2508 case -EINVAL:
4ae72a1e 2509 /* eeek, something went very wrong, give up */
14d2bac1
TH
2510 tries[dev->devno] = 0;
2511 break;
4ae72a1e
TH
2512
2513 case -ENODEV:
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2516 case -EIO:
4ae72a1e
TH
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2520 */
936fd732 2521 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2523 }
14d2bac1
TH
2524 }
2525
4ae72a1e 2526 if (!tries[dev->devno])
3373efd8 2527 ata_dev_disable(dev);
ec573755 2528
14d2bac1 2529 goto retry;
1da177e4
LT
2530}
2531
2532/**
0cba632b
JG
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
1da177e4 2535 *
0cba632b
JG
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2538 *
cca3974e 2539 * LOCKING: host lock, or some other form of
0cba632b 2540 * serialization.
1da177e4
LT
2541 */
2542
2543void ata_port_probe(struct ata_port *ap)
2544{
198e0fed 2545 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2546}
2547
3be680b7
TH
2548/**
2549 * sata_print_link_status - Print SATA link status
936fd732 2550 * @link: SATA link to printk link status about
3be680b7
TH
2551 *
2552 * This function prints link speed and status of a SATA link.
2553 *
2554 * LOCKING:
2555 * None.
2556 */
936fd732 2557void sata_print_link_status(struct ata_link *link)
3be680b7 2558{
6d5f9732 2559 u32 sstatus, scontrol, tmp;
3be680b7 2560
936fd732 2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2562 return;
936fd732 2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2564
936fd732 2565 if (ata_link_online(link)) {
3be680b7 2566 tmp = (sstatus >> 4) & 0xf;
936fd732 2567 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2570 } else {
936fd732 2571 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2572 "SATA link down (SStatus %X SControl %X)\n",
2573 sstatus, scontrol);
3be680b7
TH
2574 }
2575}
2576
ebdfca6e
AC
2577/**
2578 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2579 * @adev: device
2580 *
2581 * Obtain the other device on the same cable, or if none is
2582 * present NULL is returned
2583 */
2e9edbf8 2584
3373efd8 2585struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2586{
9af5c9c9
TH
2587 struct ata_link *link = adev->link;
2588 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2589 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2590 return NULL;
2591 return pair;
2592}
2593
1da177e4 2594/**
780a87f7
JG
2595 * ata_port_disable - Disable port.
2596 * @ap: Port to be disabled.
1da177e4 2597 *
780a87f7
JG
2598 * Modify @ap data structure such that the system
2599 * thinks that the entire port is disabled, and should
2600 * never attempt to probe or communicate with devices
2601 * on this port.
2602 *
cca3974e 2603 * LOCKING: host lock, or some other form of
780a87f7 2604 * serialization.
1da177e4
LT
2605 */
2606
2607void ata_port_disable(struct ata_port *ap)
2608{
9af5c9c9
TH
2609 ap->link.device[0].class = ATA_DEV_NONE;
2610 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2611 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2612}
2613
1c3fae4d 2614/**
3c567b7d 2615 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2616 * @link: Link to adjust SATA spd limit for
1c3fae4d 2617 *
936fd732 2618 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2619 * function only adjusts the limit. The change must be applied
3c567b7d 2620 * using sata_set_spd().
1c3fae4d
TH
2621 *
2622 * LOCKING:
2623 * Inherited from caller.
2624 *
2625 * RETURNS:
2626 * 0 on success, negative errno on failure
2627 */
936fd732 2628int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2629{
81952c54
TH
2630 u32 sstatus, spd, mask;
2631 int rc, highbit;
1c3fae4d 2632
936fd732 2633 if (!sata_scr_valid(link))
008a7896
TH
2634 return -EOPNOTSUPP;
2635
2636 /* If SCR can be read, use it to determine the current SPD.
936fd732 2637 * If not, use cached value in link->sata_spd.
008a7896 2638 */
936fd732 2639 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2640 if (rc == 0)
2641 spd = (sstatus >> 4) & 0xf;
2642 else
936fd732 2643 spd = link->sata_spd;
1c3fae4d 2644
936fd732 2645 mask = link->sata_spd_limit;
1c3fae4d
TH
2646 if (mask <= 1)
2647 return -EINVAL;
008a7896
TH
2648
2649 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2650 highbit = fls(mask) - 1;
2651 mask &= ~(1 << highbit);
2652
008a7896
TH
2653 /* Mask off all speeds higher than or equal to the current
2654 * one. Force 1.5Gbps if current SPD is not available.
2655 */
2656 if (spd > 1)
2657 mask &= (1 << (spd - 1)) - 1;
2658 else
2659 mask &= 1;
2660
2661 /* were we already at the bottom? */
1c3fae4d
TH
2662 if (!mask)
2663 return -EINVAL;
2664
936fd732 2665 link->sata_spd_limit = mask;
1c3fae4d 2666
936fd732 2667 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2668 sata_spd_string(fls(mask)));
1c3fae4d
TH
2669
2670 return 0;
2671}
2672
936fd732 2673static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2674{
5270222f
TH
2675 struct ata_link *host_link = &link->ap->link;
2676 u32 limit, target, spd;
1c3fae4d 2677
5270222f
TH
2678 limit = link->sata_spd_limit;
2679
2680 /* Don't configure downstream link faster than upstream link.
2681 * It doesn't speed up anything and some PMPs choke on such
2682 * configuration.
2683 */
2684 if (!ata_is_host_link(link) && host_link->sata_spd)
2685 limit &= (1 << host_link->sata_spd) - 1;
2686
2687 if (limit == UINT_MAX)
2688 target = 0;
1c3fae4d 2689 else
5270222f 2690 target = fls(limit);
1c3fae4d
TH
2691
2692 spd = (*scontrol >> 4) & 0xf;
5270222f 2693 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2694
5270222f 2695 return spd != target;
1c3fae4d
TH
2696}
2697
2698/**
3c567b7d 2699 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2700 * @link: Link in question
1c3fae4d
TH
2701 *
2702 * Test whether the spd limit in SControl matches
936fd732 2703 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2704 * whether hardreset is necessary to apply SATA spd
2705 * configuration.
2706 *
2707 * LOCKING:
2708 * Inherited from caller.
2709 *
2710 * RETURNS:
2711 * 1 if SATA spd configuration is needed, 0 otherwise.
2712 */
936fd732 2713int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2714{
2715 u32 scontrol;
2716
936fd732 2717 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2718 return 1;
1c3fae4d 2719
936fd732 2720 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2721}
2722
2723/**
3c567b7d 2724 * sata_set_spd - set SATA spd according to spd limit
936fd732 2725 * @link: Link to set SATA spd for
1c3fae4d 2726 *
936fd732 2727 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2728 *
2729 * LOCKING:
2730 * Inherited from caller.
2731 *
2732 * RETURNS:
2733 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2734 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2735 */
936fd732 2736int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2737{
2738 u32 scontrol;
81952c54 2739 int rc;
1c3fae4d 2740
936fd732 2741 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2742 return rc;
1c3fae4d 2743
936fd732 2744 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2745 return 0;
2746
936fd732 2747 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2748 return rc;
2749
1c3fae4d
TH
2750 return 1;
2751}
2752
452503f9
AC
2753/*
2754 * This mode timing computation functionality is ported over from
2755 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2756 */
2757/*
b352e57d 2758 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2759 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2760 * for UDMA6, which is currently supported only by Maxtor drives.
2761 *
2762 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2763 */
2764
2765static const struct ata_timing ata_timing[] = {
70cd071e
TH
2766/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2767 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2768 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2769 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2770 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2771 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2772 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2773 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2774
70cd071e
TH
2775 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2776 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2777 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2778
70cd071e
TH
2779 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2780 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2781 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2782 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2783 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2784
2785/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2786 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2787 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2788 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2789 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2790 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2791 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2792 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2793
2794 { 0xFF }
2795};
2796
2dcb407e
JG
2797#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2798#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2799
2800static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2801{
2802 q->setup = EZ(t->setup * 1000, T);
2803 q->act8b = EZ(t->act8b * 1000, T);
2804 q->rec8b = EZ(t->rec8b * 1000, T);
2805 q->cyc8b = EZ(t->cyc8b * 1000, T);
2806 q->active = EZ(t->active * 1000, T);
2807 q->recover = EZ(t->recover * 1000, T);
2808 q->cycle = EZ(t->cycle * 1000, T);
2809 q->udma = EZ(t->udma * 1000, UT);
2810}
2811
2812void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2813 struct ata_timing *m, unsigned int what)
2814{
2815 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2816 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2817 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2818 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2819 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2820 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2821 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2822 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2823}
2824
6357357c 2825const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2826{
70cd071e
TH
2827 const struct ata_timing *t = ata_timing;
2828
2829 while (xfer_mode > t->mode)
2830 t++;
452503f9 2831
70cd071e
TH
2832 if (xfer_mode == t->mode)
2833 return t;
2834 return NULL;
452503f9
AC
2835}
2836
2837int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2838 struct ata_timing *t, int T, int UT)
2839{
2840 const struct ata_timing *s;
2841 struct ata_timing p;
2842
2843 /*
2e9edbf8 2844 * Find the mode.
75b1f2f8 2845 */
452503f9
AC
2846
2847 if (!(s = ata_timing_find_mode(speed)))
2848 return -EINVAL;
2849
75b1f2f8
AL
2850 memcpy(t, s, sizeof(*s));
2851
452503f9
AC
2852 /*
2853 * If the drive is an EIDE drive, it can tell us it needs extended
2854 * PIO/MW_DMA cycle timing.
2855 */
2856
2857 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2858 memset(&p, 0, sizeof(p));
2dcb407e 2859 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2860 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2861 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2862 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2863 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2864 }
2865 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2866 }
2867
2868 /*
2869 * Convert the timing to bus clock counts.
2870 */
2871
75b1f2f8 2872 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2873
2874 /*
c893a3ae
RD
2875 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2876 * S.M.A.R.T * and some other commands. We have to ensure that the
2877 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2878 */
2879
fd3367af 2880 if (speed > XFER_PIO_6) {
452503f9
AC
2881 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2882 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2883 }
2884
2885 /*
c893a3ae 2886 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2887 */
2888
2889 if (t->act8b + t->rec8b < t->cyc8b) {
2890 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2891 t->rec8b = t->cyc8b - t->act8b;
2892 }
2893
2894 if (t->active + t->recover < t->cycle) {
2895 t->active += (t->cycle - (t->active + t->recover)) / 2;
2896 t->recover = t->cycle - t->active;
2897 }
a617c09f 2898
4f701d1e
AC
2899 /* In a few cases quantisation may produce enough errors to
2900 leave t->cycle too low for the sum of active and recovery
2901 if so we must correct this */
2902 if (t->active + t->recover > t->cycle)
2903 t->cycle = t->active + t->recover;
452503f9
AC
2904
2905 return 0;
2906}
2907
a0f79b92
TH
2908/**
2909 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2910 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2911 * @cycle: cycle duration in ns
2912 *
2913 * Return matching xfer mode for @cycle. The returned mode is of
2914 * the transfer type specified by @xfer_shift. If @cycle is too
2915 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2916 * than the fastest known mode, the fasted mode is returned.
2917 *
2918 * LOCKING:
2919 * None.
2920 *
2921 * RETURNS:
2922 * Matching xfer_mode, 0xff if no match found.
2923 */
2924u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
2925{
2926 u8 base_mode = 0xff, last_mode = 0xff;
2927 const struct ata_xfer_ent *ent;
2928 const struct ata_timing *t;
2929
2930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
2931 if (ent->shift == xfer_shift)
2932 base_mode = ent->base;
2933
2934 for (t = ata_timing_find_mode(base_mode);
2935 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
2936 unsigned short this_cycle;
2937
2938 switch (xfer_shift) {
2939 case ATA_SHIFT_PIO:
2940 case ATA_SHIFT_MWDMA:
2941 this_cycle = t->cycle;
2942 break;
2943 case ATA_SHIFT_UDMA:
2944 this_cycle = t->udma;
2945 break;
2946 default:
2947 return 0xff;
2948 }
2949
2950 if (cycle > this_cycle)
2951 break;
2952
2953 last_mode = t->mode;
2954 }
2955
2956 return last_mode;
2957}
2958
cf176e1a
TH
2959/**
2960 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2961 * @dev: Device to adjust xfer masks
458337db 2962 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2963 *
2964 * Adjust xfer masks of @dev downward. Note that this function
2965 * does not apply the change. Invoking ata_set_mode() afterwards
2966 * will apply the limit.
2967 *
2968 * LOCKING:
2969 * Inherited from caller.
2970 *
2971 * RETURNS:
2972 * 0 on success, negative errno on failure
2973 */
458337db 2974int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2975{
458337db 2976 char buf[32];
7dc951ae
TH
2977 unsigned long orig_mask, xfer_mask;
2978 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 2979 int quiet, highbit;
cf176e1a 2980
458337db
TH
2981 quiet = !!(sel & ATA_DNXFER_QUIET);
2982 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2983
458337db
TH
2984 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2985 dev->mwdma_mask,
2986 dev->udma_mask);
2987 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2988
458337db
TH
2989 switch (sel) {
2990 case ATA_DNXFER_PIO:
2991 highbit = fls(pio_mask) - 1;
2992 pio_mask &= ~(1 << highbit);
2993 break;
2994
2995 case ATA_DNXFER_DMA:
2996 if (udma_mask) {
2997 highbit = fls(udma_mask) - 1;
2998 udma_mask &= ~(1 << highbit);
2999 if (!udma_mask)
3000 return -ENOENT;
3001 } else if (mwdma_mask) {
3002 highbit = fls(mwdma_mask) - 1;
3003 mwdma_mask &= ~(1 << highbit);
3004 if (!mwdma_mask)
3005 return -ENOENT;
3006 }
3007 break;
3008
3009 case ATA_DNXFER_40C:
3010 udma_mask &= ATA_UDMA_MASK_40C;
3011 break;
3012
3013 case ATA_DNXFER_FORCE_PIO0:
3014 pio_mask &= 1;
3015 case ATA_DNXFER_FORCE_PIO:
3016 mwdma_mask = 0;
3017 udma_mask = 0;
3018 break;
3019
458337db
TH
3020 default:
3021 BUG();
3022 }
3023
3024 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3025
3026 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3027 return -ENOENT;
3028
3029 if (!quiet) {
3030 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3031 snprintf(buf, sizeof(buf), "%s:%s",
3032 ata_mode_string(xfer_mask),
3033 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3034 else
3035 snprintf(buf, sizeof(buf), "%s",
3036 ata_mode_string(xfer_mask));
3037
3038 ata_dev_printk(dev, KERN_WARNING,
3039 "limiting speed to %s\n", buf);
3040 }
cf176e1a
TH
3041
3042 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3043 &dev->udma_mask);
3044
cf176e1a 3045 return 0;
cf176e1a
TH
3046}
3047
3373efd8 3048static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3049{
9af5c9c9 3050 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3051 const char *dev_err_whine = "";
3052 int ign_dev_err = 0;
83206a29
TH
3053 unsigned int err_mask;
3054 int rc;
1da177e4 3055
e8384607 3056 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3057 if (dev->xfer_shift == ATA_SHIFT_PIO)
3058 dev->flags |= ATA_DFLAG_PIO;
3059
3373efd8 3060 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3061
4055dee7
TH
3062 if (err_mask & ~AC_ERR_DEV)
3063 goto fail;
3064
3065 /* revalidate */
3066 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3067 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3068 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3069 if (rc)
3070 return rc;
3071
11750a40
A
3072 /* Old CFA may refuse this command, which is just fine */
3073 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
4055dee7 3074 ign_dev_err = 1;
2dcb407e 3075
0bc2a79a
AC
3076 /* Some very old devices and some bad newer ones fail any kind of
3077 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3078 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3079 dev->pio_mode <= XFER_PIO_2)
4055dee7 3080 ign_dev_err = 1;
2dcb407e 3081
3acaf94b
AC
3082 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3083 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3084 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3085 dev->dma_mode == XFER_MW_DMA_0 &&
3086 (dev->id[63] >> 8) & 1)
4055dee7 3087 ign_dev_err = 1;
3acaf94b 3088
4055dee7
TH
3089 /* if the device is actually configured correctly, ignore dev err */
3090 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3091 ign_dev_err = 1;
1da177e4 3092
4055dee7
TH
3093 if (err_mask & AC_ERR_DEV) {
3094 if (!ign_dev_err)
3095 goto fail;
3096 else
3097 dev_err_whine = " (device error ignored)";
3098 }
48a8a14f 3099
23e71c3d
TH
3100 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3101 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3102
4055dee7
TH
3103 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3104 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3105 dev_err_whine);
3106
83206a29 3107 return 0;
4055dee7
TH
3108
3109 fail:
3110 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3111 "(err_mask=0x%x)\n", err_mask);
3112 return -EIO;
1da177e4
LT
3113}
3114
1da177e4 3115/**
04351821 3116 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3117 * @link: link on which timings will be programmed
1967b7ff 3118 * @r_failed_dev: out parameter for failed device
1da177e4 3119 *
04351821
A
3120 * Standard implementation of the function used to tune and set
3121 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3122 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3123 * returned in @r_failed_dev.
780a87f7 3124 *
1da177e4 3125 * LOCKING:
0cba632b 3126 * PCI/etc. bus probe sem.
e82cbdb9
TH
3127 *
3128 * RETURNS:
3129 * 0 on success, negative errno otherwise
1da177e4 3130 */
04351821 3131
0260731f 3132int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3133{
0260731f 3134 struct ata_port *ap = link->ap;
e8e0619f 3135 struct ata_device *dev;
f58229f8 3136 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3137
a6d5a51c 3138 /* step 1: calculate xfer_mask */
f58229f8 3139 ata_link_for_each_dev(dev, link) {
7dc951ae 3140 unsigned long pio_mask, dma_mask;
b3a70601 3141 unsigned int mode_mask;
a6d5a51c 3142
e1211e3f 3143 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3144 continue;
3145
b3a70601
AC
3146 mode_mask = ATA_DMA_MASK_ATA;
3147 if (dev->class == ATA_DEV_ATAPI)
3148 mode_mask = ATA_DMA_MASK_ATAPI;
3149 else if (ata_id_is_cfa(dev->id))
3150 mode_mask = ATA_DMA_MASK_CFA;
3151
3373efd8 3152 ata_dev_xfermask(dev);
1da177e4 3153
acf356b1
TH
3154 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3155 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3156
3157 if (libata_dma_mask & mode_mask)
3158 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3159 else
3160 dma_mask = 0;
3161
acf356b1
TH
3162 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3163 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3164
4f65977d 3165 found = 1;
70cd071e 3166 if (dev->dma_mode != 0xff)
5444a6f4 3167 used_dma = 1;
a6d5a51c 3168 }
4f65977d 3169 if (!found)
e82cbdb9 3170 goto out;
a6d5a51c
TH
3171
3172 /* step 2: always set host PIO timings */
f58229f8 3173 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3174 if (!ata_dev_enabled(dev))
3175 continue;
3176
70cd071e 3177 if (dev->pio_mode == 0xff) {
f15a1daf 3178 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3179 rc = -EINVAL;
e82cbdb9 3180 goto out;
e8e0619f
TH
3181 }
3182
3183 dev->xfer_mode = dev->pio_mode;
3184 dev->xfer_shift = ATA_SHIFT_PIO;
3185 if (ap->ops->set_piomode)
3186 ap->ops->set_piomode(ap, dev);
3187 }
1da177e4 3188
a6d5a51c 3189 /* step 3: set host DMA timings */
f58229f8 3190 ata_link_for_each_dev(dev, link) {
70cd071e 3191 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3192 continue;
3193
3194 dev->xfer_mode = dev->dma_mode;
3195 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3196 if (ap->ops->set_dmamode)
3197 ap->ops->set_dmamode(ap, dev);
3198 }
1da177e4
LT
3199
3200 /* step 4: update devices' xfer mode */
f58229f8 3201 ata_link_for_each_dev(dev, link) {
18d90deb 3202 /* don't update suspended devices' xfer mode */
9666f400 3203 if (!ata_dev_enabled(dev))
83206a29
TH
3204 continue;
3205
3373efd8 3206 rc = ata_dev_set_mode(dev);
5bbc53f4 3207 if (rc)
e82cbdb9 3208 goto out;
83206a29 3209 }
1da177e4 3210
e8e0619f
TH
3211 /* Record simplex status. If we selected DMA then the other
3212 * host channels are not permitted to do so.
