Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
44877b4e 75static unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
a8601e5f
AM
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
d7d0dad6
JG
96int libata_noacpi = 1;
97module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
1da177e4
LT
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
0baab86b 105
1da177e4
LT
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
057ace5e 119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
e12a1be6 153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
8cbd6df1
AL
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
192 0,
193 0,
194 0,
195 0,
8cbd6df1
AL
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
9a3dccc4
TH
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 205};
1da177e4
LT
206
207/**
8cbd6df1 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
1da177e4 211 *
2e9edbf8 212 * Examine the device configuration and tf->flags to calculate
8cbd6df1 213 * the proper read/write commands and protocol to use.
1da177e4
LT
214 *
215 * LOCKING:
216 * caller.
217 */
bd056d7e 218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 219{
9a3dccc4 220 u8 cmd;
1da177e4 221
9a3dccc4 222 int index, fua, lba48, write;
2e9edbf8 223
9a3dccc4 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 227
8cbd6df1
AL
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
9a3dccc4 230 index = dev->multi_count ? 0 : 8;
bd056d7e 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
0565c26d 234 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
235 } else {
236 tf->protocol = ATA_PROT_DMA;
9a3dccc4 237 index = 16;
8cbd6df1 238 }
1da177e4 239
9a3dccc4
TH
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
1da177e4
LT
246}
247
35b649fe
TH
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
bd056d7e
TH
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
6d1245bf 318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412}
413
cb95d562
TH
414/**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432{
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436}
437
c0489e4e
TH
438/**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452{
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459}
460
cb95d562 461static const struct ata_xfer_ent {
be9a50c8 462 int shift, bits;
cb95d562
TH
463 u8 base;
464} ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469};
470
471/**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485{
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493}
494
495/**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508{
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515}
516
517/**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529static int ata_xfer_mode2shift(unsigned int xfer_mode)
530{
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537}
538
1da177e4 539/**
1da7b0d0
TH
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
542 *
543 * Determine string which represents the highest speed
1da7b0d0 544 * (highest bit in @modemask).
1da177e4
LT
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
1da7b0d0 551 * @mode_mask, or the constant C string "<n/a>".
1da177e4 552 */
1da7b0d0 553static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 554{
75f554bc
TH
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
b352e57d
AC
561 "PIO5",
562 "PIO6",
75f554bc
TH
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
b352e57d
AC
566 "MWDMA3",
567 "MWDMA4",
75f554bc
TH
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
1da7b0d0 577 int highbit;
1da177e4 578
1da7b0d0
TH
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
1da177e4 582 return "<n/a>";
1da177e4
LT
583}
584
4c360c81
TH
585static const char *sata_spd_string(unsigned int spd)
586{
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595}
596
3373efd8 597void ata_dev_disable(struct ata_device *dev)
0b8efb0a 598{
0dd4b21f 599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
0b8efb0a
TH
603 dev->class++;
604 }
605}
606
1da177e4 607/**
0d5ff566 608 * ata_devchk - PATA device presence detection
1da177e4
LT
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
0d5ff566 625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
0d5ff566
TH
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 634
0d5ff566
TH
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
1da177e4
LT
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
057ace5e 666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
b4dc7623 693 * @r_err: Value of error register on completion
1da177e4
LT
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
b4dc7623
TH
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
709 */
710
a619f981 711unsigned int
b4dc7623 712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 713{
1da177e4
LT
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
1da177e4 722 ap->ops->tf_read(ap, &tf);
0169e284 723 err = tf.feature;
b4dc7623
TH
724 if (r_err)
725 *r_err = err;
1da177e4 726
93590859
AC
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
1da177e4
LT
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
b4dc7623 736 return ATA_DEV_NONE;
1da177e4 737
b4dc7623 738 /* determine if device is ATA or ATAPI */
1da177e4 739 class = ata_dev_classify(&tf);
b4dc7623 740
1da177e4 741 if (class == ATA_DEV_UNKNOWN)
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
744 return ATA_DEV_NONE;
745 return class;
1da177e4
LT
746}
747
748/**
6a62a04d 749 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
6a62a04d
TH
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
1da177e4
LT
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
0e949ff3 782/**
6a62a04d 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
6a62a04d 789 * This function is identical to ata_id_string except that it
0e949ff3
TH
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
6a62a04d
TH
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
0e949ff3
TH
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
6a62a04d 803 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
0baab86b 810
2940740b
TH
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
10305f0f
A
826/**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
cc261267 829 * @unknown: mode to assume if we cannot tell
10305f0f
A
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842{
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866}
867
0baab86b
EF
868/**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
1da177e4
LT
880void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881{
882}
883
0baab86b 884
1da177e4
LT
885/**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
0baab86b
EF
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
895 *
896 * LOCKING:
897 * caller.
898 */
899
900void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901{
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
0d5ff566 909 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
910 ata_pause(ap); /* needed; also flushes, for mmio */
911}
912
913/**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934{
88574551 935 if (ata_msg_probe(ap))
44877b4e
TH
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
1da177e4
LT
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949}
950
951/**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 953 * @id: IDENTIFY DEVICE page to dump
1da177e4 954 *
0bd3300a
TH
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
1da177e4
LT
957 *
958 * LOCKING:
959 * caller.
960 */
961
0bd3300a 962static inline void ata_dump_id(const u16 *id)
1da177e4
LT
963{
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
0bd3300a
TH
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
1da177e4
LT
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
0bd3300a
TH
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
1da177e4
LT
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
0bd3300a
TH
986 id[88],
987 id[93]);
1da177e4
LT
988}
989
cb95d562
TH
990/**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005static unsigned int ata_id_xfermask(const u16 *id)
1006{
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
7a0f1c8a 1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
cb95d562
TH
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1034
b352e57d
AC
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
fb21f0d0
TH
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057}
1058
86e45b6b
TH
1059/**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
e2a7f77a 1062 * @fn: workqueue function to be scheduled
65f27f38 1063 * @data: data for @fn to use
e2a7f77a 1064 * @delay: delay time for workqueue function
86e45b6b
TH
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
65f27f38 1078void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1079 unsigned long delay)
1080{
1081 int rc;
1082
b51e9e5d 1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1084 return;
1085
65f27f38
DH
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
86e45b6b 1088
52bad64d 1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093}
1094
1095/**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105void ata_port_flush_task(struct ata_port *ap)
1106{
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
ba6a1308 1111 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1113 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1124 if (ata_msg_ctl(ap))
88574551
TH
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
86e45b6b
TH
1127 flush_workqueue(ata_wq);
1128 }
1129
ba6a1308 1130 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1132 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1133
0dd4b21f
BP
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1136}
1137
7102d230 1138static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1139{
77853bf2 1140 struct completion *waiting = qc->private_data;
a2a7a662 1141
a2a7a662 1142 complete(waiting);
a2a7a662
TH
1143}
1144
1145/**
2432697b 1146 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
d69cf37d 1149 * @cdb: CDB for packet command
a2a7a662 1150 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
a2a7a662
TH
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
551e8889
TH
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1165 */
2432697b
TH
1166unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
a2a7a662 1170{
3373efd8 1171 struct ata_port *ap = dev->ap;
a2a7a662
TH
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
2ab7db1f 1174 unsigned int tag, preempted_tag;
dedaf2b0 1175 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1176 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1177 unsigned long flags;
77853bf2 1178 unsigned int err_mask;
d95a717f 1179 int rc;
a2a7a662 1180
ba6a1308 1181 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1182
e3180499 1183 /* no internal command while frozen */
b51e9e5d 1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1185 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1186 return AC_ERR_SYSTEM;
1187 }
1188
2ab7db1f 1189 /* initialize internal qc */
a2a7a662 1190
2ab7db1f
TH
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
6cec4a39 1201 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1202 BUG();
f69499f4 1203 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
dedaf2b0
TH
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
2ab7db1f 1214 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
2ab7db1f
TH
1217
1218 /* prepare & issue qc */
a2a7a662 1219 qc->tf = *tf;
d69cf37d
TH
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
2432697b
TH
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
49c80429 1231 qc->nbytes = buflen;
a2a7a662
TH
1232 }
1233
77853bf2 1234 qc->private_data = &wait;
a2a7a662
TH
1235 qc->complete_fn = ata_qc_complete_internal;
1236
8e0e694a 1237 ata_qc_issue(qc);
a2a7a662 1238
ba6a1308 1239 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1240
a8601e5f 1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1242
1243 ata_port_flush_task(ap);
41ade50c 1244
d95a717f 1245 if (!rc) {
ba6a1308 1246 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
d95a717f
TH
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
a2a7a662 1252 */
77853bf2 1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
f15a1daf 1260
0dd4b21f
BP
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
88574551 1263 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1264 }
1265
ba6a1308 1266 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1267 }
1268
d95a717f
TH
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
18d90deb 1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
0dd4b21f 1274 if (ata_msg_warn(ap))
88574551 1275 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1276 "zero err_mask for failed "
88574551 1277 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1278 qc->err_mask |= AC_ERR_OTHER;
1279 }
1280
15869303 1281 /* finish up */
ba6a1308 1282 spin_lock_irqsave(ap->lock, flags);
15869303 1283
e61e0672 1284 *tf = qc->result_tf;
77853bf2
TH
1285 err_mask = qc->err_mask;
1286
1287 ata_qc_free(qc);
2ab7db1f 1288 ap->active_tag = preempted_tag;
dedaf2b0
TH
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
77853bf2 1291
1f7dd3e9
TH
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1296 *
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1300 *
1301 * Kill the following code as soon as those drivers are fixed.
1302 */
198e0fed 1303 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1306 }
1307
ba6a1308 1308 spin_unlock_irqrestore(ap->lock, flags);
15869303 1309
77853bf2 1310 return err_mask;
a2a7a662
TH
1311}
1312
2432697b 1313/**
33480a0e 1314 * ata_exec_internal - execute libata internal command
2432697b
TH
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1321 *
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1324 *
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1327 *
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1330 */
1331unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1334{
33480a0e
TH
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
2432697b 1337
33480a0e
TH
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1343 }
2432697b 1344
33480a0e 1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1346}
1347
977e6b9f
TH
1348/**
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1352 *
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1355 *
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1358 *
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
e58eb583 1361 */
77b08fb5 1362unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1363{
1364 struct ata_taskfile tf;
e58eb583
TH
1365
1366 ata_tf_init(dev, &tf);
1367
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1371
977e6b9f 1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1373}
1374
1bc4ccff
AC
1375/**
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1378 *
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1381 */
1382
1383unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384{
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1387
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
2e9edbf8 1392
1bc4ccff
AC
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1394
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1403 }
1404 }
1405 return 0;
1406}
1407
1da177e4 1408/**
49016aca 1409 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
bff04647 1412 * @flags: ATA_READID_* flags
fe635c7e 1413 * @id: buffer to read IDENTIFY data into
1da177e4 1414 *
49016aca
TH
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1da177e4
LT
1419 *
1420 * LOCKING:
49016aca
TH
1421 * Kernel thread context (may sleep)
1422 *
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1da177e4 1425 */
a9beec95 1426int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1427 unsigned int flags, u16 *id)
1da177e4 1428{
3373efd8 1429 struct ata_port *ap = dev->ap;
49016aca 1430 unsigned int class = *p_class;
a0123703 1431 struct ata_taskfile tf;
49016aca
TH
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1da177e4 1435
0dd4b21f 1436 if (ata_msg_ctl(ap))
44877b4e 1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1438
49016aca 1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1440
49016aca 1441 retry:
3373efd8 1442 ata_tf_init(dev, &tf);
a0123703 1443
49016aca
TH
1444 switch (class) {
1445 case ATA_DEV_ATA:
a0123703 1446 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1447 break;
1448 case ATA_DEV_ATAPI:
a0123703 1449 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1da177e4
LT
1455 }
1456
a0123703 1457 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1458
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1461 */
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1466 */
1467 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1468
3373efd8 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1470 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1471 if (err_mask) {
800b3996 1472 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1474 ap->print_id, dev->devno);
55a8e2c8
TH
1475 return -ENOENT;
1476 }
1477
49016aca
TH
1478 rc = -EIO;
1479 reason = "I/O error";
1da177e4
LT
1480 goto err_out;
1481 }
1482
49016aca 1483 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1484
49016aca 1485 /* sanity check */
a4f5749b
TH
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1488
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
49016aca
TH
1495 }
1496
bff04647 1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1498 /*
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1505 */
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1512 }
1513
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1516 */
bff04647 1517 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1518 goto retry;
1519 }
1520 }
1521
1522 *p_class = class;
fe635c7e 1523
49016aca
TH
1524 return 0;
1525
1526 err_out:
88574551 1527 if (ata_msg_warn(ap))
0dd4b21f 1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1530 return rc;
1531}
1532
3373efd8 1533static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1534{
3373efd8 1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1536}
1537
a6e6ce8e
TH
1538static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1540{
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1547 }
6919a0a6
AC
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1551 }
a6e6ce8e 1552 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1554 dev->flags |= ATA_DFLAG_NCQ;
1555 }
1556
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561}
1562
e6d902a3
BK
1563static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564{
1565 int i;
1566
cca3974e
JG
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1569
e6d902a3 1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1571 len = max(len, ap->device[i].cdb_len);
1572
1573 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1574 }
1575}
1576
49016aca 1577/**
ffeae418 1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1579 * @dev: Target device to configure
1580 *
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
49016aca
TH
1583 *
1584 * LOCKING:
ffeae418
TH
1585 * Kernel thread context (may sleep)
1586 *
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
49016aca 1589 */
efdaedc4 1590int ata_dev_configure(struct ata_device *dev)
49016aca 1591{
3373efd8 1592 struct ata_port *ap = dev->ap;
efdaedc4 1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1594 const u16 *id = dev->id;
ff8854b2 1595 unsigned int xfer_mask;
b352e57d 1596 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1599 int rc;
49016aca 1600
0dd4b21f 1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
ffeae418 1604 return 0;
49016aca
TH
1605 }
1606
0dd4b21f 1607 if (ata_msg_probe(ap))
44877b4e 1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1609
08573a86
KCA
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1615 }
1616
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1619
c39f5ebe 1620 /* print device capabilities */
0dd4b21f 1621 if (ata_msg_probe(ap))
88574551
TH
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1625 __FUNCTION__,
f15a1daf
TH
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
c39f5ebe 1628
208a9933 1629 /* initialize to-be-configured parameters */
ea1dd4e1 1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1637
1da177e4
LT
1638 /*
1639 * common ATA, ATAPI feature tests
1640 */
1641
ff8854b2 1642 /* find max transfer mode; for printk only */
1148c3a7 1643 xfer_mask = ata_id_xfermask(id);
1da177e4 1644
0dd4b21f
BP
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1da177e4
LT
1647
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
b352e57d
AC
1655 snprintf(revbuf, 7, "CFA");
1656 }
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1659
1148c3a7 1660 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1661
3f64f565 1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1664 sizeof(fwrevbuf));
1665
591a6e8e 1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1667 sizeof(modelbuf));
1668
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1671
1148c3a7 1672 if (ata_id_has_lba(id)) {
4c2d721a 1673 const char *lba_desc;
a6e6ce8e 1674 char ncq_desc[20];
8bf62ece 1675
4c2d721a
TH
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1678 if (ata_id_has_lba48(id)) {
8bf62ece 1679 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1680 lba_desc = "LBA48";
6fc49adb
TH
1681
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1685 }
8bf62ece 1686
a6e6ce8e
TH
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689
8bf62ece 1690 /* print device info to dmesg */
3f64f565
EM
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1698 (unsigned long long)dev->n_sectors,
3f64f565
EM
1699 dev->multi_count, lba_desc, ncq_desc);
1700 }
ffeae418 1701 } else {
8bf62ece
AL
1702 /* CHS */
1703
1704 /* Default translation */
1148c3a7
TH
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
8bf62ece 1708
1148c3a7 1709 if (ata_id_current_chs_valid(id)) {
8bf62ece 1710 /* Current CHS translation is valid. */
1148c3a7
TH
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
8bf62ece
AL
1714 }
1715
1716 /* print device info to dmesg */
3f64f565 1717 if (ata_msg_drv(ap) && print_info) {
88574551 1718 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
a84471fe 1722 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1727 }
07f6f7d0
AL
1728 }
1729
6e7846e9 1730 dev->cdb_len = 16;
1da177e4
LT
1731 }
1732
1733 /* ATAPI-specific feature tests */
2c13b7ce 1734 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1735 char *cdb_intr_string = "";
1736
1148c3a7 1737 rc = atapi_cdb_len(id);
1da177e4 1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1739 if (ata_msg_warn(ap))
88574551
TH
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
ffeae418 1742 rc = -EINVAL;
1da177e4
LT
1743 goto err_out_nosup;
1744 }
6e7846e9 1745 dev->cdb_len = (unsigned int) rc;
1da177e4 1746
08a556db 1747 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1748 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1749 cdb_intr_string = ", CDB intr";
1750 }
312f7da2 1751
1da177e4 1752 /* print device info to dmesg */
5afc8142 1753 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1da177e4
LT
1757 }
1758
914ed354
TH
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763
93590859
AC
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770"Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772"fault or invalid emulation. Contact drive vendor for information.\n");
1773 }
1774 }
1775
e6d902a3 1776 ata_set_port_max_cmd_len(ap);
6e7846e9 1777
4b2f3ede 1778 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1779 if (ata_dev_knobble(dev)) {
5afc8142 1780 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
5a529139 1783 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1784 dev->max_sectors = ATA_MAX_SECTORS;
1785 }
1786
1787 if (ap->ops->dev_config)
1788 ap->ops->dev_config(ap, dev);
1789
0dd4b21f
BP
1790 if (ata_msg_probe(ap))
1791 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1792 __FUNCTION__, ata_chk_status(ap));
ffeae418 1793 return 0;
1da177e4
LT
1794
1795err_out_nosup:
0dd4b21f 1796 if (ata_msg_probe(ap))
88574551
TH
1797 ata_dev_printk(dev, KERN_DEBUG,
1798 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1799 return rc;
1da177e4
LT
1800}
1801
1802/**
1803 * ata_bus_probe - Reset and probe ATA bus
1804 * @ap: Bus to probe
1805 *
0cba632b
JG
1806 * Master ATA bus probing function. Initiates a hardware-dependent
1807 * bus reset, then attempts to identify any devices found on
1808 * the bus.
