pata_hpt3x3: major reworking and testing
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @fis: Buffer into which data will output
115 * @pmp: Port multiplier port
116 *
117 * Converts a standard ATA taskfile to a Serial ATA
118 * FIS structure (Register - Host to Device).
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123
057ace5e 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
125{
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
128 bit 7 indicates Command FIS */
129 fis[2] = tf->command;
130 fis[3] = tf->feature;
131
132 fis[4] = tf->lbal;
133 fis[5] = tf->lbam;
134 fis[6] = tf->lbah;
135 fis[7] = tf->device;
136
137 fis[8] = tf->hob_lbal;
138 fis[9] = tf->hob_lbam;
139 fis[10] = tf->hob_lbah;
140 fis[11] = tf->hob_feature;
141
142 fis[12] = tf->nsect;
143 fis[13] = tf->hob_nsect;
144 fis[14] = 0;
145 fis[15] = tf->ctl;
146
147 fis[16] = 0;
148 fis[17] = 0;
149 fis[18] = 0;
150 fis[19] = 0;
151}
152
153/**
154 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
155 * @fis: Buffer from which data will be input
156 * @tf: Taskfile to output
157 *
e12a1be6 158 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
159 *
160 * LOCKING:
161 * Inherited from caller.
162 */
163
057ace5e 164void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
165{
166 tf->command = fis[2]; /* status */
167 tf->feature = fis[3]; /* error */
168
169 tf->lbal = fis[4];
170 tf->lbam = fis[5];
171 tf->lbah = fis[6];
172 tf->device = fis[7];
173
174 tf->hob_lbal = fis[8];
175 tf->hob_lbam = fis[9];
176 tf->hob_lbah = fis[10];
177
178 tf->nsect = fis[12];
179 tf->hob_nsect = fis[13];
180}
181
8cbd6df1
AL
182static const u8 ata_rw_cmds[] = {
183 /* pio multi */
184 ATA_CMD_READ_MULTI,
185 ATA_CMD_WRITE_MULTI,
186 ATA_CMD_READ_MULTI_EXT,
187 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
192 /* pio */
193 ATA_CMD_PIO_READ,
194 ATA_CMD_PIO_WRITE,
195 ATA_CMD_PIO_READ_EXT,
196 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
197 0,
198 0,
199 0,
200 0,
8cbd6df1
AL
201 /* dma */
202 ATA_CMD_READ,
203 ATA_CMD_WRITE,
204 ATA_CMD_READ_EXT,
9a3dccc4
TH
205 ATA_CMD_WRITE_EXT,
206 0,
207 0,
208 0,
209 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 210};
1da177e4
LT
211
212/**
8cbd6df1 213 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
214 * @tf: command to examine and configure
215 * @dev: device tf belongs to
1da177e4 216 *
2e9edbf8 217 * Examine the device configuration and tf->flags to calculate
8cbd6df1 218 * the proper read/write commands and protocol to use.
1da177e4
LT
219 *
220 * LOCKING:
221 * caller.
222 */
bd056d7e 223static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 224{
9a3dccc4 225 u8 cmd;
1da177e4 226
9a3dccc4 227 int index, fua, lba48, write;
2e9edbf8 228
9a3dccc4 229 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
230 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
231 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 232
8cbd6df1
AL
233 if (dev->flags & ATA_DFLAG_PIO) {
234 tf->protocol = ATA_PROT_PIO;
9a3dccc4 235 index = dev->multi_count ? 0 : 8;
bd056d7e 236 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
237 /* Unable to use DMA due to host limitation */
238 tf->protocol = ATA_PROT_PIO;
0565c26d 239 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
240 } else {
241 tf->protocol = ATA_PROT_DMA;
9a3dccc4 242 index = 16;
8cbd6df1 243 }
1da177e4 244
9a3dccc4
TH
245 cmd = ata_rw_cmds[index + fua + lba48 + write];
246 if (cmd) {
247 tf->command = cmd;
248 return 0;
249 }
250 return -1;
1da177e4
LT
251}
252
35b649fe
TH
253/**
254 * ata_tf_read_block - Read block address from ATA taskfile
255 * @tf: ATA taskfile of interest
256 * @dev: ATA device @tf belongs to
257 *
258 * LOCKING:
259 * None.
260 *
261 * Read block address from @tf. This function can handle all
262 * three address formats - LBA, LBA48 and CHS. tf->protocol and
263 * flags select the address format to use.
264 *
265 * RETURNS:
266 * Block address read from @tf.
267 */
268u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
269{
270 u64 block = 0;
271
272 if (tf->flags & ATA_TFLAG_LBA) {
273 if (tf->flags & ATA_TFLAG_LBA48) {
274 block |= (u64)tf->hob_lbah << 40;
275 block |= (u64)tf->hob_lbam << 32;
276 block |= tf->hob_lbal << 24;
277 } else
278 block |= (tf->device & 0xf) << 24;
279
280 block |= tf->lbah << 16;
281 block |= tf->lbam << 8;
282 block |= tf->lbal;
283 } else {
284 u32 cyl, head, sect;
285
286 cyl = tf->lbam | (tf->lbah << 8);
287 head = tf->device & 0xf;
288 sect = tf->lbal;
289
290 block = (cyl * dev->heads + head) * dev->sectors + sect;
291 }
292
293 return block;
294}
295
bd056d7e
TH
296/**
297 * ata_build_rw_tf - Build ATA taskfile for given read/write request
298 * @tf: Target ATA taskfile
299 * @dev: ATA device @tf belongs to
300 * @block: Block address
301 * @n_block: Number of blocks
302 * @tf_flags: RW/FUA etc...
303 * @tag: tag
304 *
305 * LOCKING:
306 * None.
307 *
308 * Build ATA taskfile @tf for read/write request described by
309 * @block, @n_block, @tf_flags and @tag on @dev.
310 *
311 * RETURNS:
312 *
313 * 0 on success, -ERANGE if the request is too large for @dev,
314 * -EINVAL if the request is invalid.
315 */
316int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
317 u64 block, u32 n_block, unsigned int tf_flags,
318 unsigned int tag)
319{
320 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
321 tf->flags |= tf_flags;
322
6d1245bf 323 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
324 /* yay, NCQ */
325 if (!lba_48_ok(block, n_block))
326 return -ERANGE;
327
328 tf->protocol = ATA_PROT_NCQ;
329 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
330
331 if (tf->flags & ATA_TFLAG_WRITE)
332 tf->command = ATA_CMD_FPDMA_WRITE;
333 else
334 tf->command = ATA_CMD_FPDMA_READ;
335
336 tf->nsect = tag << 3;
337 tf->hob_feature = (n_block >> 8) & 0xff;
338 tf->feature = n_block & 0xff;
339
340 tf->hob_lbah = (block >> 40) & 0xff;
341 tf->hob_lbam = (block >> 32) & 0xff;
342 tf->hob_lbal = (block >> 24) & 0xff;
343 tf->lbah = (block >> 16) & 0xff;
344 tf->lbam = (block >> 8) & 0xff;
345 tf->lbal = block & 0xff;
346
347 tf->device = 1 << 6;
348 if (tf->flags & ATA_TFLAG_FUA)
349 tf->device |= 1 << 7;
350 } else if (dev->flags & ATA_DFLAG_LBA) {
351 tf->flags |= ATA_TFLAG_LBA;
352
353 if (lba_28_ok(block, n_block)) {
354 /* use LBA28 */
355 tf->device |= (block >> 24) & 0xf;
356 } else if (lba_48_ok(block, n_block)) {
357 if (!(dev->flags & ATA_DFLAG_LBA48))
358 return -ERANGE;
359
360 /* use LBA48 */
361 tf->flags |= ATA_TFLAG_LBA48;
362
363 tf->hob_nsect = (n_block >> 8) & 0xff;
364
365 tf->hob_lbah = (block >> 40) & 0xff;
366 tf->hob_lbam = (block >> 32) & 0xff;
367 tf->hob_lbal = (block >> 24) & 0xff;
368 } else
369 /* request too large even for LBA48 */
370 return -ERANGE;
371
372 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
373 return -EINVAL;
374
375 tf->nsect = n_block & 0xff;
376
377 tf->lbah = (block >> 16) & 0xff;
378 tf->lbam = (block >> 8) & 0xff;
379 tf->lbal = block & 0xff;
380
381 tf->device |= ATA_LBA;
382 } else {
383 /* CHS */
384 u32 sect, head, cyl, track;
385
386 /* The request -may- be too large for CHS addressing. */
387 if (!lba_28_ok(block, n_block))
388 return -ERANGE;
389
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 return -EINVAL;
392
393 /* Convert LBA to CHS */
394 track = (u32)block / dev->sectors;
395 cyl = track / dev->heads;
396 head = track % dev->heads;
397 sect = (u32)block % dev->sectors + 1;
398
399 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
400 (u32)block, track, cyl, head, sect);
401
402 /* Check whether the converted CHS can fit.
403 Cylinder: 0-65535
404 Head: 0-15
405 Sector: 1-255*/
406 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
407 return -ERANGE;
408
409 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
410 tf->lbal = sect;
411 tf->lbam = cyl;
412 tf->lbah = cyl >> 8;
413 tf->device |= head;
414 }
415
416 return 0;
417}
418
cb95d562
TH
419/**
420 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
421 * @pio_mask: pio_mask
422 * @mwdma_mask: mwdma_mask
423 * @udma_mask: udma_mask
424 *
425 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
426 * unsigned int xfer_mask.
427 *
428 * LOCKING:
429 * None.
430 *
431 * RETURNS:
432 * Packed xfer_mask.
433 */
434static unsigned int ata_pack_xfermask(unsigned int pio_mask,
435 unsigned int mwdma_mask,
436 unsigned int udma_mask)
437{
438 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
439 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
440 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
441}
442
c0489e4e
TH
443/**
444 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
445 * @xfer_mask: xfer_mask to unpack
446 * @pio_mask: resulting pio_mask
447 * @mwdma_mask: resulting mwdma_mask
448 * @udma_mask: resulting udma_mask
449 *
450 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
451 * Any NULL distination masks will be ignored.
452 */
453static void ata_unpack_xfermask(unsigned int xfer_mask,
454 unsigned int *pio_mask,
455 unsigned int *mwdma_mask,
456 unsigned int *udma_mask)
457{
458 if (pio_mask)
459 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
460 if (mwdma_mask)
461 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
462 if (udma_mask)
463 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
464}
465
cb95d562 466static const struct ata_xfer_ent {
be9a50c8 467 int shift, bits;
cb95d562
TH
468 u8 base;
469} ata_xfer_tbl[] = {
470 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
471 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
472 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
473 { -1, },
474};
475
476/**
477 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
478 * @xfer_mask: xfer_mask of interest
479 *
480 * Return matching XFER_* value for @xfer_mask. Only the highest
481 * bit of @xfer_mask is considered.
482 *
483 * LOCKING:
484 * None.
485 *
486 * RETURNS:
487 * Matching XFER_* value, 0 if no match found.
488 */
489static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
490{
491 int highbit = fls(xfer_mask) - 1;
492 const struct ata_xfer_ent *ent;
493
494 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
495 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
496 return ent->base + highbit - ent->shift;
497 return 0;
498}
499
500/**
501 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
502 * @xfer_mode: XFER_* of interest
503 *
504 * Return matching xfer_mask for @xfer_mode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * Matching xfer_mask, 0 if no match found.
511 */
512static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
513{
514 const struct ata_xfer_ent *ent;
515
516 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
517 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
518 return 1 << (ent->shift + xfer_mode - ent->base);
519 return 0;
520}
521
522/**
523 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
524 * @xfer_mode: XFER_* of interest
525 *
526 * Return matching xfer_shift for @xfer_mode.
527 *
528 * LOCKING:
529 * None.
530 *
531 * RETURNS:
532 * Matching xfer_shift, -1 if no match found.
533 */
534static int ata_xfer_mode2shift(unsigned int xfer_mode)
535{
536 const struct ata_xfer_ent *ent;
537
538 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
539 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
540 return ent->shift;
541 return -1;
542}
543
1da177e4 544/**
1da7b0d0
TH
545 * ata_mode_string - convert xfer_mask to string
546 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
547 *
548 * Determine string which represents the highest speed
1da7b0d0 549 * (highest bit in @modemask).
1da177e4
LT
550 *
551 * LOCKING:
552 * None.
553 *
554 * RETURNS:
555 * Constant C string representing highest speed listed in
1da7b0d0 556 * @mode_mask, or the constant C string "<n/a>".
1da177e4 557 */
1da7b0d0 558static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 559{
75f554bc
TH
560 static const char * const xfer_mode_str[] = {
561 "PIO0",
562 "PIO1",
563 "PIO2",
564 "PIO3",
565 "PIO4",
b352e57d
AC
566 "PIO5",
567 "PIO6",
75f554bc
TH
568 "MWDMA0",
569 "MWDMA1",
570 "MWDMA2",
b352e57d
AC
571 "MWDMA3",
572 "MWDMA4",
75f554bc
TH
573 "UDMA/16",
574 "UDMA/25",
575 "UDMA/33",
576 "UDMA/44",
577 "UDMA/66",
578 "UDMA/100",
579 "UDMA/133",
580 "UDMA7",
581 };
1da7b0d0 582 int highbit;
1da177e4 583
1da7b0d0
TH
584 highbit = fls(xfer_mask) - 1;
585 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
586 return xfer_mode_str[highbit];
1da177e4 587 return "<n/a>";
1da177e4
LT
588}
589
4c360c81
TH
590static const char *sata_spd_string(unsigned int spd)
591{
592 static const char * const spd_str[] = {
593 "1.5 Gbps",
594 "3.0 Gbps",
595 };
596
597 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
598 return "<unknown>";
599 return spd_str[spd - 1];
600}
601
3373efd8 602void ata_dev_disable(struct ata_device *dev)
0b8efb0a 603{
09d7f9b0
TH
604 if (ata_dev_enabled(dev)) {
605 if (ata_msg_drv(dev->ap))
606 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
607 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
608 ATA_DNXFER_QUIET);
0b8efb0a
TH
609 dev->class++;
610 }
611}
612
1da177e4 613/**
0d5ff566 614 * ata_devchk - PATA device presence detection
1da177e4
LT
615 * @ap: ATA channel to examine
616 * @device: Device to examine (starting at zero)
617 *
618 * This technique was originally described in
619 * Hale Landis's ATADRVR (www.ata-atapi.com), and
620 * later found its way into the ATA/ATAPI spec.
621 *
622 * Write a pattern to the ATA shadow registers,
623 * and if a device is present, it will respond by
624 * correctly storing and echoing back the
625 * ATA shadow register contents.
626 *
627 * LOCKING:
628 * caller.
629 */
630
0d5ff566 631static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
632{
633 struct ata_ioports *ioaddr = &ap->ioaddr;
634 u8 nsect, lbal;
635
636 ap->ops->dev_select(ap, device);
637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 iowrite8(0xaa, ioaddr->nsect_addr);
642 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 643
0d5ff566
TH
644 iowrite8(0x55, ioaddr->nsect_addr);
645 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 646
0d5ff566
TH
647 nsect = ioread8(ioaddr->nsect_addr);
648 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
649
650 if ((nsect == 0x55) && (lbal == 0xaa))
651 return 1; /* we found a device */
652
653 return 0; /* nothing found */
654}
655
1da177e4
LT
656/**
657 * ata_dev_classify - determine device type based on ATA-spec signature
658 * @tf: ATA taskfile register set for device to be identified
659 *
660 * Determine from taskfile register contents whether a device is
661 * ATA or ATAPI, as per "Signature and persistence" section
662 * of ATA/PI spec (volume 1, sect 5.14).
663 *
664 * LOCKING:
665 * None.
666 *
667 * RETURNS:
668 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
669 * the event of failure.
670 */
671
057ace5e 672unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
673{
674 /* Apple's open source Darwin code hints that some devices only
675 * put a proper signature into the LBA mid/high registers,
676 * So, we only check those. It's sufficient for uniqueness.
677 */
678
679 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
680 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
681 DPRINTK("found ATA device by sig\n");
682 return ATA_DEV_ATA;
683 }
684
685 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
686 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
687 DPRINTK("found ATAPI device by sig\n");
688 return ATA_DEV_ATAPI;
689 }
690
691 DPRINTK("unknown device\n");
692 return ATA_DEV_UNKNOWN;
693}
694
695/**
696 * ata_dev_try_classify - Parse returned ATA device signature
697 * @ap: ATA channel to examine
698 * @device: Device to examine (starting at zero)
b4dc7623 699 * @r_err: Value of error register on completion
1da177e4
LT
700 *
701 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
702 * an ATA/ATAPI-defined set of values is placed in the ATA
703 * shadow registers, indicating the results of device detection
704 * and diagnostics.
705 *
706 * Select the ATA device, and read the values from the ATA shadow
707 * registers. Then parse according to the Error register value,
708 * and the spec-defined values examined by ata_dev_classify().
709 *
710 * LOCKING:
711 * caller.
b4dc7623
TH
712 *
713 * RETURNS:
714 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
715 */
716
a619f981 717unsigned int
b4dc7623 718ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 719{
1da177e4
LT
720 struct ata_taskfile tf;
721 unsigned int class;
722 u8 err;
723
724 ap->ops->dev_select(ap, device);
725
726 memset(&tf, 0, sizeof(tf));
727
1da177e4 728 ap->ops->tf_read(ap, &tf);
0169e284 729 err = tf.feature;
b4dc7623
TH
730 if (r_err)
731 *r_err = err;
1da177e4 732
93590859
AC
733 /* see if device passed diags: if master then continue and warn later */
734 if (err == 0 && device == 0)
735 /* diagnostic fail : do nothing _YET_ */
736 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
737 else if (err == 1)
1da177e4
LT
738 /* do nothing */ ;
739 else if ((device == 0) && (err == 0x81))
740 /* do nothing */ ;
741 else
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743
b4dc7623 744 /* determine if device is ATA or ATAPI */
1da177e4 745 class = ata_dev_classify(&tf);
b4dc7623 746
1da177e4 747 if (class == ATA_DEV_UNKNOWN)
b4dc7623 748 return ATA_DEV_NONE;
1da177e4 749 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
750 return ATA_DEV_NONE;
751 return class;
1da177e4
LT
752}
753
754/**
6a62a04d 755 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
756 * @id: IDENTIFY DEVICE results we will examine
757 * @s: string into which data is output
758 * @ofs: offset into identify device page
759 * @len: length of string to return. must be an even number.
760 *
761 * The strings in the IDENTIFY DEVICE page are broken up into
762 * 16-bit chunks. Run through the string, and output each
763 * 8-bit chunk linearly, regardless of platform.
764 *
765 * LOCKING:
766 * caller.
767 */
768
6a62a04d
TH
769void ata_id_string(const u16 *id, unsigned char *s,
770 unsigned int ofs, unsigned int len)
1da177e4
LT
771{
772 unsigned int c;
773
774 while (len > 0) {
775 c = id[ofs] >> 8;
776 *s = c;
777 s++;
778
779 c = id[ofs] & 0xff;
780 *s = c;
781 s++;
782
783 ofs++;
784 len -= 2;
785 }
786}
787
0e949ff3 788/**
6a62a04d 789 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
790 * @id: IDENTIFY DEVICE results we will examine
791 * @s: string into which data is output
792 * @ofs: offset into identify device page
793 * @len: length of string to return. must be an odd number.
794 *
6a62a04d 795 * This function is identical to ata_id_string except that it
0e949ff3
TH
796 * trims trailing spaces and terminates the resulting string with
797 * null. @len must be actual maximum length (even number) + 1.
798 *
799 * LOCKING:
800 * caller.
801 */
6a62a04d
TH
802void ata_id_c_string(const u16 *id, unsigned char *s,
803 unsigned int ofs, unsigned int len)
0e949ff3
TH
804{
805 unsigned char *p;
806
807 WARN_ON(!(len & 1));
808
6a62a04d 809 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
810
811 p = s + strnlen(s, len - 1);
812 while (p > s && p[-1] == ' ')
813 p--;
814 *p = '\0';
815}
0baab86b 816
1e999736
AC
817static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
818{
819 u64 sectors = 0;
820
821 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
822 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
823 sectors |= (tf->hob_lbal & 0xff) << 24;
824 sectors |= (tf->lbah & 0xff) << 16;
825 sectors |= (tf->lbam & 0xff) << 8;
826 sectors |= (tf->lbal & 0xff);
827
828 return ++sectors;
829}
830
831static u64 ata_tf_to_lba(struct ata_taskfile *tf)
832{
833 u64 sectors = 0;
834
835 sectors |= (tf->device & 0x0f) << 24;
836 sectors |= (tf->lbah & 0xff) << 16;
837 sectors |= (tf->lbam & 0xff) << 8;
838 sectors |= (tf->lbal & 0xff);
839
840 return ++sectors;
841}
842
843/**
844 * ata_read_native_max_address_ext - LBA48 native max query
845 * @dev: Device to query
846 *
847 * Perform an LBA48 size query upon the device in question. Return the
848 * actual LBA48 size or zero if the command fails.
849 */
850
851static u64 ata_read_native_max_address_ext(struct ata_device *dev)
852{
853 unsigned int err;
854 struct ata_taskfile tf;
855
856 ata_tf_init(dev, &tf);
857
858 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
859 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
860 tf.protocol |= ATA_PROT_NODATA;
861 tf.device |= 0x40;
862
863 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
864 if (err)
865 return 0;
866
867 return ata_tf_to_lba48(&tf);
868}
869
870/**
871 * ata_read_native_max_address - LBA28 native max query
872 * @dev: Device to query
873 *
874 * Performa an LBA28 size query upon the device in question. Return the
875 * actual LBA28 size or zero if the command fails.
876 */
877
878static u64 ata_read_native_max_address(struct ata_device *dev)
879{
880 unsigned int err;
881 struct ata_taskfile tf;
882
883 ata_tf_init(dev, &tf);
884
885 tf.command = ATA_CMD_READ_NATIVE_MAX;
886 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
887 tf.protocol |= ATA_PROT_NODATA;
888 tf.device |= 0x40;
889
890 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
891 if (err)
892 return 0;
893
894 return ata_tf_to_lba(&tf);
895}
896
897/**
898 * ata_set_native_max_address_ext - LBA48 native max set
899 * @dev: Device to query
6b38d1d1 900 * @new_sectors: new max sectors value to set for the device
1e999736
AC
901 *
902 * Perform an LBA48 size set max upon the device in question. Return the
903 * actual LBA48 size or zero if the command fails.
904 */
905
906static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
907{
908 unsigned int err;
909 struct ata_taskfile tf;
910
911 new_sectors--;
912
913 ata_tf_init(dev, &tf);
914
915 tf.command = ATA_CMD_SET_MAX_EXT;
916 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
917 tf.protocol |= ATA_PROT_NODATA;
918 tf.device |= 0x40;
919
920 tf.lbal = (new_sectors >> 0) & 0xff;
921 tf.lbam = (new_sectors >> 8) & 0xff;
922 tf.lbah = (new_sectors >> 16) & 0xff;
923
924 tf.hob_lbal = (new_sectors >> 24) & 0xff;
925 tf.hob_lbam = (new_sectors >> 32) & 0xff;
926 tf.hob_lbah = (new_sectors >> 40) & 0xff;
927
928 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
929 if (err)
930 return 0;
931
932 return ata_tf_to_lba48(&tf);
933}
934
935/**
936 * ata_set_native_max_address - LBA28 native max set
937 * @dev: Device to query
6b38d1d1 938 * @new_sectors: new max sectors value to set for the device
1e999736
AC
939 *
940 * Perform an LBA28 size set max upon the device in question. Return the
941 * actual LBA28 size or zero if the command fails.
942 */
943
944static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
945{
946 unsigned int err;
947 struct ata_taskfile tf;
948
949 new_sectors--;
950
951 ata_tf_init(dev, &tf);
952
953 tf.command = ATA_CMD_SET_MAX;
954 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
955 tf.protocol |= ATA_PROT_NODATA;
956
957 tf.lbal = (new_sectors >> 0) & 0xff;
958 tf.lbam = (new_sectors >> 8) & 0xff;
959 tf.lbah = (new_sectors >> 16) & 0xff;
960 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
961
962 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
963 if (err)
964 return 0;
965
966 return ata_tf_to_lba(&tf);
967}
968
969/**
970 * ata_hpa_resize - Resize a device with an HPA set
971 * @dev: Device to resize
972 *
973 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
974 * it if required to the full size of the media. The caller must check
975 * the drive has the HPA feature set enabled.
976 */
977
978static u64 ata_hpa_resize(struct ata_device *dev)
979{
980 u64 sectors = dev->n_sectors;
981 u64 hpa_sectors;
a617c09f 982
1e999736
AC
983 if (ata_id_has_lba48(dev->id))
984 hpa_sectors = ata_read_native_max_address_ext(dev);
985 else
986 hpa_sectors = ata_read_native_max_address(dev);
987
1e999736
AC
988 if (hpa_sectors > sectors) {
989 ata_dev_printk(dev, KERN_INFO,
990 "Host Protected Area detected:\n"
991 "\tcurrent size: %lld sectors\n"
992 "\tnative size: %lld sectors\n",
bd1d5ec6 993 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
994
995 if (ata_ignore_hpa) {
996 if (ata_id_has_lba48(dev->id))
997 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
998 else
bd1d5ec6
AM
999 hpa_sectors = ata_set_native_max_address(dev,
1000 hpa_sectors);
1e999736
AC
1001
1002 if (hpa_sectors) {
bd1d5ec6
AM
1003 ata_dev_printk(dev, KERN_INFO, "native size "
1004 "increased to %lld sectors\n",
1005 (long long)hpa_sectors);
1e999736
AC
1006 return hpa_sectors;
1007 }
1008 }
37301a55
TH
1009 } else if (hpa_sectors < sectors)
1010 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1011 "is smaller than sectors (%lld)\n", __FUNCTION__,
1012 (long long)hpa_sectors, (long long)sectors);
1013
1e999736
AC
1014 return sectors;
1015}
1016
2940740b
TH
1017static u64 ata_id_n_sectors(const u16 *id)
1018{
1019 if (ata_id_has_lba(id)) {
1020 if (ata_id_has_lba48(id))
1021 return ata_id_u64(id, 100);
1022 else
1023 return ata_id_u32(id, 60);
1024 } else {
1025 if (ata_id_current_chs_valid(id))
1026 return ata_id_u32(id, 57);
1027 else
1028 return id[1] * id[3] * id[6];
1029 }
1030}
1031
10305f0f
A
1032/**
1033 * ata_id_to_dma_mode - Identify DMA mode from id block
1034 * @dev: device to identify
cc261267 1035 * @unknown: mode to assume if we cannot tell
10305f0f
A
1036 *
1037 * Set up the timing values for the device based upon the identify
1038 * reported values for the DMA mode. This function is used by drivers
1039 * which rely upon firmware configured modes, but wish to report the
1040 * mode correctly when possible.
