ata: ahci_brcmstb: disable DIPM support
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
140b5e59 69#include <linux/cdrom.h>
9990b6f3 70#include <linux/ratelimit.h>
9ee4f393 71#include <linux/pm_runtime.h>
b7db04d9 72#include <linux/platform_device.h>
1da177e4 73
255c03d1
HR
74#define CREATE_TRACE_POINTS
75#include <trace/events/libata.h>
76
1da177e4 77#include "libata.h"
d9027470 78#include "libata-transport.h"
fda0efc5 79
d7bb4cc7 80/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
81const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
82const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
83const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 84
029cfd6b 85const struct ata_port_operations ata_base_port_ops = {
0aa1113d 86 .prereset = ata_std_prereset,
203c75b8 87 .postreset = ata_std_postreset,
a1efdaba 88 .error_handler = ata_std_error_handler,
e4a9c373
DW
89 .sched_eh = ata_std_sched_eh,
90 .end_eh = ata_std_end_eh,
029cfd6b
TH
91};
92
93const struct ata_port_operations sata_port_ops = {
94 .inherits = &ata_base_port_ops,
95
96 .qc_defer = ata_std_qc_defer,
57c9efdf 97 .hardreset = sata_std_hardreset,
029cfd6b
TH
98};
99
3373efd8
TH
100static unsigned int ata_dev_init_params(struct ata_device *dev,
101 u16 heads, u16 sectors);
102static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
103static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 104static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 105
a78f57af 106atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 107
33267325
TH
108struct ata_force_param {
109 const char *name;
110 unsigned int cbl;
111 int spd_limit;
112 unsigned long xfer_mask;
113 unsigned int horkage_on;
114 unsigned int horkage_off;
05944bdf 115 unsigned int lflags;
33267325
TH
116};
117
118struct ata_force_ent {
119 int port;
120 int device;
121 struct ata_force_param param;
122};
123
124static struct ata_force_ent *ata_force_tbl;
125static int ata_force_tbl_size;
126
127static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
128/* param_buf is thrown away after initialization, disallow read */
129module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
130MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
131
2486fa56 132static int atapi_enabled = 1;
1623c81e 133module_param(atapi_enabled, int, 0444);
ad5d8eac 134MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 135
c5c61bda 136static int atapi_dmadir = 0;
95de719a 137module_param(atapi_dmadir, int, 0444);
ad5d8eac 138MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 139
baf4fdfa
ML
140int atapi_passthru16 = 1;
141module_param(atapi_passthru16, int, 0444);
ad5d8eac 142MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 143
c3c013a2
JG
144int libata_fua = 0;
145module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 146MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 147
2dcb407e 148static int ata_ignore_hpa;
1e999736
AC
149module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
150MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
151
b3a70601
AC
152static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
153module_param_named(dma, libata_dma_mask, int, 0444);
154MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
155
87fbc5a0 156static int ata_probe_timeout;
a8601e5f
AM
157module_param(ata_probe_timeout, int, 0444);
158MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
159
6ebe9d86 160int libata_noacpi = 0;
d7d0dad6 161module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 162MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 163
ae8d4ee7
AC
164int libata_allow_tpm = 0;
165module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 166MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 167
e7ecd435
TH
168static int atapi_an;
169module_param(atapi_an, int, 0444);
170MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
171
1da177e4
LT
172MODULE_AUTHOR("Jeff Garzik");
173MODULE_DESCRIPTION("Library module for ATA devices");
174MODULE_LICENSE("GPL");
175MODULE_VERSION(DRV_VERSION);
176
0baab86b 177
9913ff8a
TH
178static bool ata_sstatus_online(u32 sstatus)
179{
180 return (sstatus & 0xf) == 0x3;
181}
182
1eca4365
TH
183/**
184 * ata_link_next - link iteration helper
185 * @link: the previous link, NULL to start
186 * @ap: ATA port containing links to iterate
187 * @mode: iteration mode, one of ATA_LITER_*
188 *
189 * LOCKING:
190 * Host lock or EH context.
aadffb68 191 *
1eca4365
TH
192 * RETURNS:
193 * Pointer to the next link.
aadffb68 194 */
1eca4365
TH
195struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
196 enum ata_link_iter_mode mode)
aadffb68 197{
1eca4365
TH
198 BUG_ON(mode != ATA_LITER_EDGE &&
199 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
200
aadffb68 201 /* NULL link indicates start of iteration */
1eca4365
TH
202 if (!link)
203 switch (mode) {
204 case ATA_LITER_EDGE:
205 case ATA_LITER_PMP_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_HOST_FIRST:
210 return &ap->link;
211 }
aadffb68 212
1eca4365
TH
213 /* we just iterated over the host link, what's next? */
214 if (link == &ap->link)
215 switch (mode) {
216 case ATA_LITER_HOST_FIRST:
217 if (sata_pmp_attached(ap))
218 return ap->pmp_link;
219 /* fall through */
220 case ATA_LITER_PMP_FIRST:
221 if (unlikely(ap->slave_link))
b1c72916 222 return ap->slave_link;
1eca4365
TH
223 /* fall through */
224 case ATA_LITER_EDGE:
aadffb68 225 return NULL;
b1c72916 226 }
aadffb68 227
b1c72916
TH
228 /* slave_link excludes PMP */
229 if (unlikely(link == ap->slave_link))
230 return NULL;
231
1eca4365 232 /* we were over a PMP link */
aadffb68
TH
233 if (++link < ap->pmp_link + ap->nr_pmp_links)
234 return link;
1eca4365
TH
235
236 if (mode == ATA_LITER_PMP_FIRST)
237 return &ap->link;
238
aadffb68
TH
239 return NULL;
240}
241
1eca4365
TH
242/**
243 * ata_dev_next - device iteration helper
244 * @dev: the previous device, NULL to start
245 * @link: ATA link containing devices to iterate
246 * @mode: iteration mode, one of ATA_DITER_*
247 *
248 * LOCKING:
249 * Host lock or EH context.
250 *
251 * RETURNS:
252 * Pointer to the next device.
253 */
254struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
255 enum ata_dev_iter_mode mode)
256{
257 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
258 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
259
260 /* NULL dev indicates start of iteration */
261 if (!dev)
262 switch (mode) {
263 case ATA_DITER_ENABLED:
264 case ATA_DITER_ALL:
265 dev = link->device;
266 goto check;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 dev = link->device + ata_link_max_devices(link) - 1;
270 goto check;
271 }
272
273 next:
274 /* move to the next one */
275 switch (mode) {
276 case ATA_DITER_ENABLED:
277 case ATA_DITER_ALL:
278 if (++dev < link->device + ata_link_max_devices(link))
279 goto check;
280 return NULL;
281 case ATA_DITER_ENABLED_REVERSE:
282 case ATA_DITER_ALL_REVERSE:
283 if (--dev >= link->device)
284 goto check;
285 return NULL;
286 }
287
288 check:
289 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
290 !ata_dev_enabled(dev))
291 goto next;
292 return dev;
293}
294
b1c72916
TH
295/**
296 * ata_dev_phys_link - find physical link for a device
297 * @dev: ATA device to look up physical link for
298 *
299 * Look up physical link which @dev is attached to. Note that
300 * this is different from @dev->link only when @dev is on slave
301 * link. For all other cases, it's the same as @dev->link.
302 *
303 * LOCKING:
304 * Don't care.
305 *
306 * RETURNS:
307 * Pointer to the found physical link.
308 */
309struct ata_link *ata_dev_phys_link(struct ata_device *dev)
310{
311 struct ata_port *ap = dev->link->ap;
312
313 if (!ap->slave_link)
314 return dev->link;
315 if (!dev->devno)
316 return &ap->link;
317 return ap->slave_link;
318}
319
33267325
TH
320/**
321 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 322 * @ap: ATA port of interest
33267325
TH
323 *
324 * Force cable type according to libata.force and whine about it.
325 * The last entry which has matching port number is used, so it
326 * can be specified as part of device force parameters. For
327 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
328 * same effect.
329 *
330 * LOCKING:
331 * EH context.
332 */
333void ata_force_cbl(struct ata_port *ap)
334{
335 int i;
336
337 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
338 const struct ata_force_ent *fe = &ata_force_tbl[i];
339
340 if (fe->port != -1 && fe->port != ap->print_id)
341 continue;
342
343 if (fe->param.cbl == ATA_CBL_NONE)
344 continue;
345
346 ap->cbl = fe->param.cbl;
a9a79dfe 347 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
348 return;
349 }
350}
351
352/**
05944bdf 353 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
354 * @link: ATA link of interest
355 *
05944bdf
TH
356 * Force link flags and SATA spd limit according to libata.force
357 * and whine about it. When only the port part is specified
358 * (e.g. 1:), the limit applies to all links connected to both
359 * the host link and all fan-out ports connected via PMP. If the
360 * device part is specified as 0 (e.g. 1.00:), it specifies the
361 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
362 * points to the host link whether PMP is attached or not. If the
363 * controller has slave link, device number 16 points to it.
33267325
TH
364 *
365 * LOCKING:
366 * EH context.
367 */
05944bdf 368static void ata_force_link_limits(struct ata_link *link)
33267325 369{
05944bdf 370 bool did_spd = false;
b1c72916
TH
371 int linkno = link->pmp;
372 int i;
33267325
TH
373
374 if (ata_is_host_link(link))
b1c72916 375 linkno += 15;
33267325
TH
376
377 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
378 const struct ata_force_ent *fe = &ata_force_tbl[i];
379
380 if (fe->port != -1 && fe->port != link->ap->print_id)
381 continue;
382
383 if (fe->device != -1 && fe->device != linkno)
384 continue;
385
05944bdf
TH
386 /* only honor the first spd limit */
387 if (!did_spd && fe->param.spd_limit) {
388 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 389 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
390 fe->param.name);
391 did_spd = true;
392 }
33267325 393
05944bdf
TH
394 /* let lflags stack */
395 if (fe->param.lflags) {
396 link->flags |= fe->param.lflags;
a9a79dfe 397 ata_link_notice(link,
05944bdf
TH
398 "FORCE: link flag 0x%x forced -> 0x%x\n",
399 fe->param.lflags, link->flags);
400 }
33267325
TH
401 }
402}
403
404/**
405 * ata_force_xfermask - force xfermask according to libata.force
406 * @dev: ATA device of interest
407 *
408 * Force xfer_mask according to libata.force and whine about it.
409 * For consistency with link selection, device number 15 selects
410 * the first device connected to the host link.
411 *
412 * LOCKING:
413 * EH context.
414 */
415static void ata_force_xfermask(struct ata_device *dev)
416{
417 int devno = dev->link->pmp + dev->devno;
418 int alt_devno = devno;
419 int i;
420
b1c72916
TH
421 /* allow n.15/16 for devices attached to host port */
422 if (ata_is_host_link(dev->link))
423 alt_devno += 15;
33267325
TH
424
425 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
426 const struct ata_force_ent *fe = &ata_force_tbl[i];
427 unsigned long pio_mask, mwdma_mask, udma_mask;
428
429 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
430 continue;
431
432 if (fe->device != -1 && fe->device != devno &&
433 fe->device != alt_devno)
434 continue;
435
436 if (!fe->param.xfer_mask)
437 continue;
438
439 ata_unpack_xfermask(fe->param.xfer_mask,
440 &pio_mask, &mwdma_mask, &udma_mask);
441 if (udma_mask)
442 dev->udma_mask = udma_mask;
443 else if (mwdma_mask) {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = mwdma_mask;
446 } else {
447 dev->udma_mask = 0;
448 dev->mwdma_mask = 0;
449 dev->pio_mask = pio_mask;
450 }
451
a9a79dfe
JP
452 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
453 fe->param.name);
33267325
TH
454 return;
455 }
456}
457
458/**
459 * ata_force_horkage - force horkage according to libata.force
460 * @dev: ATA device of interest
461 *
462 * Force horkage according to libata.force and whine about it.
463 * For consistency with link selection, device number 15 selects
464 * the first device connected to the host link.
465 *
466 * LOCKING:
467 * EH context.
468 */
469static void ata_force_horkage(struct ata_device *dev)
470{
471 int devno = dev->link->pmp + dev->devno;
472 int alt_devno = devno;
473 int i;
474
b1c72916
TH
475 /* allow n.15/16 for devices attached to host port */
476 if (ata_is_host_link(dev->link))
477 alt_devno += 15;
33267325
TH
478
479 for (i = 0; i < ata_force_tbl_size; i++) {
480 const struct ata_force_ent *fe = &ata_force_tbl[i];
481
482 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
483 continue;
484
485 if (fe->device != -1 && fe->device != devno &&
486 fe->device != alt_devno)
487 continue;
488
489 if (!(~dev->horkage & fe->param.horkage_on) &&
490 !(dev->horkage & fe->param.horkage_off))
491 continue;
492
493 dev->horkage |= fe->param.horkage_on;
494 dev->horkage &= ~fe->param.horkage_off;
495
a9a79dfe
JP
496 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
497 fe->param.name);
33267325
TH
498 }
499}
500
436d34b3
TH
501/**
502 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
503 * @opcode: SCSI opcode
504 *
505 * Determine ATAPI command type from @opcode.
506 *
507 * LOCKING:
508 * None.
509 *
510 * RETURNS:
511 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
512 */
513int atapi_cmd_type(u8 opcode)
514{
515 switch (opcode) {
516 case GPCMD_READ_10:
517 case GPCMD_READ_12:
518 return ATAPI_READ;
519
520 case GPCMD_WRITE_10:
521 case GPCMD_WRITE_12:
522 case GPCMD_WRITE_AND_VERIFY_10:
523 return ATAPI_WRITE;
524
525 case GPCMD_READ_CD:
526 case GPCMD_READ_CD_MSF:
527 return ATAPI_READ_CD;
528
e52dcc48
TH
529 case ATA_16:
530 case ATA_12:
531 if (atapi_passthru16)
532 return ATAPI_PASS_THRU;
533 /* fall thru */
436d34b3
TH
534 default:
535 return ATAPI_MISC;
536 }
537}
538
1da177e4
LT
539/**
540 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
541 * @tf: Taskfile to convert
1da177e4 542 * @pmp: Port multiplier port
9977126c
TH
543 * @is_cmd: This FIS is for command
544 * @fis: Buffer into which data will output
1da177e4
LT
545 *
546 * Converts a standard ATA taskfile to a Serial ATA
547 * FIS structure (Register - Host to Device).
548 *
549 * LOCKING:
550 * Inherited from caller.
551 */
9977126c 552void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 553{
9977126c
TH
554 fis[0] = 0x27; /* Register - Host to Device FIS */
555 fis[1] = pmp & 0xf; /* Port multiplier number*/
556 if (is_cmd)
557 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
558
1da177e4
LT
559 fis[2] = tf->command;
560 fis[3] = tf->feature;
561
562 fis[4] = tf->lbal;
563 fis[5] = tf->lbam;
564 fis[6] = tf->lbah;
565 fis[7] = tf->device;
566
567 fis[8] = tf->hob_lbal;
568 fis[9] = tf->hob_lbam;
569 fis[10] = tf->hob_lbah;
570 fis[11] = tf->hob_feature;
571
572 fis[12] = tf->nsect;
573 fis[13] = tf->hob_nsect;
574 fis[14] = 0;
575 fis[15] = tf->ctl;
576
86a565e6
MC
577 fis[16] = tf->auxiliary & 0xff;
578 fis[17] = (tf->auxiliary >> 8) & 0xff;
579 fis[18] = (tf->auxiliary >> 16) & 0xff;
580 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
581}
582
583/**
584 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
585 * @fis: Buffer from which data will be input
586 * @tf: Taskfile to output
587 *
e12a1be6 588 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
589 *
590 * LOCKING:
591 * Inherited from caller.
592 */
593
057ace5e 594void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
595{
596 tf->command = fis[2]; /* status */
597 tf->feature = fis[3]; /* error */
598
599 tf->lbal = fis[4];
600 tf->lbam = fis[5];
601 tf->lbah = fis[6];
602 tf->device = fis[7];
603
604 tf->hob_lbal = fis[8];
605 tf->hob_lbam = fis[9];
606 tf->hob_lbah = fis[10];
607
608 tf->nsect = fis[12];
609 tf->hob_nsect = fis[13];
610}
611
8cbd6df1
AL
612static const u8 ata_rw_cmds[] = {
613 /* pio multi */
614 ATA_CMD_READ_MULTI,
615 ATA_CMD_WRITE_MULTI,
616 ATA_CMD_READ_MULTI_EXT,
617 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
618 0,
619 0,
620 0,
621 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
622 /* pio */
623 ATA_CMD_PIO_READ,
624 ATA_CMD_PIO_WRITE,
625 ATA_CMD_PIO_READ_EXT,
626 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
627 0,
628 0,
629 0,
630 0,
8cbd6df1
AL
631 /* dma */
632 ATA_CMD_READ,
633 ATA_CMD_WRITE,
634 ATA_CMD_READ_EXT,
9a3dccc4
TH
635 ATA_CMD_WRITE_EXT,
636 0,
637 0,
638 0,
639 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 640};
1da177e4
LT
641
642/**
8cbd6df1 643 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
644 * @tf: command to examine and configure
645 * @dev: device tf belongs to
1da177e4 646 *
2e9edbf8 647 * Examine the device configuration and tf->flags to calculate
8cbd6df1 648 * the proper read/write commands and protocol to use.
1da177e4
LT
649 *
650 * LOCKING:
651 * caller.
652 */
bd056d7e 653static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 654{
9a3dccc4 655 u8 cmd;
1da177e4 656
9a3dccc4 657 int index, fua, lba48, write;
2e9edbf8 658
9a3dccc4 659 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
660 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
661 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 662
8cbd6df1
AL
663 if (dev->flags & ATA_DFLAG_PIO) {
664 tf->protocol = ATA_PROT_PIO;
9a3dccc4 665 index = dev->multi_count ? 0 : 8;
9af5c9c9 666 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
667 /* Unable to use DMA due to host limitation */
668 tf->protocol = ATA_PROT_PIO;
0565c26d 669 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
670 } else {
671 tf->protocol = ATA_PROT_DMA;
9a3dccc4 672 index = 16;
8cbd6df1 673 }
1da177e4 674
9a3dccc4
TH
675 cmd = ata_rw_cmds[index + fua + lba48 + write];
676 if (cmd) {
677 tf->command = cmd;
678 return 0;
679 }
680 return -1;
1da177e4
LT
681}
682
35b649fe
TH
683/**
684 * ata_tf_read_block - Read block address from ATA taskfile
685 * @tf: ATA taskfile of interest
686 * @dev: ATA device @tf belongs to
687 *
688 * LOCKING:
689 * None.
690 *
691 * Read block address from @tf. This function can handle all
692 * three address formats - LBA, LBA48 and CHS. tf->protocol and
693 * flags select the address format to use.
694 *
695 * RETURNS:
696 * Block address read from @tf.
697 */
fe16d4f2 698u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
699{
700 u64 block = 0;
701
fe16d4f2 702 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
703 if (tf->flags & ATA_TFLAG_LBA48) {
704 block |= (u64)tf->hob_lbah << 40;
705 block |= (u64)tf->hob_lbam << 32;
44901a96 706 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
707 } else
708 block |= (tf->device & 0xf) << 24;
709
710 block |= tf->lbah << 16;
711 block |= tf->lbam << 8;
712 block |= tf->lbal;
713 } else {
714 u32 cyl, head, sect;
715
716 cyl = tf->lbam | (tf->lbah << 8);
717 head = tf->device & 0xf;
718 sect = tf->lbal;
719
ac8672ea 720 if (!sect) {
a9a79dfe
JP
721 ata_dev_warn(dev,
722 "device reported invalid CHS sector 0\n");
ac8672ea
TH
723 sect = 1; /* oh well */
724 }
725
726 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
727 }
728
729 return block;
730}
731
bd056d7e
TH
732/**
733 * ata_build_rw_tf - Build ATA taskfile for given read/write request
734 * @tf: Target ATA taskfile
735 * @dev: ATA device @tf belongs to
736 * @block: Block address
737 * @n_block: Number of blocks
738 * @tf_flags: RW/FUA etc...
739 * @tag: tag
740 *
741 * LOCKING:
742 * None.
743 *
744 * Build ATA taskfile @tf for read/write request described by
745 * @block, @n_block, @tf_flags and @tag on @dev.
746 *
747 * RETURNS:
748 *
749 * 0 on success, -ERANGE if the request is too large for @dev,
750 * -EINVAL if the request is invalid.
751 */
752int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
753 u64 block, u32 n_block, unsigned int tf_flags,
754 unsigned int tag)
755{
756 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
757 tf->flags |= tf_flags;
758
6d1245bf 759 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
760 /* yay, NCQ */
761 if (!lba_48_ok(block, n_block))
762 return -ERANGE;
763
764 tf->protocol = ATA_PROT_NCQ;
765 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
766
767 if (tf->flags & ATA_TFLAG_WRITE)
768 tf->command = ATA_CMD_FPDMA_WRITE;
769 else
770 tf->command = ATA_CMD_FPDMA_READ;
771
772 tf->nsect = tag << 3;
773 tf->hob_feature = (n_block >> 8) & 0xff;
774 tf->feature = n_block & 0xff;
775
776 tf->hob_lbah = (block >> 40) & 0xff;
777 tf->hob_lbam = (block >> 32) & 0xff;
778 tf->hob_lbal = (block >> 24) & 0xff;
779 tf->lbah = (block >> 16) & 0xff;
780 tf->lbam = (block >> 8) & 0xff;
781 tf->lbal = block & 0xff;
782
9ca7cfa4 783 tf->device = ATA_LBA;
bd056d7e
TH
784 if (tf->flags & ATA_TFLAG_FUA)
785 tf->device |= 1 << 7;
786 } else if (dev->flags & ATA_DFLAG_LBA) {
787 tf->flags |= ATA_TFLAG_LBA;
788
789 if (lba_28_ok(block, n_block)) {
790 /* use LBA28 */
791 tf->device |= (block >> 24) & 0xf;
792 } else if (lba_48_ok(block, n_block)) {
793 if (!(dev->flags & ATA_DFLAG_LBA48))
794 return -ERANGE;
795
796 /* use LBA48 */
797 tf->flags |= ATA_TFLAG_LBA48;
798
799 tf->hob_nsect = (n_block >> 8) & 0xff;
800
801 tf->hob_lbah = (block >> 40) & 0xff;
802 tf->hob_lbam = (block >> 32) & 0xff;
803 tf->hob_lbal = (block >> 24) & 0xff;
804 } else
805 /* request too large even for LBA48 */
806 return -ERANGE;
807
808 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
809 return -EINVAL;
810
811 tf->nsect = n_block & 0xff;
812
813 tf->lbah = (block >> 16) & 0xff;
814 tf->lbam = (block >> 8) & 0xff;
815 tf->lbal = block & 0xff;
816
817 tf->device |= ATA_LBA;
818 } else {
819 /* CHS */
820 u32 sect, head, cyl, track;
821
822 /* The request -may- be too large for CHS addressing. */
823 if (!lba_28_ok(block, n_block))
824 return -ERANGE;
825
826 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
827 return -EINVAL;
828
829 /* Convert LBA to CHS */
830 track = (u32)block / dev->sectors;
831 cyl = track / dev->heads;
832 head = track % dev->heads;
833 sect = (u32)block % dev->sectors + 1;
834
835 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
836 (u32)block, track, cyl, head, sect);
837
838 /* Check whether the converted CHS can fit.
839 Cylinder: 0-65535
840 Head: 0-15
841 Sector: 1-255*/
842 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
843 return -ERANGE;
844
845 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
846 tf->lbal = sect;
847 tf->lbam = cyl;
848 tf->lbah = cyl >> 8;
849 tf->device |= head;
850 }
851
852 return 0;
853}
854
cb95d562
TH
855/**
856 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
857 * @pio_mask: pio_mask
858 * @mwdma_mask: mwdma_mask
859 * @udma_mask: udma_mask
860 *
861 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
862 * unsigned int xfer_mask.
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
868 * Packed xfer_mask.
869 */
7dc951ae
TH
870unsigned long ata_pack_xfermask(unsigned long pio_mask,
871 unsigned long mwdma_mask,
872 unsigned long udma_mask)
cb95d562
TH
873{
874 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
875 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
876 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
877}
878
c0489e4e
TH
879/**
880 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
881 * @xfer_mask: xfer_mask to unpack
882 * @pio_mask: resulting pio_mask
883 * @mwdma_mask: resulting mwdma_mask
884 * @udma_mask: resulting udma_mask
885 *
886 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
887 * Any NULL distination masks will be ignored.
888 */
7dc951ae
TH
889void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
890 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
891{
892 if (pio_mask)
893 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
894 if (mwdma_mask)
895 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
896 if (udma_mask)
897 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
898}
899
cb95d562 900static const struct ata_xfer_ent {
be9a50c8 901 int shift, bits;
cb95d562
TH
902 u8 base;
903} ata_xfer_tbl[] = {
70cd071e
TH
904 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
905 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
906 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
907 { -1, },
908};
909
910/**
911 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
912 * @xfer_mask: xfer_mask of interest
913 *
914 * Return matching XFER_* value for @xfer_mask. Only the highest
915 * bit of @xfer_mask is considered.
916 *
917 * LOCKING:
918 * None.
919 *
920 * RETURNS:
70cd071e 921 * Matching XFER_* value, 0xff if no match found.
cb95d562 922 */
7dc951ae 923u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
924{
925 int highbit = fls(xfer_mask) - 1;
926 const struct ata_xfer_ent *ent;
927
928 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
929 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
930 return ent->base + highbit - ent->shift;
70cd071e 931 return 0xff;
cb95d562
TH
932}
933
934/**
935 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
936 * @xfer_mode: XFER_* of interest
937 *
938 * Return matching xfer_mask for @xfer_mode.
939 *
940 * LOCKING:
941 * None.
942 *
943 * RETURNS:
944 * Matching xfer_mask, 0 if no match found.
