Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
09d7f9b0
TH
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
0b8efb0a
TH
608 dev->class++;
609 }
610}
611
1da177e4 612/**
0d5ff566 613 * ata_devchk - PATA device presence detection
1da177e4
LT
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
0d5ff566 630static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
631{
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
0d5ff566
TH
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 639
0d5ff566
TH
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653}
654
1da177e4
LT
655/**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
057ace5e 671unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
672{
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692}
693
694/**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
b4dc7623 698 * @r_err: Value of error register on completion
1da177e4
LT
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
b4dc7623
TH
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
714 */
715
a619f981 716unsigned int
b4dc7623 717ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 718{
1da177e4
LT
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
1da177e4 727 ap->ops->tf_read(ap, &tf);
0169e284 728 err = tf.feature;
b4dc7623
TH
729 if (r_err)
730 *r_err = err;
1da177e4 731
93590859
AC
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
1da177e4
LT
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
b4dc7623 741 return ATA_DEV_NONE;
1da177e4 742
b4dc7623 743 /* determine if device is ATA or ATAPI */
1da177e4 744 class = ata_dev_classify(&tf);
b4dc7623 745
1da177e4 746 if (class == ATA_DEV_UNKNOWN)
b4dc7623 747 return ATA_DEV_NONE;
1da177e4 748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
749 return ATA_DEV_NONE;
750 return class;
1da177e4
LT
751}
752
753/**
6a62a04d 754 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
6a62a04d
TH
768void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
1da177e4
LT
770{
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785}
786
0e949ff3 787/**
6a62a04d 788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
6a62a04d 794 * This function is identical to ata_id_string except that it
0e949ff3
TH
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
6a62a04d
TH
801void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
0e949ff3
TH
803{
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
6a62a04d 808 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814}
0baab86b 815
1e999736
AC
816static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817{
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828}
829
830static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831{
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840}
841
842/**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851{
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867}
868
869/**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877static u64 ata_read_native_max_address(struct ata_device *dev)
878{
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894}
895
896/**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
6b38d1d1 899 * @new_sectors: new max sectors value to set for the device
1e999736
AC
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906{
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932}
933
934/**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
6b38d1d1 937 * @new_sectors: new max sectors value to set for the device
1e999736
AC
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944{
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966}
967
968/**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977static u64 ata_hpa_resize(struct ata_device *dev)
978{
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
a617c09f 981
1e999736
AC
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
1e999736
AC
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
bd1d5ec6 992 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
bd1d5ec6
AM
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1e999736
AC
1000
1001 if (hpa_sectors) {
bd1d5ec6
AM
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1e999736
AC
1005 return hpa_sectors;
1006 }
1007 }
37301a55
TH
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1e999736
AC
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
A
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
A
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
a617c09f 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
a617c09f 1614
432729f0
AC
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
54936f8b 1657 int may_fallback = 1, tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
54936f8b
TH
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
49016aca
TH
1716 rc = -EIO;
1717 reason = "I/O error";
1da177e4
LT
1718 goto err_out;
1719 }
1720
54936f8b
TH
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
49016aca 1726 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1727
49016aca 1728 /* sanity check */
a4f5749b 1729 rc = -EINVAL;
6070068b 1730 reason = "device reports invalid type";
a4f5749b
TH
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
49016aca
TH
1738 }
1739
169439c2
ML
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
bff04647 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
bff04647 1786 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
fe635c7e 1792
49016aca
TH
1793 return 0;
1794
1795 err_out:
88574551 1796 if (ata_msg_warn(ap))
0dd4b21f 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1799 return rc;
1800}
1801
3373efd8 1802static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1803{
3373efd8 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1805}
1806
a6e6ce8e
TH
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
6919a0a6
AC
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
a6e6ce8e 1821 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
49016aca 1832/**
ffeae418 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
49016aca
TH
1838 *
1839 * LOCKING:
ffeae418
TH
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
49016aca 1844 */
efdaedc4 1845int ata_dev_configure(struct ata_device *dev)
49016aca 1846{
3373efd8 1847 struct ata_port *ap = dev->ap;
6746544c
TH
1848 struct ata_eh_context *ehc = &ap->eh_context;
1849 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1850 const u16 *id = dev->id;
ff8854b2 1851 unsigned int xfer_mask;
b352e57d 1852 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1853 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1854 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1855 int rc;
49016aca 1856
0dd4b21f 1857 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1858 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1859 __FUNCTION__);
ffeae418 1860 return 0;
49016aca
TH
1861 }
1862
0dd4b21f 1863 if (ata_msg_probe(ap))
44877b4e 1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1865
6746544c
TH
1866 /* let ACPI work its magic */
1867 rc = ata_acpi_on_devcfg(dev);
1868 if (rc)
1869 return rc;
08573a86 1870
c39f5ebe 1871 /* print device capabilities */
0dd4b21f 1872 if (ata_msg_probe(ap))
88574551
TH
1873 ata_dev_printk(dev, KERN_DEBUG,
1874 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1875 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1876 __FUNCTION__,
f15a1daf
TH
1877 id[49], id[82], id[83], id[84],
1878 id[85], id[86], id[87], id[88]);
c39f5ebe 1879
208a9933 1880 /* initialize to-be-configured parameters */
ea1dd4e1 1881 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1882 dev->max_sectors = 0;
1883 dev->cdb_len = 0;
1884 dev->n_sectors = 0;
1885 dev->cylinders = 0;
1886 dev->heads = 0;
1887 dev->sectors = 0;
1888
1da177e4
LT
1889 /*
1890 * common ATA, ATAPI feature tests
1891 */
1892
ff8854b2 1893 /* find max transfer mode; for printk only */
1148c3a7 1894 xfer_mask = ata_id_xfermask(id);
1da177e4 1895
0dd4b21f
BP
1896 if (ata_msg_probe(ap))
1897 ata_dump_id(id);
1da177e4 1898
ef143d57
AL
1899 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1900 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1901 sizeof(fwrevbuf));
1902
1903 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1904 sizeof(modelbuf));
1905
1da177e4
LT
1906 /* ATA-specific feature tests */
1907 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1908 if (ata_id_is_cfa(id)) {
1909 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1910 ata_dev_printk(dev, KERN_WARNING,
1911 "supports DRM functions and may "
1912 "not be fully accessable.\n");
b352e57d
AC
1913 snprintf(revbuf, 7, "CFA");
1914 }
1915 else
1916 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1917
1148c3a7 1918 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1919
3f64f565
EM
1920 if (dev->id[59] & 0x100)
1921 dev->multi_count = dev->id[59] & 0xff;
1922
1148c3a7 1923 if (ata_id_has_lba(id)) {
4c2d721a 1924 const char *lba_desc;
a6e6ce8e 1925 char ncq_desc[20];
8bf62ece 1926
4c2d721a
TH
1927 lba_desc = "LBA";
1928 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1929 if (ata_id_has_lba48(id)) {
8bf62ece 1930 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1931 lba_desc = "LBA48";
6fc49adb
TH
1932
1933 if (dev->n_sectors >= (1UL << 28) &&
1934 ata_id_has_flush_ext(id))
1935 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1936 }
8bf62ece 1937
1e999736
AC
1938 if (ata_id_hpa_enabled(dev->id))
1939 dev->n_sectors = ata_hpa_resize(dev);
1940
a6e6ce8e
TH
1941 /* config NCQ */
1942 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1943
8bf62ece 1944 /* print device info to dmesg */
3f64f565
EM
1945 if (ata_msg_drv(ap) && print_info) {
1946 ata_dev_printk(dev, KERN_INFO,
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1952 (unsigned long long)dev->n_sectors,
3f64f565
EM
1953 dev->multi_count, lba_desc, ncq_desc);
1954 }
ffeae418 1955 } else {
8bf62ece
AL
1956 /* CHS */
1957
1958 /* Default translation */
1148c3a7
TH
1959 dev->cylinders = id[1];
1960 dev->heads = id[3];
1961 dev->sectors = id[6];
8bf62ece 1962
1148c3a7 1963 if (ata_id_current_chs_valid(id)) {
8bf62ece 1964 /* Current CHS translation is valid. */
1148c3a7
TH
1965 dev->cylinders = id[54];
1966 dev->heads = id[55];
1967 dev->sectors = id[56];
8bf62ece
AL
1968 }
1969
1970 /* print device info to dmesg */
3f64f565 1971 if (ata_msg_drv(ap) && print_info) {
88574551 1972 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1973 "%s: %s, %s, max %s\n",
1974 revbuf, modelbuf, fwrevbuf,
1975 ata_mode_string(xfer_mask));
a84471fe 1976 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1977 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1978 (unsigned long long)dev->n_sectors,
1979 dev->multi_count, dev->cylinders,
1980 dev->heads, dev->sectors);
1981 }
07f6f7d0
AL
1982 }
1983
6e7846e9 1984 dev->cdb_len = 16;
1da177e4
LT
1985 }
1986
1987 /* ATAPI-specific feature tests */
2c13b7ce 1988 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1989 char *cdb_intr_string = "";
1990
1148c3a7 1991 rc = atapi_cdb_len(id);
1da177e4 1992 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1993 if (ata_msg_warn(ap))
88574551
TH
1994 ata_dev_printk(dev, KERN_WARNING,
1995 "unsupported CDB len\n");
ffeae418 1996 rc = -EINVAL;
1da177e4
LT
1997 goto err_out_nosup;
1998 }
6e7846e9 1999 dev->cdb_len = (unsigned int) rc;
1da177e4 2000
08a556db 2001 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2002 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2003 cdb_intr_string = ", CDB intr";
2004 }
312f7da2 2005
1da177e4 2006 /* print device info to dmesg */
5afc8142 2007 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
2008 ata_dev_printk(dev, KERN_INFO,
2009 "ATAPI: %s, %s, max %s%s\n",
2010 modelbuf, fwrevbuf,
12436c30
TH
2011 ata_mode_string(xfer_mask),
2012 cdb_intr_string);
1da177e4
LT
2013 }
2014
914ed354
TH
2015 /* determine max_sectors */
2016 dev->max_sectors = ATA_MAX_SECTORS;
2017 if (dev->flags & ATA_DFLAG_LBA48)
2018 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2019
93590859
AC
2020 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2021 /* Let the user know. We don't want to disallow opens for
2022 rescue purposes, or in case the vendor is just a blithering
2023 idiot */
2024 if (print_info) {
2025 ata_dev_printk(dev, KERN_WARNING,
2026"Drive reports diagnostics failure. This may indicate a drive\n");
2027 ata_dev_printk(dev, KERN_WARNING,
2028"fault or invalid emulation. Contact drive vendor for information.\n");
2029 }
2030 }
2031
4b2f3ede 2032 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2033 if (ata_dev_knobble(dev)) {
5afc8142 2034 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2035 ata_dev_printk(dev, KERN_INFO,
2036 "applying bridge limits\n");
5a529139 2037 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2038 dev->max_sectors = ATA_MAX_SECTORS;
2039 }
2040
18d6e9d5 2041 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2042 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2043 dev->max_sectors);
18d6e9d5 2044
4b2f3ede 2045 if (ap->ops->dev_config)
cd0d3bbc 2046 ap->ops->dev_config(dev);
4b2f3ede 2047
0dd4b21f
BP
2048 if (ata_msg_probe(ap))
2049 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2050 __FUNCTION__, ata_chk_status(ap));
ffeae418 2051 return 0;
1da177e4
LT
2052
2053err_out_nosup:
0dd4b21f 2054 if (ata_msg_probe(ap))
88574551
TH
2055 ata_dev_printk(dev, KERN_DEBUG,
2056 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2057 return rc;
1da177e4
LT
2058}
2059
be0d18df 2060/**
2e41e8e6 2061 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2062 * @ap: port
2063 *
2e41e8e6 2064 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2065 * detection.
2066 */
2067
2068int ata_cable_40wire(struct ata_port *ap)
2069{
2070 return ATA_CBL_PATA40;
2071}
2072
2073/**
2e41e8e6 2074 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2075 * @ap: port
2076 *
2e41e8e6 2077 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2078 * detection.
2079 */
2080
2081int ata_cable_80wire(struct ata_port *ap)
2082{
2083 return ATA_CBL_PATA80;
2084}
2085
2086/**
2087 * ata_cable_unknown - return unknown PATA cable.
2088 * @ap: port
2089 *
2090 * Helper method for drivers which have no PATA cable detection.
2091 */
2092
2093int ata_cable_unknown(struct ata_port *ap)
2094{
2095 return ATA_CBL_PATA_UNK;
2096}
2097
2098/**
2099 * ata_cable_sata - return SATA cable type
2100 * @ap: port
2101 *
2102 * Helper method for drivers which have SATA cables
2103 */
2104
2105int ata_cable_sata(struct ata_port *ap)
2106{
2107 return ATA_CBL_SATA;
2108}
2109
1da177e4
LT
2110/**
2111 * ata_bus_probe - Reset and probe ATA bus
2112 * @ap: Bus to probe
2113 *
0cba632b
JG
2114 * Master ATA bus probing function. Initiates a hardware-dependent
2115 * bus reset, then attempts to identify any devices found on
2116 * the bus.
2117 *
1da177e4 2118 * LOCKING:
0cba632b 2119 * PCI/etc. bus probe sem.
1da177e4
LT
2120 *
2121 * RETURNS:
96072e69 2122 * Zero on success, negative errno otherwise.
1da177e4
LT
2123 */
2124
80289167 2125int ata_bus_probe(struct ata_port *ap)
1da177e4 2126{
28ca5c57 2127 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2128 int tries[ATA_MAX_DEVICES];
4ae72a1e 2129 int i, rc;
e82cbdb9 2130 struct ata_device *dev;
1da177e4 2131
28ca5c57 2132 ata_port_probe(ap);
c19ba8af 2133
14d2bac1
TH
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 tries[i] = ATA_PROBE_MAX_TRIES;
2136
2137 retry:
2044470c 2138 /* reset and determine device classes */
52783c5d 2139 ap->ops->phy_reset(ap);
2061a47a 2140
52783c5d
TH
2141 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2142 dev = &ap->device[i];
c19ba8af 2143
52783c5d
TH
2144 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2145 dev->class != ATA_DEV_UNKNOWN)
2146 classes[dev->devno] = dev->class;
2147 else
2148 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2149
52783c5d 2150 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2151 }
1da177e4 2152
52783c5d 2153 ata_port_probe(ap);
2044470c 2154
b6079ca4
AC
2155 /* after the reset the device state is PIO 0 and the controller
2156 state is undefined. Record the mode */
2157
2158 for (i = 0; i < ATA_MAX_DEVICES; i++)
2159 ap->device[i].pio_mode = XFER_PIO_0;
2160
f31f0cc2
JG
2161 /* read IDENTIFY page and configure devices. We have to do the identify
2162 specific sequence bass-ackwards so that PDIAG- is released by
2163 the slave device */
2164
2165 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2166 dev = &ap->device[i];
28ca5c57 2167
ec573755
TH
2168 if (tries[i])
2169 dev->class = classes[i];
ffeae418 2170
14d2bac1 2171 if (!ata_dev_enabled(dev))
ffeae418 2172 continue;
ffeae418 2173
bff04647
TH
2174 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2175 dev->id);
14d2bac1
TH
2176 if (rc)
2177 goto fail;
f31f0cc2
JG
2178 }
2179
be0d18df
AC
2180 /* Now ask for the cable type as PDIAG- should have been released */
2181 if (ap->ops->cable_detect)
2182 ap->cbl = ap->ops->cable_detect(ap);
2183
f31f0cc2
JG
2184 /* After the identify sequence we can now set up the devices. We do
2185 this in the normal order so that the user doesn't get confused */
2186
2187 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2188 dev = &ap->device[i];
2189 if (!ata_dev_enabled(dev))
2190 continue;
14d2bac1 2191
efdaedc4
TH
2192 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2193 rc = ata_dev_configure(dev);
2194 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2195 if (rc)
2196 goto fail;
1da177e4
LT
2197 }
2198
e82cbdb9 2199 /* configure transfer mode */
3adcebb2 2200 rc = ata_set_mode(ap, &dev);
4ae72a1e 2201 if (rc)
51713d35 2202 goto fail;
1da177e4 2203
e82cbdb9
TH
2204 for (i = 0; i < ATA_MAX_DEVICES; i++)
2205 if (ata_dev_enabled(&ap->device[i]))
2206 return 0;
1da177e4 2207
e82cbdb9
TH
2208 /* no device present, disable port */
2209 ata_port_disable(ap);
1da177e4 2210 ap->ops->port_disable(ap);
96072e69 2211 return -ENODEV;
14d2bac1
TH
2212
2213 fail:
4ae72a1e
TH
2214 tries[dev->devno]--;
2215
14d2bac1
TH
2216 switch (rc) {
2217 case -EINVAL:
4ae72a1e 2218 /* eeek, something went very wrong, give up */
14d2bac1
TH
2219 tries[dev->devno] = 0;
2220 break;
4ae72a1e
TH
2221
2222 case -ENODEV:
2223 /* give it just one more chance */
2224 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2225 case -EIO:
4ae72a1e
TH
2226 if (tries[dev->devno] == 1) {
2227 /* This is the last chance, better to slow
2228 * down than lose it.
2229 */
2230 sata_down_spd_limit(ap);
2231 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2232 }
14d2bac1
TH
2233 }
2234
4ae72a1e 2235 if (!tries[dev->devno])
3373efd8 2236 ata_dev_disable(dev);
ec573755 2237
14d2bac1 2238 goto retry;
1da177e4
LT
2239}
2240
2241/**
0cba632b
JG
2242 * ata_port_probe - Mark port as enabled
2243 * @ap: Port for which we indicate enablement
1da177e4 2244 *
0cba632b
JG
2245 * Modify @ap data structure such that the system
2246 * thinks that the entire port is enabled.
2247 *
cca3974e 2248 * LOCKING: host lock, or some other form of
0cba632b 2249 * serialization.
1da177e4
LT
2250 */
2251
2252void ata_port_probe(struct ata_port *ap)
2253{
198e0fed 2254 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2255}
2256
3be680b7
TH
2257/**
2258 * sata_print_link_status - Print SATA link status
2259 * @ap: SATA port to printk link status about
2260 *
2261 * This function prints link speed and status of a SATA link.
2262 *
2263 * LOCKING:
2264 * None.
2265 */
43727fbc 2266void sata_print_link_status(struct ata_port *ap)
3be680b7 2267{
6d5f9732 2268 u32 sstatus, scontrol, tmp;
3be680b7 2269
81952c54 2270 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2271 return;
81952c54 2272 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2273
81952c54 2274 if (ata_port_online(ap)) {
3be680b7 2275 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2276 ata_port_printk(ap, KERN_INFO,
2277 "SATA link up %s (SStatus %X SControl %X)\n",
2278 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2279 } else {
f15a1daf
TH
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link down (SStatus %X SControl %X)\n",
2282 sstatus, scontrol);
3be680b7
TH
2283 }
2284}
2285
1da177e4 2286/**
780a87f7
JG
2287 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2288 * @ap: SATA port associated with target SATA PHY.
1da177e4 2289 *
780a87f7
JG
2290 * This function issues commands to standard SATA Sxxx
2291 * PHY registers, to wake up the phy (and device), and
2292 * clear any reset condition.