1041 *
1042 * In addition we emit similarly formatted messages to the default
1043 * ata_dev_set_mode handler, in order to provide consistency of
1044 * presentation.
1045 */
1046
1047void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1048{
1049 unsigned int mask;
1050 u8 mode;
1051
1052 /* Pack the DMA modes */
1053 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1054 if (dev->id[53] & 0x04)
1055 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1056
1057 /* Select the mode in use */
1058 mode = ata_xfer_mask2mode(mask);
1059
1060 if (mode != 0) {
1061 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1062 ata_mode_string(mask));
1063 } else {
1064 /* SWDMA perhaps ? */
1065 mode = unknown;
1066 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1067 }
1068
1069 /* Configure the device reporting */
1070 dev->xfer_mode = mode;
1071 dev->xfer_shift = ata_xfer_mode2shift(mode);
1072}
1073
0baab86b
EF
1074/**
1075 * ata_noop_dev_select - Select device 0/1 on ATA bus
1076 * @ap: ATA channel to manipulate
1077 * @device: ATA device (numbered from zero) to select
1078 *
1079 * This function performs no actual function.
1080 *
1081 * May be used as the dev_select() entry in ata_port_operations.
1082 *
1083 * LOCKING:
1084 * caller.
1085 */
1da177e4
LT
1086void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1087{
1088}
1089
0baab86b 1090
1da177e4
LT
1091/**
1092 * ata_std_dev_select - Select device 0/1 on ATA bus
1093 * @ap: ATA channel to manipulate
1094 * @device: ATA device (numbered from zero) to select
1095 *
1096 * Use the method defined in the ATA specification to
1097 * make either device 0, or device 1, active on the
0baab86b
EF
1098 * ATA channel. Works with both PIO and MMIO.
1099 *
1100 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1101 *
1102 * LOCKING:
1103 * caller.
1104 */
1105
1106void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1107{
1108 u8 tmp;
1109
1110 if (device == 0)
1111 tmp = ATA_DEVICE_OBS;
1112 else
1113 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1114
0d5ff566 1115 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1116 ata_pause(ap); /* needed; also flushes, for mmio */
1117}
1118
1119/**
1120 * ata_dev_select - Select device 0/1 on ATA bus
1121 * @ap: ATA channel to manipulate
1122 * @device: ATA device (numbered from zero) to select
1123 * @wait: non-zero to wait for Status register BSY bit to clear
1124 * @can_sleep: non-zero if context allows sleeping
1125 *
1126 * Use the method defined in the ATA specification to
1127 * make either device 0, or device 1, active on the
1128 * ATA channel.
1129 *
1130 * This is a high-level version of ata_std_dev_select(),
1131 * which additionally provides the services of inserting
1132 * the proper pauses and status polling, where needed.
1133 *
1134 * LOCKING:
1135 * caller.
1136 */
1137
1138void ata_dev_select(struct ata_port *ap, unsigned int device,
1139 unsigned int wait, unsigned int can_sleep)
1140{
88574551 1141 if (ata_msg_probe(ap))
44877b4e
TH
1142 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1143 "device %u, wait %u\n", device, wait);
1da177e4
LT
1144
1145 if (wait)
1146 ata_wait_idle(ap);
1147
1148 ap->ops->dev_select(ap, device);
1149
1150 if (wait) {
1151 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1152 msleep(150);
1153 ata_wait_idle(ap);
1154 }
1155}
1156
1157/**
1158 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1159 * @id: IDENTIFY DEVICE page to dump
1da177e4 1160 *
0bd3300a
TH
1161 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1162 * page.
1da177e4
LT
1163 *
1164 * LOCKING:
1165 * caller.
1166 */
1167
0bd3300a 1168static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1169{
1170 DPRINTK("49==0x%04x "
1171 "53==0x%04x "
1172 "63==0x%04x "
1173 "64==0x%04x "
1174 "75==0x%04x \n",
0bd3300a
TH
1175 id[49],
1176 id[53],
1177 id[63],
1178 id[64],
1179 id[75]);
1da177e4
LT
1180 DPRINTK("80==0x%04x "
1181 "81==0x%04x "
1182 "82==0x%04x "
1183 "83==0x%04x "
1184 "84==0x%04x \n",
0bd3300a
TH
1185 id[80],
1186 id[81],
1187 id[82],
1188 id[83],
1189 id[84]);
1da177e4
LT
1190 DPRINTK("88==0x%04x "
1191 "93==0x%04x\n",
0bd3300a
TH
1192 id[88],
1193 id[93]);
1da177e4
LT
1194}
1195
cb95d562
TH
1196/**
1197 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1198 * @id: IDENTIFY data to compute xfer mask from
1199 *
1200 * Compute the xfermask for this device. This is not as trivial
1201 * as it seems if we must consider early devices correctly.
1202 *
1203 * FIXME: pre IDE drive timing (do we care ?).
1204 *
1205 * LOCKING:
1206 * None.
1207 *
1208 * RETURNS:
1209 * Computed xfermask
1210 */
1211static unsigned int ata_id_xfermask(const u16 *id)
1212{
1213 unsigned int pio_mask, mwdma_mask, udma_mask;
1214
1215 /* Usual case. Word 53 indicates word 64 is valid */
1216 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1217 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1218 pio_mask <<= 3;
1219 pio_mask |= 0x7;
1220 } else {
1221 /* If word 64 isn't valid then Word 51 high byte holds
1222 * the PIO timing number for the maximum. Turn it into
1223 * a mask.
1224 */
7a0f1c8a 1225 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1226 if (mode < 5) /* Valid PIO range */
1227 pio_mask = (2 << mode) - 1;
1228 else
1229 pio_mask = 1;
cb95d562
TH
1230
1231 /* But wait.. there's more. Design your standards by
1232 * committee and you too can get a free iordy field to
1233 * process. However its the speeds not the modes that
1234 * are supported... Note drivers using the timing API
1235 * will get this right anyway
1236 */
1237 }
1238
1239 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1240
b352e57d
AC
1241 if (ata_id_is_cfa(id)) {
1242 /*
1243 * Process compact flash extended modes
1244 */
1245 int pio = id[163] & 0x7;
1246 int dma = (id[163] >> 3) & 7;
1247
1248 if (pio)
1249 pio_mask |= (1 << 5);
1250 if (pio > 1)
1251 pio_mask |= (1 << 6);
1252 if (dma)
1253 mwdma_mask |= (1 << 3);
1254 if (dma > 1)
1255 mwdma_mask |= (1 << 4);
1256 }
1257
fb21f0d0
TH
1258 udma_mask = 0;
1259 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1260 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1261
1262 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1263}
1264
86e45b6b
TH
1265/**
1266 * ata_port_queue_task - Queue port_task
1267 * @ap: The ata_port to queue port_task for
e2a7f77a 1268 * @fn: workqueue function to be scheduled
65f27f38 1269 * @data: data for @fn to use
e2a7f77a 1270 * @delay: delay time for workqueue function
86e45b6b
TH
1271 *
1272 * Schedule @fn(@data) for execution after @delay jiffies using
1273 * port_task. There is one port_task per port and it's the
1274 * user(low level driver)'s responsibility to make sure that only
1275 * one task is active at any given time.
1276 *
1277 * libata core layer takes care of synchronization between
1278 * port_task and EH. ata_port_queue_task() may be ignored for EH
1279 * synchronization.
1280 *
1281 * LOCKING:
1282 * Inherited from caller.
1283 */
65f27f38 1284void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1285 unsigned long delay)
1286{
65f27f38
DH
1287 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1288 ap->port_task_data = data;
86e45b6b 1289
45a66c1c
ON
1290 /* may fail if ata_port_flush_task() in progress */
1291 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1292}
1293
1294/**
1295 * ata_port_flush_task - Flush port_task
1296 * @ap: The ata_port to flush port_task for
1297 *
1298 * After this function completes, port_task is guranteed not to
1299 * be running or scheduled.
1300 *
1301 * LOCKING:
1302 * Kernel thread context (may sleep)
1303 */
1304void ata_port_flush_task(struct ata_port *ap)
1305{
86e45b6b
TH
1306 DPRINTK("ENTER\n");
1307
45a66c1c 1308 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1309
0dd4b21f
BP
1310 if (ata_msg_ctl(ap))
1311 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1312}
1313
7102d230 1314static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1315{
77853bf2 1316 struct completion *waiting = qc->private_data;
a2a7a662 1317
a2a7a662 1318 complete(waiting);
a2a7a662
TH
1319}
1320
1321/**
2432697b 1322 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1323 * @dev: Device to which the command is sent
1324 * @tf: Taskfile registers for the command and the result
d69cf37d 1325 * @cdb: CDB for packet command
a2a7a662 1326 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1327 * @sg: sg list for the data buffer of the command
1328 * @n_elem: Number of sg entries
a2a7a662
TH
1329 *
1330 * Executes libata internal command with timeout. @tf contains
1331 * command on entry and result on return. Timeout and error
1332 * conditions are reported via return value. No recovery action
1333 * is taken after a command times out. It's caller's duty to
1334 * clean up after timeout.
1335 *
1336 * LOCKING:
1337 * None. Should be called with kernel context, might sleep.
551e8889
TH
1338 *
1339 * RETURNS:
1340 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1341 */
2432697b
TH
1342unsigned ata_exec_internal_sg(struct ata_device *dev,
1343 struct ata_taskfile *tf, const u8 *cdb,
1344 int dma_dir, struct scatterlist *sg,
1345 unsigned int n_elem)
a2a7a662 1346{
3373efd8 1347 struct ata_port *ap = dev->ap;
a2a7a662
TH
1348 u8 command = tf->command;
1349 struct ata_queued_cmd *qc;
2ab7db1f 1350 unsigned int tag, preempted_tag;
dedaf2b0 1351 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1352 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1353 unsigned long flags;
77853bf2 1354 unsigned int err_mask;
d95a717f 1355 int rc;
a2a7a662 1356
ba6a1308 1357 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1358
e3180499 1359 /* no internal command while frozen */
b51e9e5d 1360 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1361 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1362 return AC_ERR_SYSTEM;
1363 }
1364
2ab7db1f 1365 /* initialize internal qc */
a2a7a662 1366
2ab7db1f
TH
1367 /* XXX: Tag 0 is used for drivers with legacy EH as some
1368 * drivers choke if any other tag is given. This breaks
1369 * ata_tag_internal() test for those drivers. Don't use new
1370 * EH stuff without converting to it.
1371 */
1372 if (ap->ops->error_handler)
1373 tag = ATA_TAG_INTERNAL;
1374 else
1375 tag = 0;
1376
6cec4a39 1377 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1378 BUG();
f69499f4 1379 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1380
1381 qc->tag = tag;
1382 qc->scsicmd = NULL;
1383 qc->ap = ap;
1384 qc->dev = dev;
1385 ata_qc_reinit(qc);
1386
1387 preempted_tag = ap->active_tag;
dedaf2b0
TH
1388 preempted_sactive = ap->sactive;
1389 preempted_qc_active = ap->qc_active;
2ab7db1f 1390 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1391 ap->sactive = 0;
1392 ap->qc_active = 0;
2ab7db1f
TH
1393
1394 /* prepare & issue qc */
a2a7a662 1395 qc->tf = *tf;
d69cf37d
TH
1396 if (cdb)
1397 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1398 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1399 qc->dma_dir = dma_dir;
1400 if (dma_dir != DMA_NONE) {
2432697b
TH
1401 unsigned int i, buflen = 0;
1402
1403 for (i = 0; i < n_elem; i++)
1404 buflen += sg[i].length;
1405
1406 ata_sg_init(qc, sg, n_elem);
49c80429 1407 qc->nbytes = buflen;
a2a7a662
TH
1408 }
1409
77853bf2 1410 qc->private_data = &wait;
a2a7a662
TH
1411 qc->complete_fn = ata_qc_complete_internal;
1412
8e0e694a 1413 ata_qc_issue(qc);
a2a7a662 1414
ba6a1308 1415 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1416
a8601e5f 1417 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1418
1419 ata_port_flush_task(ap);
41ade50c 1420
d95a717f 1421 if (!rc) {
ba6a1308 1422 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1423
1424 /* We're racing with irq here. If we lose, the
1425 * following test prevents us from completing the qc
d95a717f
TH
1426 * twice. If we win, the port is frozen and will be
1427 * cleaned up by ->post_internal_cmd().
a2a7a662 1428 */
77853bf2 1429 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1430 qc->err_mask |= AC_ERR_TIMEOUT;
1431
1432 if (ap->ops->error_handler)
1433 ata_port_freeze(ap);
1434 else
1435 ata_qc_complete(qc);
f15a1daf 1436
0dd4b21f
BP
1437 if (ata_msg_warn(ap))
1438 ata_dev_printk(dev, KERN_WARNING,
88574551 1439 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1440 }
1441
ba6a1308 1442 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1443 }
1444
d95a717f
TH
1445 /* do post_internal_cmd */
1446 if (ap->ops->post_internal_cmd)
1447 ap->ops->post_internal_cmd(qc);
1448
a51d644a
TH
1449 /* perform minimal error analysis */
1450 if (qc->flags & ATA_QCFLAG_FAILED) {
1451 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1452 qc->err_mask |= AC_ERR_DEV;
1453
1454 if (!qc->err_mask)
1455 qc->err_mask |= AC_ERR_OTHER;
1456
1457 if (qc->err_mask & ~AC_ERR_OTHER)
1458 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1459 }
1460
15869303 1461 /* finish up */
ba6a1308 1462 spin_lock_irqsave(ap->lock, flags);
15869303 1463
e61e0672 1464 *tf = qc->result_tf;
77853bf2
TH
1465 err_mask = qc->err_mask;
1466
1467 ata_qc_free(qc);
2ab7db1f 1468 ap->active_tag = preempted_tag;
dedaf2b0
TH
1469 ap->sactive = preempted_sactive;
1470 ap->qc_active = preempted_qc_active;
77853bf2 1471
1f7dd3e9
TH
1472 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1473 * Until those drivers are fixed, we detect the condition
1474 * here, fail the command with AC_ERR_SYSTEM and reenable the
1475 * port.
1476 *
1477 * Note that this doesn't change any behavior as internal
1478 * command failure results in disabling the device in the
1479 * higher layer for LLDDs without new reset/EH callbacks.
1480 *
1481 * Kill the following code as soon as those drivers are fixed.
1482 */
198e0fed 1483 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1484 err_mask |= AC_ERR_SYSTEM;
1485 ata_port_probe(ap);
1486 }
1487
ba6a1308 1488 spin_unlock_irqrestore(ap->lock, flags);
15869303 1489
77853bf2 1490 return err_mask;
a2a7a662
TH
1491}
1492
2432697b 1493/**
33480a0e 1494 * ata_exec_internal - execute libata internal command
2432697b
TH
1495 * @dev: Device to which the command is sent
1496 * @tf: Taskfile registers for the command and the result
1497 * @cdb: CDB for packet command
1498 * @dma_dir: Data tranfer direction of the command
1499 * @buf: Data buffer of the command
1500 * @buflen: Length of data buffer
1501 *
1502 * Wrapper around ata_exec_internal_sg() which takes simple
1503 * buffer instead of sg list.
1504 *
1505 * LOCKING:
1506 * None. Should be called with kernel context, might sleep.
1507 *
1508 * RETURNS:
1509 * Zero on success, AC_ERR_* mask on failure
1510 */
1511unsigned ata_exec_internal(struct ata_device *dev,
1512 struct ata_taskfile *tf, const u8 *cdb,
1513 int dma_dir, void *buf, unsigned int buflen)
1514{
33480a0e
TH
1515 struct scatterlist *psg = NULL, sg;
1516 unsigned int n_elem = 0;
2432697b 1517
33480a0e
TH
1518 if (dma_dir != DMA_NONE) {
1519 WARN_ON(!buf);
1520 sg_init_one(&sg, buf, buflen);
1521 psg = &sg;
1522 n_elem++;
1523 }
2432697b 1524
33480a0e 1525 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1526}
1527
977e6b9f
TH
1528/**
1529 * ata_do_simple_cmd - execute simple internal command
1530 * @dev: Device to which the command is sent
1531 * @cmd: Opcode to execute
1532 *
1533 * Execute a 'simple' command, that only consists of the opcode
1534 * 'cmd' itself, without filling any other registers
1535 *
1536 * LOCKING:
1537 * Kernel thread context (may sleep).
1538 *
1539 * RETURNS:
1540 * Zero on success, AC_ERR_* mask on failure
e58eb583 1541 */
77b08fb5 1542unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1543{
1544 struct ata_taskfile tf;
e58eb583
TH
1545
1546 ata_tf_init(dev, &tf);
1547
1548 tf.command = cmd;
1549 tf.flags |= ATA_TFLAG_DEVICE;
1550 tf.protocol = ATA_PROT_NODATA;
1551
977e6b9f 1552 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1553}
1554
1bc4ccff
AC
1555/**
1556 * ata_pio_need_iordy - check if iordy needed
1557 * @adev: ATA device
1558 *
1559 * Check if the current speed of the device requires IORDY. Used
1560 * by various controllers for chip configuration.
1561 */
a617c09f 1562
1bc4ccff
AC
1563unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1564{
432729f0
AC
1565 /* Controller doesn't support IORDY. Probably a pointless check
1566 as the caller should know this */
1567 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1568 return 0;
432729f0
AC
1569 /* PIO3 and higher it is mandatory */
1570 if (adev->pio_mode > XFER_PIO_2)
1571 return 1;
1572 /* We turn it on when possible */
1573 if (ata_id_has_iordy(adev->id))
1bc4ccff 1574 return 1;
432729f0
AC
1575 return 0;
1576}
2e9edbf8 1577
432729f0
AC
1578/**
1579 * ata_pio_mask_no_iordy - Return the non IORDY mask
1580 * @adev: ATA device
1581 *
1582 * Compute the highest mode possible if we are not using iordy. Return
1583 * -1 if no iordy mode is available.
1584 */
a617c09f 1585
432729f0
AC
1586static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1587{
1bc4ccff 1588 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1589 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1590 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1591 /* Is the speed faster than the drive allows non IORDY ? */
1592 if (pio) {
1593 /* This is cycle times not frequency - watch the logic! */
1594 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1595 return 3 << ATA_SHIFT_PIO;
1596 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1597 }
1598 }
432729f0 1599 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1600}
1601
1da177e4 1602/**
49016aca 1603 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1604 * @dev: target device
1605 * @p_class: pointer to class of the target device (may be changed)
bff04647 1606 * @flags: ATA_READID_* flags
fe635c7e 1607 * @id: buffer to read IDENTIFY data into
1da177e4 1608 *
49016aca
TH
1609 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1610 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1611 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1612 * for pre-ATA4 drives.
1da177e4
LT
1613 *
1614 * LOCKING:
49016aca
TH
1615 * Kernel thread context (may sleep)
1616 *
1617 * RETURNS:
1618 * 0 on success, -errno otherwise.
1da177e4 1619 */
a9beec95 1620int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1621 unsigned int flags, u16 *id)
1da177e4 1622{
3373efd8 1623 struct ata_port *ap = dev->ap;
49016aca 1624 unsigned int class = *p_class;
a0123703 1625 struct ata_taskfile tf;
49016aca
TH
1626 unsigned int err_mask = 0;
1627 const char *reason;
54936f8b 1628 int may_fallback = 1, tried_spinup = 0;
49016aca 1629 int rc;
1da177e4 1630
0dd4b21f 1631 if (ata_msg_ctl(ap))
44877b4e 1632 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1633
49016aca 1634 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1635 retry:
3373efd8 1636 ata_tf_init(dev, &tf);
a0123703 1637
49016aca
TH
1638 switch (class) {
1639 case ATA_DEV_ATA:
a0123703 1640 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1641 break;
1642 case ATA_DEV_ATAPI:
a0123703 1643 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1644 break;
1645 default:
1646 rc = -ENODEV;
1647 reason = "unsupported class";
1648 goto err_out;
1da177e4
LT
1649 }
1650
a0123703 1651 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1652
1653 /* Some devices choke if TF registers contain garbage. Make
1654 * sure those are properly initialized.
1655 */
1656 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1657
1658 /* Device presence detection is unreliable on some
1659 * controllers. Always poll IDENTIFY if available.
1660 */
1661 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1662
3373efd8 1663 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1664 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1665 if (err_mask) {
800b3996 1666 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1667 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1668 ap->print_id, dev->devno);
55a8e2c8
TH
1669 return -ENOENT;
1670 }
1671
54936f8b
TH
1672 /* Device or controller might have reported the wrong
1673 * device class. Give a shot at the other IDENTIFY if
1674 * the current one is aborted by the device.
1675 */
1676 if (may_fallback &&
1677 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1678 may_fallback = 0;
1679
1680 if (class == ATA_DEV_ATA)
1681 class = ATA_DEV_ATAPI;
1682 else
1683 class = ATA_DEV_ATA;
1684 goto retry;
1685 }
1686
49016aca
TH
1687 rc = -EIO;
1688 reason = "I/O error";
1da177e4
LT
1689 goto err_out;
1690 }
1691
54936f8b
TH
1692 /* Falling back doesn't make sense if ID data was read
1693 * successfully at least once.
1694 */
1695 may_fallback = 0;
1696
49016aca 1697 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1698
49016aca 1699 /* sanity check */
a4f5749b 1700 rc = -EINVAL;
6070068b 1701 reason = "device reports invalid type";
a4f5749b
TH
1702
1703 if (class == ATA_DEV_ATA) {
1704 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1705 goto err_out;
1706 } else {
1707 if (ata_id_is_ata(id))
1708 goto err_out;
49016aca
TH
1709 }
1710
169439c2
ML
1711 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1712 tried_spinup = 1;
1713 /*
1714 * Drive powered-up in standby mode, and requires a specific
1715 * SET_FEATURES spin-up subcommand before it will accept
1716 * anything other than the original IDENTIFY command.
1717 */
1718 ata_tf_init(dev, &tf);
1719 tf.command = ATA_CMD_SET_FEATURES;
1720 tf.feature = SETFEATURES_SPINUP;
1721 tf.protocol = ATA_PROT_NODATA;
1722 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1723 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1724 if (err_mask) {
1725 rc = -EIO;
1726 reason = "SPINUP failed";
1727 goto err_out;
1728 }
1729 /*
1730 * If the drive initially returned incomplete IDENTIFY info,
1731 * we now must reissue the IDENTIFY command.
1732 */
1733 if (id[2] == 0x37c8)
1734 goto retry;
1735 }
1736
bff04647 1737 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1738 /*
1739 * The exact sequence expected by certain pre-ATA4 drives is:
1740 * SRST RESET
1741 * IDENTIFY
1742 * INITIALIZE DEVICE PARAMETERS
1743 * anything else..
1744 * Some drives were very specific about that exact sequence.
1745 */
1746 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1747 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1748 if (err_mask) {
1749 rc = -EIO;
1750 reason = "INIT_DEV_PARAMS failed";
1751 goto err_out;
1752 }
1753
1754 /* current CHS translation info (id[53-58]) might be
1755 * changed. reread the identify device info.
1756 */
bff04647 1757 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1758 goto retry;
1759 }
1760 }
1761
1762 *p_class = class;
fe635c7e 1763
49016aca
TH
1764 return 0;
1765
1766 err_out:
88574551 1767 if (ata_msg_warn(ap))
0dd4b21f 1768 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1769 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1770 return rc;
1771}
1772
3373efd8 1773static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1774{
3373efd8 1775 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1776}
1777
a6e6ce8e
TH
1778static void ata_dev_config_ncq(struct ata_device *dev,
1779 char *desc, size_t desc_sz)
1780{
1781 struct ata_port *ap = dev->ap;
1782 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1783
1784 if (!ata_id_has_ncq(dev->id)) {
1785 desc[0] = '\0';
1786 return;
1787 }
75683fe7 1788 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1789 snprintf(desc, desc_sz, "NCQ (not used)");
1790 return;
1791 }
a6e6ce8e 1792 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1793 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1794 dev->flags |= ATA_DFLAG_NCQ;
1795 }
1796
1797 if (hdepth >= ddepth)
1798 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1799 else
1800 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1801}
1802
49016aca 1803/**
ffeae418 1804 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1805 * @dev: Target device to configure
1806 *
1807 * Configure @dev according to @dev->id. Generic and low-level
1808 * driver specific fixups are also applied.