945 */
7dc951ae 946unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
947{
948 const struct ata_xfer_ent *ent;
949
950 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
951 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
952 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
953 & ~((1 << ent->shift) - 1);
cb95d562
TH
954 return 0;
955}
956
957/**
958 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
959 * @xfer_mode: XFER_* of interest
960 *
961 * Return matching xfer_shift for @xfer_mode.
962 *
963 * LOCKING:
964 * None.
965 *
966 * RETURNS:
967 * Matching xfer_shift, -1 if no match found.
968 */
7dc951ae 969int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
970{
971 const struct ata_xfer_ent *ent;
972
973 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
974 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
975 return ent->shift;
976 return -1;
977}
978
1da177e4 979/**
1da7b0d0
TH
980 * ata_mode_string - convert xfer_mask to string
981 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
982 *
983 * Determine string which represents the highest speed
1da7b0d0 984 * (highest bit in @modemask).
1da177e4
LT
985 *
986 * LOCKING:
987 * None.
988 *
989 * RETURNS:
990 * Constant C string representing highest speed listed in
1da7b0d0 991 * @mode_mask, or the constant C string "<n/a>".
1da177e4 992 */
7dc951ae 993const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 994{
75f554bc
TH
995 static const char * const xfer_mode_str[] = {
996 "PIO0",
997 "PIO1",
998 "PIO2",
999 "PIO3",
1000 "PIO4",
b352e57d
AC
1001 "PIO5",
1002 "PIO6",
75f554bc
TH
1003 "MWDMA0",
1004 "MWDMA1",
1005 "MWDMA2",
b352e57d
AC
1006 "MWDMA3",
1007 "MWDMA4",
75f554bc
TH
1008 "UDMA/16",
1009 "UDMA/25",
1010 "UDMA/33",
1011 "UDMA/44",
1012 "UDMA/66",
1013 "UDMA/100",
1014 "UDMA/133",
1015 "UDMA7",
1016 };
1da7b0d0 1017 int highbit;
1da177e4 1018
1da7b0d0
TH
1019 highbit = fls(xfer_mask) - 1;
1020 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1021 return xfer_mode_str[highbit];
1da177e4 1022 return "<n/a>";
1da177e4
LT
1023}
1024
d9027470 1025const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1026{
1027 static const char * const spd_str[] = {
1028 "1.5 Gbps",
1029 "3.0 Gbps",
8522ee25 1030 "6.0 Gbps",
4c360c81
TH
1031 };
1032
1033 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1034 return "<unknown>";
1035 return spd_str[spd - 1];
1036}
1037
1da177e4
LT
1038/**
1039 * ata_dev_classify - determine device type based on ATA-spec signature
1040 * @tf: ATA taskfile register set for device to be identified
1041 *
1042 * Determine from taskfile register contents whether a device is
1043 * ATA or ATAPI, as per "Signature and persistence" section
1044 * of ATA/PI spec (volume 1, sect 5.14).
1045 *
1046 * LOCKING:
1047 * None.
1048 *
1049 * RETURNS:
9162c657
HR
1050 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1051 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1052 */
057ace5e 1053unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1054{
1055 /* Apple's open source Darwin code hints that some devices only
1056 * put a proper signature into the LBA mid/high registers,
1057 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1058 *
1059 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1060 * signatures for ATA and ATAPI devices attached on SerialATA,
1061 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1062 * spec has never mentioned about using different signatures
1063 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1064 * Multiplier specification began to use 0x69/0x96 to identify
1065 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1066 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1067 * 0x69/0x96 shortly and described them as reserved for
1068 * SerialATA.
1069 *
1070 * We follow the current spec and consider that 0x69/0x96
1071 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1072 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1073 * SEMB signature. This is worked around in
1074 * ata_dev_read_id().
1da177e4 1075 */
633273a3 1076 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1077 DPRINTK("found ATA device by sig\n");
1078 return ATA_DEV_ATA;
1079 }
1080
633273a3 1081 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1082 DPRINTK("found ATAPI device by sig\n");
1083 return ATA_DEV_ATAPI;
1084 }
1085
633273a3
TH
1086 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1087 DPRINTK("found PMP device by sig\n");
1088 return ATA_DEV_PMP;
1089 }
1090
1091 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1092 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1093 return ATA_DEV_SEMB;
633273a3
TH
1094 }
1095
9162c657
HR
1096 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1097 DPRINTK("found ZAC device by sig\n");
1098 return ATA_DEV_ZAC;
1099 }
1100
1da177e4
LT
1101 DPRINTK("unknown device\n");
1102 return ATA_DEV_UNKNOWN;
1103}
1104
1da177e4 1105/**
6a62a04d 1106 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1107 * @id: IDENTIFY DEVICE results we will examine
1108 * @s: string into which data is output
1109 * @ofs: offset into identify device page
1110 * @len: length of string to return. must be an even number.
1111 *
1112 * The strings in the IDENTIFY DEVICE page are broken up into
1113 * 16-bit chunks. Run through the string, and output each
1114 * 8-bit chunk linearly, regardless of platform.
1115 *
1116 * LOCKING:
1117 * caller.
1118 */
1119
6a62a04d
TH
1120void ata_id_string(const u16 *id, unsigned char *s,
1121 unsigned int ofs, unsigned int len)
1da177e4
LT
1122{
1123 unsigned int c;
1124
963e4975
AC
1125 BUG_ON(len & 1);
1126
1da177e4
LT
1127 while (len > 0) {
1128 c = id[ofs] >> 8;
1129 *s = c;
1130 s++;
1131
1132 c = id[ofs] & 0xff;
1133 *s = c;
1134 s++;
1135
1136 ofs++;
1137 len -= 2;
1138 }
1139}
1140
0e949ff3 1141/**
6a62a04d 1142 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1143 * @id: IDENTIFY DEVICE results we will examine
1144 * @s: string into which data is output
1145 * @ofs: offset into identify device page
1146 * @len: length of string to return. must be an odd number.
1147 *
6a62a04d 1148 * This function is identical to ata_id_string except that it
0e949ff3
TH
1149 * trims trailing spaces and terminates the resulting string with
1150 * null. @len must be actual maximum length (even number) + 1.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
6a62a04d
TH
1155void ata_id_c_string(const u16 *id, unsigned char *s,
1156 unsigned int ofs, unsigned int len)
0e949ff3
TH
1157{
1158 unsigned char *p;
1159
6a62a04d 1160 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1161
1162 p = s + strnlen(s, len - 1);
1163 while (p > s && p[-1] == ' ')
1164 p--;
1165 *p = '\0';
1166}
0baab86b 1167
db6f8759
TH
1168static u64 ata_id_n_sectors(const u16 *id)
1169{
1170 if (ata_id_has_lba(id)) {
1171 if (ata_id_has_lba48(id))
968e594a 1172 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1173 else
968e594a 1174 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1175 } else {
1176 if (ata_id_current_chs_valid(id))
968e594a
RH
1177 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1178 id[ATA_ID_CUR_SECTORS];
db6f8759 1179 else
968e594a
RH
1180 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1181 id[ATA_ID_SECTORS];
db6f8759
TH
1182 }
1183}
1184
a5987e0a 1185u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1186{
1187 u64 sectors = 0;
1188
1189 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1190 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1191 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1195
a5987e0a 1196 return sectors;
1e999736
AC
1197}
1198
a5987e0a 1199u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1200{
1201 u64 sectors = 0;
1202
1203 sectors |= (tf->device & 0x0f) << 24;
1204 sectors |= (tf->lbah & 0xff) << 16;
1205 sectors |= (tf->lbam & 0xff) << 8;
1206 sectors |= (tf->lbal & 0xff);
1207
a5987e0a 1208 return sectors;
1e999736
AC
1209}
1210
1211/**
c728a914
TH
1212 * ata_read_native_max_address - Read native max address
1213 * @dev: target device
1214 * @max_sectors: out parameter for the result native max address
1e999736 1215 *
c728a914
TH
1216 * Perform an LBA48 or LBA28 native size query upon the device in
1217 * question.
1e999736 1218 *
c728a914
TH
1219 * RETURNS:
1220 * 0 on success, -EACCES if command is aborted by the drive.
1221 * -EIO on other errors.
1e999736 1222 */
c728a914 1223static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1224{
c728a914 1225 unsigned int err_mask;
1e999736 1226 struct ata_taskfile tf;
c728a914 1227 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1228
1229 ata_tf_init(dev, &tf);
1230
c728a914 1231 /* always clear all address registers */
1e999736 1232 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1233
c728a914
TH
1234 if (lba48) {
1235 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1236 tf.flags |= ATA_TFLAG_LBA48;
1237 } else
1238 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1239
1e999736 1240 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1241 tf.device |= ATA_LBA;
1242
2b789108 1243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1244 if (err_mask) {
a9a79dfe
JP
1245 ata_dev_warn(dev,
1246 "failed to read native max address (err_mask=0x%x)\n",
1247 err_mask);
c728a914
TH
1248 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1249 return -EACCES;
1250 return -EIO;
1251 }
1e999736 1252
c728a914 1253 if (lba48)
a5987e0a 1254 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1255 else
a5987e0a 1256 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1257 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1258 (*max_sectors)--;
c728a914 1259 return 0;
1e999736
AC
1260}
1261
1262/**
c728a914
TH
1263 * ata_set_max_sectors - Set max sectors
1264 * @dev: target device
6b38d1d1 1265 * @new_sectors: new max sectors value to set for the device
1e999736 1266 *
c728a914
TH
1267 * Set max sectors of @dev to @new_sectors.
1268 *
1269 * RETURNS:
1270 * 0 on success, -EACCES if command is aborted or denied (due to
1271 * previous non-volatile SET_MAX) by the drive. -EIO on other
1272 * errors.
1e999736 1273 */
05027adc 1274static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1275{
c728a914 1276 unsigned int err_mask;
1e999736 1277 struct ata_taskfile tf;
c728a914 1278 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1279
1280 new_sectors--;
1281
1282 ata_tf_init(dev, &tf);
1283
1e999736 1284 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1285
1286 if (lba48) {
1287 tf.command = ATA_CMD_SET_MAX_EXT;
1288 tf.flags |= ATA_TFLAG_LBA48;
1289
1290 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1291 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1292 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1293 } else {
c728a914
TH
1294 tf.command = ATA_CMD_SET_MAX;
1295
1e582ba4
TH
1296 tf.device |= (new_sectors >> 24) & 0xf;
1297 }
1298
1e999736 1299 tf.protocol |= ATA_PROT_NODATA;
c728a914 1300 tf.device |= ATA_LBA;
1e999736
AC
1301
1302 tf.lbal = (new_sectors >> 0) & 0xff;
1303 tf.lbam = (new_sectors >> 8) & 0xff;
1304 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1305
2b789108 1306 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1307 if (err_mask) {
a9a79dfe
JP
1308 ata_dev_warn(dev,
1309 "failed to set max address (err_mask=0x%x)\n",
1310 err_mask);
c728a914
TH
1311 if (err_mask == AC_ERR_DEV &&
1312 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1313 return -EACCES;
1314 return -EIO;
1315 }
1316
c728a914 1317 return 0;
1e999736
AC
1318}
1319
1320/**
1321 * ata_hpa_resize - Resize a device with an HPA set
1322 * @dev: Device to resize
1323 *
1324 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1325 * it if required to the full size of the media. The caller must check
1326 * the drive has the HPA feature set enabled.
05027adc
TH
1327 *
1328 * RETURNS:
1329 * 0 on success, -errno on failure.
1e999736 1330 */
05027adc 1331static int ata_hpa_resize(struct ata_device *dev)
1e999736 1332{
05027adc
TH
1333 struct ata_eh_context *ehc = &dev->link->eh_context;
1334 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1335 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1336 u64 sectors = ata_id_n_sectors(dev->id);
1337 u64 native_sectors;
c728a914 1338 int rc;
a617c09f 1339
05027adc 1340 /* do we need to do it? */
9162c657 1341 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1342 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1343 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1344 return 0;
1e999736 1345
05027adc
TH
1346 /* read native max address */
1347 rc = ata_read_native_max_address(dev, &native_sectors);
1348 if (rc) {
dda7aba1
TH
1349 /* If device aborted the command or HPA isn't going to
1350 * be unlocked, skip HPA resizing.
05027adc 1351 */
445d211b 1352 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1353 ata_dev_warn(dev,
1354 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1355 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1356
1357 /* we can continue if device aborted the command */
1358 if (rc == -EACCES)
1359 rc = 0;
1e999736 1360 }
37301a55 1361
05027adc
TH
1362 return rc;
1363 }
5920dadf 1364 dev->n_native_sectors = native_sectors;
05027adc
TH
1365
1366 /* nothing to do? */
445d211b 1367 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1368 if (!print_info || native_sectors == sectors)
1369 return 0;
1370
1371 if (native_sectors > sectors)
a9a79dfe 1372 ata_dev_info(dev,
05027adc
TH
1373 "HPA detected: current %llu, native %llu\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 else if (native_sectors < sectors)
a9a79dfe
JP
1377 ata_dev_warn(dev,
1378 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1379 (unsigned long long)native_sectors,
1380 (unsigned long long)sectors);
1381 return 0;
1382 }
1383
1384 /* let's unlock HPA */
1385 rc = ata_set_max_sectors(dev, native_sectors);
1386 if (rc == -EACCES) {
1387 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1388 ata_dev_warn(dev,
1389 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1390 (unsigned long long)sectors,
1391 (unsigned long long)native_sectors);
05027adc
TH
1392 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1393 return 0;
1394 } else if (rc)
1395 return rc;
1396
1397 /* re-read IDENTIFY data */
1398 rc = ata_dev_reread_id(dev, 0);
1399 if (rc) {
a9a79dfe
JP
1400 ata_dev_err(dev,
1401 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1402 return rc;
1403 }
1404
1405 if (print_info) {
1406 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1407 ata_dev_info(dev,
05027adc
TH
1408 "HPA unlocked: %llu -> %llu, native %llu\n",
1409 (unsigned long long)sectors,
1410 (unsigned long long)new_sectors,
1411 (unsigned long long)native_sectors);
1412 }
1413
1414 return 0;
1e999736
AC
1415}
1416
1da177e4
LT
1417/**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1419 * @id: IDENTIFY DEVICE page to dump
1da177e4 1420 *
0bd3300a
TH
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1da177e4
LT
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
0bd3300a 1428static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1429{
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
0bd3300a
TH
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1da177e4
LT
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
0bd3300a
TH
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1da177e4
LT
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
0bd3300a
TH
1452 id[88],
1453 id[93]);
1da177e4
LT
1454}
1455
cb95d562
TH
1456/**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
7dc951ae 1471unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1472{
7dc951ae 1473 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
7a0f1c8a 1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1486 if (mode < 5) /* Valid PIO range */
2dcb407e 1487 pio_mask = (2 << mode) - 1;
46767aeb
AC
1488 else
1489 pio_mask = 1;
cb95d562
TH
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1500
b352e57d
AC
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
62afe5d7
SS
1505 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1506 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
fb21f0d0
TH
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523}
1524
7102d230 1525static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1526{
77853bf2 1527 struct completion *waiting = qc->private_data;
a2a7a662 1528
a2a7a662 1529 complete(waiting);
a2a7a662
TH
1530}
1531
1532/**
2432697b 1533 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1534 * @dev: Device to which the command is sent
1535 * @tf: Taskfile registers for the command and the result
d69cf37d 1536 * @cdb: CDB for packet command
e227867f 1537 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1538 * @sgl: sg list for the data buffer of the command
2432697b 1539 * @n_elem: Number of sg entries
2b789108 1540 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1541 *
1542 * Executes libata internal command with timeout. @tf contains
1543 * command on entry and result on return. Timeout and error
1544 * conditions are reported via return value. No recovery action
1545 * is taken after a command times out. It's caller's duty to
1546 * clean up after timeout.
1547 *
1548 * LOCKING:
1549 * None. Should be called with kernel context, might sleep.
551e8889
TH
1550 *
1551 * RETURNS:
1552 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1553 */
2432697b
TH
1554unsigned ata_exec_internal_sg(struct ata_device *dev,
1555 struct ata_taskfile *tf, const u8 *cdb,
87260216 1556 int dma_dir, struct scatterlist *sgl,
2b789108 1557 unsigned int n_elem, unsigned long timeout)
a2a7a662 1558{
9af5c9c9
TH
1559 struct ata_link *link = dev->link;
1560 struct ata_port *ap = link->ap;
a2a7a662 1561 u8 command = tf->command;
87fbc5a0 1562 int auto_timeout = 0;
a2a7a662 1563 struct ata_queued_cmd *qc;
2ab7db1f 1564 unsigned int tag, preempted_tag;
dedaf2b0 1565 u32 preempted_sactive, preempted_qc_active;
da917d69 1566 int preempted_nr_active_links;
60be6b9a 1567 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1568 unsigned long flags;
77853bf2 1569 unsigned int err_mask;
d95a717f 1570 int rc;
a2a7a662 1571
ba6a1308 1572 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1573
e3180499 1574 /* no internal command while frozen */
b51e9e5d 1575 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1576 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1577 return AC_ERR_SYSTEM;
1578 }
1579
2ab7db1f 1580 /* initialize internal qc */
a2a7a662 1581
2ab7db1f
TH
1582 /* XXX: Tag 0 is used for drivers with legacy EH as some
1583 * drivers choke if any other tag is given. This breaks
1584 * ata_tag_internal() test for those drivers. Don't use new
1585 * EH stuff without converting to it.
1586 */
1587 if (ap->ops->error_handler)
1588 tag = ATA_TAG_INTERNAL;
1589 else
1590 tag = 0;
1591
f69499f4 1592 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1593
1594 qc->tag = tag;
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
9af5c9c9
TH
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
dedaf2b0 1602 preempted_qc_active = ap->qc_active;
da917d69 1603 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
dedaf2b0 1606 ap->qc_active = 0;
da917d69 1607 ap->nr_active_links = 0;
2ab7db1f
TH
1608
1609 /* prepare & issue qc */
a2a7a662 1610 qc->tf = *tf;
d69cf37d
TH
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
87fbc5a0
TH
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
2b789108 1647
c0c362b6
TH
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
2b789108 1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1652
c0c362b6
TH
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
c429137a 1656 ata_sff_flush_pio_task(ap);
41ade50c 1657
d95a717f 1658 if (!rc) {
ba6a1308 1659 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
d95a717f
TH
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
a2a7a662 1665 */
77853bf2 1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
f15a1daf 1673
0dd4b21f 1674 if (ata_msg_warn(ap))
a9a79dfe
JP
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
a2a7a662
TH
1677 }
1678
ba6a1308 1679 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1680 }
1681
d95a717f
TH
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
a51d644a
TH
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1696 }
1697
15869303 1698 /* finish up */
ba6a1308 1699 spin_lock_irqsave(ap->lock, flags);
15869303 1700
e61e0672 1701 *tf = qc->result_tf;
77853bf2
TH
1702 err_mask = qc->err_mask;
1703
1704 ata_qc_free(qc);
9af5c9c9
TH
1705 link->active_tag = preempted_tag;
1706 link->sactive = preempted_sactive;
dedaf2b0 1707 ap->qc_active = preempted_qc_active;
da917d69 1708 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1709
ba6a1308 1710 spin_unlock_irqrestore(ap->lock, flags);
15869303 1711
87fbc5a0
TH
1712 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1713 ata_internal_cmd_timed_out(dev, command);
1714
77853bf2 1715 return err_mask;
a2a7a662
TH
1716}
1717
2432697b 1718/**
33480a0e 1719 * ata_exec_internal - execute libata internal command
2432697b
TH
1720 * @dev: Device to which the command is sent
1721 * @tf: Taskfile registers for the command and the result
1722 * @cdb: CDB for packet command
e227867f 1723 * @dma_dir: Data transfer direction of the command
2432697b
TH
1724 * @buf: Data buffer of the command
1725 * @buflen: Length of data buffer
2b789108 1726 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1727 *
1728 * Wrapper around ata_exec_internal_sg() which takes simple
1729 * buffer instead of sg list.
1730 *
1731 * LOCKING:
1732 * None. Should be called with kernel context, might sleep.
1733 *
1734 * RETURNS:
1735 * Zero on success, AC_ERR_* mask on failure
1736 */
1737unsigned ata_exec_internal(struct ata_device *dev,
1738 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1739 int dma_dir, void *buf, unsigned int buflen,
1740 unsigned long timeout)
2432697b 1741{
33480a0e
TH
1742 struct scatterlist *psg = NULL, sg;
1743 unsigned int n_elem = 0;
2432697b 1744
33480a0e
TH
1745 if (dma_dir != DMA_NONE) {
1746 WARN_ON(!buf);
1747 sg_init_one(&sg, buf, buflen);
1748 psg = &sg;
1749 n_elem++;
1750 }
2432697b 1751
2b789108
TH
1752 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1753 timeout);
2432697b
TH
1754}
1755
1bc4ccff
AC
1756/**
1757 * ata_pio_need_iordy - check if iordy needed
1758 * @adev: ATA device
1759 *
1760 * Check if the current speed of the device requires IORDY. Used
1761 * by various controllers for chip configuration.
1762 */
1bc4ccff
AC
1763unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1764{
0d9e6659
TH
1765 /* Don't set IORDY if we're preparing for reset. IORDY may
1766 * lead to controller lock up on certain controllers if the
1767 * port is not occupied. See bko#11703 for details.
1768 */
1769 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1770 return 0;
1771 /* Controller doesn't support IORDY. Probably a pointless
1772 * check as the caller should know this.
1773 */
9af5c9c9 1774 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1775 return 0;
5c18c4d2
DD
1776 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1777 if (ata_id_is_cfa(adev->id)
1778 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1779 return 0;
432729f0
AC
1780 /* PIO3 and higher it is mandatory */
1781 if (adev->pio_mode > XFER_PIO_2)
1782 return 1;
1783 /* We turn it on when possible */
1784 if (ata_id_has_iordy(adev->id))
1bc4ccff 1785 return 1;
432729f0
AC
1786 return 0;
1787}
2e9edbf8 1788
432729f0
AC
1789/**
1790 * ata_pio_mask_no_iordy - Return the non IORDY mask
1791 * @adev: ATA device
1792 *
1793 * Compute the highest mode possible if we are not using iordy. Return
1794 * -1 if no iordy mode is available.
1795 */
432729f0
AC
1796static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1797{
1bc4ccff 1798 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1799 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1800 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1801 /* Is the speed faster than the drive allows non IORDY ? */
1802 if (pio) {
1803 /* This is cycle times not frequency - watch the logic! */
1804 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1805 return 3 << ATA_SHIFT_PIO;
1806 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1807 }
1808 }
432729f0 1809 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1810}
1811
963e4975
AC
1812/**
1813 * ata_do_dev_read_id - default ID read method
1814 * @dev: device
1815 * @tf: proposed taskfile
1816 * @id: data buffer
1817 *
1818 * Issue the identify taskfile and hand back the buffer containing
1819 * identify data. For some RAID controllers and for pre ATA devices
1820 * this function is wrapped or replaced by the driver
1821 */
1822unsigned int ata_do_dev_read_id(struct ata_device *dev,
1823 struct ata_taskfile *tf, u16 *id)
1824{
1825 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1826 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1827}
1828
1da177e4 1829/**
49016aca 1830 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1831 * @dev: target device
1832 * @p_class: pointer to class of the target device (may be changed)
bff04647 1833 * @flags: ATA_READID_* flags
fe635c7e 1834 * @id: buffer to read IDENTIFY data into
1da177e4 1835 *
49016aca
TH
1836 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1837 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1838 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1839 * for pre-ATA4 drives.
1da177e4 1840 *
50a99018 1841 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1842 * now we abort if we hit that case.
50a99018 1843 *
1da177e4 1844 * LOCKING:
49016aca
TH
1845 * Kernel thread context (may sleep)
1846 *
1847 * RETURNS:
1848 * 0 on success, -errno otherwise.
1da177e4 1849 */
a9beec95 1850int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1851 unsigned int flags, u16 *id)
1da177e4 1852{
9af5c9c9 1853 struct ata_port *ap = dev->link->ap;
49016aca 1854 unsigned int class = *p_class;
a0123703 1855 struct ata_taskfile tf;
49016aca
TH
1856 unsigned int err_mask = 0;
1857 const char *reason;
79b42bab 1858 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1859 int may_fallback = 1, tried_spinup = 0;
49016aca 1860 int rc;
1da177e4 1861
0dd4b21f 1862 if (ata_msg_ctl(ap))
a9a79dfe 1863 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1864
963e4975 1865retry:
3373efd8 1866 ata_tf_init(dev, &tf);
a0123703 1867
49016aca 1868 switch (class) {
79b42bab
TH
1869 case ATA_DEV_SEMB:
1870 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1871 case ATA_DEV_ATA:
9162c657 1872 case ATA_DEV_ZAC:
a0123703 1873 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1874 break;
1875 case ATA_DEV_ATAPI:
a0123703 1876 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1877 break;
1878 default:
1879 rc = -ENODEV;
1880 reason = "unsupported class";
1881 goto err_out;
1da177e4
LT
1882 }
1883
a0123703 1884 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1885
1886 /* Some devices choke if TF registers contain garbage. Make
1887 * sure those are properly initialized.
1888 */
1889 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1890
1891 /* Device presence detection is unreliable on some
1892 * controllers. Always poll IDENTIFY if available.
1893 */
1894 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1895
963e4975
AC
1896 if (ap->ops->read_id)
1897 err_mask = ap->ops->read_id(dev, &tf, id);
1898 else
1899 err_mask = ata_do_dev_read_id(dev, &tf, id);
1900
a0123703 1901 if (err_mask) {
800b3996 1902 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1903 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1904 return -ENOENT;
1905 }
1906
79b42bab 1907 if (is_semb) {
a9a79dfe
JP
1908 ata_dev_info(dev,
1909 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1910 /* SEMB is not supported yet */
1911 *p_class = ATA_DEV_SEMB_UNSUP;
1912 return 0;
1913 }
1914
1ffc151f
TH
1915 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1916 /* Device or controller might have reported
1917 * the wrong device class. Give a shot at the
1918 * other IDENTIFY if the current one is
1919 * aborted by the device.