5444a6f4 3213 */
cca3974e 3214 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3215 ap->host->simplex_claimed = ap;
5444a6f4 3216
e82cbdb9
TH
3217 out:
3218 if (rc)
3219 *r_failed_dev = dev;
3220 return rc;
1da177e4
LT
3221}
3222
1fdffbce
JG
3223/**
3224 * ata_tf_to_host - issue ATA taskfile to host controller
3225 * @ap: port to which command is being issued
3226 * @tf: ATA taskfile register set
3227 *
3228 * Issues ATA taskfile register set to ATA host controller,
3229 * with proper synchronization with interrupt handler and
3230 * other threads.
3231 *
3232 * LOCKING:
cca3974e 3233 * spin_lock_irqsave(host lock)
1fdffbce
JG
3234 */
3235
3236static inline void ata_tf_to_host(struct ata_port *ap,
3237 const struct ata_taskfile *tf)
3238{
3239 ap->ops->tf_load(ap, tf);
3240 ap->ops->exec_command(ap, tf);
3241}
3242
1da177e4
LT
3243/**
3244 * ata_busy_sleep - sleep until BSY clears, or timeout
3245 * @ap: port containing status register to be polled
3246 * @tmout_pat: impatience timeout
3247 * @tmout: overall timeout
3248 *
780a87f7
JG
3249 * Sleep until ATA Status register bit BSY clears,
3250 * or a timeout occurs.
3251 *
d1adc1bb
TH
3252 * LOCKING:
3253 * Kernel thread context (may sleep).
3254 *
3255 * RETURNS:
3256 * 0 on success, -errno otherwise.
1da177e4 3257 */
d1adc1bb
TH
3258int ata_busy_sleep(struct ata_port *ap,
3259 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3260{
3261 unsigned long timer_start, timeout;
3262 u8 status;
3263
3264 status = ata_busy_wait(ap, ATA_BUSY, 300);
3265 timer_start = jiffies;
3266 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3267 while (status != 0xff && (status & ATA_BUSY) &&
3268 time_before(jiffies, timeout)) {
1da177e4
LT
3269 msleep(50);
3270 status = ata_busy_wait(ap, ATA_BUSY, 3);
3271 }
3272
d1adc1bb 3273 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3274 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3275 "port is slow to respond, please be patient "
3276 "(Status 0x%x)\n", status);
1da177e4
LT
3277
3278 timeout = timer_start + tmout;
d1adc1bb
TH
3279 while (status != 0xff && (status & ATA_BUSY) &&
3280 time_before(jiffies, timeout)) {
1da177e4
LT
3281 msleep(50);
3282 status = ata_chk_status(ap);
3283 }
3284
d1adc1bb
TH
3285 if (status == 0xff)
3286 return -ENODEV;
3287
1da177e4 3288 if (status & ATA_BUSY) {
f15a1daf 3289 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3290 "(%lu secs, Status 0x%x)\n",
3291 tmout / HZ, status);
d1adc1bb 3292 return -EBUSY;
1da177e4
LT
3293 }
3294
3295 return 0;
3296}
3297
88ff6eaf
TH
3298/**
3299 * ata_wait_after_reset - wait before checking status after reset
3300 * @ap: port containing status register to be polled
3301 * @deadline: deadline jiffies for the operation
3302 *
3303 * After reset, we need to pause a while before reading status.
3304 * Also, certain combination of controller and device report 0xff
3305 * for some duration (e.g. until SATA PHY is up and running)
3306 * which is interpreted as empty port in ATA world. This
3307 * function also waits for such devices to get out of 0xff
3308 * status.
3309 *
3310 * LOCKING:
3311 * Kernel thread context (may sleep).
3312 */
3313void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3314{
3315 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3316
3317 if (time_before(until, deadline))
3318 deadline = until;
3319
3320 /* Spec mandates ">= 2ms" before checking status. We wait
3321 * 150ms, because that was the magic delay used for ATAPI
3322 * devices in Hale Landis's ATADRVR, for the period of time
3323 * between when the ATA command register is written, and then
3324 * status is checked. Because waiting for "a while" before
3325 * checking status is fine, post SRST, we perform this magic
3326 * delay here as well.
3327 *
3328 * Old drivers/ide uses the 2mS rule and then waits for ready.
3329 */
3330 msleep(150);
3331
3332 /* Wait for 0xff to clear. Some SATA devices take a long time
3333 * to clear 0xff after reset. For example, HHD424020F7SV00
3334 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3335 * than that.
1974e201
TH
3336 *
3337 * Note that some PATA controllers (pata_ali) explode if
3338 * status register is read more than once when there's no
3339 * device attached.
88ff6eaf 3340 */
1974e201
TH
3341 if (ap->flags & ATA_FLAG_SATA) {
3342 while (1) {
3343 u8 status = ata_chk_status(ap);
88ff6eaf 3344
1974e201
TH
3345 if (status != 0xff || time_after(jiffies, deadline))
3346 return;
88ff6eaf 3347
1974e201
TH
3348 msleep(50);
3349 }
88ff6eaf
TH
3350 }
3351}
3352
d4b2bab4
TH
3353/**
3354 * ata_wait_ready - sleep until BSY clears, or timeout
3355 * @ap: port containing status register to be polled
3356 * @deadline: deadline jiffies for the operation
3357 *
3358 * Sleep until ATA Status register bit BSY clears, or timeout
3359 * occurs.
3360 *
3361 * LOCKING:
3362 * Kernel thread context (may sleep).
3363 *
3364 * RETURNS:
3365 * 0 on success, -errno otherwise.
3366 */
3367int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3368{
3369 unsigned long start = jiffies;
3370 int warned = 0;
3371
3372 while (1) {
3373 u8 status = ata_chk_status(ap);
3374 unsigned long now = jiffies;
3375
3376 if (!(status & ATA_BUSY))
3377 return 0;
936fd732 3378 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3379 return -ENODEV;
3380 if (time_after(now, deadline))
3381 return -EBUSY;
3382
3383 if (!warned && time_after(now, start + 5 * HZ) &&
3384 (deadline - now > 3 * HZ)) {
3385 ata_port_printk(ap, KERN_WARNING,
3386 "port is slow to respond, please be patient "
3387 "(Status 0x%x)\n", status);
3388 warned = 1;
3389 }
3390
3391 msleep(50);
3392 }
3393}
3394
3395static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3396 unsigned long deadline)
1da177e4
LT
3397{
3398 struct ata_ioports *ioaddr = &ap->ioaddr;
3399 unsigned int dev0 = devmask & (1 << 0);
3400 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3401 int rc, ret = 0;
1da177e4
LT
3402
3403 /* if device 0 was found in ata_devchk, wait for its
3404 * BSY bit to clear
3405 */
d4b2bab4
TH
3406 if (dev0) {
3407 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3408 if (rc) {
3409 if (rc != -ENODEV)
3410 return rc;
3411 ret = rc;
3412 }
d4b2bab4 3413 }
1da177e4 3414
e141d999
TH
3415 /* if device 1 was found in ata_devchk, wait for register
3416 * access briefly, then wait for BSY to clear.
1da177e4 3417 */
e141d999
TH
3418 if (dev1) {
3419 int i;
1da177e4
LT
3420
3421 ap->ops->dev_select(ap, 1);
e141d999
TH
3422
3423 /* Wait for register access. Some ATAPI devices fail
3424 * to set nsect/lbal after reset, so don't waste too
3425 * much time on it. We're gonna wait for !BSY anyway.
3426 */
3427 for (i = 0; i < 2; i++) {
3428 u8 nsect, lbal;
3429
3430 nsect = ioread8(ioaddr->nsect_addr);
3431 lbal = ioread8(ioaddr->lbal_addr);
3432 if ((nsect == 1) && (lbal == 1))
3433 break;
3434 msleep(50); /* give drive a breather */
3435 }
3436
d4b2bab4 3437 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3438 if (rc) {
3439 if (rc != -ENODEV)
3440 return rc;
3441 ret = rc;
3442 }
d4b2bab4 3443 }
1da177e4
LT
3444
3445 /* is all this really necessary? */
3446 ap->ops->dev_select(ap, 0);
3447 if (dev1)
3448 ap->ops->dev_select(ap, 1);
3449 if (dev0)
3450 ap->ops->dev_select(ap, 0);
d4b2bab4 3451
9b89391c 3452 return ret;
1da177e4
LT
3453}
3454
d4b2bab4
TH
3455static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3456 unsigned long deadline)
1da177e4
LT
3457{
3458 struct ata_ioports *ioaddr = &ap->ioaddr;
3459
44877b4e 3460 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3461
3462 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3463 iowrite8(ap->ctl, ioaddr->ctl_addr);
3464 udelay(20); /* FIXME: flush */
3465 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3466 udelay(20); /* FIXME: flush */
3467 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3468
88ff6eaf
TH
3469 /* wait a while before checking status */
3470 ata_wait_after_reset(ap, deadline);
1da177e4 3471
2e9edbf8 3472 /* Before we perform post reset processing we want to see if
298a41ca
TH
3473 * the bus shows 0xFF because the odd clown forgets the D7
3474 * pulldown resistor.
3475 */
150981b0 3476 if (ata_chk_status(ap) == 0xFF)
9b89391c 3477 return -ENODEV;
09c7ad79 3478
d4b2bab4 3479 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3480}
3481
3482/**
3483 * ata_bus_reset - reset host port and associated ATA channel
3484 * @ap: port to reset
3485 *
3486 * This is typically the first time we actually start issuing
3487 * commands to the ATA channel. We wait for BSY to clear, then
3488 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3489 * result. Determine what devices, if any, are on the channel
3490 * by looking at the device 0/1 error register. Look at the signature
3491 * stored in each device's taskfile registers, to determine if
3492 * the device is ATA or ATAPI.
3493 *
3494 * LOCKING:
0cba632b 3495 * PCI/etc. bus probe sem.
cca3974e 3496 * Obtains host lock.
1da177e4
LT
3497 *
3498 * SIDE EFFECTS:
198e0fed 3499 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3500 */
3501
3502void ata_bus_reset(struct ata_port *ap)
3503{
9af5c9c9 3504 struct ata_device *device = ap->link.device;
1da177e4
LT
3505 struct ata_ioports *ioaddr = &ap->ioaddr;
3506 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3507 u8 err;
aec5c3c1 3508 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3509 int rc;
1da177e4 3510
44877b4e 3511 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3512
3513 /* determine if device 0/1 are present */
3514 if (ap->flags & ATA_FLAG_SATA_RESET)
3515 dev0 = 1;
3516 else {
3517 dev0 = ata_devchk(ap, 0);
3518 if (slave_possible)
3519 dev1 = ata_devchk(ap, 1);
3520 }
3521
3522 if (dev0)
3523 devmask |= (1 << 0);
3524 if (dev1)
3525 devmask |= (1 << 1);
3526
3527 /* select device 0 again */
3528 ap->ops->dev_select(ap, 0);
3529
3530 /* issue bus reset */
9b89391c
TH
3531 if (ap->flags & ATA_FLAG_SRST) {
3532 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3533 if (rc && rc != -ENODEV)
aec5c3c1 3534 goto err_out;
9b89391c 3535 }
1da177e4
LT
3536
3537 /*
3538 * determine by signature whether we have ATA or ATAPI devices
3539 */
3f19859e 3540 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3541 if ((slave_possible) && (err != 0x81))
3f19859e 3542 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3543
1da177e4 3544 /* is double-select really necessary? */
9af5c9c9 3545 if (device[1].class != ATA_DEV_NONE)
1da177e4 3546 ap->ops->dev_select(ap, 1);
9af5c9c9 3547 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3548 ap->ops->dev_select(ap, 0);
3549
3550 /* if no devices were detected, disable this port */
9af5c9c9
TH
3551 if ((device[0].class == ATA_DEV_NONE) &&
3552 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3553 goto err_out;
3554
3555 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3556 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3557 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3558 }
3559
3560 DPRINTK("EXIT\n");
3561 return;
3562
3563err_out:
f15a1daf 3564 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3565 ata_port_disable(ap);
1da177e4
LT
3566
3567 DPRINTK("EXIT\n");
3568}
3569
d7bb4cc7 3570/**
936fd732
TH
3571 * sata_link_debounce - debounce SATA phy status
3572 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3573 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3574 * @deadline: deadline jiffies for the operation
d7bb4cc7 3575 *
936fd732 3576* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3577 * holding the same value where DET is not 1 for @duration polled
3578 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3579 * beginning of the stable state. Because DET gets stuck at 1 on
3580 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3581 * until timeout then returns 0 if DET is stable at 1.
3582 *
d4b2bab4
TH
3583 * @timeout is further limited by @deadline. The sooner of the
3584 * two is used.
3585 *
d7bb4cc7
TH
3586 * LOCKING:
3587 * Kernel thread context (may sleep)
3588 *
3589 * RETURNS:
3590 * 0 on success, -errno on failure.
3591 */
936fd732
TH
3592int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3593 unsigned long deadline)
7a7921e8 3594{
d7bb4cc7 3595 unsigned long interval_msec = params[0];
d4b2bab4
TH
3596 unsigned long duration = msecs_to_jiffies(params[1]);
3597 unsigned long last_jiffies, t;
d7bb4cc7
TH
3598 u32 last, cur;
3599 int rc;
3600
d4b2bab4
TH
3601 t = jiffies + msecs_to_jiffies(params[2]);
3602 if (time_before(t, deadline))
3603 deadline = t;
3604
936fd732 3605 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3606 return rc;
3607 cur &= 0xf;
3608
3609 last = cur;
3610 last_jiffies = jiffies;
3611
3612 while (1) {
3613 msleep(interval_msec);
936fd732 3614 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3615 return rc;
3616 cur &= 0xf;
3617
3618 /* DET stable? */
3619 if (cur == last) {
d4b2bab4 3620 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3621 continue;
3622 if (time_after(jiffies, last_jiffies + duration))
3623 return 0;
3624 continue;
3625 }
3626
3627 /* unstable, start over */
3628 last = cur;
3629 last_jiffies = jiffies;
3630
f1545154
TH
3631 /* Check deadline. If debouncing failed, return
3632 * -EPIPE to tell upper layer to lower link speed.
3633 */
d4b2bab4 3634 if (time_after(jiffies, deadline))
f1545154 3635 return -EPIPE;
d7bb4cc7
TH
3636 }
3637}
3638
3639/**
936fd732
TH
3640 * sata_link_resume - resume SATA link
3641 * @link: ATA link to resume SATA
d7bb4cc7 3642 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3643 * @deadline: deadline jiffies for the operation
d7bb4cc7 3644 *
936fd732 3645 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3646 *
3647 * LOCKING:
3648 * Kernel thread context (may sleep)
3649 *
3650 * RETURNS:
3651 * 0 on success, -errno on failure.
3652 */
936fd732
TH
3653int sata_link_resume(struct ata_link *link, const unsigned long *params,
3654 unsigned long deadline)
d7bb4cc7
TH
3655{
3656 u32 scontrol;
81952c54
TH
3657 int rc;
3658
936fd732 3659 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3660 return rc;
7a7921e8 3661
852ee16a 3662 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3663
936fd732 3664 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3665 return rc;
7a7921e8 3666
d7bb4cc7
TH
3667 /* Some PHYs react badly if SStatus is pounded immediately
3668 * after resuming. Delay 200ms before debouncing.
3669 */
3670 msleep(200);
7a7921e8 3671
936fd732 3672 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3673}
3674
f5914a46
TH
3675/**
3676 * ata_std_prereset - prepare for reset
cc0680a5 3677 * @link: ATA link to be reset
d4b2bab4 3678 * @deadline: deadline jiffies for the operation
f5914a46 3679 *
cc0680a5 3680 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3681 * prereset makes libata abort whole reset sequence and give up
3682 * that port, so prereset should be best-effort. It does its
3683 * best to prepare for reset sequence but if things go wrong, it
3684 * should just whine, not fail.
f5914a46
TH
3685 *
3686 * LOCKING:
3687 * Kernel thread context (may sleep)
3688 *
3689 * RETURNS:
3690 * 0 on success, -errno otherwise.
3691 */
cc0680a5 3692int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3693{
cc0680a5 3694 struct ata_port *ap = link->ap;
936fd732 3695 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3696 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3697 int rc;
3698
31daabda 3699 /* handle link resume */
28324304 3700 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3701 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3702 ehc->i.action |= ATA_EH_HARDRESET;
3703
633273a3
TH
3704 /* Some PMPs don't work with only SRST, force hardreset if PMP
3705 * is supported.
3706 */
3707 if (ap->flags & ATA_FLAG_PMP)
3708 ehc->i.action |= ATA_EH_HARDRESET;
3709
f5914a46
TH
3710 /* if we're about to do hardreset, nothing more to do */
3711 if (ehc->i.action & ATA_EH_HARDRESET)
3712 return 0;
3713
936fd732 3714 /* if SATA, resume link */
a16abc0b 3715 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3716 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3717 /* whine about phy resume failure but proceed */
3718 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3719 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3720 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3721 }
3722
3723 /* Wait for !BSY if the controller can wait for the first D2H
3724 * Reg FIS and we don't know that no device is attached.
3725 */
0c88758b 3726 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3727 rc = ata_wait_ready(ap, deadline);
6dffaf61 3728 if (rc && rc != -ENODEV) {
cc0680a5 3729 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3730 "(errno=%d), forcing hardreset\n", rc);
3731 ehc->i.action |= ATA_EH_HARDRESET;
3732 }
3733 }
f5914a46
TH
3734
3735 return 0;
3736}
3737
c2bd5804
TH
3738/**
3739 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3740 * @link: ATA link to reset
c2bd5804 3741 * @classes: resulting classes of attached devices
d4b2bab4 3742 * @deadline: deadline jiffies for the operation
c2bd5804 3743 *
52783c5d 3744 * Reset host port using ATA SRST.
c2bd5804
TH
3745 *
3746 * LOCKING:
3747 * Kernel thread context (may sleep)
3748 *
3749 * RETURNS:
3750 * 0 on success, -errno otherwise.
3751 */
cc0680a5 3752int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3753 unsigned long deadline)
c2bd5804 3754{
cc0680a5 3755 struct ata_port *ap = link->ap;
c2bd5804 3756 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3757 unsigned int devmask = 0;
3758 int rc;
c2bd5804
TH
3759 u8 err;
3760
3761 DPRINTK("ENTER\n");
3762
936fd732 3763 if (ata_link_offline(link)) {
3a39746a
TH
3764 classes[0] = ATA_DEV_NONE;
3765 goto out;
3766 }
3767
c2bd5804
TH
3768 /* determine if device 0/1 are present */
3769 if (ata_devchk(ap, 0))
3770 devmask |= (1 << 0);
3771 if (slave_possible && ata_devchk(ap, 1))
3772 devmask |= (1 << 1);
3773
c2bd5804
TH
3774 /* select device 0 again */
3775 ap->ops->dev_select(ap, 0);
3776
3777 /* issue bus reset */
3778 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3779 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3780 /* if link is occupied, -ENODEV too is an error */
936fd732 3781 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3782 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3783 return rc;
c2bd5804
TH
3784 }
3785
3786 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3787 classes[0] = ata_dev_try_classify(&link->device[0],
3788 devmask & (1 << 0), &err);
c2bd5804 3789 if (slave_possible && err != 0x81)
3f19859e
TH
3790 classes[1] = ata_dev_try_classify(&link->device[1],
3791 devmask & (1 << 1), &err);
c2bd5804 3792
3a39746a 3793 out:
c2bd5804
TH
3794 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3795 return 0;
3796}
3797
3798/**
cc0680a5
TH
3799 * sata_link_hardreset - reset link via SATA phy reset
3800 * @link: link to reset
b6103f6d 3801 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3802 * @deadline: deadline jiffies for the operation
c2bd5804 3803 *
cc0680a5 3804 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3805 *
3806 * LOCKING:
3807 * Kernel thread context (may sleep)
3808 *
3809 * RETURNS:
3810 * 0 on success, -errno otherwise.
3811 */
cc0680a5 3812int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3813 unsigned long deadline)
c2bd5804 3814{
852ee16a 3815 u32 scontrol;
81952c54 3816 int rc;
852ee16a 3817
c2bd5804
TH
3818 DPRINTK("ENTER\n");
3819
936fd732 3820 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3821 /* SATA spec says nothing about how to reconfigure
3822 * spd. To be on the safe side, turn off phy during
3823 * reconfiguration. This works for at least ICH7 AHCI
3824 * and Sil3124.