49016aca
TH
1809 *
1810 * LOCKING:
ffeae418
TH
1811 * Kernel thread context (may sleep)
1812 *
1813 * RETURNS:
1814 * 0 on success, -errno otherwise
49016aca 1815 */
efdaedc4 1816int ata_dev_configure(struct ata_device *dev)
49016aca 1817{
3373efd8 1818 struct ata_port *ap = dev->ap;
6746544c
TH
1819 struct ata_eh_context *ehc = &ap->eh_context;
1820 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1821 const u16 *id = dev->id;
ff8854b2 1822 unsigned int xfer_mask;
b352e57d 1823 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1824 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1825 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1826 int rc;
49016aca 1827
0dd4b21f 1828 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1829 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1830 __FUNCTION__);
ffeae418 1831 return 0;
49016aca
TH
1832 }
1833
0dd4b21f 1834 if (ata_msg_probe(ap))
44877b4e 1835 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1836
75683fe7
TH
1837 /* set horkage */
1838 dev->horkage |= ata_dev_blacklisted(dev);
1839
6746544c
TH
1840 /* let ACPI work its magic */
1841 rc = ata_acpi_on_devcfg(dev);
1842 if (rc)
1843 return rc;
08573a86 1844
c39f5ebe 1845 /* print device capabilities */
0dd4b21f 1846 if (ata_msg_probe(ap))
88574551
TH
1847 ata_dev_printk(dev, KERN_DEBUG,
1848 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1849 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1850 __FUNCTION__,
f15a1daf
TH
1851 id[49], id[82], id[83], id[84],
1852 id[85], id[86], id[87], id[88]);
c39f5ebe 1853
208a9933 1854 /* initialize to-be-configured parameters */
ea1dd4e1 1855 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1856 dev->max_sectors = 0;
1857 dev->cdb_len = 0;
1858 dev->n_sectors = 0;
1859 dev->cylinders = 0;
1860 dev->heads = 0;
1861 dev->sectors = 0;
1862
1da177e4
LT
1863 /*
1864 * common ATA, ATAPI feature tests
1865 */
1866
ff8854b2 1867 /* find max transfer mode; for printk only */
1148c3a7 1868 xfer_mask = ata_id_xfermask(id);
1da177e4 1869
0dd4b21f
BP
1870 if (ata_msg_probe(ap))
1871 ata_dump_id(id);
1da177e4 1872
ef143d57
AL
1873 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1874 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1875 sizeof(fwrevbuf));
1876
1877 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1878 sizeof(modelbuf));
1879
1da177e4
LT
1880 /* ATA-specific feature tests */
1881 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1882 if (ata_id_is_cfa(id)) {
1883 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1884 ata_dev_printk(dev, KERN_WARNING,
1885 "supports DRM functions and may "
1886 "not be fully accessable.\n");
b352e57d
AC
1887 snprintf(revbuf, 7, "CFA");
1888 }
1889 else
1890 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1891
1148c3a7 1892 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1893
3f64f565
EM
1894 if (dev->id[59] & 0x100)
1895 dev->multi_count = dev->id[59] & 0xff;
1896
1148c3a7 1897 if (ata_id_has_lba(id)) {
4c2d721a 1898 const char *lba_desc;
a6e6ce8e 1899 char ncq_desc[20];
8bf62ece 1900
4c2d721a
TH
1901 lba_desc = "LBA";
1902 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1903 if (ata_id_has_lba48(id)) {
8bf62ece 1904 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1905 lba_desc = "LBA48";
6fc49adb
TH
1906
1907 if (dev->n_sectors >= (1UL << 28) &&
1908 ata_id_has_flush_ext(id))
1909 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1910 }
8bf62ece 1911
1e999736
AC
1912 if (ata_id_hpa_enabled(dev->id))
1913 dev->n_sectors = ata_hpa_resize(dev);
1914
a6e6ce8e
TH
1915 /* config NCQ */
1916 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1917
8bf62ece 1918 /* print device info to dmesg */
3f64f565
EM
1919 if (ata_msg_drv(ap) && print_info) {
1920 ata_dev_printk(dev, KERN_INFO,
1921 "%s: %s, %s, max %s\n",
1922 revbuf, modelbuf, fwrevbuf,
1923 ata_mode_string(xfer_mask));
1924 ata_dev_printk(dev, KERN_INFO,
1925 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1926 (unsigned long long)dev->n_sectors,
3f64f565
EM
1927 dev->multi_count, lba_desc, ncq_desc);
1928 }
ffeae418 1929 } else {
8bf62ece
AL
1930 /* CHS */
1931
1932 /* Default translation */
1148c3a7
TH
1933 dev->cylinders = id[1];
1934 dev->heads = id[3];
1935 dev->sectors = id[6];
8bf62ece 1936
1148c3a7 1937 if (ata_id_current_chs_valid(id)) {
8bf62ece 1938 /* Current CHS translation is valid. */
1148c3a7
TH
1939 dev->cylinders = id[54];
1940 dev->heads = id[55];
1941 dev->sectors = id[56];
8bf62ece
AL
1942 }
1943
1944 /* print device info to dmesg */
3f64f565 1945 if (ata_msg_drv(ap) && print_info) {
88574551 1946 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
a84471fe 1950 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1951 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1952 (unsigned long long)dev->n_sectors,
1953 dev->multi_count, dev->cylinders,
1954 dev->heads, dev->sectors);
1955 }
07f6f7d0
AL
1956 }
1957
6e7846e9 1958 dev->cdb_len = 16;
1da177e4
LT
1959 }
1960
1961 /* ATAPI-specific feature tests */
2c13b7ce 1962 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1963 char *cdb_intr_string = "";
1964
1148c3a7 1965 rc = atapi_cdb_len(id);
1da177e4 1966 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1967 if (ata_msg_warn(ap))
88574551
TH
1968 ata_dev_printk(dev, KERN_WARNING,
1969 "unsupported CDB len\n");
ffeae418 1970 rc = -EINVAL;
1da177e4
LT
1971 goto err_out_nosup;
1972 }
6e7846e9 1973 dev->cdb_len = (unsigned int) rc;
1da177e4 1974
08a556db 1975 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1976 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1977 cdb_intr_string = ", CDB intr";
1978 }
312f7da2 1979
1da177e4 1980 /* print device info to dmesg */
5afc8142 1981 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1982 ata_dev_printk(dev, KERN_INFO,
1983 "ATAPI: %s, %s, max %s%s\n",
1984 modelbuf, fwrevbuf,
12436c30
TH
1985 ata_mode_string(xfer_mask),
1986 cdb_intr_string);
1da177e4
LT
1987 }
1988
914ed354
TH
1989 /* determine max_sectors */
1990 dev->max_sectors = ATA_MAX_SECTORS;
1991 if (dev->flags & ATA_DFLAG_LBA48)
1992 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1993
93590859
AC
1994 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1995 /* Let the user know. We don't want to disallow opens for
1996 rescue purposes, or in case the vendor is just a blithering
1997 idiot */
1998 if (print_info) {
1999 ata_dev_printk(dev, KERN_WARNING,
2000"Drive reports diagnostics failure. This may indicate a drive\n");
2001 ata_dev_printk(dev, KERN_WARNING,
2002"fault or invalid emulation. Contact drive vendor for information.\n");
2003 }
2004 }
2005
4b2f3ede 2006 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2007 if (ata_dev_knobble(dev)) {
5afc8142 2008 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2009 ata_dev_printk(dev, KERN_INFO,
2010 "applying bridge limits\n");
5a529139 2011 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2012 dev->max_sectors = ATA_MAX_SECTORS;
2013 }
2014
75683fe7 2015 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2016 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2017 dev->max_sectors);
18d6e9d5 2018
4b2f3ede 2019 if (ap->ops->dev_config)
cd0d3bbc 2020 ap->ops->dev_config(dev);
4b2f3ede 2021
0dd4b21f
BP
2022 if (ata_msg_probe(ap))
2023 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2024 __FUNCTION__, ata_chk_status(ap));
ffeae418 2025 return 0;
1da177e4
LT
2026
2027err_out_nosup:
0dd4b21f 2028 if (ata_msg_probe(ap))
88574551
TH
2029 ata_dev_printk(dev, KERN_DEBUG,
2030 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2031 return rc;
1da177e4
LT
2032}
2033
be0d18df 2034/**
2e41e8e6 2035 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2036 * @ap: port
2037 *
2e41e8e6 2038 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2039 * detection.
2040 */
2041
2042int ata_cable_40wire(struct ata_port *ap)
2043{
2044 return ATA_CBL_PATA40;
2045}
2046
2047/**
2e41e8e6 2048 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2049 * @ap: port
2050 *
2e41e8e6 2051 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2052 * detection.
2053 */
2054
2055int ata_cable_80wire(struct ata_port *ap)
2056{
2057 return ATA_CBL_PATA80;
2058}
2059
2060/**
2061 * ata_cable_unknown - return unknown PATA cable.
2062 * @ap: port
2063 *
2064 * Helper method for drivers which have no PATA cable detection.
2065 */
2066
2067int ata_cable_unknown(struct ata_port *ap)
2068{
2069 return ATA_CBL_PATA_UNK;
2070}
2071
2072/**
2073 * ata_cable_sata - return SATA cable type
2074 * @ap: port
2075 *
2076 * Helper method for drivers which have SATA cables
2077 */
2078
2079int ata_cable_sata(struct ata_port *ap)
2080{
2081 return ATA_CBL_SATA;
2082}
2083
1da177e4
LT
2084/**
2085 * ata_bus_probe - Reset and probe ATA bus
2086 * @ap: Bus to probe
2087 *
0cba632b
JG
2088 * Master ATA bus probing function. Initiates a hardware-dependent
2089 * bus reset, then attempts to identify any devices found on
2090 * the bus.
2091 *
1da177e4 2092 * LOCKING:
0cba632b 2093 * PCI/etc. bus probe sem.
1da177e4
LT
2094 *
2095 * RETURNS:
96072e69 2096 * Zero on success, negative errno otherwise.
1da177e4
LT
2097 */
2098
80289167 2099int ata_bus_probe(struct ata_port *ap)
1da177e4 2100{
28ca5c57 2101 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2102 int tries[ATA_MAX_DEVICES];
4ae72a1e 2103 int i, rc;
e82cbdb9 2104 struct ata_device *dev;
1da177e4 2105
28ca5c57 2106 ata_port_probe(ap);
c19ba8af 2107
14d2bac1
TH
2108 for (i = 0; i < ATA_MAX_DEVICES; i++)
2109 tries[i] = ATA_PROBE_MAX_TRIES;
2110
2111 retry:
2044470c 2112 /* reset and determine device classes */
52783c5d 2113 ap->ops->phy_reset(ap);
2061a47a 2114
52783c5d
TH
2115 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2116 dev = &ap->device[i];
c19ba8af 2117
52783c5d
TH
2118 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2119 dev->class != ATA_DEV_UNKNOWN)
2120 classes[dev->devno] = dev->class;
2121 else
2122 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2123
52783c5d 2124 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2125 }
1da177e4 2126
52783c5d 2127 ata_port_probe(ap);
2044470c 2128
b6079ca4
AC
2129 /* after the reset the device state is PIO 0 and the controller
2130 state is undefined. Record the mode */
2131
2132 for (i = 0; i < ATA_MAX_DEVICES; i++)
2133 ap->device[i].pio_mode = XFER_PIO_0;
2134
f31f0cc2
JG
2135 /* read IDENTIFY page and configure devices. We have to do the identify
2136 specific sequence bass-ackwards so that PDIAG- is released by
2137 the slave device */
2138
2139 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2140 dev = &ap->device[i];
28ca5c57 2141
ec573755
TH
2142 if (tries[i])
2143 dev->class = classes[i];
ffeae418 2144
14d2bac1 2145 if (!ata_dev_enabled(dev))
ffeae418 2146 continue;
ffeae418 2147
bff04647
TH
2148 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2149 dev->id);
14d2bac1
TH
2150 if (rc)
2151 goto fail;
f31f0cc2
JG
2152 }
2153
be0d18df
AC
2154 /* Now ask for the cable type as PDIAG- should have been released */
2155 if (ap->ops->cable_detect)
2156 ap->cbl = ap->ops->cable_detect(ap);
2157
f31f0cc2
JG
2158 /* After the identify sequence we can now set up the devices. We do
2159 this in the normal order so that the user doesn't get confused */
2160
2161 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2162 dev = &ap->device[i];
2163 if (!ata_dev_enabled(dev))
2164 continue;
14d2bac1 2165
efdaedc4
TH
2166 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2167 rc = ata_dev_configure(dev);
2168 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2169 if (rc)
2170 goto fail;
1da177e4
LT
2171 }
2172
e82cbdb9 2173 /* configure transfer mode */
3adcebb2 2174 rc = ata_set_mode(ap, &dev);
4ae72a1e 2175 if (rc)
51713d35 2176 goto fail;
1da177e4 2177
e82cbdb9
TH
2178 for (i = 0; i < ATA_MAX_DEVICES; i++)
2179 if (ata_dev_enabled(&ap->device[i]))
2180 return 0;
1da177e4 2181
e82cbdb9
TH
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
1da177e4 2184 ap->ops->port_disable(ap);
96072e69 2185 return -ENODEV;
14d2bac1
TH
2186
2187 fail:
4ae72a1e
TH
2188 tries[dev->devno]--;
2189
14d2bac1
TH
2190 switch (rc) {
2191 case -EINVAL:
4ae72a1e 2192 /* eeek, something went very wrong, give up */
14d2bac1
TH
2193 tries[dev->devno] = 0;
2194 break;
4ae72a1e
TH
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2199 case -EIO:
4ae72a1e
TH
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
2204 sata_down_spd_limit(ap);
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
14d2bac1
TH
2207 }
2208
4ae72a1e 2209 if (!tries[dev->devno])
3373efd8 2210 ata_dev_disable(dev);
ec573755 2211
14d2bac1 2212 goto retry;
1da177e4
LT
2213}
2214
2215/**
0cba632b
JG
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
1da177e4 2218 *
0cba632b
JG
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
cca3974e 2222 * LOCKING: host lock, or some other form of
0cba632b 2223 * serialization.
1da177e4
LT
2224 */
2225
2226void ata_port_probe(struct ata_port *ap)
2227{
198e0fed 2228 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2229}
2230
3be680b7
TH
2231/**
2232 * sata_print_link_status - Print SATA link status
2233 * @ap: SATA port to printk link status about
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
43727fbc 2240void sata_print_link_status(struct ata_port *ap)
3be680b7 2241{
6d5f9732 2242 u32 sstatus, scontrol, tmp;
3be680b7 2243
81952c54 2244 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2245 return;
81952c54 2246 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2247
81952c54 2248 if (ata_port_online(ap)) {
3be680b7 2249 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2250 ata_port_printk(ap, KERN_INFO,
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2253 } else {
f15a1daf
TH
2254 ata_port_printk(ap, KERN_INFO,
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
3be680b7
TH
2257 }
2258}
2259
1da177e4 2260/**
780a87f7
JG
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
1da177e4 2263 *
780a87f7
JG
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
1da177e4
LT
2267 *
2268 * LOCKING:
0cba632b 2269 * PCI/etc. bus probe sem.
1da177e4
LT
2270 *
2271 */
2272void __sata_phy_reset(struct ata_port *ap)
2273{
2274 u32 sstatus;
2275 unsigned long timeout = jiffies + (HZ * 5);
2276
2277 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2278 /* issue phy wake/reset */
81952c54 2279 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2280 /* Couldn't find anything in SATA I/II specs, but
2281 * AHCI-1.1 10.4.2 says at least 1 ms. */
2282 mdelay(1);
1da177e4 2283 }
81952c54
TH
2284 /* phy wake/clear reset */
2285 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2286
2287 /* wait for phy to become ready, if necessary */
2288 do {
2289 msleep(200);
81952c54 2290 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2291 if ((sstatus & 0xf) != 1)
2292 break;
2293 } while (time_before(jiffies, timeout));
2294
3be680b7
TH
2295 /* print link status */
2296 sata_print_link_status(ap);
656563e3 2297
3be680b7 2298 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2299 if (!ata_port_offline(ap))
1da177e4 2300 ata_port_probe(ap);
3be680b7 2301 else
1da177e4 2302 ata_port_disable(ap);
1da177e4 2303
198e0fed 2304 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2305 return;
2306
2307 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2308 ata_port_disable(ap);
2309 return;
2310 }
2311
2312 ap->cbl = ATA_CBL_SATA;
2313}
2314
2315/**
780a87f7
JG
2316 * sata_phy_reset - Reset SATA bus.
2317 * @ap: SATA port associated with target SATA PHY.
1da177e4 2318 *
780a87f7
JG
2319 * This function resets the SATA bus, and then probes
2320 * the bus for devices.
1da177e4
LT
2321 *
2322 * LOCKING:
0cba632b 2323 * PCI/etc. bus probe sem.
1da177e4
LT
2324 *
2325 */
2326void sata_phy_reset(struct ata_port *ap)
2327{
2328 __sata_phy_reset(ap);
198e0fed 2329 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2330 return;
2331 ata_bus_reset(ap);
2332}
2333
ebdfca6e
AC
2334/**
2335 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2336 * @adev: device
2337 *
2338 * Obtain the other device on the same cable, or if none is
2339 * present NULL is returned
2340 */
2e9edbf8 2341
3373efd8 2342struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2343{
3373efd8 2344 struct ata_port *ap = adev->ap;
ebdfca6e 2345 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2346 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2347 return NULL;
2348 return pair;
2349}
2350
1da177e4 2351/**
780a87f7
JG
2352 * ata_port_disable - Disable port.
2353 * @ap: Port to be disabled.
1da177e4 2354 *
780a87f7
JG
2355 * Modify @ap data structure such that the system
2356 * thinks that the entire port is disabled, and should
2357 * never attempt to probe or communicate with devices
2358 * on this port.
2359 *
cca3974e 2360 * LOCKING: host lock, or some other form of
780a87f7 2361 * serialization.
1da177e4
LT
2362 */
2363
2364void ata_port_disable(struct ata_port *ap)
2365{
2366 ap->device[0].class = ATA_DEV_NONE;
2367 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2368 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2369}
2370
1c3fae4d 2371/**
3c567b7d 2372 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2373 * @ap: Port to adjust SATA spd limit for
2374 *
2375 * Adjust SATA spd limit of @ap downward. Note that this
2376 * function only adjusts the limit. The change must be applied
3c567b7d 2377 * using sata_set_spd().
1c3fae4d
TH
2378 *
2379 * LOCKING:
2380 * Inherited from caller.
2381 *
2382 * RETURNS:
2383 * 0 on success, negative errno on failure
2384 */
3c567b7d 2385int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2386{
81952c54
TH
2387 u32 sstatus, spd, mask;
2388 int rc, highbit;
1c3fae4d 2389
81952c54
TH
2390 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2391 if (rc)
2392 return rc;
1c3fae4d
TH
2393
2394 mask = ap->sata_spd_limit;
2395 if (mask <= 1)
2396 return -EINVAL;
2397 highbit = fls(mask) - 1;
2398 mask &= ~(1 << highbit);
2399
81952c54 2400 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2401 if (spd <= 1)
2402 return -EINVAL;
2403 spd--;
2404 mask &= (1 << spd) - 1;
2405 if (!mask)
2406 return -EINVAL;
2407
2408 ap->sata_spd_limit = mask;
2409
f15a1daf
TH
2410 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2411 sata_spd_string(fls(mask)));
1c3fae4d
TH
2412
2413 return 0;
2414}
2415
3c567b7d 2416static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2417{
2418 u32 spd, limit;
2419
2420 if (ap->sata_spd_limit == UINT_MAX)
2421 limit = 0;
2422 else
2423 limit = fls(ap->sata_spd_limit);
2424
2425 spd = (*scontrol >> 4) & 0xf;
2426 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2427
2428 return spd != limit;
2429}
2430
2431/**
3c567b7d 2432 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2433 * @ap: Port in question
2434 *
2435 * Test whether the spd limit in SControl matches
2436 * @ap->sata_spd_limit. This function is used to determine
2437 * whether hardreset is necessary to apply SATA spd
2438 * configuration.
2439 *
2440 * LOCKING:
2441 * Inherited from caller.
2442 *
2443 * RETURNS:
2444 * 1 if SATA spd configuration is needed, 0 otherwise.
2445 */
3c567b7d 2446int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2447{
2448 u32 scontrol;
2449
81952c54 2450 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2451 return 0;
2452
3c567b7d 2453 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2454}
2455
2456/**
3c567b7d 2457 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2458 * @ap: Port to set SATA spd for
2459 *
2460 * Set SATA spd of @ap according to sata_spd_limit.
2461 *
2462 * LOCKING:
2463 * Inherited from caller.
2464 *
2465 * RETURNS:
2466 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2467 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2468 */
3c567b7d 2469int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2470{
2471 u32 scontrol;
81952c54 2472 int rc;
1c3fae4d 2473
81952c54
TH
2474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2475 return rc;
1c3fae4d 2476
3c567b7d 2477 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2478 return 0;
2479
81952c54
TH
2480 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2481 return rc;
2482
1c3fae4d
TH
2483 return 1;
2484}
2485
452503f9
AC
2486/*
2487 * This mode timing computation functionality is ported over from
2488 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2489 */
2490/*
b352e57d 2491 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2492 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2493 * for UDMA6, which is currently supported only by Maxtor drives.
2494 *
2495 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2496 */
2497
2498static const struct ata_timing ata_timing[] = {
2499
2500 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2501 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2502 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2503 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2504
b352e57d
AC
2505 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2506 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2507 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2508 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2509 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2510
2511/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2512
452503f9
AC
2513 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2514 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2515 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2516
452503f9
AC
2517 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2518 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2519 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2520
b352e57d
AC
2521 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2522 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2523 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2524 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2525
2526 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2527 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2528 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2529
2530/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2531
2532 { 0xFF }
2533};
2534
2535#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2536#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2537
2538static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2539{
2540 q->setup = EZ(t->setup * 1000, T);
2541 q->act8b = EZ(t->act8b * 1000, T);
2542 q->rec8b = EZ(t->rec8b * 1000, T);
2543 q->cyc8b = EZ(t->cyc8b * 1000, T);
2544 q->active = EZ(t->active * 1000, T);
2545 q->recover = EZ(t->recover * 1000, T);
2546 q->cycle = EZ(t->cycle * 1000, T);
2547 q->udma = EZ(t->udma * 1000, UT);
2548}
2549
2550void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2551 struct ata_timing *m, unsigned int what)
2552{
2553 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2554 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2555 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2556 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2557 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2558 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2559 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2560 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2561}
2562
2563static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2564{
2565 const struct ata_timing *t;
2566
2567 for (t = ata_timing; t->mode != speed; t++)
91190758 2568 if (t->mode == 0xFF)
452503f9 2569 return NULL;
2e9edbf8 2570 return t;
452503f9
AC
2571}
2572
2573int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2574 struct ata_timing *t, int T, int UT)
2575{
2576 const struct ata_timing *s;
2577 struct ata_timing p;
2578
2579 /*
2e9edbf8 2580 * Find the mode.
75b1f2f8 2581 */
452503f9
AC
2582
2583 if (!(s = ata_timing_find_mode(speed)))
2584 return -EINVAL;
2585
75b1f2f8
AL
2586 memcpy(t, s, sizeof(*s));
2587
452503f9
AC
2588 /*
2589 * If the drive is an EIDE drive, it can tell us it needs extended
2590 * PIO/MW_DMA cycle timing.
2591 */
2592
2593 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2594 memset(&p, 0, sizeof(p));
2595 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2596 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2597 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2598 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2599 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2600 }
2601 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2602 }
2603
2604 /*
2605 * Convert the timing to bus clock counts.
2606 */
2607
75b1f2f8 2608 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2609
2610 /*
c893a3ae
RD
2611 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2612 * S.M.A.R.T * and some other commands. We have to ensure that the
2613 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2614 */
2615
fd3367af 2616 if (speed > XFER_PIO_6) {
452503f9
AC
2617 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2618 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2619 }
2620
2621 /*
c893a3ae 2622 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2623 */
2624
2625 if (t->act8b + t->rec8b < t->cyc8b) {
2626 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2627 t->rec8b = t->cyc8b - t->act8b;
2628 }
2629
2630 if (t->active + t->recover < t->cycle) {
2631 t->active += (t->cycle - (t->active + t->recover)) / 2;
2632 t->recover = t->cycle - t->active;
2633 }
a617c09f 2634
4f701d1e
AC
2635 /* In a few cases quantisation may produce enough errors to
2636 leave t->cycle too low for the sum of active and recovery
2637 if so we must correct this */
2638 if (t->active + t->recover > t->cycle)
2639 t->cycle = t->active + t->recover;
452503f9
AC
2640
2641 return 0;
2642}
2643
cf176e1a
TH
2644/**
2645 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2646 * @dev: Device to adjust xfer masks
458337db 2647 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2648 *
2649 * Adjust xfer masks of @dev downward. Note that this function
2650 * does not apply the change. Invoking ata_set_mode() afterwards
2651 * will apply the limit.
2652 *
2653 * LOCKING:
2654 * Inherited from caller.
2655 *
2656 * RETURNS:
2657 * 0 on success, negative errno on failure
2658 */
458337db 2659int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2660{
458337db
TH
2661 char buf[32];
2662 unsigned int orig_mask, xfer_mask;
2663 unsigned int pio_mask, mwdma_mask, udma_mask;
2664 int quiet, highbit;
cf176e1a 2665
458337db
TH
2666 quiet = !!(sel & ATA_DNXFER_QUIET);
2667 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2668
458337db
TH
2669 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2670 dev->mwdma_mask,
2671 dev->udma_mask);
2672 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2673
458337db
TH
2674 switch (sel) {
2675 case ATA_DNXFER_PIO:
2676 highbit = fls(pio_mask) - 1;
2677 pio_mask &= ~(1 << highbit);
2678 break;
2679
2680 case ATA_DNXFER_DMA:
2681 if (udma_mask) {
2682 highbit = fls(udma_mask) - 1;
2683 udma_mask &= ~(1 << highbit);
2684 if (!udma_mask)
2685 return -ENOENT;
2686 } else if (mwdma_mask) {
2687 highbit = fls(mwdma_mask) - 1;
2688 mwdma_mask &= ~(1 << highbit);
2689 if (!mwdma_mask)
2690 return -ENOENT;
2691 }
2692 break;
2693
2694 case ATA_DNXFER_40C:
2695 udma_mask &= ATA_UDMA_MASK_40C;
2696 break;
2697
2698 case ATA_DNXFER_FORCE_PIO0:
2699 pio_mask &= 1;
2700 case ATA_DNXFER_FORCE_PIO:
2701 mwdma_mask = 0;
2702 udma_mask = 0;
2703 break;
2704
458337db
TH
2705 default:
2706 BUG();
2707 }
2708
2709 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2710
2711 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2712 return -ENOENT;
2713
2714 if (!quiet) {
2715 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2716 snprintf(buf, sizeof(buf), "%s:%s",
2717 ata_mode_string(xfer_mask),
2718 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2719 else
2720 snprintf(buf, sizeof(buf), "%s",
2721 ata_mode_string(xfer_mask));
2722
2723 ata_dev_printk(dev, KERN_WARNING,
2724 "limiting speed to %s\n", buf);
2725 }
cf176e1a
TH
2726
2727 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2728 &dev->udma_mask);
2729
cf176e1a 2730 return 0;
cf176e1a
TH
2731}
2732
3373efd8 2733static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2734{
baa1e78a 2735 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2736 unsigned int err_mask;
2737 int rc;
1da177e4 2738
e8384607 2739 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2740 if (dev->xfer_shift == ATA_SHIFT_PIO)
2741 dev->flags |= ATA_DFLAG_PIO;
2742
3373efd8 2743 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2744 /* Old CFA may refuse this command, which is just fine */
2745 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2746 err_mask &= ~AC_ERR_DEV;
2747
83206a29 2748 if (err_mask) {
f15a1daf
TH
2749 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2750 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2751 return -EIO;
2752 }
1da177e4 2753
baa1e78a 2754 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2755 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2756 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2757 if (rc)
83206a29 2758 return rc;
48a8a14f 2759
23e71c3d
TH
2760 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2761 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2762
f15a1daf
TH
2763 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2764 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2765 return 0;
1da177e4
LT
2766}
2767
1da177e4 2768/**
04351821 2769 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2770 * @ap: port on which timings will be programmed
e82cbdb9 2771 * @r_failed_dev: out paramter for failed device
1da177e4 2772 *
04351821
A
2773 * Standard implementation of the function used to tune and set
2774 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2775 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2776 * returned in @r_failed_dev.