1809 *
1da177e4 1810 * LOCKING:
0cba632b 1811 * PCI/etc. bus probe sem.
1da177e4
LT
1812 *
1813 * RETURNS:
96072e69 1814 * Zero on success, negative errno otherwise.
1da177e4
LT
1815 */
1816
80289167 1817int ata_bus_probe(struct ata_port *ap)
1da177e4 1818{
28ca5c57 1819 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 1820 int tries[ATA_MAX_DEVICES];
4ae72a1e 1821 int i, rc;
e82cbdb9 1822 struct ata_device *dev;
1da177e4 1823
28ca5c57 1824 ata_port_probe(ap);
c19ba8af 1825
14d2bac1
TH
1826 for (i = 0; i < ATA_MAX_DEVICES; i++)
1827 tries[i] = ATA_PROBE_MAX_TRIES;
1828
1829 retry:
2044470c 1830 /* reset and determine device classes */
52783c5d 1831 ap->ops->phy_reset(ap);
2061a47a 1832
52783c5d
TH
1833 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1834 dev = &ap->device[i];
c19ba8af 1835
52783c5d
TH
1836 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1837 dev->class != ATA_DEV_UNKNOWN)
1838 classes[dev->devno] = dev->class;
1839 else
1840 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1841
52783c5d 1842 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1843 }
1da177e4 1844
52783c5d 1845 ata_port_probe(ap);
2044470c 1846
b6079ca4
AC
1847 /* after the reset the device state is PIO 0 and the controller
1848 state is undefined. Record the mode */
1849
1850 for (i = 0; i < ATA_MAX_DEVICES; i++)
1851 ap->device[i].pio_mode = XFER_PIO_0;
1852
f31f0cc2
JG
1853 /* read IDENTIFY page and configure devices. We have to do the identify
1854 specific sequence bass-ackwards so that PDIAG- is released by
1855 the slave device */
1856
1857 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 1858 dev = &ap->device[i];
28ca5c57 1859
ec573755
TH
1860 if (tries[i])
1861 dev->class = classes[i];
ffeae418 1862
14d2bac1 1863 if (!ata_dev_enabled(dev))
ffeae418 1864 continue;
ffeae418 1865
bff04647
TH
1866 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1867 dev->id);
14d2bac1
TH
1868 if (rc)
1869 goto fail;
f31f0cc2
JG
1870 }
1871
1872 /* After the identify sequence we can now set up the devices. We do
1873 this in the normal order so that the user doesn't get confused */
1874
1875 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1876 dev = &ap->device[i];
1877 if (!ata_dev_enabled(dev))
1878 continue;
14d2bac1 1879
efdaedc4
TH
1880 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1881 rc = ata_dev_configure(dev);
1882 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1883 if (rc)
1884 goto fail;
1da177e4
LT
1885 }
1886
e82cbdb9 1887 /* configure transfer mode */
3adcebb2 1888 rc = ata_set_mode(ap, &dev);
4ae72a1e 1889 if (rc)
51713d35 1890 goto fail;
1da177e4 1891
e82cbdb9
TH
1892 for (i = 0; i < ATA_MAX_DEVICES; i++)
1893 if (ata_dev_enabled(&ap->device[i]))
1894 return 0;
1da177e4 1895
e82cbdb9
TH
1896 /* no device present, disable port */
1897 ata_port_disable(ap);
1da177e4 1898 ap->ops->port_disable(ap);
96072e69 1899 return -ENODEV;
14d2bac1
TH
1900
1901 fail:
4ae72a1e
TH
1902 tries[dev->devno]--;
1903
14d2bac1
TH
1904 switch (rc) {
1905 case -EINVAL:
4ae72a1e 1906 /* eeek, something went very wrong, give up */
14d2bac1
TH
1907 tries[dev->devno] = 0;
1908 break;
4ae72a1e
TH
1909
1910 case -ENODEV:
1911 /* give it just one more chance */
1912 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 1913 case -EIO:
4ae72a1e
TH
1914 if (tries[dev->devno] == 1) {
1915 /* This is the last chance, better to slow
1916 * down than lose it.
1917 */
1918 sata_down_spd_limit(ap);
1919 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1920 }
14d2bac1
TH
1921 }
1922
4ae72a1e 1923 if (!tries[dev->devno])
3373efd8 1924 ata_dev_disable(dev);
ec573755 1925
14d2bac1 1926 goto retry;
1da177e4
LT
1927}
1928
1929/**
0cba632b
JG
1930 * ata_port_probe - Mark port as enabled
1931 * @ap: Port for which we indicate enablement
1da177e4 1932 *
0cba632b
JG
1933 * Modify @ap data structure such that the system
1934 * thinks that the entire port is enabled.
1935 *
cca3974e 1936 * LOCKING: host lock, or some other form of
0cba632b 1937 * serialization.
1da177e4
LT
1938 */
1939
1940void ata_port_probe(struct ata_port *ap)
1941{
198e0fed 1942 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1943}
1944
3be680b7
TH
1945/**
1946 * sata_print_link_status - Print SATA link status
1947 * @ap: SATA port to printk link status about
1948 *
1949 * This function prints link speed and status of a SATA link.
1950 *
1951 * LOCKING:
1952 * None.
1953 */
1954static void sata_print_link_status(struct ata_port *ap)
1955{
6d5f9732 1956 u32 sstatus, scontrol, tmp;
3be680b7 1957
81952c54 1958 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1959 return;
81952c54 1960 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1961
81952c54 1962 if (ata_port_online(ap)) {
3be680b7 1963 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1964 ata_port_printk(ap, KERN_INFO,
1965 "SATA link up %s (SStatus %X SControl %X)\n",
1966 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1967 } else {
f15a1daf
TH
1968 ata_port_printk(ap, KERN_INFO,
1969 "SATA link down (SStatus %X SControl %X)\n",
1970 sstatus, scontrol);
3be680b7
TH
1971 }
1972}
1973
1da177e4 1974/**
780a87f7
JG
1975 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1976 * @ap: SATA port associated with target SATA PHY.
1da177e4 1977 *
780a87f7
JG
1978 * This function issues commands to standard SATA Sxxx
1979 * PHY registers, to wake up the phy (and device), and
1980 * clear any reset condition.
1da177e4
LT
1981 *
1982 * LOCKING:
0cba632b 1983 * PCI/etc. bus probe sem.
1da177e4
LT
1984 *
1985 */
1986void __sata_phy_reset(struct ata_port *ap)
1987{
1988 u32 sstatus;
1989 unsigned long timeout = jiffies + (HZ * 5);
1990
1991 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1992 /* issue phy wake/reset */
81952c54 1993 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1994 /* Couldn't find anything in SATA I/II specs, but
1995 * AHCI-1.1 10.4.2 says at least 1 ms. */
1996 mdelay(1);
1da177e4 1997 }
81952c54
TH
1998 /* phy wake/clear reset */
1999 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2000
2001 /* wait for phy to become ready, if necessary */
2002 do {
2003 msleep(200);
81952c54 2004 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2005 if ((sstatus & 0xf) != 1)
2006 break;
2007 } while (time_before(jiffies, timeout));
2008
3be680b7
TH
2009 /* print link status */
2010 sata_print_link_status(ap);
656563e3 2011
3be680b7 2012 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2013 if (!ata_port_offline(ap))
1da177e4 2014 ata_port_probe(ap);
3be680b7 2015 else
1da177e4 2016 ata_port_disable(ap);
1da177e4 2017
198e0fed 2018 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2019 return;
2020
2021 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2022 ata_port_disable(ap);
2023 return;
2024 }
2025
2026 ap->cbl = ATA_CBL_SATA;
2027}
2028
2029/**
780a87f7
JG
2030 * sata_phy_reset - Reset SATA bus.
2031 * @ap: SATA port associated with target SATA PHY.
1da177e4 2032 *
780a87f7
JG
2033 * This function resets the SATA bus, and then probes
2034 * the bus for devices.
1da177e4
LT
2035 *
2036 * LOCKING:
0cba632b 2037 * PCI/etc. bus probe sem.
1da177e4
LT
2038 *
2039 */
2040void sata_phy_reset(struct ata_port *ap)
2041{
2042 __sata_phy_reset(ap);
198e0fed 2043 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2044 return;
2045 ata_bus_reset(ap);
2046}
2047
ebdfca6e
AC
2048/**
2049 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2050 * @adev: device
2051 *
2052 * Obtain the other device on the same cable, or if none is
2053 * present NULL is returned
2054 */
2e9edbf8 2055
3373efd8 2056struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2057{
3373efd8 2058 struct ata_port *ap = adev->ap;
ebdfca6e 2059 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2060 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2061 return NULL;
2062 return pair;
2063}
2064
1da177e4 2065/**
780a87f7
JG
2066 * ata_port_disable - Disable port.
2067 * @ap: Port to be disabled.
1da177e4 2068 *
780a87f7
JG
2069 * Modify @ap data structure such that the system
2070 * thinks that the entire port is disabled, and should
2071 * never attempt to probe or communicate with devices
2072 * on this port.
2073 *
cca3974e 2074 * LOCKING: host lock, or some other form of
780a87f7 2075 * serialization.
1da177e4
LT
2076 */
2077
2078void ata_port_disable(struct ata_port *ap)
2079{
2080 ap->device[0].class = ATA_DEV_NONE;
2081 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2082 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2083}
2084
1c3fae4d 2085/**
3c567b7d 2086 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2087 * @ap: Port to adjust SATA spd limit for
2088 *
2089 * Adjust SATA spd limit of @ap downward. Note that this
2090 * function only adjusts the limit. The change must be applied
3c567b7d 2091 * using sata_set_spd().
1c3fae4d
TH
2092 *
2093 * LOCKING:
2094 * Inherited from caller.
2095 *
2096 * RETURNS:
2097 * 0 on success, negative errno on failure
2098 */
3c567b7d 2099int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2100{
81952c54
TH
2101 u32 sstatus, spd, mask;
2102 int rc, highbit;
1c3fae4d 2103
81952c54
TH
2104 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2105 if (rc)
2106 return rc;
1c3fae4d
TH
2107
2108 mask = ap->sata_spd_limit;
2109 if (mask <= 1)
2110 return -EINVAL;
2111 highbit = fls(mask) - 1;
2112 mask &= ~(1 << highbit);
2113
81952c54 2114 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2115 if (spd <= 1)
2116 return -EINVAL;
2117 spd--;
2118 mask &= (1 << spd) - 1;
2119 if (!mask)
2120 return -EINVAL;
2121
2122 ap->sata_spd_limit = mask;
2123
f15a1daf
TH
2124 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2125 sata_spd_string(fls(mask)));
1c3fae4d
TH
2126
2127 return 0;
2128}
2129
3c567b7d 2130static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2131{
2132 u32 spd, limit;
2133
2134 if (ap->sata_spd_limit == UINT_MAX)
2135 limit = 0;
2136 else
2137 limit = fls(ap->sata_spd_limit);
2138
2139 spd = (*scontrol >> 4) & 0xf;
2140 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2141
2142 return spd != limit;
2143}
2144
2145/**
3c567b7d 2146 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2147 * @ap: Port in question
2148 *
2149 * Test whether the spd limit in SControl matches
2150 * @ap->sata_spd_limit. This function is used to determine
2151 * whether hardreset is necessary to apply SATA spd
2152 * configuration.
2153 *
2154 * LOCKING:
2155 * Inherited from caller.
2156 *
2157 * RETURNS:
2158 * 1 if SATA spd configuration is needed, 0 otherwise.
2159 */
3c567b7d 2160int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2161{
2162 u32 scontrol;
2163
81952c54 2164 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2165 return 0;
2166
3c567b7d 2167 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2168}
2169
2170/**
3c567b7d 2171 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2172 * @ap: Port to set SATA spd for
2173 *
2174 * Set SATA spd of @ap according to sata_spd_limit.
2175 *
2176 * LOCKING:
2177 * Inherited from caller.
2178 *
2179 * RETURNS:
2180 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2181 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2182 */
3c567b7d 2183int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2184{
2185 u32 scontrol;
81952c54 2186 int rc;
1c3fae4d 2187
81952c54
TH
2188 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2189 return rc;
1c3fae4d 2190
3c567b7d 2191 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2192 return 0;
2193
81952c54
TH
2194 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2195 return rc;
2196
1c3fae4d
TH
2197 return 1;
2198}
2199
452503f9
AC
2200/*
2201 * This mode timing computation functionality is ported over from
2202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2203 */
2204/*
b352e57d 2205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2207 * for UDMA6, which is currently supported only by Maxtor drives.
2208 *
2209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2210 */
2211
2212static const struct ata_timing ata_timing[] = {
2213
2214 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2215 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2216 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2217 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2218
b352e57d
AC
2219 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2220 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2221 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2222 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2223 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2224
2225/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2226
452503f9
AC
2227 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2228 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2230
452503f9
AC
2231 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2232 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2233 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2234
b352e57d
AC
2235 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2236 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2237 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2238 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2239
2240 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2241 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2242 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2243
2244/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2245
2246 { 0xFF }
2247};
2248
2249#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2250#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2251
2252static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2253{
2254 q->setup = EZ(t->setup * 1000, T);
2255 q->act8b = EZ(t->act8b * 1000, T);
2256 q->rec8b = EZ(t->rec8b * 1000, T);
2257 q->cyc8b = EZ(t->cyc8b * 1000, T);
2258 q->active = EZ(t->active * 1000, T);
2259 q->recover = EZ(t->recover * 1000, T);
2260 q->cycle = EZ(t->cycle * 1000, T);
2261 q->udma = EZ(t->udma * 1000, UT);
2262}
2263
2264void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2265 struct ata_timing *m, unsigned int what)
2266{
2267 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2268 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2269 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2270 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2271 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2272 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2275}
2276
2277static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2278{
2279 const struct ata_timing *t;
2280
2281 for (t = ata_timing; t->mode != speed; t++)
91190758 2282 if (t->mode == 0xFF)
452503f9 2283 return NULL;
2e9edbf8 2284 return t;
452503f9
AC
2285}
2286
2287int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2288 struct ata_timing *t, int T, int UT)
2289{
2290 const struct ata_timing *s;
2291 struct ata_timing p;
2292
2293 /*
2e9edbf8 2294 * Find the mode.
75b1f2f8 2295 */
452503f9
AC
2296
2297 if (!(s = ata_timing_find_mode(speed)))
2298 return -EINVAL;
2299
75b1f2f8
AL
2300 memcpy(t, s, sizeof(*s));
2301
452503f9
AC
2302 /*
2303 * If the drive is an EIDE drive, it can tell us it needs extended
2304 * PIO/MW_DMA cycle timing.