3825 */
936fd732 3826 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3827 goto out;
81952c54 3828
a34b6fc0 3829 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3830
936fd732 3831 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3832 goto out;
1c3fae4d 3833
936fd732 3834 sata_set_spd(link);
1c3fae4d
TH
3835 }
3836
3837 /* issue phy wake/reset */
936fd732 3838 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3839 goto out;
81952c54 3840
852ee16a 3841 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3842
936fd732 3843 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3844 goto out;
c2bd5804 3845
1c3fae4d 3846 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3847 * 10.4.2 says at least 1 ms.
3848 */
3849 msleep(1);
3850
936fd732
TH
3851 /* bring link back */
3852 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3853 out:
3854 DPRINTK("EXIT, rc=%d\n", rc);
3855 return rc;
3856}
3857
3858/**
3859 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3860 * @link: link to reset
b6103f6d 3861 * @class: resulting class of attached device
d4b2bab4 3862 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3863 *
3864 * SATA phy-reset host port using DET bits of SControl register,
3865 * wait for !BSY and classify the attached device.
3866 *
3867 * LOCKING:
3868 * Kernel thread context (may sleep)
3869 *
3870 * RETURNS:
3871 * 0 on success, -errno otherwise.
3872 */
cc0680a5 3873int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3874 unsigned long deadline)
b6103f6d 3875{
cc0680a5 3876 struct ata_port *ap = link->ap;
936fd732 3877 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3878 int rc;
3879
3880 DPRINTK("ENTER\n");
3881
3882 /* do hardreset */
cc0680a5 3883 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3884 if (rc) {
cc0680a5 3885 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3886 "COMRESET failed (errno=%d)\n", rc);
3887 return rc;
3888 }
c2bd5804 3889
c2bd5804 3890 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3891 if (ata_link_offline(link)) {
c2bd5804
TH
3892 *class = ATA_DEV_NONE;
3893 DPRINTK("EXIT, link offline\n");
3894 return 0;
3895 }
3896
88ff6eaf
TH
3897 /* wait a while before checking status */
3898 ata_wait_after_reset(ap, deadline);
34fee227 3899
633273a3
TH
3900 /* If PMP is supported, we have to do follow-up SRST. Note
3901 * that some PMPs don't send D2H Reg FIS after hardreset at
3902 * all if the first port is empty. Wait for it just for a
3903 * second and request follow-up SRST.
3904 */
3905 if (ap->flags & ATA_FLAG_PMP) {
3906 ata_wait_ready(ap, jiffies + HZ);
3907 return -EAGAIN;
3908 }
3909
d4b2bab4 3910 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3911 /* link occupied, -ENODEV too is an error */
3912 if (rc) {
cc0680a5 3913 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3914 "COMRESET failed (errno=%d)\n", rc);
3915 return rc;
c2bd5804
TH
3916 }
3917
3a39746a
TH
3918 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3919
3f19859e 3920 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3921
3922 DPRINTK("EXIT, class=%u\n", *class);
3923 return 0;
3924}
3925
3926/**
3927 * ata_std_postreset - standard postreset callback
cc0680a5 3928 * @link: the target ata_link
c2bd5804
TH
3929 * @classes: classes of attached devices
3930 *
3931 * This function is invoked after a successful reset. Note that
3932 * the device might have been reset more than once using
3933 * different reset methods before postreset is invoked.
c2bd5804 3934 *
c2bd5804
TH
3935 * LOCKING:
3936 * Kernel thread context (may sleep)
3937 */
cc0680a5 3938void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3939{
cc0680a5 3940 struct ata_port *ap = link->ap;
dc2b3515
TH
3941 u32 serror;
3942
c2bd5804
TH
3943 DPRINTK("ENTER\n");
3944
c2bd5804 3945 /* print link status */
936fd732 3946 sata_print_link_status(link);
c2bd5804 3947
dc2b3515 3948 /* clear SError */
936fd732
TH
3949 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3950 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3951 link->eh_info.serror = 0;
dc2b3515 3952
c2bd5804
TH
3953 /* is double-select really necessary? */
3954 if (classes[0] != ATA_DEV_NONE)
3955 ap->ops->dev_select(ap, 1);
3956 if (classes[1] != ATA_DEV_NONE)
3957 ap->ops->dev_select(ap, 0);
3958
3a39746a
TH
3959 /* bail out if no device is present */
3960 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3961 DPRINTK("EXIT, no device\n");
3962 return;
3963 }
3964
3965 /* set up device control */
0d5ff566
TH
3966 if (ap->ioaddr.ctl_addr)
3967 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3968
3969 DPRINTK("EXIT\n");
3970}
3971
623a3128
TH
3972/**
3973 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3974 * @dev: device to compare against
3975 * @new_class: class of the new device
3976 * @new_id: IDENTIFY page of the new device
3977 *
3978 * Compare @new_class and @new_id against @dev and determine
3979 * whether @dev is the device indicated by @new_class and
3980 * @new_id.
3981 *
3982 * LOCKING:
3983 * None.
3984 *
3985 * RETURNS:
3986 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3987 */
3373efd8
TH
3988static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3989 const u16 *new_id)
623a3128
TH
3990{
3991 const u16 *old_id = dev->id;
a0cf733b
TH
3992 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3993 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3994
3995 if (dev->class != new_class) {
f15a1daf
TH
3996 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3997 dev->class, new_class);
623a3128
TH
3998 return 0;
3999 }
4000
a0cf733b
TH
4001 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4002 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4003 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4004 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4005
4006 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4007 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4008 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4009 return 0;
4010 }
4011
4012 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4013 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4014 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4015 return 0;
4016 }
4017
623a3128
TH
4018 return 1;
4019}
4020
4021/**
fe30911b 4022 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4023 * @dev: target ATA device
bff04647 4024 * @readid_flags: read ID flags
623a3128
TH
4025 *
4026 * Re-read IDENTIFY page and make sure @dev is still attached to
4027 * the port.
4028 *
4029 * LOCKING:
4030 * Kernel thread context (may sleep)
4031 *
4032 * RETURNS:
4033 * 0 on success, negative errno otherwise
4034 */
fe30911b 4035int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4036{
5eb45c02 4037 unsigned int class = dev->class;
9af5c9c9 4038 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4039 int rc;
4040
fe635c7e 4041 /* read ID data */
bff04647 4042 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4043 if (rc)
fe30911b 4044 return rc;
623a3128
TH
4045
4046 /* is the device still there? */
fe30911b
TH
4047 if (!ata_dev_same_device(dev, class, id))
4048 return -ENODEV;
623a3128 4049
fe635c7e 4050 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4051 return 0;
4052}
4053
4054/**
4055 * ata_dev_revalidate - Revalidate ATA device
4056 * @dev: device to revalidate
422c9daa 4057 * @new_class: new class code
fe30911b
TH
4058 * @readid_flags: read ID flags
4059 *
4060 * Re-read IDENTIFY page, make sure @dev is still attached to the
4061 * port and reconfigure it according to the new IDENTIFY page.
4062 *
4063 * LOCKING:
4064 * Kernel thread context (may sleep)
4065 *
4066 * RETURNS:
4067 * 0 on success, negative errno otherwise
4068 */
422c9daa
TH
4069int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4070 unsigned int readid_flags)
fe30911b 4071{
6ddcd3b0 4072 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4073 int rc;
4074
4075 if (!ata_dev_enabled(dev))
4076 return -ENODEV;
4077
422c9daa
TH
4078 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4079 if (ata_class_enabled(new_class) &&
4080 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4081 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4082 dev->class, new_class);
4083 rc = -ENODEV;
4084 goto fail;
4085 }
4086
fe30911b
TH
4087 /* re-read ID */
4088 rc = ata_dev_reread_id(dev, readid_flags);
4089 if (rc)
4090 goto fail;
623a3128
TH
4091
4092 /* configure device according to the new ID */
efdaedc4 4093 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4094 if (rc)
4095 goto fail;
4096
4097 /* verify n_sectors hasn't changed */
b54eebd6
TH
4098 if (dev->class == ATA_DEV_ATA && n_sectors &&
4099 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4100 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4101 "%llu != %llu\n",
4102 (unsigned long long)n_sectors,
4103 (unsigned long long)dev->n_sectors);
8270bec4
TH
4104
4105 /* restore original n_sectors */
4106 dev->n_sectors = n_sectors;
4107
6ddcd3b0
TH
4108 rc = -ENODEV;
4109 goto fail;
4110 }
4111
4112 return 0;
623a3128
TH
4113
4114 fail:
f15a1daf 4115 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4116 return rc;
4117}
4118
6919a0a6
AC
4119struct ata_blacklist_entry {
4120 const char *model_num;
4121 const char *model_rev;
4122 unsigned long horkage;
4123};
4124
4125static const struct ata_blacklist_entry ata_device_blacklist [] = {
4126 /* Devices with DMA related problems under Linux */
4127 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4128 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4129 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4130 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4131 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4132 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4133 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4134 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4135 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4136 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4137 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4138 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4139 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4140 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4141 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4142 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4143 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4144 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4145 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4146 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4147 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4148 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4149 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4150 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4151 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4152 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4153 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4154 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4155 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4156 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4157 /* Odd clown on sil3726/4726 PMPs */
4158 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4159 ATA_HORKAGE_SKIP_PM },
6919a0a6 4160
18d6e9d5 4161 /* Weird ATAPI devices */
40a1d531 4162 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4163
6919a0a6
AC
4164 /* Devices we expect to fail diagnostics */
4165
4166 /* Devices where NCQ should be avoided */
4167 /* NCQ is slow */
2dcb407e 4168 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4169 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4170 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4171 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4172 /* NCQ is broken */
539cc7c7 4173 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4174 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4175 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4176 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4177
36e337d0
RH
4178 /* Blacklist entries taken from Silicon Image 3124/3132
4179 Windows driver .inf file - also several Linux problem reports */
4180 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4181 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4182 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4183
16c55b03
TH
4184 /* devices which puke on READ_NATIVE_MAX */
4185 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4186 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4187 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4188 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4189
93328e11
AC
4190 /* Devices which report 1 sector over size HPA */
4191 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4192 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4193
6bbfd53d
AC
4194 /* Devices which get the IVB wrong */
4195 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4196 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4197 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4198 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4199 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4200
6919a0a6
AC
4201 /* End Marker */
4202 { }
1da177e4 4203};
2e9edbf8 4204
741b7763 4205static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4206{
4207 const char *p;
4208 int len;
4209
4210 /*
4211 * check for trailing wildcard: *\0
4212 */
4213 p = strchr(patt, wildchar);
4214 if (p && ((*(p + 1)) == 0))
4215 len = p - patt;
317b50b8 4216 else {
539cc7c7 4217 len = strlen(name);
317b50b8
AP
4218 if (!len) {
4219 if (!*patt)
4220 return 0;
4221 return -1;
4222 }
4223 }
539cc7c7
JG
4224
4225 return strncmp(patt, name, len);
4226}
4227
75683fe7 4228static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4229{
8bfa79fc
TH
4230 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4231 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4232 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4233
8bfa79fc
TH
4234 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4235 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4236
6919a0a6 4237 while (ad->model_num) {
539cc7c7 4238 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4239 if (ad->model_rev == NULL)
4240 return ad->horkage;
539cc7c7 4241 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4242 return ad->horkage;
f4b15fef 4243 }
6919a0a6 4244 ad++;
f4b15fef 4245 }
1da177e4
LT
4246 return 0;
4247}
4248
6919a0a6
AC
4249static int ata_dma_blacklisted(const struct ata_device *dev)
4250{
4251 /* We don't support polling DMA.
4252 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4253 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4254 */
9af5c9c9 4255 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4256 (dev->flags & ATA_DFLAG_CDB_INTR))
4257 return 1;
75683fe7 4258 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4259}
4260
6bbfd53d
AC
4261/**
4262 * ata_is_40wire - check drive side detection
4263 * @dev: device
4264 *
4265 * Perform drive side detection decoding, allowing for device vendors
4266 * who can't follow the documentation.
4267 */
4268
4269static int ata_is_40wire(struct ata_device *dev)
4270{
4271 if (dev->horkage & ATA_HORKAGE_IVB)
4272 return ata_drive_40wire_relaxed(dev->id);
4273 return ata_drive_40wire(dev->id);
4274}
4275
a6d5a51c
TH
4276/**
4277 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4278 * @dev: Device to compute xfermask for
4279 *
acf356b1
TH
4280 * Compute supported xfermask of @dev and store it in
4281 * dev->*_mask. This function is responsible for applying all
4282 * known limits including host controller limits, device
4283 * blacklist, etc...
a6d5a51c
TH
4284 *
4285 * LOCKING:
4286 * None.
a6d5a51c 4287 */
3373efd8 4288static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4289{
9af5c9c9
TH
4290 struct ata_link *link = dev->link;
4291 struct ata_port *ap = link->ap;
cca3974e 4292 struct ata_host *host = ap->host;
a6d5a51c 4293 unsigned long xfer_mask;
1da177e4 4294
37deecb5 4295 /* controller modes available */
565083e1
TH
4296 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4297 ap->mwdma_mask, ap->udma_mask);
4298
8343f889 4299 /* drive modes available */
37deecb5
TH
4300 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4301 dev->mwdma_mask, dev->udma_mask);
4302 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4303
b352e57d
AC
4304 /*
4305 * CFA Advanced TrueIDE timings are not allowed on a shared
4306 * cable
4307 */
4308 if (ata_dev_pair(dev)) {
4309 /* No PIO5 or PIO6 */
4310 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4311 /* No MWDMA3 or MWDMA 4 */
4312 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4313 }
4314
37deecb5
TH
4315 if (ata_dma_blacklisted(dev)) {
4316 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4317 ata_dev_printk(dev, KERN_WARNING,
4318 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4319 }
a6d5a51c 4320
14d66ab7 4321 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4322 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4323 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4324 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4325 "other device, disabling DMA\n");
5444a6f4 4326 }
565083e1 4327
e424675f
JG
4328 if (ap->flags & ATA_FLAG_NO_IORDY)
4329 xfer_mask &= ata_pio_mask_no_iordy(dev);
4330
5444a6f4 4331 if (ap->ops->mode_filter)
a76b62ca 4332 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4333
8343f889
RH
4334 /* Apply cable rule here. Don't apply it early because when
4335 * we handle hot plug the cable type can itself change.
4336 * Check this last so that we know if the transfer rate was
4337 * solely limited by the cable.
4338 * Unknown or 80 wire cables reported host side are checked
4339 * drive side as well. Cases where we know a 40wire cable
4340 * is used safely for 80 are not checked here.
4341 */
4342 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4343 /* UDMA/44 or higher would be available */
2dcb407e 4344 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4345 (ata_is_40wire(dev) &&
2dcb407e
JG
4346 (ap->cbl == ATA_CBL_PATA_UNK ||
4347 ap->cbl == ATA_CBL_PATA80))) {
4348 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4349 "limited to UDMA/33 due to 40-wire cable\n");
4350 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4351 }
4352
565083e1
TH
4353 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4354 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4355}
4356
1da177e4
LT
4357/**
4358 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4359 * @dev: Device to which command will be sent
4360 *
780a87f7
JG
4361 * Issue SET FEATURES - XFER MODE command to device @dev
4362 * on port @ap.
4363 *
1da177e4 4364 * LOCKING:
0cba632b 4365 * PCI/etc. bus probe sem.
83206a29
TH
4366 *
4367 * RETURNS:
4368 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4369 */
4370
3373efd8 4371static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4372{
a0123703 4373 struct ata_taskfile tf;
83206a29 4374 unsigned int err_mask;
1da177e4
LT
4375
4376 /* set up set-features taskfile */
4377 DPRINTK("set features - xfer mode\n");
4378
464cf177
TH
4379 /* Some controllers and ATAPI devices show flaky interrupt
4380 * behavior after setting xfer mode. Use polling instead.
4381 */
3373efd8 4382 ata_tf_init(dev, &tf);
a0123703
TH
4383 tf.command = ATA_CMD_SET_FEATURES;
4384 tf.feature = SETFEATURES_XFER;
464cf177 4385 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4386 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4387 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4388 if (ata_pio_need_iordy(dev))
4389 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4390 /* If the device has IORDY and the controller does not - turn it off */
4391 else if (ata_id_has_iordy(dev->id))
11b7becc 4392 tf.nsect = 0x01;
b9f8ab2d
AC
4393 else /* In the ancient relic department - skip all of this */
4394 return 0;
1da177e4 4395
2b789108 4396 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4397
4398 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4399 return err_mask;
4400}
9f45cbd3 4401/**
218f3d30 4402 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4403 * @dev: Device to which command will be sent
4404 * @enable: Whether to enable or disable the feature
218f3d30 4405 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4406 *
4407 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4408 * on port @ap with sector count
9f45cbd3
KCA
4409 *
4410 * LOCKING:
4411 * PCI/etc. bus probe sem.
4412 *
4413 * RETURNS:
4414 * 0 on success, AC_ERR_* mask otherwise.
4415 */
218f3d30
JG
4416static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4417 u8 feature)
9f45cbd3
KCA
4418{
4419 struct ata_taskfile tf;
4420 unsigned int err_mask;
4421
4422 /* set up set-features taskfile */
4423 DPRINTK("set features - SATA features\n");
4424
4425 ata_tf_init(dev, &tf);
4426 tf.command = ATA_CMD_SET_FEATURES;
4427 tf.feature = enable;
4428 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4429 tf.protocol = ATA_PROT_NODATA;
218f3d30 4430 tf.nsect = feature;
9f45cbd3 4431
2b789108 4432 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4433
83206a29
TH
4434 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4435 return err_mask;
1da177e4
LT
4436}
4437
8bf62ece
AL
4438/**
4439 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4440 * @dev: Device to which command will be sent
e2a7f77a
RD
4441 * @heads: Number of heads (taskfile parameter)
4442 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4443 *
4444 * LOCKING:
6aff8f1f
TH
4445 * Kernel thread context (may sleep)
4446 *
4447 * RETURNS:
4448 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4449 */
3373efd8
TH
4450static unsigned int ata_dev_init_params(struct ata_device *dev,
4451 u16 heads, u16 sectors)
8bf62ece 4452{
a0123703 4453 struct ata_taskfile tf;
6aff8f1f 4454 unsigned int err_mask;
8bf62ece
AL
4455
4456 /* Number of sectors per track 1-255. Number of heads 1-16 */
4457 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4458 return AC_ERR_INVALID;
8bf62ece
AL
4459
4460 /* set up init dev params taskfile */
4461 DPRINTK("init dev params \n");
4462
3373efd8 4463 ata_tf_init(dev, &tf);
a0123703
TH
4464 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4465 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4466 tf.protocol = ATA_PROT_NODATA;
4467 tf.nsect = sectors;
4468 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4469
2b789108 4470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4471 /* A clean abort indicates an original or just out of spec drive
4472 and we should continue as we issue the setup based on the
4473 drive reported working geometry */
4474 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4475 err_mask = 0;
8bf62ece 4476
6aff8f1f
TH
4477 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4478 return err_mask;
8bf62ece
AL
4479}
4480
1da177e4 4481/**
0cba632b
JG
4482 * ata_sg_clean - Unmap DMA memory associated with command
4483 * @qc: Command containing DMA memory to be released
4484 *
4485 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4486 *
4487 * LOCKING:
cca3974e 4488 * spin_lock_irqsave(host lock)
1da177e4 4489 */
70e6ad0c 4490void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4491{
4492 struct ata_port *ap = qc->ap;
ff2aeb1e 4493 struct scatterlist *sg = qc->sg;
1da177e4 4494 int dir = qc->dma_dir;
cedc9a47 4495 void *pad_buf = NULL;
1da177e4 4496
a4631474 4497 WARN_ON(sg == NULL);
1da177e4 4498
ff2aeb1e 4499 VPRINTK("unmapping %u sg elements\n", qc->mapped_n_elem);
1da177e4 4500
cedc9a47
JG
4501 /* if we padded the buffer out to 32-bit bound, and data
4502 * xfer direction is from-device, we must copy from the
4503 * pad buffer back into the supplied buffer
4504 */
4505 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4506 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4507
ff2aeb1e
TH
4508 if (qc->mapped_n_elem)
4509 dma_unmap_sg(ap->dev, sg, qc->mapped_n_elem, dir);
001102d7 4510 /* restore last sg */
ff2aeb1e
TH
4511 if (qc->last_sg)
4512 *qc->last_sg = qc->saved_last_sg;
001102d7 4513 if (pad_buf) {
ff2aeb1e 4514 struct scatterlist *psg = &qc->extra_sg[1];
001102d7
TH
4515 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4516 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4517 kunmap_atomic(addr, KM_IRQ0);
cedc9a47 4518 }
1da177e4
LT
4519
4520 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4521 qc->sg = NULL;
1da177e4
LT
4522}
4523
4524/**
4525 * ata_fill_sg - Fill PCI IDE PRD table
4526 * @qc: Metadata associated with taskfile to be transferred
4527 *
780a87f7
JG
4528 * Fill PCI IDE PRD (scatter-gather) table with segments
4529 * associated with the current disk command.