1da177e4
LT
2293 *
2294 * LOCKING:
0cba632b 2295 * PCI/etc. bus probe sem.
1da177e4
LT
2296 *
2297 */
2298void __sata_phy_reset(struct ata_port *ap)
2299{
2300 u32 sstatus;
2301 unsigned long timeout = jiffies + (HZ * 5);
2302
2303 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2304 /* issue phy wake/reset */
81952c54 2305 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2306 /* Couldn't find anything in SATA I/II specs, but
2307 * AHCI-1.1 10.4.2 says at least 1 ms. */
2308 mdelay(1);
1da177e4 2309 }
81952c54
TH
2310 /* phy wake/clear reset */
2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2312
2313 /* wait for phy to become ready, if necessary */
2314 do {
2315 msleep(200);
81952c54 2316 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2317 if ((sstatus & 0xf) != 1)
2318 break;
2319 } while (time_before(jiffies, timeout));
2320
3be680b7
TH
2321 /* print link status */
2322 sata_print_link_status(ap);
656563e3 2323
3be680b7 2324 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2325 if (!ata_port_offline(ap))
1da177e4 2326 ata_port_probe(ap);
3be680b7 2327 else
1da177e4 2328 ata_port_disable(ap);
1da177e4 2329
198e0fed 2330 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2331 return;
2332
2333 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2334 ata_port_disable(ap);
2335 return;
2336 }
2337
2338 ap->cbl = ATA_CBL_SATA;
2339}
2340
2341/**
780a87f7
JG
2342 * sata_phy_reset - Reset SATA bus.
2343 * @ap: SATA port associated with target SATA PHY.
1da177e4 2344 *
780a87f7
JG
2345 * This function resets the SATA bus, and then probes
2346 * the bus for devices.
1da177e4
LT
2347 *
2348 * LOCKING:
0cba632b 2349 * PCI/etc. bus probe sem.
1da177e4
LT
2350 *
2351 */
2352void sata_phy_reset(struct ata_port *ap)
2353{
2354 __sata_phy_reset(ap);
198e0fed 2355 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2356 return;
2357 ata_bus_reset(ap);
2358}
2359
ebdfca6e
AC
2360/**
2361 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2362 * @adev: device
2363 *
2364 * Obtain the other device on the same cable, or if none is
2365 * present NULL is returned
2366 */
2e9edbf8 2367
3373efd8 2368struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2369{
3373efd8 2370 struct ata_port *ap = adev->ap;
ebdfca6e 2371 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2372 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2373 return NULL;
2374 return pair;
2375}
2376
1da177e4 2377/**
780a87f7
JG
2378 * ata_port_disable - Disable port.
2379 * @ap: Port to be disabled.
1da177e4 2380 *
780a87f7
JG
2381 * Modify @ap data structure such that the system
2382 * thinks that the entire port is disabled, and should
2383 * never attempt to probe or communicate with devices
2384 * on this port.
2385 *
cca3974e 2386 * LOCKING: host lock, or some other form of
780a87f7 2387 * serialization.
1da177e4
LT
2388 */
2389
2390void ata_port_disable(struct ata_port *ap)
2391{
2392 ap->device[0].class = ATA_DEV_NONE;
2393 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2394 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2395}
2396
1c3fae4d 2397/**
3c567b7d 2398 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2399 * @ap: Port to adjust SATA spd limit for
2400 *
2401 * Adjust SATA spd limit of @ap downward. Note that this
2402 * function only adjusts the limit. The change must be applied
3c567b7d 2403 * using sata_set_spd().
1c3fae4d
TH
2404 *
2405 * LOCKING:
2406 * Inherited from caller.
2407 *
2408 * RETURNS:
2409 * 0 on success, negative errno on failure
2410 */
3c567b7d 2411int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2412{
81952c54
TH
2413 u32 sstatus, spd, mask;
2414 int rc, highbit;
1c3fae4d 2415
81952c54
TH
2416 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2417 if (rc)
2418 return rc;
1c3fae4d
TH
2419
2420 mask = ap->sata_spd_limit;
2421 if (mask <= 1)
2422 return -EINVAL;
2423 highbit = fls(mask) - 1;
2424 mask &= ~(1 << highbit);
2425
81952c54 2426 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2427 if (spd <= 1)
2428 return -EINVAL;
2429 spd--;
2430 mask &= (1 << spd) - 1;
2431 if (!mask)
2432 return -EINVAL;
2433
2434 ap->sata_spd_limit = mask;
2435
f15a1daf
TH
2436 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2437 sata_spd_string(fls(mask)));
1c3fae4d
TH
2438
2439 return 0;
2440}
2441
3c567b7d 2442static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2443{
2444 u32 spd, limit;
2445
2446 if (ap->sata_spd_limit == UINT_MAX)
2447 limit = 0;
2448 else
2449 limit = fls(ap->sata_spd_limit);
2450
2451 spd = (*scontrol >> 4) & 0xf;
2452 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2453
2454 return spd != limit;
2455}
2456
2457/**
3c567b7d 2458 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2459 * @ap: Port in question
2460 *
2461 * Test whether the spd limit in SControl matches
2462 * @ap->sata_spd_limit. This function is used to determine
2463 * whether hardreset is necessary to apply SATA spd
2464 * configuration.
2465 *
2466 * LOCKING:
2467 * Inherited from caller.
2468 *
2469 * RETURNS:
2470 * 1 if SATA spd configuration is needed, 0 otherwise.
2471 */
3c567b7d 2472int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2473{
2474 u32 scontrol;
2475
81952c54 2476 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2477 return 0;
2478
3c567b7d 2479 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2480}
2481
2482/**
3c567b7d 2483 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2484 * @ap: Port to set SATA spd for
2485 *
2486 * Set SATA spd of @ap according to sata_spd_limit.
2487 *
2488 * LOCKING:
2489 * Inherited from caller.
2490 *
2491 * RETURNS:
2492 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2493 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2494 */
3c567b7d 2495int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2496{
2497 u32 scontrol;
81952c54 2498 int rc;
1c3fae4d 2499
81952c54
TH
2500 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2501 return rc;
1c3fae4d 2502
3c567b7d 2503 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2504 return 0;
2505
81952c54
TH
2506 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2507 return rc;
2508
1c3fae4d
TH
2509 return 1;
2510}
2511
452503f9
AC
2512/*
2513 * This mode timing computation functionality is ported over from
2514 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2515 */
2516/*
b352e57d 2517 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2518 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2519 * for UDMA6, which is currently supported only by Maxtor drives.
2520 *
2521 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2522 */
2523
2524static const struct ata_timing ata_timing[] = {
2525
2526 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2527 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2528 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2529 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2530
b352e57d
AC
2531 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2532 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2533 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2534 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2535 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2536
2537/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2538
452503f9
AC
2539 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2540 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2541 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2542
452503f9
AC
2543 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2544 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2545 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2546
b352e57d
AC
2547 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2548 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2549 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2550 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2551
2552 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2553 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2554 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2555
2556/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2557
2558 { 0xFF }
2559};
2560
2561#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2562#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2563
2564static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2565{
2566 q->setup = EZ(t->setup * 1000, T);
2567 q->act8b = EZ(t->act8b * 1000, T);
2568 q->rec8b = EZ(t->rec8b * 1000, T);
2569 q->cyc8b = EZ(t->cyc8b * 1000, T);
2570 q->active = EZ(t->active * 1000, T);
2571 q->recover = EZ(t->recover * 1000, T);
2572 q->cycle = EZ(t->cycle * 1000, T);
2573 q->udma = EZ(t->udma * 1000, UT);
2574}
2575
2576void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2577 struct ata_timing *m, unsigned int what)
2578{
2579 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2580 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2581 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2582 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2583 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2584 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2585 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2586 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2587}
2588
2589static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2590{
2591 const struct ata_timing *t;
2592
2593 for (t = ata_timing; t->mode != speed; t++)
91190758 2594 if (t->mode == 0xFF)
452503f9 2595 return NULL;
2e9edbf8 2596 return t;
452503f9
AC
2597}
2598
2599int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2600 struct ata_timing *t, int T, int UT)
2601{
2602 const struct ata_timing *s;
2603 struct ata_timing p;
2604
2605 /*
2e9edbf8 2606 * Find the mode.
75b1f2f8 2607 */
452503f9
AC
2608
2609 if (!(s = ata_timing_find_mode(speed)))
2610 return -EINVAL;
2611
75b1f2f8
AL
2612 memcpy(t, s, sizeof(*s));
2613
452503f9
AC
2614 /*
2615 * If the drive is an EIDE drive, it can tell us it needs extended
2616 * PIO/MW_DMA cycle timing.
2617 */
2618
2619 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2620 memset(&p, 0, sizeof(p));
2621 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2622 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2623 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2624 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2625 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2626 }
2627 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2628 }
2629
2630 /*
2631 * Convert the timing to bus clock counts.
2632 */
2633
75b1f2f8 2634 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2635
2636 /*
c893a3ae
RD
2637 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2638 * S.M.A.R.T * and some other commands. We have to ensure that the
2639 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2640 */
2641
fd3367af 2642 if (speed > XFER_PIO_6) {
452503f9
AC
2643 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2644 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2645 }
2646
2647 /*
c893a3ae 2648 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2649 */
2650
2651 if (t->act8b + t->rec8b < t->cyc8b) {
2652 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2653 t->rec8b = t->cyc8b - t->act8b;
2654 }
2655
2656 if (t->active + t->recover < t->cycle) {
2657 t->active += (t->cycle - (t->active + t->recover)) / 2;
2658 t->recover = t->cycle - t->active;
2659 }
a617c09f 2660
4f701d1e
AC
2661 /* In a few cases quantisation may produce enough errors to
2662 leave t->cycle too low for the sum of active and recovery
2663 if so we must correct this */
2664 if (t->active + t->recover > t->cycle)
2665 t->cycle = t->active + t->recover;
452503f9
AC
2666
2667 return 0;
2668}
2669
cf176e1a
TH
2670/**
2671 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2672 * @dev: Device to adjust xfer masks
458337db 2673 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2674 *
2675 * Adjust xfer masks of @dev downward. Note that this function
2676 * does not apply the change. Invoking ata_set_mode() afterwards
2677 * will apply the limit.
2678 *
2679 * LOCKING:
2680 * Inherited from caller.
2681 *
2682 * RETURNS:
2683 * 0 on success, negative errno on failure
2684 */
458337db 2685int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2686{
458337db
TH
2687 char buf[32];
2688 unsigned int orig_mask, xfer_mask;
2689 unsigned int pio_mask, mwdma_mask, udma_mask;
2690 int quiet, highbit;
cf176e1a 2691
458337db
TH
2692 quiet = !!(sel & ATA_DNXFER_QUIET);
2693 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2694
458337db
TH
2695 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2696 dev->mwdma_mask,
2697 dev->udma_mask);
2698 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2699
458337db
TH
2700 switch (sel) {
2701 case ATA_DNXFER_PIO:
2702 highbit = fls(pio_mask) - 1;
2703 pio_mask &= ~(1 << highbit);
2704 break;
2705
2706 case ATA_DNXFER_DMA:
2707 if (udma_mask) {
2708 highbit = fls(udma_mask) - 1;
2709 udma_mask &= ~(1 << highbit);
2710 if (!udma_mask)
2711 return -ENOENT;
2712 } else if (mwdma_mask) {
2713 highbit = fls(mwdma_mask) - 1;
2714 mwdma_mask &= ~(1 << highbit);
2715 if (!mwdma_mask)
2716 return -ENOENT;
2717 }
2718 break;
2719
2720 case ATA_DNXFER_40C:
2721 udma_mask &= ATA_UDMA_MASK_40C;
2722 break;
2723
2724 case ATA_DNXFER_FORCE_PIO0:
2725 pio_mask &= 1;
2726 case ATA_DNXFER_FORCE_PIO:
2727 mwdma_mask = 0;
2728 udma_mask = 0;
2729 break;
2730
458337db
TH
2731 default:
2732 BUG();
2733 }
2734
2735 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2736
2737 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2738 return -ENOENT;
2739
2740 if (!quiet) {
2741 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2742 snprintf(buf, sizeof(buf), "%s:%s",
2743 ata_mode_string(xfer_mask),
2744 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2745 else
2746 snprintf(buf, sizeof(buf), "%s",
2747 ata_mode_string(xfer_mask));
2748
2749 ata_dev_printk(dev, KERN_WARNING,
2750 "limiting speed to %s\n", buf);
2751 }
cf176e1a
TH
2752
2753 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2754 &dev->udma_mask);
2755
cf176e1a 2756 return 0;
cf176e1a
TH
2757}
2758
3373efd8 2759static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2760{
baa1e78a 2761 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2762 unsigned int err_mask;
2763 int rc;
1da177e4 2764
e8384607 2765 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2766 if (dev->xfer_shift == ATA_SHIFT_PIO)
2767 dev->flags |= ATA_DFLAG_PIO;
2768
3373efd8 2769 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2770 /* Old CFA may refuse this command, which is just fine */
2771 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2772 err_mask &= ~AC_ERR_DEV;
2773
83206a29 2774 if (err_mask) {
f15a1daf
TH
2775 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2776 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2777 return -EIO;
2778 }
1da177e4 2779
baa1e78a 2780 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2781 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2782 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2783 if (rc)
83206a29 2784 return rc;
48a8a14f 2785
23e71c3d
TH
2786 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2787 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2788
f15a1daf
TH
2789 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2790 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2791 return 0;
1da177e4
LT
2792}
2793
1da177e4 2794/**
04351821 2795 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2796 * @ap: port on which timings will be programmed
e82cbdb9 2797 * @r_failed_dev: out paramter for failed device
1da177e4 2798 *
04351821
A
2799 * Standard implementation of the function used to tune and set
2800 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2801 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2802 * returned in @r_failed_dev.
780a87f7 2803 *
1da177e4 2804 * LOCKING:
0cba632b 2805 * PCI/etc. bus probe sem.
e82cbdb9
TH
2806 *
2807 * RETURNS:
2808 * 0 on success, negative errno otherwise
1da177e4 2809 */
04351821
A
2810
2811int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2812{
e8e0619f 2813 struct ata_device *dev;
e82cbdb9 2814 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2815
3adcebb2 2816
a6d5a51c
TH
2817 /* step 1: calculate xfer_mask */
2818 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2819 unsigned int pio_mask, dma_mask;
a6d5a51c 2820
e8e0619f
TH
2821 dev = &ap->device[i];
2822
e1211e3f 2823 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2824 continue;
2825
3373efd8 2826 ata_dev_xfermask(dev);
1da177e4 2827
acf356b1
TH
2828 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2829 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2830 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2831 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2832
4f65977d 2833 found = 1;
5444a6f4
AC
2834 if (dev->dma_mode)
2835 used_dma = 1;
a6d5a51c 2836 }
4f65977d 2837 if (!found)
e82cbdb9 2838 goto out;
a6d5a51c
TH
2839
2840 /* step 2: always set host PIO timings */
e8e0619f
TH
2841 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2842 dev = &ap->device[i];
2843 if (!ata_dev_enabled(dev))
2844 continue;
2845
2846 if (!dev->pio_mode) {
f15a1daf 2847 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2848 rc = -EINVAL;
e82cbdb9 2849 goto out;
e8e0619f
TH
2850 }
2851
2852 dev->xfer_mode = dev->pio_mode;
2853 dev->xfer_shift = ATA_SHIFT_PIO;
2854 if (ap->ops->set_piomode)
2855 ap->ops->set_piomode(ap, dev);
2856 }
1da177e4 2857
a6d5a51c 2858 /* step 3: set host DMA timings */
e8e0619f
TH
2859 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2860 dev = &ap->device[i];
2861
2862 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2863 continue;
2864
2865 dev->xfer_mode = dev->dma_mode;
2866 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2867 if (ap->ops->set_dmamode)
2868 ap->ops->set_dmamode(ap, dev);
2869 }
1da177e4
LT
2870
2871 /* step 4: update devices' xfer mode */
83206a29 2872 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2873 dev = &ap->device[i];
1da177e4 2874
18d90deb 2875 /* don't update suspended devices' xfer mode */
9666f400 2876 if (!ata_dev_enabled(dev))
83206a29
TH
2877 continue;
2878
3373efd8 2879 rc = ata_dev_set_mode(dev);
5bbc53f4 2880 if (rc)
e82cbdb9 2881 goto out;
83206a29 2882 }
1da177e4 2883
e8e0619f
TH
2884 /* Record simplex status. If we selected DMA then the other
2885 * host channels are not permitted to do so.
5444a6f4 2886 */
cca3974e 2887 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2888 ap->host->simplex_claimed = ap;
5444a6f4 2889
e82cbdb9
TH
2890 out:
2891 if (rc)
2892 *r_failed_dev = dev;
2893 return rc;
1da177e4
LT
2894}
2895
04351821
A
2896/**
2897 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2898 * @ap: port on which timings will be programmed
2899 * @r_failed_dev: out paramter for failed device
2900 *
2901 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2902 * ata_set_mode() fails, pointer to the failing device is
2903 * returned in @r_failed_dev.
2904 *
2905 * LOCKING:
2906 * PCI/etc. bus probe sem.
2907 *
2908 * RETURNS:
2909 * 0 on success, negative errno otherwise
2910 */
2911int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2912{
2913 /* has private set_mode? */
2914 if (ap->ops->set_mode)
2915 return ap->ops->set_mode(ap, r_failed_dev);
2916 return ata_do_set_mode(ap, r_failed_dev);
2917}
2918
1fdffbce
JG
2919/**
2920 * ata_tf_to_host - issue ATA taskfile to host controller
2921 * @ap: port to which command is being issued
2922 * @tf: ATA taskfile register set
2923 *
2924 * Issues ATA taskfile register set to ATA host controller,
2925 * with proper synchronization with interrupt handler and
2926 * other threads.
2927 *
2928 * LOCKING:
cca3974e 2929 * spin_lock_irqsave(host lock)
1fdffbce
JG
2930 */
2931
2932static inline void ata_tf_to_host(struct ata_port *ap,
2933 const struct ata_taskfile *tf)
2934{
2935 ap->ops->tf_load(ap, tf);
2936 ap->ops->exec_command(ap, tf);
2937}
2938
1da177e4
LT
2939/**
2940 * ata_busy_sleep - sleep until BSY clears, or timeout
2941 * @ap: port containing status register to be polled
2942 * @tmout_pat: impatience timeout
2943 * @tmout: overall timeout
2944 *
780a87f7
JG
2945 * Sleep until ATA Status register bit BSY clears,
2946 * or a timeout occurs.
2947 *
d1adc1bb
TH
2948 * LOCKING:
2949 * Kernel thread context (may sleep).
2950 *
2951 * RETURNS:
2952 * 0 on success, -errno otherwise.