1920 */
1921 if (may_fallback) {
1922 may_fallback = 0;
1923
1924 if (class == ATA_DEV_ATA)
1925 class = ATA_DEV_ATAPI;
1926 else
1927 class = ATA_DEV_ATA;
1928 goto retry;
1929 }
1930
1931 /* Control reaches here iff the device aborted
1932 * both flavors of IDENTIFYs which happens
1933 * sometimes with phantom devices.
1934 */
a9a79dfe
JP
1935 ata_dev_dbg(dev,
1936 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1937 return -ENOENT;
54936f8b
TH
1938 }
1939
49016aca
TH
1940 rc = -EIO;
1941 reason = "I/O error";
1da177e4
LT
1942 goto err_out;
1943 }
1944
43c9c591 1945 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1946 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1947 "class=%d may_fallback=%d tried_spinup=%d\n",
1948 class, may_fallback, tried_spinup);
43c9c591
TH
1949 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1950 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1951 }
1952
54936f8b
TH
1953 /* Falling back doesn't make sense if ID data was read
1954 * successfully at least once.
1955 */
1956 may_fallback = 0;
1957
49016aca 1958 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1959
49016aca 1960 /* sanity check */
a4f5749b 1961 rc = -EINVAL;
6070068b 1962 reason = "device reports invalid type";
a4f5749b 1963
9162c657 1964 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1965 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1966 goto err_out;
db63a4c8
AW
1967 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1968 ata_id_is_ata(id)) {
1969 ata_dev_dbg(dev,
1970 "host indicates ignore ATA devices, ignored\n");
1971 return -ENOENT;
1972 }
a4f5749b
TH
1973 } else {
1974 if (ata_id_is_ata(id))
1975 goto err_out;
49016aca
TH
1976 }
1977
169439c2
ML
1978 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1979 tried_spinup = 1;
1980 /*
1981 * Drive powered-up in standby mode, and requires a specific
1982 * SET_FEATURES spin-up subcommand before it will accept
1983 * anything other than the original IDENTIFY command.
1984 */
218f3d30 1985 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1986 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1987 rc = -EIO;
1988 reason = "SPINUP failed";
1989 goto err_out;
1990 }
1991 /*
1992 * If the drive initially returned incomplete IDENTIFY info,
1993 * we now must reissue the IDENTIFY command.
1994 */
1995 if (id[2] == 0x37c8)
1996 goto retry;
1997 }
1998
9162c657
HR
1999 if ((flags & ATA_READID_POSTRESET) &&
2000 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2001 /*
2002 * The exact sequence expected by certain pre-ATA4 drives is:
2003 * SRST RESET
50a99018
AC
2004 * IDENTIFY (optional in early ATA)
2005 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2006 * anything else..
2007 * Some drives were very specific about that exact sequence.
50a99018
AC
2008 *
2009 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2010 * should never trigger.
49016aca
TH
2011 */
2012 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2013 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2014 if (err_mask) {
2015 rc = -EIO;
2016 reason = "INIT_DEV_PARAMS failed";
2017 goto err_out;
2018 }
2019
2020 /* current CHS translation info (id[53-58]) might be
2021 * changed. reread the identify device info.
2022 */
bff04647 2023 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2024 goto retry;
2025 }
2026 }
2027
2028 *p_class = class;
fe635c7e 2029
49016aca
TH
2030 return 0;
2031
2032 err_out:
88574551 2033 if (ata_msg_warn(ap))
a9a79dfe
JP
2034 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2035 reason, err_mask);
49016aca
TH
2036 return rc;
2037}
2038
9062712f
TH
2039static int ata_do_link_spd_horkage(struct ata_device *dev)
2040{
2041 struct ata_link *plink = ata_dev_phys_link(dev);
2042 u32 target, target_limit;
2043
2044 if (!sata_scr_valid(plink))
2045 return 0;
2046
2047 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2048 target = 1;
2049 else
2050 return 0;
2051
2052 target_limit = (1 << target) - 1;
2053
2054 /* if already on stricter limit, no need to push further */
2055 if (plink->sata_spd_limit <= target_limit)
2056 return 0;
2057
2058 plink->sata_spd_limit = target_limit;
2059
2060 /* Request another EH round by returning -EAGAIN if link is
2061 * going faster than the target speed. Forward progress is
2062 * guaranteed by setting sata_spd_limit to target_limit above.
2063 */
2064 if (plink->sata_spd > target) {
a9a79dfe
JP
2065 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2066 sata_spd_string(target));
9062712f
TH
2067 return -EAGAIN;
2068 }
2069 return 0;
2070}
2071
3373efd8 2072static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2073{
9af5c9c9 2074 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2075
2076 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2077 return 0;
2078
9af5c9c9 2079 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2080}
2081
388539f3 2082static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2083 char *desc, size_t desc_sz)
2084{
9af5c9c9 2085 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2086 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2087 unsigned int err_mask;
2088 char *aa_desc = "";
a6e6ce8e
TH
2089
2090 if (!ata_id_has_ncq(dev->id)) {
2091 desc[0] = '\0';
388539f3 2092 return 0;
a6e6ce8e 2093 }
75683fe7 2094 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2095 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2096 return 0;
6919a0a6 2097 }
a6e6ce8e 2098 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2099 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2100 dev->flags |= ATA_DFLAG_NCQ;
2101 }
2102
388539f3
SL
2103 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2104 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2105 ata_id_has_fpdma_aa(dev->id)) {
2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2107 SATA_FPDMA_AA);
2108 if (err_mask) {
a9a79dfe
JP
2109 ata_dev_err(dev,
2110 "failed to enable AA (error_mask=0x%x)\n",
2111 err_mask);
388539f3
SL
2112 if (err_mask != AC_ERR_DEV) {
2113 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2114 return -EIO;
2115 }
2116 } else
2117 aa_desc = ", AA";
2118 }
2119
a6e6ce8e 2120 if (hdepth >= ddepth)
388539f3 2121 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2122 else
388539f3
SL
2123 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2124 ddepth, aa_desc);
ed36911c
MC
2125
2126 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2127 ata_id_has_ncq_send_and_recv(dev->id)) {
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
f78dea06
MC
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
ed36911c 2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
f78dea06
MC
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
ed36911c
MC
2145 }
2146 }
2147
388539f3 2148 return 0;
a6e6ce8e
TH
2149}
2150
49016aca 2151/**
ffeae418 2152 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2153 * @dev: Target device to configure
2154 *
2155 * Configure @dev according to @dev->id. Generic and low-level
2156 * driver specific fixups are also applied.
49016aca
TH
2157 *
2158 * LOCKING:
ffeae418
TH
2159 * Kernel thread context (may sleep)
2160 *
2161 * RETURNS:
2162 * 0 on success, -errno otherwise
49016aca 2163 */
efdaedc4 2164int ata_dev_configure(struct ata_device *dev)
49016aca 2165{
9af5c9c9
TH
2166 struct ata_port *ap = dev->link->ap;
2167 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2168 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2169 const u16 *id = dev->id;
7dc951ae 2170 unsigned long xfer_mask;
65fe1f0f 2171 unsigned int err_mask;
b352e57d 2172 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2173 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2174 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2175 int rc;
49016aca 2176
0dd4b21f 2177 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2178 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2179 return 0;
49016aca
TH
2180 }
2181
0dd4b21f 2182 if (ata_msg_probe(ap))
a9a79dfe 2183 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2184
75683fe7
TH
2185 /* set horkage */
2186 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2187 ata_force_horkage(dev);
75683fe7 2188
50af2fa1 2189 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2190 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2191 ata_dev_disable(dev);
2192 return 0;
2193 }
2194
2486fa56
TH
2195 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2196 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2197 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2198 atapi_enabled ? "not supported with this driver"
2199 : "disabled");
2486fa56
TH
2200 ata_dev_disable(dev);
2201 return 0;
2202 }
2203
9062712f
TH
2204 rc = ata_do_link_spd_horkage(dev);
2205 if (rc)
2206 return rc;
2207
ecd75ad5
TH
2208 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2209 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2210 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2211 dev->horkage |= ATA_HORKAGE_NOLPM;
2212
2213 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2214 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2215 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2216 }
2217
6746544c
TH
2218 /* let ACPI work its magic */
2219 rc = ata_acpi_on_devcfg(dev);
2220 if (rc)
2221 return rc;
08573a86 2222
05027adc
TH
2223 /* massage HPA, do it early as it might change IDENTIFY data */
2224 rc = ata_hpa_resize(dev);
2225 if (rc)
2226 return rc;
2227
c39f5ebe 2228 /* print device capabilities */
0dd4b21f 2229 if (ata_msg_probe(ap))
a9a79dfe
JP
2230 ata_dev_dbg(dev,
2231 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233 __func__,
2234 id[49], id[82], id[83], id[84],
2235 id[85], id[86], id[87], id[88]);
c39f5ebe 2236
208a9933 2237 /* initialize to-be-configured parameters */
ea1dd4e1 2238 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2239 dev->max_sectors = 0;
2240 dev->cdb_len = 0;
2241 dev->n_sectors = 0;
2242 dev->cylinders = 0;
2243 dev->heads = 0;
2244 dev->sectors = 0;
e18086d6 2245 dev->multi_count = 0;
208a9933 2246
1da177e4
LT
2247 /*
2248 * common ATA, ATAPI feature tests
2249 */
2250
ff8854b2 2251 /* find max transfer mode; for printk only */
1148c3a7 2252 xfer_mask = ata_id_xfermask(id);
1da177e4 2253
0dd4b21f
BP
2254 if (ata_msg_probe(ap))
2255 ata_dump_id(id);
1da177e4 2256
ef143d57
AL
2257 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259 sizeof(fwrevbuf));
2260
2261 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262 sizeof(modelbuf));
2263
1da177e4 2264 /* ATA-specific feature tests */
9162c657 2265 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2266 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2267 /* CPRM may make this media unusable */
2268 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2269 ata_dev_warn(dev,
2270 "supports DRM functions and may not be fully accessible\n");
b352e57d 2271 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2272 } else {
2dcb407e 2273 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2274 /* Warn the user if the device has TPM extensions */
2275 if (ata_id_has_tpm(id))
a9a79dfe
JP
2276 ata_dev_warn(dev,
2277 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2278 }
b352e57d 2279
1148c3a7 2280 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2281
e18086d6
ML
2282 /* get current R/W Multiple count setting */
2283 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284 unsigned int max = dev->id[47] & 0xff;
2285 unsigned int cnt = dev->id[59] & 0xff;
2286 /* only recognize/allow powers of two here */
2287 if (is_power_of_2(max) && is_power_of_2(cnt))
2288 if (cnt <= max)
2289 dev->multi_count = cnt;
2290 }
3f64f565 2291
1148c3a7 2292 if (ata_id_has_lba(id)) {
4c2d721a 2293 const char *lba_desc;
388539f3 2294 char ncq_desc[24];
8bf62ece 2295
4c2d721a
TH
2296 lba_desc = "LBA";
2297 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2298 if (ata_id_has_lba48(id)) {
8bf62ece 2299 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2300 lba_desc = "LBA48";
6fc49adb
TH
2301
2302 if (dev->n_sectors >= (1UL << 28) &&
2303 ata_id_has_flush_ext(id))
2304 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2305 }
8bf62ece 2306
a6e6ce8e 2307 /* config NCQ */
388539f3
SL
2308 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309 if (rc)
2310 return rc;
a6e6ce8e 2311
8bf62ece 2312 /* print device info to dmesg */
3f64f565 2313 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2314 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315 revbuf, modelbuf, fwrevbuf,
2316 ata_mode_string(xfer_mask));
2317 ata_dev_info(dev,
2318 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2319 (unsigned long long)dev->n_sectors,
3f64f565
EM
2320 dev->multi_count, lba_desc, ncq_desc);
2321 }
ffeae418 2322 } else {
8bf62ece
AL
2323 /* CHS */
2324
2325 /* Default translation */
1148c3a7
TH
2326 dev->cylinders = id[1];
2327 dev->heads = id[3];
2328 dev->sectors = id[6];
8bf62ece 2329
1148c3a7 2330 if (ata_id_current_chs_valid(id)) {
8bf62ece 2331 /* Current CHS translation is valid. */
1148c3a7
TH
2332 dev->cylinders = id[54];
2333 dev->heads = id[55];
2334 dev->sectors = id[56];
8bf62ece
AL
2335 }
2336
2337 /* print device info to dmesg */
3f64f565 2338 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2339 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 revbuf, modelbuf, fwrevbuf,
2341 ata_mode_string(xfer_mask));
2342 ata_dev_info(dev,
2343 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344 (unsigned long long)dev->n_sectors,
2345 dev->multi_count, dev->cylinders,
2346 dev->heads, dev->sectors);
3f64f565 2347 }
07f6f7d0
AL
2348 }
2349
803739d2
SH
2350 /* Check and mark DevSlp capability. Get DevSlp timing variables
2351 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2352 */
803739d2 2353 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2354 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2355 int i, j;
2356
2357 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2358 err_mask = ata_read_log_page(dev,
2359 ATA_LOG_SATA_ID_DEV_DATA,
2360 ATA_LOG_SATA_SETTINGS,
803739d2 2361 sata_setting,
65fe1f0f
SH
2362 1);
2363 if (err_mask)
2364 ata_dev_dbg(dev,
2365 "failed to get Identify Device Data, Emask 0x%x\n",
2366 err_mask);
803739d2
SH
2367 else
2368 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369 j = ATA_LOG_DEVSLP_OFFSET + i;
2370 dev->devslp_timing[i] = sata_setting[j];
2371 }
65fe1f0f 2372 }
84ded2f8 2373
6e7846e9 2374 dev->cdb_len = 16;
1da177e4
LT
2375 }
2376
2377 /* ATAPI-specific feature tests */
2c13b7ce 2378 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2379 const char *cdb_intr_string = "";
2380 const char *atapi_an_string = "";
91163006 2381 const char *dma_dir_string = "";
7d77b247 2382 u32 sntf;
08a556db 2383
1148c3a7 2384 rc = atapi_cdb_len(id);
1da177e4 2385 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2386 if (ata_msg_warn(ap))
a9a79dfe 2387 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2388 rc = -EINVAL;
1da177e4
LT
2389 goto err_out_nosup;
2390 }
6e7846e9 2391 dev->cdb_len = (unsigned int) rc;
1da177e4 2392
7d77b247
TH
2393 /* Enable ATAPI AN if both the host and device have
2394 * the support. If PMP is attached, SNTF is required
2395 * to enable ATAPI AN to discern between PHY status
2396 * changed notifications and ATAPI ANs.
9f45cbd3 2397 */
e7ecd435
TH
2398 if (atapi_an &&
2399 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2400 (!sata_pmp_attached(ap) ||
7d77b247 2401 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2402 /* issue SET feature command to turn this on */
218f3d30
JG
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2405 if (err_mask)
a9a79dfe
JP
2406 ata_dev_err(dev,
2407 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408 err_mask);
854c73a2 2409 else {
9f45cbd3 2410 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2411 atapi_an_string = ", ATAPI AN";
2412 }
9f45cbd3
KCA
2413 }
2414
08a556db 2415 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2416 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2417 cdb_intr_string = ", CDB intr";
2418 }
312f7da2 2419
966fbe19 2420 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
afe75951 2425 if (ata_id_has_da(dev->id)) {
b1354cbb 2426 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2427 zpodd_init(dev);
2428 }
b1354cbb 2429
1da177e4 2430 /* print device info to dmesg */
5afc8142 2431 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2432 ata_dev_info(dev,
2433 "ATAPI: %s, %s, max %s%s%s%s\n",
2434 modelbuf, fwrevbuf,
2435 ata_mode_string(xfer_mask),
2436 cdb_intr_string, atapi_an_string,
2437 dma_dir_string);
1da177e4
LT
2438 }
2439
914ed354
TH
2440 /* determine max_sectors */
2441 dev->max_sectors = ATA_MAX_SECTORS;
2442 if (dev->flags & ATA_DFLAG_LBA48)
2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
c5038fc0
AC
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
3373efd8 2447 if (ata_dev_knobble(dev)) {
5afc8142 2448 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2449 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2450 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2451 dev->max_sectors = ATA_MAX_SECTORS;
2452 }
2453
f8d8e579 2454 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2455 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2456 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2457 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458 }
f8d8e579 2459
75683fe7 2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2461 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462 dev->max_sectors);
18d6e9d5 2463
af34d637
DM
2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2465 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2466 dev->max_sectors);
2467
a32450e1
SH
2468 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2469 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2470
4b2f3ede 2471 if (ap->ops->dev_config)
cd0d3bbc 2472 ap->ops->dev_config(dev);
4b2f3ede 2473
c5038fc0
AC
2474 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2475 /* Let the user know. We don't want to disallow opens for
2476 rescue purposes, or in case the vendor is just a blithering
2477 idiot. Do this after the dev_config call as some controllers
2478 with buggy firmware may want to avoid reporting false device
2479 bugs */
2480
2481 if (print_info) {
a9a79dfe 2482 ata_dev_warn(dev,
c5038fc0 2483"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2484 ata_dev_warn(dev,
c5038fc0
AC
2485"fault or invalid emulation. Contact drive vendor for information.\n");
2486 }
2487 }
2488
ac70a964 2489 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2490 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2491 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2492 }
2493
ffeae418 2494 return 0;
1da177e4
LT
2495
2496err_out_nosup:
0dd4b21f 2497 if (ata_msg_probe(ap))
a9a79dfe 2498 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2499 return rc;
1da177e4
LT
2500}
2501
be0d18df 2502/**
2e41e8e6 2503 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2504 * @ap: port
2505 *
2e41e8e6 2506 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2507 * detection.
2508 */
2509
2510int ata_cable_40wire(struct ata_port *ap)
2511{
2512 return ATA_CBL_PATA40;
2513}
2514
2515/**
2e41e8e6 2516 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2517 * @ap: port
2518 *
2e41e8e6 2519 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2520 * detection.
2521 */
2522
2523int ata_cable_80wire(struct ata_port *ap)
2524{
2525 return ATA_CBL_PATA80;
2526}
2527
2528/**
2529 * ata_cable_unknown - return unknown PATA cable.
2530 * @ap: port
2531 *
2532 * Helper method for drivers which have no PATA cable detection.
2533 */
2534
2535int ata_cable_unknown(struct ata_port *ap)
2536{
2537 return ATA_CBL_PATA_UNK;
2538}
2539
c88f90c3
TH
2540/**
2541 * ata_cable_ignore - return ignored PATA cable.
2542 * @ap: port
2543 *
2544 * Helper method for drivers which don't use cable type to limit
2545 * transfer mode.
2546 */
2547int ata_cable_ignore(struct ata_port *ap)
2548{
2549 return ATA_CBL_PATA_IGN;
2550}
2551
be0d18df
AC
2552/**
2553 * ata_cable_sata - return SATA cable type
2554 * @ap: port
2555 *
2556 * Helper method for drivers which have SATA cables
2557 */
2558
2559int ata_cable_sata(struct ata_port *ap)
2560{
2561 return ATA_CBL_SATA;
2562}
2563
1da177e4
LT
2564/**
2565 * ata_bus_probe - Reset and probe ATA bus
2566 * @ap: Bus to probe
2567 *
0cba632b
JG
2568 * Master ATA bus probing function. Initiates a hardware-dependent
2569 * bus reset, then attempts to identify any devices found on
2570 * the bus.
2571 *
1da177e4 2572 * LOCKING:
0cba632b 2573 * PCI/etc. bus probe sem.
1da177e4
LT
2574 *
2575 * RETURNS:
96072e69 2576 * Zero on success, negative errno otherwise.
1da177e4
LT
2577 */
2578
80289167 2579int ata_bus_probe(struct ata_port *ap)
1da177e4 2580{
28ca5c57 2581 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2582 int tries[ATA_MAX_DEVICES];
f58229f8 2583 int rc;
e82cbdb9 2584 struct ata_device *dev;
1da177e4 2585
1eca4365 2586 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2587 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2588
2589 retry:
1eca4365 2590 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2591 /* If we issue an SRST then an ATA drive (not ATAPI)
2592 * may change configuration and be in PIO0 timing. If
2593 * we do a hard reset (or are coming from power on)
2594 * this is true for ATA or ATAPI. Until we've set a
2595 * suitable controller mode we should not touch the
2596 * bus as we may be talking too fast.
2597 */
2598 dev->pio_mode = XFER_PIO_0;
5416912a 2599 dev->dma_mode = 0xff;
cdeab114
TH
2600
2601 /* If the controller has a pio mode setup function
2602 * then use it to set the chipset to rights. Don't
2603 * touch the DMA setup as that will be dealt with when
2604 * configuring devices.
2605 */
2606 if (ap->ops->set_piomode)
2607 ap->ops->set_piomode(ap, dev);
2608 }
2609
2044470c 2610 /* reset and determine device classes */
52783c5d 2611 ap->ops->phy_reset(ap);
2061a47a 2612
1eca4365 2613 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2614 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2615 classes[dev->devno] = dev->class;
2616 else
2617 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2618
52783c5d 2619 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2620 }
1da177e4 2621
f31f0cc2
JG
2622 /* read IDENTIFY page and configure devices. We have to do the identify
2623 specific sequence bass-ackwards so that PDIAG- is released by
2624 the slave device */
2625
1eca4365 2626 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2627 if (tries[dev->devno])
2628 dev->class = classes[dev->devno];
ffeae418 2629
14d2bac1 2630 if (!ata_dev_enabled(dev))
ffeae418 2631 continue;
ffeae418 2632
bff04647
TH
2633 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2634 dev->id);
14d2bac1
TH
2635 if (rc)
2636 goto fail;
f31f0cc2
JG
2637 }
2638
be0d18df
AC
2639 /* Now ask for the cable type as PDIAG- should have been released */
2640 if (ap->ops->cable_detect)
2641 ap->cbl = ap->ops->cable_detect(ap);
2642
1eca4365
TH
2643 /* We may have SATA bridge glue hiding here irrespective of
2644 * the reported cable types and sensed types. When SATA
2645 * drives indicate we have a bridge, we don't know which end
2646 * of the link the bridge is which is a problem.
2647 */
2648 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2649 if (ata_id_is_sata(dev->id))
2650 ap->cbl = ATA_CBL_SATA;
614fe29b 2651
f31f0cc2
JG
2652 /* After the identify sequence we can now set up the devices. We do
2653 this in the normal order so that the user doesn't get confused */
2654
1eca4365 2655 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2656 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2657 rc = ata_dev_configure(dev);
9af5c9c9 2658 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2659 if (rc)
2660 goto fail;
1da177e4
LT
2661 }
2662
e82cbdb9 2663 /* configure transfer mode */
0260731f 2664 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2665 if (rc)
51713d35 2666 goto fail;
1da177e4 2667
1eca4365
TH
2668 ata_for_each_dev(dev, &ap->link, ENABLED)
2669 return 0;
1da177e4 2670
96072e69 2671 return -ENODEV;
14d2bac1
TH
2672
2673 fail:
4ae72a1e
TH
2674 tries[dev->devno]--;
2675
14d2bac1
TH
2676 switch (rc) {
2677 case -EINVAL:
4ae72a1e 2678 /* eeek, something went very wrong, give up */
14d2bac1
TH
2679 tries[dev->devno] = 0;
2680 break;
4ae72a1e
TH
2681
2682 case -ENODEV:
2683 /* give it just one more chance */
2684 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2685 case -EIO:
4ae72a1e
TH
2686 if (tries[dev->devno] == 1) {
2687 /* This is the last chance, better to slow
2688 * down than lose it.
2689 */
a07d499b 2690 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2691 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2692 }
14d2bac1
TH
2693 }
2694
4ae72a1e 2695 if (!tries[dev->devno])
3373efd8 2696 ata_dev_disable(dev);
ec573755 2697
14d2bac1 2698 goto retry;
1da177e4
LT
2699}
2700
3be680b7
TH
2701/**
2702 * sata_print_link_status - Print SATA link status
936fd732 2703 * @link: SATA link to printk link status about
3be680b7
TH
2704 *
2705 * This function prints link speed and status of a SATA link.
2706 *
2707 * LOCKING:
2708 * None.
2709 */
6bdb4fc9 2710static void sata_print_link_status(struct ata_link *link)
3be680b7 2711{
6d5f9732 2712 u32 sstatus, scontrol, tmp;
3be680b7 2713
936fd732 2714 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2715 return;
936fd732 2716 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2717
b1c72916 2718 if (ata_phys_link_online(link)) {
3be680b7 2719 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2720 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2721 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2722 } else {
a9a79dfe
JP
2723 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2724 sstatus, scontrol);
3be680b7
TH
2725 }
2726}
2727
ebdfca6e
AC
2728/**
2729 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2730 * @adev: device
2731 *
2732 * Obtain the other device on the same cable, or if none is
2733 * present NULL is returned
2734 */
2e9edbf8 2735
3373efd8 2736struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2737{
9af5c9c9
TH
2738 struct ata_link *link = adev->link;
2739 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2740 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2741 return NULL;
2742 return pair;
2743}
2744
1c3fae4d 2745/**
3c567b7d 2746 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2747 * @link: Link to adjust SATA spd limit for
a07d499b 2748 * @spd_limit: Additional limit
1c3fae4d 2749 *
936fd732 2750 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2751 * function only adjusts the limit. The change must be applied
3c567b7d 2752 * using sata_set_spd().
1c3fae4d 2753 *
a07d499b
TH
2754 * If @spd_limit is non-zero, the speed is limited to equal to or
2755 * lower than @spd_limit if such speed is supported. If
2756 * @spd_limit is slower than any supported speed, only the lowest
2757 * supported speed is allowed.
2758 *
1c3fae4d
TH
2759 * LOCKING:
2760 * Inherited from caller.