2305 */
2306
2307 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2308 memset(&p, 0, sizeof(p));
2309 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2310 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2311 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2312 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2313 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2314 }
2315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2316 }
2317
2318 /*
2319 * Convert the timing to bus clock counts.
2320 */
2321
75b1f2f8 2322 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2323
2324 /*
c893a3ae
RD
2325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2326 * S.M.A.R.T * and some other commands. We have to ensure that the
2327 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2328 */
2329
fd3367af 2330 if (speed > XFER_PIO_6) {
452503f9
AC
2331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2333 }
2334
2335 /*
c893a3ae 2336 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2337 */
2338
2339 if (t->act8b + t->rec8b < t->cyc8b) {
2340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2341 t->rec8b = t->cyc8b - t->act8b;
2342 }
2343
2344 if (t->active + t->recover < t->cycle) {
2345 t->active += (t->cycle - (t->active + t->recover)) / 2;
2346 t->recover = t->cycle - t->active;
2347 }
2348
2349 return 0;
2350}
2351
cf176e1a
TH
2352/**
2353 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2354 * @dev: Device to adjust xfer masks
458337db 2355 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2356 *
2357 * Adjust xfer masks of @dev downward. Note that this function
2358 * does not apply the change. Invoking ata_set_mode() afterwards
2359 * will apply the limit.
2360 *
2361 * LOCKING:
2362 * Inherited from caller.
2363 *
2364 * RETURNS:
2365 * 0 on success, negative errno on failure
2366 */
458337db 2367int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2368{
458337db
TH
2369 char buf[32];
2370 unsigned int orig_mask, xfer_mask;
2371 unsigned int pio_mask, mwdma_mask, udma_mask;
2372 int quiet, highbit;
cf176e1a 2373
458337db
TH
2374 quiet = !!(sel & ATA_DNXFER_QUIET);
2375 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2376
458337db
TH
2377 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2378 dev->mwdma_mask,
2379 dev->udma_mask);
2380 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2381
458337db
TH
2382 switch (sel) {
2383 case ATA_DNXFER_PIO:
2384 highbit = fls(pio_mask) - 1;
2385 pio_mask &= ~(1 << highbit);
2386 break;
2387
2388 case ATA_DNXFER_DMA:
2389 if (udma_mask) {
2390 highbit = fls(udma_mask) - 1;
2391 udma_mask &= ~(1 << highbit);
2392 if (!udma_mask)
2393 return -ENOENT;
2394 } else if (mwdma_mask) {
2395 highbit = fls(mwdma_mask) - 1;
2396 mwdma_mask &= ~(1 << highbit);
2397 if (!mwdma_mask)
2398 return -ENOENT;
2399 }
2400 break;
2401
2402 case ATA_DNXFER_40C:
2403 udma_mask &= ATA_UDMA_MASK_40C;
2404 break;
2405
2406 case ATA_DNXFER_FORCE_PIO0:
2407 pio_mask &= 1;
2408 case ATA_DNXFER_FORCE_PIO:
2409 mwdma_mask = 0;
2410 udma_mask = 0;
2411 break;
2412
458337db
TH
2413 default:
2414 BUG();
2415 }
2416
2417 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2418
2419 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2420 return -ENOENT;
2421
2422 if (!quiet) {
2423 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2424 snprintf(buf, sizeof(buf), "%s:%s",
2425 ata_mode_string(xfer_mask),
2426 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2427 else
2428 snprintf(buf, sizeof(buf), "%s",
2429 ata_mode_string(xfer_mask));
2430
2431 ata_dev_printk(dev, KERN_WARNING,
2432 "limiting speed to %s\n", buf);
2433 }
cf176e1a
TH
2434
2435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2436 &dev->udma_mask);
2437
cf176e1a 2438 return 0;
cf176e1a
TH
2439}
2440
3373efd8 2441static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2442{
baa1e78a 2443 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2444 unsigned int err_mask;
2445 int rc;
1da177e4 2446
e8384607 2447 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2448 if (dev->xfer_shift == ATA_SHIFT_PIO)
2449 dev->flags |= ATA_DFLAG_PIO;
2450
3373efd8 2451 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2452 /* Old CFA may refuse this command, which is just fine */
2453 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2454 err_mask &= ~AC_ERR_DEV;
2455
83206a29 2456 if (err_mask) {
f15a1daf
TH
2457 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2458 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2459 return -EIO;
2460 }
1da177e4 2461
baa1e78a 2462 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2463 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2464 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2465 if (rc)
83206a29 2466 return rc;
48a8a14f 2467
23e71c3d
TH
2468 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2469 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2470
f15a1daf
TH
2471 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2472 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2473 return 0;
1da177e4
LT
2474}
2475
1da177e4
LT
2476/**
2477 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2478 * @ap: port on which timings will be programmed
e82cbdb9 2479 * @r_failed_dev: out paramter for failed device
1da177e4 2480 *
e82cbdb9
TH
2481 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2482 * ata_set_mode() fails, pointer to the failing device is
2483 * returned in @r_failed_dev.
780a87f7 2484 *
1da177e4 2485 * LOCKING:
0cba632b 2486 * PCI/etc. bus probe sem.
e82cbdb9
TH
2487 *
2488 * RETURNS:
2489 * 0 on success, negative errno otherwise
1da177e4 2490 */
1ad8e7f9 2491int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2492{
e8e0619f 2493 struct ata_device *dev;
e82cbdb9 2494 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2495
3adcebb2 2496 /* has private set_mode? */
b229a7b0
A
2497 if (ap->ops->set_mode)
2498 return ap->ops->set_mode(ap, r_failed_dev);
3adcebb2 2499
a6d5a51c
TH
2500 /* step 1: calculate xfer_mask */
2501 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2502 unsigned int pio_mask, dma_mask;
a6d5a51c 2503
e8e0619f
TH
2504 dev = &ap->device[i];
2505
e1211e3f 2506 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2507 continue;
2508
3373efd8 2509 ata_dev_xfermask(dev);
1da177e4 2510
acf356b1
TH
2511 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2512 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2513 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2514 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2515
4f65977d 2516 found = 1;
5444a6f4
AC
2517 if (dev->dma_mode)
2518 used_dma = 1;
a6d5a51c 2519 }
4f65977d 2520 if (!found)
e82cbdb9 2521 goto out;
a6d5a51c
TH
2522
2523 /* step 2: always set host PIO timings */
e8e0619f
TH
2524 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2525 dev = &ap->device[i];
2526 if (!ata_dev_enabled(dev))
2527 continue;
2528
2529 if (!dev->pio_mode) {
f15a1daf 2530 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2531 rc = -EINVAL;
e82cbdb9 2532 goto out;
e8e0619f
TH
2533 }
2534
2535 dev->xfer_mode = dev->pio_mode;
2536 dev->xfer_shift = ATA_SHIFT_PIO;
2537 if (ap->ops->set_piomode)
2538 ap->ops->set_piomode(ap, dev);
2539 }
1da177e4 2540
a6d5a51c 2541 /* step 3: set host DMA timings */
e8e0619f
TH
2542 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2543 dev = &ap->device[i];
2544
2545 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2546 continue;
2547
2548 dev->xfer_mode = dev->dma_mode;
2549 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2550 if (ap->ops->set_dmamode)
2551 ap->ops->set_dmamode(ap, dev);
2552 }
1da177e4
LT
2553
2554 /* step 4: update devices' xfer mode */
83206a29 2555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2556 dev = &ap->device[i];
1da177e4 2557
18d90deb 2558 /* don't update suspended devices' xfer mode */
02670bf3 2559 if (!ata_dev_ready(dev))
83206a29
TH
2560 continue;
2561
3373efd8 2562 rc = ata_dev_set_mode(dev);
5bbc53f4 2563 if (rc)
e82cbdb9 2564 goto out;
83206a29 2565 }
1da177e4 2566
e8e0619f
TH
2567 /* Record simplex status. If we selected DMA then the other
2568 * host channels are not permitted to do so.
5444a6f4 2569 */
cca3974e 2570 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2571 ap->host->simplex_claimed = ap;
5444a6f4 2572
e8e0619f 2573 /* step5: chip specific finalisation */
1da177e4
LT
2574 if (ap->ops->post_set_mode)
2575 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2576 out:
2577 if (rc)
2578 *r_failed_dev = dev;
2579 return rc;
1da177e4
LT
2580}
2581
1fdffbce
JG
2582/**
2583 * ata_tf_to_host - issue ATA taskfile to host controller
2584 * @ap: port to which command is being issued
2585 * @tf: ATA taskfile register set
2586 *
2587 * Issues ATA taskfile register set to ATA host controller,
2588 * with proper synchronization with interrupt handler and
2589 * other threads.
2590 *
2591 * LOCKING:
cca3974e 2592 * spin_lock_irqsave(host lock)
1fdffbce
JG
2593 */
2594
2595static inline void ata_tf_to_host(struct ata_port *ap,
2596 const struct ata_taskfile *tf)
2597{
2598 ap->ops->tf_load(ap, tf);
2599 ap->ops->exec_command(ap, tf);
2600}
2601
1da177e4
LT
2602/**
2603 * ata_busy_sleep - sleep until BSY clears, or timeout
2604 * @ap: port containing status register to be polled
2605 * @tmout_pat: impatience timeout
2606 * @tmout: overall timeout
2607 *
780a87f7
JG
2608 * Sleep until ATA Status register bit BSY clears,
2609 * or a timeout occurs.
2610 *
d1adc1bb
TH
2611 * LOCKING:
2612 * Kernel thread context (may sleep).
2613 *
2614 * RETURNS:
2615 * 0 on success, -errno otherwise.
1da177e4 2616 */
d1adc1bb
TH
2617int ata_busy_sleep(struct ata_port *ap,
2618 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2619{
2620 unsigned long timer_start, timeout;
2621 u8 status;
2622
2623 status = ata_busy_wait(ap, ATA_BUSY, 300);
2624 timer_start = jiffies;
2625 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2626 while (status != 0xff && (status & ATA_BUSY) &&
2627 time_before(jiffies, timeout)) {
1da177e4
LT
2628 msleep(50);
2629 status = ata_busy_wait(ap, ATA_BUSY, 3);
2630 }
2631
d1adc1bb 2632 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2633 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2634 "port is slow to respond, please be patient "
2635 "(Status 0x%x)\n", status);
1da177e4
LT
2636
2637 timeout = timer_start + tmout;
d1adc1bb
TH
2638 while (status != 0xff && (status & ATA_BUSY) &&
2639 time_before(jiffies, timeout)) {
1da177e4
LT
2640 msleep(50);
2641 status = ata_chk_status(ap);
2642 }
2643
d1adc1bb
TH
2644 if (status == 0xff)
2645 return -ENODEV;
2646
1da177e4 2647 if (status & ATA_BUSY) {
f15a1daf 2648 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2649 "(%lu secs, Status 0x%x)\n",
2650 tmout / HZ, status);
d1adc1bb 2651 return -EBUSY;
1da177e4
LT
2652 }
2653
2654 return 0;
2655}
2656
2657static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2658{
2659 struct ata_ioports *ioaddr = &ap->ioaddr;
2660 unsigned int dev0 = devmask & (1 << 0);
2661 unsigned int dev1 = devmask & (1 << 1);
2662 unsigned long timeout;
2663
2664 /* if device 0 was found in ata_devchk, wait for its
2665 * BSY bit to clear
2666 */
2667 if (dev0)
2668 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2669
2670 /* if device 1 was found in ata_devchk, wait for
2671 * register access, then wait for BSY to clear
2672 */
2673 timeout = jiffies + ATA_TMOUT_BOOT;
2674 while (dev1) {
2675 u8 nsect, lbal;
2676
2677 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2678 nsect = ioread8(ioaddr->nsect_addr);
2679 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2680 if ((nsect == 1) && (lbal == 1))
2681 break;
2682 if (time_after(jiffies, timeout)) {
2683 dev1 = 0;
2684 break;
2685 }
2686 msleep(50); /* give drive a breather */
2687 }
2688 if (dev1)
2689 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2690
2691 /* is all this really necessary? */
2692 ap->ops->dev_select(ap, 0);
2693 if (dev1)
2694 ap->ops->dev_select(ap, 1);
2695 if (dev0)
2696 ap->ops->dev_select(ap, 0);
2697}
2698
1da177e4
LT
2699static unsigned int ata_bus_softreset(struct ata_port *ap,
2700 unsigned int devmask)
2701{
2702 struct ata_ioports *ioaddr = &ap->ioaddr;
2703
44877b4e 2704 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
2705
2706 /* software reset. causes dev0 to be selected */
0d5ff566
TH
2707 iowrite8(ap->ctl, ioaddr->ctl_addr);
2708 udelay(20); /* FIXME: flush */
2709 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2710 udelay(20); /* FIXME: flush */
2711 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2712
2713 /* spec mandates ">= 2ms" before checking status.
2714 * We wait 150ms, because that was the magic delay used for
2715 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2716 * between when the ATA command register is written, and then
2717 * status is checked. Because waiting for "a while" before
2718 * checking status is fine, post SRST, we perform this magic
2719 * delay here as well.
09c7ad79
AC
2720 *
2721 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2722 */
2723 msleep(150);
2724
2e9edbf8 2725 /* Before we perform post reset processing we want to see if
298a41ca
TH
2726 * the bus shows 0xFF because the odd clown forgets the D7
2727 * pulldown resistor.
2728 */
d1adc1bb
TH
2729 if (ata_check_status(ap) == 0xFF)
2730 return 0;
09c7ad79 2731
1da177e4
LT
2732 ata_bus_post_reset(ap, devmask);
2733
2734 return 0;
2735}
2736
2737/**
2738 * ata_bus_reset - reset host port and associated ATA channel
2739 * @ap: port to reset
2740 *
2741 * This is typically the first time we actually start issuing
2742 * commands to the ATA channel. We wait for BSY to clear, then
2743 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2744 * result. Determine what devices, if any, are on the channel
2745 * by looking at the device 0/1 error register. Look at the signature
2746 * stored in each device's taskfile registers, to determine if
2747 * the device is ATA or ATAPI.
2748 *
2749 * LOCKING:
0cba632b 2750 * PCI/etc. bus probe sem.
cca3974e 2751 * Obtains host lock.
1da177e4
LT
2752 *
2753 * SIDE EFFECTS:
198e0fed 2754 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2755 */
2756
2757void ata_bus_reset(struct ata_port *ap)
2758{
2759 struct ata_ioports *ioaddr = &ap->ioaddr;
2760 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2761 u8 err;
aec5c3c1 2762 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4 2763
44877b4e 2764 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
2765
2766 /* determine if device 0/1 are present */
2767 if (ap->flags & ATA_FLAG_SATA_RESET)
2768 dev0 = 1;
2769 else {
2770 dev0 = ata_devchk(ap, 0);
2771 if (slave_possible)
2772 dev1 = ata_devchk(ap, 1);
2773 }
2774
2775 if (dev0)
2776 devmask |= (1 << 0);
2777 if (dev1)
2778 devmask |= (1 << 1);
2779
2780 /* select device 0 again */
2781 ap->ops->dev_select(ap, 0);
2782
2783 /* issue bus reset */
2784 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2785 if (ata_bus_softreset(ap, devmask))
2786 goto err_out;
1da177e4
LT
2787
2788 /*
2789 * determine by signature whether we have ATA or ATAPI devices
2790 */
b4dc7623 2791 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2792 if ((slave_possible) && (err != 0x81))
b4dc7623 2793 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2794
2795 /* re-enable interrupts */
83625006 2796 ap->ops->irq_on(ap);
1da177e4
LT
2797
2798 /* is double-select really necessary? */
2799 if (ap->device[1].class != ATA_DEV_NONE)
2800 ap->ops->dev_select(ap, 1);
2801 if (ap->device[0].class != ATA_DEV_NONE)
2802 ap->ops->dev_select(ap, 0);
2803
2804 /* if no devices were detected, disable this port */
2805 if ((ap->device[0].class == ATA_DEV_NONE) &&
2806 (ap->device[1].class == ATA_DEV_NONE))
2807 goto err_out;
2808
2809 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2810 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 2811 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2812 }
2813
2814 DPRINTK("EXIT\n");
2815 return;
2816
2817err_out:
f15a1daf 2818 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2819 ap->ops->port_disable(ap);
2820
2821 DPRINTK("EXIT\n");
2822}
2823
d7bb4cc7
TH
2824/**
2825 * sata_phy_debounce - debounce SATA phy status
2826 * @ap: ATA port to debounce SATA phy status for
2827 * @params: timing parameters { interval, duratinon, timeout } in msec
2828 *
2829 * Make sure SStatus of @ap reaches stable state, determined by
2830 * holding the same value where DET is not 1 for @duration polled
2831 * every @interval, before @timeout. Timeout constraints the
2832 * beginning of the stable state. Because, after hot unplugging,
2833 * DET gets stuck at 1 on some controllers, this functions waits
2834 * until timeout then returns 0 if DET is stable at 1.