1da177e4 2953 */
d1adc1bb
TH
2954int ata_busy_sleep(struct ata_port *ap,
2955 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2956{
2957 unsigned long timer_start, timeout;
2958 u8 status;
2959
2960 status = ata_busy_wait(ap, ATA_BUSY, 300);
2961 timer_start = jiffies;
2962 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
1da177e4
LT
2965 msleep(50);
2966 status = ata_busy_wait(ap, ATA_BUSY, 3);
2967 }
2968
d1adc1bb 2969 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2970 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2971 "port is slow to respond, please be patient "
2972 "(Status 0x%x)\n", status);
1da177e4
LT
2973
2974 timeout = timer_start + tmout;
d1adc1bb
TH
2975 while (status != 0xff && (status & ATA_BUSY) &&
2976 time_before(jiffies, timeout)) {
1da177e4
LT
2977 msleep(50);
2978 status = ata_chk_status(ap);
2979 }
2980
d1adc1bb
TH
2981 if (status == 0xff)
2982 return -ENODEV;
2983
1da177e4 2984 if (status & ATA_BUSY) {
f15a1daf 2985 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2986 "(%lu secs, Status 0x%x)\n",
2987 tmout / HZ, status);
d1adc1bb 2988 return -EBUSY;
1da177e4
LT
2989 }
2990
2991 return 0;
2992}
2993
d4b2bab4
TH
2994/**
2995 * ata_wait_ready - sleep until BSY clears, or timeout
2996 * @ap: port containing status register to be polled
2997 * @deadline: deadline jiffies for the operation
2998 *
2999 * Sleep until ATA Status register bit BSY clears, or timeout
3000 * occurs.
3001 *
3002 * LOCKING:
3003 * Kernel thread context (may sleep).
3004 *
3005 * RETURNS:
3006 * 0 on success, -errno otherwise.
3007 */
3008int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3009{
3010 unsigned long start = jiffies;
3011 int warned = 0;
3012
3013 while (1) {
3014 u8 status = ata_chk_status(ap);
3015 unsigned long now = jiffies;
3016
3017 if (!(status & ATA_BUSY))
3018 return 0;
fd7fe701 3019 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3020 return -ENODEV;
3021 if (time_after(now, deadline))
3022 return -EBUSY;
3023
3024 if (!warned && time_after(now, start + 5 * HZ) &&
3025 (deadline - now > 3 * HZ)) {
3026 ata_port_printk(ap, KERN_WARNING,
3027 "port is slow to respond, please be patient "
3028 "(Status 0x%x)\n", status);
3029 warned = 1;
3030 }
3031
3032 msleep(50);
3033 }
3034}
3035
3036static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3037 unsigned long deadline)
1da177e4
LT
3038{
3039 struct ata_ioports *ioaddr = &ap->ioaddr;
3040 unsigned int dev0 = devmask & (1 << 0);
3041 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3042 int rc, ret = 0;
1da177e4
LT
3043
3044 /* if device 0 was found in ata_devchk, wait for its
3045 * BSY bit to clear
3046 */
d4b2bab4
TH
3047 if (dev0) {
3048 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3049 if (rc) {
3050 if (rc != -ENODEV)
3051 return rc;
3052 ret = rc;
3053 }
d4b2bab4 3054 }
1da177e4 3055
e141d999
TH
3056 /* if device 1 was found in ata_devchk, wait for register
3057 * access briefly, then wait for BSY to clear.
1da177e4 3058 */
e141d999
TH
3059 if (dev1) {
3060 int i;
1da177e4
LT
3061
3062 ap->ops->dev_select(ap, 1);
e141d999
TH
3063
3064 /* Wait for register access. Some ATAPI devices fail
3065 * to set nsect/lbal after reset, so don't waste too
3066 * much time on it. We're gonna wait for !BSY anyway.
3067 */
3068 for (i = 0; i < 2; i++) {
3069 u8 nsect, lbal;
3070
3071 nsect = ioread8(ioaddr->nsect_addr);
3072 lbal = ioread8(ioaddr->lbal_addr);
3073 if ((nsect == 1) && (lbal == 1))
3074 break;
3075 msleep(50); /* give drive a breather */
3076 }
3077
d4b2bab4 3078 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3079 if (rc) {
3080 if (rc != -ENODEV)
3081 return rc;
3082 ret = rc;
3083 }
d4b2bab4 3084 }
1da177e4
LT
3085
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3088 if (dev1)
3089 ap->ops->dev_select(ap, 1);
3090 if (dev0)
3091 ap->ops->dev_select(ap, 0);
d4b2bab4 3092
9b89391c 3093 return ret;
1da177e4
LT
3094}
3095
d4b2bab4
TH
3096static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
1da177e4
LT
3098{
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3100
44877b4e 3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3102
3103 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3109
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
09c7ad79
AC
3117 *
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3119 */
3120 msleep(150);
3121
2e9edbf8 3122 /* Before we perform post reset processing we want to see if
298a41ca
TH
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3125 */
d1adc1bb 3126 if (ata_check_status(ap) == 0xFF)
9b89391c 3127 return -ENODEV;
09c7ad79 3128
d4b2bab4 3129 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3130}
3131
3132/**
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3135 *
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3143 *
3144 * LOCKING:
0cba632b 3145 * PCI/etc. bus probe sem.
cca3974e 3146 * Obtains host lock.
1da177e4
LT
3147 *
3148 * SIDE EFFECTS:
198e0fed 3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3150 */
3151
3152void ata_bus_reset(struct ata_port *ap)
3153{
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 u8 err;
aec5c3c1 3157 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3158 int rc;
1da177e4 3159
44877b4e 3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3161
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3164 dev0 = 1;
3165 else {
3166 dev0 = ata_devchk(ap, 0);
3167 if (slave_possible)
3168 dev1 = ata_devchk(ap, 1);
3169 }
3170
3171 if (dev0)
3172 devmask |= (1 << 0);
3173 if (dev1)
3174 devmask |= (1 << 1);
3175
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3178
3179 /* issue bus reset */
9b89391c
TH
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
aec5c3c1 3183 goto err_out;
9b89391c 3184 }
1da177e4
LT
3185
3186 /*
3187 * determine by signature whether we have ATA or ATAPI devices
3188 */
b4dc7623 3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3190 if ((slave_possible) && (err != 0x81))
b4dc7623 3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3192
3193 /* re-enable interrupts */
83625006 3194 ap->ops->irq_on(ap);
1da177e4
LT
3195
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3201
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3205 goto err_out;
3206
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3210 }
3211
3212 DPRINTK("EXIT\n");
3213 return;
3214
3215err_out:
f15a1daf 3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3217 ap->ops->port_disable(ap);
3218
3219 DPRINTK("EXIT\n");
3220}
3221
d7bb4cc7
TH
3222/**
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3226 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3227 *
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3233 * until timeout then returns 0 if DET is stable at 1.
3234 *
d4b2bab4
TH
3235 * @timeout is further limited by @deadline. The sooner of the
3236 * two is used.
3237 *
d7bb4cc7
TH
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3240 *
3241 * RETURNS:
3242 * 0 on success, -errno on failure.
3243 */
d4b2bab4
TH
3244int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
7a7921e8 3246{
d7bb4cc7 3247 unsigned long interval_msec = params[0];
d4b2bab4
TH
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
d7bb4cc7
TH
3250 u32 last, cur;
3251 int rc;
3252
d4b2bab4
TH
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3255 deadline = t;
3256
d7bb4cc7
TH
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 return rc;
3259 cur &= 0xf;
3260
3261 last = cur;
3262 last_jiffies = jiffies;
3263
3264 while (1) {
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 return rc;
3268 cur &= 0xf;
3269
3270 /* DET stable? */
3271 if (cur == last) {
d4b2bab4 3272 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3273 continue;
3274 if (time_after(jiffies, last_jiffies + duration))
3275 return 0;
3276 continue;
3277 }
3278
3279 /* unstable, start over */
3280 last = cur;
3281 last_jiffies = jiffies;
3282
d4b2bab4
TH
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3285 return -EBUSY;
3286 }
3287}
3288
3289/**
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3293 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3294 *
3295 * Resume SATA phy of @ap and debounce it.
3296 *
3297 * LOCKING:
3298 * Kernel thread context (may sleep)
3299 *
3300 * RETURNS:
3301 * 0 on success, -errno on failure.
3302 */
d4b2bab4
TH
3303int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
d7bb4cc7
TH
3305{
3306 u32 scontrol;
81952c54
TH
3307 int rc;
3308
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 return rc;
7a7921e8 3311
852ee16a 3312 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3313
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 return rc;
7a7921e8 3316
d7bb4cc7
TH
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3319 */
3320 msleep(200);
7a7921e8 3321
d4b2bab4 3322 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3323}
3324
f5914a46
TH
3325/**
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
d4b2bab4 3328 * @deadline: deadline jiffies for the operation
f5914a46 3329 *
b8cffc6a
TH
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
f5914a46
TH
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep)
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
d4b2bab4 3342int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3343{
3344 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3346 int rc;
3347
31daabda 3348 /* handle link resume */
28324304
TH
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3352
f5914a46
TH
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3355 return 0;
3356
3357 /* if SATA, resume phy */
a16abc0b 3358 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3359 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3364 }
3365
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3368 */
b8cffc6a
TH
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
6dffaf61 3371 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3375 }
3376 }
f5914a46
TH
3377
3378 return 0;
3379}
3380
c2bd5804
TH
3381/**
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
c2bd5804 3384 * @classes: resulting classes of attached devices
d4b2bab4 3385 * @deadline: deadline jiffies for the operation
c2bd5804 3386 *
52783c5d 3387 * Reset host port using ATA SRST.
c2bd5804
TH
3388 *
3389 * LOCKING:
3390 * Kernel thread context (may sleep)
3391 *
3392 * RETURNS:
3393 * 0 on success, -errno otherwise.
3394 */
d4b2bab4
TH
3395int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
c2bd5804
TH
3397{
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3399 unsigned int devmask = 0;
3400 int rc;
c2bd5804
TH
3401 u8 err;
3402
3403 DPRINTK("ENTER\n");
3404
81952c54 3405 if (ata_port_offline(ap)) {
3a39746a
TH
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3408 }
3409
c2bd5804
TH
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3415
c2bd5804
TH
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3418
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3421 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
c2bd5804
TH
3426 }
3427
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3432
3a39746a 3433 out:
c2bd5804
TH
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3436}
3437
3438/**
b6103f6d 3439 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3440 * @ap: port to reset
b6103f6d 3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3442 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3443 *
3444 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3445 *
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3448 *
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3451 */
d4b2bab4
TH
3452int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
c2bd5804 3454{
852ee16a 3455 u32 scontrol;
81952c54 3456 int rc;
852ee16a 3457
c2bd5804
TH
3458 DPRINTK("ENTER\n");
3459
3c567b7d 3460 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3465 */
81952c54 3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3467 goto out;
81952c54 3468
a34b6fc0 3469 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3470
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3472 goto out;
1c3fae4d 3473
3c567b7d 3474 sata_set_spd(ap);
1c3fae4d
TH
3475 }
3476
3477 /* issue phy wake/reset */
81952c54 3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3479 goto out;
81952c54 3480
852ee16a 3481 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3482
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3484 goto out;
c2bd5804 3485
1c3fae4d 3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3487 * 10.4.2 says at least 1 ms.
3488 */
3489 msleep(1);
3490
1c3fae4d 3491 /* bring phy back */
d4b2bab4 3492 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3496}
3497
3498/**
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
d4b2bab4 3502 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3503 *
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3506 *
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3509 *
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3512 */
d4b2bab4
TH
3513int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
b6103f6d
TH
3515{
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 int rc;
3518
3519 DPRINTK("ENTER\n");
3520
3521 /* do hardreset */
d4b2bab4 3522 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3527 }
c2bd5804 3528
c2bd5804 3529 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3530 if (ata_port_offline(ap)) {
c2bd5804
TH
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3533 return 0;
3534 }
3535
34fee227
TH
3536 /* wait a while before checking status, see SRST for more info */
3537 msleep(150);
3538
d4b2bab4 3539 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3540 /* link occupied, -ENODEV too is an error */
3541 if (rc) {
f15a1daf 3542 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3543 "COMRESET failed (errno=%d)\n", rc);
3544 return rc;
c2bd5804
TH
3545 }
3546
3a39746a
TH
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3548
c2bd5804
TH
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3550
3551 DPRINTK("EXIT, class=%u\n", *class);
3552 return 0;
3553}
3554
3555/**
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3559 *
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
c2bd5804 3563 *
c2bd5804
TH
3564 * LOCKING:
3565 * Kernel thread context (may sleep)
3566 */
3567void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3568{
dc2b3515
TH
3569 u32 serror;
3570
c2bd5804
TH
3571 DPRINTK("ENTER\n");
3572
c2bd5804 3573 /* print link status */
81952c54 3574 sata_print_link_status(ap);
c2bd5804 3575
dc2b3515
TH
3576 /* clear SError */
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3579
3a39746a 3580 /* re-enable interrupts */
83625006
AI
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
c2bd5804
TH
3583
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3589
3a39746a
TH
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3593 return;
3594 }
3595
3596 /* set up device control */
0d5ff566
TH
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3599
3600 DPRINTK("EXIT\n");
3601}
3602
623a3128
TH
3603/**
3604 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3608 *
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3611 * @new_id.
3612 *
3613 * LOCKING:
3614 * None.
3615 *
3616 * RETURNS:
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3618 */
3373efd8
TH
3619static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 const u16 *new_id)
623a3128
TH
3621{
3622 const u16 *old_id = dev->id;
a0cf733b
TH
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3625
3626 if (dev->class != new_class) {
f15a1daf
TH
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
623a3128
TH
3629 return 0;
3630 }
3631
a0cf733b
TH
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3636
3637 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3640 return 0;
3641 }
3642
3643 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3646 return 0;
3647 }
3648
623a3128
TH
3649 return 1;
3650}
3651
3652/**
fe30911b 3653 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3654 * @dev: target ATA device
bff04647 3655 * @readid_flags: read ID flags
623a3128
TH
3656 *
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * the port.
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3665 */
fe30911b 3666int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3667{
5eb45c02 3668 unsigned int class = dev->class;
f15a1daf 3669 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3670 int rc;
3671
fe635c7e 3672 /* read ID data */
bff04647 3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3674 if (rc)
fe30911b 3675 return rc;
623a3128
TH
3676
3677 /* is the device still there? */
fe30911b
TH
3678 if (!ata_dev_same_device(dev, class, id))
3679 return -ENODEV;
623a3128 3680
fe635c7e 3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3682 return 0;
3683}
3684
3685/**
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3689 *
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3692 *
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3695 *
3696 * RETURNS:
3697 * 0 on success, negative errno otherwise
3698 */
3699int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3700{
6ddcd3b0 3701 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3702 int rc;
3703
3704 if (!ata_dev_enabled(dev))
3705 return -ENODEV;
3706
3707 /* re-read ID */
3708 rc = ata_dev_reread_id(dev, readid_flags);
3709 if (rc)
3710 goto fail;
623a3128
TH
3711
3712 /* configure device according to the new ID */
efdaedc4 3713 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3714 if (rc)
3715 goto fail;
3716
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 "%llu != %llu\n",
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3723 rc = -ENODEV;
3724 goto fail;
3725 }
3726
3727 return 0;
623a3128
TH
3728
3729 fail:
f15a1daf 3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3731 return rc;
3732}
3733
6919a0a6
AC
3734struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3738};
3739
3740static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3772 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
6919a0a6 3773
18d6e9d5 3774 /* Weird ATAPI devices */
40a1d531 3775 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3776
6919a0a6
AC
3777 /* Devices we expect to fail diagnostics */
3778
3779 /* Devices where NCQ should be avoided */
3780 /* NCQ is slow */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3784 /* NCQ is broken */
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3786 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3787 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3788 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3789 /* Blacklist entries taken from Silicon Image 3124/3132
3790 Windows driver .inf file - also several Linux problem reports */
3791 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3794 /* Drives which do spurious command completion */
3795 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3796 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3797 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3798 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3799
3800 /* Devices with NCQ limits */
3801
3802 /* End Marker */
3803 { }
1da177e4 3804};
2e9edbf8 3805
6919a0a6 3806unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3807{
8bfa79fc
TH
3808 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3809 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3810 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3811
8bfa79fc
TH
3812 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3813 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3814
6919a0a6 3815 while (ad->model_num) {
8bfa79fc 3816 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3817 if (ad->model_rev == NULL)
3818 return ad->horkage;
8bfa79fc 3819 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3820 return ad->horkage;
f4b15fef 3821 }
6919a0a6 3822 ad++;
f4b15fef 3823 }
1da177e4
LT
3824 return 0;
3825}
3826
6919a0a6
AC
3827static int ata_dma_blacklisted(const struct ata_device *dev)
3828{
3829 /* We don't support polling DMA.
3830 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3831 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3832 */
3833 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3834 (dev->flags & ATA_DFLAG_CDB_INTR))
3835 return 1;
3836 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3837}
3838
a6d5a51c
TH
3839/**
3840 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3841 * @dev: Device to compute xfermask for
3842 *
acf356b1
TH
3843 * Compute supported xfermask of @dev and store it in
3844 * dev->*_mask. This function is responsible for applying all
3845 * known limits including host controller limits, device
3846 * blacklist, etc...
a6d5a51c
TH
3847 *
3848 * LOCKING:
3849 * None.
a6d5a51c 3850 */
3373efd8 3851static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3852{
3373efd8 3853 struct ata_port *ap = dev->ap;
cca3974e 3854 struct ata_host *host = ap->host;
a6d5a51c 3855 unsigned long xfer_mask;
1da177e4 3856
37deecb5 3857 /* controller modes available */
565083e1
TH
3858 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3859 ap->mwdma_mask, ap->udma_mask);
3860
8343f889 3861 /* drive modes available */
37deecb5
TH
3862 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3863 dev->mwdma_mask, dev->udma_mask);
3864 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3865
b352e57d
AC
3866 /*
3867 * CFA Advanced TrueIDE timings are not allowed on a shared
3868 * cable
3869 */
3870 if (ata_dev_pair(dev)) {
3871 /* No PIO5 or PIO6 */
3872 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3873 /* No MWDMA3 or MWDMA 4 */
3874 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3875 }
3876
37deecb5
TH
3877 if (ata_dma_blacklisted(dev)) {
3878 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3879 ata_dev_printk(dev, KERN_WARNING,
3880 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3881 }
a6d5a51c 3882
14d66ab7
PV
3883 if ((host->flags & ATA_HOST_SIMPLEX) &&
3884 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3885 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3886 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3887 "other device, disabling DMA\n");
5444a6f4 3888 }
565083e1 3889
e424675f
JG
3890 if (ap->flags & ATA_FLAG_NO_IORDY)
3891 xfer_mask &= ata_pio_mask_no_iordy(dev);
3892
5444a6f4 3893 if (ap->ops->mode_filter)
a76b62ca 3894 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3895
8343f889
RH
3896 /* Apply cable rule here. Don't apply it early because when
3897 * we handle hot plug the cable type can itself change.
3898 * Check this last so that we know if the transfer rate was
3899 * solely limited by the cable.
3900 * Unknown or 80 wire cables reported host side are checked
3901 * drive side as well. Cases where we know a 40wire cable
3902 * is used safely for 80 are not checked here.