4530 *
1da177e4 4531 * LOCKING:
cca3974e 4532 * spin_lock_irqsave(host lock)
1da177e4
LT
4533 *
4534 */
4535static void ata_fill_sg(struct ata_queued_cmd *qc)
4536{
1da177e4 4537 struct ata_port *ap = qc->ap;
cedc9a47 4538 struct scatterlist *sg;
ff2aeb1e 4539 unsigned int si, pi;
1da177e4 4540
ff2aeb1e
TH
4541 pi = 0;
4542 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1da177e4
LT
4543 u32 addr, offset;
4544 u32 sg_len, len;
4545
4546 /* determine if physical DMA addr spans 64K boundary.
4547 * Note h/w doesn't support 64-bit, so we unconditionally
4548 * truncate dma_addr_t to u32.
4549 */
4550 addr = (u32) sg_dma_address(sg);
4551 sg_len = sg_dma_len(sg);
4552
4553 while (sg_len) {
4554 offset = addr & 0xffff;
4555 len = sg_len;
4556 if ((offset + sg_len) > 0x10000)
4557 len = 0x10000 - offset;
4558
ff2aeb1e
TH
4559 ap->prd[pi].addr = cpu_to_le32(addr);
4560 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4561 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
1da177e4 4562
ff2aeb1e 4563 pi++;
1da177e4
LT
4564 sg_len -= len;
4565 addr += len;
4566 }
4567 }
4568
ff2aeb1e 4569 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
1da177e4 4570}
b9a4197e 4571
d26fc955
AC
4572/**
4573 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4574 * @qc: Metadata associated with taskfile to be transferred
4575 *
4576 * Fill PCI IDE PRD (scatter-gather) table with segments
4577 * associated with the current disk command. Perform the fill
4578 * so that we avoid writing any length 64K records for
4579 * controllers that don't follow the spec.
4580 *
4581 * LOCKING:
4582 * spin_lock_irqsave(host lock)
4583 *
4584 */
4585static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4586{
4587 struct ata_port *ap = qc->ap;
4588 struct scatterlist *sg;
ff2aeb1e 4589 unsigned int si, pi;
d26fc955 4590
ff2aeb1e
TH
4591 pi = 0;
4592 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d26fc955
AC
4593 u32 addr, offset;
4594 u32 sg_len, len, blen;
4595
2dcb407e 4596 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4597 * Note h/w doesn't support 64-bit, so we unconditionally
4598 * truncate dma_addr_t to u32.
4599 */
4600 addr = (u32) sg_dma_address(sg);
4601 sg_len = sg_dma_len(sg);
4602
4603 while (sg_len) {
4604 offset = addr & 0xffff;
4605 len = sg_len;
4606 if ((offset + sg_len) > 0x10000)
4607 len = 0x10000 - offset;
4608
4609 blen = len & 0xffff;
ff2aeb1e 4610 ap->prd[pi].addr = cpu_to_le32(addr);
d26fc955
AC
4611 if (blen == 0) {
4612 /* Some PATA chipsets like the CS5530 can't
4613 cope with 0x0000 meaning 64K as the spec says */
ff2aeb1e 4614 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
d26fc955 4615 blen = 0x8000;
ff2aeb1e 4616 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
d26fc955 4617 }
ff2aeb1e
TH
4618 ap->prd[pi].flags_len = cpu_to_le32(blen);
4619 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
d26fc955 4620
ff2aeb1e 4621 pi++;
d26fc955
AC
4622 sg_len -= len;
4623 addr += len;
4624 }
4625 }
4626
ff2aeb1e 4627 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
d26fc955
AC
4628}
4629
1da177e4
LT
4630/**
4631 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4632 * @qc: Metadata associated with taskfile to check
4633 *
780a87f7
JG
4634 * Allow low-level driver to filter ATA PACKET commands, returning
4635 * a status indicating whether or not it is OK to use DMA for the
4636 * supplied PACKET command.
4637 *
1da177e4 4638 * LOCKING:
cca3974e 4639 * spin_lock_irqsave(host lock)
0cba632b 4640 *
1da177e4
LT
4641 * RETURNS: 0 when ATAPI DMA can be used
4642 * nonzero otherwise
4643 */
4644int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4645{
4646 struct ata_port *ap = qc->ap;
b9a4197e
TH
4647
4648 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4649 * few ATAPI devices choke on such DMA requests.
4650 */
4651 if (unlikely(qc->nbytes & 15))
4652 return 1;
6f23a31d 4653
1da177e4 4654 if (ap->ops->check_atapi_dma)
b9a4197e 4655 return ap->ops->check_atapi_dma(qc);
1da177e4 4656
b9a4197e 4657 return 0;
1da177e4 4658}
b9a4197e 4659
140b5e59
TH
4660/**
4661 * atapi_qc_may_overflow - Check whether data transfer may overflow
4662 * @qc: ATA command in question
4663 *
4664 * ATAPI commands which transfer variable length data to host
4665 * might overflow due to application error or hardare bug. This
4666 * function checks whether overflow should be drained and ignored
4667 * for @qc.
4668 *
4669 * LOCKING:
4670 * None.
4671 *
4672 * RETURNS:
4673 * 1 if @qc may overflow; otherwise, 0.
4674 */
4675static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4676{
0dc36888
TH
4677 if (qc->tf.protocol != ATAPI_PROT_PIO &&
4678 qc->tf.protocol != ATAPI_PROT_DMA)
140b5e59
TH
4679 return 0;
4680
4681 if (qc->tf.flags & ATA_TFLAG_WRITE)
4682 return 0;
4683
4684 switch (qc->cdb[0]) {
4685 case READ_10:
4686 case READ_12:
4687 case WRITE_10:
4688 case WRITE_12:
4689 case GPCMD_READ_CD:
4690 case GPCMD_READ_CD_MSF:
4691 return 0;
4692 }
4693
4694 return 1;
4695}
4696
31cc23b3
TH
4697/**
4698 * ata_std_qc_defer - Check whether a qc needs to be deferred
4699 * @qc: ATA command in question
4700 *
4701 * Non-NCQ commands cannot run with any other command, NCQ or
4702 * not. As upper layer only knows the queue depth, we are
4703 * responsible for maintaining exclusion. This function checks
4704 * whether a new command @qc can be issued.
4705 *
4706 * LOCKING:
4707 * spin_lock_irqsave(host lock)
4708 *
4709 * RETURNS:
4710 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4711 */
4712int ata_std_qc_defer(struct ata_queued_cmd *qc)
4713{
4714 struct ata_link *link = qc->dev->link;
4715
4716 if (qc->tf.protocol == ATA_PROT_NCQ) {
4717 if (!ata_tag_valid(link->active_tag))
4718 return 0;
4719 } else {
4720 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4721 return 0;
4722 }
4723
4724 return ATA_DEFER_LINK;
4725}
4726
1da177e4
LT
4727/**
4728 * ata_qc_prep - Prepare taskfile for submission
4729 * @qc: Metadata associated with taskfile to be prepared
4730 *
780a87f7
JG
4731 * Prepare ATA taskfile for submission.
4732 *
1da177e4 4733 * LOCKING:
cca3974e 4734 * spin_lock_irqsave(host lock)
1da177e4
LT
4735 */
4736void ata_qc_prep(struct ata_queued_cmd *qc)
4737{
4738 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4739 return;
4740
4741 ata_fill_sg(qc);
4742}
4743
d26fc955
AC
4744/**
4745 * ata_dumb_qc_prep - Prepare taskfile for submission
4746 * @qc: Metadata associated with taskfile to be prepared
4747 *
4748 * Prepare ATA taskfile for submission.
4749 *
4750 * LOCKING:
4751 * spin_lock_irqsave(host lock)
4752 */
4753void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4754{
4755 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4756 return;
4757
4758 ata_fill_sg_dumb(qc);
4759}
4760
e46834cd
BK
4761void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4762
0cba632b
JG
4763/**
4764 * ata_sg_init - Associate command with scatter-gather table.
4765 * @qc: Command to be associated
4766 * @sg: Scatter-gather table.
4767 * @n_elem: Number of elements in s/g table.
4768 *
4769 * Initialize the data-related elements of queued_cmd @qc
4770 * to point to a scatter-gather table @sg, containing @n_elem
4771 * elements.
4772 *
4773 * LOCKING:
cca3974e 4774 * spin_lock_irqsave(host lock)
0cba632b 4775 */
1da177e4
LT
4776void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4777 unsigned int n_elem)
4778{
ff2aeb1e 4779 qc->sg = sg;
1da177e4 4780 qc->n_elem = n_elem;
ff2aeb1e 4781 qc->cursg = qc->sg;
1da177e4
LT
4782}
4783
ff2aeb1e 4784static unsigned int ata_sg_setup_extra(struct ata_queued_cmd *qc,
0bcc65ad
TH
4785 unsigned int *n_elem_extra,
4786 unsigned int *nbytes_extra)
1da177e4
LT
4787{
4788 struct ata_port *ap = qc->ap;
ff2aeb1e
TH
4789 unsigned int n_elem = qc->n_elem;
4790 struct scatterlist *lsg, *copy_lsg = NULL, *tsg = NULL, *esg = NULL;
1da177e4 4791
ff2aeb1e 4792 *n_elem_extra = 0;
0bcc65ad 4793 *nbytes_extra = 0;
ff2aeb1e
TH
4794
4795 /* needs padding? */
4796 qc->pad_len = qc->nbytes & 3;
4797
4798 if (likely(!qc->pad_len))
4799 return n_elem;
4800
4801 /* locate last sg and save it */
4802 lsg = sg_last(qc->sg, n_elem);
4803 qc->last_sg = lsg;
4804 qc->saved_last_sg = *lsg;
4805
4806 sg_init_table(qc->extra_sg, ARRAY_SIZE(qc->extra_sg));
1da177e4 4807
cedc9a47 4808 if (qc->pad_len) {
ff2aeb1e 4809 struct scatterlist *psg = &qc->extra_sg[1];
cedc9a47 4810 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
cedc9a47
JG
4811 unsigned int offset;
4812
a4631474 4813 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4814
4815 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4816
ff2aeb1e 4817 /* psg->page/offset are used to copy to-be-written
cedc9a47
JG
4818 * data in this function or read data in ata_sg_clean.
4819 */
4820 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490 4821 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
ff2aeb1e 4822 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4823
4824 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4825 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4826 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4827 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4828 }
4829
4830 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4831 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
ff2aeb1e
TH
4832
4833 /* Trim the last sg entry and chain the original and
4834 * padding sg lists.
4835 *
4836 * Because chaining consumes one sg entry, one extra
4837 * sg entry is allocated and the last sg entry is
4838 * copied to it if the length isn't zero after padded
4839 * amount is removed.
4840 *
4841 * If the last sg entry is completely replaced by
4842 * padding sg entry, the first sg entry is skipped
4843 * while chaining.
4844 */
cedc9a47 4845 lsg->length -= qc->pad_len;
ff2aeb1e
TH
4846 if (lsg->length) {
4847 copy_lsg = &qc->extra_sg[0];
4848 tsg = &qc->extra_sg[0];
4849 } else {
4850 n_elem--;
4851 tsg = &qc->extra_sg[1];
4852 }
4853
4854 esg = &qc->extra_sg[1];
cedc9a47 4855
ff2aeb1e 4856 (*n_elem_extra)++;
0bcc65ad 4857 (*nbytes_extra) += 4 - qc->pad_len;
cedc9a47
JG
4858 }
4859
ff2aeb1e
TH
4860 if (copy_lsg)
4861 sg_set_page(copy_lsg, sg_page(lsg), lsg->length, lsg->offset);
e1410f2d 4862
ff2aeb1e
TH
4863 sg_chain(lsg, 1, tsg);
4864 sg_mark_end(esg);
4865
4866 /* sglist can't start with chaining sg entry, fast forward */
4867 if (qc->sg == lsg) {
4868 qc->sg = tsg;
4869 qc->cursg = tsg;
e1410f2d
JG
4870 }
4871
ff2aeb1e
TH
4872 return n_elem;
4873}
4874
4875/**
4876 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4877 * @qc: Command with scatter-gather table to be mapped.
4878 *
4879 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4880 *
4881 * LOCKING:
4882 * spin_lock_irqsave(host lock)
4883 *
4884 * RETURNS:
4885 * Zero on success, negative on error.
4886 *
4887 */
4888static int ata_sg_setup(struct ata_queued_cmd *qc)
4889{
4890 struct ata_port *ap = qc->ap;
0bcc65ad 4891 unsigned int n_elem, n_elem_extra, nbytes_extra;
ff2aeb1e
TH
4892
4893 VPRINTK("ENTER, ata%u\n", ap->print_id);
4894
0bcc65ad 4895 n_elem = ata_sg_setup_extra(qc, &n_elem_extra, &nbytes_extra);
ff2aeb1e
TH
4896
4897 if (n_elem) {
4898 n_elem = dma_map_sg(ap->dev, qc->sg, n_elem, qc->dma_dir);
4899 if (n_elem < 1) {
4900 /* restore last sg */
4901 if (qc->last_sg)
4902 *qc->last_sg = qc->saved_last_sg;
4903 return -1;
4904 }
4905 DPRINTK("%d sg elements mapped\n", n_elem);
537a95d9 4906 }
1da177e4 4907
ff2aeb1e
TH
4908 qc->n_elem = qc->mapped_n_elem = n_elem;
4909 qc->n_elem += n_elem_extra;
0bcc65ad 4910 qc->nbytes += nbytes_extra;
f92a2636 4911 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4
LT
4912
4913 return 0;
4914}
4915
0baab86b 4916/**
c893a3ae 4917 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4918 * @buf: Buffer to swap
4919 * @buf_words: Number of 16-bit words in buffer.
4920 *
4921 * Swap halves of 16-bit words if needed to convert from
4922 * little-endian byte order to native cpu byte order, or
4923 * vice-versa.
4924 *
4925 * LOCKING:
6f0ef4fa 4926 * Inherited from caller.
0baab86b 4927 */
1da177e4
LT
4928void swap_buf_le16(u16 *buf, unsigned int buf_words)
4929{
4930#ifdef __BIG_ENDIAN
4931 unsigned int i;
4932
4933 for (i = 0; i < buf_words; i++)
4934 buf[i] = le16_to_cpu(buf[i]);
4935#endif /* __BIG_ENDIAN */
4936}
4937
6ae4cfb5 4938/**
0d5ff566 4939 * ata_data_xfer - Transfer data by PIO
55dba312 4940 * @dev: device to target
6ae4cfb5
AL
4941 * @buf: data buffer
4942 * @buflen: buffer length
0affa456 4943 * @rw: read/write
6ae4cfb5
AL
4944 *
4945 * Transfer data from/to the device data register by PIO.
4946 *
4947 * LOCKING:
4948 * Inherited from caller.
55dba312
TH
4949 *
4950 * RETURNS:
4951 * Bytes consumed.
6ae4cfb5 4952 */
55dba312
TH
4953unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
4954 unsigned int buflen, int rw)
1da177e4 4955{
55dba312
TH
4956 struct ata_port *ap = dev->link->ap;
4957 void __iomem *data_addr = ap->ioaddr.data_addr;
6ae4cfb5 4958 unsigned int words = buflen >> 1;
1da177e4 4959
6ae4cfb5 4960 /* Transfer multiple of 2 bytes */
55dba312
TH
4961 if (rw == READ)
4962 ioread16_rep(data_addr, buf, words);
1da177e4 4963 else
55dba312 4964 iowrite16_rep(data_addr, buf, words);
6ae4cfb5
AL
4965
4966 /* Transfer trailing 1 byte, if any. */
4967 if (unlikely(buflen & 0x01)) {
4ca4e439 4968 __le16 align_buf[1] = { 0 };
6ae4cfb5
AL
4969 unsigned char *trailing_buf = buf + buflen - 1;
4970
55dba312
TH
4971 if (rw == READ) {
4972 align_buf[0] = cpu_to_le16(ioread16(data_addr));
6ae4cfb5 4973 memcpy(trailing_buf, align_buf, 1);
55dba312
TH
4974 } else {
4975 memcpy(align_buf, trailing_buf, 1);
4976 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
6ae4cfb5 4977 }
55dba312 4978 words++;
6ae4cfb5 4979 }
55dba312
TH
4980
4981 return words << 1;
1da177e4
LT
4982}
4983
75e99585 4984/**
0d5ff566 4985 * ata_data_xfer_noirq - Transfer data by PIO
55dba312 4986 * @dev: device to target
75e99585
AC
4987 * @buf: data buffer
4988 * @buflen: buffer length
0affa456 4989 * @rw: read/write
75e99585 4990 *
88574551 4991 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4992 * transfer with interrupts disabled.
4993 *
4994 * LOCKING:
4995 * Inherited from caller.
55dba312
TH
4996 *
4997 * RETURNS:
4998 * Bytes consumed.
75e99585 4999 */
55dba312
TH
5000unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5001 unsigned int buflen, int rw)
75e99585
AC
5002{
5003 unsigned long flags;
55dba312
TH
5004 unsigned int consumed;
5005
75e99585 5006 local_irq_save(flags);
55dba312 5007 consumed = ata_data_xfer(dev, buf, buflen, rw);
75e99585 5008 local_irq_restore(flags);
55dba312
TH
5009
5010 return consumed;
75e99585
AC
5011}
5012
5013
6ae4cfb5 5014/**
5a5dbd18 5015 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5016 * @qc: Command on going
5017 *
5a5dbd18 5018 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5019 *
5020 * LOCKING:
5021 * Inherited from caller.
5022 */
5023
1da177e4
LT
5024static void ata_pio_sector(struct ata_queued_cmd *qc)
5025{
5026 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5027 struct ata_port *ap = qc->ap;
5028 struct page *page;
5029 unsigned int offset;
5030 unsigned char *buf;
5031
5a5dbd18 5032 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5033 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5034
45711f1a 5035 page = sg_page(qc->cursg);
87260216 5036 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5037
5038 /* get the current page and offset */
5039 page = nth_page(page, (offset >> PAGE_SHIFT));
5040 offset %= PAGE_SIZE;
5041
1da177e4
LT
5042 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5043
91b8b313
AL
5044 if (PageHighMem(page)) {
5045 unsigned long flags;
5046
a6b2c5d4 5047 /* FIXME: use a bounce buffer */
91b8b313
AL
5048 local_irq_save(flags);
5049 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5050
91b8b313 5051 /* do the actual data transfer */
5a5dbd18 5052 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5053
91b8b313
AL
5054 kunmap_atomic(buf, KM_IRQ0);
5055 local_irq_restore(flags);
5056 } else {
5057 buf = page_address(page);
5a5dbd18 5058 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5059 }
1da177e4 5060
5a5dbd18
ML
5061 qc->curbytes += qc->sect_size;
5062 qc->cursg_ofs += qc->sect_size;
1da177e4 5063
87260216
JA
5064 if (qc->cursg_ofs == qc->cursg->length) {
5065 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5066 qc->cursg_ofs = 0;
5067 }
1da177e4 5068}
1da177e4 5069
07f6f7d0 5070/**
5a5dbd18 5071 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5072 * @qc: Command on going
5073 *
5a5dbd18 5074 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5075 * ATA device for the DRQ request.
5076 *
5077 * LOCKING:
5078 * Inherited from caller.
5079 */
1da177e4 5080
07f6f7d0
AL
5081static void ata_pio_sectors(struct ata_queued_cmd *qc)
5082{
5083 if (is_multi_taskfile(&qc->tf)) {
5084 /* READ/WRITE MULTIPLE */
5085 unsigned int nsect;
5086
587005de 5087 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5088
5a5dbd18 5089 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5090 qc->dev->multi_count);
07f6f7d0
AL
5091 while (nsect--)
5092 ata_pio_sector(qc);
5093 } else
5094 ata_pio_sector(qc);
4cc980b3
AL
5095
5096 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5097}
5098
c71c1857
AL
5099/**
5100 * atapi_send_cdb - Write CDB bytes to hardware
5101 * @ap: Port to which ATAPI device is attached.
5102 * @qc: Taskfile currently active
5103 *
5104 * When device has indicated its readiness to accept
5105 * a CDB, this function is called. Send the CDB.
5106 *
5107 * LOCKING:
5108 * caller.