2835 *
2836 * LOCKING:
2837 * Kernel thread context (may sleep)
2838 *
2839 * RETURNS:
2840 * 0 on success, -errno on failure.
2841 */
2842int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2843{
d7bb4cc7
TH
2844 unsigned long interval_msec = params[0];
2845 unsigned long duration = params[1] * HZ / 1000;
2846 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2847 unsigned long last_jiffies;
2848 u32 last, cur;
2849 int rc;
2850
2851 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2852 return rc;
2853 cur &= 0xf;
2854
2855 last = cur;
2856 last_jiffies = jiffies;
2857
2858 while (1) {
2859 msleep(interval_msec);
2860 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2861 return rc;
2862 cur &= 0xf;
2863
2864 /* DET stable? */
2865 if (cur == last) {
2866 if (cur == 1 && time_before(jiffies, timeout))
2867 continue;
2868 if (time_after(jiffies, last_jiffies + duration))
2869 return 0;
2870 continue;
2871 }
2872
2873 /* unstable, start over */
2874 last = cur;
2875 last_jiffies = jiffies;
2876
2877 /* check timeout */
2878 if (time_after(jiffies, timeout))
2879 return -EBUSY;
2880 }
2881}
2882
2883/**
2884 * sata_phy_resume - resume SATA phy
2885 * @ap: ATA port to resume SATA phy for
2886 * @params: timing parameters { interval, duratinon, timeout } in msec
2887 *
2888 * Resume SATA phy of @ap and debounce it.
2889 *
2890 * LOCKING:
2891 * Kernel thread context (may sleep)
2892 *
2893 * RETURNS:
2894 * 0 on success, -errno on failure.
2895 */
2896int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2897{
2898 u32 scontrol;
81952c54
TH
2899 int rc;
2900
2901 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2902 return rc;
7a7921e8 2903
852ee16a 2904 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2905
2906 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2907 return rc;
7a7921e8 2908
d7bb4cc7
TH
2909 /* Some PHYs react badly if SStatus is pounded immediately
2910 * after resuming. Delay 200ms before debouncing.
2911 */
2912 msleep(200);
7a7921e8 2913
d7bb4cc7 2914 return sata_phy_debounce(ap, params);
7a7921e8
TH
2915}
2916
f5914a46
TH
2917static void ata_wait_spinup(struct ata_port *ap)
2918{
2919 struct ata_eh_context *ehc = &ap->eh_context;
2920 unsigned long end, secs;
2921 int rc;
2922
2923 /* first, debounce phy if SATA */
2924 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2925 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2926
2927 /* if debounced successfully and offline, no need to wait */
2928 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2929 return;
2930 }
2931
2932 /* okay, let's give the drive time to spin up */
2933 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2934 secs = ((end - jiffies) + HZ - 1) / HZ;
2935
2936 if (time_after(jiffies, end))
2937 return;
2938
2939 if (secs > 5)
2940 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2941 "(%lu secs)\n", secs);
2942
2943 schedule_timeout_uninterruptible(end - jiffies);
2944}
2945
2946/**
2947 * ata_std_prereset - prepare for reset
2948 * @ap: ATA port to be reset
2949 *
2950 * @ap is about to be reset. Initialize it.
2951 *
2952 * LOCKING:
2953 * Kernel thread context (may sleep)
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
2957 */
2958int ata_std_prereset(struct ata_port *ap)
2959{
2960 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2961 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2962 int rc;
2963
28324304
TH
2964 /* handle link resume & hotplug spinup */
2965 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2966 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2967 ehc->i.action |= ATA_EH_HARDRESET;
2968
2969 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2970 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2971 ata_wait_spinup(ap);
f5914a46
TH
2972
2973 /* if we're about to do hardreset, nothing more to do */
2974 if (ehc->i.action & ATA_EH_HARDRESET)
2975 return 0;
2976
2977 /* if SATA, resume phy */
2978 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2979 rc = sata_phy_resume(ap, timing);
2980 if (rc && rc != -EOPNOTSUPP) {
2981 /* phy resume failed */
2982 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2983 "link for reset (errno=%d)\n", rc);
2984 return rc;
2985 }
2986 }
2987
2988 /* Wait for !BSY if the controller can wait for the first D2H
2989 * Reg FIS and we don't know that no device is attached.
2990 */
2991 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2992 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2993
2994 return 0;
2995}
2996
c2bd5804
TH
2997/**
2998 * ata_std_softreset - reset host port via ATA SRST
2999 * @ap: port to reset
c2bd5804
TH
3000 * @classes: resulting classes of attached devices
3001 *
52783c5d 3002 * Reset host port using ATA SRST.
c2bd5804
TH
3003 *
3004 * LOCKING:
3005 * Kernel thread context (may sleep)
3006 *
3007 * RETURNS:
3008 * 0 on success, -errno otherwise.
3009 */
2bf2cb26 3010int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
3011{
3012 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3013 unsigned int devmask = 0, err_mask;
3014 u8 err;
3015
3016 DPRINTK("ENTER\n");
3017
81952c54 3018 if (ata_port_offline(ap)) {
3a39746a
TH
3019 classes[0] = ATA_DEV_NONE;
3020 goto out;
3021 }
3022
c2bd5804
TH
3023 /* determine if device 0/1 are present */
3024 if (ata_devchk(ap, 0))
3025 devmask |= (1 << 0);
3026 if (slave_possible && ata_devchk(ap, 1))
3027 devmask |= (1 << 1);
3028
c2bd5804
TH
3029 /* select device 0 again */
3030 ap->ops->dev_select(ap, 0);
3031
3032 /* issue bus reset */
3033 DPRINTK("about to softreset, devmask=%x\n", devmask);
3034 err_mask = ata_bus_softreset(ap, devmask);
3035 if (err_mask) {
f15a1daf
TH
3036 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3037 err_mask);
c2bd5804
TH
3038 return -EIO;
3039 }
3040
3041 /* determine by signature whether we have ATA or ATAPI devices */
3042 classes[0] = ata_dev_try_classify(ap, 0, &err);
3043 if (slave_possible && err != 0x81)
3044 classes[1] = ata_dev_try_classify(ap, 1, &err);
3045
3a39746a 3046 out:
c2bd5804
TH
3047 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3048 return 0;
3049}
3050
3051/**
b6103f6d 3052 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3053 * @ap: port to reset
b6103f6d 3054 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3055 *
3056 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3057 *
3058 * LOCKING:
3059 * Kernel thread context (may sleep)
3060 *
3061 * RETURNS:
3062 * 0 on success, -errno otherwise.
3063 */
b6103f6d 3064int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3065{
852ee16a 3066 u32 scontrol;
81952c54 3067 int rc;
852ee16a 3068
c2bd5804
TH
3069 DPRINTK("ENTER\n");
3070
3c567b7d 3071 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3072 /* SATA spec says nothing about how to reconfigure
3073 * spd. To be on the safe side, turn off phy during
3074 * reconfiguration. This works for at least ICH7 AHCI
3075 * and Sil3124.
3076 */
81952c54 3077 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3078 goto out;
81952c54 3079
a34b6fc0 3080 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3081
3082 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3083 goto out;
1c3fae4d 3084
3c567b7d 3085 sata_set_spd(ap);
1c3fae4d
TH
3086 }
3087
3088 /* issue phy wake/reset */
81952c54 3089 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3090 goto out;
81952c54 3091
852ee16a 3092 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3093
3094 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3095 goto out;
c2bd5804 3096
1c3fae4d 3097 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3098 * 10.4.2 says at least 1 ms.
3099 */
3100 msleep(1);
3101
1c3fae4d 3102 /* bring phy back */
b6103f6d
TH
3103 rc = sata_phy_resume(ap, timing);
3104 out:
3105 DPRINTK("EXIT, rc=%d\n", rc);
3106 return rc;
3107}
3108
3109/**
3110 * sata_std_hardreset - reset host port via SATA phy reset
3111 * @ap: port to reset
3112 * @class: resulting class of attached device
3113 *
3114 * SATA phy-reset host port using DET bits of SControl register,
3115 * wait for !BSY and classify the attached device.
3116 *
3117 * LOCKING:
3118 * Kernel thread context (may sleep)
3119 *
3120 * RETURNS:
3121 * 0 on success, -errno otherwise.
3122 */
3123int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3124{
3125 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3126 int rc;
3127
3128 DPRINTK("ENTER\n");
3129
3130 /* do hardreset */
3131 rc = sata_port_hardreset(ap, timing);
3132 if (rc) {
3133 ata_port_printk(ap, KERN_ERR,
3134 "COMRESET failed (errno=%d)\n", rc);
3135 return rc;
3136 }
c2bd5804 3137
c2bd5804 3138 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3139 if (ata_port_offline(ap)) {
c2bd5804
TH
3140 *class = ATA_DEV_NONE;
3141 DPRINTK("EXIT, link offline\n");
3142 return 0;
3143 }
3144
34fee227
TH
3145 /* wait a while before checking status, see SRST for more info */
3146 msleep(150);
3147
c2bd5804 3148 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3149 ata_port_printk(ap, KERN_ERR,
3150 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3151 return -EIO;
3152 }
3153
3a39746a
TH
3154 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3155
c2bd5804
TH
3156 *class = ata_dev_try_classify(ap, 0, NULL);
3157
3158 DPRINTK("EXIT, class=%u\n", *class);
3159 return 0;
3160}
3161
3162/**
3163 * ata_std_postreset - standard postreset callback
3164 * @ap: the target ata_port
3165 * @classes: classes of attached devices
3166 *
3167 * This function is invoked after a successful reset. Note that
3168 * the device might have been reset more than once using
3169 * different reset methods before postreset is invoked.
c2bd5804 3170 *
c2bd5804
TH
3171 * LOCKING:
3172 * Kernel thread context (may sleep)
3173 */
3174void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3175{
dc2b3515
TH
3176 u32 serror;
3177
c2bd5804
TH
3178 DPRINTK("ENTER\n");
3179
c2bd5804 3180 /* print link status */
81952c54 3181 sata_print_link_status(ap);
c2bd5804 3182
dc2b3515
TH
3183 /* clear SError */
3184 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3185 sata_scr_write(ap, SCR_ERROR, serror);
3186
3a39746a 3187 /* re-enable interrupts */
83625006
AI
3188 if (!ap->ops->error_handler)
3189 ap->ops->irq_on(ap);
c2bd5804
TH
3190
3191 /* is double-select really necessary? */
3192 if (classes[0] != ATA_DEV_NONE)
3193 ap->ops->dev_select(ap, 1);
3194 if (classes[1] != ATA_DEV_NONE)
3195 ap->ops->dev_select(ap, 0);
3196
3a39746a
TH
3197 /* bail out if no device is present */
3198 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3199 DPRINTK("EXIT, no device\n");
3200 return;
3201 }
3202
3203 /* set up device control */
0d5ff566
TH
3204 if (ap->ioaddr.ctl_addr)
3205 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3206
3207 DPRINTK("EXIT\n");
3208}
3209
623a3128
TH
3210/**
3211 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3212 * @dev: device to compare against
3213 * @new_class: class of the new device
3214 * @new_id: IDENTIFY page of the new device
3215 *
3216 * Compare @new_class and @new_id against @dev and determine
3217 * whether @dev is the device indicated by @new_class and
3218 * @new_id.
3219 *
3220 * LOCKING:
3221 * None.
3222 *
3223 * RETURNS:
3224 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3225 */
3373efd8
TH
3226static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3227 const u16 *new_id)
623a3128
TH
3228{
3229 const u16 *old_id = dev->id;
a0cf733b
TH
3230 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3231 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3232 u64 new_n_sectors;
3233
3234 if (dev->class != new_class) {
f15a1daf
TH
3235 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3236 dev->class, new_class);
623a3128
TH
3237 return 0;
3238 }
3239
a0cf733b
TH
3240 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3241 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3242 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3243 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3244 new_n_sectors = ata_id_n_sectors(new_id);
3245
3246 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3247 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3248 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3249 return 0;
3250 }
3251
3252 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3253 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3254 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3255 return 0;
3256 }
3257
3258 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3259 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3260 "%llu != %llu\n",
3261 (unsigned long long)dev->n_sectors,
3262 (unsigned long long)new_n_sectors);
623a3128
TH
3263 return 0;
3264 }
3265
3266 return 1;
3267}
3268
3269/**
3270 * ata_dev_revalidate - Revalidate ATA device
623a3128 3271 * @dev: device to revalidate
bff04647 3272 * @readid_flags: read ID flags
623a3128
TH
3273 *
3274 * Re-read IDENTIFY page and make sure @dev is still attached to
3275 * the port.
3276 *
3277 * LOCKING:
3278 * Kernel thread context (may sleep)
3279 *
3280 * RETURNS:
3281 * 0 on success, negative errno otherwise
3282 */
bff04647 3283int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3284{
5eb45c02 3285 unsigned int class = dev->class;
f15a1daf 3286 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3287 int rc;
3288
5eb45c02
TH
3289 if (!ata_dev_enabled(dev)) {
3290 rc = -ENODEV;
3291 goto fail;
3292 }
623a3128 3293
fe635c7e 3294 /* read ID data */
bff04647 3295 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3296 if (rc)
3297 goto fail;
3298
3299 /* is the device still there? */
3373efd8 3300 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3301 rc = -ENODEV;
3302 goto fail;
3303 }
3304
fe635c7e 3305 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3306
3307 /* configure device according to the new ID */
efdaedc4 3308 rc = ata_dev_configure(dev);
5eb45c02
TH
3309 if (rc == 0)
3310 return 0;
623a3128
TH
3311
3312 fail:
f15a1daf 3313 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3314 return rc;
3315}
3316
6919a0a6
AC
3317struct ata_blacklist_entry {
3318 const char *model_num;
3319 const char *model_rev;
3320 unsigned long horkage;
3321};
3322
3323static const struct ata_blacklist_entry ata_device_blacklist [] = {
3324 /* Devices with DMA related problems under Linux */
3325 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3326 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3327 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3328 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3329 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3330 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3331 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3332 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3333 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3334 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3335 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3336 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3337 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3338 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3339 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3340 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3341 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3342 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3343 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3344 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3345 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3346 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3347 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3348 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3349 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3350 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3351 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3352 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3353 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3354
3355 /* Devices we expect to fail diagnostics */
3356
3357 /* Devices where NCQ should be avoided */
3358 /* NCQ is slow */
3359 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3360 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3361 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3362 /* NCQ is broken */
3363 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
6919a0a6
AC
3364
3365 /* Devices with NCQ limits */
3366
3367 /* End Marker */
3368 { }
1da177e4 3369};
2e9edbf8 3370
6919a0a6 3371unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3372{
8bfa79fc
TH
3373 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3374 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3375 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3376
8bfa79fc
TH
3377 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3378 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3379
6919a0a6 3380 while (ad->model_num) {
8bfa79fc 3381 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3382 if (ad->model_rev == NULL)
3383 return ad->horkage;
8bfa79fc 3384 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3385 return ad->horkage;
f4b15fef 3386 }
6919a0a6 3387 ad++;
f4b15fef 3388 }
1da177e4
LT
3389 return 0;
3390}
3391
6919a0a6
AC
3392static int ata_dma_blacklisted(const struct ata_device *dev)
3393{
3394 /* We don't support polling DMA.
