libata: bump versions
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
6b38d1d1 898 * @new_sectors: new max sectors value to set for the device
1e999736
AC
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905{
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931}
932
933/**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
6b38d1d1 936 * @new_sectors: new max sectors value to set for the device
1e999736
AC
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943{
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965}
966
967/**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976static u64 ata_hpa_resize(struct ata_device *dev)
977{
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
a617c09f 980
1e999736
AC
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
bd1d5ec6
AM
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
1e999736
AC
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
bd1d5ec6 996 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
bd1d5ec6
AM
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1e999736
AC
1004
1005 if (hpa_sectors) {
bd1d5ec6
AM
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1e999736
AC
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
A
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
A
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
1286 int rc;
1287
b51e9e5d 1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1289 return;
1290
65f27f38
DH
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
86e45b6b 1293
52bad64d 1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
ba6a1308 1316 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1318 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1319
1320 DPRINTK("flush #1\n");
28e53bdd 1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
86e45b6b
TH
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1329 if (ata_msg_ctl(ap))
88574551
TH
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
28e53bdd 1332 cancel_work_sync(&ap->port_task.work);
86e45b6b
TH
1333 }
1334
ba6a1308 1335 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1337 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1338
0dd4b21f
BP
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1341}
1342
7102d230 1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1344{
77853bf2 1345 struct completion *waiting = qc->private_data;
a2a7a662 1346
a2a7a662 1347 complete(waiting);
a2a7a662
TH
1348}
1349
1350/**
2432697b 1351 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
d69cf37d 1354 * @cdb: CDB for packet command
a2a7a662 1355 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
a2a7a662
TH
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
551e8889
TH
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1370 */
2432697b
TH
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
a2a7a662 1375{
3373efd8 1376 struct ata_port *ap = dev->ap;
a2a7a662
TH
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
2ab7db1f 1379 unsigned int tag, preempted_tag;
dedaf2b0 1380 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1381 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1382 unsigned long flags;
77853bf2 1383 unsigned int err_mask;
d95a717f 1384 int rc;
a2a7a662 1385
ba6a1308 1386 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1387
e3180499 1388 /* no internal command while frozen */
b51e9e5d 1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1390 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1391 return AC_ERR_SYSTEM;
1392 }
1393
2ab7db1f 1394 /* initialize internal qc */
a2a7a662 1395
2ab7db1f
TH
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
6cec4a39 1406 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1407 BUG();
f69499f4 1408 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
dedaf2b0
TH
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
2ab7db1f 1419 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
2ab7db1f
TH
1422
1423 /* prepare & issue qc */
a2a7a662 1424 qc->tf = *tf;
d69cf37d
TH
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
2432697b
TH
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
49c80429 1436 qc->nbytes = buflen;
a2a7a662
TH
1437 }
1438
77853bf2 1439 qc->private_data = &wait;
a2a7a662
TH
1440 qc->complete_fn = ata_qc_complete_internal;
1441
8e0e694a 1442 ata_qc_issue(qc);
a2a7a662 1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1445
a8601e5f 1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1447
1448 ata_port_flush_task(ap);
41ade50c 1449
d95a717f 1450 if (!rc) {
ba6a1308 1451 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
d95a717f
TH
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
a2a7a662 1457 */
77853bf2 1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
f15a1daf 1465
0dd4b21f
BP
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
88574551 1468 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1469 }
1470
ba6a1308 1471 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1472 }
1473
d95a717f
TH
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
a51d644a
TH
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1488 }
1489
15869303 1490 /* finish up */
ba6a1308 1491 spin_lock_irqsave(ap->lock, flags);
15869303 1492
e61e0672 1493 *tf = qc->result_tf;
77853bf2
TH
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
2ab7db1f 1497 ap->active_tag = preempted_tag;
dedaf2b0
TH
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
77853bf2 1500
1f7dd3e9
TH
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
198e0fed 1512 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
ba6a1308 1517 spin_unlock_irqrestore(ap->lock, flags);
15869303 1518
77853bf2 1519 return err_mask;
a2a7a662
TH
1520}
1521
2432697b 1522/**
33480a0e 1523 * ata_exec_internal - execute libata internal command
2432697b
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
33480a0e
TH
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
2432697b 1546
33480a0e
TH
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
2432697b 1553
33480a0e 1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1555}
1556
977e6b9f
TH
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
e58eb583 1570 */
77b08fb5 1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1572{
1573 struct ata_taskfile tf;
e58eb583
TH
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
977e6b9f 1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1582}
1583
1bc4ccff
AC
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
a617c09f 1591
1bc4ccff
AC
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
432729f0
AC
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1597 return 0;
432729f0
AC
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1bc4ccff 1603 return 1;
432729f0
AC
1604 return 0;
1605}
2e9edbf8 1606
432729f0
AC
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
a617c09f 1614
432729f0
AC
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1bc4ccff 1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1626 }
1627 }
432729f0 1628 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1629}
1630
1da177e4 1631/**
49016aca 1632 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
bff04647 1635 * @flags: ATA_READID_* flags
fe635c7e 1636 * @id: buffer to read IDENTIFY data into
1da177e4 1637 *
49016aca
TH
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1da177e4
LT
1642 *
1643 * LOCKING:
49016aca
TH
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1da177e4 1648 */
a9beec95 1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1650 unsigned int flags, u16 *id)
1da177e4 1651{
3373efd8 1652 struct ata_port *ap = dev->ap;
49016aca 1653 unsigned int class = *p_class;
a0123703 1654 struct ata_taskfile tf;
49016aca
TH
1655 unsigned int err_mask = 0;
1656 const char *reason;
54936f8b 1657 int may_fallback = 1, tried_spinup = 0;
49016aca 1658 int rc;
1da177e4 1659
0dd4b21f 1660 if (ata_msg_ctl(ap))
44877b4e 1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1662
49016aca 1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1664 retry:
3373efd8 1665 ata_tf_init(dev, &tf);
a0123703 1666
49016aca
TH
1667 switch (class) {
1668 case ATA_DEV_ATA:
a0123703 1669 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1670 break;
1671 case ATA_DEV_ATAPI:
a0123703 1672 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1da177e4
LT
1678 }
1679
a0123703 1680 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1691
3373efd8 1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1693 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1694 if (err_mask) {
800b3996 1695 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1697 ap->print_id, dev->devno);
55a8e2c8
TH
1698 return -ENOENT;
1699 }
1700
54936f8b
TH
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
49016aca
TH
1716 rc = -EIO;
1717 reason = "I/O error";
1da177e4
LT
1718 goto err_out;
1719 }
1720
54936f8b
TH
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
49016aca 1726 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1727
49016aca 1728 /* sanity check */
a4f5749b
TH
1729 rc = -EINVAL;
1730 reason = "device reports illegal type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
49016aca
TH
1738 }
1739
169439c2
ML
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
bff04647 1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
bff04647 1786 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
fe635c7e 1792
49016aca
TH
1793 return 0;
1794
1795 err_out:
88574551 1796 if (ata_msg_warn(ap))
0dd4b21f 1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1799 return rc;
1800}
1801
3373efd8 1802static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1803{
3373efd8 1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1805}
1806
a6e6ce8e
TH
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
6919a0a6
AC
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
a6e6ce8e 1821 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
49016aca 1832/**
ffeae418 1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
49016aca
TH
1838 *
1839 * LOCKING:
ffeae418
TH
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
49016aca 1844 */
efdaedc4 1845int ata_dev_configure(struct ata_device *dev)
49016aca 1846{
3373efd8 1847 struct ata_port *ap = dev->ap;
efdaedc4 1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1849 const u16 *id = dev->id;
ff8854b2 1850 unsigned int xfer_mask;
b352e57d 1851 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1854 int rc;
49016aca 1855
0dd4b21f 1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
ffeae418 1859 return 0;
49016aca
TH
1860 }
1861
0dd4b21f 1862 if (ata_msg_probe(ap))
44877b4e 1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1864
08573a86 1865 /* set _SDD */
3a32a8e9 1866 rc = ata_acpi_push_id(dev);
08573a86
KCA
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
c39f5ebe 1875 /* print device capabilities */
0dd4b21f 1876 if (ata_msg_probe(ap))
88574551
TH
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1880 __FUNCTION__,
f15a1daf
TH
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
c39f5ebe 1883
208a9933 1884 /* initialize to-be-configured parameters */
ea1dd4e1 1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1da177e4
LT
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
ff8854b2 1897 /* find max transfer mode; for printk only */
1148c3a7 1898 xfer_mask = ata_id_xfermask(id);
1da177e4 1899
0dd4b21f
BP
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1da177e4
LT
1902
1903 /* ATA-specific feature tests */
1904 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1905 if (ata_id_is_cfa(id)) {
1906 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1907 ata_dev_printk(dev, KERN_WARNING,
1908 "supports DRM functions and may "
1909 "not be fully accessable.\n");
b352e57d
AC
1910 snprintf(revbuf, 7, "CFA");
1911 }
1912 else
1913 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1914
1148c3a7 1915 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1916
3f64f565 1917 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1918 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1919 sizeof(fwrevbuf));
1920
591a6e8e 1921 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1922 sizeof(modelbuf));
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1148c3a7 1927 if (ata_id_has_lba(id)) {
4c2d721a 1928 const char *lba_desc;
a6e6ce8e 1929 char ncq_desc[20];
8bf62ece 1930
4c2d721a
TH
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1933 if (ata_id_has_lba48(id)) {
8bf62ece 1934 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1935 lba_desc = "LBA48";
6fc49adb
TH
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1940 }
8bf62ece 1941
1e999736
AC
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
a6e6ce8e
TH
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
8bf62ece 1948 /* print device info to dmesg */
3f64f565
EM
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1956 (unsigned long long)dev->n_sectors,
3f64f565
EM
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
ffeae418 1959 } else {
8bf62ece
AL
1960 /* CHS */
1961
1962 /* Default translation */
1148c3a7
TH
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
8bf62ece 1966
1148c3a7 1967 if (ata_id_current_chs_valid(id)) {
8bf62ece 1968 /* Current CHS translation is valid. */
1148c3a7
TH
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
8bf62ece
AL
1972 }
1973
1974 /* print device info to dmesg */
3f64f565 1975 if (ata_msg_drv(ap) && print_info) {
88574551 1976 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
a84471fe 1980 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
07f6f7d0
AL
1986 }
1987
6e7846e9 1988 dev->cdb_len = 16;
1da177e4
LT
1989 }
1990
1991 /* ATAPI-specific feature tests */
2c13b7ce 1992 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1993 char *cdb_intr_string = "";
1994
1148c3a7 1995 rc = atapi_cdb_len(id);
1da177e4 1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1997 if (ata_msg_warn(ap))
88574551
TH
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
ffeae418 2000 rc = -EINVAL;
1da177e4
LT
2001 goto err_out_nosup;
2002 }
6e7846e9 2003 dev->cdb_len = (unsigned int) rc;
1da177e4 2004
08a556db 2005 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2006 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2007 cdb_intr_string = ", CDB intr";
2008 }
312f7da2 2009
1da177e4 2010 /* print device info to dmesg */
5afc8142 2011 if (ata_msg_drv(ap) && print_info)
12436c30
TH
2012 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
2013 ata_mode_string(xfer_mask),
2014 cdb_intr_string);
1da177e4
LT
2015 }
2016
914ed354
TH
2017 /* determine max_sectors */
2018 dev->max_sectors = ATA_MAX_SECTORS;
2019 if (dev->flags & ATA_DFLAG_LBA48)
2020 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2021
93590859
AC
2022 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2023 /* Let the user know. We don't want to disallow opens for
2024 rescue purposes, or in case the vendor is just a blithering
2025 idiot */
2026 if (print_info) {
2027 ata_dev_printk(dev, KERN_WARNING,
2028"Drive reports diagnostics failure. This may indicate a drive\n");
2029 ata_dev_printk(dev, KERN_WARNING,
2030"fault or invalid emulation. Contact drive vendor for information.\n");
2031 }
2032 }
2033
4b2f3ede 2034 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2035 if (ata_dev_knobble(dev)) {
5afc8142 2036 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2037 ata_dev_printk(dev, KERN_INFO,
2038 "applying bridge limits\n");
5a529139 2039 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2040 dev->max_sectors = ATA_MAX_SECTORS;
2041 }
2042
18d6e9d5 2043 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2044 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2045 dev->max_sectors);
18d6e9d5 2046
6f23a31d
AL
2047 /* limit ATAPI DMA to R/W commands only */
2048 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2049 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2050
4b2f3ede 2051 if (ap->ops->dev_config)
cd0d3bbc 2052 ap->ops->dev_config(dev);
4b2f3ede 2053
0dd4b21f
BP
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__, ata_chk_status(ap));
ffeae418 2057 return 0;
1da177e4
LT
2058
2059err_out_nosup:
0dd4b21f 2060 if (ata_msg_probe(ap))
88574551
TH
2061 ata_dev_printk(dev, KERN_DEBUG,
2062 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2063 return rc;
1da177e4
LT
2064}
2065
be0d18df 2066/**
2e41e8e6 2067 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2068 * @ap: port
2069 *
2e41e8e6 2070 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2071 * detection.
2072 */
2073
2074int ata_cable_40wire(struct ata_port *ap)
2075{
2076 return ATA_CBL_PATA40;
2077}
2078
2079/**
2e41e8e6 2080 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2081 * @ap: port
2082 *
2e41e8e6 2083 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2084 * detection.
2085 */
2086
2087int ata_cable_80wire(struct ata_port *ap)
2088{
2089 return ATA_CBL_PATA80;
2090}
2091
2092/**
2093 * ata_cable_unknown - return unknown PATA cable.
2094 * @ap: port
2095 *
2096 * Helper method for drivers which have no PATA cable detection.
2097 */
2098
2099int ata_cable_unknown(struct ata_port *ap)
2100{
2101 return ATA_CBL_PATA_UNK;
2102}
2103
2104/**
2105 * ata_cable_sata - return SATA cable type
2106 * @ap: port
2107 *
2108 * Helper method for drivers which have SATA cables
2109 */
2110
2111int ata_cable_sata(struct ata_port *ap)
2112{
2113 return ATA_CBL_SATA;
2114}
2115
1da177e4
LT
2116/**
2117 * ata_bus_probe - Reset and probe ATA bus
2118 * @ap: Bus to probe
2119 *
0cba632b
JG
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2122 * the bus.
2123 *
1da177e4 2124 * LOCKING:
0cba632b 2125 * PCI/etc. bus probe sem.
1da177e4
LT
2126 *
2127 * RETURNS:
96072e69 2128 * Zero on success, negative errno otherwise.
1da177e4
LT
2129 */
2130
80289167 2131int ata_bus_probe(struct ata_port *ap)
1da177e4 2132{
28ca5c57 2133 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2134 int tries[ATA_MAX_DEVICES];
4ae72a1e 2135 int i, rc;
e82cbdb9 2136 struct ata_device *dev;
1da177e4 2137
28ca5c57 2138 ata_port_probe(ap);
c19ba8af 2139
14d2bac1
TH
2140 for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 tries[i] = ATA_PROBE_MAX_TRIES;
2142
2143 retry:
2044470c 2144 /* reset and determine device classes */
52783c5d 2145 ap->ops->phy_reset(ap);
2061a47a 2146
52783c5d
TH
2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2148 dev = &ap->device[i];
c19ba8af 2149
52783c5d
TH
2150 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2151 dev->class != ATA_DEV_UNKNOWN)
2152 classes[dev->devno] = dev->class;
2153 else
2154 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2155
52783c5d 2156 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2157 }
1da177e4 2158
52783c5d 2159 ata_port_probe(ap);
2044470c 2160
b6079ca4
AC
2161 /* after the reset the device state is PIO 0 and the controller
2162 state is undefined. Record the mode */
2163
2164 for (i = 0; i < ATA_MAX_DEVICES; i++)
2165 ap->device[i].pio_mode = XFER_PIO_0;
2166
f31f0cc2
JG
2167 /* read IDENTIFY page and configure devices. We have to do the identify
2168 specific sequence bass-ackwards so that PDIAG- is released by
2169 the slave device */
2170
2171 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2172 dev = &ap->device[i];
28ca5c57 2173
ec573755
TH
2174 if (tries[i])
2175 dev->class = classes[i];
ffeae418 2176
14d2bac1 2177 if (!ata_dev_enabled(dev))
ffeae418 2178 continue;
ffeae418 2179
bff04647
TH
2180 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2181 dev->id);
14d2bac1
TH
2182 if (rc)
2183 goto fail;
f31f0cc2
JG
2184 }
2185
be0d18df
AC
2186 /* Now ask for the cable type as PDIAG- should have been released */
2187 if (ap->ops->cable_detect)
2188 ap->cbl = ap->ops->cable_detect(ap);
2189
f31f0cc2
JG
2190 /* After the identify sequence we can now set up the devices. We do
2191 this in the normal order so that the user doesn't get confused */
2192
2193 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2194 dev = &ap->device[i];
2195 if (!ata_dev_enabled(dev))
2196 continue;
14d2bac1 2197
efdaedc4
TH
2198 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2199 rc = ata_dev_configure(dev);
2200 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2201 if (rc)
2202 goto fail;
1da177e4
LT
2203 }
2204
e82cbdb9 2205 /* configure transfer mode */
3adcebb2 2206 rc = ata_set_mode(ap, &dev);
4ae72a1e 2207 if (rc)
51713d35 2208 goto fail;
1da177e4 2209
e82cbdb9
TH
2210 for (i = 0; i < ATA_MAX_DEVICES; i++)
2211 if (ata_dev_enabled(&ap->device[i]))
2212 return 0;
1da177e4 2213
e82cbdb9
TH
2214 /* no device present, disable port */
2215 ata_port_disable(ap);
1da177e4 2216 ap->ops->port_disable(ap);
96072e69 2217 return -ENODEV;
14d2bac1
TH
2218
2219 fail:
4ae72a1e
TH
2220 tries[dev->devno]--;
2221
14d2bac1
TH
2222 switch (rc) {
2223 case -EINVAL:
4ae72a1e 2224 /* eeek, something went very wrong, give up */
14d2bac1
TH
2225 tries[dev->devno] = 0;
2226 break;
4ae72a1e
TH
2227
2228 case -ENODEV:
2229 /* give it just one more chance */
2230 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2231 case -EIO:
4ae72a1e
TH
2232 if (tries[dev->devno] == 1) {
2233 /* This is the last chance, better to slow
2234 * down than lose it.
2235 */
2236 sata_down_spd_limit(ap);
2237 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2238 }
14d2bac1
TH
2239 }
2240
4ae72a1e 2241 if (!tries[dev->devno])
3373efd8 2242 ata_dev_disable(dev);
ec573755 2243
14d2bac1 2244 goto retry;
1da177e4
LT
2245}
2246
2247/**
0cba632b
JG
2248 * ata_port_probe - Mark port as enabled
2249 * @ap: Port for which we indicate enablement
1da177e4 2250 *
0cba632b
JG
2251 * Modify @ap data structure such that the system
2252 * thinks that the entire port is enabled.