3903 */
3904 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3905 /* UDMA/44 or higher would be available */
3906 if((ap->cbl == ATA_CBL_PATA40) ||
3907 (ata_drive_40wire(dev->id) &&
3908 (ap->cbl == ATA_CBL_PATA_UNK ||
3909 ap->cbl == ATA_CBL_PATA80))) {
3910 ata_dev_printk(dev, KERN_WARNING,
3911 "limited to UDMA/33 due to 40-wire cable\n");
3912 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3913 }
3914
565083e1
TH
3915 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3916 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3917}
3918
1da177e4
LT
3919/**
3920 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3921 * @dev: Device to which command will be sent
3922 *
780a87f7
JG
3923 * Issue SET FEATURES - XFER MODE command to device @dev
3924 * on port @ap.
3925 *
1da177e4 3926 * LOCKING:
0cba632b 3927 * PCI/etc. bus probe sem.
83206a29
TH
3928 *
3929 * RETURNS:
3930 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3931 */
3932
3373efd8 3933static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3934{
a0123703 3935 struct ata_taskfile tf;
83206a29 3936 unsigned int err_mask;
1da177e4
LT
3937
3938 /* set up set-features taskfile */
3939 DPRINTK("set features - xfer mode\n");
3940
464cf177
TH
3941 /* Some controllers and ATAPI devices show flaky interrupt
3942 * behavior after setting xfer mode. Use polling instead.
3943 */
3373efd8 3944 ata_tf_init(dev, &tf);
a0123703
TH
3945 tf.command = ATA_CMD_SET_FEATURES;
3946 tf.feature = SETFEATURES_XFER;
464cf177 3947 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3948 tf.protocol = ATA_PROT_NODATA;
3949 tf.nsect = dev->xfer_mode;
1da177e4 3950
3373efd8 3951 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3952
83206a29
TH
3953 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3954 return err_mask;
1da177e4
LT
3955}
3956
8bf62ece
AL
3957/**
3958 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3959 * @dev: Device to which command will be sent
e2a7f77a
RD
3960 * @heads: Number of heads (taskfile parameter)
3961 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3962 *
3963 * LOCKING:
6aff8f1f
TH
3964 * Kernel thread context (may sleep)
3965 *
3966 * RETURNS:
3967 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3968 */
3373efd8
TH
3969static unsigned int ata_dev_init_params(struct ata_device *dev,
3970 u16 heads, u16 sectors)
8bf62ece 3971{
a0123703 3972 struct ata_taskfile tf;
6aff8f1f 3973 unsigned int err_mask;
8bf62ece
AL
3974
3975 /* Number of sectors per track 1-255. Number of heads 1-16 */
3976 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3977 return AC_ERR_INVALID;
8bf62ece
AL
3978
3979 /* set up init dev params taskfile */
3980 DPRINTK("init dev params \n");
3981
3373efd8 3982 ata_tf_init(dev, &tf);
a0123703
TH
3983 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3985 tf.protocol = ATA_PROT_NODATA;
3986 tf.nsect = sectors;
3987 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3988
3373efd8 3989 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3990
6aff8f1f
TH
3991 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3992 return err_mask;
8bf62ece
AL
3993}
3994
1da177e4 3995/**
0cba632b
JG
3996 * ata_sg_clean - Unmap DMA memory associated with command
3997 * @qc: Command containing DMA memory to be released
3998 *
3999 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4000 *
4001 * LOCKING:
cca3974e 4002 * spin_lock_irqsave(host lock)
1da177e4 4003 */
70e6ad0c 4004void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4005{
4006 struct ata_port *ap = qc->ap;
cedc9a47 4007 struct scatterlist *sg = qc->__sg;
1da177e4 4008 int dir = qc->dma_dir;
cedc9a47 4009 void *pad_buf = NULL;
1da177e4 4010
a4631474
TH
4011 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4012 WARN_ON(sg == NULL);
1da177e4
LT
4013
4014 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4015 WARN_ON(qc->n_elem > 1);
1da177e4 4016
2c13b7ce 4017 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4018
cedc9a47
JG
4019 /* if we padded the buffer out to 32-bit bound, and data
4020 * xfer direction is from-device, we must copy from the
4021 * pad buffer back into the supplied buffer
4022 */
4023 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4024 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4025
4026 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4027 if (qc->n_elem)
2f1f610b 4028 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4029 /* restore last sg */
4030 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4031 if (pad_buf) {
4032 struct scatterlist *psg = &qc->pad_sgent;
4033 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4034 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4035 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4036 }
4037 } else {
2e242fa9 4038 if (qc->n_elem)
2f1f610b 4039 dma_unmap_single(ap->dev,
e1410f2d
JG
4040 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4041 dir);
cedc9a47
JG
4042 /* restore sg */
4043 sg->length += qc->pad_len;
4044 if (pad_buf)
4045 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4046 pad_buf, qc->pad_len);
4047 }
1da177e4
LT
4048
4049 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4050 qc->__sg = NULL;
1da177e4
LT
4051}
4052
4053/**
4054 * ata_fill_sg - Fill PCI IDE PRD table
4055 * @qc: Metadata associated with taskfile to be transferred
4056 *
780a87f7
JG
4057 * Fill PCI IDE PRD (scatter-gather) table with segments
4058 * associated with the current disk command.
4059 *
1da177e4 4060 * LOCKING:
cca3974e 4061 * spin_lock_irqsave(host lock)
1da177e4
LT
4062 *
4063 */
4064static void ata_fill_sg(struct ata_queued_cmd *qc)
4065{
1da177e4 4066 struct ata_port *ap = qc->ap;
cedc9a47
JG
4067 struct scatterlist *sg;
4068 unsigned int idx;
1da177e4 4069
a4631474 4070 WARN_ON(qc->__sg == NULL);
f131883e 4071 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4072
4073 idx = 0;
cedc9a47 4074 ata_for_each_sg(sg, qc) {
1da177e4
LT
4075 u32 addr, offset;
4076 u32 sg_len, len;
4077
4078 /* determine if physical DMA addr spans 64K boundary.
4079 * Note h/w doesn't support 64-bit, so we unconditionally
4080 * truncate dma_addr_t to u32.
4081 */
4082 addr = (u32) sg_dma_address(sg);
4083 sg_len = sg_dma_len(sg);
4084
4085 while (sg_len) {
4086 offset = addr & 0xffff;
4087 len = sg_len;
4088 if ((offset + sg_len) > 0x10000)
4089 len = 0x10000 - offset;
4090
4091 ap->prd[idx].addr = cpu_to_le32(addr);
4092 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4093 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4094
4095 idx++;
4096 sg_len -= len;
4097 addr += len;
4098 }
4099 }
4100
4101 if (idx)
4102 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4103}
b9a4197e 4104
d26fc955
AC
4105/**
4106 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4107 * @qc: Metadata associated with taskfile to be transferred
4108 *
4109 * Fill PCI IDE PRD (scatter-gather) table with segments
4110 * associated with the current disk command. Perform the fill
4111 * so that we avoid writing any length 64K records for
4112 * controllers that don't follow the spec.
4113 *
4114 * LOCKING:
4115 * spin_lock_irqsave(host lock)
4116 *
4117 */
4118static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4119{
4120 struct ata_port *ap = qc->ap;
4121 struct scatterlist *sg;
4122 unsigned int idx;
4123
4124 WARN_ON(qc->__sg == NULL);
4125 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4126
4127 idx = 0;
4128 ata_for_each_sg(sg, qc) {
4129 u32 addr, offset;
4130 u32 sg_len, len, blen;
4131
4132 /* determine if physical DMA addr spans 64K boundary.
4133 * Note h/w doesn't support 64-bit, so we unconditionally
4134 * truncate dma_addr_t to u32.
4135 */
4136 addr = (u32) sg_dma_address(sg);
4137 sg_len = sg_dma_len(sg);
4138
4139 while (sg_len) {
4140 offset = addr & 0xffff;
4141 len = sg_len;
4142 if ((offset + sg_len) > 0x10000)
4143 len = 0x10000 - offset;
4144
4145 blen = len & 0xffff;
4146 ap->prd[idx].addr = cpu_to_le32(addr);
4147 if (blen == 0) {
4148 /* Some PATA chipsets like the CS5530 can't
4149 cope with 0x0000 meaning 64K as the spec says */
4150 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4151 blen = 0x8000;
4152 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4153 }
4154 ap->prd[idx].flags_len = cpu_to_le32(blen);
4155 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4156
4157 idx++;
4158 sg_len -= len;
4159 addr += len;
4160 }
4161 }
4162
4163 if (idx)
4164 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4165}
4166
1da177e4
LT
4167/**
4168 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4169 * @qc: Metadata associated with taskfile to check
4170 *
780a87f7
JG
4171 * Allow low-level driver to filter ATA PACKET commands, returning
4172 * a status indicating whether or not it is OK to use DMA for the
4173 * supplied PACKET command.
4174 *
1da177e4 4175 * LOCKING:
cca3974e 4176 * spin_lock_irqsave(host lock)
0cba632b 4177 *
1da177e4
LT
4178 * RETURNS: 0 when ATAPI DMA can be used
4179 * nonzero otherwise
4180 */
4181int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4182{
4183 struct ata_port *ap = qc->ap;
b9a4197e
TH
4184
4185 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4186 * few ATAPI devices choke on such DMA requests.
4187 */
4188 if (unlikely(qc->nbytes & 15))
4189 return 1;
6f23a31d 4190
1da177e4 4191 if (ap->ops->check_atapi_dma)
b9a4197e 4192 return ap->ops->check_atapi_dma(qc);
1da177e4 4193
b9a4197e 4194 return 0;
1da177e4 4195}
b9a4197e 4196
1da177e4
LT
4197/**
4198 * ata_qc_prep - Prepare taskfile for submission
4199 * @qc: Metadata associated with taskfile to be prepared
4200 *
780a87f7
JG
4201 * Prepare ATA taskfile for submission.
4202 *
1da177e4 4203 * LOCKING:
cca3974e 4204 * spin_lock_irqsave(host lock)
1da177e4
LT
4205 */
4206void ata_qc_prep(struct ata_queued_cmd *qc)
4207{
4208 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4209 return;
4210
4211 ata_fill_sg(qc);
4212}
4213
d26fc955
AC
4214/**
4215 * ata_dumb_qc_prep - Prepare taskfile for submission
4216 * @qc: Metadata associated with taskfile to be prepared
4217 *
4218 * Prepare ATA taskfile for submission.
4219 *
4220 * LOCKING:
4221 * spin_lock_irqsave(host lock)
4222 */
4223void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4224{
4225 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4226 return;
4227
4228 ata_fill_sg_dumb(qc);
4229}
4230
e46834cd
BK
4231void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4232
0cba632b
JG
4233/**
4234 * ata_sg_init_one - Associate command with memory buffer
4235 * @qc: Command to be associated
4236 * @buf: Memory buffer
4237 * @buflen: Length of memory buffer, in bytes.
4238 *
4239 * Initialize the data-related elements of queued_cmd @qc
4240 * to point to a single memory buffer, @buf of byte length @buflen.
4241 *
4242 * LOCKING:
cca3974e 4243 * spin_lock_irqsave(host lock)
0cba632b
JG
4244 */
4245
1da177e4
LT
4246void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4247{
1da177e4
LT
4248 qc->flags |= ATA_QCFLAG_SINGLE;
4249
cedc9a47 4250 qc->__sg = &qc->sgent;
1da177e4 4251 qc->n_elem = 1;
cedc9a47 4252 qc->orig_n_elem = 1;
1da177e4 4253 qc->buf_virt = buf;
233277ca 4254 qc->nbytes = buflen;
1da177e4 4255
61c0596c 4256 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4257}
4258
0cba632b
JG
4259/**
4260 * ata_sg_init - Associate command with scatter-gather table.
4261 * @qc: Command to be associated
4262 * @sg: Scatter-gather table.
4263 * @n_elem: Number of elements in s/g table.
4264 *
4265 * Initialize the data-related elements of queued_cmd @qc
4266 * to point to a scatter-gather table @sg, containing @n_elem
4267 * elements.
4268 *
4269 * LOCKING:
cca3974e 4270 * spin_lock_irqsave(host lock)
0cba632b
JG
4271 */
4272
1da177e4
LT
4273void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4274 unsigned int n_elem)
4275{
4276 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4277 qc->__sg = sg;
1da177e4 4278 qc->n_elem = n_elem;
cedc9a47 4279 qc->orig_n_elem = n_elem;
1da177e4
LT
4280}
4281
4282/**
0cba632b
JG
4283 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4284 * @qc: Command with memory buffer to be mapped.
4285 *
4286 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4287 *
4288 * LOCKING:
cca3974e 4289 * spin_lock_irqsave(host lock)
1da177e4
LT
4290 *
4291 * RETURNS:
0cba632b 4292 * Zero on success, negative on error.
1da177e4
LT
4293 */
4294
4295static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4296{
4297 struct ata_port *ap = qc->ap;
4298 int dir = qc->dma_dir;
cedc9a47 4299 struct scatterlist *sg = qc->__sg;
1da177e4 4300 dma_addr_t dma_address;
2e242fa9 4301 int trim_sg = 0;
1da177e4 4302
cedc9a47
JG
4303 /* we must lengthen transfers to end on a 32-bit boundary */
4304 qc->pad_len = sg->length & 3;
4305 if (qc->pad_len) {
4306 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4307 struct scatterlist *psg = &qc->pad_sgent;
4308
a4631474 4309 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4310
4311 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4312
4313 if (qc->tf.flags & ATA_TFLAG_WRITE)
4314 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4315 qc->pad_len);
4316
4317 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4318 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4319 /* trim sg */
4320 sg->length -= qc->pad_len;
2e242fa9
TH
4321 if (sg->length == 0)
4322 trim_sg = 1;
cedc9a47
JG
4323
4324 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4325 sg->length, qc->pad_len);
4326 }
4327
2e242fa9
TH
4328 if (trim_sg) {
4329 qc->n_elem--;
e1410f2d
JG
4330 goto skip_map;
4331 }
4332
2f1f610b 4333 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4334 sg->length, dir);
537a95d9
TH
4335 if (dma_mapping_error(dma_address)) {
4336 /* restore sg */
4337 sg->length += qc->pad_len;
1da177e4 4338 return -1;
537a95d9 4339 }
1da177e4
LT
4340
4341 sg_dma_address(sg) = dma_address;
32529e01 4342 sg_dma_len(sg) = sg->length;
1da177e4 4343
2e242fa9 4344skip_map:
1da177e4
LT
4345 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4346 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4347
4348 return 0;
4349}
4350
4351/**
0cba632b
JG
4352 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4353 * @qc: Command with scatter-gather table to be mapped.
4354 *
4355 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4356 *
4357 * LOCKING:
cca3974e 4358 * spin_lock_irqsave(host lock)
1da177e4
LT
4359 *
4360 * RETURNS:
0cba632b 4361 * Zero on success, negative on error.
1da177e4
LT
4362 *
4363 */
4364
4365static int ata_sg_setup(struct ata_queued_cmd *qc)
4366{
4367 struct ata_port *ap = qc->ap;
cedc9a47
JG
4368 struct scatterlist *sg = qc->__sg;
4369 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4370 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4371
44877b4e 4372 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4373 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4374
cedc9a47
JG
4375 /* we must lengthen transfers to end on a 32-bit boundary */
4376 qc->pad_len = lsg->length & 3;
4377 if (qc->pad_len) {
4378 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4379 struct scatterlist *psg = &qc->pad_sgent;
4380 unsigned int offset;
4381
a4631474 4382 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4383
4384 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4385
4386 /*
4387 * psg->page/offset are used to copy to-be-written
4388 * data in this function or read data in ata_sg_clean.
4389 */
4390 offset = lsg->offset + lsg->length - qc->pad_len;
4391 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4392 psg->offset = offset_in_page(offset);
4393
4394 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4395 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4396 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4397 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4398 }
4399
4400 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4401 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4402 /* trim last sg */
4403 lsg->length -= qc->pad_len;
e1410f2d
JG
4404 if (lsg->length == 0)
4405 trim_sg = 1;
cedc9a47
JG
4406
4407 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4408 qc->n_elem - 1, lsg->length, qc->pad_len);
4409 }
4410
e1410f2d
JG
4411 pre_n_elem = qc->n_elem;
4412 if (trim_sg && pre_n_elem)
4413 pre_n_elem--;
4414
4415 if (!pre_n_elem) {
4416 n_elem = 0;
4417 goto skip_map;
4418 }
4419
1da177e4 4420 dir = qc->dma_dir;
2f1f610b 4421 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4422 if (n_elem < 1) {
4423 /* restore last sg */
4424 lsg->length += qc->pad_len;
1da177e4 4425 return -1;
537a95d9 4426 }
1da177e4
LT
4427
4428 DPRINTK("%d sg elements mapped\n", n_elem);
4429
e1410f2d 4430skip_map:
1da177e4
LT
4431 qc->n_elem = n_elem;
4432
4433 return 0;
4434}
4435
0baab86b 4436/**
c893a3ae 4437 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4438 * @buf: Buffer to swap
4439 * @buf_words: Number of 16-bit words in buffer.
4440 *
4441 * Swap halves of 16-bit words if needed to convert from
4442 * little-endian byte order to native cpu byte order, or
4443 * vice-versa.
4444 *
4445 * LOCKING:
6f0ef4fa 4446 * Inherited from caller.
0baab86b 4447 */
1da177e4
LT
4448void swap_buf_le16(u16 *buf, unsigned int buf_words)
4449{
4450#ifdef __BIG_ENDIAN
4451 unsigned int i;
4452
4453 for (i = 0; i < buf_words; i++)
4454 buf[i] = le16_to_cpu(buf[i]);
4455#endif /* __BIG_ENDIAN */
4456}
4457
6ae4cfb5 4458/**
0d5ff566 4459 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4460 * @adev: device to target
6ae4cfb5
AL
4461 * @buf: data buffer
4462 * @buflen: buffer length
344babaa 4463 * @write_data: read/write
6ae4cfb5
AL
4464 *
4465 * Transfer data from/to the device data register by PIO.
4466 *
4467 * LOCKING:
4468 * Inherited from caller.
6ae4cfb5 4469 */
0d5ff566
TH
4470void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4471 unsigned int buflen, int write_data)
1da177e4 4472{
a6b2c5d4 4473 struct ata_port *ap = adev->ap;
6ae4cfb5 4474 unsigned int words = buflen >> 1;
1da177e4 4475
6ae4cfb5 4476 /* Transfer multiple of 2 bytes */
1da177e4 4477 if (write_data)
0d5ff566 4478 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4479 else
0d5ff566 4480 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4481
4482 /* Transfer trailing 1 byte, if any. */
4483 if (unlikely(buflen & 0x01)) {
4484 u16 align_buf[1] = { 0 };
4485 unsigned char *trailing_buf = buf + buflen - 1;
4486
4487 if (write_data) {
4488 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4489 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4490 } else {
0d5ff566 4491 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4492 memcpy(trailing_buf, align_buf, 1);
4493 }
4494 }
1da177e4
LT
4495}
4496
75e99585 4497/**
0d5ff566 4498 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4499 * @adev: device to target
4500 * @buf: data buffer
4501 * @buflen: buffer length
4502 * @write_data: read/write
4503 *
88574551 4504 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4505 * transfer with interrupts disabled.
4506 *
4507 * LOCKING:
4508 * Inherited from caller.