3395 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3396 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3397 */
3398 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3399 (dev->flags & ATA_DFLAG_CDB_INTR))
3400 return 1;
3401 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3402}
3403
a6d5a51c
TH
3404/**
3405 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3406 * @dev: Device to compute xfermask for
3407 *
acf356b1
TH
3408 * Compute supported xfermask of @dev and store it in
3409 * dev->*_mask. This function is responsible for applying all
3410 * known limits including host controller limits, device
3411 * blacklist, etc...
a6d5a51c
TH
3412 *
3413 * LOCKING:
3414 * None.
a6d5a51c 3415 */
3373efd8 3416static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3417{
3373efd8 3418 struct ata_port *ap = dev->ap;
cca3974e 3419 struct ata_host *host = ap->host;
a6d5a51c 3420 unsigned long xfer_mask;
1da177e4 3421
37deecb5 3422 /* controller modes available */
565083e1
TH
3423 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3424 ap->mwdma_mask, ap->udma_mask);
3425
3426 /* Apply cable rule here. Don't apply it early because when
3427 * we handle hot plug the cable type can itself change.
3428 */
3429 if (ap->cbl == ATA_CBL_PATA40)
3430 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3431 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3432 * host side are checked drive side as well. Cases where we know a
3433 * 40wire cable is used safely for 80 are not checked here.
3434 */
3435 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3436 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3437
1da177e4 3438
37deecb5
TH
3439 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3440 dev->mwdma_mask, dev->udma_mask);
3441 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3442
b352e57d
AC
3443 /*
3444 * CFA Advanced TrueIDE timings are not allowed on a shared
3445 * cable
3446 */
3447 if (ata_dev_pair(dev)) {
3448 /* No PIO5 or PIO6 */
3449 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3450 /* No MWDMA3 or MWDMA 4 */
3451 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3452 }
3453
37deecb5
TH
3454 if (ata_dma_blacklisted(dev)) {
3455 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3456 ata_dev_printk(dev, KERN_WARNING,
3457 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3458 }
a6d5a51c 3459
14d66ab7
PV
3460 if ((host->flags & ATA_HOST_SIMPLEX) &&
3461 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3462 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3463 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3464 "other device, disabling DMA\n");
5444a6f4 3465 }
565083e1 3466
5444a6f4
AC
3467 if (ap->ops->mode_filter)
3468 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3469
565083e1
TH
3470 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3471 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3472}
3473
1da177e4
LT
3474/**
3475 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3476 * @dev: Device to which command will be sent
3477 *
780a87f7
JG
3478 * Issue SET FEATURES - XFER MODE command to device @dev
3479 * on port @ap.
3480 *
1da177e4 3481 * LOCKING:
0cba632b 3482 * PCI/etc. bus probe sem.
83206a29
TH
3483 *
3484 * RETURNS:
3485 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3486 */
3487
3373efd8 3488static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3489{
a0123703 3490 struct ata_taskfile tf;
83206a29 3491 unsigned int err_mask;
1da177e4
LT
3492
3493 /* set up set-features taskfile */
3494 DPRINTK("set features - xfer mode\n");
3495
3373efd8 3496 ata_tf_init(dev, &tf);
a0123703
TH
3497 tf.command = ATA_CMD_SET_FEATURES;
3498 tf.feature = SETFEATURES_XFER;
3499 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3500 tf.protocol = ATA_PROT_NODATA;
3501 tf.nsect = dev->xfer_mode;
1da177e4 3502
3373efd8 3503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3504
83206a29
TH
3505 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3506 return err_mask;
1da177e4
LT
3507}
3508
8bf62ece
AL
3509/**
3510 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3511 * @dev: Device to which command will be sent
e2a7f77a
RD
3512 * @heads: Number of heads (taskfile parameter)
3513 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3514 *
3515 * LOCKING:
6aff8f1f
TH
3516 * Kernel thread context (may sleep)
3517 *
3518 * RETURNS:
3519 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3520 */
3373efd8
TH
3521static unsigned int ata_dev_init_params(struct ata_device *dev,
3522 u16 heads, u16 sectors)
8bf62ece 3523{
a0123703 3524 struct ata_taskfile tf;
6aff8f1f 3525 unsigned int err_mask;
8bf62ece
AL
3526
3527 /* Number of sectors per track 1-255. Number of heads 1-16 */
3528 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3529 return AC_ERR_INVALID;
8bf62ece
AL
3530
3531 /* set up init dev params taskfile */
3532 DPRINTK("init dev params \n");
3533
3373efd8 3534 ata_tf_init(dev, &tf);
a0123703
TH
3535 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3536 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3537 tf.protocol = ATA_PROT_NODATA;
3538 tf.nsect = sectors;
3539 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3540
3373efd8 3541 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3542
6aff8f1f
TH
3543 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3544 return err_mask;
8bf62ece
AL
3545}
3546
1da177e4 3547/**
0cba632b
JG
3548 * ata_sg_clean - Unmap DMA memory associated with command
3549 * @qc: Command containing DMA memory to be released
3550 *
3551 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3552 *
3553 * LOCKING:
cca3974e 3554 * spin_lock_irqsave(host lock)
1da177e4 3555 */
70e6ad0c 3556void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3557{
3558 struct ata_port *ap = qc->ap;
cedc9a47 3559 struct scatterlist *sg = qc->__sg;
1da177e4 3560 int dir = qc->dma_dir;
cedc9a47 3561 void *pad_buf = NULL;
1da177e4 3562
a4631474
TH
3563 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3564 WARN_ON(sg == NULL);
1da177e4
LT
3565
3566 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3567 WARN_ON(qc->n_elem > 1);
1da177e4 3568
2c13b7ce 3569 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3570
cedc9a47
JG
3571 /* if we padded the buffer out to 32-bit bound, and data
3572 * xfer direction is from-device, we must copy from the
3573 * pad buffer back into the supplied buffer
3574 */
3575 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3576 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3577
3578 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3579 if (qc->n_elem)
2f1f610b 3580 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3581 /* restore last sg */
3582 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3583 if (pad_buf) {
3584 struct scatterlist *psg = &qc->pad_sgent;
3585 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3586 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3587 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3588 }
3589 } else {
2e242fa9 3590 if (qc->n_elem)
2f1f610b 3591 dma_unmap_single(ap->dev,
e1410f2d
JG
3592 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3593 dir);
cedc9a47
JG
3594 /* restore sg */
3595 sg->length += qc->pad_len;
3596 if (pad_buf)
3597 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3598 pad_buf, qc->pad_len);
3599 }
1da177e4
LT
3600
3601 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3602 qc->__sg = NULL;
1da177e4
LT
3603}
3604
3605/**
3606 * ata_fill_sg - Fill PCI IDE PRD table
3607 * @qc: Metadata associated with taskfile to be transferred
3608 *
780a87f7
JG
3609 * Fill PCI IDE PRD (scatter-gather) table with segments
3610 * associated with the current disk command.
3611 *
1da177e4 3612 * LOCKING:
cca3974e 3613 * spin_lock_irqsave(host lock)
1da177e4
LT
3614 *
3615 */
3616static void ata_fill_sg(struct ata_queued_cmd *qc)
3617{
1da177e4 3618 struct ata_port *ap = qc->ap;
cedc9a47
JG
3619 struct scatterlist *sg;
3620 unsigned int idx;
1da177e4 3621
a4631474 3622 WARN_ON(qc->__sg == NULL);
f131883e 3623 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3624
3625 idx = 0;
cedc9a47 3626 ata_for_each_sg(sg, qc) {
1da177e4
LT
3627 u32 addr, offset;
3628 u32 sg_len, len;
3629
3630 /* determine if physical DMA addr spans 64K boundary.
3631 * Note h/w doesn't support 64-bit, so we unconditionally
3632 * truncate dma_addr_t to u32.
3633 */
3634 addr = (u32) sg_dma_address(sg);
3635 sg_len = sg_dma_len(sg);
3636
3637 while (sg_len) {
3638 offset = addr & 0xffff;
3639 len = sg_len;
3640 if ((offset + sg_len) > 0x10000)
3641 len = 0x10000 - offset;
3642
3643 ap->prd[idx].addr = cpu_to_le32(addr);
3644 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3645 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3646
3647 idx++;
3648 sg_len -= len;
3649 addr += len;
3650 }
3651 }
3652
3653 if (idx)
3654 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3655}
3656/**
3657 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3658 * @qc: Metadata associated with taskfile to check
3659 *
780a87f7
JG
3660 * Allow low-level driver to filter ATA PACKET commands, returning
3661 * a status indicating whether or not it is OK to use DMA for the
3662 * supplied PACKET command.
3663 *
1da177e4 3664 * LOCKING:
cca3974e 3665 * spin_lock_irqsave(host lock)
0cba632b 3666 *
1da177e4
LT
3667 * RETURNS: 0 when ATAPI DMA can be used
3668 * nonzero otherwise
3669 */
3670int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3671{
3672 struct ata_port *ap = qc->ap;
3673 int rc = 0; /* Assume ATAPI DMA is OK by default */
3674
3675 if (ap->ops->check_atapi_dma)
3676 rc = ap->ops->check_atapi_dma(qc);
3677
3678 return rc;
3679}
3680/**
3681 * ata_qc_prep - Prepare taskfile for submission
3682 * @qc: Metadata associated with taskfile to be prepared
3683 *
780a87f7
JG
3684 * Prepare ATA taskfile for submission.
3685 *
1da177e4 3686 * LOCKING:
cca3974e 3687 * spin_lock_irqsave(host lock)
1da177e4
LT
3688 */
3689void ata_qc_prep(struct ata_queued_cmd *qc)
3690{
3691 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3692 return;
3693
3694 ata_fill_sg(qc);
3695}
3696
e46834cd
BK
3697void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3698
0cba632b
JG
3699/**
3700 * ata_sg_init_one - Associate command with memory buffer
3701 * @qc: Command to be associated
3702 * @buf: Memory buffer
3703 * @buflen: Length of memory buffer, in bytes.
3704 *
3705 * Initialize the data-related elements of queued_cmd @qc
3706 * to point to a single memory buffer, @buf of byte length @buflen.
3707 *
3708 * LOCKING:
cca3974e 3709 * spin_lock_irqsave(host lock)
0cba632b
JG
3710 */
3711
1da177e4
LT
3712void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3713{
1da177e4
LT
3714 qc->flags |= ATA_QCFLAG_SINGLE;
3715
cedc9a47 3716 qc->__sg = &qc->sgent;
1da177e4 3717 qc->n_elem = 1;
cedc9a47 3718 qc->orig_n_elem = 1;
1da177e4 3719 qc->buf_virt = buf;
233277ca 3720 qc->nbytes = buflen;
1da177e4 3721
61c0596c 3722 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3723}
3724
0cba632b
JG
3725/**
3726 * ata_sg_init - Associate command with scatter-gather table.
3727 * @qc: Command to be associated
3728 * @sg: Scatter-gather table.
3729 * @n_elem: Number of elements in s/g table.
3730 *
3731 * Initialize the data-related elements of queued_cmd @qc
3732 * to point to a scatter-gather table @sg, containing @n_elem
3733 * elements.
3734 *
3735 * LOCKING:
cca3974e 3736 * spin_lock_irqsave(host lock)
0cba632b
JG
3737 */
3738
1da177e4
LT
3739void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3740 unsigned int n_elem)
3741{
3742 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3743 qc->__sg = sg;
1da177e4 3744 qc->n_elem = n_elem;
cedc9a47 3745 qc->orig_n_elem = n_elem;
1da177e4
LT
3746}
3747
3748/**
0cba632b
JG
3749 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3750 * @qc: Command with memory buffer to be mapped.
3751 *
3752 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3753 *
3754 * LOCKING:
cca3974e 3755 * spin_lock_irqsave(host lock)
1da177e4
LT
3756 *
3757 * RETURNS:
0cba632b 3758 * Zero on success, negative on error.
1da177e4
LT
3759 */
3760
3761static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3762{
3763 struct ata_port *ap = qc->ap;
3764 int dir = qc->dma_dir;
cedc9a47 3765 struct scatterlist *sg = qc->__sg;
1da177e4 3766 dma_addr_t dma_address;
2e242fa9 3767 int trim_sg = 0;
1da177e4 3768
cedc9a47
JG
3769 /* we must lengthen transfers to end on a 32-bit boundary */
3770 qc->pad_len = sg->length & 3;
3771 if (qc->pad_len) {
3772 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3773 struct scatterlist *psg = &qc->pad_sgent;
3774
a4631474 3775 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3776
3777 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3778
3779 if (qc->tf.flags & ATA_TFLAG_WRITE)
3780 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3781 qc->pad_len);
3782
3783 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3784 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3785 /* trim sg */
3786 sg->length -= qc->pad_len;
2e242fa9
TH
3787 if (sg->length == 0)
3788 trim_sg = 1;
cedc9a47
JG
3789
3790 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3791 sg->length, qc->pad_len);
3792 }
3793
2e242fa9
TH
3794 if (trim_sg) {
3795 qc->n_elem--;
e1410f2d
JG
3796 goto skip_map;
3797 }
3798
2f1f610b 3799 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3800 sg->length, dir);
537a95d9
TH
3801 if (dma_mapping_error(dma_address)) {
3802 /* restore sg */
3803 sg->length += qc->pad_len;
1da177e4 3804 return -1;
537a95d9 3805 }
1da177e4
LT
3806
3807 sg_dma_address(sg) = dma_address;
32529e01 3808 sg_dma_len(sg) = sg->length;
1da177e4 3809
2e242fa9 3810skip_map:
1da177e4
LT
3811 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3812 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3813
3814 return 0;
3815}
3816
3817/**
0cba632b
JG
3818 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3819 * @qc: Command with scatter-gather table to be mapped.
3820 *
3821 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3822 *
3823 * LOCKING:
cca3974e 3824 * spin_lock_irqsave(host lock)
1da177e4
LT
3825 *
3826 * RETURNS:
0cba632b 3827 * Zero on success, negative on error.
1da177e4
LT
3828 *
3829 */
3830
3831static int ata_sg_setup(struct ata_queued_cmd *qc)
3832{
3833 struct ata_port *ap = qc->ap;
cedc9a47
JG
3834 struct scatterlist *sg = qc->__sg;
3835 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3836 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 3837
44877b4e 3838 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 3839 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3840
cedc9a47
JG
3841 /* we must lengthen transfers to end on a 32-bit boundary */
3842 qc->pad_len = lsg->length & 3;
3843 if (qc->pad_len) {
3844 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3845 struct scatterlist *psg = &qc->pad_sgent;
3846 unsigned int offset;
3847
a4631474 3848 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3849
3850 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3851
3852 /*
3853 * psg->page/offset are used to copy to-be-written
3854 * data in this function or read data in ata_sg_clean.
3855 */
3856 offset = lsg->offset + lsg->length - qc->pad_len;
3857 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3858 psg->offset = offset_in_page(offset);
3859
3860 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3861 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3862 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3863 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3864 }
3865
3866 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3867 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3868 /* trim last sg */
3869 lsg->length -= qc->pad_len;
e1410f2d
JG
3870 if (lsg->length == 0)
3871 trim_sg = 1;
cedc9a47
JG
3872
3873 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3874 qc->n_elem - 1, lsg->length, qc->pad_len);
3875 }
3876
e1410f2d
JG
3877 pre_n_elem = qc->n_elem;
3878 if (trim_sg && pre_n_elem)
3879 pre_n_elem--;
3880
3881 if (!pre_n_elem) {
3882 n_elem = 0;
3883 goto skip_map;
3884 }
3885
1da177e4 3886 dir = qc->dma_dir;
2f1f610b 3887 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3888 if (n_elem < 1) {
3889 /* restore last sg */
3890 lsg->length += qc->pad_len;
1da177e4 3891 return -1;
537a95d9 3892 }
1da177e4
LT
3893
3894 DPRINTK("%d sg elements mapped\n", n_elem);
3895
e1410f2d 3896skip_map:
1da177e4
LT
3897 qc->n_elem = n_elem;
3898
3899 return 0;
3900}
3901
0baab86b 3902/**
c893a3ae 3903 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3904 * @buf: Buffer to swap
3905 * @buf_words: Number of 16-bit words in buffer.
3906 *
3907 * Swap halves of 16-bit words if needed to convert from
3908 * little-endian byte order to native cpu byte order, or
3909 * vice-versa.
3910 *
3911 * LOCKING:
6f0ef4fa 3912 * Inherited from caller.
0baab86b 3913 */
1da177e4
LT
3914void swap_buf_le16(u16 *buf, unsigned int buf_words)
3915{
3916#ifdef __BIG_ENDIAN
3917 unsigned int i;
3918
3919 for (i = 0; i < buf_words; i++)
3920 buf[i] = le16_to_cpu(buf[i]);
3921#endif /* __BIG_ENDIAN */
3922}
3923
6ae4cfb5 3924/**
0d5ff566 3925 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 3926 * @adev: device to target
6ae4cfb5
AL
3927 * @buf: data buffer
3928 * @buflen: buffer length
344babaa 3929 * @write_data: read/write
6ae4cfb5
AL
3930 *
3931 * Transfer data from/to the device data register by PIO.