780a87f7 2777 *
1da177e4 2778 * LOCKING:
0cba632b 2779 * PCI/etc. bus probe sem.
e82cbdb9
TH
2780 *
2781 * RETURNS:
2782 * 0 on success, negative errno otherwise
1da177e4 2783 */
04351821
A
2784
2785int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2786{
e8e0619f 2787 struct ata_device *dev;
e82cbdb9 2788 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2789
3adcebb2 2790
a6d5a51c
TH
2791 /* step 1: calculate xfer_mask */
2792 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2793 unsigned int pio_mask, dma_mask;
a6d5a51c 2794
e8e0619f
TH
2795 dev = &ap->device[i];
2796
e1211e3f 2797 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2798 continue;
2799
3373efd8 2800 ata_dev_xfermask(dev);
1da177e4 2801
acf356b1
TH
2802 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2803 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2804 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2805 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2806
4f65977d 2807 found = 1;
5444a6f4
AC
2808 if (dev->dma_mode)
2809 used_dma = 1;
a6d5a51c 2810 }
4f65977d 2811 if (!found)
e82cbdb9 2812 goto out;
a6d5a51c
TH
2813
2814 /* step 2: always set host PIO timings */
e8e0619f
TH
2815 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2816 dev = &ap->device[i];
2817 if (!ata_dev_enabled(dev))
2818 continue;
2819
2820 if (!dev->pio_mode) {
f15a1daf 2821 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2822 rc = -EINVAL;
e82cbdb9 2823 goto out;
e8e0619f
TH
2824 }
2825
2826 dev->xfer_mode = dev->pio_mode;
2827 dev->xfer_shift = ATA_SHIFT_PIO;
2828 if (ap->ops->set_piomode)
2829 ap->ops->set_piomode(ap, dev);
2830 }
1da177e4 2831
a6d5a51c 2832 /* step 3: set host DMA timings */
e8e0619f
TH
2833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2834 dev = &ap->device[i];
2835
2836 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2837 continue;
2838
2839 dev->xfer_mode = dev->dma_mode;
2840 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2841 if (ap->ops->set_dmamode)
2842 ap->ops->set_dmamode(ap, dev);
2843 }
1da177e4
LT
2844
2845 /* step 4: update devices' xfer mode */
83206a29 2846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2847 dev = &ap->device[i];
1da177e4 2848
18d90deb 2849 /* don't update suspended devices' xfer mode */
9666f400 2850 if (!ata_dev_enabled(dev))
83206a29
TH
2851 continue;
2852
3373efd8 2853 rc = ata_dev_set_mode(dev);
5bbc53f4 2854 if (rc)
e82cbdb9 2855 goto out;
83206a29 2856 }
1da177e4 2857
e8e0619f
TH
2858 /* Record simplex status. If we selected DMA then the other
2859 * host channels are not permitted to do so.
5444a6f4 2860 */
cca3974e 2861 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2862 ap->host->simplex_claimed = ap;
5444a6f4 2863
e82cbdb9
TH
2864 out:
2865 if (rc)
2866 *r_failed_dev = dev;
2867 return rc;
1da177e4
LT
2868}
2869
04351821
A
2870/**
2871 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2872 * @ap: port on which timings will be programmed
2873 * @r_failed_dev: out paramter for failed device
2874 *
2875 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2876 * ata_set_mode() fails, pointer to the failing device is
2877 * returned in @r_failed_dev.
2878 *
2879 * LOCKING:
2880 * PCI/etc. bus probe sem.
2881 *
2882 * RETURNS:
2883 * 0 on success, negative errno otherwise
2884 */
2885int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2886{
2887 /* has private set_mode? */
2888 if (ap->ops->set_mode)
2889 return ap->ops->set_mode(ap, r_failed_dev);
2890 return ata_do_set_mode(ap, r_failed_dev);
2891}
2892
1fdffbce
JG
2893/**
2894 * ata_tf_to_host - issue ATA taskfile to host controller
2895 * @ap: port to which command is being issued
2896 * @tf: ATA taskfile register set
2897 *
2898 * Issues ATA taskfile register set to ATA host controller,
2899 * with proper synchronization with interrupt handler and
2900 * other threads.
2901 *
2902 * LOCKING:
cca3974e 2903 * spin_lock_irqsave(host lock)
1fdffbce
JG
2904 */
2905
2906static inline void ata_tf_to_host(struct ata_port *ap,
2907 const struct ata_taskfile *tf)
2908{
2909 ap->ops->tf_load(ap, tf);
2910 ap->ops->exec_command(ap, tf);
2911}
2912
1da177e4
LT
2913/**
2914 * ata_busy_sleep - sleep until BSY clears, or timeout
2915 * @ap: port containing status register to be polled
2916 * @tmout_pat: impatience timeout
2917 * @tmout: overall timeout
2918 *
780a87f7
JG
2919 * Sleep until ATA Status register bit BSY clears,
2920 * or a timeout occurs.
2921 *
d1adc1bb
TH
2922 * LOCKING:
2923 * Kernel thread context (may sleep).
2924 *
2925 * RETURNS:
2926 * 0 on success, -errno otherwise.
1da177e4 2927 */
d1adc1bb
TH
2928int ata_busy_sleep(struct ata_port *ap,
2929 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2930{
2931 unsigned long timer_start, timeout;
2932 u8 status;
2933
2934 status = ata_busy_wait(ap, ATA_BUSY, 300);
2935 timer_start = jiffies;
2936 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2937 while (status != 0xff && (status & ATA_BUSY) &&
2938 time_before(jiffies, timeout)) {
1da177e4
LT
2939 msleep(50);
2940 status = ata_busy_wait(ap, ATA_BUSY, 3);
2941 }
2942
d1adc1bb 2943 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2944 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2945 "port is slow to respond, please be patient "
2946 "(Status 0x%x)\n", status);
1da177e4
LT
2947
2948 timeout = timer_start + tmout;
d1adc1bb
TH
2949 while (status != 0xff && (status & ATA_BUSY) &&
2950 time_before(jiffies, timeout)) {
1da177e4
LT
2951 msleep(50);
2952 status = ata_chk_status(ap);
2953 }
2954
d1adc1bb
TH
2955 if (status == 0xff)
2956 return -ENODEV;
2957
1da177e4 2958 if (status & ATA_BUSY) {
f15a1daf 2959 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2960 "(%lu secs, Status 0x%x)\n",
2961 tmout / HZ, status);
d1adc1bb 2962 return -EBUSY;
1da177e4
LT
2963 }
2964
2965 return 0;
2966}
2967
d4b2bab4
TH
2968/**
2969 * ata_wait_ready - sleep until BSY clears, or timeout
2970 * @ap: port containing status register to be polled
2971 * @deadline: deadline jiffies for the operation
2972 *
2973 * Sleep until ATA Status register bit BSY clears, or timeout
2974 * occurs.
2975 *
2976 * LOCKING:
2977 * Kernel thread context (may sleep).
2978 *
2979 * RETURNS:
2980 * 0 on success, -errno otherwise.
2981 */
2982int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2983{
2984 unsigned long start = jiffies;
2985 int warned = 0;
2986
2987 while (1) {
2988 u8 status = ata_chk_status(ap);
2989 unsigned long now = jiffies;
2990
2991 if (!(status & ATA_BUSY))
2992 return 0;
fd7fe701 2993 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
2994 return -ENODEV;
2995 if (time_after(now, deadline))
2996 return -EBUSY;
2997
2998 if (!warned && time_after(now, start + 5 * HZ) &&
2999 (deadline - now > 3 * HZ)) {
3000 ata_port_printk(ap, KERN_WARNING,
3001 "port is slow to respond, please be patient "
3002 "(Status 0x%x)\n", status);
3003 warned = 1;
3004 }
3005
3006 msleep(50);
3007 }
3008}
3009
3010static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3011 unsigned long deadline)
1da177e4
LT
3012{
3013 struct ata_ioports *ioaddr = &ap->ioaddr;
3014 unsigned int dev0 = devmask & (1 << 0);
3015 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3016 int rc, ret = 0;
1da177e4
LT
3017
3018 /* if device 0 was found in ata_devchk, wait for its
3019 * BSY bit to clear
3020 */
d4b2bab4
TH
3021 if (dev0) {
3022 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3023 if (rc) {
3024 if (rc != -ENODEV)
3025 return rc;
3026 ret = rc;
3027 }
d4b2bab4 3028 }
1da177e4 3029
e141d999
TH
3030 /* if device 1 was found in ata_devchk, wait for register
3031 * access briefly, then wait for BSY to clear.
1da177e4 3032 */
e141d999
TH
3033 if (dev1) {
3034 int i;
1da177e4
LT
3035
3036 ap->ops->dev_select(ap, 1);
e141d999
TH
3037
3038 /* Wait for register access. Some ATAPI devices fail
3039 * to set nsect/lbal after reset, so don't waste too
3040 * much time on it. We're gonna wait for !BSY anyway.
3041 */
3042 for (i = 0; i < 2; i++) {
3043 u8 nsect, lbal;
3044
3045 nsect = ioread8(ioaddr->nsect_addr);
3046 lbal = ioread8(ioaddr->lbal_addr);
3047 if ((nsect == 1) && (lbal == 1))
3048 break;
3049 msleep(50); /* give drive a breather */
3050 }
3051
d4b2bab4 3052 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3053 if (rc) {
3054 if (rc != -ENODEV)
3055 return rc;
3056 ret = rc;
3057 }
d4b2bab4 3058 }
1da177e4
LT
3059
3060 /* is all this really necessary? */
3061 ap->ops->dev_select(ap, 0);
3062 if (dev1)
3063 ap->ops->dev_select(ap, 1);
3064 if (dev0)
3065 ap->ops->dev_select(ap, 0);
d4b2bab4 3066
9b89391c 3067 return ret;
1da177e4
LT
3068}
3069
d4b2bab4
TH
3070static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3071 unsigned long deadline)
1da177e4
LT
3072{
3073 struct ata_ioports *ioaddr = &ap->ioaddr;
3074
44877b4e 3075 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3076
3077 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3078 iowrite8(ap->ctl, ioaddr->ctl_addr);
3079 udelay(20); /* FIXME: flush */
3080 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3083
3084 /* spec mandates ">= 2ms" before checking status.
3085 * We wait 150ms, because that was the magic delay used for
3086 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3087 * between when the ATA command register is written, and then
3088 * status is checked. Because waiting for "a while" before
3089 * checking status is fine, post SRST, we perform this magic
3090 * delay here as well.
09c7ad79
AC
3091 *
3092 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3093 */
3094 msleep(150);
3095
2e9edbf8 3096 /* Before we perform post reset processing we want to see if
298a41ca
TH
3097 * the bus shows 0xFF because the odd clown forgets the D7
3098 * pulldown resistor.
3099 */
d1adc1bb 3100 if (ata_check_status(ap) == 0xFF)
9b89391c 3101 return -ENODEV;
09c7ad79 3102
d4b2bab4 3103 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3104}
3105
3106/**
3107 * ata_bus_reset - reset host port and associated ATA channel
3108 * @ap: port to reset
3109 *
3110 * This is typically the first time we actually start issuing
3111 * commands to the ATA channel. We wait for BSY to clear, then
3112 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3113 * result. Determine what devices, if any, are on the channel
3114 * by looking at the device 0/1 error register. Look at the signature
3115 * stored in each device's taskfile registers, to determine if
3116 * the device is ATA or ATAPI.
3117 *
3118 * LOCKING:
0cba632b 3119 * PCI/etc. bus probe sem.
cca3974e 3120 * Obtains host lock.
1da177e4
LT
3121 *
3122 * SIDE EFFECTS:
198e0fed 3123 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3124 */
3125
3126void ata_bus_reset(struct ata_port *ap)
3127{
3128 struct ata_ioports *ioaddr = &ap->ioaddr;
3129 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3130 u8 err;
aec5c3c1 3131 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3132 int rc;
1da177e4 3133
44877b4e 3134 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3135
3136 /* determine if device 0/1 are present */
3137 if (ap->flags & ATA_FLAG_SATA_RESET)
3138 dev0 = 1;
3139 else {
3140 dev0 = ata_devchk(ap, 0);
3141 if (slave_possible)
3142 dev1 = ata_devchk(ap, 1);
3143 }
3144
3145 if (dev0)
3146 devmask |= (1 << 0);
3147 if (dev1)
3148 devmask |= (1 << 1);
3149
3150 /* select device 0 again */
3151 ap->ops->dev_select(ap, 0);
3152
3153 /* issue bus reset */
9b89391c
TH
3154 if (ap->flags & ATA_FLAG_SRST) {
3155 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3156 if (rc && rc != -ENODEV)
aec5c3c1 3157 goto err_out;
9b89391c 3158 }
1da177e4
LT
3159
3160 /*
3161 * determine by signature whether we have ATA or ATAPI devices
3162 */
b4dc7623 3163 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3164 if ((slave_possible) && (err != 0x81))
b4dc7623 3165 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3166
3167 /* re-enable interrupts */
83625006 3168 ap->ops->irq_on(ap);
1da177e4
LT
3169
3170 /* is double-select really necessary? */
3171 if (ap->device[1].class != ATA_DEV_NONE)
3172 ap->ops->dev_select(ap, 1);
3173 if (ap->device[0].class != ATA_DEV_NONE)
3174 ap->ops->dev_select(ap, 0);
3175
3176 /* if no devices were detected, disable this port */
3177 if ((ap->device[0].class == ATA_DEV_NONE) &&
3178 (ap->device[1].class == ATA_DEV_NONE))
3179 goto err_out;
3180
3181 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3182 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3183 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3184 }
3185
3186 DPRINTK("EXIT\n");
3187 return;
3188
3189err_out:
f15a1daf 3190 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3191 ap->ops->port_disable(ap);
3192
3193 DPRINTK("EXIT\n");
3194}
3195
d7bb4cc7
TH
3196/**
3197 * sata_phy_debounce - debounce SATA phy status
3198 * @ap: ATA port to debounce SATA phy status for
3199 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3200 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3201 *
3202 * Make sure SStatus of @ap reaches stable state, determined by
3203 * holding the same value where DET is not 1 for @duration polled
3204 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3205 * beginning of the stable state. Because DET gets stuck at 1 on
3206 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3207 * until timeout then returns 0 if DET is stable at 1.
3208 *
d4b2bab4
TH
3209 * @timeout is further limited by @deadline. The sooner of the
3210 * two is used.
3211 *
d7bb4cc7
TH
3212 * LOCKING:
3213 * Kernel thread context (may sleep)
3214 *
3215 * RETURNS:
3216 * 0 on success, -errno on failure.
3217 */
d4b2bab4
TH
3218int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3219 unsigned long deadline)
7a7921e8 3220{
d7bb4cc7 3221 unsigned long interval_msec = params[0];
d4b2bab4
TH
3222 unsigned long duration = msecs_to_jiffies(params[1]);
3223 unsigned long last_jiffies, t;
d7bb4cc7
TH
3224 u32 last, cur;
3225 int rc;
3226
d4b2bab4
TH
3227 t = jiffies + msecs_to_jiffies(params[2]);
3228 if (time_before(t, deadline))
3229 deadline = t;
3230
d7bb4cc7
TH
3231 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3232 return rc;
3233 cur &= 0xf;
3234
3235 last = cur;
3236 last_jiffies = jiffies;
3237
3238 while (1) {
3239 msleep(interval_msec);
3240 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3241 return rc;
3242 cur &= 0xf;
3243
3244 /* DET stable? */
3245 if (cur == last) {
d4b2bab4 3246 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3247 continue;
3248 if (time_after(jiffies, last_jiffies + duration))
3249 return 0;
3250 continue;
3251 }
3252
3253 /* unstable, start over */
3254 last = cur;
3255 last_jiffies = jiffies;
3256
d4b2bab4
TH
3257 /* check deadline */
3258 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3259 return -EBUSY;
3260 }
3261}
3262
3263/**
3264 * sata_phy_resume - resume SATA phy
3265 * @ap: ATA port to resume SATA phy for
3266 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3267 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3268 *
3269 * Resume SATA phy of @ap and debounce it.
3270 *
3271 * LOCKING:
3272 * Kernel thread context (may sleep)
3273 *
3274 * RETURNS:
3275 * 0 on success, -errno on failure.
3276 */
d4b2bab4
TH
3277int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3278 unsigned long deadline)
d7bb4cc7
TH
3279{
3280 u32 scontrol;
81952c54
TH
3281 int rc;
3282
3283 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3284 return rc;
7a7921e8 3285
852ee16a 3286 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3287
3288 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3289 return rc;
7a7921e8 3290
d7bb4cc7
TH
3291 /* Some PHYs react badly if SStatus is pounded immediately
3292 * after resuming. Delay 200ms before debouncing.
3293 */
3294 msleep(200);
7a7921e8 3295
d4b2bab4 3296 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3297}
3298
f5914a46
TH
3299/**
3300 * ata_std_prereset - prepare for reset
3301 * @ap: ATA port to be reset
d4b2bab4 3302 * @deadline: deadline jiffies for the operation
f5914a46 3303 *
b8cffc6a
TH
3304 * @ap is about to be reset. Initialize it. Failure from
3305 * prereset makes libata abort whole reset sequence and give up
3306 * that port, so prereset should be best-effort. It does its
3307 * best to prepare for reset sequence but if things go wrong, it
3308 * should just whine, not fail.
f5914a46
TH
3309 *
3310 * LOCKING:
3311 * Kernel thread context (may sleep)
3312 *
3313 * RETURNS:
3314 * 0 on success, -errno otherwise.
3315 */
d4b2bab4 3316int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3317{
3318 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3319 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3320 int rc;
3321
31daabda 3322 /* handle link resume */
28324304
TH
3323 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3324 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3325 ehc->i.action |= ATA_EH_HARDRESET;
3326
f5914a46
TH
3327 /* if we're about to do hardreset, nothing more to do */
3328 if (ehc->i.action & ATA_EH_HARDRESET)
3329 return 0;
3330
3331 /* if SATA, resume phy */
a16abc0b 3332 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3333 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3334 /* whine about phy resume failure but proceed */
3335 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3336 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3337 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3338 }
3339
3340 /* Wait for !BSY if the controller can wait for the first D2H
3341 * Reg FIS and we don't know that no device is attached.
3342 */
b8cffc6a
TH
3343 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3344 rc = ata_wait_ready(ap, deadline);
6dffaf61 3345 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3346 ata_port_printk(ap, KERN_WARNING, "device not ready "
3347 "(errno=%d), forcing hardreset\n", rc);
3348 ehc->i.action |= ATA_EH_HARDRESET;
3349 }
3350 }
f5914a46
TH
3351
3352 return 0;
3353}
3354
c2bd5804
TH
3355/**
3356 * ata_std_softreset - reset host port via ATA SRST
3357 * @ap: port to reset
c2bd5804 3358 * @classes: resulting classes of attached devices
d4b2bab4 3359 * @deadline: deadline jiffies for the operation
c2bd5804 3360 *
52783c5d 3361 * Reset host port using ATA SRST.
c2bd5804
TH
3362 *
3363 * LOCKING:
3364 * Kernel thread context (may sleep)
3365 *
3366 * RETURNS:
3367 * 0 on success, -errno otherwise.
3368 */
d4b2bab4
TH
3369int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3370 unsigned long deadline)
c2bd5804
TH
3371{
3372 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3373 unsigned int devmask = 0;
3374 int rc;
c2bd5804
TH
3375 u8 err;
3376
3377 DPRINTK("ENTER\n");
3378
81952c54 3379 if (ata_port_offline(ap)) {
3a39746a
TH
3380 classes[0] = ATA_DEV_NONE;
3381 goto out;
3382 }
3383
c2bd5804
TH
3384 /* determine if device 0/1 are present */
3385 if (ata_devchk(ap, 0))
3386 devmask |= (1 << 0);
3387 if (slave_possible && ata_devchk(ap, 1))
3388 devmask |= (1 << 1);
3389
c2bd5804
TH
3390 /* select device 0 again */
3391 ap->ops->dev_select(ap, 0);
3392
3393 /* issue bus reset */
3394 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3395 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3396 /* if link is occupied, -ENODEV too is an error */
3397 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3398 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3399 return rc;
c2bd5804
TH
3400 }
3401
3402 /* determine by signature whether we have ATA or ATAPI devices */
3403 classes[0] = ata_dev_try_classify(ap, 0, &err);
3404 if (slave_possible && err != 0x81)
3405 classes[1] = ata_dev_try_classify(ap, 1, &err);
3406
3a39746a 3407 out:
c2bd5804
TH
3408 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3409 return 0;
3410}
3411
3412/**
b6103f6d 3413 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3414 * @ap: port to reset
b6103f6d 3415 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3416 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3417 *
3418 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3419 *
3420 * LOCKING:
3421 * Kernel thread context (may sleep)
3422 *
3423 * RETURNS:
3424 * 0 on success, -errno otherwise.
3425 */
d4b2bab4
TH
3426int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3427 unsigned long deadline)
c2bd5804 3428{
852ee16a 3429 u32 scontrol;
81952c54 3430 int rc;
852ee16a 3431
c2bd5804
TH
3432 DPRINTK("ENTER\n");
3433
3c567b7d 3434 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3435 /* SATA spec says nothing about how to reconfigure
3436 * spd. To be on the safe side, turn off phy during
3437 * reconfiguration. This works for at least ICH7 AHCI
3438 * and Sil3124.
3439 */
81952c54 3440 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3441 goto out;
81952c54 3442
a34b6fc0 3443 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3444
3445 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3446 goto out;
1c3fae4d 3447
3c567b7d 3448 sata_set_spd(ap);
1c3fae4d
TH
3449 }
3450
3451 /* issue phy wake/reset */
81952c54 3452 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3453 goto out;
81952c54 3454
852ee16a 3455 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3456
3457 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3458 goto out;
c2bd5804 3459
1c3fae4d 3460 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3461 * 10.4.2 says at least 1 ms.
3462 */
3463 msleep(1);
3464
1c3fae4d 3465 /* bring phy back */
d4b2bab4 3466 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3467 out:
3468 DPRINTK("EXIT, rc=%d\n", rc);
3469 return rc;
3470}
3471
3472/**
3473 * sata_std_hardreset - reset host port via SATA phy reset
3474 * @ap: port to reset
3475 * @class: resulting class of attached device
d4b2bab4 3476 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3477 *
3478 * SATA phy-reset host port using DET bits of SControl register,
3479 * wait for !BSY and classify the attached device.
3480 *
3481 * LOCKING:
3482 * Kernel thread context (may sleep)
3483 *
3484 * RETURNS:
3485 * 0 on success, -errno otherwise.
3486 */
d4b2bab4
TH
3487int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3488 unsigned long deadline)
b6103f6d
TH
3489{
3490 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3491 int rc;
3492
3493 DPRINTK("ENTER\n");
3494
3495 /* do hardreset */
d4b2bab4 3496 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3497 if (rc) {
3498 ata_port_printk(ap, KERN_ERR,
3499 "COMRESET failed (errno=%d)\n", rc);
3500 return rc;
3501 }
c2bd5804 3502
c2bd5804 3503 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3504 if (ata_port_offline(ap)) {
c2bd5804
TH
3505 *class = ATA_DEV_NONE;
3506 DPRINTK("EXIT, link offline\n");
3507 return 0;
3508 }
3509
34fee227
TH
3510 /* wait a while before checking status, see SRST for more info */
3511 msleep(150);
3512
d4b2bab4 3513 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3514 /* link occupied, -ENODEV too is an error */
3515 if (rc) {
f15a1daf 3516 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3517 "COMRESET failed (errno=%d)\n", rc);
3518 return rc;
c2bd5804
TH
3519 }
3520
3a39746a
TH
3521 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3522
c2bd5804
TH
3523 *class = ata_dev_try_classify(ap, 0, NULL);
3524
3525 DPRINTK("EXIT, class=%u\n", *class);
3526 return 0;
3527}
3528
3529/**
3530 * ata_std_postreset - standard postreset callback
3531 * @ap: the target ata_port
3532 * @classes: classes of attached devices
3533 *
3534 * This function is invoked after a successful reset. Note that
3535 * the device might have been reset more than once using
3536 * different reset methods before postreset is invoked.
c2bd5804 3537 *
c2bd5804
TH
3538 * LOCKING:
3539 * Kernel thread context (may sleep)
3540 */
3541void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3542{
dc2b3515
TH
3543 u32 serror;
3544
c2bd5804
TH
3545 DPRINTK("ENTER\n");
3546
c2bd5804 3547 /* print link status */
81952c54 3548 sata_print_link_status(ap);
c2bd5804 3549
dc2b3515
TH
3550 /* clear SError */
3551 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3552 sata_scr_write(ap, SCR_ERROR, serror);
3553
3a39746a 3554 /* re-enable interrupts */
83625006
AI
3555 if (!ap->ops->error_handler)
3556 ap->ops->irq_on(ap);
c2bd5804
TH
3557
3558 /* is double-select really necessary? */
3559 if (classes[0] != ATA_DEV_NONE)
3560 ap->ops->dev_select(ap, 1);
3561 if (classes[1] != ATA_DEV_NONE)
3562 ap->ops->dev_select(ap, 0);
3563
3a39746a
TH
3564 /* bail out if no device is present */
3565 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3566 DPRINTK("EXIT, no device\n");
3567 return;
3568 }
3569
3570 /* set up device control */
0d5ff566
TH
3571 if (ap->ioaddr.ctl_addr)
3572 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3573
3574 DPRINTK("EXIT\n");
3575}
3576
623a3128
TH
3577/**
3578 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3579 * @dev: device to compare against
3580 * @new_class: class of the new device
3581 * @new_id: IDENTIFY page of the new device
3582 *
3583 * Compare @new_class and @new_id against @dev and determine
3584 * whether @dev is the device indicated by @new_class and
3585 * @new_id.