4509 */
0d5ff566
TH
4510void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4511 unsigned int buflen, int write_data)
75e99585
AC
4512{
4513 unsigned long flags;
4514 local_irq_save(flags);
0d5ff566 4515 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4516 local_irq_restore(flags);
4517}
4518
4519
6ae4cfb5 4520/**
5a5dbd18 4521 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4522 * @qc: Command on going
4523 *
5a5dbd18 4524 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4525 *
4526 * LOCKING:
4527 * Inherited from caller.
4528 */
4529
1da177e4
LT
4530static void ata_pio_sector(struct ata_queued_cmd *qc)
4531{
4532 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4533 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4534 struct ata_port *ap = qc->ap;
4535 struct page *page;
4536 unsigned int offset;
4537 unsigned char *buf;
4538
5a5dbd18 4539 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4540 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4541
4542 page = sg[qc->cursg].page;
726f0785 4543 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4544
4545 /* get the current page and offset */
4546 page = nth_page(page, (offset >> PAGE_SHIFT));
4547 offset %= PAGE_SIZE;
4548
1da177e4
LT
4549 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4550
91b8b313
AL
4551 if (PageHighMem(page)) {
4552 unsigned long flags;
4553
a6b2c5d4 4554 /* FIXME: use a bounce buffer */
91b8b313
AL
4555 local_irq_save(flags);
4556 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4557
91b8b313 4558 /* do the actual data transfer */
5a5dbd18 4559 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4560
91b8b313
AL
4561 kunmap_atomic(buf, KM_IRQ0);
4562 local_irq_restore(flags);
4563 } else {
4564 buf = page_address(page);
5a5dbd18 4565 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4566 }
1da177e4 4567
5a5dbd18
ML
4568 qc->curbytes += qc->sect_size;
4569 qc->cursg_ofs += qc->sect_size;
1da177e4 4570
726f0785 4571 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4572 qc->cursg++;
4573 qc->cursg_ofs = 0;
4574 }
1da177e4 4575}
1da177e4 4576
07f6f7d0 4577/**
5a5dbd18 4578 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4579 * @qc: Command on going
4580 *
5a5dbd18 4581 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4582 * ATA device for the DRQ request.
4583 *
4584 * LOCKING:
4585 * Inherited from caller.
4586 */
1da177e4 4587
07f6f7d0
AL
4588static void ata_pio_sectors(struct ata_queued_cmd *qc)
4589{
4590 if (is_multi_taskfile(&qc->tf)) {
4591 /* READ/WRITE MULTIPLE */
4592 unsigned int nsect;
4593
587005de 4594 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4595
5a5dbd18 4596 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4597 qc->dev->multi_count);
07f6f7d0
AL
4598 while (nsect--)
4599 ata_pio_sector(qc);
4600 } else
4601 ata_pio_sector(qc);
4602}
4603
c71c1857
AL
4604/**
4605 * atapi_send_cdb - Write CDB bytes to hardware
4606 * @ap: Port to which ATAPI device is attached.
4607 * @qc: Taskfile currently active
4608 *
4609 * When device has indicated its readiness to accept
4610 * a CDB, this function is called. Send the CDB.
4611 *
4612 * LOCKING:
4613 * caller.
4614 */
4615
4616static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4617{
4618 /* send SCSI cdb */
4619 DPRINTK("send cdb\n");
db024d53 4620 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4621
a6b2c5d4 4622 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4623 ata_altstatus(ap); /* flush */
4624
4625 switch (qc->tf.protocol) {
4626 case ATA_PROT_ATAPI:
4627 ap->hsm_task_state = HSM_ST;
4628 break;
4629 case ATA_PROT_ATAPI_NODATA:
4630 ap->hsm_task_state = HSM_ST_LAST;
4631 break;
4632 case ATA_PROT_ATAPI_DMA:
4633 ap->hsm_task_state = HSM_ST_LAST;
4634 /* initiate bmdma */
4635 ap->ops->bmdma_start(qc);
4636 break;
4637 }
1da177e4
LT
4638}
4639
6ae4cfb5
AL
4640/**
4641 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4642 * @qc: Command on going
4643 * @bytes: number of bytes
4644 *
4645 * Transfer Transfer data from/to the ATAPI device.
4646 *
4647 * LOCKING:
4648 * Inherited from caller.
4649 *
4650 */
4651
1da177e4
LT
4652static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4653{
4654 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4655 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4656 struct ata_port *ap = qc->ap;
4657 struct page *page;
4658 unsigned char *buf;
4659 unsigned int offset, count;
4660
563a6e1f 4661 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4662 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4663
4664next_sg:
563a6e1f 4665 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4666 /*
563a6e1f
AL
4667 * The end of qc->sg is reached and the device expects
4668 * more data to transfer. In order not to overrun qc->sg
4669 * and fulfill length specified in the byte count register,
4670 * - for read case, discard trailing data from the device
4671 * - for write case, padding zero data to the device
4672 */
4673 u16 pad_buf[1] = { 0 };
4674 unsigned int words = bytes >> 1;
4675 unsigned int i;
4676
4677 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4678 ata_dev_printk(qc->dev, KERN_WARNING,
4679 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4680
4681 for (i = 0; i < words; i++)
a6b2c5d4 4682 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4683
14be71f4 4684 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4685 return;
4686 }
4687
cedc9a47 4688 sg = &qc->__sg[qc->cursg];
1da177e4 4689
1da177e4
LT
4690 page = sg->page;
4691 offset = sg->offset + qc->cursg_ofs;
4692
4693 /* get the current page and offset */
4694 page = nth_page(page, (offset >> PAGE_SHIFT));
4695 offset %= PAGE_SIZE;
4696
6952df03 4697 /* don't overrun current sg */
32529e01 4698 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4699
4700 /* don't cross page boundaries */
4701 count = min(count, (unsigned int)PAGE_SIZE - offset);
4702
7282aa4b
AL
4703 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4704
91b8b313
AL
4705 if (PageHighMem(page)) {
4706 unsigned long flags;
4707
a6b2c5d4 4708 /* FIXME: use bounce buffer */
91b8b313
AL
4709 local_irq_save(flags);
4710 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4711
91b8b313 4712 /* do the actual data transfer */
a6b2c5d4 4713 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4714
91b8b313
AL
4715 kunmap_atomic(buf, KM_IRQ0);
4716 local_irq_restore(flags);
4717 } else {
4718 buf = page_address(page);
a6b2c5d4 4719 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4720 }
1da177e4
LT
4721
4722 bytes -= count;
4723 qc->curbytes += count;
4724 qc->cursg_ofs += count;
4725
32529e01 4726 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4727 qc->cursg++;
4728 qc->cursg_ofs = 0;
4729 }
4730
563a6e1f 4731 if (bytes)
1da177e4 4732 goto next_sg;
1da177e4
LT
4733}
4734
6ae4cfb5
AL
4735/**
4736 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4737 * @qc: Command on going
4738 *
4739 * Transfer Transfer data from/to the ATAPI device.
4740 *
4741 * LOCKING:
4742 * Inherited from caller.
6ae4cfb5
AL
4743 */
4744
1da177e4
LT
4745static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4746{
4747 struct ata_port *ap = qc->ap;
4748 struct ata_device *dev = qc->dev;
4749 unsigned int ireason, bc_lo, bc_hi, bytes;
4750 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4751
eec4c3f3
AL
4752 /* Abuse qc->result_tf for temp storage of intermediate TF
4753 * here to save some kernel stack usage.
4754 * For normal completion, qc->result_tf is not relevant. For
4755 * error, qc->result_tf is later overwritten by ata_qc_complete().
4756 * So, the correctness of qc->result_tf is not affected.
4757 */
4758 ap->ops->tf_read(ap, &qc->result_tf);
4759 ireason = qc->result_tf.nsect;
4760 bc_lo = qc->result_tf.lbam;
4761 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4762 bytes = (bc_hi << 8) | bc_lo;
4763
4764 /* shall be cleared to zero, indicating xfer of data */
4765 if (ireason & (1 << 0))
4766 goto err_out;
4767
4768 /* make sure transfer direction matches expected */
4769 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4770 if (do_write != i_write)
4771 goto err_out;
4772
44877b4e 4773 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4774
1da177e4
LT
4775 __atapi_pio_bytes(qc, bytes);
4776
4777 return;
4778
4779err_out:
f15a1daf 4780 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4781 qc->err_mask |= AC_ERR_HSM;
14be71f4 4782 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4783}
4784
4785/**
c234fb00
AL
4786 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4787 * @ap: the target ata_port
4788 * @qc: qc on going
1da177e4 4789 *
c234fb00
AL
4790 * RETURNS:
4791 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4792 */
c234fb00
AL
4793
4794static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4795{
c234fb00
AL
4796 if (qc->tf.flags & ATA_TFLAG_POLLING)
4797 return 1;
1da177e4 4798
c234fb00
AL
4799 if (ap->hsm_task_state == HSM_ST_FIRST) {
4800 if (qc->tf.protocol == ATA_PROT_PIO &&
4801 (qc->tf.flags & ATA_TFLAG_WRITE))
4802 return 1;
1da177e4 4803
c234fb00
AL
4804 if (is_atapi_taskfile(&qc->tf) &&
4805 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4806 return 1;
fe79e683
AL
4807 }
4808
c234fb00
AL
4809 return 0;
4810}
1da177e4 4811
c17ea20d
TH
4812/**
4813 * ata_hsm_qc_complete - finish a qc running on standard HSM
4814 * @qc: Command to complete
4815 * @in_wq: 1 if called from workqueue, 0 otherwise
4816 *
4817 * Finish @qc which is running on standard HSM.
4818 *
4819 * LOCKING:
cca3974e 4820 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4821 * Otherwise, none on entry and grabs host lock.
4822 */
4823static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4824{
4825 struct ata_port *ap = qc->ap;
4826 unsigned long flags;
4827
4828 if (ap->ops->error_handler) {
4829 if (in_wq) {
ba6a1308 4830 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4831
cca3974e
JG
4832 /* EH might have kicked in while host lock is
4833 * released.
c17ea20d
TH
4834 */
4835 qc = ata_qc_from_tag(ap, qc->tag);
4836 if (qc) {
4837 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4838 ap->ops->irq_on(ap);
c17ea20d
TH
4839 ata_qc_complete(qc);
4840 } else
4841 ata_port_freeze(ap);
4842 }
4843
ba6a1308 4844 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4845 } else {
4846 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4847 ata_qc_complete(qc);
4848 else
4849 ata_port_freeze(ap);
4850 }
4851 } else {
4852 if (in_wq) {
ba6a1308 4853 spin_lock_irqsave(ap->lock, flags);
83625006 4854 ap->ops->irq_on(ap);
c17ea20d 4855 ata_qc_complete(qc);
ba6a1308 4856 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4857 } else
4858 ata_qc_complete(qc);
4859 }
4860}
4861
bb5cb290
AL
4862/**
4863 * ata_hsm_move - move the HSM to the next state.
4864 * @ap: the target ata_port
4865 * @qc: qc on going
4866 * @status: current device status
4867 * @in_wq: 1 if called from workqueue, 0 otherwise
4868 *
4869 * RETURNS:
4870 * 1 when poll next status needed, 0 otherwise.
4871 */
9a1004d0
TH
4872int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4873 u8 status, int in_wq)
e2cec771 4874{
bb5cb290
AL
4875 unsigned long flags = 0;
4876 int poll_next;
4877
6912ccd5
AL
4878 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4879
bb5cb290
AL
4880 /* Make sure ata_qc_issue_prot() does not throw things
4881 * like DMA polling into the workqueue. Notice that
4882 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4883 */
c234fb00 4884 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4885
e2cec771 4886fsm_start:
999bb6f4 4887 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4888 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4889
e2cec771
AL
4890 switch (ap->hsm_task_state) {
4891 case HSM_ST_FIRST:
bb5cb290
AL
4892 /* Send first data block or PACKET CDB */
4893
4894 /* If polling, we will stay in the work queue after
4895 * sending the data. Otherwise, interrupt handler
4896 * takes over after sending the data.
4897 */
4898 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4899
e2cec771 4900 /* check device status */
3655d1d3
AL
4901 if (unlikely((status & ATA_DRQ) == 0)) {
4902 /* handle BSY=0, DRQ=0 as error */
4903 if (likely(status & (ATA_ERR | ATA_DF)))
4904 /* device stops HSM for abort/error */
4905 qc->err_mask |= AC_ERR_DEV;
4906 else
4907 /* HSM violation. Let EH handle this */
4908 qc->err_mask |= AC_ERR_HSM;
4909
14be71f4 4910 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4911 goto fsm_start;
1da177e4
LT
4912 }
4913
71601958
AL
4914 /* Device should not ask for data transfer (DRQ=1)
4915 * when it finds something wrong.
eee6c32f
AL
4916 * We ignore DRQ here and stop the HSM by
4917 * changing hsm_task_state to HSM_ST_ERR and
4918 * let the EH abort the command or reset the device.
71601958
AL
4919 */
4920 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4921 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4922 "error, dev_stat 0x%X\n", status);
3655d1d3 4923 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4924 ap->hsm_task_state = HSM_ST_ERR;
4925 goto fsm_start;
71601958 4926 }
1da177e4 4927
bb5cb290
AL
4928 /* Send the CDB (atapi) or the first data block (ata pio out).
4929 * During the state transition, interrupt handler shouldn't
4930 * be invoked before the data transfer is complete and
4931 * hsm_task_state is changed. Hence, the following locking.
4932 */
4933 if (in_wq)
ba6a1308 4934 spin_lock_irqsave(ap->lock, flags);
1da177e4 4935
bb5cb290
AL
4936 if (qc->tf.protocol == ATA_PROT_PIO) {
4937 /* PIO data out protocol.
4938 * send first data block.
4939 */
0565c26d 4940
bb5cb290
AL
4941 /* ata_pio_sectors() might change the state
4942 * to HSM_ST_LAST. so, the state is changed here
4943 * before ata_pio_sectors().
4944 */
4945 ap->hsm_task_state = HSM_ST;
4946 ata_pio_sectors(qc);
4947 ata_altstatus(ap); /* flush */
4948 } else
4949 /* send CDB */
4950 atapi_send_cdb(ap, qc);
4951
4952 if (in_wq)
ba6a1308 4953 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4954
4955 /* if polling, ata_pio_task() handles the rest.
4956 * otherwise, interrupt handler takes over from here.
4957 */
e2cec771 4958 break;
1c848984 4959
e2cec771
AL
4960 case HSM_ST:
4961 /* complete command or read/write the data register */
4962 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4963 /* ATAPI PIO protocol */
4964 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4965 /* No more data to transfer or device error.
4966 * Device error will be tagged in HSM_ST_LAST.
4967 */
e2cec771
AL
4968 ap->hsm_task_state = HSM_ST_LAST;
4969 goto fsm_start;
4970 }
1da177e4 4971
71601958
AL
4972 /* Device should not ask for data transfer (DRQ=1)
4973 * when it finds something wrong.
eee6c32f
AL
4974 * We ignore DRQ here and stop the HSM by
4975 * changing hsm_task_state to HSM_ST_ERR and
4976 * let the EH abort the command or reset the device.
71601958
AL
4977 */
4978 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4979 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4980 "device error, dev_stat 0x%X\n",
4981 status);
3655d1d3 4982 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4983 ap->hsm_task_state = HSM_ST_ERR;
4984 goto fsm_start;
71601958 4985 }
1da177e4 4986
e2cec771 4987 atapi_pio_bytes(qc);
7fb6ec28 4988
e2cec771
AL
4989 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4990 /* bad ireason reported by device */
4991 goto fsm_start;
1da177e4 4992
e2cec771
AL
4993 } else {
4994 /* ATA PIO protocol */
4995 if (unlikely((status & ATA_DRQ) == 0)) {
4996 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4997 if (likely(status & (ATA_ERR | ATA_DF)))
4998 /* device stops HSM for abort/error */
4999 qc->err_mask |= AC_ERR_DEV;
5000 else
55a8e2c8
TH
5001 /* HSM violation. Let EH handle this.
5002 * Phantom devices also trigger this
5003 * condition. Mark hint.
5004 */
5005 qc->err_mask |= AC_ERR_HSM |
5006 AC_ERR_NODEV_HINT;
3655d1d3 5007
e2cec771
AL
5008 ap->hsm_task_state = HSM_ST_ERR;
5009 goto fsm_start;
5010 }
1da177e4 5011
eee6c32f
AL
5012 /* For PIO reads, some devices may ask for
5013 * data transfer (DRQ=1) alone with ERR=1.
5014 * We respect DRQ here and transfer one
5015 * block of junk data before changing the
5016 * hsm_task_state to HSM_ST_ERR.
5017 *
5018 * For PIO writes, ERR=1 DRQ=1 doesn't make
5019 * sense since the data block has been
5020 * transferred to the device.
71601958
AL
5021 */
5022 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5023 /* data might be corrputed */
5024 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5025
5026 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5027 ata_pio_sectors(qc);
5028 ata_altstatus(ap);
5029 status = ata_wait_idle(ap);
5030 }
5031
3655d1d3
AL
5032 if (status & (ATA_BUSY | ATA_DRQ))
5033 qc->err_mask |= AC_ERR_HSM;
5034
eee6c32f
AL
5035 /* ata_pio_sectors() might change the
5036 * state to HSM_ST_LAST. so, the state
5037 * is changed after ata_pio_sectors().
5038 */
5039 ap->hsm_task_state = HSM_ST_ERR;
5040 goto fsm_start;
71601958
AL
5041 }
5042
e2cec771
AL
5043 ata_pio_sectors(qc);
5044
5045 if (ap->hsm_task_state == HSM_ST_LAST &&
5046 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5047 /* all data read */
5048 ata_altstatus(ap);
52a32205 5049 status = ata_wait_idle(ap);
e2cec771
AL
5050 goto fsm_start;
5051 }
5052 }
5053
5054 ata_altstatus(ap); /* flush */
bb5cb290 5055 poll_next = 1;
1da177e4
LT
5056 break;
5057
14be71f4 5058 case HSM_ST_LAST:
6912ccd5
AL
5059 if (unlikely(!ata_ok(status))) {
5060 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5061 ap->hsm_task_state = HSM_ST_ERR;
5062 goto fsm_start;
5063 }
5064
5065 /* no more data to transfer */
4332a771 5066 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5067 ap->print_id, qc->dev->devno, status);
e2cec771 5068
6912ccd5
AL
5069 WARN_ON(qc->err_mask);
5070
e2cec771 5071 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5072
e2cec771 5073 /* complete taskfile transaction */
c17ea20d 5074 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5075
5076 poll_next = 0;
1da177e4
LT
5077 break;
5078
14be71f4 5079 case HSM_ST_ERR:
e2cec771
AL
5080 /* make sure qc->err_mask is available to
5081 * know what's wrong and recover
5082 */
5083 WARN_ON(qc->err_mask == 0);
5084
5085 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5086
999bb6f4 5087 /* complete taskfile transaction */
c17ea20d 5088 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5089
5090 poll_next = 0;
e2cec771
AL
5091 break;
5092 default:
bb5cb290 5093 poll_next = 0;
6912ccd5 5094 BUG();
1da177e4
LT
5095 }
5096
bb5cb290 5097 return poll_next;
1da177e4
LT
5098}
5099
65f27f38 5100static void ata_pio_task(struct work_struct *work)
8061f5f0 5101{
65f27f38
DH
5102 struct ata_port *ap =
5103 container_of(work, struct ata_port, port_task.work);
5104 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5105 u8 status;
a1af3734 5106 int poll_next;
8061f5f0 5107
7fb6ec28 5108fsm_start:
a1af3734 5109 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5110
a1af3734
AL
5111 /*
5112 * This is purely heuristic. This is a fast path.