3932 *
3933 * LOCKING:
3934 * Inherited from caller.
6ae4cfb5 3935 */
0d5ff566
TH
3936void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3937 unsigned int buflen, int write_data)
1da177e4 3938{
a6b2c5d4 3939 struct ata_port *ap = adev->ap;
6ae4cfb5 3940 unsigned int words = buflen >> 1;
1da177e4 3941
6ae4cfb5 3942 /* Transfer multiple of 2 bytes */
1da177e4 3943 if (write_data)
0d5ff566 3944 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 3945 else
0d5ff566 3946 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
3947
3948 /* Transfer trailing 1 byte, if any. */
3949 if (unlikely(buflen & 0x01)) {
3950 u16 align_buf[1] = { 0 };
3951 unsigned char *trailing_buf = buf + buflen - 1;
3952
3953 if (write_data) {
3954 memcpy(align_buf, trailing_buf, 1);
0d5ff566 3955 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 3956 } else {
0d5ff566 3957 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
3958 memcpy(trailing_buf, align_buf, 1);
3959 }
3960 }
1da177e4
LT
3961}
3962
75e99585 3963/**
0d5ff566 3964 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
3965 * @adev: device to target
3966 * @buf: data buffer
3967 * @buflen: buffer length
3968 * @write_data: read/write
3969 *
88574551 3970 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3971 * transfer with interrupts disabled.
3972 *
3973 * LOCKING:
3974 * Inherited from caller.
3975 */
0d5ff566
TH
3976void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3977 unsigned int buflen, int write_data)
75e99585
AC
3978{
3979 unsigned long flags;
3980 local_irq_save(flags);
0d5ff566 3981 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
3982 local_irq_restore(flags);
3983}
3984
3985
6ae4cfb5
AL
3986/**
3987 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3988 * @qc: Command on going
3989 *
3990 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3991 *
3992 * LOCKING:
3993 * Inherited from caller.
3994 */
3995
1da177e4
LT
3996static void ata_pio_sector(struct ata_queued_cmd *qc)
3997{
3998 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3999 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4000 struct ata_port *ap = qc->ap;
4001 struct page *page;
4002 unsigned int offset;
4003 unsigned char *buf;
4004
726f0785 4005 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
14be71f4 4006 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4007
4008 page = sg[qc->cursg].page;
726f0785 4009 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4010
4011 /* get the current page and offset */
4012 page = nth_page(page, (offset >> PAGE_SHIFT));
4013 offset %= PAGE_SIZE;
4014
1da177e4
LT
4015 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4016
91b8b313
AL
4017 if (PageHighMem(page)) {
4018 unsigned long flags;
4019
a6b2c5d4 4020 /* FIXME: use a bounce buffer */
91b8b313
AL
4021 local_irq_save(flags);
4022 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4023
91b8b313 4024 /* do the actual data transfer */
a6b2c5d4 4025 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 4026
91b8b313
AL
4027 kunmap_atomic(buf, KM_IRQ0);
4028 local_irq_restore(flags);
4029 } else {
4030 buf = page_address(page);
a6b2c5d4 4031 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 4032 }
1da177e4 4033
726f0785
TH
4034 qc->curbytes += ATA_SECT_SIZE;
4035 qc->cursg_ofs += ATA_SECT_SIZE;
1da177e4 4036
726f0785 4037 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4038 qc->cursg++;
4039 qc->cursg_ofs = 0;
4040 }
1da177e4 4041}
1da177e4 4042
07f6f7d0
AL
4043/**
4044 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4045 * @qc: Command on going
4046 *
c81e29b4 4047 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
4048 * ATA device for the DRQ request.
4049 *
4050 * LOCKING:
4051 * Inherited from caller.
4052 */
1da177e4 4053
07f6f7d0
AL
4054static void ata_pio_sectors(struct ata_queued_cmd *qc)
4055{
4056 if (is_multi_taskfile(&qc->tf)) {
4057 /* READ/WRITE MULTIPLE */
4058 unsigned int nsect;
4059
587005de 4060 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4061
726f0785
TH
4062 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4063 qc->dev->multi_count);
07f6f7d0
AL
4064 while (nsect--)
4065 ata_pio_sector(qc);
4066 } else
4067 ata_pio_sector(qc);
4068}
4069
c71c1857
AL
4070/**
4071 * atapi_send_cdb - Write CDB bytes to hardware
4072 * @ap: Port to which ATAPI device is attached.
4073 * @qc: Taskfile currently active
4074 *
4075 * When device has indicated its readiness to accept
4076 * a CDB, this function is called. Send the CDB.
4077 *
4078 * LOCKING:
4079 * caller.
4080 */
4081
4082static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4083{
4084 /* send SCSI cdb */
4085 DPRINTK("send cdb\n");
db024d53 4086 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4087
a6b2c5d4 4088 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4089 ata_altstatus(ap); /* flush */
4090
4091 switch (qc->tf.protocol) {
4092 case ATA_PROT_ATAPI:
4093 ap->hsm_task_state = HSM_ST;
4094 break;
4095 case ATA_PROT_ATAPI_NODATA:
4096 ap->hsm_task_state = HSM_ST_LAST;
4097 break;
4098 case ATA_PROT_ATAPI_DMA:
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 /* initiate bmdma */
4101 ap->ops->bmdma_start(qc);
4102 break;
4103 }
1da177e4
LT
4104}
4105
6ae4cfb5
AL
4106/**
4107 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4108 * @qc: Command on going
4109 * @bytes: number of bytes
4110 *
4111 * Transfer Transfer data from/to the ATAPI device.
4112 *
4113 * LOCKING:
4114 * Inherited from caller.
4115 *
4116 */
4117
1da177e4
LT
4118static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4119{
4120 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4121 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4122 struct ata_port *ap = qc->ap;
4123 struct page *page;
4124 unsigned char *buf;
4125 unsigned int offset, count;
4126
563a6e1f 4127 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4128 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4129
4130next_sg:
563a6e1f 4131 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4132 /*
563a6e1f
AL
4133 * The end of qc->sg is reached and the device expects
4134 * more data to transfer. In order not to overrun qc->sg
4135 * and fulfill length specified in the byte count register,
4136 * - for read case, discard trailing data from the device
4137 * - for write case, padding zero data to the device
4138 */
4139 u16 pad_buf[1] = { 0 };
4140 unsigned int words = bytes >> 1;
4141 unsigned int i;
4142
4143 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4144 ata_dev_printk(qc->dev, KERN_WARNING,
4145 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4146
4147 for (i = 0; i < words; i++)
a6b2c5d4 4148 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4149
14be71f4 4150 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4151 return;
4152 }
4153
cedc9a47 4154 sg = &qc->__sg[qc->cursg];
1da177e4 4155
1da177e4
LT
4156 page = sg->page;
4157 offset = sg->offset + qc->cursg_ofs;
4158
4159 /* get the current page and offset */
4160 page = nth_page(page, (offset >> PAGE_SHIFT));
4161 offset %= PAGE_SIZE;
4162
6952df03 4163 /* don't overrun current sg */
32529e01 4164 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4165
4166 /* don't cross page boundaries */
4167 count = min(count, (unsigned int)PAGE_SIZE - offset);
4168
7282aa4b
AL
4169 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4170
91b8b313
AL
4171 if (PageHighMem(page)) {
4172 unsigned long flags;
4173
a6b2c5d4 4174 /* FIXME: use bounce buffer */
91b8b313
AL
4175 local_irq_save(flags);
4176 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4177
91b8b313 4178 /* do the actual data transfer */
a6b2c5d4 4179 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4180
91b8b313
AL
4181 kunmap_atomic(buf, KM_IRQ0);
4182 local_irq_restore(flags);
4183 } else {
4184 buf = page_address(page);
a6b2c5d4 4185 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4186 }
1da177e4
LT
4187
4188 bytes -= count;
4189 qc->curbytes += count;
4190 qc->cursg_ofs += count;
4191
32529e01 4192 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4193 qc->cursg++;
4194 qc->cursg_ofs = 0;
4195 }
4196
563a6e1f 4197 if (bytes)
1da177e4 4198 goto next_sg;
1da177e4
LT
4199}
4200
6ae4cfb5
AL
4201/**
4202 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4203 * @qc: Command on going
4204 *
4205 * Transfer Transfer data from/to the ATAPI device.
4206 *
4207 * LOCKING:
4208 * Inherited from caller.
6ae4cfb5
AL
4209 */
4210
1da177e4
LT
4211static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4212{
4213 struct ata_port *ap = qc->ap;
4214 struct ata_device *dev = qc->dev;
4215 unsigned int ireason, bc_lo, bc_hi, bytes;
4216 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4217
eec4c3f3
AL
4218 /* Abuse qc->result_tf for temp storage of intermediate TF
4219 * here to save some kernel stack usage.
4220 * For normal completion, qc->result_tf is not relevant. For
4221 * error, qc->result_tf is later overwritten by ata_qc_complete().
4222 * So, the correctness of qc->result_tf is not affected.
4223 */
4224 ap->ops->tf_read(ap, &qc->result_tf);
4225 ireason = qc->result_tf.nsect;
4226 bc_lo = qc->result_tf.lbam;
4227 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4228 bytes = (bc_hi << 8) | bc_lo;
4229
4230 /* shall be cleared to zero, indicating xfer of data */
4231 if (ireason & (1 << 0))
4232 goto err_out;
4233
4234 /* make sure transfer direction matches expected */
4235 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4236 if (do_write != i_write)
4237 goto err_out;
4238
44877b4e 4239 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4240
1da177e4
LT
4241 __atapi_pio_bytes(qc, bytes);
4242
4243 return;
4244
4245err_out:
f15a1daf 4246 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4247 qc->err_mask |= AC_ERR_HSM;
14be71f4 4248 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4249}
4250
4251/**
c234fb00
AL
4252 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4253 * @ap: the target ata_port
4254 * @qc: qc on going
1da177e4 4255 *
c234fb00
AL
4256 * RETURNS:
4257 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4258 */
c234fb00
AL
4259
4260static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4261{
c234fb00
AL
4262 if (qc->tf.flags & ATA_TFLAG_POLLING)
4263 return 1;
1da177e4 4264
c234fb00
AL
4265 if (ap->hsm_task_state == HSM_ST_FIRST) {
4266 if (qc->tf.protocol == ATA_PROT_PIO &&
4267 (qc->tf.flags & ATA_TFLAG_WRITE))
4268 return 1;
1da177e4 4269
c234fb00
AL
4270 if (is_atapi_taskfile(&qc->tf) &&
4271 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4272 return 1;
fe79e683
AL
4273 }
4274
c234fb00
AL
4275 return 0;
4276}
1da177e4 4277
c17ea20d
TH
4278/**
4279 * ata_hsm_qc_complete - finish a qc running on standard HSM
4280 * @qc: Command to complete
4281 * @in_wq: 1 if called from workqueue, 0 otherwise
4282 *
4283 * Finish @qc which is running on standard HSM.
4284 *
4285 * LOCKING:
cca3974e 4286 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4287 * Otherwise, none on entry and grabs host lock.
4288 */
4289static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4290{
4291 struct ata_port *ap = qc->ap;
4292 unsigned long flags;
4293
4294 if (ap->ops->error_handler) {
4295 if (in_wq) {
ba6a1308 4296 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4297
cca3974e
JG
4298 /* EH might have kicked in while host lock is
4299 * released.
c17ea20d
TH
4300 */
4301 qc = ata_qc_from_tag(ap, qc->tag);
4302 if (qc) {
4303 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4304 ap->ops->irq_on(ap);
c17ea20d
TH
4305 ata_qc_complete(qc);
4306 } else
4307 ata_port_freeze(ap);
4308 }
4309
ba6a1308 4310 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4311 } else {
4312 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4313 ata_qc_complete(qc);
4314 else
4315 ata_port_freeze(ap);
4316 }
4317 } else {
4318 if (in_wq) {
ba6a1308 4319 spin_lock_irqsave(ap->lock, flags);
83625006 4320 ap->ops->irq_on(ap);
c17ea20d 4321 ata_qc_complete(qc);
ba6a1308 4322 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4323 } else
4324 ata_qc_complete(qc);
4325 }
1da177e4 4326
c81e29b4 4327 ata_altstatus(ap); /* flush */
c17ea20d
TH
4328}
4329
bb5cb290
AL
4330/**
4331 * ata_hsm_move - move the HSM to the next state.
4332 * @ap: the target ata_port
4333 * @qc: qc on going
4334 * @status: current device status
4335 * @in_wq: 1 if called from workqueue, 0 otherwise
4336 *
4337 * RETURNS:
4338 * 1 when poll next status needed, 0 otherwise.
4339 */
9a1004d0
TH
4340int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4341 u8 status, int in_wq)
e2cec771 4342{
bb5cb290
AL
4343 unsigned long flags = 0;
4344 int poll_next;
4345
6912ccd5
AL
4346 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4347
bb5cb290
AL
4348 /* Make sure ata_qc_issue_prot() does not throw things
4349 * like DMA polling into the workqueue. Notice that
4350 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4351 */
c234fb00 4352 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4353
e2cec771 4354fsm_start:
999bb6f4 4355 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4356 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4357
e2cec771
AL
4358 switch (ap->hsm_task_state) {
4359 case HSM_ST_FIRST:
bb5cb290
AL
4360 /* Send first data block or PACKET CDB */
4361
4362 /* If polling, we will stay in the work queue after
4363 * sending the data. Otherwise, interrupt handler
4364 * takes over after sending the data.
4365 */
4366 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4367
e2cec771 4368 /* check device status */
3655d1d3
AL
4369 if (unlikely((status & ATA_DRQ) == 0)) {
4370 /* handle BSY=0, DRQ=0 as error */
4371 if (likely(status & (ATA_ERR | ATA_DF)))
4372 /* device stops HSM for abort/error */
4373 qc->err_mask |= AC_ERR_DEV;
4374 else
4375 /* HSM violation. Let EH handle this */
4376 qc->err_mask |= AC_ERR_HSM;
4377
14be71f4 4378 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4379 goto fsm_start;
1da177e4
LT
4380 }
4381
71601958
AL
4382 /* Device should not ask for data transfer (DRQ=1)
4383 * when it finds something wrong.
eee6c32f
AL
4384 * We ignore DRQ here and stop the HSM by
4385 * changing hsm_task_state to HSM_ST_ERR and
4386 * let the EH abort the command or reset the device.
71601958
AL
4387 */
4388 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4389 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4390 "error, dev_stat 0x%X\n", status);
3655d1d3 4391 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4392 ap->hsm_task_state = HSM_ST_ERR;
4393 goto fsm_start;
71601958 4394 }
1da177e4 4395
bb5cb290
AL
4396 /* Send the CDB (atapi) or the first data block (ata pio out).
4397 * During the state transition, interrupt handler shouldn't
4398 * be invoked before the data transfer is complete and
4399 * hsm_task_state is changed. Hence, the following locking.
4400 */
4401 if (in_wq)
ba6a1308 4402 spin_lock_irqsave(ap->lock, flags);
1da177e4 4403
bb5cb290
AL
4404 if (qc->tf.protocol == ATA_PROT_PIO) {
4405 /* PIO data out protocol.
4406 * send first data block.
4407 */
0565c26d 4408
bb5cb290
AL
4409 /* ata_pio_sectors() might change the state
4410 * to HSM_ST_LAST. so, the state is changed here
4411 * before ata_pio_sectors().
4412 */
4413 ap->hsm_task_state = HSM_ST;
4414 ata_pio_sectors(qc);
4415 ata_altstatus(ap); /* flush */
4416 } else
4417 /* send CDB */
4418 atapi_send_cdb(ap, qc);
4419
4420 if (in_wq)
ba6a1308 4421 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4422
4423 /* if polling, ata_pio_task() handles the rest.
4424 * otherwise, interrupt handler takes over from here.
4425 */
e2cec771 4426 break;
1c848984 4427
e2cec771
AL
4428 case HSM_ST:
4429 /* complete command or read/write the data register */
4430 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4431 /* ATAPI PIO protocol */
4432 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4433 /* No more data to transfer or device error.
4434 * Device error will be tagged in HSM_ST_LAST.