2253 *
cca3974e 2254 * LOCKING: host lock, or some other form of
0cba632b 2255 * serialization.
1da177e4
LT
2256 */
2257
2258void ata_port_probe(struct ata_port *ap)
2259{
198e0fed 2260 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2261}
2262
3be680b7
TH
2263/**
2264 * sata_print_link_status - Print SATA link status
2265 * @ap: SATA port to printk link status about
2266 *
2267 * This function prints link speed and status of a SATA link.
2268 *
2269 * LOCKING:
2270 * None.
2271 */
43727fbc 2272void sata_print_link_status(struct ata_port *ap)
3be680b7 2273{
6d5f9732 2274 u32 sstatus, scontrol, tmp;
3be680b7 2275
81952c54 2276 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2277 return;
81952c54 2278 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2279
81952c54 2280 if (ata_port_online(ap)) {
3be680b7 2281 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2282 ata_port_printk(ap, KERN_INFO,
2283 "SATA link up %s (SStatus %X SControl %X)\n",
2284 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2285 } else {
f15a1daf
TH
2286 ata_port_printk(ap, KERN_INFO,
2287 "SATA link down (SStatus %X SControl %X)\n",
2288 sstatus, scontrol);
3be680b7
TH
2289 }
2290}
2291
1da177e4 2292/**
780a87f7
JG
2293 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2294 * @ap: SATA port associated with target SATA PHY.
1da177e4 2295 *
780a87f7
JG
2296 * This function issues commands to standard SATA Sxxx
2297 * PHY registers, to wake up the phy (and device), and
2298 * clear any reset condition.
1da177e4
LT
2299 *
2300 * LOCKING:
0cba632b 2301 * PCI/etc. bus probe sem.
1da177e4
LT
2302 *
2303 */
2304void __sata_phy_reset(struct ata_port *ap)
2305{
2306 u32 sstatus;
2307 unsigned long timeout = jiffies + (HZ * 5);
2308
2309 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2310 /* issue phy wake/reset */
81952c54 2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2312 /* Couldn't find anything in SATA I/II specs, but
2313 * AHCI-1.1 10.4.2 says at least 1 ms. */
2314 mdelay(1);
1da177e4 2315 }
81952c54
TH
2316 /* phy wake/clear reset */
2317 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2318
2319 /* wait for phy to become ready, if necessary */
2320 do {
2321 msleep(200);
81952c54 2322 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2323 if ((sstatus & 0xf) != 1)
2324 break;
2325 } while (time_before(jiffies, timeout));
2326
3be680b7
TH
2327 /* print link status */
2328 sata_print_link_status(ap);
656563e3 2329
3be680b7 2330 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2331 if (!ata_port_offline(ap))
1da177e4 2332 ata_port_probe(ap);
3be680b7 2333 else
1da177e4 2334 ata_port_disable(ap);
1da177e4 2335
198e0fed 2336 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2337 return;
2338
2339 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2340 ata_port_disable(ap);
2341 return;
2342 }
2343
2344 ap->cbl = ATA_CBL_SATA;
2345}
2346
2347/**
780a87f7
JG
2348 * sata_phy_reset - Reset SATA bus.
2349 * @ap: SATA port associated with target SATA PHY.
1da177e4 2350 *
780a87f7
JG
2351 * This function resets the SATA bus, and then probes
2352 * the bus for devices.
1da177e4
LT
2353 *
2354 * LOCKING:
0cba632b 2355 * PCI/etc. bus probe sem.
1da177e4
LT
2356 *
2357 */
2358void sata_phy_reset(struct ata_port *ap)
2359{
2360 __sata_phy_reset(ap);
198e0fed 2361 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2362 return;
2363 ata_bus_reset(ap);
2364}
2365
ebdfca6e
AC
2366/**
2367 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2368 * @adev: device
2369 *
2370 * Obtain the other device on the same cable, or if none is
2371 * present NULL is returned
2372 */
2e9edbf8 2373
3373efd8 2374struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2375{
3373efd8 2376 struct ata_port *ap = adev->ap;
ebdfca6e 2377 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2378 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2379 return NULL;
2380 return pair;
2381}
2382
1da177e4 2383/**
780a87f7
JG
2384 * ata_port_disable - Disable port.
2385 * @ap: Port to be disabled.
1da177e4 2386 *
780a87f7
JG
2387 * Modify @ap data structure such that the system
2388 * thinks that the entire port is disabled, and should
2389 * never attempt to probe or communicate with devices
2390 * on this port.
2391 *
cca3974e 2392 * LOCKING: host lock, or some other form of
780a87f7 2393 * serialization.
1da177e4
LT
2394 */
2395
2396void ata_port_disable(struct ata_port *ap)
2397{
2398 ap->device[0].class = ATA_DEV_NONE;
2399 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2400 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2401}
2402
1c3fae4d 2403/**
3c567b7d 2404 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2405 * @ap: Port to adjust SATA spd limit for
2406 *
2407 * Adjust SATA spd limit of @ap downward. Note that this
2408 * function only adjusts the limit. The change must be applied
3c567b7d 2409 * using sata_set_spd().
1c3fae4d
TH
2410 *
2411 * LOCKING:
2412 * Inherited from caller.
2413 *
2414 * RETURNS:
2415 * 0 on success, negative errno on failure
2416 */
3c567b7d 2417int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2418{
81952c54
TH
2419 u32 sstatus, spd, mask;
2420 int rc, highbit;
1c3fae4d 2421
81952c54
TH
2422 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2423 if (rc)
2424 return rc;
1c3fae4d
TH
2425
2426 mask = ap->sata_spd_limit;
2427 if (mask <= 1)
2428 return -EINVAL;
2429 highbit = fls(mask) - 1;
2430 mask &= ~(1 << highbit);
2431
81952c54 2432 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2433 if (spd <= 1)
2434 return -EINVAL;
2435 spd--;
2436 mask &= (1 << spd) - 1;
2437 if (!mask)
2438 return -EINVAL;
2439
2440 ap->sata_spd_limit = mask;
2441
f15a1daf
TH
2442 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2443 sata_spd_string(fls(mask)));
1c3fae4d
TH
2444
2445 return 0;
2446}
2447
3c567b7d 2448static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2449{
2450 u32 spd, limit;
2451
2452 if (ap->sata_spd_limit == UINT_MAX)
2453 limit = 0;
2454 else
2455 limit = fls(ap->sata_spd_limit);
2456
2457 spd = (*scontrol >> 4) & 0xf;
2458 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2459
2460 return spd != limit;
2461}
2462
2463/**
3c567b7d 2464 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2465 * @ap: Port in question
2466 *
2467 * Test whether the spd limit in SControl matches
2468 * @ap->sata_spd_limit. This function is used to determine
2469 * whether hardreset is necessary to apply SATA spd
2470 * configuration.
2471 *
2472 * LOCKING:
2473 * Inherited from caller.
2474 *
2475 * RETURNS:
2476 * 1 if SATA spd configuration is needed, 0 otherwise.
2477 */
3c567b7d 2478int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2479{
2480 u32 scontrol;
2481
81952c54 2482 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2483 return 0;
2484
3c567b7d 2485 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2486}
2487
2488/**
3c567b7d 2489 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2490 * @ap: Port to set SATA spd for
2491 *
2492 * Set SATA spd of @ap according to sata_spd_limit.
2493 *
2494 * LOCKING:
2495 * Inherited from caller.
2496 *
2497 * RETURNS:
2498 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2499 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2500 */
3c567b7d 2501int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2502{
2503 u32 scontrol;
81952c54 2504 int rc;
1c3fae4d 2505
81952c54
TH
2506 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2507 return rc;
1c3fae4d 2508
3c567b7d 2509 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2510 return 0;
2511
81952c54
TH
2512 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2513 return rc;
2514
1c3fae4d
TH
2515 return 1;
2516}
2517
452503f9
AC
2518/*
2519 * This mode timing computation functionality is ported over from
2520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2521 */
2522/*
b352e57d 2523 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2525 * for UDMA6, which is currently supported only by Maxtor drives.
2526 *
2527 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2528 */
2529
2530static const struct ata_timing ata_timing[] = {
2531
2532 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2533 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2534 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2535 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2536
b352e57d
AC
2537 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2538 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2539 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2540 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2541 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2542
2543/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2544
452503f9
AC
2545 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2546 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2547 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2548
452503f9
AC
2549 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2550 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2551 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2552
b352e57d
AC
2553 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2554 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2555 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2556 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2557
2558 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2559 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2560 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2561
2562/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2563
2564 { 0xFF }
2565};
2566
2567#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2568#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2569
2570static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2571{
2572 q->setup = EZ(t->setup * 1000, T);
2573 q->act8b = EZ(t->act8b * 1000, T);
2574 q->rec8b = EZ(t->rec8b * 1000, T);
2575 q->cyc8b = EZ(t->cyc8b * 1000, T);
2576 q->active = EZ(t->active * 1000, T);
2577 q->recover = EZ(t->recover * 1000, T);
2578 q->cycle = EZ(t->cycle * 1000, T);
2579 q->udma = EZ(t->udma * 1000, UT);
2580}
2581
2582void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2583 struct ata_timing *m, unsigned int what)
2584{
2585 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2586 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2587 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2588 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2589 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2590 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2591 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2592 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2593}
2594
2595static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2596{
2597 const struct ata_timing *t;
2598
2599 for (t = ata_timing; t->mode != speed; t++)
91190758 2600 if (t->mode == 0xFF)
452503f9 2601 return NULL;
2e9edbf8 2602 return t;
452503f9
AC
2603}
2604
2605int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2606 struct ata_timing *t, int T, int UT)
2607{
2608 const struct ata_timing *s;
2609 struct ata_timing p;
2610
2611 /*
2e9edbf8 2612 * Find the mode.
75b1f2f8 2613 */
452503f9
AC
2614
2615 if (!(s = ata_timing_find_mode(speed)))
2616 return -EINVAL;
2617
75b1f2f8
AL
2618 memcpy(t, s, sizeof(*s));
2619
452503f9
AC
2620 /*
2621 * If the drive is an EIDE drive, it can tell us it needs extended
2622 * PIO/MW_DMA cycle timing.
2623 */
2624
2625 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2626 memset(&p, 0, sizeof(p));
2627 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2628 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2629 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2630 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2631 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2632 }
2633 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2634 }
2635
2636 /*
2637 * Convert the timing to bus clock counts.
2638 */
2639
75b1f2f8 2640 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2641
2642 /*
c893a3ae
RD
2643 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2644 * S.M.A.R.T * and some other commands. We have to ensure that the
2645 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2646 */
2647
fd3367af 2648 if (speed > XFER_PIO_6) {
452503f9
AC
2649 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2650 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2651 }
2652
2653 /*
c893a3ae 2654 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2655 */
2656
2657 if (t->act8b + t->rec8b < t->cyc8b) {
2658 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2659 t->rec8b = t->cyc8b - t->act8b;
2660 }
2661
2662 if (t->active + t->recover < t->cycle) {
2663 t->active += (t->cycle - (t->active + t->recover)) / 2;
2664 t->recover = t->cycle - t->active;
2665 }
a617c09f 2666
4f701d1e
AC
2667 /* In a few cases quantisation may produce enough errors to
2668 leave t->cycle too low for the sum of active and recovery
2669 if so we must correct this */
2670 if (t->active + t->recover > t->cycle)
2671 t->cycle = t->active + t->recover;
452503f9
AC
2672
2673 return 0;
2674}
2675
cf176e1a
TH
2676/**
2677 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2678 * @dev: Device to adjust xfer masks
458337db 2679 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2680 *
2681 * Adjust xfer masks of @dev downward. Note that this function
2682 * does not apply the change. Invoking ata_set_mode() afterwards
2683 * will apply the limit.
2684 *
2685 * LOCKING:
2686 * Inherited from caller.
2687 *
2688 * RETURNS:
2689 * 0 on success, negative errno on failure
2690 */
458337db 2691int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2692{
458337db
TH
2693 char buf[32];
2694 unsigned int orig_mask, xfer_mask;
2695 unsigned int pio_mask, mwdma_mask, udma_mask;
2696 int quiet, highbit;
cf176e1a 2697
458337db
TH
2698 quiet = !!(sel & ATA_DNXFER_QUIET);
2699 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2700
458337db
TH
2701 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2702 dev->mwdma_mask,
2703 dev->udma_mask);
2704 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2705
458337db
TH
2706 switch (sel) {
2707 case ATA_DNXFER_PIO:
2708 highbit = fls(pio_mask) - 1;
2709 pio_mask &= ~(1 << highbit);
2710 break;
2711
2712 case ATA_DNXFER_DMA:
2713 if (udma_mask) {
2714 highbit = fls(udma_mask) - 1;
2715 udma_mask &= ~(1 << highbit);
2716 if (!udma_mask)
2717 return -ENOENT;
2718 } else if (mwdma_mask) {
2719 highbit = fls(mwdma_mask) - 1;
2720 mwdma_mask &= ~(1 << highbit);
2721 if (!mwdma_mask)
2722 return -ENOENT;
2723 }
2724 break;
2725
2726 case ATA_DNXFER_40C:
2727 udma_mask &= ATA_UDMA_MASK_40C;
2728 break;
2729
2730 case ATA_DNXFER_FORCE_PIO0:
2731 pio_mask &= 1;
2732 case ATA_DNXFER_FORCE_PIO:
2733 mwdma_mask = 0;
2734 udma_mask = 0;
2735 break;
2736
458337db
TH
2737 default:
2738 BUG();
2739 }
2740
2741 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2742
2743 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2744 return -ENOENT;
2745
2746 if (!quiet) {
2747 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2748 snprintf(buf, sizeof(buf), "%s:%s",
2749 ata_mode_string(xfer_mask),
2750 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2751 else
2752 snprintf(buf, sizeof(buf), "%s",
2753 ata_mode_string(xfer_mask));
2754
2755 ata_dev_printk(dev, KERN_WARNING,
2756 "limiting speed to %s\n", buf);
2757 }
cf176e1a
TH
2758
2759 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2760 &dev->udma_mask);
2761
cf176e1a 2762 return 0;
cf176e1a
TH
2763}
2764
3373efd8 2765static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2766{
baa1e78a 2767 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2768 unsigned int err_mask;
2769 int rc;
1da177e4 2770
e8384607 2771 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2772 if (dev->xfer_shift == ATA_SHIFT_PIO)
2773 dev->flags |= ATA_DFLAG_PIO;
2774
3373efd8 2775 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2776 /* Old CFA may refuse this command, which is just fine */
2777 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2778 err_mask &= ~AC_ERR_DEV;
2779
83206a29 2780 if (err_mask) {
f15a1daf
TH
2781 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2782 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2783 return -EIO;
2784 }
1da177e4 2785
baa1e78a 2786 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2787 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2788 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2789 if (rc)
83206a29 2790 return rc;
48a8a14f 2791
23e71c3d
TH
2792 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2793 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2794
f15a1daf
TH
2795 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2796 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2797 return 0;
1da177e4
LT
2798}
2799
1da177e4 2800/**
04351821 2801 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2802 * @ap: port on which timings will be programmed
e82cbdb9 2803 * @r_failed_dev: out paramter for failed device
1da177e4 2804 *
04351821
A
2805 * Standard implementation of the function used to tune and set
2806 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2807 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2808 * returned in @r_failed_dev.
780a87f7 2809 *
1da177e4 2810 * LOCKING:
0cba632b 2811 * PCI/etc. bus probe sem.
e82cbdb9
TH
2812 *
2813 * RETURNS:
2814 * 0 on success, negative errno otherwise
1da177e4 2815 */
04351821
A
2816
2817int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2818{
e8e0619f 2819 struct ata_device *dev;
e82cbdb9 2820 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2821
3adcebb2 2822
a6d5a51c
TH
2823 /* step 1: calculate xfer_mask */
2824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2825 unsigned int pio_mask, dma_mask;
a6d5a51c 2826
e8e0619f
TH
2827 dev = &ap->device[i];
2828
e1211e3f 2829 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2830 continue;
2831
3373efd8 2832 ata_dev_xfermask(dev);
1da177e4 2833
acf356b1
TH
2834 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2835 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2836 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2837 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2838
4f65977d 2839 found = 1;
5444a6f4
AC
2840 if (dev->dma_mode)
2841 used_dma = 1;
a6d5a51c 2842 }
4f65977d 2843 if (!found)
e82cbdb9 2844 goto out;
a6d5a51c
TH
2845
2846 /* step 2: always set host PIO timings */
e8e0619f
TH
2847 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2848 dev = &ap->device[i];
2849 if (!ata_dev_enabled(dev))
2850 continue;
2851
2852 if (!dev->pio_mode) {
f15a1daf 2853 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2854 rc = -EINVAL;
e82cbdb9 2855 goto out;
e8e0619f
TH
2856 }
2857
2858 dev->xfer_mode = dev->pio_mode;
2859 dev->xfer_shift = ATA_SHIFT_PIO;
2860 if (ap->ops->set_piomode)
2861 ap->ops->set_piomode(ap, dev);
2862 }
1da177e4 2863
a6d5a51c 2864 /* step 3: set host DMA timings */
e8e0619f
TH
2865 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2866 dev = &ap->device[i];
2867
2868 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2869 continue;
2870
2871 dev->xfer_mode = dev->dma_mode;
2872 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2873 if (ap->ops->set_dmamode)
2874 ap->ops->set_dmamode(ap, dev);
2875 }
1da177e4
LT
2876
2877 /* step 4: update devices' xfer mode */
83206a29 2878 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2879 dev = &ap->device[i];
1da177e4 2880
18d90deb 2881 /* don't update suspended devices' xfer mode */
9666f400 2882 if (!ata_dev_enabled(dev))
83206a29
TH
2883 continue;
2884
3373efd8 2885 rc = ata_dev_set_mode(dev);
5bbc53f4 2886 if (rc)
e82cbdb9 2887 goto out;
83206a29 2888 }
1da177e4 2889
e8e0619f
TH
2890 /* Record simplex status. If we selected DMA then the other
2891 * host channels are not permitted to do so.
5444a6f4 2892 */
cca3974e 2893 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2894 ap->host->simplex_claimed = ap;
5444a6f4 2895
e82cbdb9
TH
2896 out:
2897 if (rc)
2898 *r_failed_dev = dev;
2899 return rc;
1da177e4
LT
2900}
2901
04351821
A
2902/**
2903 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2904 * @ap: port on which timings will be programmed
2905 * @r_failed_dev: out paramter for failed device
2906 *
2907 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2908 * ata_set_mode() fails, pointer to the failing device is
2909 * returned in @r_failed_dev.
2910 *
2911 * LOCKING:
2912 * PCI/etc. bus probe sem.
2913 *
2914 * RETURNS:
2915 * 0 on success, negative errno otherwise
2916 */
2917int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2918{
2919 /* has private set_mode? */
2920 if (ap->ops->set_mode)
2921 return ap->ops->set_mode(ap, r_failed_dev);
2922 return ata_do_set_mode(ap, r_failed_dev);
2923}
2924
1fdffbce
JG
2925/**
2926 * ata_tf_to_host - issue ATA taskfile to host controller
2927 * @ap: port to which command is being issued
2928 * @tf: ATA taskfile register set
2929 *
2930 * Issues ATA taskfile register set to ATA host controller,
2931 * with proper synchronization with interrupt handler and
2932 * other threads.