3586 *
3587 * LOCKING:
3588 * None.
3589 *
3590 * RETURNS:
3591 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3592 */
3373efd8
TH
3593static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3594 const u16 *new_id)
623a3128
TH
3595{
3596 const u16 *old_id = dev->id;
a0cf733b
TH
3597 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3598 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3599
3600 if (dev->class != new_class) {
f15a1daf
TH
3601 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3602 dev->class, new_class);
623a3128
TH
3603 return 0;
3604 }
3605
a0cf733b
TH
3606 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3607 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3608 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3609 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3610
3611 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3612 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3613 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3614 return 0;
3615 }
3616
3617 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3618 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3619 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3620 return 0;
3621 }
3622
623a3128
TH
3623 return 1;
3624}
3625
3626/**
fe30911b 3627 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3628 * @dev: target ATA device
bff04647 3629 * @readid_flags: read ID flags
623a3128
TH
3630 *
3631 * Re-read IDENTIFY page and make sure @dev is still attached to
3632 * the port.
3633 *
3634 * LOCKING:
3635 * Kernel thread context (may sleep)
3636 *
3637 * RETURNS:
3638 * 0 on success, negative errno otherwise
3639 */
fe30911b 3640int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3641{
5eb45c02 3642 unsigned int class = dev->class;
f15a1daf 3643 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3644 int rc;
3645
fe635c7e 3646 /* read ID data */
bff04647 3647 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3648 if (rc)
fe30911b 3649 return rc;
623a3128
TH
3650
3651 /* is the device still there? */
fe30911b
TH
3652 if (!ata_dev_same_device(dev, class, id))
3653 return -ENODEV;
623a3128 3654
fe635c7e 3655 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3656 return 0;
3657}
3658
3659/**
3660 * ata_dev_revalidate - Revalidate ATA device
3661 * @dev: device to revalidate
3662 * @readid_flags: read ID flags
3663 *
3664 * Re-read IDENTIFY page, make sure @dev is still attached to the
3665 * port and reconfigure it according to the new IDENTIFY page.
3666 *
3667 * LOCKING:
3668 * Kernel thread context (may sleep)
3669 *
3670 * RETURNS:
3671 * 0 on success, negative errno otherwise
3672 */
3673int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3674{
6ddcd3b0 3675 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3676 int rc;
3677
3678 if (!ata_dev_enabled(dev))
3679 return -ENODEV;
3680
3681 /* re-read ID */
3682 rc = ata_dev_reread_id(dev, readid_flags);
3683 if (rc)
3684 goto fail;
623a3128
TH
3685
3686 /* configure device according to the new ID */
efdaedc4 3687 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3688 if (rc)
3689 goto fail;
3690
3691 /* verify n_sectors hasn't changed */
3692 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3693 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3694 "%llu != %llu\n",
3695 (unsigned long long)n_sectors,
3696 (unsigned long long)dev->n_sectors);
3697 rc = -ENODEV;
3698 goto fail;
3699 }
3700
3701 return 0;
623a3128
TH
3702
3703 fail:
f15a1daf 3704 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3705 return rc;
3706}
3707
6919a0a6
AC
3708struct ata_blacklist_entry {
3709 const char *model_num;
3710 const char *model_rev;
3711 unsigned long horkage;
3712};
3713
3714static const struct ata_blacklist_entry ata_device_blacklist [] = {
3715 /* Devices with DMA related problems under Linux */
3716 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3717 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3718 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3719 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3720 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3721 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3722 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3723 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3724 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3725 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3726 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3727 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3728 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3729 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3730 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3731 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3732 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3733 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3734 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3735 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3736 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3737 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3738 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3739 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3740 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3741 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3742 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3743 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3744 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3745 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3746 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3747 { "IOMEGA ZIP 250 ATAPI Floppy",
3748 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3749
18d6e9d5 3750 /* Weird ATAPI devices */
40a1d531 3751 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3752
6919a0a6
AC
3753 /* Devices we expect to fail diagnostics */
3754
3755 /* Devices where NCQ should be avoided */
3756 /* NCQ is slow */
3757 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3758 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3759 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3760 /* NCQ is broken */
3761 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3762 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3763 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3764 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3765 /* Blacklist entries taken from Silicon Image 3124/3132
3766 Windows driver .inf file - also several Linux problem reports */
3767 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3768 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3769 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3770 /* Drives which do spurious command completion */
3771 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3772 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3773 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3774 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3775
3776 /* Devices with NCQ limits */
3777
3778 /* End Marker */
3779 { }
1da177e4 3780};
2e9edbf8 3781
75683fe7 3782static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3783{
8bfa79fc
TH
3784 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3785 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3786 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3787
8bfa79fc
TH
3788 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3789 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3790
6919a0a6 3791 while (ad->model_num) {
8bfa79fc 3792 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3793 if (ad->model_rev == NULL)
3794 return ad->horkage;
8bfa79fc 3795 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3796 return ad->horkage;
f4b15fef 3797 }
6919a0a6 3798 ad++;
f4b15fef 3799 }
1da177e4
LT
3800 return 0;
3801}
3802
6919a0a6
AC
3803static int ata_dma_blacklisted(const struct ata_device *dev)
3804{
3805 /* We don't support polling DMA.
3806 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3807 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3808 */
3809 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3810 (dev->flags & ATA_DFLAG_CDB_INTR))
3811 return 1;
75683fe7 3812 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3813}
3814
a6d5a51c
TH
3815/**
3816 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3817 * @dev: Device to compute xfermask for
3818 *
acf356b1
TH
3819 * Compute supported xfermask of @dev and store it in
3820 * dev->*_mask. This function is responsible for applying all
3821 * known limits including host controller limits, device
3822 * blacklist, etc...
a6d5a51c
TH
3823 *
3824 * LOCKING:
3825 * None.
a6d5a51c 3826 */
3373efd8 3827static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3828{
3373efd8 3829 struct ata_port *ap = dev->ap;
cca3974e 3830 struct ata_host *host = ap->host;
a6d5a51c 3831 unsigned long xfer_mask;
1da177e4 3832
37deecb5 3833 /* controller modes available */
565083e1
TH
3834 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3835 ap->mwdma_mask, ap->udma_mask);
3836
8343f889 3837 /* drive modes available */
37deecb5
TH
3838 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3839 dev->mwdma_mask, dev->udma_mask);
3840 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3841
b352e57d
AC
3842 /*
3843 * CFA Advanced TrueIDE timings are not allowed on a shared
3844 * cable
3845 */
3846 if (ata_dev_pair(dev)) {
3847 /* No PIO5 or PIO6 */
3848 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3849 /* No MWDMA3 or MWDMA 4 */
3850 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3851 }
3852
37deecb5
TH
3853 if (ata_dma_blacklisted(dev)) {
3854 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3855 ata_dev_printk(dev, KERN_WARNING,
3856 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3857 }
a6d5a51c 3858
14d66ab7
PV
3859 if ((host->flags & ATA_HOST_SIMPLEX) &&
3860 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3861 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3862 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3863 "other device, disabling DMA\n");
5444a6f4 3864 }
565083e1 3865
e424675f
JG
3866 if (ap->flags & ATA_FLAG_NO_IORDY)
3867 xfer_mask &= ata_pio_mask_no_iordy(dev);
3868
5444a6f4 3869 if (ap->ops->mode_filter)
a76b62ca 3870 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3871
8343f889
RH
3872 /* Apply cable rule here. Don't apply it early because when
3873 * we handle hot plug the cable type can itself change.
3874 * Check this last so that we know if the transfer rate was
3875 * solely limited by the cable.
3876 * Unknown or 80 wire cables reported host side are checked
3877 * drive side as well. Cases where we know a 40wire cable
3878 * is used safely for 80 are not checked here.
3879 */
3880 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3881 /* UDMA/44 or higher would be available */
3882 if((ap->cbl == ATA_CBL_PATA40) ||
3883 (ata_drive_40wire(dev->id) &&
3884 (ap->cbl == ATA_CBL_PATA_UNK ||
3885 ap->cbl == ATA_CBL_PATA80))) {
3886 ata_dev_printk(dev, KERN_WARNING,
3887 "limited to UDMA/33 due to 40-wire cable\n");
3888 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3889 }
3890
565083e1
TH
3891 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3892 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3893}
3894
1da177e4
LT
3895/**
3896 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3897 * @dev: Device to which command will be sent
3898 *
780a87f7
JG
3899 * Issue SET FEATURES - XFER MODE command to device @dev
3900 * on port @ap.
3901 *
1da177e4 3902 * LOCKING:
0cba632b 3903 * PCI/etc. bus probe sem.
83206a29
TH
3904 *
3905 * RETURNS:
3906 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3907 */
3908
3373efd8 3909static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3910{
a0123703 3911 struct ata_taskfile tf;
83206a29 3912 unsigned int err_mask;
1da177e4
LT
3913
3914 /* set up set-features taskfile */
3915 DPRINTK("set features - xfer mode\n");
3916
464cf177
TH
3917 /* Some controllers and ATAPI devices show flaky interrupt
3918 * behavior after setting xfer mode. Use polling instead.
3919 */
3373efd8 3920 ata_tf_init(dev, &tf);
a0123703
TH
3921 tf.command = ATA_CMD_SET_FEATURES;
3922 tf.feature = SETFEATURES_XFER;
464cf177 3923 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3924 tf.protocol = ATA_PROT_NODATA;
3925 tf.nsect = dev->xfer_mode;
1da177e4 3926
3373efd8 3927 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3928
83206a29
TH
3929 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3930 return err_mask;
1da177e4
LT
3931}
3932
8bf62ece
AL
3933/**
3934 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3935 * @dev: Device to which command will be sent
e2a7f77a
RD
3936 * @heads: Number of heads (taskfile parameter)
3937 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3938 *
3939 * LOCKING:
6aff8f1f
TH
3940 * Kernel thread context (may sleep)
3941 *
3942 * RETURNS:
3943 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3944 */
3373efd8
TH
3945static unsigned int ata_dev_init_params(struct ata_device *dev,
3946 u16 heads, u16 sectors)
8bf62ece 3947{
a0123703 3948 struct ata_taskfile tf;
6aff8f1f 3949 unsigned int err_mask;
8bf62ece
AL
3950
3951 /* Number of sectors per track 1-255. Number of heads 1-16 */
3952 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3953 return AC_ERR_INVALID;
8bf62ece
AL
3954
3955 /* set up init dev params taskfile */
3956 DPRINTK("init dev params \n");
3957
3373efd8 3958 ata_tf_init(dev, &tf);
a0123703
TH
3959 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3960 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3961 tf.protocol = ATA_PROT_NODATA;
3962 tf.nsect = sectors;
3963 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3964
3373efd8 3965 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3966
6aff8f1f
TH
3967 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3968 return err_mask;
8bf62ece
AL
3969}
3970
1da177e4 3971/**
0cba632b
JG
3972 * ata_sg_clean - Unmap DMA memory associated with command
3973 * @qc: Command containing DMA memory to be released
3974 *
3975 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3976 *
3977 * LOCKING:
cca3974e 3978 * spin_lock_irqsave(host lock)
1da177e4 3979 */
70e6ad0c 3980void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3981{
3982 struct ata_port *ap = qc->ap;
cedc9a47 3983 struct scatterlist *sg = qc->__sg;
1da177e4 3984 int dir = qc->dma_dir;
cedc9a47 3985 void *pad_buf = NULL;
1da177e4 3986
a4631474
TH
3987 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3988 WARN_ON(sg == NULL);
1da177e4
LT
3989
3990 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3991 WARN_ON(qc->n_elem > 1);
1da177e4 3992
2c13b7ce 3993 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3994
cedc9a47
JG
3995 /* if we padded the buffer out to 32-bit bound, and data
3996 * xfer direction is from-device, we must copy from the
3997 * pad buffer back into the supplied buffer
3998 */
3999 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4000 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4001
4002 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4003 if (qc->n_elem)
2f1f610b 4004 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4005 /* restore last sg */
4006 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4007 if (pad_buf) {
4008 struct scatterlist *psg = &qc->pad_sgent;
4009 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4010 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4011 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4012 }
4013 } else {
2e242fa9 4014 if (qc->n_elem)
2f1f610b 4015 dma_unmap_single(ap->dev,
e1410f2d
JG
4016 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4017 dir);
cedc9a47
JG
4018 /* restore sg */
4019 sg->length += qc->pad_len;
4020 if (pad_buf)
4021 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4022 pad_buf, qc->pad_len);
4023 }
1da177e4
LT
4024
4025 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4026 qc->__sg = NULL;
1da177e4
LT
4027}
4028
4029/**
4030 * ata_fill_sg - Fill PCI IDE PRD table
4031 * @qc: Metadata associated with taskfile to be transferred
4032 *
780a87f7
JG
4033 * Fill PCI IDE PRD (scatter-gather) table with segments
4034 * associated with the current disk command.
4035 *
1da177e4 4036 * LOCKING:
cca3974e 4037 * spin_lock_irqsave(host lock)
1da177e4
LT
4038 *
4039 */
4040static void ata_fill_sg(struct ata_queued_cmd *qc)
4041{
1da177e4 4042 struct ata_port *ap = qc->ap;
cedc9a47
JG
4043 struct scatterlist *sg;
4044 unsigned int idx;
1da177e4 4045
a4631474 4046 WARN_ON(qc->__sg == NULL);
f131883e 4047 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4048
4049 idx = 0;
cedc9a47 4050 ata_for_each_sg(sg, qc) {
1da177e4
LT
4051 u32 addr, offset;
4052 u32 sg_len, len;
4053
4054 /* determine if physical DMA addr spans 64K boundary.
4055 * Note h/w doesn't support 64-bit, so we unconditionally
4056 * truncate dma_addr_t to u32.
4057 */
4058 addr = (u32) sg_dma_address(sg);
4059 sg_len = sg_dma_len(sg);
4060
4061 while (sg_len) {
4062 offset = addr & 0xffff;
4063 len = sg_len;
4064 if ((offset + sg_len) > 0x10000)
4065 len = 0x10000 - offset;
4066
4067 ap->prd[idx].addr = cpu_to_le32(addr);
4068 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4069 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4070
4071 idx++;
4072 sg_len -= len;
4073 addr += len;
4074 }
4075 }
4076
4077 if (idx)
4078 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4079}
b9a4197e 4080
d26fc955
AC
4081/**
4082 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4083 * @qc: Metadata associated with taskfile to be transferred
4084 *
4085 * Fill PCI IDE PRD (scatter-gather) table with segments
4086 * associated with the current disk command. Perform the fill
4087 * so that we avoid writing any length 64K records for
4088 * controllers that don't follow the spec.
4089 *
4090 * LOCKING:
4091 * spin_lock_irqsave(host lock)
4092 *
4093 */
4094static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4095{
4096 struct ata_port *ap = qc->ap;
4097 struct scatterlist *sg;
4098 unsigned int idx;
4099
4100 WARN_ON(qc->__sg == NULL);
4101 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4102
4103 idx = 0;
4104 ata_for_each_sg(sg, qc) {
4105 u32 addr, offset;
4106 u32 sg_len, len, blen;
4107
4108 /* determine if physical DMA addr spans 64K boundary.
4109 * Note h/w doesn't support 64-bit, so we unconditionally
4110 * truncate dma_addr_t to u32.
4111 */
4112 addr = (u32) sg_dma_address(sg);
4113 sg_len = sg_dma_len(sg);
4114
4115 while (sg_len) {
4116 offset = addr & 0xffff;
4117 len = sg_len;
4118 if ((offset + sg_len) > 0x10000)
4119 len = 0x10000 - offset;
4120
4121 blen = len & 0xffff;
4122 ap->prd[idx].addr = cpu_to_le32(addr);
4123 if (blen == 0) {
4124 /* Some PATA chipsets like the CS5530 can't
4125 cope with 0x0000 meaning 64K as the spec says */
4126 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4127 blen = 0x8000;
4128 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4129 }
4130 ap->prd[idx].flags_len = cpu_to_le32(blen);
4131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4132
4133 idx++;
4134 sg_len -= len;
4135 addr += len;
4136 }
4137 }
4138
4139 if (idx)
4140 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4141}
4142
1da177e4
LT
4143/**
4144 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4145 * @qc: Metadata associated with taskfile to check
4146 *
780a87f7
JG
4147 * Allow low-level driver to filter ATA PACKET commands, returning
4148 * a status indicating whether or not it is OK to use DMA for the
4149 * supplied PACKET command.
4150 *
1da177e4 4151 * LOCKING:
cca3974e 4152 * spin_lock_irqsave(host lock)
0cba632b 4153 *
1da177e4
LT
4154 * RETURNS: 0 when ATAPI DMA can be used
4155 * nonzero otherwise
4156 */
4157int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4158{
4159 struct ata_port *ap = qc->ap;
b9a4197e
TH
4160
4161 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4162 * few ATAPI devices choke on such DMA requests.
4163 */
4164 if (unlikely(qc->nbytes & 15))
4165 return 1;
6f23a31d 4166
1da177e4 4167 if (ap->ops->check_atapi_dma)
b9a4197e 4168 return ap->ops->check_atapi_dma(qc);
1da177e4 4169
b9a4197e 4170 return 0;
1da177e4 4171}
b9a4197e 4172
1da177e4
LT
4173/**
4174 * ata_qc_prep - Prepare taskfile for submission
4175 * @qc: Metadata associated with taskfile to be prepared
4176 *
780a87f7
JG
4177 * Prepare ATA taskfile for submission.
4178 *
1da177e4 4179 * LOCKING:
cca3974e 4180 * spin_lock_irqsave(host lock)
1da177e4
LT
4181 */
4182void ata_qc_prep(struct ata_queued_cmd *qc)
4183{
4184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4185 return;
4186
4187 ata_fill_sg(qc);
4188}
4189
d26fc955
AC
4190/**
4191 * ata_dumb_qc_prep - Prepare taskfile for submission
4192 * @qc: Metadata associated with taskfile to be prepared
4193 *
4194 * Prepare ATA taskfile for submission.
4195 *
4196 * LOCKING:
4197 * spin_lock_irqsave(host lock)
4198 */
4199void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4200{
4201 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4202 return;
4203
4204 ata_fill_sg_dumb(qc);
4205}
4206
e46834cd
BK
4207void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4208
0cba632b
JG
4209/**
4210 * ata_sg_init_one - Associate command with memory buffer
4211 * @qc: Command to be associated
4212 * @buf: Memory buffer
4213 * @buflen: Length of memory buffer, in bytes.
4214 *
4215 * Initialize the data-related elements of queued_cmd @qc
4216 * to point to a single memory buffer, @buf of byte length @buflen.
4217 *
4218 * LOCKING:
cca3974e 4219 * spin_lock_irqsave(host lock)
0cba632b
JG
4220 */
4221
1da177e4
LT
4222void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4223{
1da177e4
LT
4224 qc->flags |= ATA_QCFLAG_SINGLE;
4225
cedc9a47 4226 qc->__sg = &qc->sgent;
1da177e4 4227 qc->n_elem = 1;
cedc9a47 4228 qc->orig_n_elem = 1;
1da177e4 4229 qc->buf_virt = buf;
233277ca 4230 qc->nbytes = buflen;
1da177e4 4231
61c0596c 4232 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4233}
4234
0cba632b
JG
4235/**
4236 * ata_sg_init - Associate command with scatter-gather table.
4237 * @qc: Command to be associated
4238 * @sg: Scatter-gather table.
4239 * @n_elem: Number of elements in s/g table.
4240 *
4241 * Initialize the data-related elements of queued_cmd @qc
4242 * to point to a scatter-gather table @sg, containing @n_elem
4243 * elements.
4244 *
4245 * LOCKING:
cca3974e 4246 * spin_lock_irqsave(host lock)
0cba632b
JG
4247 */
4248
1da177e4
LT
4249void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4250 unsigned int n_elem)
4251{
4252 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4253 qc->__sg = sg;
1da177e4 4254 qc->n_elem = n_elem;
cedc9a47 4255 qc->orig_n_elem = n_elem;
1da177e4
LT
4256}
4257
4258/**
0cba632b
JG
4259 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4260 * @qc: Command with memory buffer to be mapped.
4261 *
4262 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4263 *
4264 * LOCKING:
cca3974e 4265 * spin_lock_irqsave(host lock)
1da177e4
LT
4266 *
4267 * RETURNS:
0cba632b 4268 * Zero on success, negative on error.
1da177e4
LT
4269 */
4270
4271static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4272{
4273 struct ata_port *ap = qc->ap;
4274 int dir = qc->dma_dir;
cedc9a47 4275 struct scatterlist *sg = qc->__sg;
1da177e4 4276 dma_addr_t dma_address;
2e242fa9 4277 int trim_sg = 0;
1da177e4 4278
cedc9a47
JG
4279 /* we must lengthen transfers to end on a 32-bit boundary */
4280 qc->pad_len = sg->length & 3;
4281 if (qc->pad_len) {
4282 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4283 struct scatterlist *psg = &qc->pad_sgent;
4284
a4631474 4285 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4286
4287 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4288
4289 if (qc->tf.flags & ATA_TFLAG_WRITE)
4290 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4291 qc->pad_len);
4292
4293 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4294 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4295 /* trim sg */
4296 sg->length -= qc->pad_len;
2e242fa9
TH
4297 if (sg->length == 0)
4298 trim_sg = 1;
cedc9a47
JG
4299
4300 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4301 sg->length, qc->pad_len);
4302 }
4303
2e242fa9
TH
4304 if (trim_sg) {
4305 qc->n_elem--;
e1410f2d
JG
4306 goto skip_map;
4307 }
4308
2f1f610b 4309 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4310 sg->length, dir);
537a95d9
TH
4311 if (dma_mapping_error(dma_address)) {
4312 /* restore sg */
4313 sg->length += qc->pad_len;
1da177e4 4314 return -1;
537a95d9 4315 }
1da177e4
LT
4316
4317 sg_dma_address(sg) = dma_address;
32529e01 4318 sg_dma_len(sg) = sg->length;
1da177e4 4319
2e242fa9 4320skip_map:
1da177e4
LT
4321 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4322 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4323
4324 return 0;
4325}
4326
4327/**
0cba632b
JG
4328 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4329 * @qc: Command with scatter-gather table to be mapped.
4330 *
4331 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4332 *
4333 * LOCKING:
cca3974e 4334 * spin_lock_irqsave(host lock)
1da177e4
LT
4335 *
4336 * RETURNS:
0cba632b 4337 * Zero on success, negative on error.
1da177e4
LT
4338 *
4339 */
4340
4341static int ata_sg_setup(struct ata_queued_cmd *qc)
4342{
4343 struct ata_port *ap = qc->ap;
cedc9a47
JG
4344 struct scatterlist *sg = qc->__sg;
4345 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4346 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4347
44877b4e 4348 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4349 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4350
cedc9a47
JG
4351 /* we must lengthen transfers to end on a 32-bit boundary */
4352 qc->pad_len = lsg->length & 3;
4353 if (qc->pad_len) {
4354 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4355 struct scatterlist *psg = &qc->pad_sgent;
4356 unsigned int offset;
4357
a4631474 4358 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4359
4360 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4361
4362 /*
4363 * psg->page/offset are used to copy to-be-written
4364 * data in this function or read data in ata_sg_clean.
4365 */
4366 offset = lsg->offset + lsg->length - qc->pad_len;
4367 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4368 psg->offset = offset_in_page(offset);
4369
4370 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4371 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4372 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4373 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4374 }
4375
4376 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4377 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4378 /* trim last sg */
4379 lsg->length -= qc->pad_len;
e1410f2d
JG
4380 if (lsg->length == 0)
4381 trim_sg = 1;
cedc9a47
JG
4382
4383 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4384 qc->n_elem - 1, lsg->length, qc->pad_len);
4385 }
4386
e1410f2d
JG
4387 pre_n_elem = qc->n_elem;
4388 if (trim_sg && pre_n_elem)
4389 pre_n_elem--;
4390
4391 if (!pre_n_elem) {
4392 n_elem = 0;
4393 goto skip_map;
4394 }
4395
1da177e4 4396 dir = qc->dma_dir;
2f1f610b 4397 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4398 if (n_elem < 1) {
4399 /* restore last sg */
4400 lsg->length += qc->pad_len;
1da177e4 4401 return -1;
537a95d9 4402 }
1da177e4
LT
4403
4404 DPRINTK("%d sg elements mapped\n", n_elem);
4405
e1410f2d 4406skip_map:
1da177e4
LT
4407 qc->n_elem = n_elem;
4408
4409 return 0;
4410}
4411
0baab86b 4412/**
c893a3ae 4413 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4414 * @buf: Buffer to swap
4415 * @buf_words: Number of 16-bit words in buffer.
4416 *
4417 * Swap halves of 16-bit words if needed to convert from
4418 * little-endian byte order to native cpu byte order, or
4419 * vice-versa.
4420 *
4421 * LOCKING:
6f0ef4fa 4422 * Inherited from caller.