4435 */
e2cec771
AL
4436 ap->hsm_task_state = HSM_ST_LAST;
4437 goto fsm_start;
4438 }
1da177e4 4439
71601958
AL
4440 /* Device should not ask for data transfer (DRQ=1)
4441 * when it finds something wrong.
eee6c32f
AL
4442 * We ignore DRQ here and stop the HSM by
4443 * changing hsm_task_state to HSM_ST_ERR and
4444 * let the EH abort the command or reset the device.
71601958
AL
4445 */
4446 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4447 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4448 "device error, dev_stat 0x%X\n",
4449 status);
3655d1d3 4450 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4451 ap->hsm_task_state = HSM_ST_ERR;
4452 goto fsm_start;
71601958 4453 }
1da177e4 4454
e2cec771 4455 atapi_pio_bytes(qc);
7fb6ec28 4456
e2cec771
AL
4457 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4458 /* bad ireason reported by device */
4459 goto fsm_start;
1da177e4 4460
e2cec771
AL
4461 } else {
4462 /* ATA PIO protocol */
4463 if (unlikely((status & ATA_DRQ) == 0)) {
4464 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4465 if (likely(status & (ATA_ERR | ATA_DF)))
4466 /* device stops HSM for abort/error */
4467 qc->err_mask |= AC_ERR_DEV;
4468 else
55a8e2c8
TH
4469 /* HSM violation. Let EH handle this.
4470 * Phantom devices also trigger this
4471 * condition. Mark hint.
4472 */
4473 qc->err_mask |= AC_ERR_HSM |
4474 AC_ERR_NODEV_HINT;
3655d1d3 4475
e2cec771
AL
4476 ap->hsm_task_state = HSM_ST_ERR;
4477 goto fsm_start;
4478 }
1da177e4 4479
eee6c32f
AL
4480 /* For PIO reads, some devices may ask for
4481 * data transfer (DRQ=1) alone with ERR=1.
4482 * We respect DRQ here and transfer one
4483 * block of junk data before changing the
4484 * hsm_task_state to HSM_ST_ERR.
4485 *
4486 * For PIO writes, ERR=1 DRQ=1 doesn't make
4487 * sense since the data block has been
4488 * transferred to the device.
71601958
AL
4489 */
4490 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4491 /* data might be corrputed */
4492 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4493
4494 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4495 ata_pio_sectors(qc);
4496 ata_altstatus(ap);
4497 status = ata_wait_idle(ap);
4498 }
4499
3655d1d3
AL
4500 if (status & (ATA_BUSY | ATA_DRQ))
4501 qc->err_mask |= AC_ERR_HSM;
4502
eee6c32f
AL
4503 /* ata_pio_sectors() might change the
4504 * state to HSM_ST_LAST. so, the state
4505 * is changed after ata_pio_sectors().
4506 */
4507 ap->hsm_task_state = HSM_ST_ERR;
4508 goto fsm_start;
71601958
AL
4509 }
4510
e2cec771
AL
4511 ata_pio_sectors(qc);
4512
4513 if (ap->hsm_task_state == HSM_ST_LAST &&
4514 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4515 /* all data read */
4516 ata_altstatus(ap);
52a32205 4517 status = ata_wait_idle(ap);
e2cec771
AL
4518 goto fsm_start;
4519 }
4520 }
4521
4522 ata_altstatus(ap); /* flush */
bb5cb290 4523 poll_next = 1;
1da177e4
LT
4524 break;
4525
14be71f4 4526 case HSM_ST_LAST:
6912ccd5
AL
4527 if (unlikely(!ata_ok(status))) {
4528 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4529 ap->hsm_task_state = HSM_ST_ERR;
4530 goto fsm_start;
4531 }
4532
4533 /* no more data to transfer */
4332a771 4534 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4535 ap->print_id, qc->dev->devno, status);
e2cec771 4536
6912ccd5
AL
4537 WARN_ON(qc->err_mask);
4538
e2cec771 4539 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4540
e2cec771 4541 /* complete taskfile transaction */
c17ea20d 4542 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4543
4544 poll_next = 0;
1da177e4
LT
4545 break;
4546
14be71f4 4547 case HSM_ST_ERR:
e2cec771
AL
4548 /* make sure qc->err_mask is available to
4549 * know what's wrong and recover
4550 */
4551 WARN_ON(qc->err_mask == 0);
4552
4553 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4554
999bb6f4 4555 /* complete taskfile transaction */
c17ea20d 4556 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4557
4558 poll_next = 0;
e2cec771
AL
4559 break;
4560 default:
bb5cb290 4561 poll_next = 0;
6912ccd5 4562 BUG();
1da177e4
LT
4563 }
4564
bb5cb290 4565 return poll_next;
1da177e4
LT
4566}
4567
65f27f38 4568static void ata_pio_task(struct work_struct *work)
8061f5f0 4569{
65f27f38
DH
4570 struct ata_port *ap =
4571 container_of(work, struct ata_port, port_task.work);
4572 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4573 u8 status;
a1af3734 4574 int poll_next;
8061f5f0 4575
7fb6ec28 4576fsm_start:
a1af3734 4577 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4578
a1af3734
AL
4579 /*
4580 * This is purely heuristic. This is a fast path.
4581 * Sometimes when we enter, BSY will be cleared in
4582 * a chk-status or two. If not, the drive is probably seeking
4583 * or something. Snooze for a couple msecs, then
4584 * chk-status again. If still busy, queue delayed work.
4585 */
4586 status = ata_busy_wait(ap, ATA_BUSY, 5);
4587 if (status & ATA_BUSY) {
4588 msleep(2);
4589 status = ata_busy_wait(ap, ATA_BUSY, 10);
4590 if (status & ATA_BUSY) {
31ce6dae 4591 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4592 return;
4593 }
8061f5f0
TH
4594 }
4595
a1af3734
AL
4596 /* move the HSM */
4597 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4598
a1af3734
AL
4599 /* another command or interrupt handler
4600 * may be running at this point.
4601 */
4602 if (poll_next)
7fb6ec28 4603 goto fsm_start;
8061f5f0
TH
4604}
4605
1da177e4
LT
4606/**
4607 * ata_qc_new - Request an available ATA command, for queueing
4608 * @ap: Port associated with device @dev
4609 * @dev: Device from whom we request an available command structure
4610 *
4611 * LOCKING:
0cba632b 4612 * None.
1da177e4
LT
4613 */
4614
4615static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4616{
4617 struct ata_queued_cmd *qc = NULL;
4618 unsigned int i;
4619
e3180499 4620 /* no command while frozen */
b51e9e5d 4621 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4622 return NULL;
4623
2ab7db1f
TH
4624 /* the last tag is reserved for internal command. */
4625 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4626 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4627 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4628 break;
4629 }
4630
4631 if (qc)
4632 qc->tag = i;
4633
4634 return qc;
4635}
4636
4637/**
4638 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4639 * @dev: Device from whom we request an available command structure
4640 *
4641 * LOCKING:
0cba632b 4642 * None.
1da177e4
LT
4643 */
4644
3373efd8 4645struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4646{
3373efd8 4647 struct ata_port *ap = dev->ap;
1da177e4
LT
4648 struct ata_queued_cmd *qc;
4649
4650 qc = ata_qc_new(ap);
4651 if (qc) {
1da177e4
LT
4652 qc->scsicmd = NULL;
4653 qc->ap = ap;
4654 qc->dev = dev;
1da177e4 4655
2c13b7ce 4656 ata_qc_reinit(qc);
1da177e4
LT
4657 }
4658
4659 return qc;
4660}
4661
1da177e4
LT
4662/**
4663 * ata_qc_free - free unused ata_queued_cmd
4664 * @qc: Command to complete
4665 *
4666 * Designed to free unused ata_queued_cmd object
4667 * in case something prevents using it.
4668 *
4669 * LOCKING:
cca3974e 4670 * spin_lock_irqsave(host lock)
1da177e4
LT
4671 */
4672void ata_qc_free(struct ata_queued_cmd *qc)
4673{
4ba946e9
TH
4674 struct ata_port *ap = qc->ap;
4675 unsigned int tag;
4676
a4631474 4677 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4678
4ba946e9
TH
4679 qc->flags = 0;
4680 tag = qc->tag;
4681 if (likely(ata_tag_valid(tag))) {
4ba946e9 4682 qc->tag = ATA_TAG_POISON;
6cec4a39 4683 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4684 }
1da177e4
LT
4685}
4686
76014427 4687void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4688{
dedaf2b0
TH
4689 struct ata_port *ap = qc->ap;
4690
a4631474
TH
4691 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4692 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4693
4694 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4695 ata_sg_clean(qc);
4696
7401abf2 4697 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4698 if (qc->tf.protocol == ATA_PROT_NCQ)
4699 ap->sactive &= ~(1 << qc->tag);
4700 else
4701 ap->active_tag = ATA_TAG_POISON;
7401abf2 4702
3f3791d3
AL
4703 /* atapi: mark qc as inactive to prevent the interrupt handler
4704 * from completing the command twice later, before the error handler
4705 * is called. (when rc != 0 and atapi request sense is needed)
4706 */
4707 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4708 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4709
1da177e4 4710 /* call completion callback */
77853bf2 4711 qc->complete_fn(qc);
1da177e4
LT
4712}
4713
39599a53
TH
4714static void fill_result_tf(struct ata_queued_cmd *qc)
4715{
4716 struct ata_port *ap = qc->ap;
4717
4718 ap->ops->tf_read(ap, &qc->result_tf);
4719 qc->result_tf.flags = qc->tf.flags;
4720}
4721
f686bcb8
TH
4722/**
4723 * ata_qc_complete - Complete an active ATA command
4724 * @qc: Command to complete
4725 * @err_mask: ATA Status register contents
4726 *
4727 * Indicate to the mid and upper layers that an ATA
4728 * command has completed, with either an ok or not-ok status.
4729 *
4730 * LOCKING:
cca3974e 4731 * spin_lock_irqsave(host lock)
f686bcb8
TH
4732 */
4733void ata_qc_complete(struct ata_queued_cmd *qc)
4734{
4735 struct ata_port *ap = qc->ap;
4736
4737 /* XXX: New EH and old EH use different mechanisms to
4738 * synchronize EH with regular execution path.
4739 *
4740 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4741 * Normal execution path is responsible for not accessing a
4742 * failed qc. libata core enforces the rule by returning NULL
4743 * from ata_qc_from_tag() for failed qcs.
4744 *
4745 * Old EH depends on ata_qc_complete() nullifying completion
4746 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4747 * not synchronize with interrupt handler. Only PIO task is
4748 * taken care of.
4749 */
4750 if (ap->ops->error_handler) {
b51e9e5d 4751 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4752
4753 if (unlikely(qc->err_mask))
4754 qc->flags |= ATA_QCFLAG_FAILED;
4755
4756 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4757 if (!ata_tag_internal(qc->tag)) {
4758 /* always fill result TF for failed qc */
39599a53 4759 fill_result_tf(qc);
f686bcb8
TH
4760 ata_qc_schedule_eh(qc);
4761 return;
4762 }
4763 }
4764
4765 /* read result TF if requested */
4766 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4767 fill_result_tf(qc);
f686bcb8
TH
4768
4769 __ata_qc_complete(qc);
4770 } else {
4771 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4772 return;
4773
4774 /* read result TF if failed or requested */
4775 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4776 fill_result_tf(qc);
f686bcb8
TH
4777
4778 __ata_qc_complete(qc);
4779 }
4780}
4781
dedaf2b0
TH
4782/**
4783 * ata_qc_complete_multiple - Complete multiple qcs successfully
4784 * @ap: port in question
4785 * @qc_active: new qc_active mask
4786 * @finish_qc: LLDD callback invoked before completing a qc
4787 *
4788 * Complete in-flight commands. This functions is meant to be
4789 * called from low-level driver's interrupt routine to complete
4790 * requests normally. ap->qc_active and @qc_active is compared
4791 * and commands are completed accordingly.
4792 *
4793 * LOCKING:
cca3974e 4794 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4795 *
4796 * RETURNS:
4797 * Number of completed commands on success, -errno otherwise.
4798 */
4799int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4800 void (*finish_qc)(struct ata_queued_cmd *))
4801{
4802 int nr_done = 0;
4803 u32 done_mask;
4804 int i;
4805
4806 done_mask = ap->qc_active ^ qc_active;
4807
4808 if (unlikely(done_mask & qc_active)) {
4809 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4810 "(%08x->%08x)\n", ap->qc_active, qc_active);
4811 return -EINVAL;
4812 }
4813
4814 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4815 struct ata_queued_cmd *qc;
4816
4817 if (!(done_mask & (1 << i)))
4818 continue;
4819
4820 if ((qc = ata_qc_from_tag(ap, i))) {
4821 if (finish_qc)
4822 finish_qc(qc);
4823 ata_qc_complete(qc);
4824 nr_done++;
4825 }
4826 }
4827
4828 return nr_done;
4829}
4830
1da177e4
LT
4831static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4832{
4833 struct ata_port *ap = qc->ap;
4834
4835 switch (qc->tf.protocol) {
3dc1d881 4836 case ATA_PROT_NCQ:
1da177e4
LT
4837 case ATA_PROT_DMA:
4838 case ATA_PROT_ATAPI_DMA:
4839 return 1;
4840
4841 case ATA_PROT_ATAPI:
4842 case ATA_PROT_PIO:
1da177e4
LT
4843 if (ap->flags & ATA_FLAG_PIO_DMA)
4844 return 1;
4845
4846 /* fall through */
4847
4848 default:
4849 return 0;
4850 }
4851
4852 /* never reached */
4853}
4854
4855/**
4856 * ata_qc_issue - issue taskfile to device
4857 * @qc: command to issue to device
4858 *
4859 * Prepare an ATA command to submission to device.
4860 * This includes mapping the data into a DMA-able
4861 * area, filling in the S/G table, and finally
4862 * writing the taskfile to hardware, starting the command.
4863 *
4864 * LOCKING:
cca3974e 4865 * spin_lock_irqsave(host lock)
1da177e4 4866 */
8e0e694a 4867void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4868{
4869 struct ata_port *ap = qc->ap;
4870
dedaf2b0
TH
4871 /* Make sure only one non-NCQ command is outstanding. The
4872 * check is skipped for old EH because it reuses active qc to
4873 * request ATAPI sense.
4874 */
4875 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4876
4877 if (qc->tf.protocol == ATA_PROT_NCQ) {
4878 WARN_ON(ap->sactive & (1 << qc->tag));
4879 ap->sactive |= 1 << qc->tag;
4880 } else {
4881 WARN_ON(ap->sactive);
4882 ap->active_tag = qc->tag;
4883 }
4884
e4a70e76 4885 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4886 ap->qc_active |= 1 << qc->tag;
e4a70e76 4887
1da177e4
LT
4888 if (ata_should_dma_map(qc)) {
4889 if (qc->flags & ATA_QCFLAG_SG) {
4890 if (ata_sg_setup(qc))
8e436af9 4891 goto sg_err;
1da177e4
LT
4892 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4893 if (ata_sg_setup_one(qc))
8e436af9 4894 goto sg_err;
1da177e4
LT
4895 }
4896 } else {
4897 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4898 }
4899
4900 ap->ops->qc_prep(qc);
4901
8e0e694a
TH
4902 qc->err_mask |= ap->ops->qc_issue(qc);
4903 if (unlikely(qc->err_mask))
4904 goto err;
4905 return;
1da177e4 4906
8e436af9
TH
4907sg_err:
4908 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4909 qc->err_mask |= AC_ERR_SYSTEM;
4910err:
4911 ata_qc_complete(qc);
1da177e4
LT
4912}
4913
4914/**
4915 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4916 * @qc: command to issue to device
4917 *
4918 * Using various libata functions and hooks, this function
4919 * starts an ATA command. ATA commands are grouped into
4920 * classes called "protocols", and issuing each type of protocol
4921 * is slightly different.
4922 *
0baab86b
EF
4923 * May be used as the qc_issue() entry in ata_port_operations.
4924 *
1da177e4 4925 * LOCKING:
cca3974e 4926 * spin_lock_irqsave(host lock)
1da177e4
LT
4927 *
4928 * RETURNS:
9a3d9eb0 4929 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4930 */
4931
9a3d9eb0 4932unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4933{
4934 struct ata_port *ap = qc->ap;
4935
e50362ec
AL
4936 /* Use polling pio if the LLD doesn't handle
4937 * interrupt driven pio and atapi CDB interrupt.