2761 *
2762 * RETURNS:
2763 * 0 on success, negative errno on failure
2764 */
a07d499b 2765int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2766{
81952c54 2767 u32 sstatus, spd, mask;
a07d499b 2768 int rc, bit;
1c3fae4d 2769
936fd732 2770 if (!sata_scr_valid(link))
008a7896
TH
2771 return -EOPNOTSUPP;
2772
2773 /* If SCR can be read, use it to determine the current SPD.
936fd732 2774 * If not, use cached value in link->sata_spd.
008a7896 2775 */
936fd732 2776 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2777 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2778 spd = (sstatus >> 4) & 0xf;
2779 else
936fd732 2780 spd = link->sata_spd;
1c3fae4d 2781
936fd732 2782 mask = link->sata_spd_limit;
1c3fae4d
TH
2783 if (mask <= 1)
2784 return -EINVAL;
008a7896
TH
2785
2786 /* unconditionally mask off the highest bit */
a07d499b
TH
2787 bit = fls(mask) - 1;
2788 mask &= ~(1 << bit);
1c3fae4d 2789
008a7896
TH
2790 /* Mask off all speeds higher than or equal to the current
2791 * one. Force 1.5Gbps if current SPD is not available.
2792 */
2793 if (spd > 1)
2794 mask &= (1 << (spd - 1)) - 1;
2795 else
2796 mask &= 1;
2797
2798 /* were we already at the bottom? */
1c3fae4d
TH
2799 if (!mask)
2800 return -EINVAL;
2801
a07d499b
TH
2802 if (spd_limit) {
2803 if (mask & ((1 << spd_limit) - 1))
2804 mask &= (1 << spd_limit) - 1;
2805 else {
2806 bit = ffs(mask) - 1;
2807 mask = 1 << bit;
2808 }
2809 }
2810
936fd732 2811 link->sata_spd_limit = mask;
1c3fae4d 2812
a9a79dfe
JP
2813 ata_link_warn(link, "limiting SATA link speed to %s\n",
2814 sata_spd_string(fls(mask)));
1c3fae4d
TH
2815
2816 return 0;
2817}
2818
936fd732 2819static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2820{
5270222f
TH
2821 struct ata_link *host_link = &link->ap->link;
2822 u32 limit, target, spd;
1c3fae4d 2823
5270222f
TH
2824 limit = link->sata_spd_limit;
2825
2826 /* Don't configure downstream link faster than upstream link.
2827 * It doesn't speed up anything and some PMPs choke on such
2828 * configuration.
2829 */
2830 if (!ata_is_host_link(link) && host_link->sata_spd)
2831 limit &= (1 << host_link->sata_spd) - 1;
2832
2833 if (limit == UINT_MAX)
2834 target = 0;
1c3fae4d 2835 else
5270222f 2836 target = fls(limit);
1c3fae4d
TH
2837
2838 spd = (*scontrol >> 4) & 0xf;
5270222f 2839 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2840
5270222f 2841 return spd != target;
1c3fae4d
TH
2842}
2843
2844/**
3c567b7d 2845 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2846 * @link: Link in question
1c3fae4d
TH
2847 *
2848 * Test whether the spd limit in SControl matches
936fd732 2849 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2850 * whether hardreset is necessary to apply SATA spd
2851 * configuration.
2852 *
2853 * LOCKING:
2854 * Inherited from caller.
2855 *
2856 * RETURNS:
2857 * 1 if SATA spd configuration is needed, 0 otherwise.
2858 */
1dc55e87 2859static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2860{
2861 u32 scontrol;
2862
936fd732 2863 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2864 return 1;
1c3fae4d 2865
936fd732 2866 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2867}
2868
2869/**
3c567b7d 2870 * sata_set_spd - set SATA spd according to spd limit
936fd732 2871 * @link: Link to set SATA spd for
1c3fae4d 2872 *
936fd732 2873 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2874 *
2875 * LOCKING:
2876 * Inherited from caller.
2877 *
2878 * RETURNS:
2879 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2880 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2881 */
936fd732 2882int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2883{
2884 u32 scontrol;
81952c54 2885 int rc;
1c3fae4d 2886
936fd732 2887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2888 return rc;
1c3fae4d 2889
936fd732 2890 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2891 return 0;
2892
936fd732 2893 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2894 return rc;
2895
1c3fae4d
TH
2896 return 1;
2897}
2898
452503f9
AC
2899/*
2900 * This mode timing computation functionality is ported over from
2901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2902 */
2903/*
b352e57d 2904 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2906 * for UDMA6, which is currently supported only by Maxtor drives.
2907 *
2908 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2909 */
2910
2911static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2912/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2913 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2914 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2915 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2916 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2917 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2918 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2919 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2920
2921 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2922 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2923 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2924
2925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2926 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2927 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2928 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2929 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2930
2931/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2932 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2933 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2934 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2935 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2936 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2937 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2938 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2939
2940 { 0xFF }
2941};
2942
2dcb407e
JG
2943#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2944#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2945
2946static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2947{
3ada9c12
DD
2948 q->setup = EZ(t->setup * 1000, T);
2949 q->act8b = EZ(t->act8b * 1000, T);
2950 q->rec8b = EZ(t->rec8b * 1000, T);
2951 q->cyc8b = EZ(t->cyc8b * 1000, T);
2952 q->active = EZ(t->active * 1000, T);
2953 q->recover = EZ(t->recover * 1000, T);
2954 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2955 q->cycle = EZ(t->cycle * 1000, T);
2956 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2957}
2958
2959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2960 struct ata_timing *m, unsigned int what)
2961{
2962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2968 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2969 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2970 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2971}
2972
6357357c 2973const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2974{
70cd071e
TH
2975 const struct ata_timing *t = ata_timing;
2976
2977 while (xfer_mode > t->mode)
2978 t++;
452503f9 2979
70cd071e
TH
2980 if (xfer_mode == t->mode)
2981 return t;
cd705d5a
BP
2982
2983 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2984 __func__, xfer_mode);
2985
70cd071e 2986 return NULL;
452503f9
AC
2987}
2988
2989int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2990 struct ata_timing *t, int T, int UT)
2991{
9e8808a9 2992 const u16 *id = adev->id;
452503f9
AC
2993 const struct ata_timing *s;
2994 struct ata_timing p;
2995
2996 /*
2e9edbf8 2997 * Find the mode.
75b1f2f8 2998 */
452503f9
AC
2999
3000 if (!(s = ata_timing_find_mode(speed)))
3001 return -EINVAL;
3002
75b1f2f8
AL
3003 memcpy(t, s, sizeof(*s));
3004
452503f9
AC
3005 /*
3006 * If the drive is an EIDE drive, it can tell us it needs extended
3007 * PIO/MW_DMA cycle timing.
3008 */
3009
9e8808a9 3010 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3011 memset(&p, 0, sizeof(p));
9e8808a9 3012
bff00256 3013 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3014 if (speed <= XFER_PIO_2)
3015 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3016 else if ((speed <= XFER_PIO_4) ||
3017 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3018 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3019 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3020 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3021
452503f9
AC
3022 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3023 }
3024
3025 /*
3026 * Convert the timing to bus clock counts.
3027 */
3028
75b1f2f8 3029 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3030
3031 /*
c893a3ae
RD
3032 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3033 * S.M.A.R.T * and some other commands. We have to ensure that the
3034 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3035 */
3036
fd3367af 3037 if (speed > XFER_PIO_6) {
452503f9
AC
3038 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3039 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3040 }
3041
3042 /*
c893a3ae 3043 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3044 */
3045
3046 if (t->act8b + t->rec8b < t->cyc8b) {
3047 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3048 t->rec8b = t->cyc8b - t->act8b;
3049 }
3050
3051 if (t->active + t->recover < t->cycle) {
3052 t->active += (t->cycle - (t->active + t->recover)) / 2;
3053 t->recover = t->cycle - t->active;
3054 }
a617c09f 3055
4f701d1e
AC
3056 /* In a few cases quantisation may produce enough errors to
3057 leave t->cycle too low for the sum of active and recovery
3058 if so we must correct this */
3059 if (t->active + t->recover > t->cycle)
3060 t->cycle = t->active + t->recover;
452503f9
AC
3061
3062 return 0;
3063}
3064
a0f79b92
TH
3065/**
3066 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3067 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3068 * @cycle: cycle duration in ns
3069 *
3070 * Return matching xfer mode for @cycle. The returned mode is of
3071 * the transfer type specified by @xfer_shift. If @cycle is too
3072 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3073 * than the fastest known mode, the fasted mode is returned.
3074 *
3075 * LOCKING:
3076 * None.
3077 *
3078 * RETURNS:
3079 * Matching xfer_mode, 0xff if no match found.
3080 */
3081u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3082{
3083 u8 base_mode = 0xff, last_mode = 0xff;
3084 const struct ata_xfer_ent *ent;
3085 const struct ata_timing *t;
3086
3087 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3088 if (ent->shift == xfer_shift)
3089 base_mode = ent->base;
3090
3091 for (t = ata_timing_find_mode(base_mode);
3092 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3093 unsigned short this_cycle;
3094
3095 switch (xfer_shift) {
3096 case ATA_SHIFT_PIO:
3097 case ATA_SHIFT_MWDMA:
3098 this_cycle = t->cycle;
3099 break;
3100 case ATA_SHIFT_UDMA:
3101 this_cycle = t->udma;
3102 break;
3103 default:
3104 return 0xff;
3105 }
3106
3107 if (cycle > this_cycle)
3108 break;
3109
3110 last_mode = t->mode;
3111 }
3112
3113 return last_mode;
3114}
3115
cf176e1a
TH
3116/**
3117 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3118 * @dev: Device to adjust xfer masks
458337db 3119 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3120 *
3121 * Adjust xfer masks of @dev downward. Note that this function
3122 * does not apply the change. Invoking ata_set_mode() afterwards
3123 * will apply the limit.
3124 *
3125 * LOCKING:
3126 * Inherited from caller.
3127 *
3128 * RETURNS:
3129 * 0 on success, negative errno on failure
3130 */
458337db 3131int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3132{
458337db 3133 char buf[32];
7dc951ae
TH
3134 unsigned long orig_mask, xfer_mask;
3135 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3136 int quiet, highbit;
cf176e1a 3137
458337db
TH
3138 quiet = !!(sel & ATA_DNXFER_QUIET);
3139 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3140
458337db
TH
3141 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3142 dev->mwdma_mask,
3143 dev->udma_mask);
3144 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3145
458337db
TH
3146 switch (sel) {
3147 case ATA_DNXFER_PIO:
3148 highbit = fls(pio_mask) - 1;
3149 pio_mask &= ~(1 << highbit);
3150 break;
3151
3152 case ATA_DNXFER_DMA:
3153 if (udma_mask) {
3154 highbit = fls(udma_mask) - 1;
3155 udma_mask &= ~(1 << highbit);
3156 if (!udma_mask)
3157 return -ENOENT;
3158 } else if (mwdma_mask) {
3159 highbit = fls(mwdma_mask) - 1;
3160 mwdma_mask &= ~(1 << highbit);
3161 if (!mwdma_mask)
3162 return -ENOENT;
3163 }
3164 break;
3165
3166 case ATA_DNXFER_40C:
3167 udma_mask &= ATA_UDMA_MASK_40C;
3168 break;
3169
3170 case ATA_DNXFER_FORCE_PIO0:
3171 pio_mask &= 1;
3172 case ATA_DNXFER_FORCE_PIO:
3173 mwdma_mask = 0;
3174 udma_mask = 0;
3175 break;
3176
458337db
TH
3177 default:
3178 BUG();
3179 }
3180
3181 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3182
3183 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3184 return -ENOENT;
3185
3186 if (!quiet) {
3187 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3188 snprintf(buf, sizeof(buf), "%s:%s",
3189 ata_mode_string(xfer_mask),
3190 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3191 else
3192 snprintf(buf, sizeof(buf), "%s",
3193 ata_mode_string(xfer_mask));
3194
a9a79dfe 3195 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3196 }
cf176e1a
TH
3197
3198 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3199 &dev->udma_mask);
3200
cf176e1a 3201 return 0;
cf176e1a
TH
3202}
3203
3373efd8 3204static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3205{
d0cb43b3 3206 struct ata_port *ap = dev->link->ap;
9af5c9c9 3207 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3208 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3209 const char *dev_err_whine = "";
3210 int ign_dev_err = 0;
d0cb43b3 3211 unsigned int err_mask = 0;
83206a29 3212 int rc;
1da177e4 3213
e8384607 3214 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3215 if (dev->xfer_shift == ATA_SHIFT_PIO)
3216 dev->flags |= ATA_DFLAG_PIO;
3217
d0cb43b3
TH
3218 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3219 dev_err_whine = " (SET_XFERMODE skipped)";
3220 else {
3221 if (nosetxfer)
a9a79dfe
JP
3222 ata_dev_warn(dev,
3223 "NOSETXFER but PATA detected - can't "
3224 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3225 err_mask = ata_dev_set_xfermode(dev);
3226 }
2dcb407e 3227
4055dee7
TH
3228 if (err_mask & ~AC_ERR_DEV)
3229 goto fail;
3230
3231 /* revalidate */
3232 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3233 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3234 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3235 if (rc)
3236 return rc;
3237
b93fda12
AC
3238 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3239 /* Old CFA may refuse this command, which is just fine */
3240 if (ata_id_is_cfa(dev->id))
3241 ign_dev_err = 1;
3242 /* Catch several broken garbage emulations plus some pre
3243 ATA devices */
3244 if (ata_id_major_version(dev->id) == 0 &&
3245 dev->pio_mode <= XFER_PIO_2)
3246 ign_dev_err = 1;
3247 /* Some very old devices and some bad newer ones fail
3248 any kind of SET_XFERMODE request but support PIO0-2
3249 timings and no IORDY */
3250 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3251 ign_dev_err = 1;
3252 }
3acaf94b
AC
3253 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3254 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3255 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3256 dev->dma_mode == XFER_MW_DMA_0 &&
3257 (dev->id[63] >> 8) & 1)
4055dee7 3258 ign_dev_err = 1;
3acaf94b 3259
4055dee7
TH
3260 /* if the device is actually configured correctly, ignore dev err */
3261 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3262 ign_dev_err = 1;
1da177e4 3263
4055dee7
TH
3264 if (err_mask & AC_ERR_DEV) {
3265 if (!ign_dev_err)
3266 goto fail;
3267 else
3268 dev_err_whine = " (device error ignored)";
3269 }
48a8a14f 3270
23e71c3d
TH
3271 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3272 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3273
a9a79dfe
JP
3274 ata_dev_info(dev, "configured for %s%s\n",
3275 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3276 dev_err_whine);
4055dee7 3277
83206a29 3278 return 0;
4055dee7
TH
3279
3280 fail:
a9a79dfe 3281 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3282 return -EIO;
1da177e4
LT
3283}
3284
1da177e4 3285/**
04351821 3286 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3287 * @link: link on which timings will be programmed
1967b7ff 3288 * @r_failed_dev: out parameter for failed device
1da177e4 3289 *
04351821
A
3290 * Standard implementation of the function used to tune and set
3291 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3292 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3293 * returned in @r_failed_dev.
780a87f7 3294 *
1da177e4 3295 * LOCKING:
0cba632b 3296 * PCI/etc. bus probe sem.
e82cbdb9
TH
3297 *
3298 * RETURNS:
3299 * 0 on success, negative errno otherwise
1da177e4 3300 */
04351821 3301
0260731f 3302int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3303{
0260731f 3304 struct ata_port *ap = link->ap;
e8e0619f 3305 struct ata_device *dev;
f58229f8 3306 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3307
a6d5a51c 3308 /* step 1: calculate xfer_mask */
1eca4365 3309 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3310 unsigned long pio_mask, dma_mask;
b3a70601 3311 unsigned int mode_mask;
a6d5a51c 3312
b3a70601
AC
3313 mode_mask = ATA_DMA_MASK_ATA;
3314 if (dev->class == ATA_DEV_ATAPI)
3315 mode_mask = ATA_DMA_MASK_ATAPI;
3316 else if (ata_id_is_cfa(dev->id))
3317 mode_mask = ATA_DMA_MASK_CFA;
3318
3373efd8 3319 ata_dev_xfermask(dev);
33267325 3320 ata_force_xfermask(dev);
1da177e4 3321
acf356b1 3322 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3323
3324 if (libata_dma_mask & mode_mask)
80a9c430
SS
3325 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3326 dev->udma_mask);
b3a70601
AC
3327 else
3328 dma_mask = 0;
3329
acf356b1
TH
3330 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3331 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3332
4f65977d 3333 found = 1;
b15b3eba 3334 if (ata_dma_enabled(dev))
5444a6f4 3335 used_dma = 1;
a6d5a51c 3336 }
4f65977d 3337 if (!found)
e82cbdb9 3338 goto out;
a6d5a51c
TH
3339
3340 /* step 2: always set host PIO timings */
1eca4365 3341 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3342 if (dev->pio_mode == 0xff) {
a9a79dfe 3343 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3344 rc = -EINVAL;
e82cbdb9 3345 goto out;
e8e0619f
TH
3346 }
3347
3348 dev->xfer_mode = dev->pio_mode;
3349 dev->xfer_shift = ATA_SHIFT_PIO;
3350 if (ap->ops->set_piomode)
3351 ap->ops->set_piomode(ap, dev);
3352 }
1da177e4 3353
a6d5a51c 3354 /* step 3: set host DMA timings */
1eca4365
TH
3355 ata_for_each_dev(dev, link, ENABLED) {
3356 if (!ata_dma_enabled(dev))
e8e0619f
TH
3357 continue;
3358
3359 dev->xfer_mode = dev->dma_mode;
3360 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3361 if (ap->ops->set_dmamode)
3362 ap->ops->set_dmamode(ap, dev);
3363 }
1da177e4
LT
3364
3365 /* step 4: update devices' xfer mode */
1eca4365 3366 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3367 rc = ata_dev_set_mode(dev);
5bbc53f4 3368 if (rc)
e82cbdb9 3369 goto out;
83206a29 3370 }
1da177e4 3371
e8e0619f
TH
3372 /* Record simplex status. If we selected DMA then the other
3373 * host channels are not permitted to do so.
5444a6f4 3374 */
cca3974e 3375 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3376 ap->host->simplex_claimed = ap;
5444a6f4 3377
e82cbdb9
TH
3378 out:
3379 if (rc)
3380 *r_failed_dev = dev;
3381 return rc;
1da177e4
LT
3382}
3383
aa2731ad
TH
3384/**
3385 * ata_wait_ready - wait for link to become ready
3386 * @link: link to be waited on
3387 * @deadline: deadline jiffies for the operation
3388 * @check_ready: callback to check link readiness
3389 *
3390 * Wait for @link to become ready. @check_ready should return
3391 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3392 * link doesn't seem to be occupied, other errno for other error
3393 * conditions.
3394 *
3395 * Transient -ENODEV conditions are allowed for
3396 * ATA_TMOUT_FF_WAIT.
3397 *
3398 * LOCKING:
3399 * EH context.
3400 *
3401 * RETURNS:
3402 * 0 if @linke is ready before @deadline; otherwise, -errno.
3403 */
3404int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3405 int (*check_ready)(struct ata_link *link))
3406{
3407 unsigned long start = jiffies;
b48d58f5 3408 unsigned long nodev_deadline;
aa2731ad
TH
3409 int warned = 0;
3410
b48d58f5
TH
3411 /* choose which 0xff timeout to use, read comment in libata.h */
3412 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3413 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3414 else
3415 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3416
b1c72916
TH
3417 /* Slave readiness can't be tested separately from master. On
3418 * M/S emulation configuration, this function should be called
3419 * only on the master and it will handle both master and slave.
3420 */
3421 WARN_ON(link == link->ap->slave_link);
3422
aa2731ad
TH
3423 if (time_after(nodev_deadline, deadline))
3424 nodev_deadline = deadline;
3425
3426 while (1) {
3427 unsigned long now = jiffies;
3428 int ready, tmp;
3429
3430 ready = tmp = check_ready(link);
3431 if (ready > 0)
3432 return 0;
3433
b48d58f5
TH
3434 /*
3435 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3436 * is online. Also, some SATA devices take a long
b48d58f5
TH
3437 * time to clear 0xff after reset. Wait for
3438 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3439 * offline.
aa2731ad
TH
3440 *
3441 * Note that some PATA controllers (pata_ali) explode
3442 * if status register is read more than once when
3443 * there's no device attached.
3444 */
3445 if (ready == -ENODEV) {
3446 if (ata_link_online(link))
3447 ready = 0;
3448 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3449 !ata_link_offline(link) &&
3450 time_before(now, nodev_deadline))
3451 ready = 0;
3452 }
3453
3454 if (ready)
3455 return ready;
3456 if (time_after(now, deadline))
3457 return -EBUSY;
3458
3459 if (!warned && time_after(now, start + 5 * HZ) &&
3460 (deadline - now > 3 * HZ)) {
a9a79dfe 3461 ata_link_warn(link,
aa2731ad
TH
3462 "link is slow to respond, please be patient "
3463 "(ready=%d)\n", tmp);
3464 warned = 1;
3465 }
3466
97750ceb 3467 ata_msleep(link->ap, 50);
aa2731ad
TH
3468 }
3469}
3470
3471/**
3472 * ata_wait_after_reset - wait for link to become ready after reset
3473 * @link: link to be waited on
3474 * @deadline: deadline jiffies for the operation
3475 * @check_ready: callback to check link readiness
3476 *
3477 * Wait for @link to become ready after reset.
3478 *
3479 * LOCKING:
3480 * EH context.
3481 *
3482 * RETURNS:
3483 * 0 if @linke is ready before @deadline; otherwise, -errno.
3484 */
2b4221bb 3485int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3486 int (*check_ready)(struct ata_link *link))
3487{
97750ceb 3488 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3489
3490 return ata_wait_ready(link, deadline, check_ready);
3491}
3492
d7bb4cc7 3493/**
936fd732
TH
3494 * sata_link_debounce - debounce SATA phy status
3495 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3496 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3497 * @deadline: deadline jiffies for the operation
d7bb4cc7 3498 *
1152b261 3499 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3500 * holding the same value where DET is not 1 for @duration polled
3501 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3502 * beginning of the stable state. Because DET gets stuck at 1 on
3503 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3504 * until timeout then returns 0 if DET is stable at 1.
3505 *
d4b2bab4
TH
3506 * @timeout is further limited by @deadline. The sooner of the
3507 * two is used.
3508 *
d7bb4cc7
TH
3509 * LOCKING:
3510 * Kernel thread context (may sleep)
3511 *
3512 * RETURNS:
3513 * 0 on success, -errno on failure.
3514 */
936fd732
TH
3515int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3516 unsigned long deadline)
7a7921e8 3517{
341c2c95
TH
3518 unsigned long interval = params[0];
3519 unsigned long duration = params[1];
d4b2bab4 3520 unsigned long last_jiffies, t;
d7bb4cc7
TH
3521 u32 last, cur;
3522 int rc;
3523
341c2c95 3524 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3525 if (time_before(t, deadline))
3526 deadline = t;
3527
936fd732 3528 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3529 return rc;
3530 cur &= 0xf;
3531
3532 last = cur;
3533 last_jiffies = jiffies;
3534
3535 while (1) {
97750ceb 3536 ata_msleep(link->ap, interval);
936fd732 3537 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3538 return rc;
3539 cur &= 0xf;
3540
3541 /* DET stable? */
3542 if (cur == last) {
d4b2bab4 3543 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3544 continue;
341c2c95
TH
3545 if (time_after(jiffies,
3546 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3547 return 0;
3548 continue;
3549 }
3550
3551 /* unstable, start over */
3552 last = cur;
3553 last_jiffies = jiffies;
3554
f1545154
TH
3555 /* Check deadline. If debouncing failed, return
3556 * -EPIPE to tell upper layer to lower link speed.
3557 */
d4b2bab4 3558 if (time_after(jiffies, deadline))
f1545154 3559 return -EPIPE;
d7bb4cc7
TH
3560 }
3561}
3562
3563/**
936fd732
TH
3564 * sata_link_resume - resume SATA link
3565 * @link: ATA link to resume SATA
d7bb4cc7 3566 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3567 * @deadline: deadline jiffies for the operation
d7bb4cc7 3568 *
936fd732 3569 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3570 *
3571 * LOCKING:
3572 * Kernel thread context (may sleep)
3573 *
3574 * RETURNS:
3575 * 0 on success, -errno on failure.
3576 */
936fd732
TH
3577int sata_link_resume(struct ata_link *link, const unsigned long *params,
3578 unsigned long deadline)
d7bb4cc7 3579{
5040ab67 3580 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3581 u32 scontrol, serror;
81952c54
TH
3582 int rc;
3583
936fd732 3584 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3585 return rc;
7a7921e8 3586
5040ab67
TH
3587 /*
3588 * Writes to SControl sometimes get ignored under certain
3589 * controllers (ata_piix SIDPR). Make sure DET actually is
3590 * cleared.
3591 */
3592 do {
3593 scontrol = (scontrol & 0x0f0) | 0x300;
3594 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3595 return rc;
3596 /*
3597 * Some PHYs react badly if SStatus is pounded
3598 * immediately after resuming. Delay 200ms before
3599 * debouncing.
3600 */
97750ceb 3601 ata_msleep(link->ap, 200);
81952c54 3602
5040ab67
TH
3603 /* is SControl restored correctly? */
3604 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3605 return rc;
3606 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3607
5040ab67 3608 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3609 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3610 scontrol);
5040ab67
TH
3611 return 0;
3612 }
3613
3614 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3615 ata_link_warn(link, "link resume succeeded after %d retries\n",
3616 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3617
ac371987
TH
3618 if ((rc = sata_link_debounce(link, params, deadline)))
3619 return rc;
3620
f046519f 3621 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3622 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3623 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3624
f046519f 3625 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3626}
3627
1152b261
TH
3628/**
3629 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3630 * @link: ATA link to manipulate SControl for
3631 * @policy: LPM policy to configure
3632 * @spm_wakeup: initiate LPM transition to active state
3633 *
3634 * Manipulate the IPM field of the SControl register of @link
3635 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3636 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3637 * the link. This function also clears PHYRDY_CHG before
3638 * returning.