2933 *
2934 * LOCKING:
cca3974e 2935 * spin_lock_irqsave(host lock)
1fdffbce
JG
2936 */
2937
2938static inline void ata_tf_to_host(struct ata_port *ap,
2939 const struct ata_taskfile *tf)
2940{
2941 ap->ops->tf_load(ap, tf);
2942 ap->ops->exec_command(ap, tf);
2943}
2944
1da177e4
LT
2945/**
2946 * ata_busy_sleep - sleep until BSY clears, or timeout
2947 * @ap: port containing status register to be polled
2948 * @tmout_pat: impatience timeout
2949 * @tmout: overall timeout
2950 *
780a87f7
JG
2951 * Sleep until ATA Status register bit BSY clears,
2952 * or a timeout occurs.
2953 *
d1adc1bb
TH
2954 * LOCKING:
2955 * Kernel thread context (may sleep).
2956 *
2957 * RETURNS:
2958 * 0 on success, -errno otherwise.
1da177e4 2959 */
d1adc1bb
TH
2960int ata_busy_sleep(struct ata_port *ap,
2961 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2962{
2963 unsigned long timer_start, timeout;
2964 u8 status;
2965
2966 status = ata_busy_wait(ap, ATA_BUSY, 300);
2967 timer_start = jiffies;
2968 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2969 while (status != 0xff && (status & ATA_BUSY) &&
2970 time_before(jiffies, timeout)) {
1da177e4
LT
2971 msleep(50);
2972 status = ata_busy_wait(ap, ATA_BUSY, 3);
2973 }
2974
d1adc1bb 2975 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2976 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2977 "port is slow to respond, please be patient "
2978 "(Status 0x%x)\n", status);
1da177e4
LT
2979
2980 timeout = timer_start + tmout;
d1adc1bb
TH
2981 while (status != 0xff && (status & ATA_BUSY) &&
2982 time_before(jiffies, timeout)) {
1da177e4
LT
2983 msleep(50);
2984 status = ata_chk_status(ap);
2985 }
2986
d1adc1bb
TH
2987 if (status == 0xff)
2988 return -ENODEV;
2989
1da177e4 2990 if (status & ATA_BUSY) {
f15a1daf 2991 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2992 "(%lu secs, Status 0x%x)\n",
2993 tmout / HZ, status);
d1adc1bb 2994 return -EBUSY;
1da177e4
LT
2995 }
2996
2997 return 0;
2998}
2999
d4b2bab4
TH
3000/**
3001 * ata_wait_ready - sleep until BSY clears, or timeout
3002 * @ap: port containing status register to be polled
3003 * @deadline: deadline jiffies for the operation
3004 *
3005 * Sleep until ATA Status register bit BSY clears, or timeout
3006 * occurs.
3007 *
3008 * LOCKING:
3009 * Kernel thread context (may sleep).
3010 *
3011 * RETURNS:
3012 * 0 on success, -errno otherwise.
3013 */
3014int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3015{
3016 unsigned long start = jiffies;
3017 int warned = 0;
3018
3019 while (1) {
3020 u8 status = ata_chk_status(ap);
3021 unsigned long now = jiffies;
3022
3023 if (!(status & ATA_BUSY))
3024 return 0;
3025 if (status == 0xff)
3026 return -ENODEV;
3027 if (time_after(now, deadline))
3028 return -EBUSY;
3029
3030 if (!warned && time_after(now, start + 5 * HZ) &&
3031 (deadline - now > 3 * HZ)) {
3032 ata_port_printk(ap, KERN_WARNING,
3033 "port is slow to respond, please be patient "
3034 "(Status 0x%x)\n", status);
3035 warned = 1;
3036 }
3037
3038 msleep(50);
3039 }
3040}
3041
3042static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3043 unsigned long deadline)
1da177e4
LT
3044{
3045 struct ata_ioports *ioaddr = &ap->ioaddr;
3046 unsigned int dev0 = devmask & (1 << 0);
3047 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3048 int rc, ret = 0;
1da177e4
LT
3049
3050 /* if device 0 was found in ata_devchk, wait for its
3051 * BSY bit to clear
3052 */
d4b2bab4
TH
3053 if (dev0) {
3054 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3055 if (rc) {
3056 if (rc != -ENODEV)
3057 return rc;
3058 ret = rc;
3059 }
d4b2bab4 3060 }
1da177e4
LT
3061
3062 /* if device 1 was found in ata_devchk, wait for
3063 * register access, then wait for BSY to clear
3064 */
1da177e4
LT
3065 while (dev1) {
3066 u8 nsect, lbal;
3067
3068 ap->ops->dev_select(ap, 1);
0d5ff566
TH
3069 nsect = ioread8(ioaddr->nsect_addr);
3070 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
3071 if ((nsect == 1) && (lbal == 1))
3072 break;
d4b2bab4
TH
3073 if (time_after(jiffies, deadline))
3074 return -EBUSY;
1da177e4
LT
3075 msleep(50); /* give drive a breather */
3076 }
d4b2bab4
TH
3077 if (dev1) {
3078 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3079 if (rc) {
3080 if (rc != -ENODEV)
3081 return rc;
3082 ret = rc;
3083 }
d4b2bab4 3084 }
1da177e4
LT
3085
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3088 if (dev1)
3089 ap->ops->dev_select(ap, 1);
3090 if (dev0)
3091 ap->ops->dev_select(ap, 0);
d4b2bab4 3092
9b89391c 3093 return ret;
1da177e4
LT
3094}
3095
d4b2bab4
TH
3096static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
1da177e4
LT
3098{
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3100
44877b4e 3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3102
3103 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3109
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
09c7ad79
AC
3117 *
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3119 */
3120 msleep(150);
3121
2e9edbf8 3122 /* Before we perform post reset processing we want to see if
298a41ca
TH
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3125 */
d1adc1bb 3126 if (ata_check_status(ap) == 0xFF)
9b89391c 3127 return -ENODEV;
09c7ad79 3128
d4b2bab4 3129 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3130}
3131
3132/**
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3135 *
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3143 *
3144 * LOCKING:
0cba632b 3145 * PCI/etc. bus probe sem.
cca3974e 3146 * Obtains host lock.
1da177e4
LT
3147 *
3148 * SIDE EFFECTS:
198e0fed 3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3150 */
3151
3152void ata_bus_reset(struct ata_port *ap)
3153{
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 u8 err;
aec5c3c1 3157 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3158 int rc;
1da177e4 3159
44877b4e 3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3161
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3164 dev0 = 1;
3165 else {
3166 dev0 = ata_devchk(ap, 0);
3167 if (slave_possible)
3168 dev1 = ata_devchk(ap, 1);
3169 }
3170
3171 if (dev0)
3172 devmask |= (1 << 0);
3173 if (dev1)
3174 devmask |= (1 << 1);
3175
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3178
3179 /* issue bus reset */
9b89391c
TH
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
aec5c3c1 3183 goto err_out;
9b89391c 3184 }
1da177e4
LT
3185
3186 /*
3187 * determine by signature whether we have ATA or ATAPI devices
3188 */
b4dc7623 3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3190 if ((slave_possible) && (err != 0x81))
b4dc7623 3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3192
3193 /* re-enable interrupts */
83625006 3194 ap->ops->irq_on(ap);
1da177e4
LT
3195
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3201
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3205 goto err_out;
3206
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3210 }
3211
3212 DPRINTK("EXIT\n");
3213 return;
3214
3215err_out:
f15a1daf 3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3217 ap->ops->port_disable(ap);
3218
3219 DPRINTK("EXIT\n");
3220}
3221
d7bb4cc7
TH
3222/**
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3226 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3227 *
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3233 * until timeout then returns 0 if DET is stable at 1.
3234 *
d4b2bab4
TH
3235 * @timeout is further limited by @deadline. The sooner of the
3236 * two is used.
3237 *
d7bb4cc7
TH
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3240 *
3241 * RETURNS:
3242 * 0 on success, -errno on failure.
3243 */
d4b2bab4
TH
3244int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
7a7921e8 3246{
d7bb4cc7 3247 unsigned long interval_msec = params[0];
d4b2bab4
TH
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
d7bb4cc7
TH
3250 u32 last, cur;
3251 int rc;
3252
d4b2bab4
TH
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3255 deadline = t;
3256
d7bb4cc7
TH
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 return rc;
3259 cur &= 0xf;
3260
3261 last = cur;
3262 last_jiffies = jiffies;
3263
3264 while (1) {
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 return rc;
3268 cur &= 0xf;
3269
3270 /* DET stable? */
3271 if (cur == last) {
d4b2bab4 3272 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3273 continue;
3274 if (time_after(jiffies, last_jiffies + duration))
3275 return 0;
3276 continue;
3277 }
3278
3279 /* unstable, start over */
3280 last = cur;
3281 last_jiffies = jiffies;
3282
d4b2bab4
TH
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3285 return -EBUSY;
3286 }
3287}
3288
3289/**
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3293 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3294 *
3295 * Resume SATA phy of @ap and debounce it.
3296 *
3297 * LOCKING:
3298 * Kernel thread context (may sleep)
3299 *
3300 * RETURNS:
3301 * 0 on success, -errno on failure.
3302 */
d4b2bab4
TH
3303int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
d7bb4cc7
TH
3305{
3306 u32 scontrol;
81952c54
TH
3307 int rc;
3308
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 return rc;
7a7921e8 3311
852ee16a 3312 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3313
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 return rc;
7a7921e8 3316
d7bb4cc7
TH
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3319 */
3320 msleep(200);
7a7921e8 3321
d4b2bab4 3322 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3323}
3324
f5914a46
TH
3325/**
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
d4b2bab4 3328 * @deadline: deadline jiffies for the operation
f5914a46 3329 *
b8cffc6a
TH
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
f5914a46
TH
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep)
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
d4b2bab4 3342int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3343{
3344 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3346 int rc;
3347
31daabda 3348 /* handle link resume */
28324304
TH
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3352
f5914a46
TH
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3355 return 0;
3356
3357 /* if SATA, resume phy */
3358 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3359 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3364 }
3365
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3368 */
b8cffc6a
TH
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
3371 if (rc) {
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3375 }
3376 }
f5914a46
TH
3377
3378 return 0;
3379}
3380
c2bd5804
TH
3381/**
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
c2bd5804 3384 * @classes: resulting classes of attached devices
d4b2bab4 3385 * @deadline: deadline jiffies for the operation
c2bd5804 3386 *
52783c5d 3387 * Reset host port using ATA SRST.
c2bd5804
TH
3388 *
3389 * LOCKING:
3390 * Kernel thread context (may sleep)
3391 *
3392 * RETURNS:
3393 * 0 on success, -errno otherwise.
3394 */
d4b2bab4
TH
3395int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
c2bd5804
TH
3397{
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3399 unsigned int devmask = 0;
3400 int rc;
c2bd5804
TH
3401 u8 err;
3402
3403 DPRINTK("ENTER\n");
3404
81952c54 3405 if (ata_port_offline(ap)) {
3a39746a
TH
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3408 }
3409
c2bd5804
TH
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3415
c2bd5804
TH
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3418
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3421 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
c2bd5804
TH
3426 }
3427
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3432
3a39746a 3433 out:
c2bd5804
TH
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3436}
3437
3438/**
b6103f6d 3439 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3440 * @ap: port to reset
b6103f6d 3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3442 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3443 *
3444 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3445 *
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3448 *
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3451 */
d4b2bab4
TH
3452int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
c2bd5804 3454{
852ee16a 3455 u32 scontrol;
81952c54 3456 int rc;
852ee16a 3457
c2bd5804
TH
3458 DPRINTK("ENTER\n");
3459
3c567b7d 3460 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3465 */
81952c54 3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3467 goto out;
81952c54 3468
a34b6fc0 3469 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3470
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3472 goto out;
1c3fae4d 3473
3c567b7d 3474 sata_set_spd(ap);
1c3fae4d
TH
3475 }
3476
3477 /* issue phy wake/reset */
81952c54 3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3479 goto out;
81952c54 3480
852ee16a 3481 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3482
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3484 goto out;
c2bd5804 3485
1c3fae4d 3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3487 * 10.4.2 says at least 1 ms.
3488 */
3489 msleep(1);
3490
1c3fae4d 3491 /* bring phy back */
d4b2bab4 3492 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3496}
3497
3498/**
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
d4b2bab4 3502 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3503 *
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3506 *
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3509 *
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3512 */
d4b2bab4
TH
3513int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
b6103f6d
TH
3515{
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 int rc;
3518
3519 DPRINTK("ENTER\n");
3520
3521 /* do hardreset */
d4b2bab4 3522 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3527 }
c2bd5804 3528
c2bd5804 3529 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3530 if (ata_port_offline(ap)) {
c2bd5804
TH
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3533 return 0;
3534 }
3535
34fee227
TH
3536 /* wait a while before checking status, see SRST for more info */
3537 msleep(150);
3538
d4b2bab4 3539 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3540 /* link occupied, -ENODEV too is an error */
3541 if (rc) {
f15a1daf 3542 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3543 "COMRESET failed (errno=%d)\n", rc);
3544 return rc;
c2bd5804
TH
3545 }
3546
3a39746a
TH
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3548
c2bd5804
TH
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3550
3551 DPRINTK("EXIT, class=%u\n", *class);
3552 return 0;
3553}
3554
3555/**
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3559 *
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
c2bd5804 3563 *
c2bd5804
TH
3564 * LOCKING:
3565 * Kernel thread context (may sleep)
3566 */
3567void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3568{
dc2b3515
TH
3569 u32 serror;
3570
c2bd5804
TH
3571 DPRINTK("ENTER\n");
3572
c2bd5804 3573 /* print link status */
81952c54 3574 sata_print_link_status(ap);
c2bd5804 3575
dc2b3515
TH
3576 /* clear SError */
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3579
3a39746a 3580 /* re-enable interrupts */
83625006
AI
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
c2bd5804
TH
3583
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3589
3a39746a
TH
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3593 return;
3594 }
3595
3596 /* set up device control */
0d5ff566
TH
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3599
3600 DPRINTK("EXIT\n");
3601}
3602
623a3128
TH
3603/**
3604 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3608 *
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3611 * @new_id.
3612 *
3613 * LOCKING:
3614 * None.
3615 *
3616 * RETURNS:
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3618 */
3373efd8
TH
3619static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 const u16 *new_id)
623a3128
TH
3621{
3622 const u16 *old_id = dev->id;
a0cf733b
TH
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3625
3626 if (dev->class != new_class) {
f15a1daf
TH
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
623a3128
TH
3629 return 0;
3630 }
3631
a0cf733b
TH
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3636
3637 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3640 return 0;
3641 }
3642
3643 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3646 return 0;
3647 }
3648
623a3128
TH
3649 return 1;
3650}
3651
3652/**
fe30911b
TH
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @adev: target ATA device
bff04647 3655 * @readid_flags: read ID flags
623a3128
TH
3656 *
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * the port.
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3665 */
fe30911b 3666int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3667{
5eb45c02 3668 unsigned int class = dev->class;
f15a1daf 3669 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3670 int rc;
3671
fe635c7e 3672 /* read ID data */
bff04647 3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3674 if (rc)
fe30911b 3675 return rc;
623a3128
TH
3676
3677 /* is the device still there? */
fe30911b
TH
3678 if (!ata_dev_same_device(dev, class, id))
3679 return -ENODEV;
623a3128 3680
fe635c7e 3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3682 return 0;
3683}
3684
3685/**
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3689 *
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3692 *
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3695 *
3696 * RETURNS:
3697 * 0 on success, negative errno otherwise
3698 */
3699int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3700{
6ddcd3b0 3701 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3702 int rc;
3703
3704 if (!ata_dev_enabled(dev))
3705 return -ENODEV;
3706
3707 /* re-read ID */
3708 rc = ata_dev_reread_id(dev, readid_flags);
3709 if (rc)
3710 goto fail;
623a3128
TH
3711
3712 /* configure device according to the new ID */
efdaedc4 3713 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3714 if (rc)
3715 goto fail;
3716
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 "%llu != %llu\n",
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3723 rc = -ENODEV;
3724 goto fail;
3725 }
3726
3727 return 0;
623a3128
TH
3728
3729 fail:
f15a1daf 3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3731 return rc;
3732}
3733
6919a0a6
AC
3734struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3738};
3739
3740static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
6919a0a6 3772
18d6e9d5 3773 /* Weird ATAPI devices */
6f23a31d
AL
3774 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3775 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3776
6919a0a6
AC
3777 /* Devices we expect to fail diagnostics */
3778
3779 /* Devices where NCQ should be avoided */
3780 /* NCQ is slow */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3784 /* NCQ is broken */
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3786 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3787 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3788 /* Blacklist entries taken from Silicon Image 3124/3132
3789 Windows driver .inf file - also several Linux problem reports */
3790 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3791 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3793
3794 /* Devices with NCQ limits */
3795
3796 /* End Marker */
3797 { }
1da177e4 3798};
2e9edbf8 3799
6919a0a6 3800unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3801{
8bfa79fc
TH
3802 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3803 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3804 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3805
8bfa79fc
TH
3806 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3807 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3808
6919a0a6 3809 while (ad->model_num) {
8bfa79fc 3810 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3811 if (ad->model_rev == NULL)
3812 return ad->horkage;
8bfa79fc 3813 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3814 return ad->horkage;
f4b15fef 3815 }
6919a0a6 3816 ad++;
f4b15fef 3817 }
1da177e4
LT
3818 return 0;
3819}
3820
6919a0a6
AC
3821static int ata_dma_blacklisted(const struct ata_device *dev)
3822{
3823 /* We don't support polling DMA.