5113 * Sometimes when we enter, BSY will be cleared in
5114 * a chk-status or two. If not, the drive is probably seeking
5115 * or something. Snooze for a couple msecs, then
5116 * chk-status again. If still busy, queue delayed work.
5117 */
5118 status = ata_busy_wait(ap, ATA_BUSY, 5);
5119 if (status & ATA_BUSY) {
5120 msleep(2);
5121 status = ata_busy_wait(ap, ATA_BUSY, 10);
5122 if (status & ATA_BUSY) {
31ce6dae 5123 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5124 return;
5125 }
8061f5f0
TH
5126 }
5127
a1af3734
AL
5128 /* move the HSM */
5129 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5130
a1af3734
AL
5131 /* another command or interrupt handler
5132 * may be running at this point.
5133 */
5134 if (poll_next)
7fb6ec28 5135 goto fsm_start;
8061f5f0
TH
5136}
5137
1da177e4
LT
5138/**
5139 * ata_qc_new - Request an available ATA command, for queueing
5140 * @ap: Port associated with device @dev
5141 * @dev: Device from whom we request an available command structure
5142 *
5143 * LOCKING:
0cba632b 5144 * None.
1da177e4
LT
5145 */
5146
5147static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5148{
5149 struct ata_queued_cmd *qc = NULL;
5150 unsigned int i;
5151
e3180499 5152 /* no command while frozen */
b51e9e5d 5153 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5154 return NULL;
5155
2ab7db1f
TH
5156 /* the last tag is reserved for internal command. */
5157 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5158 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5159 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5160 break;
5161 }
5162
5163 if (qc)
5164 qc->tag = i;
5165
5166 return qc;
5167}
5168
5169/**
5170 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5171 * @dev: Device from whom we request an available command structure
5172 *
5173 * LOCKING:
0cba632b 5174 * None.
1da177e4
LT
5175 */
5176
3373efd8 5177struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5178{
3373efd8 5179 struct ata_port *ap = dev->ap;
1da177e4
LT
5180 struct ata_queued_cmd *qc;
5181
5182 qc = ata_qc_new(ap);
5183 if (qc) {
1da177e4
LT
5184 qc->scsicmd = NULL;
5185 qc->ap = ap;
5186 qc->dev = dev;
1da177e4 5187
2c13b7ce 5188 ata_qc_reinit(qc);
1da177e4
LT
5189 }
5190
5191 return qc;
5192}
5193
1da177e4
LT
5194/**
5195 * ata_qc_free - free unused ata_queued_cmd
5196 * @qc: Command to complete
5197 *
5198 * Designed to free unused ata_queued_cmd object
5199 * in case something prevents using it.
5200 *
5201 * LOCKING:
cca3974e 5202 * spin_lock_irqsave(host lock)
1da177e4
LT
5203 */
5204void ata_qc_free(struct ata_queued_cmd *qc)
5205{
4ba946e9
TH
5206 struct ata_port *ap = qc->ap;
5207 unsigned int tag;
5208
a4631474 5209 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5210
4ba946e9
TH
5211 qc->flags = 0;
5212 tag = qc->tag;
5213 if (likely(ata_tag_valid(tag))) {
4ba946e9 5214 qc->tag = ATA_TAG_POISON;
6cec4a39 5215 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5216 }
1da177e4
LT
5217}
5218
76014427 5219void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5220{
dedaf2b0
TH
5221 struct ata_port *ap = qc->ap;
5222
a4631474
TH
5223 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5224 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5225
5226 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5227 ata_sg_clean(qc);
5228
7401abf2 5229 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5230 if (qc->tf.protocol == ATA_PROT_NCQ)
5231 ap->sactive &= ~(1 << qc->tag);
5232 else
5233 ap->active_tag = ATA_TAG_POISON;
7401abf2 5234
3f3791d3
AL
5235 /* atapi: mark qc as inactive to prevent the interrupt handler
5236 * from completing the command twice later, before the error handler
5237 * is called. (when rc != 0 and atapi request sense is needed)
5238 */
5239 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5240 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5241
1da177e4 5242 /* call completion callback */
77853bf2 5243 qc->complete_fn(qc);
1da177e4
LT
5244}
5245
39599a53
TH
5246static void fill_result_tf(struct ata_queued_cmd *qc)
5247{
5248 struct ata_port *ap = qc->ap;
5249
39599a53 5250 qc->result_tf.flags = qc->tf.flags;
4742d54f 5251 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5252}
5253
f686bcb8
TH
5254/**
5255 * ata_qc_complete - Complete an active ATA command
5256 * @qc: Command to complete
5257 * @err_mask: ATA Status register contents
5258 *
5259 * Indicate to the mid and upper layers that an ATA
5260 * command has completed, with either an ok or not-ok status.
5261 *
5262 * LOCKING:
cca3974e 5263 * spin_lock_irqsave(host lock)
f686bcb8
TH
5264 */
5265void ata_qc_complete(struct ata_queued_cmd *qc)
5266{
5267 struct ata_port *ap = qc->ap;
5268
5269 /* XXX: New EH and old EH use different mechanisms to
5270 * synchronize EH with regular execution path.
5271 *
5272 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5273 * Normal execution path is responsible for not accessing a
5274 * failed qc. libata core enforces the rule by returning NULL
5275 * from ata_qc_from_tag() for failed qcs.
5276 *
5277 * Old EH depends on ata_qc_complete() nullifying completion
5278 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5279 * not synchronize with interrupt handler. Only PIO task is
5280 * taken care of.
5281 */
5282 if (ap->ops->error_handler) {
b51e9e5d 5283 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5284
5285 if (unlikely(qc->err_mask))
5286 qc->flags |= ATA_QCFLAG_FAILED;
5287
5288 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5289 if (!ata_tag_internal(qc->tag)) {
5290 /* always fill result TF for failed qc */
39599a53 5291 fill_result_tf(qc);
f686bcb8
TH
5292 ata_qc_schedule_eh(qc);
5293 return;
5294 }
5295 }
5296
5297 /* read result TF if requested */
5298 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5299 fill_result_tf(qc);
f686bcb8
TH
5300
5301 __ata_qc_complete(qc);
5302 } else {
5303 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5304 return;
5305
5306 /* read result TF if failed or requested */
5307 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5308 fill_result_tf(qc);
f686bcb8
TH
5309
5310 __ata_qc_complete(qc);
5311 }
5312}
5313
dedaf2b0
TH
5314/**
5315 * ata_qc_complete_multiple - Complete multiple qcs successfully
5316 * @ap: port in question
5317 * @qc_active: new qc_active mask
5318 * @finish_qc: LLDD callback invoked before completing a qc
5319 *
5320 * Complete in-flight commands. This functions is meant to be
5321 * called from low-level driver's interrupt routine to complete
5322 * requests normally. ap->qc_active and @qc_active is compared
5323 * and commands are completed accordingly.
5324 *
5325 * LOCKING:
cca3974e 5326 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5327 *
5328 * RETURNS:
5329 * Number of completed commands on success, -errno otherwise.
5330 */
5331int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5332 void (*finish_qc)(struct ata_queued_cmd *))
5333{
5334 int nr_done = 0;
5335 u32 done_mask;
5336 int i;
5337
5338 done_mask = ap->qc_active ^ qc_active;
5339
5340 if (unlikely(done_mask & qc_active)) {
5341 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5342 "(%08x->%08x)\n", ap->qc_active, qc_active);
5343 return -EINVAL;
5344 }
5345
5346 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5347 struct ata_queued_cmd *qc;
5348
5349 if (!(done_mask & (1 << i)))
5350 continue;
5351
5352 if ((qc = ata_qc_from_tag(ap, i))) {
5353 if (finish_qc)
5354 finish_qc(qc);
5355 ata_qc_complete(qc);
5356 nr_done++;
5357 }
5358 }
5359
5360 return nr_done;
5361}
5362
1da177e4
LT
5363static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5364{
5365 struct ata_port *ap = qc->ap;
5366
5367 switch (qc->tf.protocol) {
3dc1d881 5368 case ATA_PROT_NCQ:
1da177e4
LT
5369 case ATA_PROT_DMA:
5370 case ATA_PROT_ATAPI_DMA:
5371 return 1;
5372
5373 case ATA_PROT_ATAPI:
5374 case ATA_PROT_PIO:
1da177e4
LT
5375 if (ap->flags & ATA_FLAG_PIO_DMA)
5376 return 1;
5377
5378 /* fall through */
5379
5380 default:
5381 return 0;
5382 }
5383
5384 /* never reached */
5385}
5386
5387/**
5388 * ata_qc_issue - issue taskfile to device
5389 * @qc: command to issue to device
5390 *
5391 * Prepare an ATA command to submission to device.
5392 * This includes mapping the data into a DMA-able
5393 * area, filling in the S/G table, and finally
5394 * writing the taskfile to hardware, starting the command.
5395 *
5396 * LOCKING:
cca3974e 5397 * spin_lock_irqsave(host lock)
1da177e4 5398 */
8e0e694a 5399void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5400{
5401 struct ata_port *ap = qc->ap;
5402
dedaf2b0
TH
5403 /* Make sure only one non-NCQ command is outstanding. The
5404 * check is skipped for old EH because it reuses active qc to
5405 * request ATAPI sense.
5406 */
5407 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5408
5409 if (qc->tf.protocol == ATA_PROT_NCQ) {
5410 WARN_ON(ap->sactive & (1 << qc->tag));
5411 ap->sactive |= 1 << qc->tag;
5412 } else {
5413 WARN_ON(ap->sactive);
5414 ap->active_tag = qc->tag;
5415 }
5416
e4a70e76 5417 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5418 ap->qc_active |= 1 << qc->tag;
e4a70e76 5419
1da177e4
LT
5420 if (ata_should_dma_map(qc)) {
5421 if (qc->flags & ATA_QCFLAG_SG) {
5422 if (ata_sg_setup(qc))
8e436af9 5423 goto sg_err;
1da177e4
LT
5424 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5425 if (ata_sg_setup_one(qc))
8e436af9 5426 goto sg_err;
1da177e4
LT
5427 }
5428 } else {
5429 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5430 }
5431
5432 ap->ops->qc_prep(qc);
5433
8e0e694a
TH
5434 qc->err_mask |= ap->ops->qc_issue(qc);
5435 if (unlikely(qc->err_mask))
5436 goto err;
5437 return;
1da177e4 5438
8e436af9
TH
5439sg_err:
5440 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5441 qc->err_mask |= AC_ERR_SYSTEM;
5442err:
5443 ata_qc_complete(qc);
1da177e4
LT
5444}
5445
5446/**
5447 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5448 * @qc: command to issue to device
5449 *
5450 * Using various libata functions and hooks, this function
5451 * starts an ATA command. ATA commands are grouped into
5452 * classes called "protocols", and issuing each type of protocol
5453 * is slightly different.
5454 *
0baab86b
EF
5455 * May be used as the qc_issue() entry in ata_port_operations.
5456 *
1da177e4 5457 * LOCKING:
cca3974e 5458 * spin_lock_irqsave(host lock)
1da177e4
LT
5459 *
5460 * RETURNS:
9a3d9eb0 5461 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5462 */
5463
9a3d9eb0 5464unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5465{
5466 struct ata_port *ap = qc->ap;
5467
e50362ec
AL
5468 /* Use polling pio if the LLD doesn't handle
5469 * interrupt driven pio and atapi CDB interrupt.
5470 */
5471 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5472 switch (qc->tf.protocol) {
5473 case ATA_PROT_PIO:
e3472cbe 5474 case ATA_PROT_NODATA:
e50362ec
AL
5475 case ATA_PROT_ATAPI:
5476 case ATA_PROT_ATAPI_NODATA:
5477 qc->tf.flags |= ATA_TFLAG_POLLING;
5478 break;
5479 case ATA_PROT_ATAPI_DMA:
5480 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5481 /* see ata_dma_blacklisted() */
e50362ec
AL
5482 BUG();
5483 break;
5484 default:
5485 break;
5486 }
5487 }
5488
312f7da2 5489 /* select the device */
1da177e4
LT
5490 ata_dev_select(ap, qc->dev->devno, 1, 0);
5491
312f7da2 5492 /* start the command */
1da177e4
LT
5493 switch (qc->tf.protocol) {
5494 case ATA_PROT_NODATA:
312f7da2
AL
5495 if (qc->tf.flags & ATA_TFLAG_POLLING)
5496 ata_qc_set_polling(qc);
5497
e5338254 5498 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5499 ap->hsm_task_state = HSM_ST_LAST;
5500
5501 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5503
1da177e4
LT
5504 break;
5505
5506 case ATA_PROT_DMA:
587005de 5507 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5508
1da177e4
LT
5509 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5510 ap->ops->bmdma_setup(qc); /* set up bmdma */
5511 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5512 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5513 break;
5514
312f7da2
AL
5515 case ATA_PROT_PIO:
5516 if (qc->tf.flags & ATA_TFLAG_POLLING)
5517 ata_qc_set_polling(qc);
1da177e4 5518
e5338254 5519 ata_tf_to_host(ap, &qc->tf);
312f7da2 5520
54f00389
AL
5521 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5522 /* PIO data out protocol */
5523 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5524 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5525
5526 /* always send first data block using
e27486db 5527 * the ata_pio_task() codepath.
54f00389 5528 */
312f7da2 5529 } else {
54f00389
AL
5530 /* PIO data in protocol */
5531 ap->hsm_task_state = HSM_ST;
5532
5533 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5534 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5535
5536 /* if polling, ata_pio_task() handles the rest.
5537 * otherwise, interrupt handler takes over from here.
5538 */
312f7da2
AL
5539 }
5540
1da177e4
LT
5541 break;
5542
1da177e4 5543 case ATA_PROT_ATAPI:
1da177e4 5544 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5545 if (qc->tf.flags & ATA_TFLAG_POLLING)
5546 ata_qc_set_polling(qc);
5547
e5338254 5548 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5549
312f7da2
AL
5550 ap->hsm_task_state = HSM_ST_FIRST;
5551
5552 /* send cdb by polling if no cdb interrupt */
5553 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5554 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5555 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5556 break;
5557
5558 case ATA_PROT_ATAPI_DMA:
587005de 5559 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5560
1da177e4
LT
5561 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5562 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5563 ap->hsm_task_state = HSM_ST_FIRST;
5564
5565 /* send cdb by polling if no cdb interrupt */
5566 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5567 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5568 break;
5569
5570 default:
5571 WARN_ON(1);
9a3d9eb0 5572 return AC_ERR_SYSTEM;
1da177e4
LT
5573 }
5574
5575 return 0;
5576}
5577
1da177e4
LT
5578/**
5579 * ata_host_intr - Handle host interrupt for given (port, task)
5580 * @ap: Port on which interrupt arrived (possibly...)
5581 * @qc: Taskfile currently active in engine
5582 *
5583 * Handle host interrupt for given queued command. Currently,
5584 * only DMA interrupts are handled. All other commands are
5585 * handled via polling with interrupts disabled (nIEN bit).
5586 *
5587 * LOCKING:
cca3974e 5588 * spin_lock_irqsave(host lock)
1da177e4
LT
5589 *
5590 * RETURNS:
5591 * One if interrupt was handled, zero if not (shared irq).
5592 */
5593
5594inline unsigned int ata_host_intr (struct ata_port *ap,
5595 struct ata_queued_cmd *qc)
5596{
ea54763f 5597 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5598 u8 status, host_stat = 0;
1da177e4 5599
312f7da2 5600 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5601 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5602
312f7da2
AL
5603 /* Check whether we are expecting interrupt in this state */
5604 switch (ap->hsm_task_state) {
5605 case HSM_ST_FIRST:
6912ccd5
AL
5606 /* Some pre-ATAPI-4 devices assert INTRQ
5607 * at this state when ready to receive CDB.
5608 */
1da177e4 5609
312f7da2
AL
5610 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5611 * The flag was turned on only for atapi devices.
5612 * No need to check is_atapi_taskfile(&qc->tf) again.
5613 */
5614 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5615 goto idle_irq;
1da177e4 5616 break;
312f7da2
AL
5617 case HSM_ST_LAST:
5618 if (qc->tf.protocol == ATA_PROT_DMA ||
5619 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5620 /* check status of DMA engine */
5621 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5622 VPRINTK("ata%u: host_stat 0x%X\n",
5623 ap->print_id, host_stat);
312f7da2
AL
5624
5625 /* if it's not our irq... */
5626 if (!(host_stat & ATA_DMA_INTR))
5627 goto idle_irq;
5628
5629 /* before we do anything else, clear DMA-Start bit */
5630 ap->ops->bmdma_stop(qc);
a4f16610
AL
5631
5632 if (unlikely(host_stat & ATA_DMA_ERR)) {
5633 /* error when transfering data to/from memory */
5634 qc->err_mask |= AC_ERR_HOST_BUS;
5635 ap->hsm_task_state = HSM_ST_ERR;
5636 }
312f7da2
AL
5637 }
5638 break;
5639 case HSM_ST:
5640 break;
1da177e4
LT
5641 default:
5642 goto idle_irq;
5643 }
5644
312f7da2
AL
5645 /* check altstatus */
5646 status = ata_altstatus(ap);
5647 if (status & ATA_BUSY)
5648 goto idle_irq;
1da177e4 5649
312f7da2
AL
5650 /* check main status, clearing INTRQ */
5651 status = ata_chk_status(ap);
5652 if (unlikely(status & ATA_BUSY))
5653 goto idle_irq;
1da177e4 5654
312f7da2
AL
5655 /* ack bmdma irq events */
5656 ap->ops->irq_clear(ap);
1da177e4 5657
bb5cb290 5658 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5659
5660 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5661 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5662 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5663
1da177e4
LT
5664 return 1; /* irq handled */
5665
5666idle_irq:
5667 ap->stats.idle_irq++;
5668
5669#ifdef ATA_IRQ_TRAP
5670 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5671 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5672 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5673 return 1;
1da177e4
LT
5674 }
5675#endif
5676 return 0; /* irq not handled */
5677}
5678
5679/**
5680 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5681 * @irq: irq line (unused)
cca3974e 5682 * @dev_instance: pointer to our ata_host information structure
1da177e4 5683 *
0cba632b
JG
5684 * Default interrupt handler for PCI IDE devices. Calls
5685 * ata_host_intr() for each port that is not disabled.
5686 *
1da177e4 5687 * LOCKING:
cca3974e 5688 * Obtains host lock during operation.