3639 *
3640 * LOCKING:
3641 * EH context.
3642 *
3643 * RETURNS:
8485187b 3644 * 0 on success, -errno otherwise.
1152b261
TH
3645 */
3646int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3647 bool spm_wakeup)
3648{
3649 struct ata_eh_context *ehc = &link->eh_context;
3650 bool woken_up = false;
3651 u32 scontrol;
3652 int rc;
3653
3654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3655 if (rc)
3656 return rc;
3657
3658 switch (policy) {
3659 case ATA_LPM_MAX_POWER:
3660 /* disable all LPM transitions */
65fe1f0f 3661 scontrol |= (0x7 << 8);
1152b261
TH
3662 /* initiate transition to active state */
3663 if (spm_wakeup) {
3664 scontrol |= (0x4 << 12);
3665 woken_up = true;
3666 }
3667 break;
3668 case ATA_LPM_MED_POWER:
3669 /* allow LPM to PARTIAL */
3670 scontrol &= ~(0x1 << 8);
65fe1f0f 3671 scontrol |= (0x6 << 8);
1152b261
TH
3672 break;
3673 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3674 if (ata_link_nr_enabled(link) > 0)
3675 /* no restrictions on LPM transitions */
65fe1f0f 3676 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3677 else {
3678 /* empty port, power off */
3679 scontrol &= ~0xf;
3680 scontrol |= (0x1 << 2);
3681 }
1152b261
TH
3682 break;
3683 default:
3684 WARN_ON(1);
3685 }
3686
3687 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3688 if (rc)
3689 return rc;
3690
3691 /* give the link time to transit out of LPM state */
3692 if (woken_up)
3693 msleep(10);
3694
3695 /* clear PHYRDY_CHG from SError */
3696 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3697 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3698}
3699
f5914a46 3700/**
0aa1113d 3701 * ata_std_prereset - prepare for reset
cc0680a5 3702 * @link: ATA link to be reset
d4b2bab4 3703 * @deadline: deadline jiffies for the operation
f5914a46 3704 *
cc0680a5 3705 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3706 * prereset makes libata abort whole reset sequence and give up
3707 * that port, so prereset should be best-effort. It does its
3708 * best to prepare for reset sequence but if things go wrong, it
3709 * should just whine, not fail.
f5914a46
TH
3710 *
3711 * LOCKING:
3712 * Kernel thread context (may sleep)
3713 *
3714 * RETURNS:
3715 * 0 on success, -errno otherwise.
3716 */
0aa1113d 3717int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3718{
cc0680a5 3719 struct ata_port *ap = link->ap;
936fd732 3720 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3721 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3722 int rc;
3723
f5914a46
TH
3724 /* if we're about to do hardreset, nothing more to do */
3725 if (ehc->i.action & ATA_EH_HARDRESET)
3726 return 0;
3727
936fd732 3728 /* if SATA, resume link */
a16abc0b 3729 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3730 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3731 /* whine about phy resume failure but proceed */
3732 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3733 ata_link_warn(link,
3734 "failed to resume link for reset (errno=%d)\n",
3735 rc);
f5914a46
TH
3736 }
3737
45db2f6c 3738 /* no point in trying softreset on offline link */
b1c72916 3739 if (ata_phys_link_offline(link))
45db2f6c
TH
3740 ehc->i.action &= ~ATA_EH_SOFTRESET;
3741
f5914a46
TH
3742 return 0;
3743}
3744
c2bd5804 3745/**
624d5c51
TH
3746 * sata_link_hardreset - reset link via SATA phy reset
3747 * @link: link to reset
3748 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3749 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3750 * @online: optional out parameter indicating link onlineness
3751 * @check_ready: optional callback to check link readiness
c2bd5804 3752 *
624d5c51 3753 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3754 * After hardreset, link readiness is waited upon using
3755 * ata_wait_ready() if @check_ready is specified. LLDs are
3756 * allowed to not specify @check_ready and wait itself after this
3757 * function returns. Device classification is LLD's
3758 * responsibility.
3759 *
3760 * *@online is set to one iff reset succeeded and @link is online
3761 * after reset.
c2bd5804
TH
3762 *
3763 * LOCKING:
3764 * Kernel thread context (may sleep)
3765 *
3766 * RETURNS:
3767 * 0 on success, -errno otherwise.
3768 */
624d5c51 3769int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3770 unsigned long deadline,
3771 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3772{
624d5c51 3773 u32 scontrol;
81952c54 3774 int rc;
852ee16a 3775
c2bd5804
TH
3776 DPRINTK("ENTER\n");
3777
9dadd45b
TH
3778 if (online)
3779 *online = false;
3780
936fd732 3781 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3782 /* SATA spec says nothing about how to reconfigure
3783 * spd. To be on the safe side, turn off phy during
3784 * reconfiguration. This works for at least ICH7 AHCI
3785 * and Sil3124.
3786 */
936fd732 3787 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3788 goto out;
81952c54 3789
a34b6fc0 3790 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3791
936fd732 3792 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3793 goto out;
1c3fae4d 3794
936fd732 3795 sata_set_spd(link);
1c3fae4d
TH
3796 }
3797
3798 /* issue phy wake/reset */
936fd732 3799 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3800 goto out;
81952c54 3801
852ee16a 3802 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3803
936fd732 3804 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3805 goto out;
c2bd5804 3806
1c3fae4d 3807 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3808 * 10.4.2 says at least 1 ms.
3809 */
97750ceb 3810 ata_msleep(link->ap, 1);
c2bd5804 3811
936fd732
TH
3812 /* bring link back */
3813 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3814 if (rc)
3815 goto out;
3816 /* if link is offline nothing more to do */
b1c72916 3817 if (ata_phys_link_offline(link))
9dadd45b
TH
3818 goto out;
3819
3820 /* Link is online. From this point, -ENODEV too is an error. */
3821 if (online)
3822 *online = true;
3823
071f44b1 3824 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3825 /* If PMP is supported, we have to do follow-up SRST.
3826 * Some PMPs don't send D2H Reg FIS after hardreset if
3827 * the first port is empty. Wait only for
3828 * ATA_TMOUT_PMP_SRST_WAIT.
3829 */
3830 if (check_ready) {
3831 unsigned long pmp_deadline;
3832
341c2c95
TH
3833 pmp_deadline = ata_deadline(jiffies,
3834 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3835 if (time_after(pmp_deadline, deadline))
3836 pmp_deadline = deadline;
3837 ata_wait_ready(link, pmp_deadline, check_ready);
3838 }
3839 rc = -EAGAIN;
3840 goto out;
3841 }
3842
3843 rc = 0;
3844 if (check_ready)
3845 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3846 out:
0cbf0711
TH
3847 if (rc && rc != -EAGAIN) {
3848 /* online is set iff link is online && reset succeeded */
3849 if (online)
3850 *online = false;
a9a79dfe 3851 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3852 }
b6103f6d
TH
3853 DPRINTK("EXIT, rc=%d\n", rc);
3854 return rc;
3855}
3856
57c9efdf
TH
3857/**
3858 * sata_std_hardreset - COMRESET w/o waiting or classification
3859 * @link: link to reset
3860 * @class: resulting class of attached device
3861 * @deadline: deadline jiffies for the operation
3862 *
3863 * Standard SATA COMRESET w/o waiting or classification.
3864 *
3865 * LOCKING:
3866 * Kernel thread context (may sleep)
3867 *
3868 * RETURNS:
3869 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3870 */
3871int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3872 unsigned long deadline)
3873{
3874 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3875 bool online;
3876 int rc;
3877
3878 /* do hardreset */
3879 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3880 return online ? -EAGAIN : rc;
3881}
3882
c2bd5804 3883/**
203c75b8 3884 * ata_std_postreset - standard postreset callback
cc0680a5 3885 * @link: the target ata_link
c2bd5804
TH
3886 * @classes: classes of attached devices
3887 *
3888 * This function is invoked after a successful reset. Note that
3889 * the device might have been reset more than once using
3890 * different reset methods before postreset is invoked.
c2bd5804 3891 *
c2bd5804
TH
3892 * LOCKING:
3893 * Kernel thread context (may sleep)
3894 */
203c75b8 3895void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3896{
f046519f
TH
3897 u32 serror;
3898
c2bd5804
TH
3899 DPRINTK("ENTER\n");
3900
f046519f
TH
3901 /* reset complete, clear SError */
3902 if (!sata_scr_read(link, SCR_ERROR, &serror))
3903 sata_scr_write(link, SCR_ERROR, serror);
3904
c2bd5804 3905 /* print link status */
936fd732 3906 sata_print_link_status(link);
c2bd5804 3907
c2bd5804
TH
3908 DPRINTK("EXIT\n");
3909}
3910
623a3128
TH
3911/**
3912 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3913 * @dev: device to compare against
3914 * @new_class: class of the new device
3915 * @new_id: IDENTIFY page of the new device
3916 *
3917 * Compare @new_class and @new_id against @dev and determine
3918 * whether @dev is the device indicated by @new_class and
3919 * @new_id.
3920 *
3921 * LOCKING:
3922 * None.
3923 *
3924 * RETURNS:
3925 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3926 */
3373efd8
TH
3927static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3928 const u16 *new_id)
623a3128
TH
3929{
3930 const u16 *old_id = dev->id;
a0cf733b
TH
3931 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3932 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3933
3934 if (dev->class != new_class) {
a9a79dfe
JP
3935 ata_dev_info(dev, "class mismatch %d != %d\n",
3936 dev->class, new_class);
623a3128
TH
3937 return 0;
3938 }
3939
a0cf733b
TH
3940 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3941 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3942 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3943 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3944
3945 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
3946 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3947 model[0], model[1]);
623a3128
TH
3948 return 0;
3949 }
3950
3951 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
3952 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3953 serial[0], serial[1]);
623a3128
TH
3954 return 0;
3955 }
3956
623a3128
TH
3957 return 1;
3958}
3959
3960/**
fe30911b 3961 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3962 * @dev: target ATA device
bff04647 3963 * @readid_flags: read ID flags
623a3128
TH
3964 *
3965 * Re-read IDENTIFY page and make sure @dev is still attached to
3966 * the port.
3967 *
3968 * LOCKING:
3969 * Kernel thread context (may sleep)
3970 *
3971 * RETURNS:
3972 * 0 on success, negative errno otherwise
3973 */
fe30911b 3974int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3975{
5eb45c02 3976 unsigned int class = dev->class;
9af5c9c9 3977 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3978 int rc;
3979
fe635c7e 3980 /* read ID data */
bff04647 3981 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3982 if (rc)
fe30911b 3983 return rc;
623a3128
TH
3984
3985 /* is the device still there? */
fe30911b
TH
3986 if (!ata_dev_same_device(dev, class, id))
3987 return -ENODEV;
623a3128 3988
fe635c7e 3989 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3990 return 0;
3991}
3992
3993/**
3994 * ata_dev_revalidate - Revalidate ATA device
3995 * @dev: device to revalidate
422c9daa 3996 * @new_class: new class code
fe30911b
TH
3997 * @readid_flags: read ID flags
3998 *
3999 * Re-read IDENTIFY page, make sure @dev is still attached to the
4000 * port and reconfigure it according to the new IDENTIFY page.
4001 *
4002 * LOCKING:
4003 * Kernel thread context (may sleep)
4004 *
4005 * RETURNS:
4006 * 0 on success, negative errno otherwise
4007 */
422c9daa
TH
4008int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4009 unsigned int readid_flags)
fe30911b 4010{
6ddcd3b0 4011 u64 n_sectors = dev->n_sectors;
5920dadf 4012 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4013 int rc;
4014
4015 if (!ata_dev_enabled(dev))
4016 return -ENODEV;
4017
422c9daa
TH
4018 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4019 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4020 new_class != ATA_DEV_ATA &&
4021 new_class != ATA_DEV_ATAPI &&
9162c657 4022 new_class != ATA_DEV_ZAC &&
f0d0613d 4023 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4024 ata_dev_info(dev, "class mismatch %u != %u\n",
4025 dev->class, new_class);
422c9daa
TH
4026 rc = -ENODEV;
4027 goto fail;
4028 }
4029
fe30911b
TH
4030 /* re-read ID */
4031 rc = ata_dev_reread_id(dev, readid_flags);
4032 if (rc)
4033 goto fail;
623a3128
TH
4034
4035 /* configure device according to the new ID */
efdaedc4 4036 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4037 if (rc)
4038 goto fail;
4039
4040 /* verify n_sectors hasn't changed */
445d211b
TH
4041 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4042 dev->n_sectors == n_sectors)
4043 return 0;
4044
4045 /* n_sectors has changed */
a9a79dfe
JP
4046 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4047 (unsigned long long)n_sectors,
4048 (unsigned long long)dev->n_sectors);
445d211b
TH
4049
4050 /*
4051 * Something could have caused HPA to be unlocked
4052 * involuntarily. If n_native_sectors hasn't changed and the
4053 * new size matches it, keep the device.
4054 */
4055 if (dev->n_native_sectors == n_native_sectors &&
4056 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4057 ata_dev_warn(dev,
4058 "new n_sectors matches native, probably "
4059 "late HPA unlock, n_sectors updated\n");
68939ce5 4060 /* use the larger n_sectors */
445d211b 4061 return 0;
6ddcd3b0
TH
4062 }
4063
445d211b
TH
4064 /*
4065 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4066 * unlocking HPA in those cases.
4067 *
4068 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4069 */
4070 if (dev->n_native_sectors == n_native_sectors &&
4071 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4072 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4073 ata_dev_warn(dev,
4074 "old n_sectors matches native, probably "
4075 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4076 /* try unlocking HPA */
4077 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4078 rc = -EIO;
4079 } else
4080 rc = -ENODEV;
623a3128 4081
445d211b
TH
4082 /* restore original n_[native_]sectors and fail */
4083 dev->n_native_sectors = n_native_sectors;
4084 dev->n_sectors = n_sectors;
623a3128 4085 fail:
a9a79dfe 4086 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4087 return rc;
4088}
4089
6919a0a6
AC
4090struct ata_blacklist_entry {
4091 const char *model_num;
4092 const char *model_rev;
4093 unsigned long horkage;
4094};
4095
4096static const struct ata_blacklist_entry ata_device_blacklist [] = {
4097 /* Devices with DMA related problems under Linux */
4098 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4099 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4100 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4101 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4104 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4105 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4106 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4107 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4108 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4109 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4110 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4111 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4112 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4113 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4114 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4115 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4116 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4117 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4118 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4119 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4120 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4121 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4122 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4123 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4124 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4125 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4126 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3af9a77a 4127 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4128 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4129
18d6e9d5 4130 /* Weird ATAPI devices */
40a1d531 4131 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4132 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4133 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4134 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4135
af34d637
DM
4136 /*
4137 * Causes silent data corruption with higher max sects.
4138 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4139 */
4140 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4141
6919a0a6
AC
4142 /* Devices we expect to fail diagnostics */
4143
4144 /* Devices where NCQ should be avoided */
4145 /* NCQ is slow */
2dcb407e 4146 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4147 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4148 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4149 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4150 /* NCQ is broken */
539cc7c7 4151 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4152 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4153 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4154 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4155 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4156
ac70a964 4157 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4158 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4159 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4160
4d1f9082 4161 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4162 ATA_HORKAGE_FIRMWARE_WARN },
4163
4d1f9082 4164 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4165 ATA_HORKAGE_FIRMWARE_WARN },
4166
4d1f9082 4167 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4168 ATA_HORKAGE_FIRMWARE_WARN },
4169
08c85d2a 4170 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4171 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4172 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4173 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4174
36e337d0
RH
4175 /* Blacklist entries taken from Silicon Image 3124/3132
4176 Windows driver .inf file - also several Linux problem reports */
4177 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4178 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4179 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4180
68b0ddb2
TH
4181 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4182 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4183
16c55b03
TH
4184 /* devices which puke on READ_NATIVE_MAX */
4185 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4186 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4187 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4188 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4189
7831387b
TH
4190 /* this one allows HPA unlocking but fails IOs on the area */
4191 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4192
93328e11
AC
4193 /* Devices which report 1 sector over size HPA */
4194 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4195 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4196 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4197
6bbfd53d
AC
4198 /* Devices which get the IVB wrong */
4199 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4200 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4201 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4202
9ce8e307
JA
4203 /* Devices that do not need bridging limits applied */
4204 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4205 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4206
9062712f
TH
4207 /* Devices which aren't very happy with higher link speeds */
4208 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4209 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4210
d0cb43b3
TH
4211 /*
4212 * Devices which choke on SETXFER. Applies only if both the
4213 * device and controller are SATA.
4214 */
cd691876 4215 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4216 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4217 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4218 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4219 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4220
f78dea06 4221 /* devices that don't properly handle queued TRIM commands */
243918be 4222 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4223 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4224 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4225 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4226 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4227 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4228 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4231 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4232 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4233 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4234 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4235 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4236
cda57b1b
AF
4237 /* devices that don't properly handle TRIM commands */
4238 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4239
e61f7d1c
MP
4240 /*
4241 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4242 * (Return Zero After Trim) flags in the ATA Command Set are
4243 * unreliable in the sense that they only define what happens if
4244 * the device successfully executed the DSM TRIM command. TRIM
4245 * is only advisory, however, and the device is free to silently
4246 * ignore all or parts of the request.
4247 *
4248 * Whitelist drives that are known to reliably return zeroes
4249 * after TRIM.
4250 */
4251
4252 /*
4253 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4254 * that model before whitelisting all other intel SSDs.
4255 */
4256 { "INTEL*SSDSC2MH*", NULL, 0, },
4257
ff7f53fb
MP
4258 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4259 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4260 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4265
ecd75ad5
TH
4266 /*
4267 * Some WD SATA-I drives spin up and down erratically when the link
4268 * is put into the slumber mode. We don't have full list of the
4269 * affected devices. Disable LPM if the device matches one of the
4270 * known prefixes and is SATA-1. As a side effect LPM partial is
4271 * lost too.
4272 *
4273 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4274 */
4275 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4276 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4277 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4282
6919a0a6
AC
4283 /* End Marker */
4284 { }
1da177e4 4285};
2e9edbf8 4286
75683fe7 4287static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4288{
8bfa79fc
TH
4289 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4290 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4291 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4292
8bfa79fc
TH
4293 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4294 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4295
6919a0a6 4296 while (ad->model_num) {
1c402799 4297 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4298 if (ad->model_rev == NULL)
4299 return ad->horkage;
1c402799 4300 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4301 return ad->horkage;
f4b15fef 4302 }
6919a0a6 4303 ad++;
f4b15fef 4304 }
1da177e4
LT
4305 return 0;
4306}
4307
6919a0a6
AC
4308static int ata_dma_blacklisted(const struct ata_device *dev)
4309{
4310 /* We don't support polling DMA.
4311 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4312 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4313 */
9af5c9c9 4314 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4315 (dev->flags & ATA_DFLAG_CDB_INTR))
4316 return 1;
75683fe7 4317 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4318}
4319
6bbfd53d
AC
4320/**
4321 * ata_is_40wire - check drive side detection
4322 * @dev: device
4323 *
4324 * Perform drive side detection decoding, allowing for device vendors
4325 * who can't follow the documentation.
4326 */
4327
4328static int ata_is_40wire(struct ata_device *dev)
4329{
4330 if (dev->horkage & ATA_HORKAGE_IVB)
4331 return ata_drive_40wire_relaxed(dev->id);
4332 return ata_drive_40wire(dev->id);
4333}
4334
15a5551c
AC
4335/**
4336 * cable_is_40wire - 40/80/SATA decider
4337 * @ap: port to consider
4338 *
4339 * This function encapsulates the policy for speed management
4340 * in one place. At the moment we don't cache the result but
4341 * there is a good case for setting ap->cbl to the result when
4342 * we are called with unknown cables (and figuring out if it
4343 * impacts hotplug at all).
4344 *
4345 * Return 1 if the cable appears to be 40 wire.
4346 */
4347
4348static int cable_is_40wire(struct ata_port *ap)
4349{
4350 struct ata_link *link;
4351 struct ata_device *dev;
4352
4a9c7b33 4353 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4354 if (ap->cbl == ATA_CBL_PATA40)
4355 return 1;
4a9c7b33
TH
4356
4357 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4358 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4359 return 0;
4a9c7b33
TH
4360
4361 /* If the system is known to be 40 wire short cable (eg
4362 * laptop), then we allow 80 wire modes even if the drive
4363 * isn't sure.
4364 */
f792068e
AC
4365 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4366 return 0;
4a9c7b33
TH
4367
4368 /* If the controller doesn't know, we scan.
4369 *
4370 * Note: We look for all 40 wire detects at this point. Any
4371 * 80 wire detect is taken to be 80 wire cable because
4372 * - in many setups only the one drive (slave if present) will
4373 * give a valid detect
4374 * - if you have a non detect capable drive you don't want it
4375 * to colour the choice
4376 */
1eca4365
TH
4377 ata_for_each_link(link, ap, EDGE) {
4378 ata_for_each_dev(dev, link, ENABLED) {
4379 if (!ata_is_40wire(dev))
15a5551c
AC
4380 return 0;
4381 }
4382 }
4383 return 1;
4384}
4385
a6d5a51c
TH
4386/**
4387 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4388 * @dev: Device to compute xfermask for
4389 *
acf356b1
TH
4390 * Compute supported xfermask of @dev and store it in
4391 * dev->*_mask. This function is responsible for applying all
4392 * known limits including host controller limits, device
4393 * blacklist, etc...
a6d5a51c
TH
4394 *
4395 * LOCKING:
4396 * None.
a6d5a51c 4397 */
3373efd8 4398static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4399{
9af5c9c9
TH
4400 struct ata_link *link = dev->link;
4401 struct ata_port *ap = link->ap;
cca3974e 4402 struct ata_host *host = ap->host;
a6d5a51c 4403 unsigned long xfer_mask;
1da177e4 4404
37deecb5 4405 /* controller modes available */
565083e1
TH
4406 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4407 ap->mwdma_mask, ap->udma_mask);
4408
8343f889 4409 /* drive modes available */
37deecb5
TH
4410 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4411 dev->mwdma_mask, dev->udma_mask);
4412 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4413
b352e57d
AC
4414 /*
4415 * CFA Advanced TrueIDE timings are not allowed on a shared
4416 * cable
4417 */
4418 if (ata_dev_pair(dev)) {
4419 /* No PIO5 or PIO6 */
4420 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4421 /* No MWDMA3 or MWDMA 4 */
4422 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4423 }
4424
37deecb5
TH
4425 if (ata_dma_blacklisted(dev)) {
4426 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4427 ata_dev_warn(dev,
4428 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4429 }
a6d5a51c 4430
14d66ab7 4431 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4432 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4434 ata_dev_warn(dev,
4435 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4436 }
565083e1 4437
e424675f
JG
4438 if (ap->flags & ATA_FLAG_NO_IORDY)
4439 xfer_mask &= ata_pio_mask_no_iordy(dev);
4440
5444a6f4 4441 if (ap->ops->mode_filter)
a76b62ca 4442 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4443
8343f889
RH
4444 /* Apply cable rule here. Don't apply it early because when
4445 * we handle hot plug the cable type can itself change.
4446 * Check this last so that we know if the transfer rate was
4447 * solely limited by the cable.
4448 * Unknown or 80 wire cables reported host side are checked
4449 * drive side as well. Cases where we know a 40wire cable
4450 * is used safely for 80 are not checked here.
4451 */
4452 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4453 /* UDMA/44 or higher would be available */
15a5551c 4454 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4455 ata_dev_warn(dev,
4456 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4457 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4458 }
4459
565083e1
TH
4460 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4461 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4462}
4463
1da177e4
LT
4464/**
4465 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4466 * @dev: Device to which command will be sent
4467 *
780a87f7
JG
4468 * Issue SET FEATURES - XFER MODE command to device @dev
4469 * on port @ap.
4470 *
1da177e4 4471 * LOCKING:
0cba632b 4472 * PCI/etc. bus probe sem.
83206a29
TH
4473 *
4474 * RETURNS:
4475 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4476 */
4477
3373efd8 4478static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4479{
a0123703 4480 struct ata_taskfile tf;
83206a29 4481 unsigned int err_mask;
1da177e4
LT
4482
4483 /* set up set-features taskfile */
4484 DPRINTK("set features - xfer mode\n");
4485
464cf177
TH
4486 /* Some controllers and ATAPI devices show flaky interrupt
4487 * behavior after setting xfer mode. Use polling instead.
4488 */
3373efd8 4489 ata_tf_init(dev, &tf);
a0123703
TH
4490 tf.command = ATA_CMD_SET_FEATURES;
4491 tf.feature = SETFEATURES_XFER;
464cf177 4492 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4493 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4494 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4495 if (ata_pio_need_iordy(dev))
4496 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4497 /* If the device has IORDY and the controller does not - turn it off */
4498 else if (ata_id_has_iordy(dev->id))
11b7becc 4499 tf.nsect = 0x01;
b9f8ab2d
AC
4500 else /* In the ancient relic department - skip all of this */
4501 return 0;
1da177e4 4502
d531be2c
MP
4503 /* On some disks, this command causes spin-up, so we need longer timeout */
4504 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4505
4506 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4507 return err_mask;
4508}
1152b261 4509
9f45cbd3 4510/**
218f3d30 4511 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4512 * @dev: Device to which command will be sent
4513 * @enable: Whether to enable or disable the feature
218f3d30 4514 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4515 *
4516 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4517 * on port @ap with sector count
9f45cbd3
KCA
4518 *
4519 * LOCKING:
4520 * PCI/etc. bus probe sem.
4521 *
4522 * RETURNS:
4523 * 0 on success, AC_ERR_* mask otherwise.