3824 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3825 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3826 */
3827 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3828 (dev->flags & ATA_DFLAG_CDB_INTR))
3829 return 1;
3830 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3831}
3832
a6d5a51c
TH
3833/**
3834 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3835 * @dev: Device to compute xfermask for
3836 *
acf356b1
TH
3837 * Compute supported xfermask of @dev and store it in
3838 * dev->*_mask. This function is responsible for applying all
3839 * known limits including host controller limits, device
3840 * blacklist, etc...
a6d5a51c
TH
3841 *
3842 * LOCKING:
3843 * None.
a6d5a51c 3844 */
3373efd8 3845static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3846{
3373efd8 3847 struct ata_port *ap = dev->ap;
cca3974e 3848 struct ata_host *host = ap->host;
a6d5a51c 3849 unsigned long xfer_mask;
1da177e4 3850
37deecb5 3851 /* controller modes available */
565083e1
TH
3852 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3853 ap->mwdma_mask, ap->udma_mask);
3854
8343f889 3855 /* drive modes available */
37deecb5
TH
3856 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3857 dev->mwdma_mask, dev->udma_mask);
3858 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3859
b352e57d
AC
3860 /*
3861 * CFA Advanced TrueIDE timings are not allowed on a shared
3862 * cable
3863 */
3864 if (ata_dev_pair(dev)) {
3865 /* No PIO5 or PIO6 */
3866 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3867 /* No MWDMA3 or MWDMA 4 */
3868 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3869 }
3870
37deecb5
TH
3871 if (ata_dma_blacklisted(dev)) {
3872 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3873 ata_dev_printk(dev, KERN_WARNING,
3874 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3875 }
a6d5a51c 3876
14d66ab7
PV
3877 if ((host->flags & ATA_HOST_SIMPLEX) &&
3878 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3879 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3880 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3881 "other device, disabling DMA\n");
5444a6f4 3882 }
565083e1 3883
e424675f
JG
3884 if (ap->flags & ATA_FLAG_NO_IORDY)
3885 xfer_mask &= ata_pio_mask_no_iordy(dev);
3886
5444a6f4 3887 if (ap->ops->mode_filter)
a76b62ca 3888 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3889
8343f889
RH
3890 /* Apply cable rule here. Don't apply it early because when
3891 * we handle hot plug the cable type can itself change.
3892 * Check this last so that we know if the transfer rate was
3893 * solely limited by the cable.
3894 * Unknown or 80 wire cables reported host side are checked
3895 * drive side as well. Cases where we know a 40wire cable
3896 * is used safely for 80 are not checked here.
3897 */
3898 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3899 /* UDMA/44 or higher would be available */
3900 if((ap->cbl == ATA_CBL_PATA40) ||
3901 (ata_drive_40wire(dev->id) &&
3902 (ap->cbl == ATA_CBL_PATA_UNK ||
3903 ap->cbl == ATA_CBL_PATA80))) {
3904 ata_dev_printk(dev, KERN_WARNING,
3905 "limited to UDMA/33 due to 40-wire cable\n");
3906 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3907 }
3908
565083e1
TH
3909 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3910 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3911}
3912
1da177e4
LT
3913/**
3914 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3915 * @dev: Device to which command will be sent
3916 *
780a87f7
JG
3917 * Issue SET FEATURES - XFER MODE command to device @dev
3918 * on port @ap.
3919 *
1da177e4 3920 * LOCKING:
0cba632b 3921 * PCI/etc. bus probe sem.
83206a29
TH
3922 *
3923 * RETURNS:
3924 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3925 */
3926
3373efd8 3927static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3928{
a0123703 3929 struct ata_taskfile tf;
83206a29 3930 unsigned int err_mask;
1da177e4
LT
3931
3932 /* set up set-features taskfile */
3933 DPRINTK("set features - xfer mode\n");
3934
3373efd8 3935 ata_tf_init(dev, &tf);
a0123703
TH
3936 tf.command = ATA_CMD_SET_FEATURES;
3937 tf.feature = SETFEATURES_XFER;
3938 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3939 tf.protocol = ATA_PROT_NODATA;
3940 tf.nsect = dev->xfer_mode;
1da177e4 3941
3373efd8 3942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3943
83206a29
TH
3944 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3945 return err_mask;
1da177e4
LT
3946}
3947
8bf62ece
AL
3948/**
3949 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3950 * @dev: Device to which command will be sent
e2a7f77a
RD
3951 * @heads: Number of heads (taskfile parameter)
3952 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3953 *
3954 * LOCKING:
6aff8f1f
TH
3955 * Kernel thread context (may sleep)
3956 *
3957 * RETURNS:
3958 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3959 */
3373efd8
TH
3960static unsigned int ata_dev_init_params(struct ata_device *dev,
3961 u16 heads, u16 sectors)
8bf62ece 3962{
a0123703 3963 struct ata_taskfile tf;
6aff8f1f 3964 unsigned int err_mask;
8bf62ece
AL
3965
3966 /* Number of sectors per track 1-255. Number of heads 1-16 */
3967 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3968 return AC_ERR_INVALID;
8bf62ece
AL
3969
3970 /* set up init dev params taskfile */
3971 DPRINTK("init dev params \n");
3972
3373efd8 3973 ata_tf_init(dev, &tf);
a0123703
TH
3974 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3975 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3976 tf.protocol = ATA_PROT_NODATA;
3977 tf.nsect = sectors;
3978 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3979
3373efd8 3980 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3981
6aff8f1f
TH
3982 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3983 return err_mask;
8bf62ece
AL
3984}
3985
1da177e4 3986/**
0cba632b
JG
3987 * ata_sg_clean - Unmap DMA memory associated with command
3988 * @qc: Command containing DMA memory to be released
3989 *
3990 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3991 *
3992 * LOCKING:
cca3974e 3993 * spin_lock_irqsave(host lock)
1da177e4 3994 */
70e6ad0c 3995void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3996{
3997 struct ata_port *ap = qc->ap;
cedc9a47 3998 struct scatterlist *sg = qc->__sg;
1da177e4 3999 int dir = qc->dma_dir;
cedc9a47 4000 void *pad_buf = NULL;
1da177e4 4001
a4631474
TH
4002 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4003 WARN_ON(sg == NULL);
1da177e4
LT
4004
4005 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4006 WARN_ON(qc->n_elem > 1);
1da177e4 4007
2c13b7ce 4008 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4009
cedc9a47
JG
4010 /* if we padded the buffer out to 32-bit bound, and data
4011 * xfer direction is from-device, we must copy from the
4012 * pad buffer back into the supplied buffer
4013 */
4014 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4015 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4016
4017 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4018 if (qc->n_elem)
2f1f610b 4019 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4020 /* restore last sg */
4021 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4022 if (pad_buf) {
4023 struct scatterlist *psg = &qc->pad_sgent;
4024 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4025 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4026 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4027 }
4028 } else {
2e242fa9 4029 if (qc->n_elem)
2f1f610b 4030 dma_unmap_single(ap->dev,
e1410f2d
JG
4031 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4032 dir);
cedc9a47
JG
4033 /* restore sg */
4034 sg->length += qc->pad_len;
4035 if (pad_buf)
4036 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4037 pad_buf, qc->pad_len);
4038 }
1da177e4
LT
4039
4040 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4041 qc->__sg = NULL;
1da177e4
LT
4042}
4043
4044/**
4045 * ata_fill_sg - Fill PCI IDE PRD table
4046 * @qc: Metadata associated with taskfile to be transferred
4047 *
780a87f7
JG
4048 * Fill PCI IDE PRD (scatter-gather) table with segments
4049 * associated with the current disk command.
4050 *
1da177e4 4051 * LOCKING:
cca3974e 4052 * spin_lock_irqsave(host lock)
1da177e4
LT
4053 *
4054 */
4055static void ata_fill_sg(struct ata_queued_cmd *qc)
4056{
1da177e4 4057 struct ata_port *ap = qc->ap;
cedc9a47
JG
4058 struct scatterlist *sg;
4059 unsigned int idx;
1da177e4 4060
a4631474 4061 WARN_ON(qc->__sg == NULL);
f131883e 4062 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4063
4064 idx = 0;
cedc9a47 4065 ata_for_each_sg(sg, qc) {
1da177e4
LT
4066 u32 addr, offset;
4067 u32 sg_len, len;
4068
4069 /* determine if physical DMA addr spans 64K boundary.
4070 * Note h/w doesn't support 64-bit, so we unconditionally
4071 * truncate dma_addr_t to u32.
4072 */
4073 addr = (u32) sg_dma_address(sg);
4074 sg_len = sg_dma_len(sg);
4075
4076 while (sg_len) {
4077 offset = addr & 0xffff;
4078 len = sg_len;
4079 if ((offset + sg_len) > 0x10000)
4080 len = 0x10000 - offset;
4081
4082 ap->prd[idx].addr = cpu_to_le32(addr);
4083 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4084 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4085
4086 idx++;
4087 sg_len -= len;
4088 addr += len;
4089 }
4090 }
4091
4092 if (idx)
4093 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4094}
4095/**
4096 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4097 * @qc: Metadata associated with taskfile to check
4098 *
780a87f7
JG
4099 * Allow low-level driver to filter ATA PACKET commands, returning
4100 * a status indicating whether or not it is OK to use DMA for the
4101 * supplied PACKET command.
4102 *
1da177e4 4103 * LOCKING:
cca3974e 4104 * spin_lock_irqsave(host lock)
0cba632b 4105 *
1da177e4
LT
4106 * RETURNS: 0 when ATAPI DMA can be used
4107 * nonzero otherwise
4108 */
4109int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4110{
4111 struct ata_port *ap = qc->ap;
4112 int rc = 0; /* Assume ATAPI DMA is OK by default */
4113
6f23a31d
AL
4114 /* some drives can only do ATAPI DMA on read/write */
4115 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4116 struct scsi_cmnd *cmd = qc->scsicmd;
4117 u8 *scsicmd = cmd->cmnd;
4118
4119 switch (scsicmd[0]) {
4120 case READ_10:
4121 case WRITE_10:
4122 case READ_12:
4123 case WRITE_12:
4124 case READ_6:
4125 case WRITE_6:
4126 /* atapi dma maybe ok */
4127 break;
4128 default:
4129 /* turn off atapi dma */
4130 return 1;
4131 }
4132 }
4133
1da177e4
LT
4134 if (ap->ops->check_atapi_dma)
4135 rc = ap->ops->check_atapi_dma(qc);
4136
4137 return rc;
4138}
4139/**
4140 * ata_qc_prep - Prepare taskfile for submission
4141 * @qc: Metadata associated with taskfile to be prepared
4142 *
780a87f7
JG
4143 * Prepare ATA taskfile for submission.
4144 *
1da177e4 4145 * LOCKING:
cca3974e 4146 * spin_lock_irqsave(host lock)
1da177e4
LT
4147 */
4148void ata_qc_prep(struct ata_queued_cmd *qc)
4149{
4150 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4151 return;
4152
4153 ata_fill_sg(qc);
4154}
4155
e46834cd
BK
4156void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4157
0cba632b
JG
4158/**
4159 * ata_sg_init_one - Associate command with memory buffer
4160 * @qc: Command to be associated
4161 * @buf: Memory buffer
4162 * @buflen: Length of memory buffer, in bytes.
4163 *
4164 * Initialize the data-related elements of queued_cmd @qc
4165 * to point to a single memory buffer, @buf of byte length @buflen.
4166 *
4167 * LOCKING:
cca3974e 4168 * spin_lock_irqsave(host lock)
0cba632b
JG
4169 */
4170
1da177e4
LT
4171void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4172{
1da177e4
LT
4173 qc->flags |= ATA_QCFLAG_SINGLE;
4174
cedc9a47 4175 qc->__sg = &qc->sgent;
1da177e4 4176 qc->n_elem = 1;
cedc9a47 4177 qc->orig_n_elem = 1;
1da177e4 4178 qc->buf_virt = buf;
233277ca 4179 qc->nbytes = buflen;
1da177e4 4180
61c0596c 4181 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4182}
4183
0cba632b
JG
4184/**
4185 * ata_sg_init - Associate command with scatter-gather table.
4186 * @qc: Command to be associated
4187 * @sg: Scatter-gather table.
4188 * @n_elem: Number of elements in s/g table.
4189 *
4190 * Initialize the data-related elements of queued_cmd @qc
4191 * to point to a scatter-gather table @sg, containing @n_elem
4192 * elements.
4193 *
4194 * LOCKING:
cca3974e 4195 * spin_lock_irqsave(host lock)
0cba632b
JG
4196 */
4197
1da177e4
LT
4198void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4199 unsigned int n_elem)
4200{
4201 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4202 qc->__sg = sg;
1da177e4 4203 qc->n_elem = n_elem;
cedc9a47 4204 qc->orig_n_elem = n_elem;
1da177e4
LT
4205}
4206
4207/**
0cba632b
JG
4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209 * @qc: Command with memory buffer to be mapped.
4210 *
4211 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4212 *
4213 * LOCKING:
cca3974e 4214 * spin_lock_irqsave(host lock)
1da177e4
LT
4215 *
4216 * RETURNS:
0cba632b 4217 * Zero on success, negative on error.
1da177e4
LT
4218 */
4219
4220static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4221{
4222 struct ata_port *ap = qc->ap;
4223 int dir = qc->dma_dir;
cedc9a47 4224 struct scatterlist *sg = qc->__sg;
1da177e4 4225 dma_addr_t dma_address;
2e242fa9 4226 int trim_sg = 0;
1da177e4 4227
cedc9a47
JG
4228 /* we must lengthen transfers to end on a 32-bit boundary */
4229 qc->pad_len = sg->length & 3;
4230 if (qc->pad_len) {
4231 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4232 struct scatterlist *psg = &qc->pad_sgent;
4233
a4631474 4234 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4235
4236 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4237
4238 if (qc->tf.flags & ATA_TFLAG_WRITE)
4239 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4240 qc->pad_len);
4241
4242 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4243 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4244 /* trim sg */
4245 sg->length -= qc->pad_len;
2e242fa9
TH
4246 if (sg->length == 0)
4247 trim_sg = 1;
cedc9a47
JG
4248
4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 sg->length, qc->pad_len);
4251 }
4252
2e242fa9
TH
4253 if (trim_sg) {
4254 qc->n_elem--;
e1410f2d
JG
4255 goto skip_map;
4256 }
4257
2f1f610b 4258 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4259 sg->length, dir);
537a95d9
TH
4260 if (dma_mapping_error(dma_address)) {
4261 /* restore sg */
4262 sg->length += qc->pad_len;
1da177e4 4263 return -1;
537a95d9 4264 }
1da177e4
LT
4265
4266 sg_dma_address(sg) = dma_address;
32529e01 4267 sg_dma_len(sg) = sg->length;
1da177e4 4268
2e242fa9 4269skip_map:
1da177e4
LT
4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4271 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4272
4273 return 0;
4274}
4275
4276/**
0cba632b
JG
4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278 * @qc: Command with scatter-gather table to be mapped.
4279 *
4280 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4281 *
4282 * LOCKING:
cca3974e 4283 * spin_lock_irqsave(host lock)
1da177e4
LT
4284 *
4285 * RETURNS:
0cba632b 4286 * Zero on success, negative on error.
1da177e4
LT
4287 *
4288 */
4289
4290static int ata_sg_setup(struct ata_queued_cmd *qc)
4291{
4292 struct ata_port *ap = qc->ap;
cedc9a47
JG
4293 struct scatterlist *sg = qc->__sg;
4294 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4295 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4296
44877b4e 4297 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4298 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4299
cedc9a47
JG
4300 /* we must lengthen transfers to end on a 32-bit boundary */
4301 qc->pad_len = lsg->length & 3;
4302 if (qc->pad_len) {
4303 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4304 struct scatterlist *psg = &qc->pad_sgent;
4305 unsigned int offset;
4306
a4631474 4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4308
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310
4311 /*
4312 * psg->page/offset are used to copy to-be-written
4313 * data in this function or read data in ata_sg_clean.
4314 */
4315 offset = lsg->offset + lsg->length - qc->pad_len;
4316 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4317 psg->offset = offset_in_page(offset);
4318
4319 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4320 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4321 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4322 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4323 }
4324
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 /* trim last sg */
4328 lsg->length -= qc->pad_len;
e1410f2d
JG
4329 if (lsg->length == 0)
4330 trim_sg = 1;
cedc9a47
JG
4331
4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 qc->n_elem - 1, lsg->length, qc->pad_len);
4334 }
4335
e1410f2d
JG
4336 pre_n_elem = qc->n_elem;
4337 if (trim_sg && pre_n_elem)
4338 pre_n_elem--;
4339
4340 if (!pre_n_elem) {
4341 n_elem = 0;
4342 goto skip_map;
4343 }
4344
1da177e4 4345 dir = qc->dma_dir;
2f1f610b 4346 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4347 if (n_elem < 1) {
4348 /* restore last sg */
4349 lsg->length += qc->pad_len;
1da177e4 4350 return -1;
537a95d9 4351 }
1da177e4
LT
4352
4353 DPRINTK("%d sg elements mapped\n", n_elem);
4354
e1410f2d 4355skip_map:
1da177e4
LT
4356 qc->n_elem = n_elem;
4357
4358 return 0;
4359}
4360
0baab86b 4361/**
c893a3ae 4362 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4363 * @buf: Buffer to swap
4364 * @buf_words: Number of 16-bit words in buffer.
4365 *
4366 * Swap halves of 16-bit words if needed to convert from
4367 * little-endian byte order to native cpu byte order, or
4368 * vice-versa.
4369 *
4370 * LOCKING:
6f0ef4fa 4371 * Inherited from caller.
0baab86b 4372 */
1da177e4
LT
4373void swap_buf_le16(u16 *buf, unsigned int buf_words)
4374{
4375#ifdef __BIG_ENDIAN
4376 unsigned int i;
4377
4378 for (i = 0; i < buf_words; i++)
4379 buf[i] = le16_to_cpu(buf[i]);
4380#endif /* __BIG_ENDIAN */
4381}
4382
6ae4cfb5 4383/**
0d5ff566 4384 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4385 * @adev: device to target
6ae4cfb5
AL
4386 * @buf: data buffer
4387 * @buflen: buffer length
344babaa 4388 * @write_data: read/write
6ae4cfb5
AL
4389 *
4390 * Transfer data from/to the device data register by PIO.
4391 *
4392 * LOCKING:
4393 * Inherited from caller.
6ae4cfb5 4394 */
0d5ff566
TH
4395void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4396 unsigned int buflen, int write_data)
1da177e4 4397{
a6b2c5d4 4398 struct ata_port *ap = adev->ap;
6ae4cfb5 4399 unsigned int words = buflen >> 1;
1da177e4 4400
6ae4cfb5 4401 /* Transfer multiple of 2 bytes */
1da177e4 4402 if (write_data)
0d5ff566 4403 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4404 else
0d5ff566 4405 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4406
4407 /* Transfer trailing 1 byte, if any. */
4408 if (unlikely(buflen & 0x01)) {
4409 u16 align_buf[1] = { 0 };
4410 unsigned char *trailing_buf = buf + buflen - 1;
4411
4412 if (write_data) {
4413 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4414 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4415 } else {
0d5ff566 4416 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4417 memcpy(trailing_buf, align_buf, 1);
4418 }
4419 }
1da177e4
LT
4420}
4421
75e99585 4422/**
0d5ff566 4423 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4424 * @adev: device to target
4425 * @buf: data buffer
4426 * @buflen: buffer length
4427 * @write_data: read/write
4428 *
88574551 4429 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4430 * transfer with interrupts disabled.
4431 *
4432 * LOCKING:
4433 * Inherited from caller.
4434 */
0d5ff566
TH
4435void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4436 unsigned int buflen, int write_data)
75e99585
AC
4437{
4438 unsigned long flags;
4439 local_irq_save(flags);
0d5ff566 4440 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4441 local_irq_restore(flags);
4442}
4443
4444
6ae4cfb5 4445/**
5a5dbd18 4446 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4447 * @qc: Command on going
4448 *
5a5dbd18 4449 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4450 *
4451 * LOCKING:
4452 * Inherited from caller.