5109 */
5110
5111static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5112{
5113 /* send SCSI cdb */
5114 DPRINTK("send cdb\n");
db024d53 5115 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5116
a6b2c5d4 5117 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5118 ata_altstatus(ap); /* flush */
5119
5120 switch (qc->tf.protocol) {
0dc36888 5121 case ATAPI_PROT_PIO:
c71c1857
AL
5122 ap->hsm_task_state = HSM_ST;
5123 break;
0dc36888 5124 case ATAPI_PROT_NODATA:
c71c1857
AL
5125 ap->hsm_task_state = HSM_ST_LAST;
5126 break;
0dc36888 5127 case ATAPI_PROT_DMA:
c71c1857
AL
5128 ap->hsm_task_state = HSM_ST_LAST;
5129 /* initiate bmdma */
5130 ap->ops->bmdma_start(qc);
5131 break;
5132 }
1da177e4
LT
5133}
5134
6ae4cfb5
AL
5135/**
5136 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5137 * @qc: Command on going
5138 * @bytes: number of bytes
5139 *
5140 * Transfer Transfer data from/to the ATAPI device.
5141 *
5142 * LOCKING:
5143 * Inherited from caller.
5144 *
5145 */
140b5e59 5146static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5147{
5148 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5149 struct ata_port *ap = qc->ap;
140b5e59
TH
5150 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5151 struct scatterlist *sg;
1da177e4
LT
5152 struct page *page;
5153 unsigned char *buf;
5154 unsigned int offset, count;
1da177e4
LT
5155
5156next_sg:
140b5e59
TH
5157 sg = qc->cursg;
5158 if (unlikely(!sg)) {
7fb6ec28 5159 /*
563a6e1f
AL
5160 * The end of qc->sg is reached and the device expects
5161 * more data to transfer. In order not to overrun qc->sg
5162 * and fulfill length specified in the byte count register,
5163 * - for read case, discard trailing data from the device
5164 * - for write case, padding zero data to the device
5165 */
5166 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5167 unsigned int i;
5168
140b5e59
TH
5169 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5170 ata_ehi_push_desc(ehi, "too much trailing data "
5171 "buf=%u cur=%u bytes=%u",
5172 qc->nbytes, qc->curbytes, bytes);
5173 return -1;
5174 }
5175
5176 /* overflow is exptected for misc ATAPI commands */
5177 if (bytes && !atapi_qc_may_overflow(qc))
5178 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5179 "trailing data (cdb=%02x nbytes=%u)\n",
5180 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5181
140b5e59 5182 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5183 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5184
140b5e59 5185 qc->curbytes += bytes;
563a6e1f 5186
140b5e59
TH
5187 return 0;
5188 }
1da177e4 5189
45711f1a 5190 page = sg_page(sg);
1da177e4
LT
5191 offset = sg->offset + qc->cursg_ofs;
5192
5193 /* get the current page and offset */
5194 page = nth_page(page, (offset >> PAGE_SHIFT));
5195 offset %= PAGE_SIZE;
5196
6952df03 5197 /* don't overrun current sg */
32529e01 5198 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5199
5200 /* don't cross page boundaries */
5201 count = min(count, (unsigned int)PAGE_SIZE - offset);
5202
7282aa4b
AL
5203 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5204
91b8b313
AL
5205 if (PageHighMem(page)) {
5206 unsigned long flags;
5207
a6b2c5d4 5208 /* FIXME: use bounce buffer */
91b8b313
AL
5209 local_irq_save(flags);
5210 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5211
91b8b313 5212 /* do the actual data transfer */
a6b2c5d4 5213 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5214
91b8b313
AL
5215 kunmap_atomic(buf, KM_IRQ0);
5216 local_irq_restore(flags);
5217 } else {
5218 buf = page_address(page);
a6b2c5d4 5219 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5220 }
1da177e4
LT
5221
5222 bytes -= count;
140b5e59
TH
5223 if ((count & 1) && bytes)
5224 bytes--;
1da177e4
LT
5225 qc->curbytes += count;
5226 qc->cursg_ofs += count;
5227
32529e01 5228 if (qc->cursg_ofs == sg->length) {
87260216 5229 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5230 qc->cursg_ofs = 0;
5231 }
5232
563a6e1f 5233 if (bytes)
1da177e4 5234 goto next_sg;
140b5e59
TH
5235
5236 return 0;
1da177e4
LT
5237}
5238
6ae4cfb5
AL
5239/**
5240 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5241 * @qc: Command on going
5242 *
5243 * Transfer Transfer data from/to the ATAPI device.
5244 *
5245 * LOCKING:
5246 * Inherited from caller.
6ae4cfb5
AL
5247 */
5248
1da177e4
LT
5249static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5250{
5251 struct ata_port *ap = qc->ap;
5252 struct ata_device *dev = qc->dev;
5253 unsigned int ireason, bc_lo, bc_hi, bytes;
5254 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5255
eec4c3f3
AL
5256 /* Abuse qc->result_tf for temp storage of intermediate TF
5257 * here to save some kernel stack usage.
5258 * For normal completion, qc->result_tf is not relevant. For
5259 * error, qc->result_tf is later overwritten by ata_qc_complete().
5260 * So, the correctness of qc->result_tf is not affected.
5261 */
5262 ap->ops->tf_read(ap, &qc->result_tf);
5263 ireason = qc->result_tf.nsect;
5264 bc_lo = qc->result_tf.lbam;
5265 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5266 bytes = (bc_hi << 8) | bc_lo;
5267
5268 /* shall be cleared to zero, indicating xfer of data */
0106372d 5269 if (unlikely(ireason & (1 << 0)))
1da177e4
LT
5270 goto err_out;
5271
5272 /* make sure transfer direction matches expected */
5273 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
0106372d
AL
5274 if (unlikely(do_write != i_write))
5275 goto err_out;
5276
5277 if (unlikely(!bytes))
1da177e4
LT
5278 goto err_out;
5279
44877b4e 5280 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5281
140b5e59
TH
5282 if (__atapi_pio_bytes(qc, bytes))
5283 goto err_out;
4cc980b3 5284 ata_altstatus(ap); /* flush */
1da177e4
LT
5285
5286 return;
5287
5288err_out:
f15a1daf 5289 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5290 qc->err_mask |= AC_ERR_HSM;
14be71f4 5291 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5292}
5293
5294/**
c234fb00
AL
5295 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5296 * @ap: the target ata_port
5297 * @qc: qc on going
1da177e4 5298 *
c234fb00
AL
5299 * RETURNS:
5300 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5301 */
c234fb00
AL
5302
5303static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5304{
c234fb00
AL
5305 if (qc->tf.flags & ATA_TFLAG_POLLING)
5306 return 1;
1da177e4 5307
c234fb00
AL
5308 if (ap->hsm_task_state == HSM_ST_FIRST) {
5309 if (qc->tf.protocol == ATA_PROT_PIO &&
5310 (qc->tf.flags & ATA_TFLAG_WRITE))
5311 return 1;
1da177e4 5312
405e66b3 5313 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5314 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5315 return 1;
fe79e683
AL
5316 }
5317
c234fb00
AL
5318 return 0;
5319}
1da177e4 5320
c17ea20d
TH
5321/**
5322 * ata_hsm_qc_complete - finish a qc running on standard HSM
5323 * @qc: Command to complete
5324 * @in_wq: 1 if called from workqueue, 0 otherwise
5325 *
5326 * Finish @qc which is running on standard HSM.
5327 *
5328 * LOCKING:
cca3974e 5329 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5330 * Otherwise, none on entry and grabs host lock.
5331 */
5332static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5333{
5334 struct ata_port *ap = qc->ap;
5335 unsigned long flags;
5336
5337 if (ap->ops->error_handler) {
5338 if (in_wq) {
ba6a1308 5339 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5340
cca3974e
JG
5341 /* EH might have kicked in while host lock is
5342 * released.
c17ea20d
TH
5343 */
5344 qc = ata_qc_from_tag(ap, qc->tag);
5345 if (qc) {
5346 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5347 ap->ops->irq_on(ap);
c17ea20d
TH
5348 ata_qc_complete(qc);
5349 } else
5350 ata_port_freeze(ap);
5351 }
5352
ba6a1308 5353 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5354 } else {
5355 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5356 ata_qc_complete(qc);
5357 else
5358 ata_port_freeze(ap);
5359 }
5360 } else {
5361 if (in_wq) {
ba6a1308 5362 spin_lock_irqsave(ap->lock, flags);
83625006 5363 ap->ops->irq_on(ap);
c17ea20d 5364 ata_qc_complete(qc);
ba6a1308 5365 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5366 } else
5367 ata_qc_complete(qc);
5368 }
5369}
5370
bb5cb290
AL
5371/**
5372 * ata_hsm_move - move the HSM to the next state.
5373 * @ap: the target ata_port
5374 * @qc: qc on going
5375 * @status: current device status
5376 * @in_wq: 1 if called from workqueue, 0 otherwise
5377 *
5378 * RETURNS:
5379 * 1 when poll next status needed, 0 otherwise.
5380 */
9a1004d0
TH
5381int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5382 u8 status, int in_wq)
e2cec771 5383{
bb5cb290
AL
5384 unsigned long flags = 0;
5385 int poll_next;
5386
6912ccd5
AL
5387 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5388
bb5cb290
AL
5389 /* Make sure ata_qc_issue_prot() does not throw things
5390 * like DMA polling into the workqueue. Notice that
5391 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5392 */
c234fb00 5393 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5394
e2cec771 5395fsm_start:
999bb6f4 5396 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5397 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5398
e2cec771
AL
5399 switch (ap->hsm_task_state) {
5400 case HSM_ST_FIRST:
bb5cb290
AL
5401 /* Send first data block or PACKET CDB */
5402
5403 /* If polling, we will stay in the work queue after
5404 * sending the data. Otherwise, interrupt handler
5405 * takes over after sending the data.
5406 */
5407 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5408
e2cec771 5409 /* check device status */
3655d1d3
AL
5410 if (unlikely((status & ATA_DRQ) == 0)) {
5411 /* handle BSY=0, DRQ=0 as error */
5412 if (likely(status & (ATA_ERR | ATA_DF)))
5413 /* device stops HSM for abort/error */
5414 qc->err_mask |= AC_ERR_DEV;
5415 else
5416 /* HSM violation. Let EH handle this */
5417 qc->err_mask |= AC_ERR_HSM;
5418
14be71f4 5419 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5420 goto fsm_start;
1da177e4
LT
5421 }
5422
71601958
AL
5423 /* Device should not ask for data transfer (DRQ=1)
5424 * when it finds something wrong.
eee6c32f
AL
5425 * We ignore DRQ here and stop the HSM by
5426 * changing hsm_task_state to HSM_ST_ERR and
5427 * let the EH abort the command or reset the device.
71601958
AL
5428 */
5429 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5430 /* Some ATAPI tape drives forget to clear the ERR bit
5431 * when doing the next command (mostly request sense).
5432 * We ignore ERR here to workaround and proceed sending
5433 * the CDB.
5434 */
5435 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5436 ata_port_printk(ap, KERN_WARNING,
5437 "DRQ=1 with device error, "
5438 "dev_stat 0x%X\n", status);
5439 qc->err_mask |= AC_ERR_HSM;
5440 ap->hsm_task_state = HSM_ST_ERR;
5441 goto fsm_start;
5442 }
71601958 5443 }
1da177e4 5444
bb5cb290
AL
5445 /* Send the CDB (atapi) or the first data block (ata pio out).
5446 * During the state transition, interrupt handler shouldn't
5447 * be invoked before the data transfer is complete and
5448 * hsm_task_state is changed. Hence, the following locking.
5449 */
5450 if (in_wq)
ba6a1308 5451 spin_lock_irqsave(ap->lock, flags);
1da177e4 5452
bb5cb290
AL
5453 if (qc->tf.protocol == ATA_PROT_PIO) {
5454 /* PIO data out protocol.
5455 * send first data block.
5456 */
0565c26d 5457
bb5cb290
AL
5458 /* ata_pio_sectors() might change the state
5459 * to HSM_ST_LAST. so, the state is changed here
5460 * before ata_pio_sectors().
5461 */
5462 ap->hsm_task_state = HSM_ST;
5463 ata_pio_sectors(qc);
bb5cb290
AL
5464 } else
5465 /* send CDB */
5466 atapi_send_cdb(ap, qc);
5467
5468 if (in_wq)
ba6a1308 5469 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5470
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5473 */
e2cec771 5474 break;
1c848984 5475
e2cec771
AL
5476 case HSM_ST:
5477 /* complete command or read/write the data register */
0dc36888 5478 if (qc->tf.protocol == ATAPI_PROT_PIO) {
e2cec771
AL
5479 /* ATAPI PIO protocol */
5480 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5481 /* No more data to transfer or device error.
5482 * Device error will be tagged in HSM_ST_LAST.
5483 */
e2cec771
AL
5484 ap->hsm_task_state = HSM_ST_LAST;
5485 goto fsm_start;
5486 }
1da177e4 5487
71601958
AL
5488 /* Device should not ask for data transfer (DRQ=1)
5489 * when it finds something wrong.
eee6c32f
AL
5490 * We ignore DRQ here and stop the HSM by
5491 * changing hsm_task_state to HSM_ST_ERR and
5492 * let the EH abort the command or reset the device.
71601958
AL
5493 */
5494 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5495 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5496 "device error, dev_stat 0x%X\n",
5497 status);
3655d1d3 5498 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5499 ap->hsm_task_state = HSM_ST_ERR;
5500 goto fsm_start;
71601958 5501 }
1da177e4 5502
e2cec771 5503 atapi_pio_bytes(qc);
7fb6ec28 5504
e2cec771
AL
5505 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5506 /* bad ireason reported by device */
5507 goto fsm_start;
1da177e4 5508
e2cec771
AL
5509 } else {
5510 /* ATA PIO protocol */
5511 if (unlikely((status & ATA_DRQ) == 0)) {
5512 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5513 if (likely(status & (ATA_ERR | ATA_DF)))
5514 /* device stops HSM for abort/error */
5515 qc->err_mask |= AC_ERR_DEV;
5516 else
55a8e2c8
TH
5517 /* HSM violation. Let EH handle this.
5518 * Phantom devices also trigger this
5519 * condition. Mark hint.
5520 */
5521 qc->err_mask |= AC_ERR_HSM |
5522 AC_ERR_NODEV_HINT;
3655d1d3 5523
e2cec771
AL
5524 ap->hsm_task_state = HSM_ST_ERR;
5525 goto fsm_start;
5526 }
1da177e4 5527
eee6c32f
AL
5528 /* For PIO reads, some devices may ask for
5529 * data transfer (DRQ=1) alone with ERR=1.
5530 * We respect DRQ here and transfer one
5531 * block of junk data before changing the
5532 * hsm_task_state to HSM_ST_ERR.
5533 *
5534 * For PIO writes, ERR=1 DRQ=1 doesn't make
5535 * sense since the data block has been
5536 * transferred to the device.
71601958
AL
5537 */
5538 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5539 /* data might be corrputed */
5540 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5541
5542 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5543 ata_pio_sectors(qc);
eee6c32f
AL
5544 status = ata_wait_idle(ap);
5545 }
5546
3655d1d3
AL
5547 if (status & (ATA_BUSY | ATA_DRQ))
5548 qc->err_mask |= AC_ERR_HSM;
5549
eee6c32f
AL
5550 /* ata_pio_sectors() might change the
5551 * state to HSM_ST_LAST. so, the state
5552 * is changed after ata_pio_sectors().
5553 */
5554 ap->hsm_task_state = HSM_ST_ERR;
5555 goto fsm_start;
71601958
AL
5556 }
5557
e2cec771
AL
5558 ata_pio_sectors(qc);
5559
5560 if (ap->hsm_task_state == HSM_ST_LAST &&
5561 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5562 /* all data read */
52a32205 5563 status = ata_wait_idle(ap);
e2cec771
AL
5564 goto fsm_start;
5565 }
5566 }
5567
bb5cb290 5568 poll_next = 1;
1da177e4
LT
5569 break;
5570
14be71f4 5571 case HSM_ST_LAST:
6912ccd5
AL
5572 if (unlikely(!ata_ok(status))) {
5573 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5574 ap->hsm_task_state = HSM_ST_ERR;
5575 goto fsm_start;
5576 }
5577
5578 /* no more data to transfer */
4332a771 5579 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5580 ap->print_id, qc->dev->devno, status);
e2cec771 5581
6912ccd5
AL
5582 WARN_ON(qc->err_mask);
5583
e2cec771 5584 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5585
e2cec771 5586 /* complete taskfile transaction */
c17ea20d 5587 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5588
5589 poll_next = 0;
1da177e4
LT
5590 break;
5591
14be71f4 5592 case HSM_ST_ERR:
e2cec771
AL
5593 /* make sure qc->err_mask is available to
5594 * know what's wrong and recover
5595 */
5596 WARN_ON(qc->err_mask == 0);
5597
5598 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5599
999bb6f4 5600 /* complete taskfile transaction */
c17ea20d 5601 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5602
5603 poll_next = 0;
e2cec771
AL
5604 break;
5605 default:
bb5cb290 5606 poll_next = 0;
6912ccd5 5607 BUG();
1da177e4
LT
5608 }
5609
bb5cb290 5610 return poll_next;
1da177e4
LT
5611}
5612
65f27f38 5613static void ata_pio_task(struct work_struct *work)
8061f5f0 5614{
65f27f38
DH
5615 struct ata_port *ap =
5616 container_of(work, struct ata_port, port_task.work);
5617 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5618 u8 status;
a1af3734 5619 int poll_next;
8061f5f0 5620
7fb6ec28 5621fsm_start:
a1af3734 5622 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5623
a1af3734
AL
5624 /*
5625 * This is purely heuristic. This is a fast path.
5626 * Sometimes when we enter, BSY will be cleared in
5627 * a chk-status or two. If not, the drive is probably seeking
5628 * or something. Snooze for a couple msecs, then
5629 * chk-status again. If still busy, queue delayed work.
5630 */
5631 status = ata_busy_wait(ap, ATA_BUSY, 5);
5632 if (status & ATA_BUSY) {
5633 msleep(2);
5634 status = ata_busy_wait(ap, ATA_BUSY, 10);
5635 if (status & ATA_BUSY) {
442eacc3 5636 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5637 return;
5638 }
8061f5f0
TH
5639 }
5640
a1af3734
AL
5641 /* move the HSM */
5642 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5643
a1af3734
AL
5644 /* another command or interrupt handler
5645 * may be running at this point.
5646 */
5647 if (poll_next)
7fb6ec28 5648 goto fsm_start;
8061f5f0
TH
5649}
5650
1da177e4
LT
5651/**
5652 * ata_qc_new - Request an available ATA command, for queueing
5653 * @ap: Port associated with device @dev
5654 * @dev: Device from whom we request an available command structure
5655 *
5656 * LOCKING:
0cba632b 5657 * None.
1da177e4
LT
5658 */
5659
5660static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5661{
5662 struct ata_queued_cmd *qc = NULL;
5663 unsigned int i;
5664
e3180499 5665 /* no command while frozen */
b51e9e5d 5666 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5667 return NULL;
5668
2ab7db1f
TH
5669 /* the last tag is reserved for internal command. */
5670 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5671 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5672 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5673 break;
5674 }
5675
5676 if (qc)
5677 qc->tag = i;
5678
5679 return qc;
5680}
5681
5682/**
5683 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5684 * @dev: Device from whom we request an available command structure
5685 *
5686 * LOCKING:
0cba632b 5687 * None.
1da177e4
LT
5688 */
5689
3373efd8 5690struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5691{
9af5c9c9 5692 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5693 struct ata_queued_cmd *qc;
5694
5695 qc = ata_qc_new(ap);
5696 if (qc) {
1da177e4
LT
5697 qc->scsicmd = NULL;
5698 qc->ap = ap;
5699 qc->dev = dev;
1da177e4 5700
2c13b7ce 5701 ata_qc_reinit(qc);
1da177e4
LT
5702 }
5703
5704 return qc;
5705}
5706
1da177e4
LT
5707/**
5708 * ata_qc_free - free unused ata_queued_cmd
5709 * @qc: Command to complete
5710 *
5711 * Designed to free unused ata_queued_cmd object
5712 * in case something prevents using it.