4524 */
1152b261 4525unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4526{
4527 struct ata_taskfile tf;
4528 unsigned int err_mask;
4529
4530 /* set up set-features taskfile */
4531 DPRINTK("set features - SATA features\n");
4532
4533 ata_tf_init(dev, &tf);
4534 tf.command = ATA_CMD_SET_FEATURES;
4535 tf.feature = enable;
4536 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4537 tf.protocol = ATA_PROT_NODATA;
218f3d30 4538 tf.nsect = feature;
9f45cbd3 4539
2b789108 4540 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4541
83206a29
TH
4542 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4543 return err_mask;
1da177e4 4544}
633de4cc 4545EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4546
8bf62ece
AL
4547/**
4548 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4549 * @dev: Device to which command will be sent
e2a7f77a
RD
4550 * @heads: Number of heads (taskfile parameter)
4551 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4552 *
4553 * LOCKING:
6aff8f1f
TH
4554 * Kernel thread context (may sleep)
4555 *
4556 * RETURNS:
4557 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4558 */
3373efd8
TH
4559static unsigned int ata_dev_init_params(struct ata_device *dev,
4560 u16 heads, u16 sectors)
8bf62ece 4561{
a0123703 4562 struct ata_taskfile tf;
6aff8f1f 4563 unsigned int err_mask;
8bf62ece
AL
4564
4565 /* Number of sectors per track 1-255. Number of heads 1-16 */
4566 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4567 return AC_ERR_INVALID;
8bf62ece
AL
4568
4569 /* set up init dev params taskfile */
4570 DPRINTK("init dev params \n");
4571
3373efd8 4572 ata_tf_init(dev, &tf);
a0123703
TH
4573 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4574 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4575 tf.protocol = ATA_PROT_NODATA;
4576 tf.nsect = sectors;
4577 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4578
2b789108 4579 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4580 /* A clean abort indicates an original or just out of spec drive
4581 and we should continue as we issue the setup based on the
4582 drive reported working geometry */
4583 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4584 err_mask = 0;
8bf62ece 4585
6aff8f1f
TH
4586 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4587 return err_mask;
8bf62ece
AL
4588}
4589
1da177e4 4590/**
0cba632b
JG
4591 * ata_sg_clean - Unmap DMA memory associated with command
4592 * @qc: Command containing DMA memory to be released
4593 *
4594 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4595 *
4596 * LOCKING:
cca3974e 4597 * spin_lock_irqsave(host lock)
1da177e4 4598 */
70e6ad0c 4599void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4600{
4601 struct ata_port *ap = qc->ap;
ff2aeb1e 4602 struct scatterlist *sg = qc->sg;
1da177e4
LT
4603 int dir = qc->dma_dir;
4604
efcb3cf7 4605 WARN_ON_ONCE(sg == NULL);
1da177e4 4606
dde20207 4607 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4608
dde20207 4609 if (qc->n_elem)
5825627c 4610 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4611
4612 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4613 qc->sg = NULL;
1da177e4
LT
4614}
4615
1da177e4 4616/**
5895ef9a 4617 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4618 * @qc: Metadata associated with taskfile to check
4619 *
780a87f7
JG
4620 * Allow low-level driver to filter ATA PACKET commands, returning
4621 * a status indicating whether or not it is OK to use DMA for the
4622 * supplied PACKET command.
4623 *
1da177e4 4624 * LOCKING:
624d5c51
TH
4625 * spin_lock_irqsave(host lock)
4626 *
4627 * RETURNS: 0 when ATAPI DMA can be used
4628 * nonzero otherwise
4629 */
5895ef9a 4630int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4631{
4632 struct ata_port *ap = qc->ap;
71601958 4633
624d5c51
TH
4634 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4635 * few ATAPI devices choke on such DMA requests.
4636 */
6a87e42e
TH
4637 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4638 unlikely(qc->nbytes & 15))
624d5c51 4639 return 1;
e2cec771 4640
624d5c51
TH
4641 if (ap->ops->check_atapi_dma)
4642 return ap->ops->check_atapi_dma(qc);
e2cec771 4643
624d5c51
TH
4644 return 0;
4645}
1da177e4 4646
624d5c51
TH
4647/**
4648 * ata_std_qc_defer - Check whether a qc needs to be deferred
4649 * @qc: ATA command in question
4650 *
4651 * Non-NCQ commands cannot run with any other command, NCQ or
4652 * not. As upper layer only knows the queue depth, we are
4653 * responsible for maintaining exclusion. This function checks
4654 * whether a new command @qc can be issued.
4655 *
4656 * LOCKING:
4657 * spin_lock_irqsave(host lock)
4658 *
4659 * RETURNS:
4660 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4661 */
4662int ata_std_qc_defer(struct ata_queued_cmd *qc)
4663{
4664 struct ata_link *link = qc->dev->link;
e2cec771 4665
624d5c51
TH
4666 if (qc->tf.protocol == ATA_PROT_NCQ) {
4667 if (!ata_tag_valid(link->active_tag))
4668 return 0;
4669 } else {
4670 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4671 return 0;
4672 }
e2cec771 4673
624d5c51
TH
4674 return ATA_DEFER_LINK;
4675}
6912ccd5 4676
624d5c51 4677void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4678
624d5c51
TH
4679/**
4680 * ata_sg_init - Associate command with scatter-gather table.
4681 * @qc: Command to be associated
4682 * @sg: Scatter-gather table.
4683 * @n_elem: Number of elements in s/g table.
4684 *
4685 * Initialize the data-related elements of queued_cmd @qc
4686 * to point to a scatter-gather table @sg, containing @n_elem
4687 * elements.
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4691 */
4692void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4693 unsigned int n_elem)
4694{
4695 qc->sg = sg;
4696 qc->n_elem = n_elem;
4697 qc->cursg = qc->sg;
4698}
bb5cb290 4699
624d5c51
TH
4700/**
4701 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4702 * @qc: Command with scatter-gather table to be mapped.
4703 *
4704 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4705 *
4706 * LOCKING:
4707 * spin_lock_irqsave(host lock)
4708 *
4709 * RETURNS:
4710 * Zero on success, negative on error.
4711 *
4712 */
4713static int ata_sg_setup(struct ata_queued_cmd *qc)
4714{
4715 struct ata_port *ap = qc->ap;
4716 unsigned int n_elem;
1da177e4 4717
624d5c51 4718 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4719
624d5c51
TH
4720 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4721 if (n_elem < 1)
4722 return -1;
bb5cb290 4723
624d5c51 4724 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4725 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4726 qc->n_elem = n_elem;
4727 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4728
624d5c51 4729 return 0;
1da177e4
LT
4730}
4731
624d5c51
TH
4732/**
4733 * swap_buf_le16 - swap halves of 16-bit words in place
4734 * @buf: Buffer to swap
4735 * @buf_words: Number of 16-bit words in buffer.
4736 *
4737 * Swap halves of 16-bit words if needed to convert from
4738 * little-endian byte order to native cpu byte order, or
4739 * vice-versa.
4740 *
4741 * LOCKING:
4742 * Inherited from caller.
4743 */
4744void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4745{
624d5c51
TH
4746#ifdef __BIG_ENDIAN
4747 unsigned int i;
8061f5f0 4748
624d5c51
TH
4749 for (i = 0; i < buf_words; i++)
4750 buf[i] = le16_to_cpu(buf[i]);
4751#endif /* __BIG_ENDIAN */
8061f5f0
TH
4752}
4753
8a8bc223 4754/**
98bd4be1
SL
4755 * ata_qc_new_init - Request an available ATA command, and initialize it
4756 * @dev: Device from whom we request an available command structure
38755e89 4757 * @tag: tag
1871ee13 4758 *
8a8bc223
TH
4759 * LOCKING:
4760 * None.
4761 */
4762
98bd4be1 4763struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4764{
98bd4be1 4765 struct ata_port *ap = dev->link->ap;
12cb5ce1 4766 struct ata_queued_cmd *qc;
8a8bc223
TH
4767
4768 /* no command while frozen */
4769 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4770 return NULL;
4771
98bd4be1 4772 /* libsas case */
5067c046 4773 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4774 tag = ata_sas_allocate_tag(ap);
4775 if (tag < 0)
4776 return NULL;
8a4aeec8 4777 }
8a8bc223 4778
98bd4be1
SL
4779 qc = __ata_qc_from_tag(ap, tag);
4780 qc->tag = tag;
4781 qc->scsicmd = NULL;
4782 qc->ap = ap;
4783 qc->dev = dev;
1da177e4 4784
98bd4be1 4785 ata_qc_reinit(qc);
1da177e4
LT
4786
4787 return qc;
4788}
4789
8a8bc223
TH
4790/**
4791 * ata_qc_free - free unused ata_queued_cmd
4792 * @qc: Command to complete
4793 *
4794 * Designed to free unused ata_queued_cmd object
4795 * in case something prevents using it.
4796 *
4797 * LOCKING:
4798 * spin_lock_irqsave(host lock)
4799 */
4800void ata_qc_free(struct ata_queued_cmd *qc)
4801{
a1104016 4802 struct ata_port *ap;
8a8bc223
TH
4803 unsigned int tag;
4804
efcb3cf7 4805 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4806 ap = qc->ap;
8a8bc223
TH
4807
4808 qc->flags = 0;
4809 tag = qc->tag;
4810 if (likely(ata_tag_valid(tag))) {
4811 qc->tag = ATA_TAG_POISON;
5067c046 4812 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4813 ata_sas_free_tag(tag, ap);
8a8bc223
TH
4814 }
4815}
4816
76014427 4817void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4818{
a1104016
JL
4819 struct ata_port *ap;
4820 struct ata_link *link;
dedaf2b0 4821
efcb3cf7
TH
4822 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4823 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4824 ap = qc->ap;
4825 link = qc->dev->link;
1da177e4
LT
4826
4827 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4828 ata_sg_clean(qc);
4829
7401abf2 4830 /* command should be marked inactive atomically with qc completion */
da917d69 4831 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4832 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4833 if (!link->sactive)
4834 ap->nr_active_links--;
4835 } else {
9af5c9c9 4836 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4837 ap->nr_active_links--;
4838 }
4839
4840 /* clear exclusive status */
4841 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4842 ap->excl_link == link))
4843 ap->excl_link = NULL;
7401abf2 4844
3f3791d3
AL
4845 /* atapi: mark qc as inactive to prevent the interrupt handler
4846 * from completing the command twice later, before the error handler
4847 * is called. (when rc != 0 and atapi request sense is needed)
4848 */
4849 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4850 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4851
1da177e4 4852 /* call completion callback */
77853bf2 4853 qc->complete_fn(qc);
1da177e4
LT
4854}
4855
39599a53
TH
4856static void fill_result_tf(struct ata_queued_cmd *qc)
4857{
4858 struct ata_port *ap = qc->ap;
4859
39599a53 4860 qc->result_tf.flags = qc->tf.flags;
22183bf5 4861 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4862}
4863
00115e0f
TH
4864static void ata_verify_xfer(struct ata_queued_cmd *qc)
4865{
4866 struct ata_device *dev = qc->dev;
4867
00115e0f
TH
4868 if (ata_is_nodata(qc->tf.protocol))
4869 return;
4870
4871 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4872 return;
4873
4874 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4875}
4876
f686bcb8
TH
4877/**
4878 * ata_qc_complete - Complete an active ATA command
4879 * @qc: Command to complete
f686bcb8 4880 *
1aadf5c3
TH
4881 * Indicate to the mid and upper layers that an ATA command has
4882 * completed, with either an ok or not-ok status.
4883 *
4884 * Refrain from calling this function multiple times when
4885 * successfully completing multiple NCQ commands.
4886 * ata_qc_complete_multiple() should be used instead, which will
4887 * properly update IRQ expect state.
f686bcb8
TH
4888 *
4889 * LOCKING:
cca3974e 4890 * spin_lock_irqsave(host lock)
f686bcb8
TH
4891 */
4892void ata_qc_complete(struct ata_queued_cmd *qc)
4893{
4894 struct ata_port *ap = qc->ap;
4895
4896 /* XXX: New EH and old EH use different mechanisms to
4897 * synchronize EH with regular execution path.
4898 *
4899 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4900 * Normal execution path is responsible for not accessing a
4901 * failed qc. libata core enforces the rule by returning NULL
4902 * from ata_qc_from_tag() for failed qcs.
4903 *
4904 * Old EH depends on ata_qc_complete() nullifying completion
4905 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4906 * not synchronize with interrupt handler. Only PIO task is
4907 * taken care of.
4908 */
4909 if (ap->ops->error_handler) {
4dbfa39b
TH
4910 struct ata_device *dev = qc->dev;
4911 struct ata_eh_info *ehi = &dev->link->eh_info;
4912
f686bcb8
TH
4913 if (unlikely(qc->err_mask))
4914 qc->flags |= ATA_QCFLAG_FAILED;
4915
f08dc1ac
TH
4916 /*
4917 * Finish internal commands without any further processing
4918 * and always with the result TF filled.
4919 */
4920 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 4921 fill_result_tf(qc);
255c03d1 4922 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
4923 __ata_qc_complete(qc);
4924 return;
4925 }
f4b31db9 4926
f08dc1ac
TH
4927 /*
4928 * Non-internal qc has failed. Fill the result TF and
4929 * summon EH.
4930 */
4931 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4932 fill_result_tf(qc);
255c03d1 4933 trace_ata_qc_complete_failed(qc);
f08dc1ac 4934 ata_qc_schedule_eh(qc);
f4b31db9 4935 return;
f686bcb8
TH
4936 }
4937
4dc738ed
TH
4938 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4939
f686bcb8
TH
4940 /* read result TF if requested */
4941 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4942 fill_result_tf(qc);
f686bcb8 4943
255c03d1 4944 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
4945 /* Some commands need post-processing after successful
4946 * completion.
4947 */
4948 switch (qc->tf.command) {
4949 case ATA_CMD_SET_FEATURES:
4950 if (qc->tf.feature != SETFEATURES_WC_ON &&
4951 qc->tf.feature != SETFEATURES_WC_OFF)
4952 break;
4953 /* fall through */
4954 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4955 case ATA_CMD_SET_MULTI: /* multi_count changed */
4956 /* revalidate device */
4957 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4958 ata_port_schedule_eh(ap);
4959 break;
054a5fba
TH
4960
4961 case ATA_CMD_SLEEP:
4962 dev->flags |= ATA_DFLAG_SLEEPING;
4963 break;
4dbfa39b
TH
4964 }
4965
00115e0f
TH
4966 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4967 ata_verify_xfer(qc);
4968
f686bcb8
TH
4969 __ata_qc_complete(qc);
4970 } else {
4971 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4972 return;
4973
4974 /* read result TF if failed or requested */
4975 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4976 fill_result_tf(qc);
f686bcb8
TH
4977
4978 __ata_qc_complete(qc);
4979 }
4980}
4981
dedaf2b0
TH
4982/**
4983 * ata_qc_complete_multiple - Complete multiple qcs successfully
4984 * @ap: port in question
4985 * @qc_active: new qc_active mask
dedaf2b0
TH
4986 *
4987 * Complete in-flight commands. This functions is meant to be
4988 * called from low-level driver's interrupt routine to complete
4989 * requests normally. ap->qc_active and @qc_active is compared
4990 * and commands are completed accordingly.
4991 *
1aadf5c3
TH
4992 * Always use this function when completing multiple NCQ commands
4993 * from IRQ handlers instead of calling ata_qc_complete()
4994 * multiple times to keep IRQ expect status properly in sync.
4995 *
dedaf2b0 4996 * LOCKING:
cca3974e 4997 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4998 *
4999 * RETURNS:
5000 * Number of completed commands on success, -errno otherwise.
5001 */
79f97dad 5002int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5003{
5004 int nr_done = 0;
5005 u32 done_mask;
dedaf2b0
TH
5006
5007 done_mask = ap->qc_active ^ qc_active;
5008
5009 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5010 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5011 ap->qc_active, qc_active);
dedaf2b0
TH
5012 return -EINVAL;
5013 }
5014
43768180 5015 while (done_mask) {
dedaf2b0 5016 struct ata_queued_cmd *qc;
43768180 5017 unsigned int tag = __ffs(done_mask);
dedaf2b0 5018
43768180
JA
5019 qc = ata_qc_from_tag(ap, tag);
5020 if (qc) {
dedaf2b0
TH
5021 ata_qc_complete(qc);
5022 nr_done++;
5023 }
43768180 5024 done_mask &= ~(1 << tag);
dedaf2b0
TH
5025 }
5026
5027 return nr_done;
5028}
5029
1da177e4
LT
5030/**
5031 * ata_qc_issue - issue taskfile to device
5032 * @qc: command to issue to device
5033 *
5034 * Prepare an ATA command to submission to device.
5035 * This includes mapping the data into a DMA-able
5036 * area, filling in the S/G table, and finally
5037 * writing the taskfile to hardware, starting the command.
5038 *
5039 * LOCKING:
cca3974e 5040 * spin_lock_irqsave(host lock)
1da177e4 5041 */
8e0e694a 5042void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5043{
5044 struct ata_port *ap = qc->ap;
9af5c9c9 5045 struct ata_link *link = qc->dev->link;
405e66b3 5046 u8 prot = qc->tf.protocol;
1da177e4 5047
dedaf2b0
TH
5048 /* Make sure only one non-NCQ command is outstanding. The
5049 * check is skipped for old EH because it reuses active qc to
5050 * request ATAPI sense.
5051 */
efcb3cf7 5052 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5053
1973a023 5054 if (ata_is_ncq(prot)) {
efcb3cf7 5055 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5056
5057 if (!link->sactive)
5058 ap->nr_active_links++;
9af5c9c9 5059 link->sactive |= 1 << qc->tag;
dedaf2b0 5060 } else {
efcb3cf7 5061 WARN_ON_ONCE(link->sactive);
da917d69
TH
5062
5063 ap->nr_active_links++;
9af5c9c9 5064 link->active_tag = qc->tag;
dedaf2b0
TH
5065 }
5066
e4a70e76 5067 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5068 ap->qc_active |= 1 << qc->tag;
e4a70e76 5069
60f5d6ef
TH
5070 /*
5071 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5072 * non-zero sg if the command is a data command.
5073 */
60f5d6ef
TH
5074 if (WARN_ON_ONCE(ata_is_data(prot) &&
5075 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5076 goto sys_err;
f92a2636 5077
405e66b3 5078 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5079 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5080 if (ata_sg_setup(qc))
60f5d6ef 5081 goto sys_err;
1da177e4 5082
cf480626 5083 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5084 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5085 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5086 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5087 ata_link_abort(link);
5088 return;
5089 }
5090
1da177e4 5091 ap->ops->qc_prep(qc);
255c03d1 5092 trace_ata_qc_issue(qc);
8e0e694a
TH
5093 qc->err_mask |= ap->ops->qc_issue(qc);
5094 if (unlikely(qc->err_mask))
5095 goto err;
5096 return;
1da177e4 5097
60f5d6ef 5098sys_err:
8e0e694a
TH
5099 qc->err_mask |= AC_ERR_SYSTEM;
5100err:
5101 ata_qc_complete(qc);
1da177e4
LT
5102}
5103
34bf2170
TH
5104/**
5105 * sata_scr_valid - test whether SCRs are accessible
936fd732 5106 * @link: ATA link to test SCR accessibility for
34bf2170 5107 *
936fd732 5108 * Test whether SCRs are accessible for @link.
34bf2170
TH
5109 *
5110 * LOCKING:
5111 * None.
5112 *
5113 * RETURNS:
5114 * 1 if SCRs are accessible, 0 otherwise.
5115 */
936fd732 5116int sata_scr_valid(struct ata_link *link)
34bf2170 5117{
936fd732
TH
5118 struct ata_port *ap = link->ap;
5119
a16abc0b 5120 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5121}
5122
5123/**
5124 * sata_scr_read - read SCR register of the specified port
936fd732 5125 * @link: ATA link to read SCR for
34bf2170
TH
5126 * @reg: SCR to read
5127 * @val: Place to store read value
5128 *
936fd732 5129 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5130 * guaranteed to succeed if @link is ap->link, the cable type of
5131 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5132 *
5133 * LOCKING:
633273a3 5134 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5135 *
5136 * RETURNS:
5137 * 0 on success, negative errno on failure.
5138 */
936fd732 5139int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5140{
633273a3 5141 if (ata_is_host_link(link)) {
633273a3 5142 if (sata_scr_valid(link))
82ef04fb 5143 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5144 return -EOPNOTSUPP;
5145 }
5146
5147 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5148}
5149
5150/**
5151 * sata_scr_write - write SCR register of the specified port
936fd732 5152 * @link: ATA link to write SCR for
34bf2170
TH
5153 * @reg: SCR to write
5154 * @val: value to write
5155 *
936fd732 5156 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5157 * guaranteed to succeed if @link is ap->link, the cable type of
5158 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5159 *
5160 * LOCKING:
633273a3 5161 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5162 *
5163 * RETURNS:
5164 * 0 on success, negative errno on failure.
5165 */
936fd732 5166int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5167{
633273a3 5168 if (ata_is_host_link(link)) {
633273a3 5169 if (sata_scr_valid(link))
82ef04fb 5170 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5171 return -EOPNOTSUPP;
5172 }
936fd732 5173
633273a3 5174 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5175}
5176
5177/**
5178 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5179 * @link: ATA link to write SCR for
34bf2170
TH
5180 * @reg: SCR to write
5181 * @val: value to write
5182 *
5183 * This function is identical to sata_scr_write() except that this
5184 * function performs flush after writing to the register.
5185 *
5186 * LOCKING:
633273a3 5187 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5188 *
5189 * RETURNS:
5190 * 0 on success, negative errno on failure.
5191 */
936fd732 5192int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5193{
633273a3 5194 if (ata_is_host_link(link)) {
633273a3 5195 int rc;
da3dbb17 5196
633273a3 5197 if (sata_scr_valid(link)) {
82ef04fb 5198 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5199 if (rc == 0)
82ef04fb 5200 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5201 return rc;
5202 }
5203 return -EOPNOTSUPP;
34bf2170 5204 }
633273a3
TH
5205
5206 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5207}
5208
5209/**
b1c72916 5210 * ata_phys_link_online - test whether the given link is online
936fd732 5211 * @link: ATA link to test
34bf2170 5212 *
936fd732
TH
5213 * Test whether @link is online. Note that this function returns
5214 * 0 if online status of @link cannot be obtained, so
5215 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5216 *
5217 * LOCKING:
5218 * None.
5219 *
5220 * RETURNS:
b5b3fa38 5221 * True if the port online status is available and online.
34bf2170 5222 */
b1c72916 5223bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5224{
5225 u32 sstatus;
5226
936fd732 5227 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5228 ata_sstatus_online(sstatus))
b5b3fa38
TH
5229 return true;
5230 return false;
34bf2170
TH
5231}
5232
5233/**
b1c72916 5234 * ata_phys_link_offline - test whether the given link is offline
936fd732 5235 * @link: ATA link to test
34bf2170 5236 *
936fd732
TH
5237 * Test whether @link is offline. Note that this function
5238 * returns 0 if offline status of @link cannot be obtained, so
5239 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5240 *
5241 * LOCKING:
5242 * None.
5243 *
5244 * RETURNS:
b5b3fa38 5245 * True if the port offline status is available and offline.
34bf2170 5246 */
b1c72916 5247bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5248{
5249 u32 sstatus;
5250
936fd732 5251 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5252 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5253 return true;
5254 return false;
34bf2170 5255}
0baab86b 5256
b1c72916
TH
5257/**
5258 * ata_link_online - test whether the given link is online
5259 * @link: ATA link to test
5260 *
5261 * Test whether @link is online. This is identical to
5262 * ata_phys_link_online() when there's no slave link. When
5263 * there's a slave link, this function should only be called on
5264 * the master link and will return true if any of M/S links is
5265 * online.
5266 *
5267 * LOCKING:
5268 * None.
5269 *
5270 * RETURNS:
5271 * True if the port online status is available and online.
5272 */
5273bool ata_link_online(struct ata_link *link)
5274{
5275 struct ata_link *slave = link->ap->slave_link;
5276
5277 WARN_ON(link == slave); /* shouldn't be called on slave link */
5278
5279 return ata_phys_link_online(link) ||
5280 (slave && ata_phys_link_online(slave));
5281}
5282
5283/**
5284 * ata_link_offline - test whether the given link is offline
5285 * @link: ATA link to test
5286 *
5287 * Test whether @link is offline. This is identical to
5288 * ata_phys_link_offline() when there's no slave link. When
5289 * there's a slave link, this function should only be called on
5290 * the master link and will return true if both M/S links are
5291 * offline.
5292 *
5293 * LOCKING:
5294 * None.
5295 *
5296 * RETURNS:
5297 * True if the port offline status is available and offline.
5298 */
5299bool ata_link_offline(struct ata_link *link)
5300{
5301 struct ata_link *slave = link->ap->slave_link;
5302
5303 WARN_ON(link == slave); /* shouldn't be called on slave link */
5304
5305 return ata_phys_link_offline(link) &&
5306 (!slave || ata_phys_link_offline(slave));
5307}
5308
6ffa01d8 5309#ifdef CONFIG_PM
bc6e7c4b
DW
5310static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5311 unsigned int action, unsigned int ehi_flags,
5312 bool async)
500530f6 5313{
5ef41082 5314 struct ata_link *link;
500530f6 5315 unsigned long flags;
500530f6 5316
5ef41082
LM
5317 /* Previous resume operation might still be in
5318 * progress. Wait for PM_PENDING to clear.