0baab86b 4423 */
1da177e4
LT
4424void swap_buf_le16(u16 *buf, unsigned int buf_words)
4425{
4426#ifdef __BIG_ENDIAN
4427 unsigned int i;
4428
4429 for (i = 0; i < buf_words; i++)
4430 buf[i] = le16_to_cpu(buf[i]);
4431#endif /* __BIG_ENDIAN */
4432}
4433
6ae4cfb5 4434/**
0d5ff566 4435 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4436 * @adev: device to target
6ae4cfb5
AL
4437 * @buf: data buffer
4438 * @buflen: buffer length
344babaa 4439 * @write_data: read/write
6ae4cfb5
AL
4440 *
4441 * Transfer data from/to the device data register by PIO.
4442 *
4443 * LOCKING:
4444 * Inherited from caller.
6ae4cfb5 4445 */
0d5ff566
TH
4446void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4447 unsigned int buflen, int write_data)
1da177e4 4448{
a6b2c5d4 4449 struct ata_port *ap = adev->ap;
6ae4cfb5 4450 unsigned int words = buflen >> 1;
1da177e4 4451
6ae4cfb5 4452 /* Transfer multiple of 2 bytes */
1da177e4 4453 if (write_data)
0d5ff566 4454 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4455 else
0d5ff566 4456 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4457
4458 /* Transfer trailing 1 byte, if any. */
4459 if (unlikely(buflen & 0x01)) {
4460 u16 align_buf[1] = { 0 };
4461 unsigned char *trailing_buf = buf + buflen - 1;
4462
4463 if (write_data) {
4464 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4465 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4466 } else {
0d5ff566 4467 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4468 memcpy(trailing_buf, align_buf, 1);
4469 }
4470 }
1da177e4
LT
4471}
4472
75e99585 4473/**
0d5ff566 4474 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4475 * @adev: device to target
4476 * @buf: data buffer
4477 * @buflen: buffer length
4478 * @write_data: read/write
4479 *
88574551 4480 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4481 * transfer with interrupts disabled.
4482 *
4483 * LOCKING:
4484 * Inherited from caller.
4485 */
0d5ff566
TH
4486void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4487 unsigned int buflen, int write_data)
75e99585
AC
4488{
4489 unsigned long flags;
4490 local_irq_save(flags);
0d5ff566 4491 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4492 local_irq_restore(flags);
4493}
4494
4495
6ae4cfb5 4496/**
5a5dbd18 4497 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4498 * @qc: Command on going
4499 *
5a5dbd18 4500 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4501 *
4502 * LOCKING:
4503 * Inherited from caller.
4504 */
4505
1da177e4
LT
4506static void ata_pio_sector(struct ata_queued_cmd *qc)
4507{
4508 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4509 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4510 struct ata_port *ap = qc->ap;
4511 struct page *page;
4512 unsigned int offset;
4513 unsigned char *buf;
4514
5a5dbd18 4515 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4516 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4517
4518 page = sg[qc->cursg].page;
726f0785 4519 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4520
4521 /* get the current page and offset */
4522 page = nth_page(page, (offset >> PAGE_SHIFT));
4523 offset %= PAGE_SIZE;
4524
1da177e4
LT
4525 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4526
91b8b313
AL
4527 if (PageHighMem(page)) {
4528 unsigned long flags;
4529
a6b2c5d4 4530 /* FIXME: use a bounce buffer */
91b8b313
AL
4531 local_irq_save(flags);
4532 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4533
91b8b313 4534 /* do the actual data transfer */
5a5dbd18 4535 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4536
91b8b313
AL
4537 kunmap_atomic(buf, KM_IRQ0);
4538 local_irq_restore(flags);
4539 } else {
4540 buf = page_address(page);
5a5dbd18 4541 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4542 }
1da177e4 4543
5a5dbd18
ML
4544 qc->curbytes += qc->sect_size;
4545 qc->cursg_ofs += qc->sect_size;
1da177e4 4546
726f0785 4547 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4548 qc->cursg++;
4549 qc->cursg_ofs = 0;
4550 }
1da177e4 4551}
1da177e4 4552
07f6f7d0 4553/**
5a5dbd18 4554 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4555 * @qc: Command on going
4556 *
5a5dbd18 4557 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4558 * ATA device for the DRQ request.
4559 *
4560 * LOCKING:
4561 * Inherited from caller.
4562 */
1da177e4 4563
07f6f7d0
AL
4564static void ata_pio_sectors(struct ata_queued_cmd *qc)
4565{
4566 if (is_multi_taskfile(&qc->tf)) {
4567 /* READ/WRITE MULTIPLE */
4568 unsigned int nsect;
4569
587005de 4570 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4571
5a5dbd18 4572 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4573 qc->dev->multi_count);
07f6f7d0
AL
4574 while (nsect--)
4575 ata_pio_sector(qc);
4576 } else
4577 ata_pio_sector(qc);
4578}
4579
c71c1857
AL
4580/**
4581 * atapi_send_cdb - Write CDB bytes to hardware
4582 * @ap: Port to which ATAPI device is attached.
4583 * @qc: Taskfile currently active
4584 *
4585 * When device has indicated its readiness to accept
4586 * a CDB, this function is called. Send the CDB.
4587 *
4588 * LOCKING:
4589 * caller.
4590 */
4591
4592static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4593{
4594 /* send SCSI cdb */
4595 DPRINTK("send cdb\n");
db024d53 4596 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4597
a6b2c5d4 4598 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4599 ata_altstatus(ap); /* flush */
4600
4601 switch (qc->tf.protocol) {
4602 case ATA_PROT_ATAPI:
4603 ap->hsm_task_state = HSM_ST;
4604 break;
4605 case ATA_PROT_ATAPI_NODATA:
4606 ap->hsm_task_state = HSM_ST_LAST;
4607 break;
4608 case ATA_PROT_ATAPI_DMA:
4609 ap->hsm_task_state = HSM_ST_LAST;
4610 /* initiate bmdma */
4611 ap->ops->bmdma_start(qc);
4612 break;
4613 }
1da177e4
LT
4614}
4615
6ae4cfb5
AL
4616/**
4617 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4618 * @qc: Command on going
4619 * @bytes: number of bytes
4620 *
4621 * Transfer Transfer data from/to the ATAPI device.
4622 *
4623 * LOCKING:
4624 * Inherited from caller.
4625 *
4626 */
4627
1da177e4
LT
4628static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4629{
4630 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4631 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4632 struct ata_port *ap = qc->ap;
4633 struct page *page;
4634 unsigned char *buf;
4635 unsigned int offset, count;
4636
563a6e1f 4637 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4638 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4639
4640next_sg:
563a6e1f 4641 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4642 /*
563a6e1f
AL
4643 * The end of qc->sg is reached and the device expects
4644 * more data to transfer. In order not to overrun qc->sg
4645 * and fulfill length specified in the byte count register,
4646 * - for read case, discard trailing data from the device
4647 * - for write case, padding zero data to the device
4648 */
4649 u16 pad_buf[1] = { 0 };
4650 unsigned int words = bytes >> 1;
4651 unsigned int i;
4652
4653 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4654 ata_dev_printk(qc->dev, KERN_WARNING,
4655 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4656
4657 for (i = 0; i < words; i++)
a6b2c5d4 4658 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4659
14be71f4 4660 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4661 return;
4662 }
4663
cedc9a47 4664 sg = &qc->__sg[qc->cursg];
1da177e4 4665
1da177e4
LT
4666 page = sg->page;
4667 offset = sg->offset + qc->cursg_ofs;
4668
4669 /* get the current page and offset */
4670 page = nth_page(page, (offset >> PAGE_SHIFT));
4671 offset %= PAGE_SIZE;
4672
6952df03 4673 /* don't overrun current sg */
32529e01 4674 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4675
4676 /* don't cross page boundaries */
4677 count = min(count, (unsigned int)PAGE_SIZE - offset);
4678
7282aa4b
AL
4679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4680
91b8b313
AL
4681 if (PageHighMem(page)) {
4682 unsigned long flags;
4683
a6b2c5d4 4684 /* FIXME: use bounce buffer */
91b8b313
AL
4685 local_irq_save(flags);
4686 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4687
91b8b313 4688 /* do the actual data transfer */
a6b2c5d4 4689 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4690
91b8b313
AL
4691 kunmap_atomic(buf, KM_IRQ0);
4692 local_irq_restore(flags);
4693 } else {
4694 buf = page_address(page);
a6b2c5d4 4695 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4696 }
1da177e4
LT
4697
4698 bytes -= count;
4699 qc->curbytes += count;
4700 qc->cursg_ofs += count;
4701
32529e01 4702 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4703 qc->cursg++;
4704 qc->cursg_ofs = 0;
4705 }
4706
563a6e1f 4707 if (bytes)
1da177e4 4708 goto next_sg;
1da177e4
LT
4709}
4710
6ae4cfb5
AL
4711/**
4712 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4713 * @qc: Command on going
4714 *
4715 * Transfer Transfer data from/to the ATAPI device.
4716 *
4717 * LOCKING:
4718 * Inherited from caller.
6ae4cfb5
AL
4719 */
4720
1da177e4
LT
4721static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4722{
4723 struct ata_port *ap = qc->ap;
4724 struct ata_device *dev = qc->dev;
4725 unsigned int ireason, bc_lo, bc_hi, bytes;
4726 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4727
eec4c3f3
AL
4728 /* Abuse qc->result_tf for temp storage of intermediate TF
4729 * here to save some kernel stack usage.
4730 * For normal completion, qc->result_tf is not relevant. For
4731 * error, qc->result_tf is later overwritten by ata_qc_complete().
4732 * So, the correctness of qc->result_tf is not affected.
4733 */
4734 ap->ops->tf_read(ap, &qc->result_tf);
4735 ireason = qc->result_tf.nsect;
4736 bc_lo = qc->result_tf.lbam;
4737 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4738 bytes = (bc_hi << 8) | bc_lo;
4739
4740 /* shall be cleared to zero, indicating xfer of data */
4741 if (ireason & (1 << 0))
4742 goto err_out;
4743
4744 /* make sure transfer direction matches expected */
4745 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4746 if (do_write != i_write)
4747 goto err_out;
4748
44877b4e 4749 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4750
1da177e4
LT
4751 __atapi_pio_bytes(qc, bytes);
4752
4753 return;
4754
4755err_out:
f15a1daf 4756 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4757 qc->err_mask |= AC_ERR_HSM;
14be71f4 4758 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4759}
4760
4761/**
c234fb00
AL
4762 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4763 * @ap: the target ata_port
4764 * @qc: qc on going
1da177e4 4765 *
c234fb00
AL
4766 * RETURNS:
4767 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4768 */
c234fb00
AL
4769
4770static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4771{
c234fb00
AL
4772 if (qc->tf.flags & ATA_TFLAG_POLLING)
4773 return 1;
1da177e4 4774
c234fb00
AL
4775 if (ap->hsm_task_state == HSM_ST_FIRST) {
4776 if (qc->tf.protocol == ATA_PROT_PIO &&
4777 (qc->tf.flags & ATA_TFLAG_WRITE))
4778 return 1;
1da177e4 4779
c234fb00
AL
4780 if (is_atapi_taskfile(&qc->tf) &&
4781 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4782 return 1;
fe79e683
AL
4783 }
4784
c234fb00
AL
4785 return 0;
4786}
1da177e4 4787
c17ea20d
TH
4788/**
4789 * ata_hsm_qc_complete - finish a qc running on standard HSM
4790 * @qc: Command to complete
4791 * @in_wq: 1 if called from workqueue, 0 otherwise
4792 *
4793 * Finish @qc which is running on standard HSM.
4794 *
4795 * LOCKING:
cca3974e 4796 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4797 * Otherwise, none on entry and grabs host lock.
4798 */
4799static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4800{
4801 struct ata_port *ap = qc->ap;
4802 unsigned long flags;
4803
4804 if (ap->ops->error_handler) {
4805 if (in_wq) {
ba6a1308 4806 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4807
cca3974e
JG
4808 /* EH might have kicked in while host lock is
4809 * released.
c17ea20d
TH
4810 */
4811 qc = ata_qc_from_tag(ap, qc->tag);
4812 if (qc) {
4813 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4814 ap->ops->irq_on(ap);
c17ea20d
TH
4815 ata_qc_complete(qc);
4816 } else
4817 ata_port_freeze(ap);
4818 }
4819
ba6a1308 4820 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4821 } else {
4822 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4823 ata_qc_complete(qc);
4824 else
4825 ata_port_freeze(ap);
4826 }
4827 } else {
4828 if (in_wq) {
ba6a1308 4829 spin_lock_irqsave(ap->lock, flags);
83625006 4830 ap->ops->irq_on(ap);
c17ea20d 4831 ata_qc_complete(qc);
ba6a1308 4832 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4833 } else
4834 ata_qc_complete(qc);
4835 }
4836}
4837
bb5cb290
AL
4838/**
4839 * ata_hsm_move - move the HSM to the next state.
4840 * @ap: the target ata_port
4841 * @qc: qc on going
4842 * @status: current device status
4843 * @in_wq: 1 if called from workqueue, 0 otherwise
4844 *
4845 * RETURNS:
4846 * 1 when poll next status needed, 0 otherwise.
4847 */
9a1004d0
TH
4848int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4849 u8 status, int in_wq)
e2cec771 4850{
bb5cb290
AL
4851 unsigned long flags = 0;
4852 int poll_next;
4853
6912ccd5
AL
4854 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4855
bb5cb290
AL
4856 /* Make sure ata_qc_issue_prot() does not throw things
4857 * like DMA polling into the workqueue. Notice that
4858 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4859 */
c234fb00 4860 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4861
e2cec771 4862fsm_start:
999bb6f4 4863 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4864 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4865
e2cec771
AL
4866 switch (ap->hsm_task_state) {
4867 case HSM_ST_FIRST:
bb5cb290
AL
4868 /* Send first data block or PACKET CDB */
4869
4870 /* If polling, we will stay in the work queue after
4871 * sending the data. Otherwise, interrupt handler
4872 * takes over after sending the data.
4873 */
4874 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4875
e2cec771 4876 /* check device status */
3655d1d3
AL
4877 if (unlikely((status & ATA_DRQ) == 0)) {
4878 /* handle BSY=0, DRQ=0 as error */
4879 if (likely(status & (ATA_ERR | ATA_DF)))
4880 /* device stops HSM for abort/error */
4881 qc->err_mask |= AC_ERR_DEV;
4882 else
4883 /* HSM violation. Let EH handle this */
4884 qc->err_mask |= AC_ERR_HSM;
4885
14be71f4 4886 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4887 goto fsm_start;
1da177e4
LT
4888 }
4889
71601958
AL
4890 /* Device should not ask for data transfer (DRQ=1)
4891 * when it finds something wrong.
eee6c32f
AL
4892 * We ignore DRQ here and stop the HSM by
4893 * changing hsm_task_state to HSM_ST_ERR and
4894 * let the EH abort the command or reset the device.
71601958
AL
4895 */
4896 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4897 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4898 "error, dev_stat 0x%X\n", status);
3655d1d3 4899 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4900 ap->hsm_task_state = HSM_ST_ERR;
4901 goto fsm_start;
71601958 4902 }
1da177e4 4903
bb5cb290
AL
4904 /* Send the CDB (atapi) or the first data block (ata pio out).
4905 * During the state transition, interrupt handler shouldn't
4906 * be invoked before the data transfer is complete and
4907 * hsm_task_state is changed. Hence, the following locking.
4908 */
4909 if (in_wq)
ba6a1308 4910 spin_lock_irqsave(ap->lock, flags);
1da177e4 4911
bb5cb290
AL
4912 if (qc->tf.protocol == ATA_PROT_PIO) {
4913 /* PIO data out protocol.
4914 * send first data block.
4915 */
0565c26d 4916
bb5cb290
AL
4917 /* ata_pio_sectors() might change the state
4918 * to HSM_ST_LAST. so, the state is changed here
4919 * before ata_pio_sectors().
4920 */
4921 ap->hsm_task_state = HSM_ST;
4922 ata_pio_sectors(qc);
4923 ata_altstatus(ap); /* flush */
4924 } else
4925 /* send CDB */
4926 atapi_send_cdb(ap, qc);
4927
4928 if (in_wq)
ba6a1308 4929 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4930
4931 /* if polling, ata_pio_task() handles the rest.
4932 * otherwise, interrupt handler takes over from here.
4933 */
e2cec771 4934 break;
1c848984 4935
e2cec771
AL
4936 case HSM_ST:
4937 /* complete command or read/write the data register */
4938 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4939 /* ATAPI PIO protocol */
4940 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4941 /* No more data to transfer or device error.
4942 * Device error will be tagged in HSM_ST_LAST.
4943 */
e2cec771
AL
4944 ap->hsm_task_state = HSM_ST_LAST;
4945 goto fsm_start;
4946 }
1da177e4 4947
71601958
AL
4948 /* Device should not ask for data transfer (DRQ=1)
4949 * when it finds something wrong.
eee6c32f
AL
4950 * We ignore DRQ here and stop the HSM by
4951 * changing hsm_task_state to HSM_ST_ERR and
4952 * let the EH abort the command or reset the device.
71601958
AL
4953 */
4954 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4955 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4956 "device error, dev_stat 0x%X\n",
4957 status);
3655d1d3 4958 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4959 ap->hsm_task_state = HSM_ST_ERR;
4960 goto fsm_start;
71601958 4961 }
1da177e4 4962
e2cec771 4963 atapi_pio_bytes(qc);
7fb6ec28 4964
e2cec771
AL
4965 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4966 /* bad ireason reported by device */
4967 goto fsm_start;
1da177e4 4968
e2cec771
AL
4969 } else {
4970 /* ATA PIO protocol */
4971 if (unlikely((status & ATA_DRQ) == 0)) {
4972 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4973 if (likely(status & (ATA_ERR | ATA_DF)))
4974 /* device stops HSM for abort/error */
4975 qc->err_mask |= AC_ERR_DEV;
4976 else
55a8e2c8
TH
4977 /* HSM violation. Let EH handle this.
4978 * Phantom devices also trigger this
4979 * condition. Mark hint.
4980 */
4981 qc->err_mask |= AC_ERR_HSM |
4982 AC_ERR_NODEV_HINT;
3655d1d3 4983
e2cec771
AL
4984 ap->hsm_task_state = HSM_ST_ERR;
4985 goto fsm_start;
4986 }
1da177e4 4987
eee6c32f
AL
4988 /* For PIO reads, some devices may ask for
4989 * data transfer (DRQ=1) alone with ERR=1.
4990 * We respect DRQ here and transfer one
4991 * block of junk data before changing the
4992 * hsm_task_state to HSM_ST_ERR.
4993 *
4994 * For PIO writes, ERR=1 DRQ=1 doesn't make
4995 * sense since the data block has been
4996 * transferred to the device.
71601958
AL
4997 */
4998 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4999 /* data might be corrputed */
5000 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5001
5002 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5003 ata_pio_sectors(qc);
5004 ata_altstatus(ap);
5005 status = ata_wait_idle(ap);
5006 }
5007
3655d1d3
AL
5008 if (status & (ATA_BUSY | ATA_DRQ))
5009 qc->err_mask |= AC_ERR_HSM;
5010
eee6c32f
AL
5011 /* ata_pio_sectors() might change the
5012 * state to HSM_ST_LAST. so, the state
5013 * is changed after ata_pio_sectors().
5014 */
5015 ap->hsm_task_state = HSM_ST_ERR;
5016 goto fsm_start;
71601958
AL
5017 }
5018
e2cec771
AL
5019 ata_pio_sectors(qc);
5020
5021 if (ap->hsm_task_state == HSM_ST_LAST &&
5022 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5023 /* all data read */
5024 ata_altstatus(ap);
52a32205 5025 status = ata_wait_idle(ap);
e2cec771
AL
5026 goto fsm_start;
5027 }
5028 }
5029
5030 ata_altstatus(ap); /* flush */
bb5cb290 5031 poll_next = 1;
1da177e4
LT
5032 break;
5033
14be71f4 5034 case HSM_ST_LAST:
6912ccd5
AL
5035 if (unlikely(!ata_ok(status))) {
5036 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5037 ap->hsm_task_state = HSM_ST_ERR;
5038 goto fsm_start;
5039 }
5040
5041 /* no more data to transfer */
4332a771 5042 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5043 ap->print_id, qc->dev->devno, status);
e2cec771 5044
6912ccd5
AL
5045 WARN_ON(qc->err_mask);
5046
e2cec771 5047 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5048
e2cec771 5049 /* complete taskfile transaction */
c17ea20d 5050 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5051
5052 poll_next = 0;
1da177e4
LT
5053 break;
5054
14be71f4 5055 case HSM_ST_ERR:
e2cec771
AL
5056 /* make sure qc->err_mask is available to
5057 * know what's wrong and recover
5058 */
5059 WARN_ON(qc->err_mask == 0);
5060
5061 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5062
999bb6f4 5063 /* complete taskfile transaction */
c17ea20d 5064 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5065
5066 poll_next = 0;
e2cec771
AL
5067 break;
5068 default:
bb5cb290 5069 poll_next = 0;
6912ccd5 5070 BUG();
1da177e4
LT
5071 }
5072
bb5cb290 5073 return poll_next;
1da177e4
LT
5074}
5075
65f27f38 5076static void ata_pio_task(struct work_struct *work)
8061f5f0 5077{
65f27f38
DH
5078 struct ata_port *ap =
5079 container_of(work, struct ata_port, port_task.work);
5080 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5081 u8 status;
a1af3734 5082 int poll_next;
8061f5f0 5083
7fb6ec28 5084fsm_start:
a1af3734 5085 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5086
a1af3734
AL
5087 /*
5088 * This is purely heuristic. This is a fast path.
5089 * Sometimes when we enter, BSY will be cleared in
5090 * a chk-status or two. If not, the drive is probably seeking
5091 * or something. Snooze for a couple msecs, then
5092 * chk-status again. If still busy, queue delayed work.
5093 */
5094 status = ata_busy_wait(ap, ATA_BUSY, 5);
5095 if (status & ATA_BUSY) {
5096 msleep(2);
5097 status = ata_busy_wait(ap, ATA_BUSY, 10);
5098 if (status & ATA_BUSY) {
31ce6dae 5099 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5100 return;
5101 }
8061f5f0
TH
5102 }
5103
a1af3734
AL
5104 /* move the HSM */
5105 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5106
a1af3734
AL
5107 /* another command or interrupt handler
5108 * may be running at this point.
5109 */
5110 if (poll_next)
7fb6ec28 5111 goto fsm_start;
8061f5f0
TH
5112}
5113
1da177e4
LT
5114/**
5115 * ata_qc_new - Request an available ATA command, for queueing
5116 * @ap: Port associated with device @dev
5117 * @dev: Device from whom we request an available command structure
5118 *
5119 * LOCKING:
0cba632b 5120 * None.
1da177e4
LT
5121 */
5122
5123static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5124{
5125 struct ata_queued_cmd *qc = NULL;
5126 unsigned int i;
5127
e3180499 5128 /* no command while frozen */
b51e9e5d 5129 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5130 return NULL;
5131
2ab7db1f
TH
5132 /* the last tag is reserved for internal command. */
5133 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5134 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5135 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5136 break;
5137 }
5138
5139 if (qc)
5140 qc->tag = i;
5141
5142 return qc;
5143}
5144
5145/**
5146 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5147 * @dev: Device from whom we request an available command structure
5148 *
5149 * LOCKING:
0cba632b 5150 * None.
1da177e4
LT
5151 */
5152
3373efd8 5153struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5154{
3373efd8 5155 struct ata_port *ap = dev->ap;
1da177e4
LT
5156 struct ata_queued_cmd *qc;
5157
5158 qc = ata_qc_new(ap);
5159 if (qc) {
1da177e4
LT
5160 qc->scsicmd = NULL;
5161 qc->ap = ap;
5162 qc->dev = dev;
1da177e4 5163
2c13b7ce 5164 ata_qc_reinit(qc);
1da177e4
LT
5165 }
5166
5167 return qc;
5168}
5169
1da177e4
LT
5170/**
5171 * ata_qc_free - free unused ata_queued_cmd
5172 * @qc: Command to complete
5173 *
5174 * Designed to free unused ata_queued_cmd object
5175 * in case something prevents using it.
5176 *
5177 * LOCKING:
cca3974e 5178 * spin_lock_irqsave(host lock)
1da177e4
LT
5179 */
5180void ata_qc_free(struct ata_queued_cmd *qc)
5181{
4ba946e9
TH
5182 struct ata_port *ap = qc->ap;
5183 unsigned int tag;
5184
a4631474 5185 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5186
4ba946e9
TH
5187 qc->flags = 0;
5188 tag = qc->tag;
5189 if (likely(ata_tag_valid(tag))) {
4ba946e9 5190 qc->tag = ATA_TAG_POISON;
6cec4a39 5191 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5192 }
1da177e4
LT
5193}
5194
76014427 5195void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5196{
dedaf2b0
TH
5197 struct ata_port *ap = qc->ap;
5198
a4631474
TH
5199 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5200 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5201
5202 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5203 ata_sg_clean(qc);
5204
7401abf2 5205 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5206 if (qc->tf.protocol == ATA_PROT_NCQ)
5207 ap->sactive &= ~(1 << qc->tag);
5208 else
5209 ap->active_tag = ATA_TAG_POISON;
7401abf2 5210
3f3791d3
AL
5211 /* atapi: mark qc as inactive to prevent the interrupt handler
5212 * from completing the command twice later, before the error handler
5213 * is called. (when rc != 0 and atapi request sense is needed)
5214 */
5215 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5216 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5217
1da177e4 5218 /* call completion callback */
77853bf2 5219 qc->complete_fn(qc);
1da177e4
LT
5220}
5221
39599a53
TH
5222static void fill_result_tf(struct ata_queued_cmd *qc)
5223{
5224 struct ata_port *ap = qc->ap;
5225
39599a53 5226 qc->result_tf.flags = qc->tf.flags;
4742d54f 5227 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5228}
5229
f686bcb8
TH
5230/**
5231 * ata_qc_complete - Complete an active ATA command
5232 * @qc: Command to complete
5233 * @err_mask: ATA Status register contents
5234 *
5235 * Indicate to the mid and upper layers that an ATA
5236 * command has completed, with either an ok or not-ok status.