5713 *
5714 * LOCKING:
cca3974e 5715 * spin_lock_irqsave(host lock)
1da177e4
LT
5716 */
5717void ata_qc_free(struct ata_queued_cmd *qc)
5718{
4ba946e9
TH
5719 struct ata_port *ap = qc->ap;
5720 unsigned int tag;
5721
a4631474 5722 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5723
4ba946e9
TH
5724 qc->flags = 0;
5725 tag = qc->tag;
5726 if (likely(ata_tag_valid(tag))) {
4ba946e9 5727 qc->tag = ATA_TAG_POISON;
6cec4a39 5728 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5729 }
1da177e4
LT
5730}
5731
76014427 5732void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5733{
dedaf2b0 5734 struct ata_port *ap = qc->ap;
9af5c9c9 5735 struct ata_link *link = qc->dev->link;
dedaf2b0 5736
a4631474
TH
5737 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5738 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5739
5740 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5741 ata_sg_clean(qc);
5742
7401abf2 5743 /* command should be marked inactive atomically with qc completion */
da917d69 5744 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5745 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5746 if (!link->sactive)
5747 ap->nr_active_links--;
5748 } else {
9af5c9c9 5749 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5750 ap->nr_active_links--;
5751 }
5752
5753 /* clear exclusive status */
5754 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5755 ap->excl_link == link))
5756 ap->excl_link = NULL;
7401abf2 5757
3f3791d3
AL
5758 /* atapi: mark qc as inactive to prevent the interrupt handler
5759 * from completing the command twice later, before the error handler
5760 * is called. (when rc != 0 and atapi request sense is needed)
5761 */
5762 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5763 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5764
1da177e4 5765 /* call completion callback */
77853bf2 5766 qc->complete_fn(qc);
1da177e4
LT
5767}
5768
39599a53
TH
5769static void fill_result_tf(struct ata_queued_cmd *qc)
5770{
5771 struct ata_port *ap = qc->ap;
5772
39599a53 5773 qc->result_tf.flags = qc->tf.flags;
4742d54f 5774 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5775}
5776
00115e0f
TH
5777static void ata_verify_xfer(struct ata_queued_cmd *qc)
5778{
5779 struct ata_device *dev = qc->dev;
5780
5781 if (ata_tag_internal(qc->tag))
5782 return;
5783
5784 if (ata_is_nodata(qc->tf.protocol))
5785 return;
5786
5787 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5788 return;
5789
5790 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5791}
5792
f686bcb8
TH
5793/**
5794 * ata_qc_complete - Complete an active ATA command
5795 * @qc: Command to complete
5796 * @err_mask: ATA Status register contents
5797 *
5798 * Indicate to the mid and upper layers that an ATA
5799 * command has completed, with either an ok or not-ok status.
5800 *
5801 * LOCKING:
cca3974e 5802 * spin_lock_irqsave(host lock)
f686bcb8
TH
5803 */
5804void ata_qc_complete(struct ata_queued_cmd *qc)
5805{
5806 struct ata_port *ap = qc->ap;
5807
5808 /* XXX: New EH and old EH use different mechanisms to
5809 * synchronize EH with regular execution path.
5810 *
5811 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5812 * Normal execution path is responsible for not accessing a
5813 * failed qc. libata core enforces the rule by returning NULL
5814 * from ata_qc_from_tag() for failed qcs.
5815 *
5816 * Old EH depends on ata_qc_complete() nullifying completion
5817 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5818 * not synchronize with interrupt handler. Only PIO task is
5819 * taken care of.
5820 */
5821 if (ap->ops->error_handler) {
4dbfa39b
TH
5822 struct ata_device *dev = qc->dev;
5823 struct ata_eh_info *ehi = &dev->link->eh_info;
5824
b51e9e5d 5825 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5826
5827 if (unlikely(qc->err_mask))
5828 qc->flags |= ATA_QCFLAG_FAILED;
5829
5830 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5831 if (!ata_tag_internal(qc->tag)) {
5832 /* always fill result TF for failed qc */
39599a53 5833 fill_result_tf(qc);
f686bcb8
TH
5834 ata_qc_schedule_eh(qc);
5835 return;
5836 }
5837 }
5838
5839 /* read result TF if requested */
5840 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5841 fill_result_tf(qc);
f686bcb8 5842
4dbfa39b
TH
5843 /* Some commands need post-processing after successful
5844 * completion.
5845 */
5846 switch (qc->tf.command) {
5847 case ATA_CMD_SET_FEATURES:
5848 if (qc->tf.feature != SETFEATURES_WC_ON &&
5849 qc->tf.feature != SETFEATURES_WC_OFF)
5850 break;
5851 /* fall through */
5852 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5853 case ATA_CMD_SET_MULTI: /* multi_count changed */
5854 /* revalidate device */
5855 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5856 ata_port_schedule_eh(ap);
5857 break;
054a5fba
TH
5858
5859 case ATA_CMD_SLEEP:
5860 dev->flags |= ATA_DFLAG_SLEEPING;
5861 break;
4dbfa39b
TH
5862 }
5863
00115e0f
TH
5864 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5865 ata_verify_xfer(qc);
5866
f686bcb8
TH
5867 __ata_qc_complete(qc);
5868 } else {
5869 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5870 return;
5871
5872 /* read result TF if failed or requested */
5873 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5874 fill_result_tf(qc);
f686bcb8
TH
5875
5876 __ata_qc_complete(qc);
5877 }
5878}
5879
dedaf2b0
TH
5880/**
5881 * ata_qc_complete_multiple - Complete multiple qcs successfully
5882 * @ap: port in question
5883 * @qc_active: new qc_active mask
5884 * @finish_qc: LLDD callback invoked before completing a qc
5885 *
5886 * Complete in-flight commands. This functions is meant to be
5887 * called from low-level driver's interrupt routine to complete
5888 * requests normally. ap->qc_active and @qc_active is compared
5889 * and commands are completed accordingly.
5890 *
5891 * LOCKING:
cca3974e 5892 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5893 *
5894 * RETURNS:
5895 * Number of completed commands on success, -errno otherwise.
5896 */
5897int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5898 void (*finish_qc)(struct ata_queued_cmd *))
5899{
5900 int nr_done = 0;
5901 u32 done_mask;
5902 int i;
5903
5904 done_mask = ap->qc_active ^ qc_active;
5905
5906 if (unlikely(done_mask & qc_active)) {
5907 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5908 "(%08x->%08x)\n", ap->qc_active, qc_active);
5909 return -EINVAL;
5910 }
5911
5912 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5913 struct ata_queued_cmd *qc;
5914
5915 if (!(done_mask & (1 << i)))
5916 continue;
5917
5918 if ((qc = ata_qc_from_tag(ap, i))) {
5919 if (finish_qc)
5920 finish_qc(qc);
5921 ata_qc_complete(qc);
5922 nr_done++;
5923 }
5924 }
5925
5926 return nr_done;
5927}
5928
1da177e4
LT
5929/**
5930 * ata_qc_issue - issue taskfile to device
5931 * @qc: command to issue to device
5932 *
5933 * Prepare an ATA command to submission to device.
5934 * This includes mapping the data into a DMA-able
5935 * area, filling in the S/G table, and finally
5936 * writing the taskfile to hardware, starting the command.
5937 *
5938 * LOCKING:
cca3974e 5939 * spin_lock_irqsave(host lock)
1da177e4 5940 */
8e0e694a 5941void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5942{
5943 struct ata_port *ap = qc->ap;
9af5c9c9 5944 struct ata_link *link = qc->dev->link;
405e66b3 5945 u8 prot = qc->tf.protocol;
1da177e4 5946
dedaf2b0
TH
5947 /* Make sure only one non-NCQ command is outstanding. The
5948 * check is skipped for old EH because it reuses active qc to
5949 * request ATAPI sense.
5950 */
9af5c9c9 5951 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5952
1973a023 5953 if (ata_is_ncq(prot)) {
9af5c9c9 5954 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5955
5956 if (!link->sactive)
5957 ap->nr_active_links++;
9af5c9c9 5958 link->sactive |= 1 << qc->tag;
dedaf2b0 5959 } else {
9af5c9c9 5960 WARN_ON(link->sactive);
da917d69
TH
5961
5962 ap->nr_active_links++;
9af5c9c9 5963 link->active_tag = qc->tag;
dedaf2b0
TH
5964 }
5965
e4a70e76 5966 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5967 ap->qc_active |= 1 << qc->tag;
e4a70e76 5968
f92a2636
TH
5969 /* We guarantee to LLDs that they will have at least one
5970 * non-zero sg if the command is a data command.
5971 */
ff2aeb1e 5972 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5973
0bcc65ad
TH
5974 /* ata_sg_setup() may update nbytes */
5975 qc->raw_nbytes = qc->nbytes;
5976
405e66b3 5977 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5978 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5979 if (ata_sg_setup(qc))
5980 goto sg_err;
1da177e4 5981
054a5fba
TH
5982 /* if device is sleeping, schedule softreset and abort the link */
5983 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5984 link->eh_info.action |= ATA_EH_SOFTRESET;
5985 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5986 ata_link_abort(link);
5987 return;
5988 }
5989
1da177e4
LT
5990 ap->ops->qc_prep(qc);
5991
8e0e694a
TH
5992 qc->err_mask |= ap->ops->qc_issue(qc);
5993 if (unlikely(qc->err_mask))
5994 goto err;
5995 return;
1da177e4 5996
8e436af9 5997sg_err:
8e0e694a
TH
5998 qc->err_mask |= AC_ERR_SYSTEM;
5999err:
6000 ata_qc_complete(qc);
1da177e4
LT
6001}
6002
6003/**
6004 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6005 * @qc: command to issue to device
6006 *
6007 * Using various libata functions and hooks, this function
6008 * starts an ATA command. ATA commands are grouped into
6009 * classes called "protocols", and issuing each type of protocol
6010 * is slightly different.
6011 *
0baab86b
EF
6012 * May be used as the qc_issue() entry in ata_port_operations.
6013 *
1da177e4 6014 * LOCKING:
cca3974e 6015 * spin_lock_irqsave(host lock)
1da177e4
LT
6016 *
6017 * RETURNS:
9a3d9eb0 6018 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6019 */
6020
9a3d9eb0 6021unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6022{
6023 struct ata_port *ap = qc->ap;
6024
e50362ec
AL
6025 /* Use polling pio if the LLD doesn't handle
6026 * interrupt driven pio and atapi CDB interrupt.
6027 */
6028 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6029 switch (qc->tf.protocol) {
6030 case ATA_PROT_PIO:
e3472cbe 6031 case ATA_PROT_NODATA:
0dc36888
TH
6032 case ATAPI_PROT_PIO:
6033 case ATAPI_PROT_NODATA:
e50362ec
AL
6034 qc->tf.flags |= ATA_TFLAG_POLLING;
6035 break;
0dc36888 6036 case ATAPI_PROT_DMA:
e50362ec 6037 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6038 /* see ata_dma_blacklisted() */
e50362ec
AL
6039 BUG();
6040 break;
6041 default:
6042 break;
6043 }
6044 }
6045
312f7da2 6046 /* select the device */
1da177e4
LT
6047 ata_dev_select(ap, qc->dev->devno, 1, 0);
6048
312f7da2 6049 /* start the command */
1da177e4
LT
6050 switch (qc->tf.protocol) {
6051 case ATA_PROT_NODATA:
312f7da2
AL
6052 if (qc->tf.flags & ATA_TFLAG_POLLING)
6053 ata_qc_set_polling(qc);
6054
e5338254 6055 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6056 ap->hsm_task_state = HSM_ST_LAST;
6057
6058 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6059 ata_pio_queue_task(ap, qc, 0);
312f7da2 6060
1da177e4
LT
6061 break;
6062
6063 case ATA_PROT_DMA:
587005de 6064 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6065
1da177e4
LT
6066 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6067 ap->ops->bmdma_setup(qc); /* set up bmdma */
6068 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6069 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6070 break;
6071
312f7da2
AL
6072 case ATA_PROT_PIO:
6073 if (qc->tf.flags & ATA_TFLAG_POLLING)
6074 ata_qc_set_polling(qc);
1da177e4 6075
e5338254 6076 ata_tf_to_host(ap, &qc->tf);
312f7da2 6077
54f00389
AL
6078 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6079 /* PIO data out protocol */
6080 ap->hsm_task_state = HSM_ST_FIRST;
442eacc3 6081 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6082
6083 /* always send first data block using
e27486db 6084 * the ata_pio_task() codepath.
54f00389 6085 */
312f7da2 6086 } else {
54f00389
AL
6087 /* PIO data in protocol */
6088 ap->hsm_task_state = HSM_ST;
6089
6090 if (qc->tf.flags & ATA_TFLAG_POLLING)
442eacc3 6091 ata_pio_queue_task(ap, qc, 0);
54f00389
AL
6092
6093 /* if polling, ata_pio_task() handles the rest.
6094 * otherwise, interrupt handler takes over from here.
6095 */
312f7da2
AL
6096 }
6097
1da177e4
LT
6098 break;
6099
0dc36888
TH
6100 case ATAPI_PROT_PIO:
6101 case ATAPI_PROT_NODATA:
312f7da2
AL
6102 if (qc->tf.flags & ATA_TFLAG_POLLING)
6103 ata_qc_set_polling(qc);
6104
e5338254 6105 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6106
312f7da2
AL
6107 ap->hsm_task_state = HSM_ST_FIRST;
6108
6109 /* send cdb by polling if no cdb interrupt */
6110 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6111 (qc->tf.flags & ATA_TFLAG_POLLING))
442eacc3 6112 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6113 break;
6114
0dc36888 6115 case ATAPI_PROT_DMA:
587005de 6116 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6117
1da177e4
LT
6118 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6119 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6120 ap->hsm_task_state = HSM_ST_FIRST;
6121
6122 /* send cdb by polling if no cdb interrupt */
6123 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
442eacc3 6124 ata_pio_queue_task(ap, qc, 0);
1da177e4
LT
6125 break;
6126
6127 default:
6128 WARN_ON(1);
9a3d9eb0 6129 return AC_ERR_SYSTEM;
1da177e4
LT
6130 }
6131
6132 return 0;
6133}
6134
1da177e4
LT
6135/**
6136 * ata_host_intr - Handle host interrupt for given (port, task)
6137 * @ap: Port on which interrupt arrived (possibly...)
6138 * @qc: Taskfile currently active in engine
6139 *
6140 * Handle host interrupt for given queued command. Currently,
6141 * only DMA interrupts are handled. All other commands are
6142 * handled via polling with interrupts disabled (nIEN bit).
6143 *
6144 * LOCKING:
cca3974e 6145 * spin_lock_irqsave(host lock)
1da177e4
LT
6146 *
6147 * RETURNS:
6148 * One if interrupt was handled, zero if not (shared irq).
6149 */
6150
2dcb407e
JG
6151inline unsigned int ata_host_intr(struct ata_port *ap,
6152 struct ata_queued_cmd *qc)
1da177e4 6153{
9af5c9c9 6154 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6155 u8 status, host_stat = 0;
1da177e4 6156
312f7da2 6157 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6158 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6159
312f7da2
AL
6160 /* Check whether we are expecting interrupt in this state */
6161 switch (ap->hsm_task_state) {
6162 case HSM_ST_FIRST:
6912ccd5
AL
6163 /* Some pre-ATAPI-4 devices assert INTRQ
6164 * at this state when ready to receive CDB.
6165 */
1da177e4 6166
312f7da2 6167 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6168 * The flag was turned on only for atapi devices. No
6169 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6170 */
6171 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6172 goto idle_irq;
1da177e4 6173 break;
312f7da2
AL
6174 case HSM_ST_LAST:
6175 if (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6176 qc->tf.protocol == ATAPI_PROT_DMA) {
312f7da2
AL
6177 /* check status of DMA engine */
6178 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6179 VPRINTK("ata%u: host_stat 0x%X\n",
6180 ap->print_id, host_stat);
312f7da2
AL
6181
6182 /* if it's not our irq... */
6183 if (!(host_stat & ATA_DMA_INTR))
6184 goto idle_irq;
6185
6186 /* before we do anything else, clear DMA-Start bit */
6187 ap->ops->bmdma_stop(qc);
a4f16610
AL
6188
6189 if (unlikely(host_stat & ATA_DMA_ERR)) {
6190 /* error when transfering data to/from memory */
6191 qc->err_mask |= AC_ERR_HOST_BUS;
6192 ap->hsm_task_state = HSM_ST_ERR;
6193 }
312f7da2
AL
6194 }
6195 break;
6196 case HSM_ST:
6197 break;
1da177e4
LT
6198 default:
6199 goto idle_irq;
6200 }
6201
312f7da2
AL
6202 /* check altstatus */
6203 status = ata_altstatus(ap);
6204 if (status & ATA_BUSY)
6205 goto idle_irq;
1da177e4 6206
312f7da2
AL
6207 /* check main status, clearing INTRQ */
6208 status = ata_chk_status(ap);
6209 if (unlikely(status & ATA_BUSY))
6210 goto idle_irq;
1da177e4 6211
312f7da2
AL
6212 /* ack bmdma irq events */
6213 ap->ops->irq_clear(ap);
1da177e4 6214
bb5cb290 6215 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6216
6217 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 6218 qc->tf.protocol == ATAPI_PROT_DMA))
ea54763f
TH
6219 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6220
1da177e4
LT
6221 return 1; /* irq handled */
6222
6223idle_irq:
6224 ap->stats.idle_irq++;
6225
6226#ifdef ATA_IRQ_TRAP
6227 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6228 ata_chk_status(ap);
6229 ap->ops->irq_clear(ap);
f15a1daf 6230 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6231 return 1;
1da177e4
LT
6232 }
6233#endif
6234 return 0; /* irq not handled */
6235}
6236
6237/**
6238 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6239 * @irq: irq line (unused)
cca3974e 6240 * @dev_instance: pointer to our ata_host information structure
1da177e4 6241 *
0cba632b
JG
6242 * Default interrupt handler for PCI IDE devices. Calls
6243 * ata_host_intr() for each port that is not disabled.
6244 *
1da177e4 6245 * LOCKING:
cca3974e 6246 * Obtains host lock during operation.
1da177e4
LT
6247 *
6248 * RETURNS:
0cba632b 6249 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6250 */
6251
2dcb407e 6252irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6253{
cca3974e 6254 struct ata_host *host = dev_instance;
1da177e4
LT
6255 unsigned int i;
6256 unsigned int handled = 0;
6257 unsigned long flags;
6258
6259 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6260 spin_lock_irqsave(&host->lock, flags);
1da177e4 6261
cca3974e 6262 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6263 struct ata_port *ap;
6264
cca3974e 6265 ap = host->ports[i];
c1389503 6266 if (ap &&
029f5468 6267 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6268 struct ata_queued_cmd *qc;
6269
9af5c9c9 6270 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6271 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6272 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6273 handled |= ata_host_intr(ap, qc);
6274 }
6275 }
6276
cca3974e 6277 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6278
6279 return IRQ_RETVAL(handled);
6280}
6281
34bf2170
TH
6282/**
6283 * sata_scr_valid - test whether SCRs are accessible
936fd732 6284 * @link: ATA link to test SCR accessibility for
34bf2170 6285 *
936fd732 6286 * Test whether SCRs are accessible for @link.
34bf2170
TH
6287 *
6288 * LOCKING:
6289 * None.
6290 *
6291 * RETURNS:
6292 * 1 if SCRs are accessible, 0 otherwise.
6293 */
936fd732 6294int sata_scr_valid(struct ata_link *link)
34bf2170 6295{
936fd732
TH
6296 struct ata_port *ap = link->ap;
6297
a16abc0b 6298 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6299}
6300
6301/**
6302 * sata_scr_read - read SCR register of the specified port
936fd732 6303 * @link: ATA link to read SCR for
34bf2170
TH
6304 * @reg: SCR to read
6305 * @val: Place to store read value
6306 *
936fd732 6307 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6308 * guaranteed to succeed if @link is ap->link, the cable type of
6309 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6310 *
6311 * LOCKING:
633273a3 6312 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6313 *
6314 * RETURNS:
6315 * 0 on success, negative errno on failure.
6316 */
936fd732 6317int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6318{
633273a3
TH
6319 if (ata_is_host_link(link)) {
6320 struct ata_port *ap = link->ap;
936fd732 6321
633273a3
TH
6322 if (sata_scr_valid(link))
6323 return ap->ops->scr_read(ap, reg, val);
6324 return -EOPNOTSUPP;
6325 }
6326
6327 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6328}
6329
6330/**
6331 * sata_scr_write - write SCR register of the specified port
936fd732 6332 * @link: ATA link to write SCR for
34bf2170
TH
6333 * @reg: SCR to write
6334 * @val: value to write
6335 *
936fd732 6336 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6337 * guaranteed to succeed if @link is ap->link, the cable type of
6338 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6339 *
6340 * LOCKING:
633273a3 6341 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6342 *
6343 * RETURNS:
6344 * 0 on success, negative errno on failure.