4453 */
4454
1da177e4
LT
4455static void ata_pio_sector(struct ata_queued_cmd *qc)
4456{
4457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4458 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4459 struct ata_port *ap = qc->ap;
4460 struct page *page;
4461 unsigned int offset;
4462 unsigned char *buf;
4463
5a5dbd18 4464 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4465 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4466
4467 page = sg[qc->cursg].page;
726f0785 4468 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4469
4470 /* get the current page and offset */
4471 page = nth_page(page, (offset >> PAGE_SHIFT));
4472 offset %= PAGE_SIZE;
4473
1da177e4
LT
4474 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4475
91b8b313
AL
4476 if (PageHighMem(page)) {
4477 unsigned long flags;
4478
a6b2c5d4 4479 /* FIXME: use a bounce buffer */
91b8b313
AL
4480 local_irq_save(flags);
4481 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4482
91b8b313 4483 /* do the actual data transfer */
5a5dbd18 4484 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4485
91b8b313
AL
4486 kunmap_atomic(buf, KM_IRQ0);
4487 local_irq_restore(flags);
4488 } else {
4489 buf = page_address(page);
5a5dbd18 4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4491 }
1da177e4 4492
5a5dbd18
ML
4493 qc->curbytes += qc->sect_size;
4494 qc->cursg_ofs += qc->sect_size;
1da177e4 4495
726f0785 4496 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4497 qc->cursg++;
4498 qc->cursg_ofs = 0;
4499 }
1da177e4 4500}
1da177e4 4501
07f6f7d0 4502/**
5a5dbd18 4503 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4504 * @qc: Command on going
4505 *
5a5dbd18 4506 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4507 * ATA device for the DRQ request.
4508 *
4509 * LOCKING:
4510 * Inherited from caller.
4511 */
1da177e4 4512
07f6f7d0
AL
4513static void ata_pio_sectors(struct ata_queued_cmd *qc)
4514{
4515 if (is_multi_taskfile(&qc->tf)) {
4516 /* READ/WRITE MULTIPLE */
4517 unsigned int nsect;
4518
587005de 4519 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4520
5a5dbd18 4521 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4522 qc->dev->multi_count);
07f6f7d0
AL
4523 while (nsect--)
4524 ata_pio_sector(qc);
4525 } else
4526 ata_pio_sector(qc);
4527}
4528
c71c1857
AL
4529/**
4530 * atapi_send_cdb - Write CDB bytes to hardware
4531 * @ap: Port to which ATAPI device is attached.
4532 * @qc: Taskfile currently active
4533 *
4534 * When device has indicated its readiness to accept
4535 * a CDB, this function is called. Send the CDB.
4536 *
4537 * LOCKING:
4538 * caller.
4539 */
4540
4541static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4542{
4543 /* send SCSI cdb */
4544 DPRINTK("send cdb\n");
db024d53 4545 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4546
a6b2c5d4 4547 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4548 ata_altstatus(ap); /* flush */
4549
4550 switch (qc->tf.protocol) {
4551 case ATA_PROT_ATAPI:
4552 ap->hsm_task_state = HSM_ST;
4553 break;
4554 case ATA_PROT_ATAPI_NODATA:
4555 ap->hsm_task_state = HSM_ST_LAST;
4556 break;
4557 case ATA_PROT_ATAPI_DMA:
4558 ap->hsm_task_state = HSM_ST_LAST;
4559 /* initiate bmdma */
4560 ap->ops->bmdma_start(qc);
4561 break;
4562 }
1da177e4
LT
4563}
4564
6ae4cfb5
AL
4565/**
4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567 * @qc: Command on going
4568 * @bytes: number of bytes
4569 *
4570 * Transfer Transfer data from/to the ATAPI device.
4571 *
4572 * LOCKING:
4573 * Inherited from caller.
4574 *
4575 */
4576
1da177e4
LT
4577static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4578{
4579 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4580 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4581 struct ata_port *ap = qc->ap;
4582 struct page *page;
4583 unsigned char *buf;
4584 unsigned int offset, count;
4585
563a6e1f 4586 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4587 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4588
4589next_sg:
563a6e1f 4590 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4591 /*
563a6e1f
AL
4592 * The end of qc->sg is reached and the device expects
4593 * more data to transfer. In order not to overrun qc->sg
4594 * and fulfill length specified in the byte count register,
4595 * - for read case, discard trailing data from the device
4596 * - for write case, padding zero data to the device
4597 */
4598 u16 pad_buf[1] = { 0 };
4599 unsigned int words = bytes >> 1;
4600 unsigned int i;
4601
4602 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4603 ata_dev_printk(qc->dev, KERN_WARNING,
4604 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4605
4606 for (i = 0; i < words; i++)
a6b2c5d4 4607 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4608
14be71f4 4609 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4610 return;
4611 }
4612
cedc9a47 4613 sg = &qc->__sg[qc->cursg];
1da177e4 4614
1da177e4
LT
4615 page = sg->page;
4616 offset = sg->offset + qc->cursg_ofs;
4617
4618 /* get the current page and offset */
4619 page = nth_page(page, (offset >> PAGE_SHIFT));
4620 offset %= PAGE_SIZE;
4621
6952df03 4622 /* don't overrun current sg */
32529e01 4623 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4624
4625 /* don't cross page boundaries */
4626 count = min(count, (unsigned int)PAGE_SIZE - offset);
4627
7282aa4b
AL
4628 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4629
91b8b313
AL
4630 if (PageHighMem(page)) {
4631 unsigned long flags;
4632
a6b2c5d4 4633 /* FIXME: use bounce buffer */
91b8b313
AL
4634 local_irq_save(flags);
4635 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4636
91b8b313 4637 /* do the actual data transfer */
a6b2c5d4 4638 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4639
91b8b313
AL
4640 kunmap_atomic(buf, KM_IRQ0);
4641 local_irq_restore(flags);
4642 } else {
4643 buf = page_address(page);
a6b2c5d4 4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4645 }
1da177e4
LT
4646
4647 bytes -= count;
4648 qc->curbytes += count;
4649 qc->cursg_ofs += count;
4650
32529e01 4651 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4652 qc->cursg++;
4653 qc->cursg_ofs = 0;
4654 }
4655
563a6e1f 4656 if (bytes)
1da177e4 4657 goto next_sg;
1da177e4
LT
4658}
4659
6ae4cfb5
AL
4660/**
4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662 * @qc: Command on going
4663 *
4664 * Transfer Transfer data from/to the ATAPI device.
4665 *
4666 * LOCKING:
4667 * Inherited from caller.
6ae4cfb5
AL
4668 */
4669
1da177e4
LT
4670static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4671{
4672 struct ata_port *ap = qc->ap;
4673 struct ata_device *dev = qc->dev;
4674 unsigned int ireason, bc_lo, bc_hi, bytes;
4675 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4676
eec4c3f3
AL
4677 /* Abuse qc->result_tf for temp storage of intermediate TF
4678 * here to save some kernel stack usage.
4679 * For normal completion, qc->result_tf is not relevant. For
4680 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 * So, the correctness of qc->result_tf is not affected.
4682 */
4683 ap->ops->tf_read(ap, &qc->result_tf);
4684 ireason = qc->result_tf.nsect;
4685 bc_lo = qc->result_tf.lbam;
4686 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4687 bytes = (bc_hi << 8) | bc_lo;
4688
4689 /* shall be cleared to zero, indicating xfer of data */
4690 if (ireason & (1 << 0))
4691 goto err_out;
4692
4693 /* make sure transfer direction matches expected */
4694 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4695 if (do_write != i_write)
4696 goto err_out;
4697
44877b4e 4698 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4699
1da177e4
LT
4700 __atapi_pio_bytes(qc, bytes);
4701
4702 return;
4703
4704err_out:
f15a1daf 4705 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4706 qc->err_mask |= AC_ERR_HSM;
14be71f4 4707 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4708}
4709
4710/**
c234fb00
AL
4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712 * @ap: the target ata_port
4713 * @qc: qc on going
1da177e4 4714 *
c234fb00
AL
4715 * RETURNS:
4716 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4717 */
c234fb00
AL
4718
4719static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4720{
c234fb00
AL
4721 if (qc->tf.flags & ATA_TFLAG_POLLING)
4722 return 1;
1da177e4 4723
c234fb00
AL
4724 if (ap->hsm_task_state == HSM_ST_FIRST) {
4725 if (qc->tf.protocol == ATA_PROT_PIO &&
4726 (qc->tf.flags & ATA_TFLAG_WRITE))
4727 return 1;
1da177e4 4728
c234fb00
AL
4729 if (is_atapi_taskfile(&qc->tf) &&
4730 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4731 return 1;
fe79e683
AL
4732 }
4733
c234fb00
AL
4734 return 0;
4735}
1da177e4 4736
c17ea20d
TH
4737/**
4738 * ata_hsm_qc_complete - finish a qc running on standard HSM
4739 * @qc: Command to complete
4740 * @in_wq: 1 if called from workqueue, 0 otherwise
4741 *
4742 * Finish @qc which is running on standard HSM.
4743 *
4744 * LOCKING:
cca3974e 4745 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4746 * Otherwise, none on entry and grabs host lock.
4747 */
4748static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4749{
4750 struct ata_port *ap = qc->ap;
4751 unsigned long flags;
4752
4753 if (ap->ops->error_handler) {
4754 if (in_wq) {
ba6a1308 4755 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4756
cca3974e
JG
4757 /* EH might have kicked in while host lock is
4758 * released.
c17ea20d
TH
4759 */
4760 qc = ata_qc_from_tag(ap, qc->tag);
4761 if (qc) {
4762 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4763 ap->ops->irq_on(ap);
c17ea20d
TH
4764 ata_qc_complete(qc);
4765 } else
4766 ata_port_freeze(ap);
4767 }
4768
ba6a1308 4769 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4770 } else {
4771 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4772 ata_qc_complete(qc);
4773 else
4774 ata_port_freeze(ap);
4775 }
4776 } else {
4777 if (in_wq) {
ba6a1308 4778 spin_lock_irqsave(ap->lock, flags);
83625006 4779 ap->ops->irq_on(ap);
c17ea20d 4780 ata_qc_complete(qc);
ba6a1308 4781 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4782 } else
4783 ata_qc_complete(qc);
4784 }
1da177e4 4785
c81e29b4 4786 ata_altstatus(ap); /* flush */
c17ea20d
TH
4787}
4788
bb5cb290
AL
4789/**
4790 * ata_hsm_move - move the HSM to the next state.
4791 * @ap: the target ata_port
4792 * @qc: qc on going
4793 * @status: current device status
4794 * @in_wq: 1 if called from workqueue, 0 otherwise
4795 *
4796 * RETURNS:
4797 * 1 when poll next status needed, 0 otherwise.
4798 */
9a1004d0
TH
4799int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4800 u8 status, int in_wq)
e2cec771 4801{
bb5cb290
AL
4802 unsigned long flags = 0;
4803 int poll_next;
4804
6912ccd5
AL
4805 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4806
bb5cb290
AL
4807 /* Make sure ata_qc_issue_prot() does not throw things
4808 * like DMA polling into the workqueue. Notice that
4809 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4810 */
c234fb00 4811 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4812
e2cec771 4813fsm_start:
999bb6f4 4814 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4815 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4816
e2cec771
AL
4817 switch (ap->hsm_task_state) {
4818 case HSM_ST_FIRST:
bb5cb290
AL
4819 /* Send first data block or PACKET CDB */
4820
4821 /* If polling, we will stay in the work queue after
4822 * sending the data. Otherwise, interrupt handler
4823 * takes over after sending the data.
4824 */
4825 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4826
e2cec771 4827 /* check device status */
3655d1d3
AL
4828 if (unlikely((status & ATA_DRQ) == 0)) {
4829 /* handle BSY=0, DRQ=0 as error */
4830 if (likely(status & (ATA_ERR | ATA_DF)))
4831 /* device stops HSM for abort/error */
4832 qc->err_mask |= AC_ERR_DEV;
4833 else
4834 /* HSM violation. Let EH handle this */
4835 qc->err_mask |= AC_ERR_HSM;
4836
14be71f4 4837 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4838 goto fsm_start;
1da177e4
LT
4839 }
4840
71601958
AL
4841 /* Device should not ask for data transfer (DRQ=1)
4842 * when it finds something wrong.
eee6c32f
AL
4843 * We ignore DRQ here and stop the HSM by
4844 * changing hsm_task_state to HSM_ST_ERR and
4845 * let the EH abort the command or reset the device.
71601958
AL
4846 */
4847 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4848 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4849 "error, dev_stat 0x%X\n", status);
3655d1d3 4850 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4851 ap->hsm_task_state = HSM_ST_ERR;
4852 goto fsm_start;
71601958 4853 }
1da177e4 4854
bb5cb290
AL
4855 /* Send the CDB (atapi) or the first data block (ata pio out).
4856 * During the state transition, interrupt handler shouldn't
4857 * be invoked before the data transfer is complete and
4858 * hsm_task_state is changed. Hence, the following locking.
4859 */
4860 if (in_wq)
ba6a1308 4861 spin_lock_irqsave(ap->lock, flags);
1da177e4 4862
bb5cb290
AL
4863 if (qc->tf.protocol == ATA_PROT_PIO) {
4864 /* PIO data out protocol.
4865 * send first data block.
4866 */
0565c26d 4867
bb5cb290
AL
4868 /* ata_pio_sectors() might change the state
4869 * to HSM_ST_LAST. so, the state is changed here
4870 * before ata_pio_sectors().
4871 */
4872 ap->hsm_task_state = HSM_ST;
4873 ata_pio_sectors(qc);
4874 ata_altstatus(ap); /* flush */
4875 } else
4876 /* send CDB */
4877 atapi_send_cdb(ap, qc);
4878
4879 if (in_wq)
ba6a1308 4880 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4881
4882 /* if polling, ata_pio_task() handles the rest.
4883 * otherwise, interrupt handler takes over from here.
4884 */
e2cec771 4885 break;
1c848984 4886
e2cec771
AL
4887 case HSM_ST:
4888 /* complete command or read/write the data register */
4889 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4890 /* ATAPI PIO protocol */
4891 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4892 /* No more data to transfer or device error.
4893 * Device error will be tagged in HSM_ST_LAST.
4894 */
e2cec771
AL
4895 ap->hsm_task_state = HSM_ST_LAST;
4896 goto fsm_start;
4897 }
1da177e4 4898
71601958
AL
4899 /* Device should not ask for data transfer (DRQ=1)
4900 * when it finds something wrong.
eee6c32f
AL
4901 * We ignore DRQ here and stop the HSM by
4902 * changing hsm_task_state to HSM_ST_ERR and
4903 * let the EH abort the command or reset the device.
71601958
AL
4904 */
4905 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4906 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4907 "device error, dev_stat 0x%X\n",
4908 status);
3655d1d3 4909 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4910 ap->hsm_task_state = HSM_ST_ERR;
4911 goto fsm_start;
71601958 4912 }
1da177e4 4913
e2cec771 4914 atapi_pio_bytes(qc);
7fb6ec28 4915
e2cec771
AL
4916 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4917 /* bad ireason reported by device */
4918 goto fsm_start;
1da177e4 4919
e2cec771
AL
4920 } else {
4921 /* ATA PIO protocol */
4922 if (unlikely((status & ATA_DRQ) == 0)) {
4923 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4924 if (likely(status & (ATA_ERR | ATA_DF)))
4925 /* device stops HSM for abort/error */
4926 qc->err_mask |= AC_ERR_DEV;
4927 else
55a8e2c8
TH
4928 /* HSM violation. Let EH handle this.
4929 * Phantom devices also trigger this
4930 * condition. Mark hint.
4931 */
4932 qc->err_mask |= AC_ERR_HSM |
4933 AC_ERR_NODEV_HINT;
3655d1d3 4934
e2cec771
AL
4935 ap->hsm_task_state = HSM_ST_ERR;
4936 goto fsm_start;
4937 }
1da177e4 4938
eee6c32f
AL
4939 /* For PIO reads, some devices may ask for
4940 * data transfer (DRQ=1) alone with ERR=1.
4941 * We respect DRQ here and transfer one
4942 * block of junk data before changing the
4943 * hsm_task_state to HSM_ST_ERR.
4944 *
4945 * For PIO writes, ERR=1 DRQ=1 doesn't make
4946 * sense since the data block has been
4947 * transferred to the device.
71601958
AL
4948 */
4949 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4950 /* data might be corrputed */
4951 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4952
4953 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4954 ata_pio_sectors(qc);
4955 ata_altstatus(ap);
4956 status = ata_wait_idle(ap);
4957 }
4958
3655d1d3
AL
4959 if (status & (ATA_BUSY | ATA_DRQ))
4960 qc->err_mask |= AC_ERR_HSM;
4961
eee6c32f
AL
4962 /* ata_pio_sectors() might change the
4963 * state to HSM_ST_LAST. so, the state
4964 * is changed after ata_pio_sectors().
4965 */
4966 ap->hsm_task_state = HSM_ST_ERR;
4967 goto fsm_start;
71601958
AL
4968 }
4969
e2cec771
AL
4970 ata_pio_sectors(qc);
4971
4972 if (ap->hsm_task_state == HSM_ST_LAST &&
4973 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4974 /* all data read */
4975 ata_altstatus(ap);
52a32205 4976 status = ata_wait_idle(ap);
e2cec771
AL
4977 goto fsm_start;
4978 }
4979 }
4980
4981 ata_altstatus(ap); /* flush */
bb5cb290 4982 poll_next = 1;
1da177e4
LT
4983 break;
4984
14be71f4 4985 case HSM_ST_LAST:
6912ccd5
AL
4986 if (unlikely(!ata_ok(status))) {
4987 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4988 ap->hsm_task_state = HSM_ST_ERR;
4989 goto fsm_start;
4990 }
4991
4992 /* no more data to transfer */
4332a771 4993 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4994 ap->print_id, qc->dev->devno, status);
e2cec771 4995
6912ccd5
AL
4996 WARN_ON(qc->err_mask);
4997
e2cec771 4998 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4999
e2cec771 5000 /* complete taskfile transaction */
c17ea20d 5001 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5002
5003 poll_next = 0;
1da177e4
LT
5004 break;
5005
14be71f4 5006 case HSM_ST_ERR:
e2cec771
AL
5007 /* make sure qc->err_mask is available to
5008 * know what's wrong and recover
5009 */
5010 WARN_ON(qc->err_mask == 0);
5011
5012 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5013
999bb6f4 5014 /* complete taskfile transaction */
c17ea20d 5015 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5016
5017 poll_next = 0;
e2cec771
AL
5018 break;
5019 default:
bb5cb290 5020 poll_next = 0;
6912ccd5 5021 BUG();
1da177e4
LT
5022 }
5023
bb5cb290 5024 return poll_next;
1da177e4
LT
5025}
5026
65f27f38 5027static void ata_pio_task(struct work_struct *work)
8061f5f0 5028{
65f27f38
DH
5029 struct ata_port *ap =
5030 container_of(work, struct ata_port, port_task.work);
5031 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5032 u8 status;
a1af3734 5033 int poll_next;
8061f5f0 5034
7fb6ec28 5035fsm_start:
a1af3734 5036 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5037
a1af3734
AL
5038 /*
5039 * This is purely heuristic. This is a fast path.