5237 *
5238 * LOCKING:
cca3974e 5239 * spin_lock_irqsave(host lock)
f686bcb8
TH
5240 */
5241void ata_qc_complete(struct ata_queued_cmd *qc)
5242{
5243 struct ata_port *ap = qc->ap;
5244
5245 /* XXX: New EH and old EH use different mechanisms to
5246 * synchronize EH with regular execution path.
5247 *
5248 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5249 * Normal execution path is responsible for not accessing a
5250 * failed qc. libata core enforces the rule by returning NULL
5251 * from ata_qc_from_tag() for failed qcs.
5252 *
5253 * Old EH depends on ata_qc_complete() nullifying completion
5254 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5255 * not synchronize with interrupt handler. Only PIO task is
5256 * taken care of.
5257 */
5258 if (ap->ops->error_handler) {
b51e9e5d 5259 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5260
5261 if (unlikely(qc->err_mask))
5262 qc->flags |= ATA_QCFLAG_FAILED;
5263
5264 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5265 if (!ata_tag_internal(qc->tag)) {
5266 /* always fill result TF for failed qc */
39599a53 5267 fill_result_tf(qc);
f686bcb8
TH
5268 ata_qc_schedule_eh(qc);
5269 return;
5270 }
5271 }
5272
5273 /* read result TF if requested */
5274 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5275 fill_result_tf(qc);
f686bcb8
TH
5276
5277 __ata_qc_complete(qc);
5278 } else {
5279 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5280 return;
5281
5282 /* read result TF if failed or requested */
5283 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5284 fill_result_tf(qc);
f686bcb8
TH
5285
5286 __ata_qc_complete(qc);
5287 }
5288}
5289
dedaf2b0
TH
5290/**
5291 * ata_qc_complete_multiple - Complete multiple qcs successfully
5292 * @ap: port in question
5293 * @qc_active: new qc_active mask
5294 * @finish_qc: LLDD callback invoked before completing a qc
5295 *
5296 * Complete in-flight commands. This functions is meant to be
5297 * called from low-level driver's interrupt routine to complete
5298 * requests normally. ap->qc_active and @qc_active is compared
5299 * and commands are completed accordingly.
5300 *
5301 * LOCKING:
cca3974e 5302 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5303 *
5304 * RETURNS:
5305 * Number of completed commands on success, -errno otherwise.
5306 */
5307int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5308 void (*finish_qc)(struct ata_queued_cmd *))
5309{
5310 int nr_done = 0;
5311 u32 done_mask;
5312 int i;
5313
5314 done_mask = ap->qc_active ^ qc_active;
5315
5316 if (unlikely(done_mask & qc_active)) {
5317 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5318 "(%08x->%08x)\n", ap->qc_active, qc_active);
5319 return -EINVAL;
5320 }
5321
5322 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5323 struct ata_queued_cmd *qc;
5324
5325 if (!(done_mask & (1 << i)))
5326 continue;
5327
5328 if ((qc = ata_qc_from_tag(ap, i))) {
5329 if (finish_qc)
5330 finish_qc(qc);
5331 ata_qc_complete(qc);
5332 nr_done++;
5333 }
5334 }
5335
5336 return nr_done;
5337}
5338
1da177e4
LT
5339static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5340{
5341 struct ata_port *ap = qc->ap;
5342
5343 switch (qc->tf.protocol) {
3dc1d881 5344 case ATA_PROT_NCQ:
1da177e4
LT
5345 case ATA_PROT_DMA:
5346 case ATA_PROT_ATAPI_DMA:
5347 return 1;
5348
5349 case ATA_PROT_ATAPI:
5350 case ATA_PROT_PIO:
1da177e4
LT
5351 if (ap->flags & ATA_FLAG_PIO_DMA)
5352 return 1;
5353
5354 /* fall through */
5355
5356 default:
5357 return 0;
5358 }
5359
5360 /* never reached */
5361}
5362
5363/**
5364 * ata_qc_issue - issue taskfile to device
5365 * @qc: command to issue to device
5366 *
5367 * Prepare an ATA command to submission to device.
5368 * This includes mapping the data into a DMA-able
5369 * area, filling in the S/G table, and finally
5370 * writing the taskfile to hardware, starting the command.
5371 *
5372 * LOCKING:
cca3974e 5373 * spin_lock_irqsave(host lock)
1da177e4 5374 */
8e0e694a 5375void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5376{
5377 struct ata_port *ap = qc->ap;
5378
dedaf2b0
TH
5379 /* Make sure only one non-NCQ command is outstanding. The
5380 * check is skipped for old EH because it reuses active qc to
5381 * request ATAPI sense.
5382 */
5383 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5384
5385 if (qc->tf.protocol == ATA_PROT_NCQ) {
5386 WARN_ON(ap->sactive & (1 << qc->tag));
5387 ap->sactive |= 1 << qc->tag;
5388 } else {
5389 WARN_ON(ap->sactive);
5390 ap->active_tag = qc->tag;
5391 }
5392
e4a70e76 5393 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5394 ap->qc_active |= 1 << qc->tag;
e4a70e76 5395
1da177e4
LT
5396 if (ata_should_dma_map(qc)) {
5397 if (qc->flags & ATA_QCFLAG_SG) {
5398 if (ata_sg_setup(qc))
8e436af9 5399 goto sg_err;
1da177e4
LT
5400 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5401 if (ata_sg_setup_one(qc))
8e436af9 5402 goto sg_err;
1da177e4
LT
5403 }
5404 } else {
5405 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5406 }
5407
5408 ap->ops->qc_prep(qc);
5409
8e0e694a
TH
5410 qc->err_mask |= ap->ops->qc_issue(qc);
5411 if (unlikely(qc->err_mask))
5412 goto err;
5413 return;
1da177e4 5414
8e436af9
TH
5415sg_err:
5416 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5417 qc->err_mask |= AC_ERR_SYSTEM;
5418err:
5419 ata_qc_complete(qc);
1da177e4
LT
5420}
5421
5422/**
5423 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5424 * @qc: command to issue to device
5425 *
5426 * Using various libata functions and hooks, this function
5427 * starts an ATA command. ATA commands are grouped into
5428 * classes called "protocols", and issuing each type of protocol
5429 * is slightly different.
5430 *
0baab86b
EF
5431 * May be used as the qc_issue() entry in ata_port_operations.
5432 *
1da177e4 5433 * LOCKING:
cca3974e 5434 * spin_lock_irqsave(host lock)
1da177e4
LT
5435 *
5436 * RETURNS:
9a3d9eb0 5437 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5438 */
5439
9a3d9eb0 5440unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5441{
5442 struct ata_port *ap = qc->ap;
5443
e50362ec
AL
5444 /* Use polling pio if the LLD doesn't handle
5445 * interrupt driven pio and atapi CDB interrupt.
5446 */
5447 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5448 switch (qc->tf.protocol) {
5449 case ATA_PROT_PIO:
e3472cbe 5450 case ATA_PROT_NODATA:
e50362ec
AL
5451 case ATA_PROT_ATAPI:
5452 case ATA_PROT_ATAPI_NODATA:
5453 qc->tf.flags |= ATA_TFLAG_POLLING;
5454 break;
5455 case ATA_PROT_ATAPI_DMA:
5456 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5457 /* see ata_dma_blacklisted() */
e50362ec
AL
5458 BUG();
5459 break;
5460 default:
5461 break;
5462 }
5463 }
5464
312f7da2 5465 /* select the device */
1da177e4
LT
5466 ata_dev_select(ap, qc->dev->devno, 1, 0);
5467
312f7da2 5468 /* start the command */
1da177e4
LT
5469 switch (qc->tf.protocol) {
5470 case ATA_PROT_NODATA:
312f7da2
AL
5471 if (qc->tf.flags & ATA_TFLAG_POLLING)
5472 ata_qc_set_polling(qc);
5473
e5338254 5474 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5475 ap->hsm_task_state = HSM_ST_LAST;
5476
5477 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5478 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5479
1da177e4
LT
5480 break;
5481
5482 case ATA_PROT_DMA:
587005de 5483 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5484
1da177e4
LT
5485 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5486 ap->ops->bmdma_setup(qc); /* set up bmdma */
5487 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5488 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5489 break;
5490
312f7da2
AL
5491 case ATA_PROT_PIO:
5492 if (qc->tf.flags & ATA_TFLAG_POLLING)
5493 ata_qc_set_polling(qc);
1da177e4 5494
e5338254 5495 ata_tf_to_host(ap, &qc->tf);
312f7da2 5496
54f00389
AL
5497 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5498 /* PIO data out protocol */
5499 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5501
5502 /* always send first data block using
e27486db 5503 * the ata_pio_task() codepath.
54f00389 5504 */
312f7da2 5505 } else {
54f00389
AL
5506 /* PIO data in protocol */
5507 ap->hsm_task_state = HSM_ST;
5508
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5511
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5514 */
312f7da2
AL
5515 }
5516
1da177e4
LT
5517 break;
5518
1da177e4 5519 case ATA_PROT_ATAPI:
1da177e4 5520 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5521 if (qc->tf.flags & ATA_TFLAG_POLLING)
5522 ata_qc_set_polling(qc);
5523
e5338254 5524 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5525
312f7da2
AL
5526 ap->hsm_task_state = HSM_ST_FIRST;
5527
5528 /* send cdb by polling if no cdb interrupt */
5529 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5530 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5531 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5532 break;
5533
5534 case ATA_PROT_ATAPI_DMA:
587005de 5535 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5536
1da177e4
LT
5537 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5538 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5539 ap->hsm_task_state = HSM_ST_FIRST;
5540
5541 /* send cdb by polling if no cdb interrupt */
5542 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5543 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5544 break;
5545
5546 default:
5547 WARN_ON(1);
9a3d9eb0 5548 return AC_ERR_SYSTEM;
1da177e4
LT
5549 }
5550
5551 return 0;
5552}
5553
1da177e4
LT
5554/**
5555 * ata_host_intr - Handle host interrupt for given (port, task)
5556 * @ap: Port on which interrupt arrived (possibly...)
5557 * @qc: Taskfile currently active in engine
5558 *
5559 * Handle host interrupt for given queued command. Currently,
5560 * only DMA interrupts are handled. All other commands are
5561 * handled via polling with interrupts disabled (nIEN bit).
5562 *
5563 * LOCKING:
cca3974e 5564 * spin_lock_irqsave(host lock)
1da177e4
LT
5565 *
5566 * RETURNS:
5567 * One if interrupt was handled, zero if not (shared irq).
5568 */
5569
5570inline unsigned int ata_host_intr (struct ata_port *ap,
5571 struct ata_queued_cmd *qc)
5572{
ea54763f 5573 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5574 u8 status, host_stat = 0;
1da177e4 5575
312f7da2 5576 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5577 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5578
312f7da2
AL
5579 /* Check whether we are expecting interrupt in this state */
5580 switch (ap->hsm_task_state) {
5581 case HSM_ST_FIRST:
6912ccd5
AL
5582 /* Some pre-ATAPI-4 devices assert INTRQ
5583 * at this state when ready to receive CDB.
5584 */
1da177e4 5585
312f7da2
AL
5586 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5587 * The flag was turned on only for atapi devices.
5588 * No need to check is_atapi_taskfile(&qc->tf) again.
5589 */
5590 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5591 goto idle_irq;
1da177e4 5592 break;
312f7da2
AL
5593 case HSM_ST_LAST:
5594 if (qc->tf.protocol == ATA_PROT_DMA ||
5595 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5596 /* check status of DMA engine */
5597 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5598 VPRINTK("ata%u: host_stat 0x%X\n",
5599 ap->print_id, host_stat);
312f7da2
AL
5600
5601 /* if it's not our irq... */
5602 if (!(host_stat & ATA_DMA_INTR))
5603 goto idle_irq;
5604
5605 /* before we do anything else, clear DMA-Start bit */
5606 ap->ops->bmdma_stop(qc);
a4f16610
AL
5607
5608 if (unlikely(host_stat & ATA_DMA_ERR)) {
5609 /* error when transfering data to/from memory */
5610 qc->err_mask |= AC_ERR_HOST_BUS;
5611 ap->hsm_task_state = HSM_ST_ERR;
5612 }
312f7da2
AL
5613 }
5614 break;
5615 case HSM_ST:
5616 break;
1da177e4
LT
5617 default:
5618 goto idle_irq;
5619 }
5620
312f7da2
AL
5621 /* check altstatus */
5622 status = ata_altstatus(ap);
5623 if (status & ATA_BUSY)
5624 goto idle_irq;
1da177e4 5625
312f7da2
AL
5626 /* check main status, clearing INTRQ */
5627 status = ata_chk_status(ap);
5628 if (unlikely(status & ATA_BUSY))
5629 goto idle_irq;
1da177e4 5630
312f7da2
AL
5631 /* ack bmdma irq events */
5632 ap->ops->irq_clear(ap);
1da177e4 5633
bb5cb290 5634 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5635
5636 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5637 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5638 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5639
1da177e4
LT
5640 return 1; /* irq handled */
5641
5642idle_irq:
5643 ap->stats.idle_irq++;
5644
5645#ifdef ATA_IRQ_TRAP
5646 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5647 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5648 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5649 return 1;
1da177e4
LT
5650 }
5651#endif
5652 return 0; /* irq not handled */
5653}
5654
5655/**
5656 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5657 * @irq: irq line (unused)
cca3974e 5658 * @dev_instance: pointer to our ata_host information structure
1da177e4 5659 *
0cba632b
JG
5660 * Default interrupt handler for PCI IDE devices. Calls
5661 * ata_host_intr() for each port that is not disabled.
5662 *
1da177e4 5663 * LOCKING:
cca3974e 5664 * Obtains host lock during operation.
1da177e4
LT
5665 *
5666 * RETURNS:
0cba632b 5667 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5668 */
5669
7d12e780 5670irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5671{
cca3974e 5672 struct ata_host *host = dev_instance;
1da177e4
LT
5673 unsigned int i;
5674 unsigned int handled = 0;
5675 unsigned long flags;
5676
5677 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5678 spin_lock_irqsave(&host->lock, flags);
1da177e4 5679
cca3974e 5680 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5681 struct ata_port *ap;
5682
cca3974e 5683 ap = host->ports[i];
c1389503 5684 if (ap &&
029f5468 5685 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5686 struct ata_queued_cmd *qc;
5687
5688 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5689 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5690 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5691 handled |= ata_host_intr(ap, qc);
5692 }
5693 }
5694
cca3974e 5695 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5696
5697 return IRQ_RETVAL(handled);
5698}
5699
34bf2170
TH
5700/**
5701 * sata_scr_valid - test whether SCRs are accessible
5702 * @ap: ATA port to test SCR accessibility for
5703 *
5704 * Test whether SCRs are accessible for @ap.
5705 *
5706 * LOCKING:
5707 * None.
5708 *
5709 * RETURNS:
5710 * 1 if SCRs are accessible, 0 otherwise.
5711 */
5712int sata_scr_valid(struct ata_port *ap)
5713{
a16abc0b 5714 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5715}
5716
5717/**
5718 * sata_scr_read - read SCR register of the specified port
5719 * @ap: ATA port to read SCR for
5720 * @reg: SCR to read
5721 * @val: Place to store read value
5722 *
5723 * Read SCR register @reg of @ap into *@val. This function is
5724 * guaranteed to succeed if the cable type of the port is SATA
5725 * and the port implements ->scr_read.
5726 *
5727 * LOCKING:
5728 * None.
5729 *
5730 * RETURNS:
5731 * 0 on success, negative errno on failure.
5732 */
5733int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5734{
5735 if (sata_scr_valid(ap)) {
5736 *val = ap->ops->scr_read(ap, reg);
5737 return 0;
5738 }
5739 return -EOPNOTSUPP;
5740}
5741
5742/**
5743 * sata_scr_write - write SCR register of the specified port
5744 * @ap: ATA port to write SCR for
5745 * @reg: SCR to write
5746 * @val: value to write
5747 *
5748 * Write @val to SCR register @reg of @ap. This function is
5749 * guaranteed to succeed if the cable type of the port is SATA
5750 * and the port implements ->scr_read.
5751 *
5752 * LOCKING:
5753 * None.
5754 *
5755 * RETURNS:
5756 * 0 on success, negative errno on failure.
5757 */
5758int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5759{
5760 if (sata_scr_valid(ap)) {
5761 ap->ops->scr_write(ap, reg, val);
5762 return 0;
5763 }
5764 return -EOPNOTSUPP;
5765}
5766
5767/**
5768 * sata_scr_write_flush - write SCR register of the specified port and flush
5769 * @ap: ATA port to write SCR for
5770 * @reg: SCR to write
5771 * @val: value to write
5772 *
5773 * This function is identical to sata_scr_write() except that this
5774 * function performs flush after writing to the register.
5775 *
5776 * LOCKING:
5777 * None.
5778 *
5779 * RETURNS:
5780 * 0 on success, negative errno on failure.
5781 */
5782int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5783{
5784 if (sata_scr_valid(ap)) {
5785 ap->ops->scr_write(ap, reg, val);
5786 ap->ops->scr_read(ap, reg);
5787 return 0;
5788 }
5789 return -EOPNOTSUPP;
5790}
5791
5792/**
5793 * ata_port_online - test whether the given port is online
5794 * @ap: ATA port to test
5795 *
5796 * Test whether @ap is online. Note that this function returns 0
5797 * if online status of @ap cannot be obtained, so
5798 * ata_port_online(ap) != !ata_port_offline(ap).
5799 *
5800 * LOCKING:
5801 * None.
5802 *
5803 * RETURNS:
5804 * 1 if the port online status is available and online.
5805 */
5806int ata_port_online(struct ata_port *ap)
5807{
5808 u32 sstatus;
5809
5810 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5811 return 1;
5812 return 0;
5813}
5814
5815/**
5816 * ata_port_offline - test whether the given port is offline
5817 * @ap: ATA port to test
5818 *
5819 * Test whether @ap is offline. Note that this function returns
5820 * 0 if offline status of @ap cannot be obtained, so
5821 * ata_port_online(ap) != !ata_port_offline(ap).
5822 *
5823 * LOCKING:
5824 * None.
5825 *
5826 * RETURNS:
5827 * 1 if the port offline status is available and offline.
5828 */
5829int ata_port_offline(struct ata_port *ap)
5830{
5831 u32 sstatus;
5832
5833 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5834 return 1;
5835 return 0;
5836}
0baab86b 5837
77b08fb5 5838int ata_flush_cache(struct ata_device *dev)
9b847548 5839{
977e6b9f 5840 unsigned int err_mask;
9b847548
JA
5841 u8 cmd;
5842
5843 if (!ata_try_flush_cache(dev))
5844 return 0;
5845
6fc49adb 5846 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5847 cmd = ATA_CMD_FLUSH_EXT;
5848 else
5849 cmd = ATA_CMD_FLUSH;
5850
977e6b9f
TH
5851 err_mask = ata_do_simple_cmd(dev, cmd);
5852 if (err_mask) {
5853 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5854 return -EIO;
5855 }
5856
5857 return 0;
9b847548
JA
5858}
5859
6ffa01d8 5860#ifdef CONFIG_PM
cca3974e
JG
5861static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5862 unsigned int action, unsigned int ehi_flags,
5863 int wait)
500530f6
TH
5864{
5865 unsigned long flags;
5866 int i, rc;
5867
cca3974e
JG
5868 for (i = 0; i < host->n_ports; i++) {
5869 struct ata_port *ap = host->ports[i];
500530f6
TH
5870
5871 /* Previous resume operation might still be in
5872 * progress. Wait for PM_PENDING to clear.
5873 */
5874 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5875 ata_port_wait_eh(ap);
5876 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5877 }
5878
5879 /* request PM ops to EH */
5880 spin_lock_irqsave(ap->lock, flags);
5881
5882 ap->pm_mesg = mesg;
5883 if (wait) {
5884 rc = 0;
5885 ap->pm_result = &rc;
5886 }
5887
5888 ap->pflags |= ATA_PFLAG_PM_PENDING;
5889 ap->eh_info.action |= action;
5890 ap->eh_info.flags |= ehi_flags;
5891
5892 ata_port_schedule_eh(ap);
5893
5894 spin_unlock_irqrestore(ap->lock, flags);
5895
5896 /* wait and check result */
5897 if (wait) {
5898 ata_port_wait_eh(ap);
5899 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5900 if (rc)
5901 return rc;
5902 }
5903 }
5904
5905 return 0;
5906}
5907
5908/**
cca3974e
JG
5909 * ata_host_suspend - suspend host
5910 * @host: host to suspend
500530f6
TH
5911 * @mesg: PM message
5912 *
cca3974e 5913 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5914 * function requests EH to perform PM operations and waits for EH
5915 * to finish.
5916 *
5917 * LOCKING:
5918 * Kernel thread context (may sleep).
5919 *
5920 * RETURNS:
5921 * 0 on success, -errno on failure.
5922 */
cca3974e 5923int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5924{
9666f400 5925 int rc;
500530f6 5926
cca3974e 5927 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5928 if (rc == 0)
5929 host->dev->power.power_state = mesg;
500530f6
TH
5930 return rc;
5931}
5932
5933/**
cca3974e
JG
5934 * ata_host_resume - resume host
5935 * @host: host to resume
500530f6 5936 *
cca3974e 5937 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5938 * function requests EH to perform PM operations and returns.
5939 * Note that all resume operations are performed parallely.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep).
5943 */
cca3974e 5944void ata_host_resume(struct ata_host *host)
500530f6 5945{
cca3974e
JG
5946 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5947 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5948 host->dev->power.power_state = PMSG_ON;
500530f6 5949}
6ffa01d8 5950#endif
500530f6 5951
c893a3ae
RD
5952/**
5953 * ata_port_start - Set port up for dma.
5954 * @ap: Port to initialize
5955 *
5956 * Called just after data structures for each port are
5957 * initialized. Allocates space for PRD table.
5958 *
5959 * May be used as the port_start() entry in ata_port_operations.
5960 *
5961 * LOCKING:
5962 * Inherited from caller.
5963 */
f0d36efd 5964int ata_port_start(struct ata_port *ap)
1da177e4 5965{
2f1f610b 5966 struct device *dev = ap->dev;
6037d6bb 5967 int rc;
1da177e4 5968
f0d36efd
TH
5969 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5970 GFP_KERNEL);
1da177e4
LT
5971 if (!ap->prd)
5972 return -ENOMEM;
5973
6037d6bb 5974 rc = ata_pad_alloc(ap, dev);
f0d36efd 5975 if (rc)
6037d6bb 5976 return rc;
1da177e4 5977
f0d36efd
TH
5978 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5979 (unsigned long long)ap->prd_dma);
1da177e4
LT
5980 return 0;
5981}
5982
3ef3b43d
TH
5983/**
5984 * ata_dev_init - Initialize an ata_device structure
5985 * @dev: Device structure to initialize
5986 *
5987 * Initialize @dev in preparation for probing.
5988 *
5989 * LOCKING:
5990 * Inherited from caller.
5991 */
5992void ata_dev_init(struct ata_device *dev)
5993{
5994 struct ata_port *ap = dev->ap;
72fa4b74
TH
5995 unsigned long flags;
5996
5a04bf4b
TH
5997 /* SATA spd limit is bound to the first device */
5998 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5999
72fa4b74
TH
6000 /* High bits of dev->flags are used to record warm plug
6001 * requests which occur asynchronously. Synchronize using
cca3974e 6002 * host lock.
72fa4b74 6003 */
ba6a1308 6004 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6005 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6006 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6007
72fa4b74
TH
6008 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6009 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6010 dev->pio_mask = UINT_MAX;
6011 dev->mwdma_mask = UINT_MAX;
6012 dev->udma_mask = UINT_MAX;
6013}
6014
1da177e4 6015/**
f3187195
TH
6016 * ata_port_alloc - allocate and initialize basic ATA port resources
6017 * @host: ATA host this allocated port belongs to
1da177e4 6018 *
f3187195
TH
6019 * Allocate and initialize basic ATA port resources.
6020 *
6021 * RETURNS:
6022 * Allocate ATA port on success, NULL on failure.
0cba632b 6023 *
1da177e4 6024 * LOCKING:
f3187195 6025 * Inherited from calling layer (may sleep).
1da177e4 6026 */
f3187195 6027struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6028{
f3187195 6029 struct ata_port *ap;
1da177e4
LT
6030 unsigned int i;
6031
f3187195
TH
6032 DPRINTK("ENTER\n");
6033
6034 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6035 if (!ap)
6036 return NULL;
6037
f4d6d004 6038 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6039 ap->lock = &host->lock;
198e0fed 6040 ap->flags = ATA_FLAG_DISABLED;
f3187195 6041 ap->print_id = -1;
1da177e4 6042 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6043 ap->host = host;
f3187195
TH
6044 ap->dev = host->dev;
6045
5a04bf4b 6046 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6047 ap->active_tag = ATA_TAG_POISON;
6048 ap->last_ctl = 0xFF;
bd5d825c
BP
6049
6050#if defined(ATA_VERBOSE_DEBUG)
6051 /* turn on all debugging levels */
6052 ap->msg_enable = 0x00FF;
6053#elif defined(ATA_DEBUG)
6054 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6055#else
0dd4b21f 6056 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6057#endif
1da177e4 6058
65f27f38
DH
6059 INIT_DELAYED_WORK(&ap->port_task, NULL);
6060 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6061 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6062 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6063 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6064
838df628 6065 ap->cbl = ATA_CBL_NONE;
838df628 6066
acf356b1
TH
6067 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6068 struct ata_device *dev = &ap->device[i];
38d87234 6069 dev->ap = ap;
72fa4b74 6070 dev->devno = i;
3ef3b43d 6071 ata_dev_init(dev);
acf356b1 6072 }
1da177e4
LT
6073
6074#ifdef ATA_IRQ_TRAP
6075 ap->stats.unhandled_irq = 1;
6076 ap->stats.idle_irq = 1;
6077#endif
1da177e4 6078 return ap;
1da177e4
LT
6079}
6080
f0d36efd
TH
6081static void ata_host_release(struct device *gendev, void *res)
6082{
6083 struct ata_host *host = dev_get_drvdata(gendev);
6084 int i;
6085
6086 for (i = 0; i < host->n_ports; i++) {
6087 struct ata_port *ap = host->ports[i];
6088
ecef7253
TH
6089 if (!ap)
6090 continue;
6091
6092 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6093 ap->ops->port_stop(ap);
f0d36efd
TH
6094 }
6095
ecef7253 6096 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6097 host->ops->host_stop(host);
1aa56cca 6098
1aa506e4
TH
6099 for (i = 0; i < host->n_ports; i++) {
6100 struct ata_port *ap = host->ports[i];
6101
4911487a
TH
6102 if (!ap)
6103 continue;
6104
6105 if (ap->scsi_host)
1aa506e4
TH
6106 scsi_host_put(ap->scsi_host);
6107
4911487a 6108 kfree(ap);
1aa506e4
TH
6109 host->ports[i] = NULL;
6110 }
6111
1aa56cca 6112 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6113}
6114
f3187195
TH
6115/**
6116 * ata_host_alloc - allocate and init basic ATA host resources
6117 * @dev: generic device this host is associated with
6118 * @max_ports: maximum number of ATA ports associated with this host
6119 *
6120 * Allocate and initialize basic ATA host resources. LLD calls
6121 * this function to allocate a host, initializes it fully and
6122 * attaches it using ata_host_register().