5319 */
5320 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5321 ata_port_wait_eh(ap);
5322 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5323 }
500530f6 5324
5ef41082
LM
5325 /* request PM ops to EH */
5326 spin_lock_irqsave(ap->lock, flags);
500530f6 5327
5ef41082 5328 ap->pm_mesg = mesg;
5ef41082
LM
5329 ap->pflags |= ATA_PFLAG_PM_PENDING;
5330 ata_for_each_link(link, ap, HOST_FIRST) {
5331 link->eh_info.action |= action;
5332 link->eh_info.flags |= ehi_flags;
5333 }
500530f6 5334
5ef41082 5335 ata_port_schedule_eh(ap);
500530f6 5336
5ef41082 5337 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5338
2fcbdcb4 5339 if (!async) {
5ef41082
LM
5340 ata_port_wait_eh(ap);
5341 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5342 }
500530f6
TH
5343}
5344
bc6e7c4b
DW
5345/*
5346 * On some hardware, device fails to respond after spun down for suspend. As
5347 * the device won't be used before being resumed, we don't need to touch the
5348 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5349 *
5350 * http://thread.gmane.org/gmane.linux.ide/46764
5351 */
5352static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5353 | ATA_EHI_NO_AUTOPSY
5354 | ATA_EHI_NO_RECOVERY;
5355
5356static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5357{
bc6e7c4b 5358 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5359}
5360
bc6e7c4b 5361static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5362{
bc6e7c4b 5363 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5364}
5365
bc6e7c4b 5366static int ata_port_pm_suspend(struct device *dev)
5ef41082 5367{
bc6e7c4b
DW
5368 struct ata_port *ap = to_ata_port(dev);
5369
5ef41082
LM
5370 if (pm_runtime_suspended(dev))
5371 return 0;
5372
bc6e7c4b
DW
5373 ata_port_suspend(ap, PMSG_SUSPEND);
5374 return 0;
33574d68
LM
5375}
5376
bc6e7c4b 5377static int ata_port_pm_freeze(struct device *dev)
33574d68 5378{
bc6e7c4b
DW
5379 struct ata_port *ap = to_ata_port(dev);
5380
33574d68 5381 if (pm_runtime_suspended(dev))
f5e6d0d0 5382 return 0;
33574d68 5383
bc6e7c4b
DW
5384 ata_port_suspend(ap, PMSG_FREEZE);
5385 return 0;
33574d68
LM
5386}
5387
bc6e7c4b 5388static int ata_port_pm_poweroff(struct device *dev)
33574d68 5389{
bc6e7c4b
DW
5390 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5391 return 0;
5ef41082
LM
5392}
5393
bc6e7c4b
DW
5394static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5395 | ATA_EHI_QUIET;
5ef41082 5396
bc6e7c4b
DW
5397static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5398{
5399 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5400}
5401
bc6e7c4b 5402static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5403{
bc6e7c4b 5404 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5405}
5406
bc6e7c4b 5407static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5408{
200421a8 5409 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5410 pm_runtime_disable(dev);
5411 pm_runtime_set_active(dev);
5412 pm_runtime_enable(dev);
5413 return 0;
e90b1e5a
LM
5414}
5415
7e15e9be
AL
5416/*
5417 * For ODDs, the upper layer will poll for media change every few seconds,
5418 * which will make it enter and leave suspend state every few seconds. And
5419 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5420 * is very little and the ODD may malfunction after constantly being reset.
5421 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5422 * ODD is attached to the port.
5423 */
9ee4f393
LM
5424static int ata_port_runtime_idle(struct device *dev)
5425{
7e15e9be
AL
5426 struct ata_port *ap = to_ata_port(dev);
5427 struct ata_link *link;
5428 struct ata_device *adev;
5429
5430 ata_for_each_link(link, ap, HOST_FIRST) {
5431 ata_for_each_dev(adev, link, ENABLED)
5432 if (adev->class == ATA_DEV_ATAPI &&
5433 !zpodd_dev_enabled(adev))
5434 return -EBUSY;
5435 }
5436
45f0a85c 5437 return 0;
9ee4f393
LM
5438}
5439
a7ff60db
AL
5440static int ata_port_runtime_suspend(struct device *dev)
5441{
bc6e7c4b
DW
5442 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5443 return 0;
a7ff60db
AL
5444}
5445
5446static int ata_port_runtime_resume(struct device *dev)
5447{
bc6e7c4b
DW
5448 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5449 return 0;
a7ff60db
AL
5450}
5451
5ef41082 5452static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5453 .suspend = ata_port_pm_suspend,
5454 .resume = ata_port_pm_resume,
5455 .freeze = ata_port_pm_freeze,
5456 .thaw = ata_port_pm_resume,
5457 .poweroff = ata_port_pm_poweroff,
5458 .restore = ata_port_pm_resume,
9ee4f393 5459
a7ff60db
AL
5460 .runtime_suspend = ata_port_runtime_suspend,
5461 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5462 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5463};
5464
2fcbdcb4
DW
5465/* sas ports don't participate in pm runtime management of ata_ports,
5466 * and need to resume ata devices at the domain level, not the per-port
5467 * level. sas suspend/resume is async to allow parallel port recovery
5468 * since sas has multiple ata_port instances per Scsi_Host.
5469 */
bc6e7c4b 5470void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5471{
bc6e7c4b 5472 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5473}
bc6e7c4b 5474EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5475
bc6e7c4b 5476void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5477{
bc6e7c4b 5478 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5479}
bc6e7c4b 5480EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5481
500530f6 5482/**
cca3974e
JG
5483 * ata_host_suspend - suspend host
5484 * @host: host to suspend
500530f6
TH
5485 * @mesg: PM message
5486 *
5ef41082 5487 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5488 */
cca3974e 5489int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5490{
5ef41082
LM
5491 host->dev->power.power_state = mesg;
5492 return 0;
500530f6
TH
5493}
5494
5495/**
cca3974e
JG
5496 * ata_host_resume - resume host
5497 * @host: host to resume
500530f6 5498 *
5ef41082 5499 * Resume @host. Actual operation is performed by port resume.
500530f6 5500 */
cca3974e 5501void ata_host_resume(struct ata_host *host)
500530f6 5502{
72ad6ec4 5503 host->dev->power.power_state = PMSG_ON;
500530f6 5504}
6ffa01d8 5505#endif
500530f6 5506
5ef41082
LM
5507struct device_type ata_port_type = {
5508 .name = "ata_port",
5509#ifdef CONFIG_PM
5510 .pm = &ata_port_pm_ops,
5511#endif
5512};
5513
3ef3b43d
TH
5514/**
5515 * ata_dev_init - Initialize an ata_device structure
5516 * @dev: Device structure to initialize
5517 *
5518 * Initialize @dev in preparation for probing.
5519 *
5520 * LOCKING:
5521 * Inherited from caller.
5522 */
5523void ata_dev_init(struct ata_device *dev)
5524{
b1c72916 5525 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5526 struct ata_port *ap = link->ap;
72fa4b74
TH
5527 unsigned long flags;
5528
b1c72916 5529 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5530 link->sata_spd_limit = link->hw_sata_spd_limit;
5531 link->sata_spd = 0;
5a04bf4b 5532
72fa4b74
TH
5533 /* High bits of dev->flags are used to record warm plug
5534 * requests which occur asynchronously. Synchronize using
cca3974e 5535 * host lock.
72fa4b74 5536 */
ba6a1308 5537 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5538 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5539 dev->horkage = 0;
ba6a1308 5540 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5541
99cf610a
TH
5542 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5543 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5544 dev->pio_mask = UINT_MAX;
5545 dev->mwdma_mask = UINT_MAX;
5546 dev->udma_mask = UINT_MAX;
5547}
5548
4fb37a25
TH
5549/**
5550 * ata_link_init - Initialize an ata_link structure
5551 * @ap: ATA port link is attached to
5552 * @link: Link structure to initialize
8989805d 5553 * @pmp: Port multiplier port number
4fb37a25
TH
5554 *
5555 * Initialize @link.
5556 *
5557 * LOCKING:
5558 * Kernel thread context (may sleep)
5559 */
fb7fd614 5560void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5561{
5562 int i;
5563
5564 /* clear everything except for devices */
d9027470
GG
5565 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5566 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5567
5568 link->ap = ap;
8989805d 5569 link->pmp = pmp;
4fb37a25
TH
5570 link->active_tag = ATA_TAG_POISON;
5571 link->hw_sata_spd_limit = UINT_MAX;
5572
5573 /* can't use iterator, ap isn't initialized yet */
5574 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5575 struct ata_device *dev = &link->device[i];
5576
5577 dev->link = link;
5578 dev->devno = dev - link->device;
110f66d2
TH
5579#ifdef CONFIG_ATA_ACPI
5580 dev->gtf_filter = ata_acpi_gtf_filter;
5581#endif
4fb37a25
TH
5582 ata_dev_init(dev);
5583 }
5584}
5585
5586/**
5587 * sata_link_init_spd - Initialize link->sata_spd_limit
5588 * @link: Link to configure sata_spd_limit for
5589 *
5590 * Initialize @link->[hw_]sata_spd_limit to the currently
5591 * configured value.
5592 *
5593 * LOCKING:
5594 * Kernel thread context (may sleep).
5595 *
5596 * RETURNS:
5597 * 0 on success, -errno on failure.
5598 */
fb7fd614 5599int sata_link_init_spd(struct ata_link *link)
4fb37a25 5600{
33267325 5601 u8 spd;
4fb37a25
TH
5602 int rc;
5603
d127ea7b 5604 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5605 if (rc)
5606 return rc;
5607
d127ea7b 5608 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5609 if (spd)
5610 link->hw_sata_spd_limit &= (1 << spd) - 1;
5611
05944bdf 5612 ata_force_link_limits(link);
33267325 5613
4fb37a25
TH
5614 link->sata_spd_limit = link->hw_sata_spd_limit;
5615
5616 return 0;
5617}
5618
1da177e4 5619/**
f3187195
TH
5620 * ata_port_alloc - allocate and initialize basic ATA port resources
5621 * @host: ATA host this allocated port belongs to
1da177e4 5622 *
f3187195
TH
5623 * Allocate and initialize basic ATA port resources.
5624 *
5625 * RETURNS:
5626 * Allocate ATA port on success, NULL on failure.
0cba632b 5627 *
1da177e4 5628 * LOCKING:
f3187195 5629 * Inherited from calling layer (may sleep).
1da177e4 5630 */
f3187195 5631struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5632{
f3187195 5633 struct ata_port *ap;
1da177e4 5634
f3187195
TH
5635 DPRINTK("ENTER\n");
5636
5637 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5638 if (!ap)
5639 return NULL;
4fca377f 5640
7b3a24c5 5641 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5642 ap->lock = &host->lock;
f3187195 5643 ap->print_id = -1;
e628dc99 5644 ap->local_port_no = -1;
cca3974e 5645 ap->host = host;
f3187195 5646 ap->dev = host->dev;
bd5d825c
BP
5647
5648#if defined(ATA_VERBOSE_DEBUG)
5649 /* turn on all debugging levels */
5650 ap->msg_enable = 0x00FF;
5651#elif defined(ATA_DEBUG)
5652 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5653#else
0dd4b21f 5654 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5655#endif
1da177e4 5656
ad72cf98 5657 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5658 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5659 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5660 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5661 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5662 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5663 init_timer_deferrable(&ap->fastdrain_timer);
5664 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5665 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5666
838df628 5667 ap->cbl = ATA_CBL_NONE;
838df628 5668
8989805d 5669 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5670
5671#ifdef ATA_IRQ_TRAP
5672 ap->stats.unhandled_irq = 1;
5673 ap->stats.idle_irq = 1;
5674#endif
270390e1
TH
5675 ata_sff_port_init(ap);
5676
1da177e4 5677 return ap;
1da177e4
LT
5678}
5679
f0d36efd
TH
5680static void ata_host_release(struct device *gendev, void *res)
5681{
5682 struct ata_host *host = dev_get_drvdata(gendev);
5683 int i;
5684
1aa506e4
TH
5685 for (i = 0; i < host->n_ports; i++) {
5686 struct ata_port *ap = host->ports[i];
5687
4911487a
TH
5688 if (!ap)
5689 continue;
5690
5691 if (ap->scsi_host)
1aa506e4
TH
5692 scsi_host_put(ap->scsi_host);
5693
633273a3 5694 kfree(ap->pmp_link);
b1c72916 5695 kfree(ap->slave_link);
4911487a 5696 kfree(ap);
1aa506e4
TH
5697 host->ports[i] = NULL;
5698 }
5699
1aa56cca 5700 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5701}
5702
f3187195
TH
5703/**
5704 * ata_host_alloc - allocate and init basic ATA host resources
5705 * @dev: generic device this host is associated with
5706 * @max_ports: maximum number of ATA ports associated with this host
5707 *
5708 * Allocate and initialize basic ATA host resources. LLD calls
5709 * this function to allocate a host, initializes it fully and
5710 * attaches it using ata_host_register().
5711 *
5712 * @max_ports ports are allocated and host->n_ports is
5713 * initialized to @max_ports. The caller is allowed to decrease
5714 * host->n_ports before calling ata_host_register(). The unused
5715 * ports will be automatically freed on registration.
5716 *
5717 * RETURNS:
5718 * Allocate ATA host on success, NULL on failure.
5719 *
5720 * LOCKING:
5721 * Inherited from calling layer (may sleep).
5722 */
5723struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5724{
5725 struct ata_host *host;
5726 size_t sz;
5727 int i;
5728
5729 DPRINTK("ENTER\n");
5730
5731 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5732 return NULL;
5733
5734 /* alloc a container for our list of ATA ports (buses) */
5735 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5736 /* alloc a container for our list of ATA ports (buses) */
5737 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5738 if (!host)
5739 goto err_out;
5740
5741 devres_add(dev, host);
5742 dev_set_drvdata(dev, host);
5743
5744 spin_lock_init(&host->lock);
c0c362b6 5745 mutex_init(&host->eh_mutex);
f3187195
TH
5746 host->dev = dev;
5747 host->n_ports = max_ports;
5748
5749 /* allocate ports bound to this host */
5750 for (i = 0; i < max_ports; i++) {
5751 struct ata_port *ap;
5752
5753 ap = ata_port_alloc(host);
5754 if (!ap)
5755 goto err_out;
5756
5757 ap->port_no = i;
5758 host->ports[i] = ap;
5759 }
5760
5761 devres_remove_group(dev, NULL);
5762 return host;
5763
5764 err_out:
5765 devres_release_group(dev, NULL);
5766 return NULL;
5767}
5768
f5cda257
TH
5769/**
5770 * ata_host_alloc_pinfo - alloc host and init with port_info array
5771 * @dev: generic device this host is associated with
5772 * @ppi: array of ATA port_info to initialize host with
5773 * @n_ports: number of ATA ports attached to this host
5774 *
5775 * Allocate ATA host and initialize with info from @ppi. If NULL
5776 * terminated, @ppi may contain fewer entries than @n_ports. The
5777 * last entry will be used for the remaining ports.
5778 *
5779 * RETURNS:
5780 * Allocate ATA host on success, NULL on failure.
5781 *
5782 * LOCKING:
5783 * Inherited from calling layer (may sleep).
5784 */
5785struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5786 const struct ata_port_info * const * ppi,
5787 int n_ports)
5788{
5789 const struct ata_port_info *pi;
5790 struct ata_host *host;
5791 int i, j;
5792
5793 host = ata_host_alloc(dev, n_ports);
5794 if (!host)
5795 return NULL;
5796
5797 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5798 struct ata_port *ap = host->ports[i];
5799
5800 if (ppi[j])
5801 pi = ppi[j++];
5802
5803 ap->pio_mask = pi->pio_mask;
5804 ap->mwdma_mask = pi->mwdma_mask;
5805 ap->udma_mask = pi->udma_mask;
5806 ap->flags |= pi->flags;
0c88758b 5807 ap->link.flags |= pi->link_flags;
f5cda257
TH
5808 ap->ops = pi->port_ops;
5809
5810 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5811 host->ops = pi->port_ops;
f5cda257
TH
5812 }
5813
5814 return host;
5815}
5816
b1c72916
TH
5817/**
5818 * ata_slave_link_init - initialize slave link
5819 * @ap: port to initialize slave link for
5820 *
5821 * Create and initialize slave link for @ap. This enables slave
5822 * link handling on the port.
5823 *
5824 * In libata, a port contains links and a link contains devices.
5825 * There is single host link but if a PMP is attached to it,
5826 * there can be multiple fan-out links. On SATA, there's usually
5827 * a single device connected to a link but PATA and SATA
5828 * controllers emulating TF based interface can have two - master
5829 * and slave.
5830 *
5831 * However, there are a few controllers which don't fit into this
5832 * abstraction too well - SATA controllers which emulate TF
5833 * interface with both master and slave devices but also have
5834 * separate SCR register sets for each device. These controllers
5835 * need separate links for physical link handling
5836 * (e.g. onlineness, link speed) but should be treated like a
5837 * traditional M/S controller for everything else (e.g. command
5838 * issue, softreset).
5839 *
5840 * slave_link is libata's way of handling this class of
5841 * controllers without impacting core layer too much. For
5842 * anything other than physical link handling, the default host
5843 * link is used for both master and slave. For physical link
5844 * handling, separate @ap->slave_link is used. All dirty details
5845 * are implemented inside libata core layer. From LLD's POV, the
5846 * only difference is that prereset, hardreset and postreset are
5847 * called once more for the slave link, so the reset sequence
5848 * looks like the following.
5849 *
5850 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5851 * softreset(M) -> postreset(M) -> postreset(S)
5852 *
5853 * Note that softreset is called only for the master. Softreset
5854 * resets both M/S by definition, so SRST on master should handle
5855 * both (the standard method will work just fine).
5856 *
5857 * LOCKING:
5858 * Should be called before host is registered.
5859 *
5860 * RETURNS:
5861 * 0 on success, -errno on failure.
5862 */
5863int ata_slave_link_init(struct ata_port *ap)
5864{
5865 struct ata_link *link;
5866
5867 WARN_ON(ap->slave_link);
5868 WARN_ON(ap->flags & ATA_FLAG_PMP);
5869
5870 link = kzalloc(sizeof(*link), GFP_KERNEL);
5871 if (!link)
5872 return -ENOMEM;
5873
5874 ata_link_init(ap, link, 1);
5875 ap->slave_link = link;
5876 return 0;
5877}
5878
32ebbc0c
TH
5879static void ata_host_stop(struct device *gendev, void *res)
5880{
5881 struct ata_host *host = dev_get_drvdata(gendev);
5882 int i;
5883
5884 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5885
5886 for (i = 0; i < host->n_ports; i++) {
5887 struct ata_port *ap = host->ports[i];
5888
5889 if (ap->ops->port_stop)
5890 ap->ops->port_stop(ap);
5891 }
5892
5893 if (host->ops->host_stop)
5894 host->ops->host_stop(host);
5895}
5896
029cfd6b
TH
5897/**
5898 * ata_finalize_port_ops - finalize ata_port_operations
5899 * @ops: ata_port_operations to finalize
5900 *
5901 * An ata_port_operations can inherit from another ops and that
5902 * ops can again inherit from another. This can go on as many
5903 * times as necessary as long as there is no loop in the
5904 * inheritance chain.
5905 *
5906 * Ops tables are finalized when the host is started. NULL or
5907 * unspecified entries are inherited from the closet ancestor
5908 * which has the method and the entry is populated with it.
5909 * After finalization, the ops table directly points to all the
5910 * methods and ->inherits is no longer necessary and cleared.
5911 *
5912 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5913 *
5914 * LOCKING:
5915 * None.
5916 */
5917static void ata_finalize_port_ops(struct ata_port_operations *ops)
5918{
2da67659 5919 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5920 const struct ata_port_operations *cur;
5921 void **begin = (void **)ops;
5922 void **end = (void **)&ops->inherits;
5923 void **pp;
5924
5925 if (!ops || !ops->inherits)
5926 return;
5927
5928 spin_lock(&lock);
5929
5930 for (cur = ops->inherits; cur; cur = cur->inherits) {
5931 void **inherit = (void **)cur;
5932
5933 for (pp = begin; pp < end; pp++, inherit++)
5934 if (!*pp)
5935 *pp = *inherit;
5936 }
5937
5938 for (pp = begin; pp < end; pp++)
5939 if (IS_ERR(*pp))
5940 *pp = NULL;
5941
5942 ops->inherits = NULL;
5943
5944 spin_unlock(&lock);
5945}
5946
ecef7253
TH
5947/**
5948 * ata_host_start - start and freeze ports of an ATA host
5949 * @host: ATA host to start ports for
5950 *
5951 * Start and then freeze ports of @host. Started status is
5952 * recorded in host->flags, so this function can be called
5953 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5954 * once. If host->ops isn't initialized yet, its set to the
5955 * first non-dummy port ops.
ecef7253
TH
5956 *
5957 * LOCKING:
5958 * Inherited from calling layer (may sleep).
5959 *
5960 * RETURNS:
5961 * 0 if all ports are started successfully, -errno otherwise.
5962 */
5963int ata_host_start(struct ata_host *host)
5964{
32ebbc0c
TH
5965 int have_stop = 0;
5966 void *start_dr = NULL;
ecef7253
TH
5967 int i, rc;
5968
5969 if (host->flags & ATA_HOST_STARTED)
5970 return 0;
5971
029cfd6b
TH
5972 ata_finalize_port_ops(host->ops);
5973
ecef7253
TH
5974 for (i = 0; i < host->n_ports; i++) {
5975 struct ata_port *ap = host->ports[i];
5976
029cfd6b
TH
5977 ata_finalize_port_ops(ap->ops);
5978
f3187195
TH
5979 if (!host->ops && !ata_port_is_dummy(ap))
5980 host->ops = ap->ops;
5981
32ebbc0c
TH
5982 if (ap->ops->port_stop)
5983 have_stop = 1;
5984 }
5985
5986 if (host->ops->host_stop)
5987 have_stop = 1;
5988
5989 if (have_stop) {
5990 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5991 if (!start_dr)
5992 return -ENOMEM;
5993 }
5994
5995 for (i = 0; i < host->n_ports; i++) {
5996 struct ata_port *ap = host->ports[i];
5997
ecef7253
TH
5998 if (ap->ops->port_start) {
5999 rc = ap->ops->port_start(ap);
6000 if (rc) {
0f9fe9b7 6001 if (rc != -ENODEV)
a44fec1f
JP
6002 dev_err(host->dev,
6003 "failed to start port %d (errno=%d)\n",
6004 i, rc);
ecef7253
TH
6005 goto err_out;
6006 }
6007 }
ecef7253
TH
6008 ata_eh_freeze_port(ap);
6009 }
6010
32ebbc0c
TH
6011 if (start_dr)
6012 devres_add(host->dev, start_dr);
ecef7253
TH
6013 host->flags |= ATA_HOST_STARTED;
6014 return 0;
6015
6016 err_out:
6017 while (--i >= 0) {
6018 struct ata_port *ap = host->ports[i];
6019
6020 if (ap->ops->port_stop)
6021 ap->ops->port_stop(ap);
6022 }
32ebbc0c 6023 devres_free(start_dr);
ecef7253
TH
6024 return rc;
6025}
6026
b03732f0 6027/**
8d8e7d13 6028 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6029 * @host: host to initialize
6030 * @dev: device host is attached to
cca3974e 6031 * @ops: port_ops
b03732f0 6032 *
b03732f0 6033 */
cca3974e 6034void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6035 struct ata_port_operations *ops)
b03732f0 6036{
cca3974e 6037 spin_lock_init(&host->lock);
c0c362b6 6038 mutex_init(&host->eh_mutex);
1a112d10 6039 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6040 host->dev = dev;
cca3974e 6041 host->ops = ops;
b03732f0
BK
6042}
6043
9508a66f 6044void __ata_port_probe(struct ata_port *ap)
79318057 6045{
9508a66f
DW
6046 struct ata_eh_info *ehi = &ap->link.eh_info;
6047 unsigned long flags;
886ad09f 6048
9508a66f
DW
6049 /* kick EH for boot probing */
6050 spin_lock_irqsave(ap->lock, flags);
79318057 6051
9508a66f
DW
6052 ehi->probe_mask |= ATA_ALL_DEVICES;
6053 ehi->action |= ATA_EH_RESET;
6054 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6055
9508a66f
DW
6056 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6057 ap->pflags |= ATA_PFLAG_LOADING;
6058 ata_port_schedule_eh(ap);
79318057 6059
9508a66f
DW
6060 spin_unlock_irqrestore(ap->lock, flags);
6061}
79318057 6062
9508a66f
DW
6063int ata_port_probe(struct ata_port *ap)
6064{
6065 int rc = 0;
79318057 6066
9508a66f
DW
6067 if (ap->ops->error_handler) {
6068 __ata_port_probe(ap);
79318057
AV
6069 ata_port_wait_eh(ap);
6070 } else {
6071 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6072 rc = ata_bus_probe(ap);
6073 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6074 }
238c9cf9
JB
6075 return rc;
6076}
6077
6078
6079static void async_port_probe(void *data, async_cookie_t cookie)
6080{
6081 struct ata_port *ap = data;
4fca377f 6082
238c9cf9
JB
6083 /*
6084 * If we're not allowed to scan this host in parallel,
6085 * we need to wait until all previous scans have completed
6086 * before going further.
6087 * Jeff Garzik says this is only within a controller, so we
6088 * don't need to wait for port 0, only for later ports.
6089 */
6090 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6091 async_synchronize_cookie(cookie);
6092
6093 (void)ata_port_probe(ap);
f29d3b23
AV
6094
6095 /* in order to keep device order, we need to synchronize at this point */
6096 async_synchronize_cookie(cookie);
6097
6098 ata_scsi_scan_host(ap, 1);
79318057 6099}
238c9cf9 6100
f3187195
TH
6101/**
6102 * ata_host_register - register initialized ATA host
6103 * @host: ATA host to register
6104 * @sht: template for SCSI host
6105 *
6106 * Register initialized ATA host. @host is allocated using
6107 * ata_host_alloc() and fully initialized by LLD. This function
6108 * starts ports, registers @host with ATA and SCSI layers and
6109 * probe registered devices.
6110 *
6111 * LOCKING:
6112 * Inherited from calling layer (may sleep).
6113 *
6114 * RETURNS:
6115 * 0 on success, -errno otherwise.
6116 */
6117int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6118{
6119 int i, rc;
6120
1a112d10 6121 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6122
f3187195
TH
6123 /* host must have been started */
6124 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6125 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6126 WARN_ON(1);
6127 return -EINVAL;
6128 }
6129
6130 /* Blow away unused ports. This happens when LLD can't
6131 * determine the exact number of ports to allocate at
6132 * allocation time.