5040 * Sometimes when we enter, BSY will be cleared in
5041 * a chk-status or two. If not, the drive is probably seeking
5042 * or something. Snooze for a couple msecs, then
5043 * chk-status again. If still busy, queue delayed work.
5044 */
5045 status = ata_busy_wait(ap, ATA_BUSY, 5);
5046 if (status & ATA_BUSY) {
5047 msleep(2);
5048 status = ata_busy_wait(ap, ATA_BUSY, 10);
5049 if (status & ATA_BUSY) {
31ce6dae 5050 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5051 return;
5052 }
8061f5f0
TH
5053 }
5054
a1af3734
AL
5055 /* move the HSM */
5056 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5057
a1af3734
AL
5058 /* another command or interrupt handler
5059 * may be running at this point.
5060 */
5061 if (poll_next)
7fb6ec28 5062 goto fsm_start;
8061f5f0
TH
5063}
5064
1da177e4
LT
5065/**
5066 * ata_qc_new - Request an available ATA command, for queueing
5067 * @ap: Port associated with device @dev
5068 * @dev: Device from whom we request an available command structure
5069 *
5070 * LOCKING:
0cba632b 5071 * None.
1da177e4
LT
5072 */
5073
5074static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5075{
5076 struct ata_queued_cmd *qc = NULL;
5077 unsigned int i;
5078
e3180499 5079 /* no command while frozen */
b51e9e5d 5080 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5081 return NULL;
5082
2ab7db1f
TH
5083 /* the last tag is reserved for internal command. */
5084 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5085 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5086 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5087 break;
5088 }
5089
5090 if (qc)
5091 qc->tag = i;
5092
5093 return qc;
5094}
5095
5096/**
5097 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5098 * @dev: Device from whom we request an available command structure
5099 *
5100 * LOCKING:
0cba632b 5101 * None.
1da177e4
LT
5102 */
5103
3373efd8 5104struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5105{
3373efd8 5106 struct ata_port *ap = dev->ap;
1da177e4
LT
5107 struct ata_queued_cmd *qc;
5108
5109 qc = ata_qc_new(ap);
5110 if (qc) {
1da177e4
LT
5111 qc->scsicmd = NULL;
5112 qc->ap = ap;
5113 qc->dev = dev;
1da177e4 5114
2c13b7ce 5115 ata_qc_reinit(qc);
1da177e4
LT
5116 }
5117
5118 return qc;
5119}
5120
1da177e4
LT
5121/**
5122 * ata_qc_free - free unused ata_queued_cmd
5123 * @qc: Command to complete
5124 *
5125 * Designed to free unused ata_queued_cmd object
5126 * in case something prevents using it.
5127 *
5128 * LOCKING:
cca3974e 5129 * spin_lock_irqsave(host lock)
1da177e4
LT
5130 */
5131void ata_qc_free(struct ata_queued_cmd *qc)
5132{
4ba946e9
TH
5133 struct ata_port *ap = qc->ap;
5134 unsigned int tag;
5135
a4631474 5136 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5137
4ba946e9
TH
5138 qc->flags = 0;
5139 tag = qc->tag;
5140 if (likely(ata_tag_valid(tag))) {
4ba946e9 5141 qc->tag = ATA_TAG_POISON;
6cec4a39 5142 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5143 }
1da177e4
LT
5144}
5145
76014427 5146void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5147{
dedaf2b0
TH
5148 struct ata_port *ap = qc->ap;
5149
a4631474
TH
5150 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5151 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5152
5153 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5154 ata_sg_clean(qc);
5155
7401abf2 5156 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5157 if (qc->tf.protocol == ATA_PROT_NCQ)
5158 ap->sactive &= ~(1 << qc->tag);
5159 else
5160 ap->active_tag = ATA_TAG_POISON;
7401abf2 5161
3f3791d3
AL
5162 /* atapi: mark qc as inactive to prevent the interrupt handler
5163 * from completing the command twice later, before the error handler
5164 * is called. (when rc != 0 and atapi request sense is needed)
5165 */
5166 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5167 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5168
1da177e4 5169 /* call completion callback */
77853bf2 5170 qc->complete_fn(qc);
1da177e4
LT
5171}
5172
39599a53
TH
5173static void fill_result_tf(struct ata_queued_cmd *qc)
5174{
5175 struct ata_port *ap = qc->ap;
5176
39599a53 5177 qc->result_tf.flags = qc->tf.flags;
4742d54f 5178 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5179}
5180
f686bcb8
TH
5181/**
5182 * ata_qc_complete - Complete an active ATA command
5183 * @qc: Command to complete
5184 * @err_mask: ATA Status register contents
5185 *
5186 * Indicate to the mid and upper layers that an ATA
5187 * command has completed, with either an ok or not-ok status.
5188 *
5189 * LOCKING:
cca3974e 5190 * spin_lock_irqsave(host lock)
f686bcb8
TH
5191 */
5192void ata_qc_complete(struct ata_queued_cmd *qc)
5193{
5194 struct ata_port *ap = qc->ap;
5195
5196 /* XXX: New EH and old EH use different mechanisms to
5197 * synchronize EH with regular execution path.
5198 *
5199 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5200 * Normal execution path is responsible for not accessing a
5201 * failed qc. libata core enforces the rule by returning NULL
5202 * from ata_qc_from_tag() for failed qcs.
5203 *
5204 * Old EH depends on ata_qc_complete() nullifying completion
5205 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5206 * not synchronize with interrupt handler. Only PIO task is
5207 * taken care of.
5208 */
5209 if (ap->ops->error_handler) {
b51e9e5d 5210 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5211
5212 if (unlikely(qc->err_mask))
5213 qc->flags |= ATA_QCFLAG_FAILED;
5214
5215 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5216 if (!ata_tag_internal(qc->tag)) {
5217 /* always fill result TF for failed qc */
39599a53 5218 fill_result_tf(qc);
f686bcb8
TH
5219 ata_qc_schedule_eh(qc);
5220 return;
5221 }
5222 }
5223
5224 /* read result TF if requested */
5225 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5226 fill_result_tf(qc);
f686bcb8
TH
5227
5228 __ata_qc_complete(qc);
5229 } else {
5230 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5231 return;
5232
5233 /* read result TF if failed or requested */
5234 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5235 fill_result_tf(qc);
f686bcb8
TH
5236
5237 __ata_qc_complete(qc);
5238 }
5239}
5240
dedaf2b0
TH
5241/**
5242 * ata_qc_complete_multiple - Complete multiple qcs successfully
5243 * @ap: port in question
5244 * @qc_active: new qc_active mask
5245 * @finish_qc: LLDD callback invoked before completing a qc
5246 *
5247 * Complete in-flight commands. This functions is meant to be
5248 * called from low-level driver's interrupt routine to complete
5249 * requests normally. ap->qc_active and @qc_active is compared
5250 * and commands are completed accordingly.
5251 *
5252 * LOCKING:
cca3974e 5253 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5254 *
5255 * RETURNS:
5256 * Number of completed commands on success, -errno otherwise.
5257 */
5258int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5259 void (*finish_qc)(struct ata_queued_cmd *))
5260{
5261 int nr_done = 0;
5262 u32 done_mask;
5263 int i;
5264
5265 done_mask = ap->qc_active ^ qc_active;
5266
5267 if (unlikely(done_mask & qc_active)) {
5268 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5269 "(%08x->%08x)\n", ap->qc_active, qc_active);
5270 return -EINVAL;
5271 }
5272
5273 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5274 struct ata_queued_cmd *qc;
5275
5276 if (!(done_mask & (1 << i)))
5277 continue;
5278
5279 if ((qc = ata_qc_from_tag(ap, i))) {
5280 if (finish_qc)
5281 finish_qc(qc);
5282 ata_qc_complete(qc);
5283 nr_done++;
5284 }
5285 }
5286
5287 return nr_done;
5288}
5289
1da177e4
LT
5290static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5291{
5292 struct ata_port *ap = qc->ap;
5293
5294 switch (qc->tf.protocol) {
3dc1d881 5295 case ATA_PROT_NCQ:
1da177e4
LT
5296 case ATA_PROT_DMA:
5297 case ATA_PROT_ATAPI_DMA:
5298 return 1;
5299
5300 case ATA_PROT_ATAPI:
5301 case ATA_PROT_PIO:
1da177e4
LT
5302 if (ap->flags & ATA_FLAG_PIO_DMA)
5303 return 1;
5304
5305 /* fall through */
5306
5307 default:
5308 return 0;
5309 }
5310
5311 /* never reached */
5312}
5313
5314/**
5315 * ata_qc_issue - issue taskfile to device
5316 * @qc: command to issue to device
5317 *
5318 * Prepare an ATA command to submission to device.
5319 * This includes mapping the data into a DMA-able
5320 * area, filling in the S/G table, and finally
5321 * writing the taskfile to hardware, starting the command.
5322 *
5323 * LOCKING:
cca3974e 5324 * spin_lock_irqsave(host lock)
1da177e4 5325 */
8e0e694a 5326void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5327{
5328 struct ata_port *ap = qc->ap;
5329
dedaf2b0
TH
5330 /* Make sure only one non-NCQ command is outstanding. The
5331 * check is skipped for old EH because it reuses active qc to
5332 * request ATAPI sense.
5333 */
5334 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5335
5336 if (qc->tf.protocol == ATA_PROT_NCQ) {
5337 WARN_ON(ap->sactive & (1 << qc->tag));
5338 ap->sactive |= 1 << qc->tag;
5339 } else {
5340 WARN_ON(ap->sactive);
5341 ap->active_tag = qc->tag;
5342 }
5343
e4a70e76 5344 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5345 ap->qc_active |= 1 << qc->tag;
e4a70e76 5346
1da177e4
LT
5347 if (ata_should_dma_map(qc)) {
5348 if (qc->flags & ATA_QCFLAG_SG) {
5349 if (ata_sg_setup(qc))
8e436af9 5350 goto sg_err;
1da177e4
LT
5351 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5352 if (ata_sg_setup_one(qc))
8e436af9 5353 goto sg_err;
1da177e4
LT
5354 }
5355 } else {
5356 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5357 }
5358
5359 ap->ops->qc_prep(qc);
5360
8e0e694a
TH
5361 qc->err_mask |= ap->ops->qc_issue(qc);
5362 if (unlikely(qc->err_mask))
5363 goto err;
5364 return;
1da177e4 5365
8e436af9
TH
5366sg_err:
5367 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5368 qc->err_mask |= AC_ERR_SYSTEM;
5369err:
5370 ata_qc_complete(qc);
1da177e4
LT
5371}
5372
5373/**
5374 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5375 * @qc: command to issue to device
5376 *
5377 * Using various libata functions and hooks, this function
5378 * starts an ATA command. ATA commands are grouped into
5379 * classes called "protocols", and issuing each type of protocol
5380 * is slightly different.
5381 *
0baab86b
EF
5382 * May be used as the qc_issue() entry in ata_port_operations.
5383 *
1da177e4 5384 * LOCKING:
cca3974e 5385 * spin_lock_irqsave(host lock)
1da177e4
LT
5386 *
5387 * RETURNS:
9a3d9eb0 5388 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5389 */
5390
9a3d9eb0 5391unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5392{
5393 struct ata_port *ap = qc->ap;
5394
e50362ec
AL
5395 /* Use polling pio if the LLD doesn't handle
5396 * interrupt driven pio and atapi CDB interrupt.
5397 */
5398 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5399 switch (qc->tf.protocol) {
5400 case ATA_PROT_PIO:
e3472cbe 5401 case ATA_PROT_NODATA:
e50362ec
AL
5402 case ATA_PROT_ATAPI:
5403 case ATA_PROT_ATAPI_NODATA:
5404 qc->tf.flags |= ATA_TFLAG_POLLING;
5405 break;
5406 case ATA_PROT_ATAPI_DMA:
5407 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5408 /* see ata_dma_blacklisted() */
e50362ec
AL
5409 BUG();
5410 break;
5411 default:
5412 break;
5413 }
5414 }
5415
3d3cca37
TH
5416 /* Some controllers show flaky interrupt behavior after
5417 * setting xfer mode. Use polling instead.
5418 */
5419 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5420 qc->tf.feature == SETFEATURES_XFER) &&
5421 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5422 qc->tf.flags |= ATA_TFLAG_POLLING;
5423
312f7da2 5424 /* select the device */
1da177e4
LT
5425 ata_dev_select(ap, qc->dev->devno, 1, 0);
5426
312f7da2 5427 /* start the command */
1da177e4
LT
5428 switch (qc->tf.protocol) {
5429 case ATA_PROT_NODATA:
312f7da2
AL
5430 if (qc->tf.flags & ATA_TFLAG_POLLING)
5431 ata_qc_set_polling(qc);
5432
e5338254 5433 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5434 ap->hsm_task_state = HSM_ST_LAST;
5435
5436 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5437 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5438
1da177e4
LT
5439 break;
5440
5441 case ATA_PROT_DMA:
587005de 5442 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5443
1da177e4
LT
5444 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5445 ap->ops->bmdma_setup(qc); /* set up bmdma */
5446 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5447 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5448 break;
5449
312f7da2
AL
5450 case ATA_PROT_PIO:
5451 if (qc->tf.flags & ATA_TFLAG_POLLING)
5452 ata_qc_set_polling(qc);
1da177e4 5453
e5338254 5454 ata_tf_to_host(ap, &qc->tf);
312f7da2 5455
54f00389
AL
5456 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5457 /* PIO data out protocol */
5458 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5460
5461 /* always send first data block using
e27486db 5462 * the ata_pio_task() codepath.
54f00389 5463 */
312f7da2 5464 } else {
54f00389
AL
5465 /* PIO data in protocol */
5466 ap->hsm_task_state = HSM_ST;
5467
5468 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5469 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5470
5471 /* if polling, ata_pio_task() handles the rest.
5472 * otherwise, interrupt handler takes over from here.
5473 */
312f7da2
AL
5474 }
5475
1da177e4
LT
5476 break;
5477
1da177e4 5478 case ATA_PROT_ATAPI:
1da177e4 5479 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5480 if (qc->tf.flags & ATA_TFLAG_POLLING)
5481 ata_qc_set_polling(qc);
5482
e5338254 5483 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5484
312f7da2
AL
5485 ap->hsm_task_state = HSM_ST_FIRST;
5486
5487 /* send cdb by polling if no cdb interrupt */
5488 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5489 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5490 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5491 break;
5492
5493 case ATA_PROT_ATAPI_DMA:
587005de 5494 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5495
1da177e4
LT
5496 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5497 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5498 ap->hsm_task_state = HSM_ST_FIRST;
5499
5500 /* send cdb by polling if no cdb interrupt */
5501 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5503 break;
5504
5505 default:
5506 WARN_ON(1);
9a3d9eb0 5507 return AC_ERR_SYSTEM;
1da177e4
LT
5508 }
5509
5510 return 0;
5511}
5512
1da177e4
LT
5513/**
5514 * ata_host_intr - Handle host interrupt for given (port, task)
5515 * @ap: Port on which interrupt arrived (possibly...)
5516 * @qc: Taskfile currently active in engine
5517 *
5518 * Handle host interrupt for given queued command. Currently,
5519 * only DMA interrupts are handled. All other commands are
5520 * handled via polling with interrupts disabled (nIEN bit).
5521 *
5522 * LOCKING:
cca3974e 5523 * spin_lock_irqsave(host lock)
1da177e4
LT
5524 *
5525 * RETURNS:
5526 * One if interrupt was handled, zero if not (shared irq).
5527 */
5528
5529inline unsigned int ata_host_intr (struct ata_port *ap,
5530 struct ata_queued_cmd *qc)
5531{
ea54763f 5532 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5533 u8 status, host_stat = 0;
1da177e4 5534
312f7da2 5535 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5537
312f7da2
AL
5538 /* Check whether we are expecting interrupt in this state */
5539 switch (ap->hsm_task_state) {
5540 case HSM_ST_FIRST:
6912ccd5
AL
5541 /* Some pre-ATAPI-4 devices assert INTRQ
5542 * at this state when ready to receive CDB.
5543 */
1da177e4 5544
312f7da2
AL
5545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5546 * The flag was turned on only for atapi devices.
5547 * No need to check is_atapi_taskfile(&qc->tf) again.
5548 */
5549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5550 goto idle_irq;
1da177e4 5551 break;
312f7da2
AL
5552 case HSM_ST_LAST:
5553 if (qc->tf.protocol == ATA_PROT_DMA ||
5554 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5555 /* check status of DMA engine */
5556 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5557 VPRINTK("ata%u: host_stat 0x%X\n",
5558 ap->print_id, host_stat);
312f7da2
AL
5559
5560 /* if it's not our irq... */
5561 if (!(host_stat & ATA_DMA_INTR))
5562 goto idle_irq;
5563
5564 /* before we do anything else, clear DMA-Start bit */
5565 ap->ops->bmdma_stop(qc);
a4f16610
AL
5566
5567 if (unlikely(host_stat & ATA_DMA_ERR)) {
5568 /* error when transfering data to/from memory */
5569 qc->err_mask |= AC_ERR_HOST_BUS;
5570 ap->hsm_task_state = HSM_ST_ERR;
5571 }
312f7da2
AL
5572 }
5573 break;
5574 case HSM_ST:
5575 break;
1da177e4
LT
5576 default:
5577 goto idle_irq;
5578 }
5579
312f7da2
AL
5580 /* check altstatus */
5581 status = ata_altstatus(ap);
5582 if (status & ATA_BUSY)
5583 goto idle_irq;
1da177e4 5584
312f7da2
AL
5585 /* check main status, clearing INTRQ */
5586 status = ata_chk_status(ap);
5587 if (unlikely(status & ATA_BUSY))
5588 goto idle_irq;
1da177e4 5589
312f7da2
AL
5590 /* ack bmdma irq events */
5591 ap->ops->irq_clear(ap);
1da177e4 5592
bb5cb290 5593 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5594
5595 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5596 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5597 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5598
1da177e4
LT
5599 return 1; /* irq handled */
5600
5601idle_irq:
5602 ap->stats.idle_irq++;
5603
5604#ifdef ATA_IRQ_TRAP
5605 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5606 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5607 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5608 return 1;
1da177e4
LT
5609 }
5610#endif
5611 return 0; /* irq not handled */
5612}
5613
5614/**
5615 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5616 * @irq: irq line (unused)
cca3974e 5617 * @dev_instance: pointer to our ata_host information structure
1da177e4 5618 *
0cba632b
JG
5619 * Default interrupt handler for PCI IDE devices. Calls
5620 * ata_host_intr() for each port that is not disabled.
5621 *
1da177e4 5622 * LOCKING:
cca3974e 5623 * Obtains host lock during operation.