1da177e4
LT
5689 *
5690 * RETURNS:
0cba632b 5691 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5692 */
5693
7d12e780 5694irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5695{
cca3974e 5696 struct ata_host *host = dev_instance;
1da177e4
LT
5697 unsigned int i;
5698 unsigned int handled = 0;
5699 unsigned long flags;
5700
5701 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5702 spin_lock_irqsave(&host->lock, flags);
1da177e4 5703
cca3974e 5704 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5705 struct ata_port *ap;
5706
cca3974e 5707 ap = host->ports[i];
c1389503 5708 if (ap &&
029f5468 5709 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5710 struct ata_queued_cmd *qc;
5711
5712 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5713 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5714 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5715 handled |= ata_host_intr(ap, qc);
5716 }
5717 }
5718
cca3974e 5719 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5720
5721 return IRQ_RETVAL(handled);
5722}
5723
34bf2170
TH
5724/**
5725 * sata_scr_valid - test whether SCRs are accessible
5726 * @ap: ATA port to test SCR accessibility for
5727 *
5728 * Test whether SCRs are accessible for @ap.
5729 *
5730 * LOCKING:
5731 * None.
5732 *
5733 * RETURNS:
5734 * 1 if SCRs are accessible, 0 otherwise.
5735 */
5736int sata_scr_valid(struct ata_port *ap)
5737{
a16abc0b 5738 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5739}
5740
5741/**
5742 * sata_scr_read - read SCR register of the specified port
5743 * @ap: ATA port to read SCR for
5744 * @reg: SCR to read
5745 * @val: Place to store read value
5746 *
5747 * Read SCR register @reg of @ap into *@val. This function is
5748 * guaranteed to succeed if the cable type of the port is SATA
5749 * and the port implements ->scr_read.
5750 *
5751 * LOCKING:
5752 * None.
5753 *
5754 * RETURNS:
5755 * 0 on success, negative errno on failure.
5756 */
5757int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5758{
5759 if (sata_scr_valid(ap)) {
5760 *val = ap->ops->scr_read(ap, reg);
5761 return 0;
5762 }
5763 return -EOPNOTSUPP;
5764}
5765
5766/**
5767 * sata_scr_write - write SCR register of the specified port
5768 * @ap: ATA port to write SCR for
5769 * @reg: SCR to write
5770 * @val: value to write
5771 *
5772 * Write @val to SCR register @reg of @ap. This function is
5773 * guaranteed to succeed if the cable type of the port is SATA
5774 * and the port implements ->scr_read.
5775 *
5776 * LOCKING:
5777 * None.
5778 *
5779 * RETURNS:
5780 * 0 on success, negative errno on failure.
5781 */
5782int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5783{
5784 if (sata_scr_valid(ap)) {
5785 ap->ops->scr_write(ap, reg, val);
5786 return 0;
5787 }
5788 return -EOPNOTSUPP;
5789}
5790
5791/**
5792 * sata_scr_write_flush - write SCR register of the specified port and flush
5793 * @ap: ATA port to write SCR for
5794 * @reg: SCR to write
5795 * @val: value to write
5796 *
5797 * This function is identical to sata_scr_write() except that this
5798 * function performs flush after writing to the register.
5799 *
5800 * LOCKING:
5801 * None.
5802 *
5803 * RETURNS:
5804 * 0 on success, negative errno on failure.
5805 */
5806int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5807{
5808 if (sata_scr_valid(ap)) {
5809 ap->ops->scr_write(ap, reg, val);
5810 ap->ops->scr_read(ap, reg);
5811 return 0;
5812 }
5813 return -EOPNOTSUPP;
5814}
5815
5816/**
5817 * ata_port_online - test whether the given port is online
5818 * @ap: ATA port to test
5819 *
5820 * Test whether @ap is online. Note that this function returns 0
5821 * if online status of @ap cannot be obtained, so
5822 * ata_port_online(ap) != !ata_port_offline(ap).
5823 *
5824 * LOCKING:
5825 * None.
5826 *
5827 * RETURNS:
5828 * 1 if the port online status is available and online.
5829 */
5830int ata_port_online(struct ata_port *ap)
5831{
5832 u32 sstatus;
5833
5834 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5835 return 1;
5836 return 0;
5837}
5838
5839/**
5840 * ata_port_offline - test whether the given port is offline
5841 * @ap: ATA port to test
5842 *
5843 * Test whether @ap is offline. Note that this function returns
5844 * 0 if offline status of @ap cannot be obtained, so
5845 * ata_port_online(ap) != !ata_port_offline(ap).
5846 *
5847 * LOCKING:
5848 * None.
5849 *
5850 * RETURNS:
5851 * 1 if the port offline status is available and offline.
5852 */
5853int ata_port_offline(struct ata_port *ap)
5854{
5855 u32 sstatus;
5856
5857 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5858 return 1;
5859 return 0;
5860}
0baab86b 5861
77b08fb5 5862int ata_flush_cache(struct ata_device *dev)
9b847548 5863{
977e6b9f 5864 unsigned int err_mask;
9b847548
JA
5865 u8 cmd;
5866
5867 if (!ata_try_flush_cache(dev))
5868 return 0;
5869
6fc49adb 5870 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5871 cmd = ATA_CMD_FLUSH_EXT;
5872 else
5873 cmd = ATA_CMD_FLUSH;
5874
977e6b9f
TH
5875 err_mask = ata_do_simple_cmd(dev, cmd);
5876 if (err_mask) {
5877 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5878 return -EIO;
5879 }
5880
5881 return 0;
9b847548
JA
5882}
5883
6ffa01d8 5884#ifdef CONFIG_PM
cca3974e
JG
5885static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5886 unsigned int action, unsigned int ehi_flags,
5887 int wait)
500530f6
TH
5888{
5889 unsigned long flags;
5890 int i, rc;
5891
cca3974e
JG
5892 for (i = 0; i < host->n_ports; i++) {
5893 struct ata_port *ap = host->ports[i];
500530f6
TH
5894
5895 /* Previous resume operation might still be in
5896 * progress. Wait for PM_PENDING to clear.
5897 */
5898 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5899 ata_port_wait_eh(ap);
5900 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5901 }
5902
5903 /* request PM ops to EH */
5904 spin_lock_irqsave(ap->lock, flags);
5905
5906 ap->pm_mesg = mesg;
5907 if (wait) {
5908 rc = 0;
5909 ap->pm_result = &rc;
5910 }
5911
5912 ap->pflags |= ATA_PFLAG_PM_PENDING;
5913 ap->eh_info.action |= action;
5914 ap->eh_info.flags |= ehi_flags;
5915
5916 ata_port_schedule_eh(ap);
5917
5918 spin_unlock_irqrestore(ap->lock, flags);
5919
5920 /* wait and check result */
5921 if (wait) {
5922 ata_port_wait_eh(ap);
5923 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5924 if (rc)
5925 return rc;
5926 }
5927 }
5928
5929 return 0;
5930}
5931
5932/**
cca3974e
JG
5933 * ata_host_suspend - suspend host
5934 * @host: host to suspend
500530f6
TH
5935 * @mesg: PM message
5936 *
cca3974e 5937 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5938 * function requests EH to perform PM operations and waits for EH
5939 * to finish.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep).
5943 *
5944 * RETURNS:
5945 * 0 on success, -errno on failure.
5946 */
cca3974e 5947int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5948{
9666f400 5949 int rc;
500530f6 5950
cca3974e 5951 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5952 if (rc == 0)
5953 host->dev->power.power_state = mesg;
500530f6
TH
5954 return rc;
5955}
5956
5957/**
cca3974e
JG
5958 * ata_host_resume - resume host
5959 * @host: host to resume
500530f6 5960 *
cca3974e 5961 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5962 * function requests EH to perform PM operations and returns.
5963 * Note that all resume operations are performed parallely.
5964 *
5965 * LOCKING:
5966 * Kernel thread context (may sleep).
5967 */
cca3974e 5968void ata_host_resume(struct ata_host *host)
500530f6 5969{
cca3974e
JG
5970 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5971 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5972 host->dev->power.power_state = PMSG_ON;
500530f6 5973}
6ffa01d8 5974#endif
500530f6 5975
c893a3ae
RD
5976/**
5977 * ata_port_start - Set port up for dma.
5978 * @ap: Port to initialize
5979 *
5980 * Called just after data structures for each port are
5981 * initialized. Allocates space for PRD table.
5982 *
5983 * May be used as the port_start() entry in ata_port_operations.
5984 *
5985 * LOCKING:
5986 * Inherited from caller.
5987 */
f0d36efd 5988int ata_port_start(struct ata_port *ap)
1da177e4 5989{
2f1f610b 5990 struct device *dev = ap->dev;
6037d6bb 5991 int rc;
1da177e4 5992
f0d36efd
TH
5993 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5994 GFP_KERNEL);
1da177e4
LT
5995 if (!ap->prd)
5996 return -ENOMEM;
5997
6037d6bb 5998 rc = ata_pad_alloc(ap, dev);
f0d36efd 5999 if (rc)
6037d6bb 6000 return rc;
1da177e4 6001
f0d36efd
TH
6002 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6003 (unsigned long long)ap->prd_dma);
1da177e4
LT
6004 return 0;
6005}
6006
3ef3b43d
TH
6007/**
6008 * ata_dev_init - Initialize an ata_device structure
6009 * @dev: Device structure to initialize
6010 *
6011 * Initialize @dev in preparation for probing.
6012 *
6013 * LOCKING:
6014 * Inherited from caller.
6015 */
6016void ata_dev_init(struct ata_device *dev)
6017{
6018 struct ata_port *ap = dev->ap;
72fa4b74
TH
6019 unsigned long flags;
6020
5a04bf4b
TH
6021 /* SATA spd limit is bound to the first device */
6022 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6023
72fa4b74
TH
6024 /* High bits of dev->flags are used to record warm plug
6025 * requests which occur asynchronously. Synchronize using
cca3974e 6026 * host lock.
72fa4b74 6027 */
ba6a1308 6028 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6029 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6030 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6031
72fa4b74
TH
6032 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6033 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6034 dev->pio_mask = UINT_MAX;
6035 dev->mwdma_mask = UINT_MAX;
6036 dev->udma_mask = UINT_MAX;
6037}
6038
1da177e4 6039/**
f3187195
TH
6040 * ata_port_alloc - allocate and initialize basic ATA port resources
6041 * @host: ATA host this allocated port belongs to
1da177e4 6042 *
f3187195
TH
6043 * Allocate and initialize basic ATA port resources.
6044 *
6045 * RETURNS:
6046 * Allocate ATA port on success, NULL on failure.
0cba632b 6047 *
1da177e4 6048 * LOCKING:
f3187195 6049 * Inherited from calling layer (may sleep).
1da177e4 6050 */
f3187195 6051struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6052{
f3187195 6053 struct ata_port *ap;
1da177e4
LT
6054 unsigned int i;
6055
f3187195
TH
6056 DPRINTK("ENTER\n");
6057
6058 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6059 if (!ap)
6060 return NULL;
6061
f4d6d004 6062 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6063 ap->lock = &host->lock;
198e0fed 6064 ap->flags = ATA_FLAG_DISABLED;
f3187195 6065 ap->print_id = -1;
1da177e4 6066 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6067 ap->host = host;
f3187195
TH
6068 ap->dev = host->dev;
6069
5a04bf4b 6070 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6071 ap->active_tag = ATA_TAG_POISON;
6072 ap->last_ctl = 0xFF;
bd5d825c
BP
6073
6074#if defined(ATA_VERBOSE_DEBUG)
6075 /* turn on all debugging levels */
6076 ap->msg_enable = 0x00FF;
6077#elif defined(ATA_DEBUG)
6078 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6079#else
0dd4b21f 6080 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6081#endif
1da177e4 6082
65f27f38
DH
6083 INIT_DELAYED_WORK(&ap->port_task, NULL);
6084 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6085 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6086 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6087 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6088
838df628 6089 ap->cbl = ATA_CBL_NONE;
838df628 6090
acf356b1
TH
6091 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6092 struct ata_device *dev = &ap->device[i];
38d87234 6093 dev->ap = ap;
72fa4b74 6094 dev->devno = i;
3ef3b43d 6095 ata_dev_init(dev);
acf356b1 6096 }
1da177e4
LT
6097
6098#ifdef ATA_IRQ_TRAP
6099 ap->stats.unhandled_irq = 1;
6100 ap->stats.idle_irq = 1;
6101#endif
1da177e4 6102 return ap;
1da177e4
LT
6103}
6104
f0d36efd
TH
6105static void ata_host_release(struct device *gendev, void *res)
6106{
6107 struct ata_host *host = dev_get_drvdata(gendev);
6108 int i;
6109
6110 for (i = 0; i < host->n_ports; i++) {
6111 struct ata_port *ap = host->ports[i];
6112
ecef7253
TH
6113 if (!ap)
6114 continue;
6115
6116 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6117 ap->ops->port_stop(ap);
f0d36efd
TH
6118 }
6119
ecef7253 6120 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6121 host->ops->host_stop(host);
1aa56cca 6122
1aa506e4
TH
6123 for (i = 0; i < host->n_ports; i++) {
6124 struct ata_port *ap = host->ports[i];
6125
4911487a
TH
6126 if (!ap)
6127 continue;
6128
6129 if (ap->scsi_host)
1aa506e4
TH
6130 scsi_host_put(ap->scsi_host);
6131
4911487a 6132 kfree(ap);
1aa506e4
TH
6133 host->ports[i] = NULL;
6134 }
6135
1aa56cca 6136 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6137}
6138
f3187195
TH
6139/**
6140 * ata_host_alloc - allocate and init basic ATA host resources
6141 * @dev: generic device this host is associated with
6142 * @max_ports: maximum number of ATA ports associated with this host
6143 *
6144 * Allocate and initialize basic ATA host resources. LLD calls
6145 * this function to allocate a host, initializes it fully and
6146 * attaches it using ata_host_register().
6147 *
6148 * @max_ports ports are allocated and host->n_ports is
6149 * initialized to @max_ports. The caller is allowed to decrease
6150 * host->n_ports before calling ata_host_register(). The unused
6151 * ports will be automatically freed on registration.
6152 *
6153 * RETURNS:
6154 * Allocate ATA host on success, NULL on failure.
6155 *
6156 * LOCKING:
6157 * Inherited from calling layer (may sleep).
6158 */
6159struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6160{
6161 struct ata_host *host;
6162 size_t sz;
6163 int i;
6164
6165 DPRINTK("ENTER\n");
6166
6167 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6168 return NULL;
6169
6170 /* alloc a container for our list of ATA ports (buses) */
6171 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6172 /* alloc a container for our list of ATA ports (buses) */
6173 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6174 if (!host)
6175 goto err_out;
6176
6177 devres_add(dev, host);
6178 dev_set_drvdata(dev, host);
6179
6180 spin_lock_init(&host->lock);
6181 host->dev = dev;
6182 host->n_ports = max_ports;
6183
6184 /* allocate ports bound to this host */
6185 for (i = 0; i < max_ports; i++) {
6186 struct ata_port *ap;
6187
6188 ap = ata_port_alloc(host);
6189 if (!ap)
6190 goto err_out;
6191
6192 ap->port_no = i;
6193 host->ports[i] = ap;
6194 }
6195
6196 devres_remove_group(dev, NULL);
6197 return host;
6198
6199 err_out:
6200 devres_release_group(dev, NULL);
6201 return NULL;
6202}
6203
f5cda257
TH
6204/**
6205 * ata_host_alloc_pinfo - alloc host and init with port_info array
6206 * @dev: generic device this host is associated with
6207 * @ppi: array of ATA port_info to initialize host with
6208 * @n_ports: number of ATA ports attached to this host
6209 *
6210 * Allocate ATA host and initialize with info from @ppi. If NULL
6211 * terminated, @ppi may contain fewer entries than @n_ports. The
6212 * last entry will be used for the remaining ports.
6213 *
6214 * RETURNS:
6215 * Allocate ATA host on success, NULL on failure.
6216 *
6217 * LOCKING:
6218 * Inherited from calling layer (may sleep).
6219 */
6220struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6221 const struct ata_port_info * const * ppi,
6222 int n_ports)
6223{
6224 const struct ata_port_info *pi;
6225 struct ata_host *host;
6226 int i, j;
6227
6228 host = ata_host_alloc(dev, n_ports);
6229 if (!host)
6230 return NULL;
6231
6232 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6233 struct ata_port *ap = host->ports[i];
6234
6235 if (ppi[j])
6236 pi = ppi[j++];
6237
6238 ap->pio_mask = pi->pio_mask;
6239 ap->mwdma_mask = pi->mwdma_mask;
6240 ap->udma_mask = pi->udma_mask;
6241 ap->flags |= pi->flags;
6242 ap->ops = pi->port_ops;
6243
6244 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6245 host->ops = pi->port_ops;
6246 if (!host->private_data && pi->private_data)
6247 host->private_data = pi->private_data;
6248 }
6249
6250 return host;
6251}
6252
ecef7253
TH
6253/**
6254 * ata_host_start - start and freeze ports of an ATA host
6255 * @host: ATA host to start ports for
6256 *
6257 * Start and then freeze ports of @host. Started status is
6258 * recorded in host->flags, so this function can be called
6259 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6260 * once. If host->ops isn't initialized yet, its set to the
6261 * first non-dummy port ops.
ecef7253
TH
6262 *
6263 * LOCKING:
6264 * Inherited from calling layer (may sleep).
6265 *
6266 * RETURNS:
6267 * 0 if all ports are started successfully, -errno otherwise.
6268 */
6269int ata_host_start(struct ata_host *host)
6270{
6271 int i, rc;
6272
6273 if (host->flags & ATA_HOST_STARTED)
6274 return 0;
6275
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap = host->ports[i];
6278
f3187195
TH
6279 if (!host->ops && !ata_port_is_dummy(ap))
6280 host->ops = ap->ops;
6281
ecef7253
TH
6282 if (ap->ops->port_start) {
6283 rc = ap->ops->port_start(ap);
6284 if (rc) {
6285 ata_port_printk(ap, KERN_ERR, "failed to "
6286 "start port (errno=%d)\n", rc);
6287 goto err_out;
6288 }
6289 }
6290
6291 ata_eh_freeze_port(ap);
6292 }
6293
6294 host->flags |= ATA_HOST_STARTED;
6295 return 0;
6296
6297 err_out:
6298 while (--i >= 0) {
6299 struct ata_port *ap = host->ports[i];
6300
6301 if (ap->ops->port_stop)
6302 ap->ops->port_stop(ap);
6303 }
6304 return rc;
6305}
6306
b03732f0 6307/**
cca3974e
JG
6308 * ata_sas_host_init - Initialize a host struct
6309 * @host: host to initialize
6310 * @dev: device host is attached to
6311 * @flags: host flags
6312 * @ops: port_ops
b03732f0
BK
6313 *
6314 * LOCKING:
6315 * PCI/etc. bus probe sem.
6316 *
6317 */
f3187195 6318/* KILLME - the only user left is ipr */
cca3974e
JG
6319void ata_host_init(struct ata_host *host, struct device *dev,
6320 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6321{
cca3974e
JG
6322 spin_lock_init(&host->lock);
6323 host->dev = dev;
6324 host->flags = flags;
6325 host->ops = ops;
b03732f0
BK
6326}
6327
f3187195
TH
6328/**
6329 * ata_host_register - register initialized ATA host
6330 * @host: ATA host to register
6331 * @sht: template for SCSI host
6332 *
6333 * Register initialized ATA host. @host is allocated using
6334 * ata_host_alloc() and fully initialized by LLD. This function
6335 * starts ports, registers @host with ATA and SCSI layers and
6336 * probe registered devices.