6123 *
6124 * @max_ports ports are allocated and host->n_ports is
6125 * initialized to @max_ports. The caller is allowed to decrease
6126 * host->n_ports before calling ata_host_register(). The unused
6127 * ports will be automatically freed on registration.
6128 *
6129 * RETURNS:
6130 * Allocate ATA host on success, NULL on failure.
6131 *
6132 * LOCKING:
6133 * Inherited from calling layer (may sleep).
6134 */
6135struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6136{
6137 struct ata_host *host;
6138 size_t sz;
6139 int i;
6140
6141 DPRINTK("ENTER\n");
6142
6143 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6144 return NULL;
6145
6146 /* alloc a container for our list of ATA ports (buses) */
6147 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6148 /* alloc a container for our list of ATA ports (buses) */
6149 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6150 if (!host)
6151 goto err_out;
6152
6153 devres_add(dev, host);
6154 dev_set_drvdata(dev, host);
6155
6156 spin_lock_init(&host->lock);
6157 host->dev = dev;
6158 host->n_ports = max_ports;
6159
6160 /* allocate ports bound to this host */
6161 for (i = 0; i < max_ports; i++) {
6162 struct ata_port *ap;
6163
6164 ap = ata_port_alloc(host);
6165 if (!ap)
6166 goto err_out;
6167
6168 ap->port_no = i;
6169 host->ports[i] = ap;
6170 }
6171
6172 devres_remove_group(dev, NULL);
6173 return host;
6174
6175 err_out:
6176 devres_release_group(dev, NULL);
6177 return NULL;
6178}
6179
f5cda257
TH
6180/**
6181 * ata_host_alloc_pinfo - alloc host and init with port_info array
6182 * @dev: generic device this host is associated with
6183 * @ppi: array of ATA port_info to initialize host with
6184 * @n_ports: number of ATA ports attached to this host
6185 *
6186 * Allocate ATA host and initialize with info from @ppi. If NULL
6187 * terminated, @ppi may contain fewer entries than @n_ports. The
6188 * last entry will be used for the remaining ports.
6189 *
6190 * RETURNS:
6191 * Allocate ATA host on success, NULL on failure.
6192 *
6193 * LOCKING:
6194 * Inherited from calling layer (may sleep).
6195 */
6196struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6197 const struct ata_port_info * const * ppi,
6198 int n_ports)
6199{
6200 const struct ata_port_info *pi;
6201 struct ata_host *host;
6202 int i, j;
6203
6204 host = ata_host_alloc(dev, n_ports);
6205 if (!host)
6206 return NULL;
6207
6208 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6209 struct ata_port *ap = host->ports[i];
6210
6211 if (ppi[j])
6212 pi = ppi[j++];
6213
6214 ap->pio_mask = pi->pio_mask;
6215 ap->mwdma_mask = pi->mwdma_mask;
6216 ap->udma_mask = pi->udma_mask;
6217 ap->flags |= pi->flags;
6218 ap->ops = pi->port_ops;
6219
6220 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6221 host->ops = pi->port_ops;
6222 if (!host->private_data && pi->private_data)
6223 host->private_data = pi->private_data;
6224 }
6225
6226 return host;
6227}
6228
ecef7253
TH
6229/**
6230 * ata_host_start - start and freeze ports of an ATA host
6231 * @host: ATA host to start ports for
6232 *
6233 * Start and then freeze ports of @host. Started status is
6234 * recorded in host->flags, so this function can be called
6235 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6236 * once. If host->ops isn't initialized yet, its set to the
6237 * first non-dummy port ops.
ecef7253
TH
6238 *
6239 * LOCKING:
6240 * Inherited from calling layer (may sleep).
6241 *
6242 * RETURNS:
6243 * 0 if all ports are started successfully, -errno otherwise.
6244 */
6245int ata_host_start(struct ata_host *host)
6246{
6247 int i, rc;
6248
6249 if (host->flags & ATA_HOST_STARTED)
6250 return 0;
6251
6252 for (i = 0; i < host->n_ports; i++) {
6253 struct ata_port *ap = host->ports[i];
6254
f3187195
TH
6255 if (!host->ops && !ata_port_is_dummy(ap))
6256 host->ops = ap->ops;
6257
ecef7253
TH
6258 if (ap->ops->port_start) {
6259 rc = ap->ops->port_start(ap);
6260 if (rc) {
6261 ata_port_printk(ap, KERN_ERR, "failed to "
6262 "start port (errno=%d)\n", rc);
6263 goto err_out;
6264 }
6265 }
6266
6267 ata_eh_freeze_port(ap);
6268 }
6269
6270 host->flags |= ATA_HOST_STARTED;
6271 return 0;
6272
6273 err_out:
6274 while (--i >= 0) {
6275 struct ata_port *ap = host->ports[i];
6276
6277 if (ap->ops->port_stop)
6278 ap->ops->port_stop(ap);
6279 }
6280 return rc;
6281}
6282
b03732f0 6283/**
cca3974e
JG
6284 * ata_sas_host_init - Initialize a host struct
6285 * @host: host to initialize
6286 * @dev: device host is attached to
6287 * @flags: host flags
6288 * @ops: port_ops
b03732f0
BK
6289 *
6290 * LOCKING:
6291 * PCI/etc. bus probe sem.
6292 *
6293 */
f3187195 6294/* KILLME - the only user left is ipr */
cca3974e
JG
6295void ata_host_init(struct ata_host *host, struct device *dev,
6296 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6297{
cca3974e
JG
6298 spin_lock_init(&host->lock);
6299 host->dev = dev;
6300 host->flags = flags;
6301 host->ops = ops;
b03732f0
BK
6302}
6303
f3187195
TH
6304/**
6305 * ata_host_register - register initialized ATA host
6306 * @host: ATA host to register
6307 * @sht: template for SCSI host
6308 *
6309 * Register initialized ATA host. @host is allocated using
6310 * ata_host_alloc() and fully initialized by LLD. This function
6311 * starts ports, registers @host with ATA and SCSI layers and
6312 * probe registered devices.
6313 *
6314 * LOCKING:
6315 * Inherited from calling layer (may sleep).
6316 *
6317 * RETURNS:
6318 * 0 on success, -errno otherwise.
6319 */
6320int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6321{
6322 int i, rc;
6323
6324 /* host must have been started */
6325 if (!(host->flags & ATA_HOST_STARTED)) {
6326 dev_printk(KERN_ERR, host->dev,
6327 "BUG: trying to register unstarted host\n");
6328 WARN_ON(1);
6329 return -EINVAL;
6330 }
6331
6332 /* Blow away unused ports. This happens when LLD can't
6333 * determine the exact number of ports to allocate at
6334 * allocation time.
6335 */
6336 for (i = host->n_ports; host->ports[i]; i++)
6337 kfree(host->ports[i]);
6338
6339 /* give ports names and add SCSI hosts */
6340 for (i = 0; i < host->n_ports; i++)
6341 host->ports[i]->print_id = ata_print_id++;
6342
6343 rc = ata_scsi_add_hosts(host, sht);
6344 if (rc)
6345 return rc;
6346
fafbae87
TH
6347 /* associate with ACPI nodes */
6348 ata_acpi_associate(host);
6349
f3187195
TH
6350 /* set cable, sata_spd_limit and report */
6351 for (i = 0; i < host->n_ports; i++) {
6352 struct ata_port *ap = host->ports[i];
6353 int irq_line;
6354 u32 scontrol;
6355 unsigned long xfer_mask;
6356
6357 /* set SATA cable type if still unset */
6358 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6359 ap->cbl = ATA_CBL_SATA;
6360
6361 /* init sata_spd_limit to the current value */
6362 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6363 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6364 if (spd)
6365 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6366 }
6367 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6368
6369 /* report the secondary IRQ for second channel legacy */
6370 irq_line = host->irq;
6371 if (i == 1 && host->irq2)
6372 irq_line = host->irq2;
6373
6374 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6375 ap->udma_mask);
6376
6377 /* print per-port info to dmesg */
6378 if (!ata_port_is_dummy(ap))
6379 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6380 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6381 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6382 ata_mode_string(xfer_mask),
6383 ap->ioaddr.cmd_addr,
6384 ap->ioaddr.ctl_addr,
6385 ap->ioaddr.bmdma_addr,
6386 irq_line);
6387 else
6388 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6389 }
6390
6391 /* perform each probe synchronously */
6392 DPRINTK("probe begin\n");
6393 for (i = 0; i < host->n_ports; i++) {
6394 struct ata_port *ap = host->ports[i];
6395 int rc;
6396
6397 /* probe */
6398 if (ap->ops->error_handler) {
6399 struct ata_eh_info *ehi = &ap->eh_info;
6400 unsigned long flags;
6401
6402 ata_port_probe(ap);
6403
6404 /* kick EH for boot probing */
6405 spin_lock_irqsave(ap->lock, flags);
6406
6407 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6408 ehi->action |= ATA_EH_SOFTRESET;
6409 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6410
f4d6d004 6411 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6412 ap->pflags |= ATA_PFLAG_LOADING;
6413 ata_port_schedule_eh(ap);
6414
6415 spin_unlock_irqrestore(ap->lock, flags);
6416
6417 /* wait for EH to finish */
6418 ata_port_wait_eh(ap);
6419 } else {
6420 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6421 rc = ata_bus_probe(ap);
6422 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6423
6424 if (rc) {
6425 /* FIXME: do something useful here?
6426 * Current libata behavior will
6427 * tear down everything when
6428 * the module is removed
6429 * or the h/w is unplugged.
6430 */
6431 }
6432 }
6433 }
6434
6435 /* probes are done, now scan each port's disk(s) */
6436 DPRINTK("host probe begin\n");
6437 for (i = 0; i < host->n_ports; i++) {
6438 struct ata_port *ap = host->ports[i];
6439
6440 ata_scsi_scan_host(ap);
6441 }
6442
6443 return 0;
6444}
6445
f5cda257
TH
6446/**
6447 * ata_host_activate - start host, request IRQ and register it
6448 * @host: target ATA host
6449 * @irq: IRQ to request
6450 * @irq_handler: irq_handler used when requesting IRQ
6451 * @irq_flags: irq_flags used when requesting IRQ
6452 * @sht: scsi_host_template to use when registering the host
6453 *
6454 * After allocating an ATA host and initializing it, most libata
6455 * LLDs perform three steps to activate the host - start host,
6456 * request IRQ and register it. This helper takes necessasry
6457 * arguments and performs the three steps in one go.
6458 *
6459 * LOCKING:
6460 * Inherited from calling layer (may sleep).
6461 *
6462 * RETURNS:
6463 * 0 on success, -errno otherwise.
6464 */
6465int ata_host_activate(struct ata_host *host, int irq,
6466 irq_handler_t irq_handler, unsigned long irq_flags,
6467 struct scsi_host_template *sht)
6468{
6469 int rc;
6470
6471 rc = ata_host_start(host);
6472 if (rc)
6473 return rc;
6474
6475 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6476 dev_driver_string(host->dev), host);
6477 if (rc)
6478 return rc;
6479
4031826b
TH
6480 /* Used to print device info at probe */
6481 host->irq = irq;
6482
f5cda257
TH
6483 rc = ata_host_register(host, sht);
6484 /* if failed, just free the IRQ and leave ports alone */
6485 if (rc)
6486 devm_free_irq(host->dev, irq, host);
6487
6488 return rc;
6489}
6490
720ba126
TH
6491/**
6492 * ata_port_detach - Detach ATA port in prepration of device removal
6493 * @ap: ATA port to be detached
6494 *
6495 * Detach all ATA devices and the associated SCSI devices of @ap;
6496 * then, remove the associated SCSI host. @ap is guaranteed to
6497 * be quiescent on return from this function.
6498 *
6499 * LOCKING:
6500 * Kernel thread context (may sleep).
6501 */
6502void ata_port_detach(struct ata_port *ap)
6503{
6504 unsigned long flags;
6505 int i;
6506
6507 if (!ap->ops->error_handler)
c3cf30a9 6508 goto skip_eh;
720ba126
TH
6509
6510 /* tell EH we're leaving & flush EH */
ba6a1308 6511 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6512 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6513 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6514
6515 ata_port_wait_eh(ap);
6516
6517 /* EH is now guaranteed to see UNLOADING, so no new device
6518 * will be attached. Disable all existing devices.
6519 */
ba6a1308 6520 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6521
6522 for (i = 0; i < ATA_MAX_DEVICES; i++)
6523 ata_dev_disable(&ap->device[i]);
6524
ba6a1308 6525 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6526
6527 /* Final freeze & EH. All in-flight commands are aborted. EH
6528 * will be skipped and retrials will be terminated with bad
6529 * target.
6530 */
ba6a1308 6531 spin_lock_irqsave(ap->lock, flags);
720ba126 6532 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6533 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6534
6535 ata_port_wait_eh(ap);
45a66c1c 6536 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6537
c3cf30a9 6538 skip_eh:
720ba126 6539 /* remove the associated SCSI host */
cca3974e 6540 scsi_remove_host(ap->scsi_host);
720ba126
TH
6541}
6542
0529c159
TH
6543/**
6544 * ata_host_detach - Detach all ports of an ATA host
6545 * @host: Host to detach
6546 *
6547 * Detach all ports of @host.
6548 *
6549 * LOCKING:
6550 * Kernel thread context (may sleep).
6551 */
6552void ata_host_detach(struct ata_host *host)
6553{
6554 int i;
6555
6556 for (i = 0; i < host->n_ports; i++)
6557 ata_port_detach(host->ports[i]);
6558}
6559
1da177e4
LT
6560/**
6561 * ata_std_ports - initialize ioaddr with standard port offsets.
6562 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6563 *
6564 * Utility function which initializes data_addr, error_addr,
6565 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6566 * device_addr, status_addr, and command_addr to standard offsets
6567 * relative to cmd_addr.
6568 *
6569 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6570 */
0baab86b 6571
1da177e4
LT
6572void ata_std_ports(struct ata_ioports *ioaddr)
6573{
6574 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6575 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6576 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6577 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6578 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6579 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6580 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6581 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6582 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6583 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6584}
6585
0baab86b 6586
374b1873
JG
6587#ifdef CONFIG_PCI
6588
1da177e4
LT
6589/**
6590 * ata_pci_remove_one - PCI layer callback for device removal
6591 * @pdev: PCI device that was removed
6592 *
b878ca5d
TH
6593 * PCI layer indicates to libata via this hook that hot-unplug or
6594 * module unload event has occurred. Detach all ports. Resource
6595 * release is handled via devres.
1da177e4
LT
6596 *
6597 * LOCKING:
6598 * Inherited from PCI layer (may sleep).
6599 */
f0d36efd 6600void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6601{
6602 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6603 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6604
b878ca5d 6605 ata_host_detach(host);
1da177e4
LT
6606}
6607
6608/* move to PCI subsystem */
057ace5e 6609int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6610{
6611 unsigned long tmp = 0;
6612
6613 switch (bits->width) {
6614 case 1: {
6615 u8 tmp8 = 0;
6616 pci_read_config_byte(pdev, bits->reg, &tmp8);
6617 tmp = tmp8;
6618 break;
6619 }
6620 case 2: {
6621 u16 tmp16 = 0;
6622 pci_read_config_word(pdev, bits->reg, &tmp16);
6623 tmp = tmp16;
6624 break;
6625 }
6626 case 4: {
6627 u32 tmp32 = 0;
6628 pci_read_config_dword(pdev, bits->reg, &tmp32);
6629 tmp = tmp32;
6630 break;
6631 }
6632
6633 default:
6634 return -EINVAL;
6635 }
6636
6637 tmp &= bits->mask;
6638
6639 return (tmp == bits->val) ? 1 : 0;
6640}
9b847548 6641
6ffa01d8 6642#ifdef CONFIG_PM
3c5100c1 6643void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6644{
6645 pci_save_state(pdev);
4c90d971 6646 pci_disable_device(pdev);
500530f6 6647
4c90d971 6648 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6649 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6650}
6651
553c4aa6 6652int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6653{
553c4aa6
TH
6654 int rc;
6655
9b847548
JA
6656 pci_set_power_state(pdev, PCI_D0);
6657 pci_restore_state(pdev);
553c4aa6 6658
b878ca5d 6659 rc = pcim_enable_device(pdev);
553c4aa6
TH
6660 if (rc) {
6661 dev_printk(KERN_ERR, &pdev->dev,
6662 "failed to enable device after resume (%d)\n", rc);
6663 return rc;
6664 }
6665
9b847548 6666 pci_set_master(pdev);
553c4aa6 6667 return 0;
500530f6
TH
6668}
6669
3c5100c1 6670int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6671{
cca3974e 6672 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6673 int rc = 0;
6674
cca3974e 6675 rc = ata_host_suspend(host, mesg);
500530f6
TH
6676 if (rc)
6677 return rc;
6678
3c5100c1 6679 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6680
6681 return 0;
6682}
6683
6684int ata_pci_device_resume(struct pci_dev *pdev)
6685{
cca3974e 6686 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6687 int rc;
500530f6 6688
553c4aa6
TH
6689 rc = ata_pci_device_do_resume(pdev);
6690 if (rc == 0)
6691 ata_host_resume(host);
6692 return rc;
9b847548 6693}
6ffa01d8
TH
6694#endif /* CONFIG_PM */
6695
1da177e4
LT
6696#endif /* CONFIG_PCI */
6697
6698
1da177e4
LT
6699static int __init ata_init(void)
6700{
a8601e5f 6701 ata_probe_timeout *= HZ;
1da177e4
LT
6702 ata_wq = create_workqueue("ata");
6703 if (!ata_wq)
6704 return -ENOMEM;
6705
453b07ac
TH
6706 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6707 if (!ata_aux_wq) {
6708 destroy_workqueue(ata_wq);
6709 return -ENOMEM;
6710 }
6711
1da177e4
LT
6712 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6713 return 0;
6714}
6715
6716static void __exit ata_exit(void)
6717{
6718 destroy_workqueue(ata_wq);
453b07ac 6719 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6720}
6721
a4625085 6722subsys_initcall(ata_init);
1da177e4
LT
6723module_exit(ata_exit);
6724
67846b30 6725static unsigned long ratelimit_time;
34af946a 6726static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6727
6728int ata_ratelimit(void)
6729{
6730 int rc;
6731 unsigned long flags;
6732
6733 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6734
6735 if (time_after(jiffies, ratelimit_time)) {
6736 rc = 1;
6737 ratelimit_time = jiffies + (HZ/5);
6738 } else
6739 rc = 0;
6740
6741 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6742
6743 return rc;
6744}
6745
c22daff4
TH
6746/**
6747 * ata_wait_register - wait until register value changes
6748 * @reg: IO-mapped register
6749 * @mask: Mask to apply to read register value
6750 * @val: Wait condition
6751 * @interval_msec: polling interval in milliseconds
6752 * @timeout_msec: timeout in milliseconds
6753 *
6754 * Waiting for some bits of register to change is a common
6755 * operation for ATA controllers. This function reads 32bit LE
6756 * IO-mapped register @reg and tests for the following condition.
6757 *
6758 * (*@reg & mask) != val
6759 *
6760 * If the condition is met, it returns; otherwise, the process is
6761 * repeated after @interval_msec until timeout.
6762 *
6763 * LOCKING:
6764 * Kernel thread context (may sleep)
6765 *
6766 * RETURNS:
6767 * The final register value.
6768 */
6769u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6770 unsigned long interval_msec,
6771 unsigned long timeout_msec)
6772{
6773 unsigned long timeout;
6774 u32 tmp;
6775
6776 tmp = ioread32(reg);
6777
6778 /* Calculate timeout _after_ the first read to make sure
6779 * preceding writes reach the controller before starting to
6780 * eat away the timeout.
6781 */
6782 timeout = jiffies + (timeout_msec * HZ) / 1000;
6783
6784 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6785 msleep(interval_msec);
6786 tmp = ioread32(reg);
6787 }
6788
6789 return tmp;
6790}
6791
dd5b06c4
TH
6792/*
6793 * Dummy port_ops
6794 */
6795static void ata_dummy_noret(struct ata_port *ap) { }
6796static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6797static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6798
6799static u8 ata_dummy_check_status(struct ata_port *ap)
6800{
6801 return ATA_DRDY;
6802}
6803
6804static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6805{
6806 return AC_ERR_SYSTEM;
6807}
6808
6809const struct ata_port_operations ata_dummy_port_ops = {
6810 .port_disable = ata_port_disable,
6811 .check_status = ata_dummy_check_status,
6812 .check_altstatus = ata_dummy_check_status,
6813 .dev_select = ata_noop_dev_select,
6814 .qc_prep = ata_noop_qc_prep,
6815 .qc_issue = ata_dummy_qc_issue,
6816 .freeze = ata_dummy_noret,
6817 .thaw = ata_dummy_noret,
6818 .error_handler = ata_dummy_noret,
6819 .post_internal_cmd = ata_dummy_qc_noret,
6820 .irq_clear = ata_dummy_noret,
6821 .port_start = ata_dummy_ret0,
6822 .port_stop = ata_dummy_noret,
6823};
6824
21b0ad4f
TH
6825const struct ata_port_info ata_dummy_port_info = {
6826 .port_ops = &ata_dummy_port_ops,
6827};
6828
1da177e4
LT
6829/*
6830 * libata is essentially a library of internal helper functions for
6831 * low-level ATA host controller drivers. As such, the API/ABI is
6832 * likely to change as new drivers are added and updated.
6833 * Do not depend on ABI/API stability.
6834 */
6835
e9c83914
TH
6836EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6837EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6838EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6839EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6840EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6841EXPORT_SYMBOL_GPL(ata_std_bios_param);
6842EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6843EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6844EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6845EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6846EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6847EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6848EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6849EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6850EXPORT_SYMBOL_GPL(ata_sg_init);
6851EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6852EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6853EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6854EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6855EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6856EXPORT_SYMBOL_GPL(ata_tf_load);
6857EXPORT_SYMBOL_GPL(ata_tf_read);
6858EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6859EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6860EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6861EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6862EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6863EXPORT_SYMBOL_GPL(ata_check_status);
6864EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6865EXPORT_SYMBOL_GPL(ata_exec_command);
6866EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6867EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6868EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6869EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6870EXPORT_SYMBOL_GPL(ata_data_xfer);
6871EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6872EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6873EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6874EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6875EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6876EXPORT_SYMBOL_GPL(ata_bmdma_start);
6877EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6878EXPORT_SYMBOL_GPL(ata_bmdma_status);
6879EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6880EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6881EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6882EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6883EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6884EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6885EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6886EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6887EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6888EXPORT_SYMBOL_GPL(sata_phy_debounce);
6889EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6890EXPORT_SYMBOL_GPL(sata_phy_reset);
6891EXPORT_SYMBOL_GPL(__sata_phy_reset);
6892EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6893EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6894EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6895EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6896EXPORT_SYMBOL_GPL(sata_std_hardreset);
6897EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6898EXPORT_SYMBOL_GPL(ata_dev_classify);
6899EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6900EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6901EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6902EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6903EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6904EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6905EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6906EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6907EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6908EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6909EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6910EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6911EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6912EXPORT_SYMBOL_GPL(sata_scr_valid);
6913EXPORT_SYMBOL_GPL(sata_scr_read);
6914EXPORT_SYMBOL_GPL(sata_scr_write);
6915EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6916EXPORT_SYMBOL_GPL(ata_port_online);
6917EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6918#ifdef CONFIG_PM
cca3974e
JG
6919EXPORT_SYMBOL_GPL(ata_host_suspend);
6920EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6921#endif /* CONFIG_PM */
6a62a04d
TH
6922EXPORT_SYMBOL_GPL(ata_id_string);
6923EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6924EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6925EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6926
1bc4ccff 6927EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6928EXPORT_SYMBOL_GPL(ata_timing_compute);
6929EXPORT_SYMBOL_GPL(ata_timing_merge);
6930
1da177e4
LT
6931#ifdef CONFIG_PCI
6932EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6933EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6934EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6935EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6936EXPORT_SYMBOL_GPL(ata_pci_init_one);
6937EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6938#ifdef CONFIG_PM
500530f6
TH
6939EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6940EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6941EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6942EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6943#endif /* CONFIG_PM */
67951ade
AC
6944EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6945EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6946#endif /* CONFIG_PCI */
9b847548 6947
ece1d636 6948EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6949EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6950EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6951EXPORT_SYMBOL_GPL(ata_port_freeze);
6952EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6953EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6954EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6955EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6956EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6957EXPORT_SYMBOL_GPL(ata_irq_on);
6958EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6959EXPORT_SYMBOL_GPL(ata_irq_ack);
6960EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6961EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6962
6963EXPORT_SYMBOL_GPL(ata_cable_40wire);
6964EXPORT_SYMBOL_GPL(ata_cable_80wire);
6965EXPORT_SYMBOL_GPL(ata_cable_unknown);
6966EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.883102 seconds and 5 git commands to generate.