6345 */
936fd732 6346int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6347{
633273a3
TH
6348 if (ata_is_host_link(link)) {
6349 struct ata_port *ap = link->ap;
6350
6351 if (sata_scr_valid(link))
6352 return ap->ops->scr_write(ap, reg, val);
6353 return -EOPNOTSUPP;
6354 }
936fd732 6355
633273a3 6356 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6357}
6358
6359/**
6360 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6361 * @link: ATA link to write SCR for
34bf2170
TH
6362 * @reg: SCR to write
6363 * @val: value to write
6364 *
6365 * This function is identical to sata_scr_write() except that this
6366 * function performs flush after writing to the register.
6367 *
6368 * LOCKING:
633273a3 6369 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6370 *
6371 * RETURNS:
6372 * 0 on success, negative errno on failure.
6373 */
936fd732 6374int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6375{
633273a3
TH
6376 if (ata_is_host_link(link)) {
6377 struct ata_port *ap = link->ap;
6378 int rc;
da3dbb17 6379
633273a3
TH
6380 if (sata_scr_valid(link)) {
6381 rc = ap->ops->scr_write(ap, reg, val);
6382 if (rc == 0)
6383 rc = ap->ops->scr_read(ap, reg, &val);
6384 return rc;
6385 }
6386 return -EOPNOTSUPP;
34bf2170 6387 }
633273a3
TH
6388
6389 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6390}
6391
6392/**
936fd732
TH
6393 * ata_link_online - test whether the given link is online
6394 * @link: ATA link to test
34bf2170 6395 *
936fd732
TH
6396 * Test whether @link is online. Note that this function returns
6397 * 0 if online status of @link cannot be obtained, so
6398 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6399 *
6400 * LOCKING:
6401 * None.
6402 *
6403 * RETURNS:
6404 * 1 if the port online status is available and online.
6405 */
936fd732 6406int ata_link_online(struct ata_link *link)
34bf2170
TH
6407{
6408 u32 sstatus;
6409
936fd732
TH
6410 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6411 (sstatus & 0xf) == 0x3)
34bf2170
TH
6412 return 1;
6413 return 0;
6414}
6415
6416/**
936fd732
TH
6417 * ata_link_offline - test whether the given link is offline
6418 * @link: ATA link to test
34bf2170 6419 *
936fd732
TH
6420 * Test whether @link is offline. Note that this function
6421 * returns 0 if offline status of @link cannot be obtained, so
6422 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6423 *
6424 * LOCKING:
6425 * None.
6426 *
6427 * RETURNS:
6428 * 1 if the port offline status is available and offline.
6429 */
936fd732 6430int ata_link_offline(struct ata_link *link)
34bf2170
TH
6431{
6432 u32 sstatus;
6433
936fd732
TH
6434 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6435 (sstatus & 0xf) != 0x3)
34bf2170
TH
6436 return 1;
6437 return 0;
6438}
0baab86b 6439
77b08fb5 6440int ata_flush_cache(struct ata_device *dev)
9b847548 6441{
977e6b9f 6442 unsigned int err_mask;
9b847548
JA
6443 u8 cmd;
6444
6445 if (!ata_try_flush_cache(dev))
6446 return 0;
6447
6fc49adb 6448 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6449 cmd = ATA_CMD_FLUSH_EXT;
6450 else
6451 cmd = ATA_CMD_FLUSH;
6452
4f34337b
AC
6453 /* This is wrong. On a failed flush we get back the LBA of the lost
6454 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6455 a further flush command to continue the writeback until it
4f34337b 6456 does not error */
977e6b9f
TH
6457 err_mask = ata_do_simple_cmd(dev, cmd);
6458 if (err_mask) {
6459 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6460 return -EIO;
6461 }
6462
6463 return 0;
9b847548
JA
6464}
6465
6ffa01d8 6466#ifdef CONFIG_PM
cca3974e
JG
6467static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6468 unsigned int action, unsigned int ehi_flags,
6469 int wait)
500530f6
TH
6470{
6471 unsigned long flags;
6472 int i, rc;
6473
cca3974e
JG
6474 for (i = 0; i < host->n_ports; i++) {
6475 struct ata_port *ap = host->ports[i];
e3667ebf 6476 struct ata_link *link;
500530f6
TH
6477
6478 /* Previous resume operation might still be in
6479 * progress. Wait for PM_PENDING to clear.
6480 */
6481 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6482 ata_port_wait_eh(ap);
6483 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6484 }
6485
6486 /* request PM ops to EH */
6487 spin_lock_irqsave(ap->lock, flags);
6488
6489 ap->pm_mesg = mesg;
6490 if (wait) {
6491 rc = 0;
6492 ap->pm_result = &rc;
6493 }
6494
6495 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6496 __ata_port_for_each_link(link, ap) {
6497 link->eh_info.action |= action;
6498 link->eh_info.flags |= ehi_flags;
6499 }
500530f6
TH
6500
6501 ata_port_schedule_eh(ap);
6502
6503 spin_unlock_irqrestore(ap->lock, flags);
6504
6505 /* wait and check result */
6506 if (wait) {
6507 ata_port_wait_eh(ap);
6508 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6509 if (rc)
6510 return rc;
6511 }
6512 }
6513
6514 return 0;
6515}
6516
6517/**
cca3974e
JG
6518 * ata_host_suspend - suspend host
6519 * @host: host to suspend
500530f6
TH
6520 * @mesg: PM message
6521 *
cca3974e 6522 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6523 * function requests EH to perform PM operations and waits for EH
6524 * to finish.
6525 *
6526 * LOCKING:
6527 * Kernel thread context (may sleep).
6528 *
6529 * RETURNS:
6530 * 0 on success, -errno on failure.
6531 */
cca3974e 6532int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6533{
9666f400 6534 int rc;
500530f6 6535
ca77329f
KCA
6536 /*
6537 * disable link pm on all ports before requesting
6538 * any pm activity
6539 */
6540 ata_lpm_enable(host);
6541
cca3974e 6542 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6543 if (rc == 0)
6544 host->dev->power.power_state = mesg;
500530f6
TH
6545 return rc;
6546}
6547
6548/**
cca3974e
JG
6549 * ata_host_resume - resume host
6550 * @host: host to resume
500530f6 6551 *
cca3974e 6552 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6553 * function requests EH to perform PM operations and returns.
6554 * Note that all resume operations are performed parallely.
6555 *
6556 * LOCKING:
6557 * Kernel thread context (may sleep).
6558 */
cca3974e 6559void ata_host_resume(struct ata_host *host)
500530f6 6560{
cca3974e
JG
6561 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6562 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6563 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6564
6565 /* reenable link pm */
6566 ata_lpm_disable(host);
500530f6 6567}
6ffa01d8 6568#endif
500530f6 6569
c893a3ae
RD
6570/**
6571 * ata_port_start - Set port up for dma.
6572 * @ap: Port to initialize
6573 *
6574 * Called just after data structures for each port are
6575 * initialized. Allocates space for PRD table.
6576 *
6577 * May be used as the port_start() entry in ata_port_operations.
6578 *
6579 * LOCKING:
6580 * Inherited from caller.
6581 */
f0d36efd 6582int ata_port_start(struct ata_port *ap)
1da177e4 6583{
2f1f610b 6584 struct device *dev = ap->dev;
6037d6bb 6585 int rc;
1da177e4 6586
f0d36efd
TH
6587 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6588 GFP_KERNEL);
1da177e4
LT
6589 if (!ap->prd)
6590 return -ENOMEM;
6591
6037d6bb 6592 rc = ata_pad_alloc(ap, dev);
f0d36efd 6593 if (rc)
6037d6bb 6594 return rc;
1da177e4 6595
f0d36efd
TH
6596 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6597 (unsigned long long)ap->prd_dma);
1da177e4
LT
6598 return 0;
6599}
6600
3ef3b43d
TH
6601/**
6602 * ata_dev_init - Initialize an ata_device structure
6603 * @dev: Device structure to initialize
6604 *
6605 * Initialize @dev in preparation for probing.
6606 *
6607 * LOCKING:
6608 * Inherited from caller.
6609 */
6610void ata_dev_init(struct ata_device *dev)
6611{
9af5c9c9
TH
6612 struct ata_link *link = dev->link;
6613 struct ata_port *ap = link->ap;
72fa4b74
TH
6614 unsigned long flags;
6615
5a04bf4b 6616 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6617 link->sata_spd_limit = link->hw_sata_spd_limit;
6618 link->sata_spd = 0;
5a04bf4b 6619
72fa4b74
TH
6620 /* High bits of dev->flags are used to record warm plug
6621 * requests which occur asynchronously. Synchronize using
cca3974e 6622 * host lock.
72fa4b74 6623 */
ba6a1308 6624 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6625 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6626 dev->horkage = 0;
ba6a1308 6627 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6628
72fa4b74
TH
6629 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6630 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6631 dev->pio_mask = UINT_MAX;
6632 dev->mwdma_mask = UINT_MAX;
6633 dev->udma_mask = UINT_MAX;
6634}
6635
4fb37a25
TH
6636/**
6637 * ata_link_init - Initialize an ata_link structure
6638 * @ap: ATA port link is attached to
6639 * @link: Link structure to initialize
8989805d 6640 * @pmp: Port multiplier port number
4fb37a25
TH
6641 *
6642 * Initialize @link.
6643 *
6644 * LOCKING:
6645 * Kernel thread context (may sleep)
6646 */
fb7fd614 6647void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6648{
6649 int i;
6650
6651 /* clear everything except for devices */
6652 memset(link, 0, offsetof(struct ata_link, device[0]));
6653
6654 link->ap = ap;
8989805d 6655 link->pmp = pmp;
4fb37a25
TH
6656 link->active_tag = ATA_TAG_POISON;
6657 link->hw_sata_spd_limit = UINT_MAX;
6658
6659 /* can't use iterator, ap isn't initialized yet */
6660 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6661 struct ata_device *dev = &link->device[i];
6662
6663 dev->link = link;
6664 dev->devno = dev - link->device;
6665 ata_dev_init(dev);
6666 }
6667}
6668
6669/**
6670 * sata_link_init_spd - Initialize link->sata_spd_limit
6671 * @link: Link to configure sata_spd_limit for
6672 *
6673 * Initialize @link->[hw_]sata_spd_limit to the currently
6674 * configured value.
6675 *
6676 * LOCKING:
6677 * Kernel thread context (may sleep).
6678 *
6679 * RETURNS:
6680 * 0 on success, -errno on failure.
6681 */
fb7fd614 6682int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6683{
6684 u32 scontrol, spd;
6685 int rc;
6686
6687 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6688 if (rc)
6689 return rc;
6690
6691 spd = (scontrol >> 4) & 0xf;
6692 if (spd)
6693 link->hw_sata_spd_limit &= (1 << spd) - 1;
6694
6695 link->sata_spd_limit = link->hw_sata_spd_limit;
6696
6697 return 0;
6698}
6699
1da177e4 6700/**
f3187195
TH
6701 * ata_port_alloc - allocate and initialize basic ATA port resources
6702 * @host: ATA host this allocated port belongs to
1da177e4 6703 *
f3187195
TH
6704 * Allocate and initialize basic ATA port resources.
6705 *
6706 * RETURNS:
6707 * Allocate ATA port on success, NULL on failure.
0cba632b 6708 *
1da177e4 6709 * LOCKING:
f3187195 6710 * Inherited from calling layer (may sleep).
1da177e4 6711 */
f3187195 6712struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6713{
f3187195 6714 struct ata_port *ap;
1da177e4 6715
f3187195
TH
6716 DPRINTK("ENTER\n");
6717
6718 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6719 if (!ap)
6720 return NULL;
6721
f4d6d004 6722 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6723 ap->lock = &host->lock;
198e0fed 6724 ap->flags = ATA_FLAG_DISABLED;
f3187195 6725 ap->print_id = -1;
1da177e4 6726 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6727 ap->host = host;
f3187195 6728 ap->dev = host->dev;
1da177e4 6729 ap->last_ctl = 0xFF;
bd5d825c
BP
6730
6731#if defined(ATA_VERBOSE_DEBUG)
6732 /* turn on all debugging levels */
6733 ap->msg_enable = 0x00FF;
6734#elif defined(ATA_DEBUG)
6735 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6736#else
0dd4b21f 6737 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6738#endif
1da177e4 6739
442eacc3 6740 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
65f27f38
DH
6741 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6742 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6743 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6744 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6745 init_timer_deferrable(&ap->fastdrain_timer);
6746 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6747 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6748
838df628 6749 ap->cbl = ATA_CBL_NONE;
838df628 6750
8989805d 6751 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6752
6753#ifdef ATA_IRQ_TRAP
6754 ap->stats.unhandled_irq = 1;
6755 ap->stats.idle_irq = 1;
6756#endif
1da177e4 6757 return ap;
1da177e4
LT
6758}
6759
f0d36efd
TH
6760static void ata_host_release(struct device *gendev, void *res)
6761{
6762 struct ata_host *host = dev_get_drvdata(gendev);
6763 int i;
6764
1aa506e4
TH
6765 for (i = 0; i < host->n_ports; i++) {
6766 struct ata_port *ap = host->ports[i];
6767
4911487a
TH
6768 if (!ap)
6769 continue;
6770
6771 if (ap->scsi_host)
1aa506e4
TH
6772 scsi_host_put(ap->scsi_host);
6773
633273a3 6774 kfree(ap->pmp_link);
4911487a 6775 kfree(ap);
1aa506e4
TH
6776 host->ports[i] = NULL;
6777 }
6778
1aa56cca 6779 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6780}
6781
f3187195
TH
6782/**
6783 * ata_host_alloc - allocate and init basic ATA host resources
6784 * @dev: generic device this host is associated with
6785 * @max_ports: maximum number of ATA ports associated with this host
6786 *
6787 * Allocate and initialize basic ATA host resources. LLD calls
6788 * this function to allocate a host, initializes it fully and
6789 * attaches it using ata_host_register().
6790 *
6791 * @max_ports ports are allocated and host->n_ports is
6792 * initialized to @max_ports. The caller is allowed to decrease
6793 * host->n_ports before calling ata_host_register(). The unused
6794 * ports will be automatically freed on registration.
6795 *
6796 * RETURNS:
6797 * Allocate ATA host on success, NULL on failure.
6798 *
6799 * LOCKING:
6800 * Inherited from calling layer (may sleep).
6801 */
6802struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6803{
6804 struct ata_host *host;
6805 size_t sz;
6806 int i;
6807
6808 DPRINTK("ENTER\n");
6809
6810 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6811 return NULL;
6812
6813 /* alloc a container for our list of ATA ports (buses) */
6814 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6815 /* alloc a container for our list of ATA ports (buses) */
6816 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6817 if (!host)
6818 goto err_out;
6819
6820 devres_add(dev, host);
6821 dev_set_drvdata(dev, host);
6822
6823 spin_lock_init(&host->lock);
6824 host->dev = dev;
6825 host->n_ports = max_ports;
6826
6827 /* allocate ports bound to this host */
6828 for (i = 0; i < max_ports; i++) {
6829 struct ata_port *ap;
6830
6831 ap = ata_port_alloc(host);
6832 if (!ap)
6833 goto err_out;
6834
6835 ap->port_no = i;
6836 host->ports[i] = ap;
6837 }
6838
6839 devres_remove_group(dev, NULL);
6840 return host;
6841
6842 err_out:
6843 devres_release_group(dev, NULL);
6844 return NULL;
6845}
6846
f5cda257
TH
6847/**
6848 * ata_host_alloc_pinfo - alloc host and init with port_info array
6849 * @dev: generic device this host is associated with
6850 * @ppi: array of ATA port_info to initialize host with
6851 * @n_ports: number of ATA ports attached to this host
6852 *
6853 * Allocate ATA host and initialize with info from @ppi. If NULL
6854 * terminated, @ppi may contain fewer entries than @n_ports. The
6855 * last entry will be used for the remaining ports.
6856 *
6857 * RETURNS:
6858 * Allocate ATA host on success, NULL on failure.
6859 *
6860 * LOCKING:
6861 * Inherited from calling layer (may sleep).
6862 */
6863struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6864 const struct ata_port_info * const * ppi,
6865 int n_ports)
6866{
6867 const struct ata_port_info *pi;
6868 struct ata_host *host;
6869 int i, j;
6870
6871 host = ata_host_alloc(dev, n_ports);
6872 if (!host)
6873 return NULL;
6874
6875 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6876 struct ata_port *ap = host->ports[i];
6877
6878 if (ppi[j])
6879 pi = ppi[j++];
6880
6881 ap->pio_mask = pi->pio_mask;
6882 ap->mwdma_mask = pi->mwdma_mask;
6883 ap->udma_mask = pi->udma_mask;
6884 ap->flags |= pi->flags;
0c88758b 6885 ap->link.flags |= pi->link_flags;
f5cda257
TH
6886 ap->ops = pi->port_ops;
6887
6888 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6889 host->ops = pi->port_ops;
6890 if (!host->private_data && pi->private_data)
6891 host->private_data = pi->private_data;
6892 }
6893
6894 return host;
6895}
6896
32ebbc0c
TH
6897static void ata_host_stop(struct device *gendev, void *res)
6898{
6899 struct ata_host *host = dev_get_drvdata(gendev);
6900 int i;
6901
6902 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6903
6904 for (i = 0; i < host->n_ports; i++) {
6905 struct ata_port *ap = host->ports[i];
6906
6907 if (ap->ops->port_stop)
6908 ap->ops->port_stop(ap);
6909 }
6910
6911 if (host->ops->host_stop)
6912 host->ops->host_stop(host);
6913}
6914
ecef7253
TH
6915/**
6916 * ata_host_start - start and freeze ports of an ATA host
6917 * @host: ATA host to start ports for
6918 *
6919 * Start and then freeze ports of @host. Started status is
6920 * recorded in host->flags, so this function can be called
6921 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6922 * once. If host->ops isn't initialized yet, its set to the
6923 * first non-dummy port ops.
ecef7253
TH
6924 *
6925 * LOCKING:
6926 * Inherited from calling layer (may sleep).
6927 *
6928 * RETURNS:
6929 * 0 if all ports are started successfully, -errno otherwise.
6930 */
6931int ata_host_start(struct ata_host *host)
6932{
32ebbc0c
TH
6933 int have_stop = 0;
6934 void *start_dr = NULL;
ecef7253
TH
6935 int i, rc;
6936
6937 if (host->flags & ATA_HOST_STARTED)
6938 return 0;
6939
6940 for (i = 0; i < host->n_ports; i++) {
6941 struct ata_port *ap = host->ports[i];
6942
f3187195
TH
6943 if (!host->ops && !ata_port_is_dummy(ap))
6944 host->ops = ap->ops;
6945
32ebbc0c
TH
6946 if (ap->ops->port_stop)
6947 have_stop = 1;
6948 }
6949
6950 if (host->ops->host_stop)
6951 have_stop = 1;
6952
6953 if (have_stop) {
6954 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6955 if (!start_dr)
6956 return -ENOMEM;
6957 }
6958
6959 for (i = 0; i < host->n_ports; i++) {
6960 struct ata_port *ap = host->ports[i];
6961
ecef7253
TH
6962 if (ap->ops->port_start) {
6963 rc = ap->ops->port_start(ap);
6964 if (rc) {
0f9fe9b7 6965 if (rc != -ENODEV)
0f757743
AM
6966 dev_printk(KERN_ERR, host->dev,
6967 "failed to start port %d "
6968 "(errno=%d)\n", i, rc);
ecef7253
TH
6969 goto err_out;
6970 }
6971 }
ecef7253
TH
6972 ata_eh_freeze_port(ap);
6973 }
6974
32ebbc0c
TH
6975 if (start_dr)
6976 devres_add(host->dev, start_dr);
ecef7253
TH
6977 host->flags |= ATA_HOST_STARTED;
6978 return 0;
6979
6980 err_out:
6981 while (--i >= 0) {
6982 struct ata_port *ap = host->ports[i];
6983
6984 if (ap->ops->port_stop)
6985 ap->ops->port_stop(ap);
6986 }
32ebbc0c 6987 devres_free(start_dr);
ecef7253
TH
6988 return rc;
6989}
6990
b03732f0 6991/**
cca3974e
JG
6992 * ata_sas_host_init - Initialize a host struct
6993 * @host: host to initialize
6994 * @dev: device host is attached to
6995 * @flags: host flags
6996 * @ops: port_ops
b03732f0
BK
6997 *
6998 * LOCKING:
6999 * PCI/etc. bus probe sem.