6133 */
6134 for (i = host->n_ports; host->ports[i]; i++)
6135 kfree(host->ports[i]);
6136
6137 /* give ports names and add SCSI hosts */
e628dc99 6138 for (i = 0; i < host->n_ports; i++) {
85d6725b 6139 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6140 host->ports[i]->local_port_no = i + 1;
6141 }
4fca377f 6142
d9027470
GG
6143 /* Create associated sysfs transport objects */
6144 for (i = 0; i < host->n_ports; i++) {
6145 rc = ata_tport_add(host->dev,host->ports[i]);
6146 if (rc) {
6147 goto err_tadd;
6148 }
6149 }
6150
f3187195
TH
6151 rc = ata_scsi_add_hosts(host, sht);
6152 if (rc)
d9027470 6153 goto err_tadd;
f3187195
TH
6154
6155 /* set cable, sata_spd_limit and report */
6156 for (i = 0; i < host->n_ports; i++) {
6157 struct ata_port *ap = host->ports[i];
f3187195
TH
6158 unsigned long xfer_mask;
6159
6160 /* set SATA cable type if still unset */
6161 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6162 ap->cbl = ATA_CBL_SATA;
6163
6164 /* init sata_spd_limit to the current value */
4fb37a25 6165 sata_link_init_spd(&ap->link);
b1c72916
TH
6166 if (ap->slave_link)
6167 sata_link_init_spd(ap->slave_link);
f3187195 6168
cbcdd875 6169 /* print per-port info to dmesg */
f3187195
TH
6170 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6171 ap->udma_mask);
6172
abf6e8ed 6173 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6174 ata_port_info(ap, "%cATA max %s %s\n",
6175 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6176 ata_mode_string(xfer_mask),
6177 ap->link.eh_info.desc);
abf6e8ed
TH
6178 ata_ehi_clear_desc(&ap->link.eh_info);
6179 } else
a9a79dfe 6180 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6181 }
6182
f6005354 6183 /* perform each probe asynchronously */
f3187195
TH
6184 for (i = 0; i < host->n_ports; i++) {
6185 struct ata_port *ap = host->ports[i];
79318057 6186 async_schedule(async_port_probe, ap);
f3187195 6187 }
f3187195
TH
6188
6189 return 0;
d9027470
GG
6190
6191 err_tadd:
6192 while (--i >= 0) {
6193 ata_tport_delete(host->ports[i]);
6194 }
6195 return rc;
6196
f3187195
TH
6197}
6198
f5cda257
TH
6199/**
6200 * ata_host_activate - start host, request IRQ and register it
6201 * @host: target ATA host
6202 * @irq: IRQ to request
6203 * @irq_handler: irq_handler used when requesting IRQ
6204 * @irq_flags: irq_flags used when requesting IRQ
6205 * @sht: scsi_host_template to use when registering the host
6206 *
6207 * After allocating an ATA host and initializing it, most libata
6208 * LLDs perform three steps to activate the host - start host,
6209 * request IRQ and register it. This helper takes necessasry
6210 * arguments and performs the three steps in one go.
6211 *
3d46b2e2
PM
6212 * An invalid IRQ skips the IRQ registration and expects the host to
6213 * have set polling mode on the port. In this case, @irq_handler
6214 * should be NULL.
6215 *
f5cda257
TH
6216 * LOCKING:
6217 * Inherited from calling layer (may sleep).
6218 *
6219 * RETURNS:
6220 * 0 on success, -errno otherwise.
6221 */
6222int ata_host_activate(struct ata_host *host, int irq,
6223 irq_handler_t irq_handler, unsigned long irq_flags,
6224 struct scsi_host_template *sht)
6225{
cbcdd875 6226 int i, rc;
7e22c002 6227 char *irq_desc;
f5cda257
TH
6228
6229 rc = ata_host_start(host);
6230 if (rc)
6231 return rc;
6232
3d46b2e2
PM
6233 /* Special case for polling mode */
6234 if (!irq) {
6235 WARN_ON(irq_handler);
6236 return ata_host_register(host, sht);
6237 }
6238
7e22c002
HK
6239 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6240 dev_driver_string(host->dev),
6241 dev_name(host->dev));
6242 if (!irq_desc)
6243 return -ENOMEM;
6244
f5cda257 6245 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6246 irq_desc, host);
f5cda257
TH
6247 if (rc)
6248 return rc;
6249
cbcdd875
TH
6250 for (i = 0; i < host->n_ports; i++)
6251 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6252
f5cda257
TH
6253 rc = ata_host_register(host, sht);
6254 /* if failed, just free the IRQ and leave ports alone */
6255 if (rc)
6256 devm_free_irq(host->dev, irq, host);
6257
6258 return rc;
6259}
6260
720ba126
TH
6261/**
6262 * ata_port_detach - Detach ATA port in prepration of device removal
6263 * @ap: ATA port to be detached
6264 *
6265 * Detach all ATA devices and the associated SCSI devices of @ap;
6266 * then, remove the associated SCSI host. @ap is guaranteed to
6267 * be quiescent on return from this function.
6268 *
6269 * LOCKING:
6270 * Kernel thread context (may sleep).
6271 */
741b7763 6272static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6273{
6274 unsigned long flags;
a6f9bf4d
LK
6275 struct ata_link *link;
6276 struct ata_device *dev;
720ba126
TH
6277
6278 if (!ap->ops->error_handler)
c3cf30a9 6279 goto skip_eh;
720ba126
TH
6280
6281 /* tell EH we're leaving & flush EH */
ba6a1308 6282 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6283 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6284 ata_port_schedule_eh(ap);
ba6a1308 6285 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6286
ece180d1 6287 /* wait till EH commits suicide */
720ba126
TH
6288 ata_port_wait_eh(ap);
6289
ece180d1
TH
6290 /* it better be dead now */
6291 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6292
afe2c511 6293 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6294
c3cf30a9 6295 skip_eh:
a6f9bf4d
LK
6296 /* clean up zpodd on port removal */
6297 ata_for_each_link(link, ap, HOST_FIRST) {
6298 ata_for_each_dev(dev, link, ALL) {
6299 if (zpodd_dev_enabled(dev))
6300 zpodd_exit(dev);
6301 }
6302 }
d9027470
GG
6303 if (ap->pmp_link) {
6304 int i;
6305 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6306 ata_tlink_delete(&ap->pmp_link[i]);
6307 }
720ba126 6308 /* remove the associated SCSI host */
cca3974e 6309 scsi_remove_host(ap->scsi_host);
c5700766 6310 ata_tport_delete(ap);
720ba126
TH
6311}
6312
0529c159
TH
6313/**
6314 * ata_host_detach - Detach all ports of an ATA host
6315 * @host: Host to detach
6316 *
6317 * Detach all ports of @host.
6318 *
6319 * LOCKING:
6320 * Kernel thread context (may sleep).
6321 */
6322void ata_host_detach(struct ata_host *host)
6323{
6324 int i;
6325
6326 for (i = 0; i < host->n_ports; i++)
6327 ata_port_detach(host->ports[i]);
562f0c2d
TH
6328
6329 /* the host is dead now, dissociate ACPI */
6330 ata_acpi_dissociate(host);
0529c159
TH
6331}
6332
374b1873
JG
6333#ifdef CONFIG_PCI
6334
1da177e4
LT
6335/**
6336 * ata_pci_remove_one - PCI layer callback for device removal
6337 * @pdev: PCI device that was removed
6338 *
b878ca5d
TH
6339 * PCI layer indicates to libata via this hook that hot-unplug or
6340 * module unload event has occurred. Detach all ports. Resource
6341 * release is handled via devres.
1da177e4
LT
6342 *
6343 * LOCKING:
6344 * Inherited from PCI layer (may sleep).
6345 */
f0d36efd 6346void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6347{
04a3f5b7 6348 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6349
b878ca5d 6350 ata_host_detach(host);
1da177e4
LT
6351}
6352
6353/* move to PCI subsystem */
057ace5e 6354int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6355{
6356 unsigned long tmp = 0;
6357
6358 switch (bits->width) {
6359 case 1: {
6360 u8 tmp8 = 0;
6361 pci_read_config_byte(pdev, bits->reg, &tmp8);
6362 tmp = tmp8;
6363 break;
6364 }
6365 case 2: {
6366 u16 tmp16 = 0;
6367 pci_read_config_word(pdev, bits->reg, &tmp16);
6368 tmp = tmp16;
6369 break;
6370 }
6371 case 4: {
6372 u32 tmp32 = 0;
6373 pci_read_config_dword(pdev, bits->reg, &tmp32);
6374 tmp = tmp32;
6375 break;
6376 }
6377
6378 default:
6379 return -EINVAL;
6380 }
6381
6382 tmp &= bits->mask;
6383
6384 return (tmp == bits->val) ? 1 : 0;
6385}
9b847548 6386
6ffa01d8 6387#ifdef CONFIG_PM
3c5100c1 6388void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6389{
6390 pci_save_state(pdev);
4c90d971 6391 pci_disable_device(pdev);
500530f6 6392
3a2d5b70 6393 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6394 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6395}
6396
553c4aa6 6397int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6398{
553c4aa6
TH
6399 int rc;
6400
9b847548
JA
6401 pci_set_power_state(pdev, PCI_D0);
6402 pci_restore_state(pdev);
553c4aa6 6403
b878ca5d 6404 rc = pcim_enable_device(pdev);
553c4aa6 6405 if (rc) {
a44fec1f
JP
6406 dev_err(&pdev->dev,
6407 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6408 return rc;
6409 }
6410
9b847548 6411 pci_set_master(pdev);
553c4aa6 6412 return 0;
500530f6
TH
6413}
6414
3c5100c1 6415int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6416{
04a3f5b7 6417 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6418 int rc = 0;
6419
cca3974e 6420 rc = ata_host_suspend(host, mesg);
500530f6
TH
6421 if (rc)
6422 return rc;
6423
3c5100c1 6424 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6425
6426 return 0;
6427}
6428
6429int ata_pci_device_resume(struct pci_dev *pdev)
6430{
04a3f5b7 6431 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6432 int rc;
500530f6 6433
553c4aa6
TH
6434 rc = ata_pci_device_do_resume(pdev);
6435 if (rc == 0)
6436 ata_host_resume(host);
6437 return rc;
9b847548 6438}
6ffa01d8
TH
6439#endif /* CONFIG_PM */
6440
1da177e4
LT
6441#endif /* CONFIG_PCI */
6442
b7db04d9
BN
6443/**
6444 * ata_platform_remove_one - Platform layer callback for device removal
6445 * @pdev: Platform device that was removed
6446 *
6447 * Platform layer indicates to libata via this hook that hot-unplug or
6448 * module unload event has occurred. Detach all ports. Resource
6449 * release is handled via devres.
6450 *
6451 * LOCKING:
6452 * Inherited from platform layer (may sleep).
6453 */
6454int ata_platform_remove_one(struct platform_device *pdev)
6455{
6456 struct ata_host *host = platform_get_drvdata(pdev);
6457
6458 ata_host_detach(host);
6459
6460 return 0;
6461}
6462
33267325
TH
6463static int __init ata_parse_force_one(char **cur,
6464 struct ata_force_ent *force_ent,
6465 const char **reason)
6466{
0f5f264b 6467 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6468 { "40c", .cbl = ATA_CBL_PATA40 },
6469 { "80c", .cbl = ATA_CBL_PATA80 },
6470 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6471 { "unk", .cbl = ATA_CBL_PATA_UNK },
6472 { "ign", .cbl = ATA_CBL_PATA_IGN },
6473 { "sata", .cbl = ATA_CBL_SATA },
6474 { "1.5Gbps", .spd_limit = 1 },
6475 { "3.0Gbps", .spd_limit = 2 },
6476 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6477 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6478 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6479 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6480 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6481 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6482 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6483 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6484 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6485 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6486 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6487 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6488 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6489 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6490 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6491 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6492 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6493 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6494 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6495 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6496 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6497 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6498 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6499 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6500 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6501 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6502 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6503 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6504 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6505 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6506 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6507 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6508 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6509 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6510 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6511 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6512 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6513 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6514 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6515 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6516 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6517 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6518 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6519 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6520 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6521 };
6522 char *start = *cur, *p = *cur;
6523 char *id, *val, *endp;
6524 const struct ata_force_param *match_fp = NULL;
6525 int nr_matches = 0, i;
6526
6527 /* find where this param ends and update *cur */
6528 while (*p != '\0' && *p != ',')
6529 p++;
6530
6531 if (*p == '\0')
6532 *cur = p;
6533 else
6534 *cur = p + 1;
6535
6536 *p = '\0';
6537
6538 /* parse */
6539 p = strchr(start, ':');
6540 if (!p) {
6541 val = strstrip(start);
6542 goto parse_val;
6543 }
6544 *p = '\0';
6545
6546 id = strstrip(start);
6547 val = strstrip(p + 1);
6548
6549 /* parse id */
6550 p = strchr(id, '.');
6551 if (p) {
6552 *p++ = '\0';
6553 force_ent->device = simple_strtoul(p, &endp, 10);
6554 if (p == endp || *endp != '\0') {
6555 *reason = "invalid device";
6556 return -EINVAL;
6557 }
6558 }
6559
6560 force_ent->port = simple_strtoul(id, &endp, 10);
6561 if (p == endp || *endp != '\0') {
6562 *reason = "invalid port/link";
6563 return -EINVAL;
6564 }
6565
6566 parse_val:
6567 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6568 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6569 const struct ata_force_param *fp = &force_tbl[i];
6570
6571 if (strncasecmp(val, fp->name, strlen(val)))
6572 continue;
6573
6574 nr_matches++;
6575 match_fp = fp;
6576
6577 if (strcasecmp(val, fp->name) == 0) {
6578 nr_matches = 1;
6579 break;
6580 }
6581 }
6582
6583 if (!nr_matches) {
6584 *reason = "unknown value";
6585 return -EINVAL;
6586 }
6587 if (nr_matches > 1) {
6588 *reason = "ambigious value";
6589 return -EINVAL;
6590 }
6591
6592 force_ent->param = *match_fp;
6593
6594 return 0;
6595}
6596
6597static void __init ata_parse_force_param(void)
6598{
6599 int idx = 0, size = 1;
6600 int last_port = -1, last_device = -1;
6601 char *p, *cur, *next;
6602
6603 /* calculate maximum number of params and allocate force_tbl */
6604 for (p = ata_force_param_buf; *p; p++)
6605 if (*p == ',')
6606 size++;
6607
6608 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6609 if (!ata_force_tbl) {
6610 printk(KERN_WARNING "ata: failed to extend force table, "
6611 "libata.force ignored\n");
6612 return;
6613 }
6614
6615 /* parse and populate the table */
6616 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6617 const char *reason = "";
6618 struct ata_force_ent te = { .port = -1, .device = -1 };
6619
6620 next = cur;
6621 if (ata_parse_force_one(&next, &te, &reason)) {
6622 printk(KERN_WARNING "ata: failed to parse force "
6623 "parameter \"%s\" (%s)\n",
6624 cur, reason);
6625 continue;
6626 }
6627
6628 if (te.port == -1) {
6629 te.port = last_port;
6630 te.device = last_device;
6631 }
6632
6633 ata_force_tbl[idx++] = te;
6634
6635 last_port = te.port;
6636 last_device = te.device;
6637 }
6638
6639 ata_force_tbl_size = idx;
6640}
1da177e4 6641
1da177e4
LT
6642static int __init ata_init(void)
6643{
d9027470 6644 int rc;
270390e1 6645
33267325
TH
6646 ata_parse_force_param();
6647
270390e1 6648 rc = ata_sff_init();
ad72cf98
TH
6649 if (rc) {
6650 kfree(ata_force_tbl);
6651 return rc;
6652 }
453b07ac 6653
d9027470
GG
6654 libata_transport_init();
6655 ata_scsi_transport_template = ata_attach_transport();
6656 if (!ata_scsi_transport_template) {
6657 ata_sff_exit();
6658 rc = -ENOMEM;
6659 goto err_out;
4fca377f 6660 }
d9027470 6661
1da177e4
LT
6662 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6663 return 0;
d9027470
GG
6664
6665err_out:
6666 return rc;
1da177e4
LT
6667}
6668
6669static void __exit ata_exit(void)
6670{
d9027470
GG
6671 ata_release_transport(ata_scsi_transport_template);
6672 libata_transport_exit();
270390e1 6673 ata_sff_exit();
33267325 6674 kfree(ata_force_tbl);
1da177e4
LT
6675}
6676
a4625085 6677subsys_initcall(ata_init);
1da177e4
LT
6678module_exit(ata_exit);
6679
9990b6f3 6680static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6681
6682int ata_ratelimit(void)
6683{
9990b6f3 6684 return __ratelimit(&ratelimit);
67846b30
JG
6685}
6686
c0c362b6
TH
6687/**
6688 * ata_msleep - ATA EH owner aware msleep
6689 * @ap: ATA port to attribute the sleep to
6690 * @msecs: duration to sleep in milliseconds
6691 *
6692 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6693 * ownership is released before going to sleep and reacquired
6694 * after the sleep is complete. IOW, other ports sharing the
6695 * @ap->host will be allowed to own the EH while this task is
6696 * sleeping.
6697 *
6698 * LOCKING:
6699 * Might sleep.
6700 */
97750ceb
TH
6701void ata_msleep(struct ata_port *ap, unsigned int msecs)
6702{
c0c362b6
TH
6703 bool owns_eh = ap && ap->host->eh_owner == current;
6704
6705 if (owns_eh)
6706 ata_eh_release(ap);
6707
848c3920
AVM
6708 if (msecs < 20) {
6709 unsigned long usecs = msecs * USEC_PER_MSEC;
6710 usleep_range(usecs, usecs + 50);
6711 } else {
6712 msleep(msecs);
6713 }
c0c362b6
TH
6714
6715 if (owns_eh)
6716 ata_eh_acquire(ap);
97750ceb
TH
6717}
6718
c22daff4
TH
6719/**
6720 * ata_wait_register - wait until register value changes
97750ceb 6721 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6722 * @reg: IO-mapped register
6723 * @mask: Mask to apply to read register value
6724 * @val: Wait condition
341c2c95
TH
6725 * @interval: polling interval in milliseconds
6726 * @timeout: timeout in milliseconds
c22daff4
TH
6727 *
6728 * Waiting for some bits of register to change is a common
6729 * operation for ATA controllers. This function reads 32bit LE
6730 * IO-mapped register @reg and tests for the following condition.
6731 *
6732 * (*@reg & mask) != val
6733 *
6734 * If the condition is met, it returns; otherwise, the process is
6735 * repeated after @interval_msec until timeout.
6736 *
6737 * LOCKING:
6738 * Kernel thread context (may sleep)
6739 *
6740 * RETURNS:
6741 * The final register value.
6742 */
97750ceb 6743u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6744 unsigned long interval, unsigned long timeout)
c22daff4 6745{
341c2c95 6746 unsigned long deadline;
c22daff4
TH
6747 u32 tmp;
6748
6749 tmp = ioread32(reg);
6750
6751 /* Calculate timeout _after_ the first read to make sure
6752 * preceding writes reach the controller before starting to
6753 * eat away the timeout.
6754 */
341c2c95 6755 deadline = ata_deadline(jiffies, timeout);
c22daff4 6756
341c2c95 6757 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6758 ata_msleep(ap, interval);
c22daff4
TH
6759 tmp = ioread32(reg);
6760 }
6761
6762 return tmp;
6763}
6764
8393b811
GM
6765/**
6766 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6767 * @link: Link receiving the event
6768 *
6769 * Test whether the received PHY event has to be ignored or not.
6770 *
6771 * LOCKING:
6772 * None:
6773 *
6774 * RETURNS:
6775 * True if the event has to be ignored.
6776 */
6777bool sata_lpm_ignore_phy_events(struct ata_link *link)
6778{
09c5b480
GM
6779 unsigned long lpm_timeout = link->last_lpm_change +
6780 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6781
8393b811 6782 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6783 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6784 return true;
6785
6786 /* ignore the first PHY event after the LPM policy changed
6787 * as it is might be spurious
6788 */
6789 if ((link->flags & ATA_LFLAG_CHANGED) &&
6790 time_before(jiffies, lpm_timeout))
6791 return true;
6792
6793 return false;
8393b811
GM
6794}
6795EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6796
dd5b06c4
TH
6797/*
6798 * Dummy port_ops
6799 */
182d7bba 6800static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6801{
182d7bba 6802 return AC_ERR_SYSTEM;
dd5b06c4
TH
6803}
6804
182d7bba 6805static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6806{
182d7bba 6807 /* truly dummy */
dd5b06c4
TH
6808}
6809
029cfd6b 6810struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6811 .qc_prep = ata_noop_qc_prep,
6812 .qc_issue = ata_dummy_qc_issue,
182d7bba 6813 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6814 .sched_eh = ata_std_sched_eh,
6815 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6816};
6817
21b0ad4f
TH
6818const struct ata_port_info ata_dummy_port_info = {
6819 .port_ops = &ata_dummy_port_ops,
6820};
6821
a9a79dfe
JP
6822/*
6823 * Utility print functions
6824 */
d7bead1b
JP
6825void ata_port_printk(const struct ata_port *ap, const char *level,
6826 const char *fmt, ...)
a9a79dfe
JP
6827{
6828 struct va_format vaf;
6829 va_list args;
a9a79dfe
JP
6830
6831 va_start(args, fmt);
6832
6833 vaf.fmt = fmt;
6834 vaf.va = &args;
6835
d7bead1b 6836 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
6837
6838 va_end(args);
a9a79dfe
JP
6839}
6840EXPORT_SYMBOL(ata_port_printk);
6841
d7bead1b
JP
6842void ata_link_printk(const struct ata_link *link, const char *level,
6843 const char *fmt, ...)
a9a79dfe
JP
6844{
6845 struct va_format vaf;
6846 va_list args;
a9a79dfe
JP
6847
6848 va_start(args, fmt);
6849
6850 vaf.fmt = fmt;
6851 vaf.va = &args;
6852
6853 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
6854 printk("%sata%u.%02u: %pV",
6855 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 6856 else
d7bead1b
JP
6857 printk("%sata%u: %pV",
6858 level, link->ap->print_id, &vaf);
a9a79dfe
JP
6859
6860 va_end(args);
a9a79dfe
JP
6861}
6862EXPORT_SYMBOL(ata_link_printk);
6863
d7bead1b 6864void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
6865 const char *fmt, ...)
6866{
6867 struct va_format vaf;
6868 va_list args;
a9a79dfe
JP
6869
6870 va_start(args, fmt);
6871
6872 vaf.fmt = fmt;
6873 vaf.va = &args;
6874
d7bead1b
JP
6875 printk("%sata%u.%02u: %pV",
6876 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6877 &vaf);
a9a79dfe
JP
6878
6879 va_end(args);
a9a79dfe
JP
6880}
6881EXPORT_SYMBOL(ata_dev_printk);
6882
06296a1e
JP
6883void ata_print_version(const struct device *dev, const char *version)
6884{
6885 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6886}
6887EXPORT_SYMBOL(ata_print_version);
6888
1da177e4
LT
6889/*
6890 * libata is essentially a library of internal helper functions for
6891 * low-level ATA host controller drivers. As such, the API/ABI is
6892 * likely to change as new drivers are added and updated.
6893 * Do not depend on ABI/API stability.
6894 */
e9c83914
TH
6895EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6896EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6897EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6898EXPORT_SYMBOL_GPL(ata_base_port_ops);
6899EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6900EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6901EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6902EXPORT_SYMBOL_GPL(ata_link_next);
6903EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6904EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6905EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6906EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6907EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6908EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6909EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6910EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6911EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6912EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6913EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6914EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6915EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6916EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6917EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6918EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6919EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6920EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6921EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6922EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6923EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6924EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6925EXPORT_SYMBOL_GPL(ata_mode_string);
6926EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6927EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6928EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6929EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6930EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6931EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6932EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6933EXPORT_SYMBOL_GPL(sata_link_debounce);
6934EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6935EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6936EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6937EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6938EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6939EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6940EXPORT_SYMBOL_GPL(ata_dev_classify);
6941EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6942EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6943EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6944EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6945EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6946EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6947EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6948EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 6949EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
6950EXPORT_SYMBOL_GPL(sata_scr_valid);
6951EXPORT_SYMBOL_GPL(sata_scr_read);
6952EXPORT_SYMBOL_GPL(sata_scr_write);
6953EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6954EXPORT_SYMBOL_GPL(ata_link_online);
6955EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6956#ifdef CONFIG_PM
cca3974e
JG
6957EXPORT_SYMBOL_GPL(ata_host_suspend);
6958EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6959#endif /* CONFIG_PM */
6a62a04d
TH
6960EXPORT_SYMBOL_GPL(ata_id_string);
6961EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6962EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6963EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6964
1bc4ccff 6965EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6966EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6967EXPORT_SYMBOL_GPL(ata_timing_compute);
6968EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6969EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6970
1da177e4
LT
6971#ifdef CONFIG_PCI
6972EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6973EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6974#ifdef CONFIG_PM
500530f6
TH
6975EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6976EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6977EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6978EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6979#endif /* CONFIG_PM */
1da177e4 6980#endif /* CONFIG_PCI */
9b847548 6981
b7db04d9
BN
6982EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6983
b64bbc39
TH
6984EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6985EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6986EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6987EXPORT_SYMBOL_GPL(ata_port_desc);
6988#ifdef CONFIG_PCI
6989EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6990#endif /* CONFIG_PCI */
7b70fc03 6991EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6992EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6993EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6994EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6995EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6996EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6997EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6998EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6999EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7000EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7001EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7002EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7003
7004EXPORT_SYMBOL_GPL(ata_cable_40wire);
7005EXPORT_SYMBOL_GPL(ata_cable_80wire);
7006EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7007EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7008EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.577379 seconds and 5 git commands to generate.