1da177e4
LT
5624 *
5625 * RETURNS:
0cba632b 5626 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5627 */
5628
7d12e780 5629irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5630{
cca3974e 5631 struct ata_host *host = dev_instance;
1da177e4
LT
5632 unsigned int i;
5633 unsigned int handled = 0;
5634 unsigned long flags;
5635
5636 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5637 spin_lock_irqsave(&host->lock, flags);
1da177e4 5638
cca3974e 5639 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5640 struct ata_port *ap;
5641
cca3974e 5642 ap = host->ports[i];
c1389503 5643 if (ap &&
029f5468 5644 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5645 struct ata_queued_cmd *qc;
5646
5647 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5648 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5649 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5650 handled |= ata_host_intr(ap, qc);
5651 }
5652 }
5653
cca3974e 5654 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5655
5656 return IRQ_RETVAL(handled);
5657}
5658
34bf2170
TH
5659/**
5660 * sata_scr_valid - test whether SCRs are accessible
5661 * @ap: ATA port to test SCR accessibility for
5662 *
5663 * Test whether SCRs are accessible for @ap.
5664 *
5665 * LOCKING:
5666 * None.
5667 *
5668 * RETURNS:
5669 * 1 if SCRs are accessible, 0 otherwise.
5670 */
5671int sata_scr_valid(struct ata_port *ap)
5672{
5673 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5674}
5675
5676/**
5677 * sata_scr_read - read SCR register of the specified port
5678 * @ap: ATA port to read SCR for
5679 * @reg: SCR to read
5680 * @val: Place to store read value
5681 *
5682 * Read SCR register @reg of @ap into *@val. This function is
5683 * guaranteed to succeed if the cable type of the port is SATA
5684 * and the port implements ->scr_read.
5685 *
5686 * LOCKING:
5687 * None.
5688 *
5689 * RETURNS:
5690 * 0 on success, negative errno on failure.
5691 */
5692int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5693{
5694 if (sata_scr_valid(ap)) {
5695 *val = ap->ops->scr_read(ap, reg);
5696 return 0;
5697 }
5698 return -EOPNOTSUPP;
5699}
5700
5701/**
5702 * sata_scr_write - write SCR register of the specified port
5703 * @ap: ATA port to write SCR for
5704 * @reg: SCR to write
5705 * @val: value to write
5706 *
5707 * Write @val to SCR register @reg of @ap. This function is
5708 * guaranteed to succeed if the cable type of the port is SATA
5709 * and the port implements ->scr_read.
5710 *
5711 * LOCKING:
5712 * None.
5713 *
5714 * RETURNS:
5715 * 0 on success, negative errno on failure.
5716 */
5717int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5718{
5719 if (sata_scr_valid(ap)) {
5720 ap->ops->scr_write(ap, reg, val);
5721 return 0;
5722 }
5723 return -EOPNOTSUPP;
5724}
5725
5726/**
5727 * sata_scr_write_flush - write SCR register of the specified port and flush
5728 * @ap: ATA port to write SCR for
5729 * @reg: SCR to write
5730 * @val: value to write
5731 *
5732 * This function is identical to sata_scr_write() except that this
5733 * function performs flush after writing to the register.
5734 *
5735 * LOCKING:
5736 * None.
5737 *
5738 * RETURNS:
5739 * 0 on success, negative errno on failure.
5740 */
5741int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5742{
5743 if (sata_scr_valid(ap)) {
5744 ap->ops->scr_write(ap, reg, val);
5745 ap->ops->scr_read(ap, reg);
5746 return 0;
5747 }
5748 return -EOPNOTSUPP;
5749}
5750
5751/**
5752 * ata_port_online - test whether the given port is online
5753 * @ap: ATA port to test
5754 *
5755 * Test whether @ap is online. Note that this function returns 0
5756 * if online status of @ap cannot be obtained, so
5757 * ata_port_online(ap) != !ata_port_offline(ap).
5758 *
5759 * LOCKING:
5760 * None.
5761 *
5762 * RETURNS:
5763 * 1 if the port online status is available and online.
5764 */
5765int ata_port_online(struct ata_port *ap)
5766{
5767 u32 sstatus;
5768
5769 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5770 return 1;
5771 return 0;
5772}
5773
5774/**
5775 * ata_port_offline - test whether the given port is offline
5776 * @ap: ATA port to test
5777 *
5778 * Test whether @ap is offline. Note that this function returns
5779 * 0 if offline status of @ap cannot be obtained, so
5780 * ata_port_online(ap) != !ata_port_offline(ap).
5781 *
5782 * LOCKING:
5783 * None.
5784 *
5785 * RETURNS:
5786 * 1 if the port offline status is available and offline.
5787 */
5788int ata_port_offline(struct ata_port *ap)
5789{
5790 u32 sstatus;
5791
5792 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5793 return 1;
5794 return 0;
5795}
0baab86b 5796
77b08fb5 5797int ata_flush_cache(struct ata_device *dev)
9b847548 5798{
977e6b9f 5799 unsigned int err_mask;
9b847548
JA
5800 u8 cmd;
5801
5802 if (!ata_try_flush_cache(dev))
5803 return 0;
5804
6fc49adb 5805 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5806 cmd = ATA_CMD_FLUSH_EXT;
5807 else
5808 cmd = ATA_CMD_FLUSH;
5809
977e6b9f
TH
5810 err_mask = ata_do_simple_cmd(dev, cmd);
5811 if (err_mask) {
5812 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5813 return -EIO;
5814 }
5815
5816 return 0;
9b847548
JA
5817}
5818
6ffa01d8 5819#ifdef CONFIG_PM
cca3974e
JG
5820static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5821 unsigned int action, unsigned int ehi_flags,
5822 int wait)
500530f6
TH
5823{
5824 unsigned long flags;
5825 int i, rc;
5826
cca3974e
JG
5827 for (i = 0; i < host->n_ports; i++) {
5828 struct ata_port *ap = host->ports[i];
500530f6
TH
5829
5830 /* Previous resume operation might still be in
5831 * progress. Wait for PM_PENDING to clear.
5832 */
5833 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5834 ata_port_wait_eh(ap);
5835 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5836 }
5837
5838 /* request PM ops to EH */
5839 spin_lock_irqsave(ap->lock, flags);
5840
5841 ap->pm_mesg = mesg;
5842 if (wait) {
5843 rc = 0;
5844 ap->pm_result = &rc;
5845 }
5846
5847 ap->pflags |= ATA_PFLAG_PM_PENDING;
5848 ap->eh_info.action |= action;
5849 ap->eh_info.flags |= ehi_flags;
5850
5851 ata_port_schedule_eh(ap);
5852
5853 spin_unlock_irqrestore(ap->lock, flags);
5854
5855 /* wait and check result */
5856 if (wait) {
5857 ata_port_wait_eh(ap);
5858 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5859 if (rc)
5860 return rc;
5861 }
5862 }
5863
5864 return 0;
5865}
5866
5867/**
cca3974e
JG
5868 * ata_host_suspend - suspend host
5869 * @host: host to suspend
500530f6
TH
5870 * @mesg: PM message
5871 *
cca3974e 5872 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5873 * function requests EH to perform PM operations and waits for EH
5874 * to finish.
5875 *
5876 * LOCKING:
5877 * Kernel thread context (may sleep).
5878 *
5879 * RETURNS:
5880 * 0 on success, -errno on failure.
5881 */
cca3974e 5882int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5883{
9666f400 5884 int rc;
500530f6 5885
cca3974e 5886 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5887 if (rc == 0)
5888 host->dev->power.power_state = mesg;
500530f6
TH
5889 return rc;
5890}
5891
5892/**
cca3974e
JG
5893 * ata_host_resume - resume host
5894 * @host: host to resume
500530f6 5895 *
cca3974e 5896 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5897 * function requests EH to perform PM operations and returns.
5898 * Note that all resume operations are performed parallely.
5899 *
5900 * LOCKING:
5901 * Kernel thread context (may sleep).
5902 */
cca3974e 5903void ata_host_resume(struct ata_host *host)
500530f6 5904{
cca3974e
JG
5905 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5906 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5907 host->dev->power.power_state = PMSG_ON;
500530f6 5908}
6ffa01d8 5909#endif
500530f6 5910
c893a3ae
RD
5911/**
5912 * ata_port_start - Set port up for dma.
5913 * @ap: Port to initialize
5914 *
5915 * Called just after data structures for each port are
5916 * initialized. Allocates space for PRD table.
5917 *
5918 * May be used as the port_start() entry in ata_port_operations.
5919 *
5920 * LOCKING:
5921 * Inherited from caller.
5922 */
f0d36efd 5923int ata_port_start(struct ata_port *ap)
1da177e4 5924{
2f1f610b 5925 struct device *dev = ap->dev;
6037d6bb 5926 int rc;
1da177e4 5927
f0d36efd
TH
5928 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5929 GFP_KERNEL);
1da177e4
LT
5930 if (!ap->prd)
5931 return -ENOMEM;
5932
6037d6bb 5933 rc = ata_pad_alloc(ap, dev);
f0d36efd 5934 if (rc)
6037d6bb 5935 return rc;
1da177e4 5936
f0d36efd
TH
5937 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5938 (unsigned long long)ap->prd_dma);
1da177e4
LT
5939 return 0;
5940}
5941
3ef3b43d
TH
5942/**
5943 * ata_dev_init - Initialize an ata_device structure
5944 * @dev: Device structure to initialize
5945 *
5946 * Initialize @dev in preparation for probing.
5947 *
5948 * LOCKING:
5949 * Inherited from caller.
5950 */
5951void ata_dev_init(struct ata_device *dev)
5952{
5953 struct ata_port *ap = dev->ap;
72fa4b74
TH
5954 unsigned long flags;
5955
5a04bf4b
TH
5956 /* SATA spd limit is bound to the first device */
5957 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5958
72fa4b74
TH
5959 /* High bits of dev->flags are used to record warm plug
5960 * requests which occur asynchronously. Synchronize using
cca3974e 5961 * host lock.
72fa4b74 5962 */
ba6a1308 5963 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5964 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5965 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5966
72fa4b74
TH
5967 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5968 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5969 dev->pio_mask = UINT_MAX;
5970 dev->mwdma_mask = UINT_MAX;
5971 dev->udma_mask = UINT_MAX;
5972}
5973
1da177e4 5974/**
f3187195
TH
5975 * ata_port_alloc - allocate and initialize basic ATA port resources
5976 * @host: ATA host this allocated port belongs to
1da177e4 5977 *
f3187195
TH
5978 * Allocate and initialize basic ATA port resources.
5979 *
5980 * RETURNS:
5981 * Allocate ATA port on success, NULL on failure.
0cba632b 5982 *
1da177e4 5983 * LOCKING:
f3187195 5984 * Inherited from calling layer (may sleep).
1da177e4 5985 */
f3187195 5986struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5987{
f3187195 5988 struct ata_port *ap;
1da177e4
LT
5989 unsigned int i;
5990
f3187195
TH
5991 DPRINTK("ENTER\n");
5992
5993 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5994 if (!ap)
5995 return NULL;
5996
f4d6d004 5997 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5998 ap->lock = &host->lock;
198e0fed 5999 ap->flags = ATA_FLAG_DISABLED;
f3187195 6000 ap->print_id = -1;
1da177e4 6001 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6002 ap->host = host;
f3187195
TH
6003 ap->dev = host->dev;
6004
5a04bf4b 6005 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6006 ap->active_tag = ATA_TAG_POISON;
6007 ap->last_ctl = 0xFF;
bd5d825c
BP
6008
6009#if defined(ATA_VERBOSE_DEBUG)
6010 /* turn on all debugging levels */
6011 ap->msg_enable = 0x00FF;
6012#elif defined(ATA_DEBUG)
6013 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6014#else
0dd4b21f 6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6016#endif
1da177e4 6017
65f27f38
DH
6018 INIT_DELAYED_WORK(&ap->port_task, NULL);
6019 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6020 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6021 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6022 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6023
838df628 6024 ap->cbl = ATA_CBL_NONE;
838df628 6025
acf356b1
TH
6026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6027 struct ata_device *dev = &ap->device[i];
38d87234 6028 dev->ap = ap;
72fa4b74 6029 dev->devno = i;
3ef3b43d 6030 ata_dev_init(dev);
acf356b1 6031 }
1da177e4
LT
6032
6033#ifdef ATA_IRQ_TRAP
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6036#endif
1da177e4 6037 return ap;
1da177e4
LT
6038}
6039
f0d36efd
TH
6040static void ata_host_release(struct device *gendev, void *res)
6041{
6042 struct ata_host *host = dev_get_drvdata(gendev);
6043 int i;
6044
6045 for (i = 0; i < host->n_ports; i++) {
6046 struct ata_port *ap = host->ports[i];
6047
ecef7253
TH
6048 if (!ap)
6049 continue;
6050
6051 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6052 ap->ops->port_stop(ap);
f0d36efd
TH
6053 }
6054
ecef7253 6055 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6056 host->ops->host_stop(host);
1aa56cca 6057
1aa506e4
TH
6058 for (i = 0; i < host->n_ports; i++) {
6059 struct ata_port *ap = host->ports[i];
6060
4911487a
TH
6061 if (!ap)
6062 continue;
6063
6064 if (ap->scsi_host)
1aa506e4
TH
6065 scsi_host_put(ap->scsi_host);
6066
4911487a 6067 kfree(ap);
1aa506e4
TH
6068 host->ports[i] = NULL;
6069 }
6070
1aa56cca 6071 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6072}
6073
f3187195
TH
6074/**
6075 * ata_host_alloc - allocate and init basic ATA host resources
6076 * @dev: generic device this host is associated with
6077 * @max_ports: maximum number of ATA ports associated with this host
6078 *
6079 * Allocate and initialize basic ATA host resources. LLD calls
6080 * this function to allocate a host, initializes it fully and
6081 * attaches it using ata_host_register().
6082 *
6083 * @max_ports ports are allocated and host->n_ports is
6084 * initialized to @max_ports. The caller is allowed to decrease
6085 * host->n_ports before calling ata_host_register(). The unused
6086 * ports will be automatically freed on registration.
6087 *
6088 * RETURNS:
6089 * Allocate ATA host on success, NULL on failure.
6090 *
6091 * LOCKING:
6092 * Inherited from calling layer (may sleep).
6093 */
6094struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6095{
6096 struct ata_host *host;
6097 size_t sz;
6098 int i;
6099
6100 DPRINTK("ENTER\n");
6101
6102 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6103 return NULL;
6104
6105 /* alloc a container for our list of ATA ports (buses) */
6106 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6107 /* alloc a container for our list of ATA ports (buses) */
6108 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6109 if (!host)
6110 goto err_out;
6111
6112 devres_add(dev, host);
6113 dev_set_drvdata(dev, host);
6114
6115 spin_lock_init(&host->lock);
6116 host->dev = dev;
6117 host->n_ports = max_ports;
6118
6119 /* allocate ports bound to this host */
6120 for (i = 0; i < max_ports; i++) {
6121 struct ata_port *ap;
6122
6123 ap = ata_port_alloc(host);
6124 if (!ap)
6125 goto err_out;
6126
6127 ap->port_no = i;
6128 host->ports[i] = ap;
6129 }
6130
6131 devres_remove_group(dev, NULL);
6132 return host;
6133
6134 err_out:
6135 devres_release_group(dev, NULL);
6136 return NULL;
6137}
6138
f5cda257
TH
6139/**
6140 * ata_host_alloc_pinfo - alloc host and init with port_info array
6141 * @dev: generic device this host is associated with
6142 * @ppi: array of ATA port_info to initialize host with
6143 * @n_ports: number of ATA ports attached to this host
6144 *
6145 * Allocate ATA host and initialize with info from @ppi. If NULL
6146 * terminated, @ppi may contain fewer entries than @n_ports. The
6147 * last entry will be used for the remaining ports.
6148 *
6149 * RETURNS:
6150 * Allocate ATA host on success, NULL on failure.
6151 *
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6154 */
6155struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6156 const struct ata_port_info * const * ppi,
6157 int n_ports)
6158{
6159 const struct ata_port_info *pi;
6160 struct ata_host *host;
6161 int i, j;
6162
6163 host = ata_host_alloc(dev, n_ports);
6164 if (!host)
6165 return NULL;
6166
6167 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6168 struct ata_port *ap = host->ports[i];
6169
6170 if (ppi[j])
6171 pi = ppi[j++];
6172
6173 ap->pio_mask = pi->pio_mask;
6174 ap->mwdma_mask = pi->mwdma_mask;
6175 ap->udma_mask = pi->udma_mask;
6176 ap->flags |= pi->flags;
6177 ap->ops = pi->port_ops;
6178
6179 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6180 host->ops = pi->port_ops;
6181 if (!host->private_data && pi->private_data)
6182 host->private_data = pi->private_data;
6183 }
6184
6185 return host;
6186}
6187
ecef7253
TH
6188/**
6189 * ata_host_start - start and freeze ports of an ATA host
6190 * @host: ATA host to start ports for
6191 *
6192 * Start and then freeze ports of @host. Started status is
6193 * recorded in host->flags, so this function can be called
6194 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6195 * once. If host->ops isn't initialized yet, its set to the
6196 * first non-dummy port ops.
ecef7253
TH
6197 *
6198 * LOCKING:
6199 * Inherited from calling layer (may sleep).
6200 *
6201 * RETURNS:
6202 * 0 if all ports are started successfully, -errno otherwise.
6203 */
6204int ata_host_start(struct ata_host *host)
6205{
6206 int i, rc;
6207
6208 if (host->flags & ATA_HOST_STARTED)
6209 return 0;
6210
6211 for (i = 0; i < host->n_ports; i++) {
6212 struct ata_port *ap = host->ports[i];
6213
f3187195
TH
6214 if (!host->ops && !ata_port_is_dummy(ap))
6215 host->ops = ap->ops;
6216
ecef7253
TH
6217 if (ap->ops->port_start) {
6218 rc = ap->ops->port_start(ap);
6219 if (rc) {
6220 ata_port_printk(ap, KERN_ERR, "failed to "
6221 "start port (errno=%d)\n", rc);
6222 goto err_out;
6223 }
6224 }
6225
6226 ata_eh_freeze_port(ap);
6227 }
6228
6229 host->flags |= ATA_HOST_STARTED;
6230 return 0;
6231
6232 err_out:
6233 while (--i >= 0) {
6234 struct ata_port *ap = host->ports[i];
6235
6236 if (ap->ops->port_stop)
6237 ap->ops->port_stop(ap);
6238 }
6239 return rc;
6240}
6241
b03732f0 6242/**
cca3974e
JG
6243 * ata_sas_host_init - Initialize a host struct
6244 * @host: host to initialize
6245 * @dev: device host is attached to
6246 * @flags: host flags
6247 * @ops: port_ops
b03732f0
BK
6248 *
6249 * LOCKING:
6250 * PCI/etc. bus probe sem.