7000 *
7001 */
f3187195 7002/* KILLME - the only user left is ipr */
cca3974e
JG
7003void ata_host_init(struct ata_host *host, struct device *dev,
7004 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7005{
cca3974e
JG
7006 spin_lock_init(&host->lock);
7007 host->dev = dev;
7008 host->flags = flags;
7009 host->ops = ops;
b03732f0
BK
7010}
7011
f3187195
TH
7012/**
7013 * ata_host_register - register initialized ATA host
7014 * @host: ATA host to register
7015 * @sht: template for SCSI host
7016 *
7017 * Register initialized ATA host. @host is allocated using
7018 * ata_host_alloc() and fully initialized by LLD. This function
7019 * starts ports, registers @host with ATA and SCSI layers and
7020 * probe registered devices.
7021 *
7022 * LOCKING:
7023 * Inherited from calling layer (may sleep).
7024 *
7025 * RETURNS:
7026 * 0 on success, -errno otherwise.
7027 */
7028int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7029{
7030 int i, rc;
7031
7032 /* host must have been started */
7033 if (!(host->flags & ATA_HOST_STARTED)) {
7034 dev_printk(KERN_ERR, host->dev,
7035 "BUG: trying to register unstarted host\n");
7036 WARN_ON(1);
7037 return -EINVAL;
7038 }
7039
7040 /* Blow away unused ports. This happens when LLD can't
7041 * determine the exact number of ports to allocate at
7042 * allocation time.
7043 */
7044 for (i = host->n_ports; host->ports[i]; i++)
7045 kfree(host->ports[i]);
7046
7047 /* give ports names and add SCSI hosts */
7048 for (i = 0; i < host->n_ports; i++)
7049 host->ports[i]->print_id = ata_print_id++;
7050
7051 rc = ata_scsi_add_hosts(host, sht);
7052 if (rc)
7053 return rc;
7054
fafbae87
TH
7055 /* associate with ACPI nodes */
7056 ata_acpi_associate(host);
7057
f3187195
TH
7058 /* set cable, sata_spd_limit and report */
7059 for (i = 0; i < host->n_ports; i++) {
7060 struct ata_port *ap = host->ports[i];
f3187195
TH
7061 unsigned long xfer_mask;
7062
7063 /* set SATA cable type if still unset */
7064 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7065 ap->cbl = ATA_CBL_SATA;
7066
7067 /* init sata_spd_limit to the current value */
4fb37a25 7068 sata_link_init_spd(&ap->link);
f3187195 7069
cbcdd875 7070 /* print per-port info to dmesg */
f3187195
TH
7071 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7072 ap->udma_mask);
7073
abf6e8ed 7074 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7075 ata_port_printk(ap, KERN_INFO,
7076 "%cATA max %s %s\n",
a16abc0b 7077 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7078 ata_mode_string(xfer_mask),
cbcdd875 7079 ap->link.eh_info.desc);
abf6e8ed
TH
7080 ata_ehi_clear_desc(&ap->link.eh_info);
7081 } else
f3187195
TH
7082 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7083 }
7084
7085 /* perform each probe synchronously */
7086 DPRINTK("probe begin\n");
7087 for (i = 0; i < host->n_ports; i++) {
7088 struct ata_port *ap = host->ports[i];
7089 int rc;
7090
7091 /* probe */
7092 if (ap->ops->error_handler) {
9af5c9c9 7093 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7094 unsigned long flags;
7095
7096 ata_port_probe(ap);
7097
7098 /* kick EH for boot probing */
7099 spin_lock_irqsave(ap->lock, flags);
7100
f58229f8
TH
7101 ehi->probe_mask =
7102 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7103 ehi->action |= ATA_EH_SOFTRESET;
7104 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7105
f4d6d004 7106 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7107 ap->pflags |= ATA_PFLAG_LOADING;
7108 ata_port_schedule_eh(ap);
7109
7110 spin_unlock_irqrestore(ap->lock, flags);
7111
7112 /* wait for EH to finish */
7113 ata_port_wait_eh(ap);
7114 } else {
7115 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7116 rc = ata_bus_probe(ap);
7117 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7118
7119 if (rc) {
7120 /* FIXME: do something useful here?
7121 * Current libata behavior will
7122 * tear down everything when
7123 * the module is removed
7124 * or the h/w is unplugged.
7125 */
7126 }
7127 }
7128 }
7129
7130 /* probes are done, now scan each port's disk(s) */
7131 DPRINTK("host probe begin\n");
7132 for (i = 0; i < host->n_ports; i++) {
7133 struct ata_port *ap = host->ports[i];
7134
1ae46317 7135 ata_scsi_scan_host(ap, 1);
ca77329f 7136 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7137 }
7138
7139 return 0;
7140}
7141
f5cda257
TH
7142/**
7143 * ata_host_activate - start host, request IRQ and register it
7144 * @host: target ATA host
7145 * @irq: IRQ to request
7146 * @irq_handler: irq_handler used when requesting IRQ
7147 * @irq_flags: irq_flags used when requesting IRQ
7148 * @sht: scsi_host_template to use when registering the host
7149 *
7150 * After allocating an ATA host and initializing it, most libata
7151 * LLDs perform three steps to activate the host - start host,
7152 * request IRQ and register it. This helper takes necessasry
7153 * arguments and performs the three steps in one go.
7154 *
3d46b2e2
PM
7155 * An invalid IRQ skips the IRQ registration and expects the host to
7156 * have set polling mode on the port. In this case, @irq_handler
7157 * should be NULL.
7158 *
f5cda257
TH
7159 * LOCKING:
7160 * Inherited from calling layer (may sleep).
7161 *
7162 * RETURNS:
7163 * 0 on success, -errno otherwise.
7164 */
7165int ata_host_activate(struct ata_host *host, int irq,
7166 irq_handler_t irq_handler, unsigned long irq_flags,
7167 struct scsi_host_template *sht)
7168{
cbcdd875 7169 int i, rc;
f5cda257
TH
7170
7171 rc = ata_host_start(host);
7172 if (rc)
7173 return rc;
7174
3d46b2e2
PM
7175 /* Special case for polling mode */
7176 if (!irq) {
7177 WARN_ON(irq_handler);
7178 return ata_host_register(host, sht);
7179 }
7180
f5cda257
TH
7181 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7182 dev_driver_string(host->dev), host);
7183 if (rc)
7184 return rc;
7185
cbcdd875
TH
7186 for (i = 0; i < host->n_ports; i++)
7187 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7188
f5cda257
TH
7189 rc = ata_host_register(host, sht);
7190 /* if failed, just free the IRQ and leave ports alone */
7191 if (rc)
7192 devm_free_irq(host->dev, irq, host);
7193
7194 return rc;
7195}
7196
720ba126
TH
7197/**
7198 * ata_port_detach - Detach ATA port in prepration of device removal
7199 * @ap: ATA port to be detached
7200 *
7201 * Detach all ATA devices and the associated SCSI devices of @ap;
7202 * then, remove the associated SCSI host. @ap is guaranteed to
7203 * be quiescent on return from this function.
7204 *
7205 * LOCKING:
7206 * Kernel thread context (may sleep).
7207 */
741b7763 7208static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7209{
7210 unsigned long flags;
41bda9c9 7211 struct ata_link *link;
f58229f8 7212 struct ata_device *dev;
720ba126
TH
7213
7214 if (!ap->ops->error_handler)
c3cf30a9 7215 goto skip_eh;
720ba126
TH
7216
7217 /* tell EH we're leaving & flush EH */
ba6a1308 7218 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7219 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7220 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7221
7222 ata_port_wait_eh(ap);
7223
7f9ad9b8
TH
7224 /* EH is now guaranteed to see UNLOADING - EH context belongs
7225 * to us. Disable all existing devices.
720ba126 7226 */
41bda9c9
TH
7227 ata_port_for_each_link(link, ap) {
7228 ata_link_for_each_dev(dev, link)
7229 ata_dev_disable(dev);
7230 }
720ba126 7231
720ba126
TH
7232 /* Final freeze & EH. All in-flight commands are aborted. EH
7233 * will be skipped and retrials will be terminated with bad
7234 * target.
7235 */
ba6a1308 7236 spin_lock_irqsave(ap->lock, flags);
720ba126 7237 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7238 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7239
7240 ata_port_wait_eh(ap);
45a66c1c 7241 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7242
c3cf30a9 7243 skip_eh:
720ba126 7244 /* remove the associated SCSI host */
cca3974e 7245 scsi_remove_host(ap->scsi_host);
720ba126
TH
7246}
7247
0529c159
TH
7248/**
7249 * ata_host_detach - Detach all ports of an ATA host
7250 * @host: Host to detach
7251 *
7252 * Detach all ports of @host.
7253 *
7254 * LOCKING:
7255 * Kernel thread context (may sleep).
7256 */
7257void ata_host_detach(struct ata_host *host)
7258{
7259 int i;
7260
7261 for (i = 0; i < host->n_ports; i++)
7262 ata_port_detach(host->ports[i]);
562f0c2d
TH
7263
7264 /* the host is dead now, dissociate ACPI */
7265 ata_acpi_dissociate(host);
0529c159
TH
7266}
7267
1da177e4
LT
7268/**
7269 * ata_std_ports - initialize ioaddr with standard port offsets.
7270 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7271 *
7272 * Utility function which initializes data_addr, error_addr,
7273 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7274 * device_addr, status_addr, and command_addr to standard offsets
7275 * relative to cmd_addr.
7276 *
7277 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7278 */
0baab86b 7279
1da177e4
LT
7280void ata_std_ports(struct ata_ioports *ioaddr)
7281{
7282 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7283 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7284 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7285 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7286 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7287 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7288 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7289 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7290 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7291 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7292}
7293
0baab86b 7294
374b1873
JG
7295#ifdef CONFIG_PCI
7296
1da177e4
LT
7297/**
7298 * ata_pci_remove_one - PCI layer callback for device removal
7299 * @pdev: PCI device that was removed
7300 *
b878ca5d
TH
7301 * PCI layer indicates to libata via this hook that hot-unplug or
7302 * module unload event has occurred. Detach all ports. Resource
7303 * release is handled via devres.
1da177e4
LT
7304 *
7305 * LOCKING:
7306 * Inherited from PCI layer (may sleep).
7307 */
f0d36efd 7308void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7309{
2855568b 7310 struct device *dev = &pdev->dev;
cca3974e 7311 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7312
b878ca5d 7313 ata_host_detach(host);
1da177e4
LT
7314}
7315
7316/* move to PCI subsystem */
057ace5e 7317int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7318{
7319 unsigned long tmp = 0;
7320
7321 switch (bits->width) {
7322 case 1: {
7323 u8 tmp8 = 0;
7324 pci_read_config_byte(pdev, bits->reg, &tmp8);
7325 tmp = tmp8;
7326 break;
7327 }
7328 case 2: {
7329 u16 tmp16 = 0;
7330 pci_read_config_word(pdev, bits->reg, &tmp16);
7331 tmp = tmp16;
7332 break;
7333 }
7334 case 4: {
7335 u32 tmp32 = 0;
7336 pci_read_config_dword(pdev, bits->reg, &tmp32);
7337 tmp = tmp32;
7338 break;
7339 }
7340
7341 default:
7342 return -EINVAL;
7343 }
7344
7345 tmp &= bits->mask;
7346
7347 return (tmp == bits->val) ? 1 : 0;
7348}
9b847548 7349
6ffa01d8 7350#ifdef CONFIG_PM
3c5100c1 7351void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7352{
7353 pci_save_state(pdev);
4c90d971 7354 pci_disable_device(pdev);
500530f6 7355
4c90d971 7356 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7357 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7358}
7359
553c4aa6 7360int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7361{
553c4aa6
TH
7362 int rc;
7363
9b847548
JA
7364 pci_set_power_state(pdev, PCI_D0);
7365 pci_restore_state(pdev);
553c4aa6 7366
b878ca5d 7367 rc = pcim_enable_device(pdev);
553c4aa6
TH
7368 if (rc) {
7369 dev_printk(KERN_ERR, &pdev->dev,
7370 "failed to enable device after resume (%d)\n", rc);
7371 return rc;
7372 }
7373
9b847548 7374 pci_set_master(pdev);
553c4aa6 7375 return 0;
500530f6
TH
7376}
7377
3c5100c1 7378int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7379{
cca3974e 7380 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7381 int rc = 0;
7382
cca3974e 7383 rc = ata_host_suspend(host, mesg);
500530f6
TH
7384 if (rc)
7385 return rc;
7386
3c5100c1 7387 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7388
7389 return 0;
7390}
7391
7392int ata_pci_device_resume(struct pci_dev *pdev)
7393{
cca3974e 7394 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7395 int rc;
500530f6 7396
553c4aa6
TH
7397 rc = ata_pci_device_do_resume(pdev);
7398 if (rc == 0)
7399 ata_host_resume(host);
7400 return rc;
9b847548 7401}
6ffa01d8
TH
7402#endif /* CONFIG_PM */
7403
1da177e4
LT
7404#endif /* CONFIG_PCI */
7405
7406
1da177e4
LT
7407static int __init ata_init(void)
7408{
a8601e5f 7409 ata_probe_timeout *= HZ;
1da177e4
LT
7410 ata_wq = create_workqueue("ata");
7411 if (!ata_wq)
7412 return -ENOMEM;
7413
453b07ac
TH
7414 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7415 if (!ata_aux_wq) {
7416 destroy_workqueue(ata_wq);
7417 return -ENOMEM;
7418 }
7419
1da177e4
LT
7420 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7421 return 0;
7422}
7423
7424static void __exit ata_exit(void)
7425{
7426 destroy_workqueue(ata_wq);
453b07ac 7427 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7428}
7429
a4625085 7430subsys_initcall(ata_init);
1da177e4
LT
7431module_exit(ata_exit);
7432
67846b30 7433static unsigned long ratelimit_time;
34af946a 7434static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7435
7436int ata_ratelimit(void)
7437{
7438 int rc;
7439 unsigned long flags;
7440
7441 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7442
7443 if (time_after(jiffies, ratelimit_time)) {
7444 rc = 1;
7445 ratelimit_time = jiffies + (HZ/5);
7446 } else
7447 rc = 0;
7448
7449 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7450
7451 return rc;
7452}
7453
c22daff4
TH
7454/**
7455 * ata_wait_register - wait until register value changes
7456 * @reg: IO-mapped register
7457 * @mask: Mask to apply to read register value
7458 * @val: Wait condition
7459 * @interval_msec: polling interval in milliseconds
7460 * @timeout_msec: timeout in milliseconds
7461 *
7462 * Waiting for some bits of register to change is a common
7463 * operation for ATA controllers. This function reads 32bit LE
7464 * IO-mapped register @reg and tests for the following condition.
7465 *
7466 * (*@reg & mask) != val
7467 *
7468 * If the condition is met, it returns; otherwise, the process is
7469 * repeated after @interval_msec until timeout.
7470 *
7471 * LOCKING:
7472 * Kernel thread context (may sleep)
7473 *
7474 * RETURNS:
7475 * The final register value.
7476 */
7477u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7478 unsigned long interval_msec,
7479 unsigned long timeout_msec)
7480{
7481 unsigned long timeout;
7482 u32 tmp;
7483
7484 tmp = ioread32(reg);
7485
7486 /* Calculate timeout _after_ the first read to make sure
7487 * preceding writes reach the controller before starting to
7488 * eat away the timeout.
7489 */
7490 timeout = jiffies + (timeout_msec * HZ) / 1000;
7491
7492 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7493 msleep(interval_msec);
7494 tmp = ioread32(reg);
7495 }
7496
7497 return tmp;
7498}
7499
dd5b06c4
TH
7500/*
7501 * Dummy port_ops
7502 */
7503static void ata_dummy_noret(struct ata_port *ap) { }
7504static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7505static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7506
7507static u8 ata_dummy_check_status(struct ata_port *ap)
7508{
7509 return ATA_DRDY;
7510}
7511
7512static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7513{
7514 return AC_ERR_SYSTEM;
7515}
7516
7517const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7518 .check_status = ata_dummy_check_status,
7519 .check_altstatus = ata_dummy_check_status,
7520 .dev_select = ata_noop_dev_select,
7521 .qc_prep = ata_noop_qc_prep,
7522 .qc_issue = ata_dummy_qc_issue,
7523 .freeze = ata_dummy_noret,
7524 .thaw = ata_dummy_noret,
7525 .error_handler = ata_dummy_noret,
7526 .post_internal_cmd = ata_dummy_qc_noret,
7527 .irq_clear = ata_dummy_noret,
7528 .port_start = ata_dummy_ret0,
7529 .port_stop = ata_dummy_noret,
7530};
7531
21b0ad4f
TH
7532const struct ata_port_info ata_dummy_port_info = {
7533 .port_ops = &ata_dummy_port_ops,
7534};
7535
1da177e4
LT
7536/*
7537 * libata is essentially a library of internal helper functions for
7538 * low-level ATA host controller drivers. As such, the API/ABI is
7539 * likely to change as new drivers are added and updated.
7540 * Do not depend on ABI/API stability.
7541 */
e9c83914
TH
7542EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7543EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7544EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7545EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7546EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7547EXPORT_SYMBOL_GPL(ata_std_bios_param);
7548EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7549EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7550EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7551EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7552EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7553EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7554EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7555EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7556EXPORT_SYMBOL_GPL(ata_sg_init);
9a1004d0 7557EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7558EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7559EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7560EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7561EXPORT_SYMBOL_GPL(ata_tf_load);
7562EXPORT_SYMBOL_GPL(ata_tf_read);
7563EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7564EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7565EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7566EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7567EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7568EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7569EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7570EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7571EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7572EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7573EXPORT_SYMBOL_GPL(ata_mode_string);
7574EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4
LT
7575EXPORT_SYMBOL_GPL(ata_check_status);
7576EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7577EXPORT_SYMBOL_GPL(ata_exec_command);
7578EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7579EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7580EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7581EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7582EXPORT_SYMBOL_GPL(ata_data_xfer);
7583EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7584EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7585EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7586EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7587EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7588EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7589EXPORT_SYMBOL_GPL(ata_bmdma_start);
7590EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7591EXPORT_SYMBOL_GPL(ata_bmdma_status);
7592EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7593EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7594EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7595EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7596EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7597EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7598EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7599EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7600EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7601EXPORT_SYMBOL_GPL(sata_link_debounce);
7602EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7603EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7604EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7605EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7606EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7607EXPORT_SYMBOL_GPL(sata_std_hardreset);
7608EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7609EXPORT_SYMBOL_GPL(ata_dev_classify);
7610EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7611EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7612EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7613EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7614EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7615EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7616EXPORT_SYMBOL_GPL(ata_wait_ready);
1da177e4
LT
7617EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7618EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7619EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7620EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7621EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7622EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7623EXPORT_SYMBOL_GPL(sata_scr_valid);
7624EXPORT_SYMBOL_GPL(sata_scr_read);
7625EXPORT_SYMBOL_GPL(sata_scr_write);
7626EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7627EXPORT_SYMBOL_GPL(ata_link_online);
7628EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7629#ifdef CONFIG_PM
cca3974e
JG
7630EXPORT_SYMBOL_GPL(ata_host_suspend);
7631EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7632#endif /* CONFIG_PM */
6a62a04d
TH
7633EXPORT_SYMBOL_GPL(ata_id_string);
7634EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
7635EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7636
1bc4ccff 7637EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7638EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7639EXPORT_SYMBOL_GPL(ata_timing_compute);
7640EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7641EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7642
1da177e4
LT
7643#ifdef CONFIG_PCI
7644EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7645EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7646EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7647EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
4e6b79fa 7648EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
1da177e4
LT
7649EXPORT_SYMBOL_GPL(ata_pci_init_one);
7650EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7651#ifdef CONFIG_PM
500530f6
TH
7652EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7653EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7654EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7655EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7656#endif /* CONFIG_PM */
67951ade
AC
7657EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7658EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7659#endif /* CONFIG_PCI */
9b847548 7660
31f88384 7661EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7662EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7663EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7664EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7665EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7666
b64bbc39
TH
7667EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7668EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7669EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7670EXPORT_SYMBOL_GPL(ata_port_desc);
7671#ifdef CONFIG_PCI
7672EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7673#endif /* CONFIG_PCI */
7b70fc03 7674EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7675EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7676EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7677EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7678EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7679EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7680EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7681EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7682EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7683EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7684EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7685EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7686
7687EXPORT_SYMBOL_GPL(ata_cable_40wire);
7688EXPORT_SYMBOL_GPL(ata_cable_80wire);
7689EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7690EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7691EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.147003 seconds and 5 git commands to generate.