6337 *
6338 * LOCKING:
6339 * Inherited from calling layer (may sleep).
6340 *
6341 * RETURNS:
6342 * 0 on success, -errno otherwise.
6343 */
6344int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6345{
6346 int i, rc;
6347
6348 /* host must have been started */
6349 if (!(host->flags & ATA_HOST_STARTED)) {
6350 dev_printk(KERN_ERR, host->dev,
6351 "BUG: trying to register unstarted host\n");
6352 WARN_ON(1);
6353 return -EINVAL;
6354 }
6355
6356 /* Blow away unused ports. This happens when LLD can't
6357 * determine the exact number of ports to allocate at
6358 * allocation time.
6359 */
6360 for (i = host->n_ports; host->ports[i]; i++)
6361 kfree(host->ports[i]);
6362
6363 /* give ports names and add SCSI hosts */
6364 for (i = 0; i < host->n_ports; i++)
6365 host->ports[i]->print_id = ata_print_id++;
6366
6367 rc = ata_scsi_add_hosts(host, sht);
6368 if (rc)
6369 return rc;
6370
fafbae87
TH
6371 /* associate with ACPI nodes */
6372 ata_acpi_associate(host);
6373
f3187195
TH
6374 /* set cable, sata_spd_limit and report */
6375 for (i = 0; i < host->n_ports; i++) {
6376 struct ata_port *ap = host->ports[i];
6377 int irq_line;
6378 u32 scontrol;
6379 unsigned long xfer_mask;
6380
6381 /* set SATA cable type if still unset */
6382 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6383 ap->cbl = ATA_CBL_SATA;
6384
6385 /* init sata_spd_limit to the current value */
6386 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6387 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6388 if (spd)
6389 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6390 }
6391 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6392
6393 /* report the secondary IRQ for second channel legacy */
6394 irq_line = host->irq;
6395 if (i == 1 && host->irq2)
6396 irq_line = host->irq2;
6397
6398 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6399 ap->udma_mask);
6400
6401 /* print per-port info to dmesg */
6402 if (!ata_port_is_dummy(ap))
6403 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6404 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6405 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6406 ata_mode_string(xfer_mask),
6407 ap->ioaddr.cmd_addr,
6408 ap->ioaddr.ctl_addr,
6409 ap->ioaddr.bmdma_addr,
6410 irq_line);
6411 else
6412 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6413 }
6414
6415 /* perform each probe synchronously */
6416 DPRINTK("probe begin\n");
6417 for (i = 0; i < host->n_ports; i++) {
6418 struct ata_port *ap = host->ports[i];
6419 int rc;
6420
6421 /* probe */
6422 if (ap->ops->error_handler) {
6423 struct ata_eh_info *ehi = &ap->eh_info;
6424 unsigned long flags;
6425
6426 ata_port_probe(ap);
6427
6428 /* kick EH for boot probing */
6429 spin_lock_irqsave(ap->lock, flags);
6430
6431 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6432 ehi->action |= ATA_EH_SOFTRESET;
6433 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6434
f4d6d004 6435 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6436 ap->pflags |= ATA_PFLAG_LOADING;
6437 ata_port_schedule_eh(ap);
6438
6439 spin_unlock_irqrestore(ap->lock, flags);
6440
6441 /* wait for EH to finish */
6442 ata_port_wait_eh(ap);
6443 } else {
6444 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6445 rc = ata_bus_probe(ap);
6446 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6447
6448 if (rc) {
6449 /* FIXME: do something useful here?
6450 * Current libata behavior will
6451 * tear down everything when
6452 * the module is removed
6453 * or the h/w is unplugged.
6454 */
6455 }
6456 }
6457 }
6458
6459 /* probes are done, now scan each port's disk(s) */
6460 DPRINTK("host probe begin\n");
6461 for (i = 0; i < host->n_ports; i++) {
6462 struct ata_port *ap = host->ports[i];
6463
6464 ata_scsi_scan_host(ap);
6465 }
6466
6467 return 0;
6468}
6469
f5cda257
TH
6470/**
6471 * ata_host_activate - start host, request IRQ and register it
6472 * @host: target ATA host
6473 * @irq: IRQ to request
6474 * @irq_handler: irq_handler used when requesting IRQ
6475 * @irq_flags: irq_flags used when requesting IRQ
6476 * @sht: scsi_host_template to use when registering the host
6477 *
6478 * After allocating an ATA host and initializing it, most libata
6479 * LLDs perform three steps to activate the host - start host,
6480 * request IRQ and register it. This helper takes necessasry
6481 * arguments and performs the three steps in one go.
6482 *
6483 * LOCKING:
6484 * Inherited from calling layer (may sleep).
6485 *
6486 * RETURNS:
6487 * 0 on success, -errno otherwise.
6488 */
6489int ata_host_activate(struct ata_host *host, int irq,
6490 irq_handler_t irq_handler, unsigned long irq_flags,
6491 struct scsi_host_template *sht)
6492{
6493 int rc;
6494
6495 rc = ata_host_start(host);
6496 if (rc)
6497 return rc;
6498
6499 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6500 dev_driver_string(host->dev), host);
6501 if (rc)
6502 return rc;
6503
4031826b
TH
6504 /* Used to print device info at probe */
6505 host->irq = irq;
6506
f5cda257
TH
6507 rc = ata_host_register(host, sht);
6508 /* if failed, just free the IRQ and leave ports alone */
6509 if (rc)
6510 devm_free_irq(host->dev, irq, host);
6511
6512 return rc;
6513}
6514
720ba126
TH
6515/**
6516 * ata_port_detach - Detach ATA port in prepration of device removal
6517 * @ap: ATA port to be detached
6518 *
6519 * Detach all ATA devices and the associated SCSI devices of @ap;
6520 * then, remove the associated SCSI host. @ap is guaranteed to
6521 * be quiescent on return from this function.
6522 *
6523 * LOCKING:
6524 * Kernel thread context (may sleep).
6525 */
6526void ata_port_detach(struct ata_port *ap)
6527{
6528 unsigned long flags;
6529 int i;
6530
6531 if (!ap->ops->error_handler)
c3cf30a9 6532 goto skip_eh;
720ba126
TH
6533
6534 /* tell EH we're leaving & flush EH */
ba6a1308 6535 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6536 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6537 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6538
6539 ata_port_wait_eh(ap);
6540
6541 /* EH is now guaranteed to see UNLOADING, so no new device
6542 * will be attached. Disable all existing devices.
6543 */
ba6a1308 6544 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6545
6546 for (i = 0; i < ATA_MAX_DEVICES; i++)
6547 ata_dev_disable(&ap->device[i]);
6548
ba6a1308 6549 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6550
6551 /* Final freeze & EH. All in-flight commands are aborted. EH
6552 * will be skipped and retrials will be terminated with bad
6553 * target.
6554 */
ba6a1308 6555 spin_lock_irqsave(ap->lock, flags);
720ba126 6556 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6557 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6558
6559 ata_port_wait_eh(ap);
6560
6561 /* Flush hotplug task. The sequence is similar to
6562 * ata_port_flush_task().
6563 */
28e53bdd 6564 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6565 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6566 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6567
c3cf30a9 6568 skip_eh:
720ba126 6569 /* remove the associated SCSI host */
cca3974e 6570 scsi_remove_host(ap->scsi_host);
720ba126
TH
6571}
6572
0529c159
TH
6573/**
6574 * ata_host_detach - Detach all ports of an ATA host
6575 * @host: Host to detach
6576 *
6577 * Detach all ports of @host.
6578 *
6579 * LOCKING:
6580 * Kernel thread context (may sleep).
6581 */
6582void ata_host_detach(struct ata_host *host)
6583{
6584 int i;
6585
6586 for (i = 0; i < host->n_ports; i++)
6587 ata_port_detach(host->ports[i]);
6588}
6589
1da177e4
LT
6590/**
6591 * ata_std_ports - initialize ioaddr with standard port offsets.
6592 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6593 *
6594 * Utility function which initializes data_addr, error_addr,
6595 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6596 * device_addr, status_addr, and command_addr to standard offsets
6597 * relative to cmd_addr.
6598 *
6599 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6600 */
0baab86b 6601
1da177e4
LT
6602void ata_std_ports(struct ata_ioports *ioaddr)
6603{
6604 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6605 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6606 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6607 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6608 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6609 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6610 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6611 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6612 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6613 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6614}
6615
0baab86b 6616
374b1873
JG
6617#ifdef CONFIG_PCI
6618
1da177e4
LT
6619/**
6620 * ata_pci_remove_one - PCI layer callback for device removal
6621 * @pdev: PCI device that was removed
6622 *
b878ca5d
TH
6623 * PCI layer indicates to libata via this hook that hot-unplug or
6624 * module unload event has occurred. Detach all ports. Resource
6625 * release is handled via devres.
1da177e4
LT
6626 *
6627 * LOCKING:
6628 * Inherited from PCI layer (may sleep).
6629 */
f0d36efd 6630void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6631{
6632 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6633 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6634
b878ca5d 6635 ata_host_detach(host);
1da177e4
LT
6636}
6637
6638/* move to PCI subsystem */
057ace5e 6639int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6640{
6641 unsigned long tmp = 0;
6642
6643 switch (bits->width) {
6644 case 1: {
6645 u8 tmp8 = 0;
6646 pci_read_config_byte(pdev, bits->reg, &tmp8);
6647 tmp = tmp8;
6648 break;
6649 }
6650 case 2: {
6651 u16 tmp16 = 0;
6652 pci_read_config_word(pdev, bits->reg, &tmp16);
6653 tmp = tmp16;
6654 break;
6655 }
6656 case 4: {
6657 u32 tmp32 = 0;
6658 pci_read_config_dword(pdev, bits->reg, &tmp32);
6659 tmp = tmp32;
6660 break;
6661 }
6662
6663 default:
6664 return -EINVAL;
6665 }
6666
6667 tmp &= bits->mask;
6668
6669 return (tmp == bits->val) ? 1 : 0;
6670}
9b847548 6671
6ffa01d8 6672#ifdef CONFIG_PM
3c5100c1 6673void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6674{
6675 pci_save_state(pdev);
4c90d971 6676 pci_disable_device(pdev);
500530f6 6677
4c90d971 6678 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6679 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6680}
6681
553c4aa6 6682int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6683{
553c4aa6
TH
6684 int rc;
6685
9b847548
JA
6686 pci_set_power_state(pdev, PCI_D0);
6687 pci_restore_state(pdev);
553c4aa6 6688
b878ca5d 6689 rc = pcim_enable_device(pdev);
553c4aa6
TH
6690 if (rc) {
6691 dev_printk(KERN_ERR, &pdev->dev,
6692 "failed to enable device after resume (%d)\n", rc);
6693 return rc;
6694 }
6695
9b847548 6696 pci_set_master(pdev);
553c4aa6 6697 return 0;
500530f6
TH
6698}
6699
3c5100c1 6700int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6701{
cca3974e 6702 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6703 int rc = 0;
6704
cca3974e 6705 rc = ata_host_suspend(host, mesg);
500530f6
TH
6706 if (rc)
6707 return rc;
6708
3c5100c1 6709 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6710
6711 return 0;
6712}
6713
6714int ata_pci_device_resume(struct pci_dev *pdev)
6715{
cca3974e 6716 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6717 int rc;
500530f6 6718
553c4aa6
TH
6719 rc = ata_pci_device_do_resume(pdev);
6720 if (rc == 0)
6721 ata_host_resume(host);
6722 return rc;
9b847548 6723}
6ffa01d8
TH
6724#endif /* CONFIG_PM */
6725
1da177e4
LT
6726#endif /* CONFIG_PCI */
6727
6728
1da177e4
LT
6729static int __init ata_init(void)
6730{
a8601e5f 6731 ata_probe_timeout *= HZ;
1da177e4
LT
6732 ata_wq = create_workqueue("ata");
6733 if (!ata_wq)
6734 return -ENOMEM;
6735
453b07ac
TH
6736 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6737 if (!ata_aux_wq) {
6738 destroy_workqueue(ata_wq);
6739 return -ENOMEM;
6740 }
6741
1da177e4
LT
6742 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6743 return 0;
6744}
6745
6746static void __exit ata_exit(void)
6747{
6748 destroy_workqueue(ata_wq);
453b07ac 6749 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6750}
6751
a4625085 6752subsys_initcall(ata_init);
1da177e4
LT
6753module_exit(ata_exit);
6754
67846b30 6755static unsigned long ratelimit_time;
34af946a 6756static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6757
6758int ata_ratelimit(void)
6759{
6760 int rc;
6761 unsigned long flags;
6762
6763 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6764
6765 if (time_after(jiffies, ratelimit_time)) {
6766 rc = 1;
6767 ratelimit_time = jiffies + (HZ/5);
6768 } else
6769 rc = 0;
6770
6771 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6772
6773 return rc;
6774}
6775
c22daff4
TH
6776/**
6777 * ata_wait_register - wait until register value changes
6778 * @reg: IO-mapped register
6779 * @mask: Mask to apply to read register value
6780 * @val: Wait condition
6781 * @interval_msec: polling interval in milliseconds
6782 * @timeout_msec: timeout in milliseconds
6783 *
6784 * Waiting for some bits of register to change is a common
6785 * operation for ATA controllers. This function reads 32bit LE
6786 * IO-mapped register @reg and tests for the following condition.
6787 *
6788 * (*@reg & mask) != val
6789 *
6790 * If the condition is met, it returns; otherwise, the process is
6791 * repeated after @interval_msec until timeout.
6792 *
6793 * LOCKING:
6794 * Kernel thread context (may sleep)
6795 *
6796 * RETURNS:
6797 * The final register value.
6798 */
6799u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6800 unsigned long interval_msec,
6801 unsigned long timeout_msec)
6802{
6803 unsigned long timeout;
6804 u32 tmp;
6805
6806 tmp = ioread32(reg);
6807
6808 /* Calculate timeout _after_ the first read to make sure
6809 * preceding writes reach the controller before starting to
6810 * eat away the timeout.
6811 */
6812 timeout = jiffies + (timeout_msec * HZ) / 1000;
6813
6814 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6815 msleep(interval_msec);
6816 tmp = ioread32(reg);
6817 }
6818
6819 return tmp;
6820}
6821
dd5b06c4
TH
6822/*
6823 * Dummy port_ops
6824 */
6825static void ata_dummy_noret(struct ata_port *ap) { }
6826static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6827static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6828
6829static u8 ata_dummy_check_status(struct ata_port *ap)
6830{
6831 return ATA_DRDY;
6832}
6833
6834static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6835{
6836 return AC_ERR_SYSTEM;
6837}
6838
6839const struct ata_port_operations ata_dummy_port_ops = {
6840 .port_disable = ata_port_disable,
6841 .check_status = ata_dummy_check_status,
6842 .check_altstatus = ata_dummy_check_status,
6843 .dev_select = ata_noop_dev_select,
6844 .qc_prep = ata_noop_qc_prep,
6845 .qc_issue = ata_dummy_qc_issue,
6846 .freeze = ata_dummy_noret,
6847 .thaw = ata_dummy_noret,
6848 .error_handler = ata_dummy_noret,
6849 .post_internal_cmd = ata_dummy_qc_noret,
6850 .irq_clear = ata_dummy_noret,
6851 .port_start = ata_dummy_ret0,
6852 .port_stop = ata_dummy_noret,
6853};
6854
21b0ad4f
TH
6855const struct ata_port_info ata_dummy_port_info = {
6856 .port_ops = &ata_dummy_port_ops,
6857};
6858
1da177e4
LT
6859/*
6860 * libata is essentially a library of internal helper functions for
6861 * low-level ATA host controller drivers. As such, the API/ABI is
6862 * likely to change as new drivers are added and updated.
6863 * Do not depend on ABI/API stability.
6864 */
6865
e9c83914
TH
6866EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6867EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6868EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6869EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6870EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6871EXPORT_SYMBOL_GPL(ata_std_bios_param);
6872EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6873EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6874EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6875EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6876EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6877EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6878EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6879EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6880EXPORT_SYMBOL_GPL(ata_sg_init);
6881EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6882EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6883EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6884EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6885EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6886EXPORT_SYMBOL_GPL(ata_tf_load);
6887EXPORT_SYMBOL_GPL(ata_tf_read);
6888EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6889EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6890EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6891EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6892EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6893EXPORT_SYMBOL_GPL(ata_check_status);
6894EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6895EXPORT_SYMBOL_GPL(ata_exec_command);
6896EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6897EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6898EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6899EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6900EXPORT_SYMBOL_GPL(ata_data_xfer);
6901EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6902EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6903EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6904EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6905EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6906EXPORT_SYMBOL_GPL(ata_bmdma_start);
6907EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6908EXPORT_SYMBOL_GPL(ata_bmdma_status);
6909EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6910EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6911EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6912EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6913EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6914EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6915EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6916EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6917EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6918EXPORT_SYMBOL_GPL(sata_phy_debounce);
6919EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6920EXPORT_SYMBOL_GPL(sata_phy_reset);
6921EXPORT_SYMBOL_GPL(__sata_phy_reset);
6922EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6923EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6924EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6925EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6926EXPORT_SYMBOL_GPL(sata_std_hardreset);
6927EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6928EXPORT_SYMBOL_GPL(ata_dev_classify);
6929EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6930EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6931EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6932EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6933EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6934EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6935EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6936EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6937EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6938EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6939EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6940EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6941EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6942EXPORT_SYMBOL_GPL(sata_scr_valid);
6943EXPORT_SYMBOL_GPL(sata_scr_read);
6944EXPORT_SYMBOL_GPL(sata_scr_write);
6945EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6946EXPORT_SYMBOL_GPL(ata_port_online);
6947EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6948#ifdef CONFIG_PM
cca3974e
JG
6949EXPORT_SYMBOL_GPL(ata_host_suspend);
6950EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6951#endif /* CONFIG_PM */
6a62a04d
TH
6952EXPORT_SYMBOL_GPL(ata_id_string);
6953EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6954EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6955EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6956EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6957
1bc4ccff 6958EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6959EXPORT_SYMBOL_GPL(ata_timing_compute);
6960EXPORT_SYMBOL_GPL(ata_timing_merge);
6961
1da177e4
LT
6962#ifdef CONFIG_PCI
6963EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6964EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
1626aeb8 6965EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
21b0ad4f 6966EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6967EXPORT_SYMBOL_GPL(ata_pci_init_one);
6968EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6969#ifdef CONFIG_PM
500530f6
TH
6970EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6971EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6972EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6973EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6974#endif /* CONFIG_PM */
67951ade
AC
6975EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6976EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6977#endif /* CONFIG_PCI */
9b847548 6978
ece1d636 6979EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6980EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6981EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6982EXPORT_SYMBOL_GPL(ata_port_freeze);
6983EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6984EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6985EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6986EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6987EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6988EXPORT_SYMBOL_GPL(ata_irq_on);
6989EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6990EXPORT_SYMBOL_GPL(ata_irq_ack);
6991EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6992EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6993
6994EXPORT_SYMBOL_GPL(ata_cable_40wire);
6995EXPORT_SYMBOL_GPL(ata_cable_80wire);
6996EXPORT_SYMBOL_GPL(ata_cable_unknown);
6997EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.811234 seconds and 5 git commands to generate.