6251 *
6252 */
f3187195 6253/* KILLME - the only user left is ipr */
cca3974e
JG
6254void ata_host_init(struct ata_host *host, struct device *dev,
6255 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6256{
cca3974e
JG
6257 spin_lock_init(&host->lock);
6258 host->dev = dev;
6259 host->flags = flags;
6260 host->ops = ops;
b03732f0
BK
6261}
6262
f3187195
TH
6263/**
6264 * ata_host_register - register initialized ATA host
6265 * @host: ATA host to register
6266 * @sht: template for SCSI host
6267 *
6268 * Register initialized ATA host. @host is allocated using
6269 * ata_host_alloc() and fully initialized by LLD. This function
6270 * starts ports, registers @host with ATA and SCSI layers and
6271 * probe registered devices.
6272 *
6273 * LOCKING:
6274 * Inherited from calling layer (may sleep).
6275 *
6276 * RETURNS:
6277 * 0 on success, -errno otherwise.
6278 */
6279int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6280{
6281 int i, rc;
6282
6283 /* host must have been started */
6284 if (!(host->flags & ATA_HOST_STARTED)) {
6285 dev_printk(KERN_ERR, host->dev,
6286 "BUG: trying to register unstarted host\n");
6287 WARN_ON(1);
6288 return -EINVAL;
6289 }
6290
6291 /* Blow away unused ports. This happens when LLD can't
6292 * determine the exact number of ports to allocate at
6293 * allocation time.
6294 */
6295 for (i = host->n_ports; host->ports[i]; i++)
6296 kfree(host->ports[i]);
6297
6298 /* give ports names and add SCSI hosts */
6299 for (i = 0; i < host->n_ports; i++)
6300 host->ports[i]->print_id = ata_print_id++;
6301
6302 rc = ata_scsi_add_hosts(host, sht);
6303 if (rc)
6304 return rc;
6305
6306 /* set cable, sata_spd_limit and report */
6307 for (i = 0; i < host->n_ports; i++) {
6308 struct ata_port *ap = host->ports[i];
6309 int irq_line;
6310 u32 scontrol;
6311 unsigned long xfer_mask;
6312
6313 /* set SATA cable type if still unset */
6314 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6315 ap->cbl = ATA_CBL_SATA;
6316
6317 /* init sata_spd_limit to the current value */
6318 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6319 int spd = (scontrol >> 4) & 0xf;
6320 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6321 }
6322 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6323
6324 /* report the secondary IRQ for second channel legacy */
6325 irq_line = host->irq;
6326 if (i == 1 && host->irq2)
6327 irq_line = host->irq2;
6328
6329 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6330 ap->udma_mask);
6331
6332 /* print per-port info to dmesg */
6333 if (!ata_port_is_dummy(ap))
6334 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6335 "ctl 0x%p bmdma 0x%p irq %d\n",
6336 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6337 ata_mode_string(xfer_mask),
6338 ap->ioaddr.cmd_addr,
6339 ap->ioaddr.ctl_addr,
6340 ap->ioaddr.bmdma_addr,
6341 irq_line);
6342 else
6343 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6344 }
6345
6346 /* perform each probe synchronously */
6347 DPRINTK("probe begin\n");
6348 for (i = 0; i < host->n_ports; i++) {
6349 struct ata_port *ap = host->ports[i];
6350 int rc;
6351
6352 /* probe */
6353 if (ap->ops->error_handler) {
6354 struct ata_eh_info *ehi = &ap->eh_info;
6355 unsigned long flags;
6356
6357 ata_port_probe(ap);
6358
6359 /* kick EH for boot probing */
6360 spin_lock_irqsave(ap->lock, flags);
6361
6362 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6363 ehi->action |= ATA_EH_SOFTRESET;
6364 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6365
f4d6d004 6366 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6367 ap->pflags |= ATA_PFLAG_LOADING;
6368 ata_port_schedule_eh(ap);
6369
6370 spin_unlock_irqrestore(ap->lock, flags);
6371
6372 /* wait for EH to finish */
6373 ata_port_wait_eh(ap);
6374 } else {
6375 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6376 rc = ata_bus_probe(ap);
6377 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6378
6379 if (rc) {
6380 /* FIXME: do something useful here?
6381 * Current libata behavior will
6382 * tear down everything when
6383 * the module is removed
6384 * or the h/w is unplugged.
6385 */
6386 }
6387 }
6388 }
6389
6390 /* probes are done, now scan each port's disk(s) */
6391 DPRINTK("host probe begin\n");
6392 for (i = 0; i < host->n_ports; i++) {
6393 struct ata_port *ap = host->ports[i];
6394
6395 ata_scsi_scan_host(ap);
6396 }
6397
6398 return 0;
6399}
6400
f5cda257
TH
6401/**
6402 * ata_host_activate - start host, request IRQ and register it
6403 * @host: target ATA host
6404 * @irq: IRQ to request
6405 * @irq_handler: irq_handler used when requesting IRQ
6406 * @irq_flags: irq_flags used when requesting IRQ
6407 * @sht: scsi_host_template to use when registering the host
6408 *
6409 * After allocating an ATA host and initializing it, most libata
6410 * LLDs perform three steps to activate the host - start host,
6411 * request IRQ and register it. This helper takes necessasry
6412 * arguments and performs the three steps in one go.
6413 *
6414 * LOCKING:
6415 * Inherited from calling layer (may sleep).
6416 *
6417 * RETURNS:
6418 * 0 on success, -errno otherwise.
6419 */
6420int ata_host_activate(struct ata_host *host, int irq,
6421 irq_handler_t irq_handler, unsigned long irq_flags,
6422 struct scsi_host_template *sht)
6423{
6424 int rc;
6425
6426 rc = ata_host_start(host);
6427 if (rc)
6428 return rc;
6429
6430 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6431 dev_driver_string(host->dev), host);
6432 if (rc)
6433 return rc;
6434
6435 rc = ata_host_register(host, sht);
6436 /* if failed, just free the IRQ and leave ports alone */
6437 if (rc)
6438 devm_free_irq(host->dev, irq, host);
6439
6440 return rc;
6441}
6442
720ba126
TH
6443/**
6444 * ata_port_detach - Detach ATA port in prepration of device removal
6445 * @ap: ATA port to be detached
6446 *
6447 * Detach all ATA devices and the associated SCSI devices of @ap;
6448 * then, remove the associated SCSI host. @ap is guaranteed to
6449 * be quiescent on return from this function.
6450 *
6451 * LOCKING:
6452 * Kernel thread context (may sleep).
6453 */
6454void ata_port_detach(struct ata_port *ap)
6455{
6456 unsigned long flags;
6457 int i;
6458
6459 if (!ap->ops->error_handler)
c3cf30a9 6460 goto skip_eh;
720ba126
TH
6461
6462 /* tell EH we're leaving & flush EH */
ba6a1308 6463 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6464 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6465 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6466
6467 ata_port_wait_eh(ap);
6468
6469 /* EH is now guaranteed to see UNLOADING, so no new device
6470 * will be attached. Disable all existing devices.
6471 */
ba6a1308 6472 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6473
6474 for (i = 0; i < ATA_MAX_DEVICES; i++)
6475 ata_dev_disable(&ap->device[i]);
6476
ba6a1308 6477 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6478
6479 /* Final freeze & EH. All in-flight commands are aborted. EH
6480 * will be skipped and retrials will be terminated with bad
6481 * target.
6482 */
ba6a1308 6483 spin_lock_irqsave(ap->lock, flags);
720ba126 6484 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6485 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6486
6487 ata_port_wait_eh(ap);
6488
6489 /* Flush hotplug task. The sequence is similar to
6490 * ata_port_flush_task().
6491 */
28e53bdd 6492 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
720ba126 6493 cancel_delayed_work(&ap->hotplug_task);
28e53bdd 6494 cancel_work_sync(&ap->hotplug_task.work);
720ba126 6495
c3cf30a9 6496 skip_eh:
720ba126 6497 /* remove the associated SCSI host */
cca3974e 6498 scsi_remove_host(ap->scsi_host);
720ba126
TH
6499}
6500
0529c159
TH
6501/**
6502 * ata_host_detach - Detach all ports of an ATA host
6503 * @host: Host to detach
6504 *
6505 * Detach all ports of @host.
6506 *
6507 * LOCKING:
6508 * Kernel thread context (may sleep).
6509 */
6510void ata_host_detach(struct ata_host *host)
6511{
6512 int i;
6513
6514 for (i = 0; i < host->n_ports; i++)
6515 ata_port_detach(host->ports[i]);
6516}
6517
1da177e4
LT
6518/**
6519 * ata_std_ports - initialize ioaddr with standard port offsets.
6520 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6521 *
6522 * Utility function which initializes data_addr, error_addr,
6523 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6524 * device_addr, status_addr, and command_addr to standard offsets
6525 * relative to cmd_addr.
6526 *
6527 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6528 */
0baab86b 6529
1da177e4
LT
6530void ata_std_ports(struct ata_ioports *ioaddr)
6531{
6532 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6533 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6534 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6535 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6536 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6537 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6538 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6539 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6540 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6541 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6542}
6543
0baab86b 6544
374b1873
JG
6545#ifdef CONFIG_PCI
6546
1da177e4
LT
6547/**
6548 * ata_pci_remove_one - PCI layer callback for device removal
6549 * @pdev: PCI device that was removed
6550 *
b878ca5d
TH
6551 * PCI layer indicates to libata via this hook that hot-unplug or
6552 * module unload event has occurred. Detach all ports. Resource
6553 * release is handled via devres.
1da177e4
LT
6554 *
6555 * LOCKING:
6556 * Inherited from PCI layer (may sleep).
6557 */
f0d36efd 6558void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6559{
6560 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6561 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6562
b878ca5d 6563 ata_host_detach(host);
1da177e4
LT
6564}
6565
6566/* move to PCI subsystem */
057ace5e 6567int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6568{
6569 unsigned long tmp = 0;
6570
6571 switch (bits->width) {
6572 case 1: {
6573 u8 tmp8 = 0;
6574 pci_read_config_byte(pdev, bits->reg, &tmp8);
6575 tmp = tmp8;
6576 break;
6577 }
6578 case 2: {
6579 u16 tmp16 = 0;
6580 pci_read_config_word(pdev, bits->reg, &tmp16);
6581 tmp = tmp16;
6582 break;
6583 }
6584 case 4: {
6585 u32 tmp32 = 0;
6586 pci_read_config_dword(pdev, bits->reg, &tmp32);
6587 tmp = tmp32;
6588 break;
6589 }
6590
6591 default:
6592 return -EINVAL;
6593 }
6594
6595 tmp &= bits->mask;
6596
6597 return (tmp == bits->val) ? 1 : 0;
6598}
9b847548 6599
6ffa01d8 6600#ifdef CONFIG_PM
3c5100c1 6601void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6602{
6603 pci_save_state(pdev);
4c90d971 6604 pci_disable_device(pdev);
500530f6 6605
4c90d971 6606 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6607 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6608}
6609
553c4aa6 6610int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6611{
553c4aa6
TH
6612 int rc;
6613
9b847548
JA
6614 pci_set_power_state(pdev, PCI_D0);
6615 pci_restore_state(pdev);
553c4aa6 6616
b878ca5d 6617 rc = pcim_enable_device(pdev);
553c4aa6
TH
6618 if (rc) {
6619 dev_printk(KERN_ERR, &pdev->dev,
6620 "failed to enable device after resume (%d)\n", rc);
6621 return rc;
6622 }
6623
9b847548 6624 pci_set_master(pdev);
553c4aa6 6625 return 0;
500530f6
TH
6626}
6627
3c5100c1 6628int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6629{
cca3974e 6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6631 int rc = 0;
6632
cca3974e 6633 rc = ata_host_suspend(host, mesg);
500530f6
TH
6634 if (rc)
6635 return rc;
6636
3c5100c1 6637 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6638
6639 return 0;
6640}
6641
6642int ata_pci_device_resume(struct pci_dev *pdev)
6643{
cca3974e 6644 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6645 int rc;
500530f6 6646
553c4aa6
TH
6647 rc = ata_pci_device_do_resume(pdev);
6648 if (rc == 0)
6649 ata_host_resume(host);
6650 return rc;
9b847548 6651}
6ffa01d8
TH
6652#endif /* CONFIG_PM */
6653
1da177e4
LT
6654#endif /* CONFIG_PCI */
6655
6656
1da177e4
LT
6657static int __init ata_init(void)
6658{
a8601e5f 6659 ata_probe_timeout *= HZ;
1da177e4
LT
6660 ata_wq = create_workqueue("ata");
6661 if (!ata_wq)
6662 return -ENOMEM;
6663
453b07ac
TH
6664 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6665 if (!ata_aux_wq) {
6666 destroy_workqueue(ata_wq);
6667 return -ENOMEM;
6668 }
6669
1da177e4
LT
6670 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6671 return 0;
6672}
6673
6674static void __exit ata_exit(void)
6675{
6676 destroy_workqueue(ata_wq);
453b07ac 6677 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6678}
6679
a4625085 6680subsys_initcall(ata_init);
1da177e4
LT
6681module_exit(ata_exit);
6682
67846b30 6683static unsigned long ratelimit_time;
34af946a 6684static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6685
6686int ata_ratelimit(void)
6687{
6688 int rc;
6689 unsigned long flags;
6690
6691 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6692
6693 if (time_after(jiffies, ratelimit_time)) {
6694 rc = 1;
6695 ratelimit_time = jiffies + (HZ/5);
6696 } else
6697 rc = 0;
6698
6699 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6700
6701 return rc;
6702}
6703
c22daff4
TH
6704/**
6705 * ata_wait_register - wait until register value changes
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
6709 * @interval_msec: polling interval in milliseconds
6710 * @timeout_msec: timeout in milliseconds
6711 *
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6715 *
6716 * (*@reg & mask) != val
6717 *
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6720 *
6721 * LOCKING:
6722 * Kernel thread context (may sleep)
6723 *
6724 * RETURNS:
6725 * The final register value.
6726 */
6727u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6728 unsigned long interval_msec,
6729 unsigned long timeout_msec)
6730{
6731 unsigned long timeout;
6732 u32 tmp;
6733
6734 tmp = ioread32(reg);
6735
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6739 */
6740 timeout = jiffies + (timeout_msec * HZ) / 1000;
6741
6742 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6743 msleep(interval_msec);
6744 tmp = ioread32(reg);
6745 }
6746
6747 return tmp;
6748}
6749
dd5b06c4
TH
6750/*
6751 * Dummy port_ops
6752 */
6753static void ata_dummy_noret(struct ata_port *ap) { }
6754static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6755static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6756
6757static u8 ata_dummy_check_status(struct ata_port *ap)
6758{
6759 return ATA_DRDY;
6760}
6761
6762static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6763{
6764 return AC_ERR_SYSTEM;
6765}
6766
6767const struct ata_port_operations ata_dummy_port_ops = {
6768 .port_disable = ata_port_disable,
6769 .check_status = ata_dummy_check_status,
6770 .check_altstatus = ata_dummy_check_status,
6771 .dev_select = ata_noop_dev_select,
6772 .qc_prep = ata_noop_qc_prep,
6773 .qc_issue = ata_dummy_qc_issue,
6774 .freeze = ata_dummy_noret,
6775 .thaw = ata_dummy_noret,
6776 .error_handler = ata_dummy_noret,
6777 .post_internal_cmd = ata_dummy_qc_noret,
6778 .irq_clear = ata_dummy_noret,
6779 .port_start = ata_dummy_ret0,
6780 .port_stop = ata_dummy_noret,
6781};
6782
21b0ad4f
TH
6783const struct ata_port_info ata_dummy_port_info = {
6784 .port_ops = &ata_dummy_port_ops,
6785};
6786
1da177e4
LT
6787/*
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6792 */
6793
e9c83914
TH
6794EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6795EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6796EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6797EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6798EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6799EXPORT_SYMBOL_GPL(ata_std_bios_param);
6800EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6801EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6802EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6803EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6804EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6805EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6806EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6807EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6808EXPORT_SYMBOL_GPL(ata_sg_init);
6809EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6810EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6811EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6812EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6813EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6814EXPORT_SYMBOL_GPL(ata_tf_load);
6815EXPORT_SYMBOL_GPL(ata_tf_read);
6816EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6817EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6818EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6819EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6820EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6821EXPORT_SYMBOL_GPL(ata_check_status);
6822EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6823EXPORT_SYMBOL_GPL(ata_exec_command);
6824EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6825EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6826EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6827EXPORT_SYMBOL_GPL(ata_data_xfer);
6828EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6829EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6830EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6831EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6832EXPORT_SYMBOL_GPL(ata_bmdma_start);
6833EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6834EXPORT_SYMBOL_GPL(ata_bmdma_status);
6835EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6836EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6837EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6838EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6839EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6840EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6841EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6842EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6843EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6844EXPORT_SYMBOL_GPL(sata_phy_debounce);
6845EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6846EXPORT_SYMBOL_GPL(sata_phy_reset);
6847EXPORT_SYMBOL_GPL(__sata_phy_reset);
6848EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6849EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6850EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6851EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6852EXPORT_SYMBOL_GPL(sata_std_hardreset);
6853EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6854EXPORT_SYMBOL_GPL(ata_dev_classify);
6855EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6856EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6857EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6858EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6859EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6860EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6861EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6862EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6863EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6864EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6865EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6866EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6867EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6868EXPORT_SYMBOL_GPL(sata_scr_valid);
6869EXPORT_SYMBOL_GPL(sata_scr_read);
6870EXPORT_SYMBOL_GPL(sata_scr_write);
6871EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6872EXPORT_SYMBOL_GPL(ata_port_online);
6873EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6874#ifdef CONFIG_PM
cca3974e
JG
6875EXPORT_SYMBOL_GPL(ata_host_suspend);
6876EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6877#endif /* CONFIG_PM */
6a62a04d
TH
6878EXPORT_SYMBOL_GPL(ata_id_string);
6879EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6880EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6881EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6882EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6883
1bc4ccff 6884EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6885EXPORT_SYMBOL_GPL(ata_timing_compute);
6886EXPORT_SYMBOL_GPL(ata_timing_merge);
6887
1da177e4
LT
6888#ifdef CONFIG_PCI
6889EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6890EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
1626aeb8 6891EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
21b0ad4f 6892EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6893EXPORT_SYMBOL_GPL(ata_pci_init_one);
6894EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6895#ifdef CONFIG_PM
500530f6
TH
6896EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6897EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6898EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6899EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6900#endif /* CONFIG_PM */
67951ade
AC
6901EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6902EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6903#endif /* CONFIG_PCI */
9b847548 6904
ece1d636 6905EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6906EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6907EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6908EXPORT_SYMBOL_GPL(ata_port_freeze);
6909EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6910EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6911EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6912EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6913EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6914EXPORT_SYMBOL_GPL(ata_irq_on);
6915EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6916EXPORT_SYMBOL_GPL(ata_irq_ack);
6917EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6918EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6919
6920EXPORT_SYMBOL_GPL(ata_cable_40wire);
6921EXPORT_SYMBOL_GPL(ata_cable_80wire);
6922EXPORT_SYMBOL_GPL(ata_cable_unknown);
6923EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.902246 seconds and 5 git commands to generate.