4938 */
4939 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4940 switch (qc->tf.protocol) {
4941 case ATA_PROT_PIO:
e3472cbe 4942 case ATA_PROT_NODATA:
e50362ec
AL
4943 case ATA_PROT_ATAPI:
4944 case ATA_PROT_ATAPI_NODATA:
4945 qc->tf.flags |= ATA_TFLAG_POLLING;
4946 break;
4947 case ATA_PROT_ATAPI_DMA:
4948 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4949 /* see ata_dma_blacklisted() */
e50362ec
AL
4950 BUG();
4951 break;
4952 default:
4953 break;
4954 }
4955 }
4956
3d3cca37
TH
4957 /* Some controllers show flaky interrupt behavior after
4958 * setting xfer mode. Use polling instead.
4959 */
4960 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4961 qc->tf.feature == SETFEATURES_XFER) &&
4962 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4963 qc->tf.flags |= ATA_TFLAG_POLLING;
4964
312f7da2 4965 /* select the device */
1da177e4
LT
4966 ata_dev_select(ap, qc->dev->devno, 1, 0);
4967
312f7da2 4968 /* start the command */
1da177e4
LT
4969 switch (qc->tf.protocol) {
4970 case ATA_PROT_NODATA:
312f7da2
AL
4971 if (qc->tf.flags & ATA_TFLAG_POLLING)
4972 ata_qc_set_polling(qc);
4973
e5338254 4974 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4975 ap->hsm_task_state = HSM_ST_LAST;
4976
4977 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4978 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4979
1da177e4
LT
4980 break;
4981
4982 case ATA_PROT_DMA:
587005de 4983 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4984
1da177e4
LT
4985 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4986 ap->ops->bmdma_setup(qc); /* set up bmdma */
4987 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4988 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4989 break;
4990
312f7da2
AL
4991 case ATA_PROT_PIO:
4992 if (qc->tf.flags & ATA_TFLAG_POLLING)
4993 ata_qc_set_polling(qc);
1da177e4 4994
e5338254 4995 ata_tf_to_host(ap, &qc->tf);
312f7da2 4996
54f00389
AL
4997 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4998 /* PIO data out protocol */
4999 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5000 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5001
5002 /* always send first data block using
e27486db 5003 * the ata_pio_task() codepath.
54f00389 5004 */
312f7da2 5005 } else {
54f00389
AL
5006 /* PIO data in protocol */
5007 ap->hsm_task_state = HSM_ST;
5008
5009 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5010 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5011
5012 /* if polling, ata_pio_task() handles the rest.
5013 * otherwise, interrupt handler takes over from here.
5014 */
312f7da2
AL
5015 }
5016
1da177e4
LT
5017 break;
5018
1da177e4 5019 case ATA_PROT_ATAPI:
1da177e4 5020 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5021 if (qc->tf.flags & ATA_TFLAG_POLLING)
5022 ata_qc_set_polling(qc);
5023
e5338254 5024 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5025
312f7da2
AL
5026 ap->hsm_task_state = HSM_ST_FIRST;
5027
5028 /* send cdb by polling if no cdb interrupt */
5029 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5030 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5031 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5032 break;
5033
5034 case ATA_PROT_ATAPI_DMA:
587005de 5035 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5036
1da177e4
LT
5037 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5038 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5039 ap->hsm_task_state = HSM_ST_FIRST;
5040
5041 /* send cdb by polling if no cdb interrupt */
5042 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5043 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5044 break;
5045
5046 default:
5047 WARN_ON(1);
9a3d9eb0 5048 return AC_ERR_SYSTEM;
1da177e4
LT
5049 }
5050
5051 return 0;
5052}
5053
1da177e4
LT
5054/**
5055 * ata_host_intr - Handle host interrupt for given (port, task)
5056 * @ap: Port on which interrupt arrived (possibly...)
5057 * @qc: Taskfile currently active in engine
5058 *
5059 * Handle host interrupt for given queued command. Currently,
5060 * only DMA interrupts are handled. All other commands are
5061 * handled via polling with interrupts disabled (nIEN bit).
5062 *
5063 * LOCKING:
cca3974e 5064 * spin_lock_irqsave(host lock)
1da177e4
LT
5065 *
5066 * RETURNS:
5067 * One if interrupt was handled, zero if not (shared irq).
5068 */
5069
5070inline unsigned int ata_host_intr (struct ata_port *ap,
5071 struct ata_queued_cmd *qc)
5072{
ea54763f 5073 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5074 u8 status, host_stat = 0;
1da177e4 5075
312f7da2 5076 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5077 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5078
312f7da2
AL
5079 /* Check whether we are expecting interrupt in this state */
5080 switch (ap->hsm_task_state) {
5081 case HSM_ST_FIRST:
6912ccd5
AL
5082 /* Some pre-ATAPI-4 devices assert INTRQ
5083 * at this state when ready to receive CDB.
5084 */
1da177e4 5085
312f7da2
AL
5086 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5087 * The flag was turned on only for atapi devices.
5088 * No need to check is_atapi_taskfile(&qc->tf) again.
5089 */
5090 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5091 goto idle_irq;
1da177e4 5092 break;
312f7da2
AL
5093 case HSM_ST_LAST:
5094 if (qc->tf.protocol == ATA_PROT_DMA ||
5095 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5096 /* check status of DMA engine */
5097 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5098 VPRINTK("ata%u: host_stat 0x%X\n",
5099 ap->print_id, host_stat);
312f7da2
AL
5100
5101 /* if it's not our irq... */
5102 if (!(host_stat & ATA_DMA_INTR))
5103 goto idle_irq;
5104
5105 /* before we do anything else, clear DMA-Start bit */
5106 ap->ops->bmdma_stop(qc);
a4f16610
AL
5107
5108 if (unlikely(host_stat & ATA_DMA_ERR)) {
5109 /* error when transfering data to/from memory */
5110 qc->err_mask |= AC_ERR_HOST_BUS;
5111 ap->hsm_task_state = HSM_ST_ERR;
5112 }
312f7da2
AL
5113 }
5114 break;
5115 case HSM_ST:
5116 break;
1da177e4
LT
5117 default:
5118 goto idle_irq;
5119 }
5120
312f7da2
AL
5121 /* check altstatus */
5122 status = ata_altstatus(ap);
5123 if (status & ATA_BUSY)
5124 goto idle_irq;
1da177e4 5125
312f7da2
AL
5126 /* check main status, clearing INTRQ */
5127 status = ata_chk_status(ap);
5128 if (unlikely(status & ATA_BUSY))
5129 goto idle_irq;
1da177e4 5130
312f7da2
AL
5131 /* ack bmdma irq events */
5132 ap->ops->irq_clear(ap);
1da177e4 5133
bb5cb290 5134 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5135
5136 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5137 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5138 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5139
1da177e4
LT
5140 return 1; /* irq handled */
5141
5142idle_irq:
5143 ap->stats.idle_irq++;
5144
5145#ifdef ATA_IRQ_TRAP
5146 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5147 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5148 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5149 return 1;
1da177e4
LT
5150 }
5151#endif
5152 return 0; /* irq not handled */
5153}
5154
5155/**
5156 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5157 * @irq: irq line (unused)
cca3974e 5158 * @dev_instance: pointer to our ata_host information structure
1da177e4 5159 *
0cba632b
JG
5160 * Default interrupt handler for PCI IDE devices. Calls
5161 * ata_host_intr() for each port that is not disabled.
5162 *
1da177e4 5163 * LOCKING:
cca3974e 5164 * Obtains host lock during operation.
1da177e4
LT
5165 *
5166 * RETURNS:
0cba632b 5167 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5168 */
5169
7d12e780 5170irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5171{
cca3974e 5172 struct ata_host *host = dev_instance;
1da177e4
LT
5173 unsigned int i;
5174 unsigned int handled = 0;
5175 unsigned long flags;
5176
5177 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5178 spin_lock_irqsave(&host->lock, flags);
1da177e4 5179
cca3974e 5180 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5181 struct ata_port *ap;
5182
cca3974e 5183 ap = host->ports[i];
c1389503 5184 if (ap &&
029f5468 5185 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5186 struct ata_queued_cmd *qc;
5187
5188 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5189 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5190 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5191 handled |= ata_host_intr(ap, qc);
5192 }
5193 }
5194
cca3974e 5195 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5196
5197 return IRQ_RETVAL(handled);
5198}
5199
34bf2170
TH
5200/**
5201 * sata_scr_valid - test whether SCRs are accessible
5202 * @ap: ATA port to test SCR accessibility for
5203 *
5204 * Test whether SCRs are accessible for @ap.
5205 *
5206 * LOCKING:
5207 * None.
5208 *
5209 * RETURNS:
5210 * 1 if SCRs are accessible, 0 otherwise.
5211 */
5212int sata_scr_valid(struct ata_port *ap)
5213{
5214 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5215}
5216
5217/**
5218 * sata_scr_read - read SCR register of the specified port
5219 * @ap: ATA port to read SCR for
5220 * @reg: SCR to read
5221 * @val: Place to store read value
5222 *
5223 * Read SCR register @reg of @ap into *@val. This function is
5224 * guaranteed to succeed if the cable type of the port is SATA
5225 * and the port implements ->scr_read.
5226 *
5227 * LOCKING:
5228 * None.
5229 *
5230 * RETURNS:
5231 * 0 on success, negative errno on failure.
5232 */
5233int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5234{
5235 if (sata_scr_valid(ap)) {
5236 *val = ap->ops->scr_read(ap, reg);
5237 return 0;
5238 }
5239 return -EOPNOTSUPP;
5240}
5241
5242/**
5243 * sata_scr_write - write SCR register of the specified port
5244 * @ap: ATA port to write SCR for
5245 * @reg: SCR to write
5246 * @val: value to write
5247 *
5248 * Write @val to SCR register @reg of @ap. This function is
5249 * guaranteed to succeed if the cable type of the port is SATA
5250 * and the port implements ->scr_read.
5251 *
5252 * LOCKING:
5253 * None.
5254 *
5255 * RETURNS:
5256 * 0 on success, negative errno on failure.
5257 */
5258int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5259{
5260 if (sata_scr_valid(ap)) {
5261 ap->ops->scr_write(ap, reg, val);
5262 return 0;
5263 }
5264 return -EOPNOTSUPP;
5265}
5266
5267/**
5268 * sata_scr_write_flush - write SCR register of the specified port and flush
5269 * @ap: ATA port to write SCR for
5270 * @reg: SCR to write
5271 * @val: value to write
5272 *
5273 * This function is identical to sata_scr_write() except that this
5274 * function performs flush after writing to the register.
5275 *
5276 * LOCKING:
5277 * None.
5278 *
5279 * RETURNS:
5280 * 0 on success, negative errno on failure.
5281 */
5282int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5283{
5284 if (sata_scr_valid(ap)) {
5285 ap->ops->scr_write(ap, reg, val);
5286 ap->ops->scr_read(ap, reg);
5287 return 0;
5288 }
5289 return -EOPNOTSUPP;
5290}
5291
5292/**
5293 * ata_port_online - test whether the given port is online
5294 * @ap: ATA port to test
5295 *
5296 * Test whether @ap is online. Note that this function returns 0
5297 * if online status of @ap cannot be obtained, so
5298 * ata_port_online(ap) != !ata_port_offline(ap).
5299 *
5300 * LOCKING:
5301 * None.
5302 *
5303 * RETURNS:
5304 * 1 if the port online status is available and online.
5305 */
5306int ata_port_online(struct ata_port *ap)
5307{
5308 u32 sstatus;
5309
5310 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5311 return 1;
5312 return 0;
5313}
5314
5315/**
5316 * ata_port_offline - test whether the given port is offline
5317 * @ap: ATA port to test
5318 *
5319 * Test whether @ap is offline. Note that this function returns
5320 * 0 if offline status of @ap cannot be obtained, so
5321 * ata_port_online(ap) != !ata_port_offline(ap).
5322 *
5323 * LOCKING:
5324 * None.
5325 *
5326 * RETURNS:
5327 * 1 if the port offline status is available and offline.
5328 */
5329int ata_port_offline(struct ata_port *ap)
5330{
5331 u32 sstatus;
5332
5333 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5334 return 1;
5335 return 0;
5336}
0baab86b 5337
77b08fb5 5338int ata_flush_cache(struct ata_device *dev)
9b847548 5339{
977e6b9f 5340 unsigned int err_mask;
9b847548
JA
5341 u8 cmd;
5342
5343 if (!ata_try_flush_cache(dev))
5344 return 0;
5345
6fc49adb 5346 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5347 cmd = ATA_CMD_FLUSH_EXT;
5348 else
5349 cmd = ATA_CMD_FLUSH;
5350
977e6b9f
TH
5351 err_mask = ata_do_simple_cmd(dev, cmd);
5352 if (err_mask) {
5353 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5354 return -EIO;
5355 }
5356
5357 return 0;
9b847548
JA
5358}
5359
6ffa01d8 5360#ifdef CONFIG_PM
cca3974e
JG
5361static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5362 unsigned int action, unsigned int ehi_flags,
5363 int wait)
500530f6
TH
5364{
5365 unsigned long flags;
5366 int i, rc;
5367
cca3974e
JG
5368 for (i = 0; i < host->n_ports; i++) {
5369 struct ata_port *ap = host->ports[i];
500530f6
TH
5370
5371 /* Previous resume operation might still be in
5372 * progress. Wait for PM_PENDING to clear.
5373 */
5374 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5375 ata_port_wait_eh(ap);
5376 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5377 }
5378
5379 /* request PM ops to EH */
5380 spin_lock_irqsave(ap->lock, flags);
5381
5382 ap->pm_mesg = mesg;
5383 if (wait) {
5384 rc = 0;
5385 ap->pm_result = &rc;
5386 }
5387
5388 ap->pflags |= ATA_PFLAG_PM_PENDING;
5389 ap->eh_info.action |= action;
5390 ap->eh_info.flags |= ehi_flags;
5391
5392 ata_port_schedule_eh(ap);
5393
5394 spin_unlock_irqrestore(ap->lock, flags);
5395
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5402 }
5403 }
5404
5405 return 0;
5406}
5407
5408/**
cca3974e
JG
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
500530f6
TH
5411 * @mesg: PM message
5412 *
cca3974e 5413 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
cca3974e 5423int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5424{
5425 int i, j, rc;
5426
cca3974e 5427 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5428 if (rc)
5429 goto fail;
5430
5431 /* EH is quiescent now. Fail if we have any ready device.
5432 * This happens if hotplug occurs between completion of device
5433 * suspension and here.
5434 */
cca3974e
JG
5435 for (i = 0; i < host->n_ports; i++) {
5436 struct ata_port *ap = host->ports[i];
500530f6
TH
5437
5438 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5439 struct ata_device *dev = &ap->device[j];
5440
5441 if (ata_dev_ready(dev)) {
5442 ata_port_printk(ap, KERN_WARNING,
5443 "suspend failed, device %d "
5444 "still active\n", dev->devno);
5445 rc = -EBUSY;
5446 goto fail;
5447 }
5448 }
5449 }
5450
cca3974e 5451 host->dev->power.power_state = mesg;
500530f6
TH
5452 return 0;
5453
5454 fail:
cca3974e 5455 ata_host_resume(host);
500530f6
TH
5456 return rc;
5457}
5458
5459/**
cca3974e
JG
5460 * ata_host_resume - resume host
5461 * @host: host to resume
500530f6 5462 *
cca3974e 5463 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5464 * function requests EH to perform PM operations and returns.
5465 * Note that all resume operations are performed parallely.
5466 *
5467 * LOCKING:
5468 * Kernel thread context (may sleep).
5469 */
cca3974e 5470void ata_host_resume(struct ata_host *host)
500530f6 5471{
cca3974e
JG
5472 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5473 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5474 host->dev->power.power_state = PMSG_ON;
500530f6 5475}
6ffa01d8 5476#endif
500530f6 5477
c893a3ae
RD
5478/**
5479 * ata_port_start - Set port up for dma.
5480 * @ap: Port to initialize
5481 *
5482 * Called just after data structures for each port are
5483 * initialized. Allocates space for PRD table.
5484 *
5485 * May be used as the port_start() entry in ata_port_operations.
5486 *
5487 * LOCKING:
5488 * Inherited from caller.
5489 */
f0d36efd 5490int ata_port_start(struct ata_port *ap)
1da177e4 5491{
2f1f610b 5492 struct device *dev = ap->dev;
6037d6bb 5493 int rc;
1da177e4 5494
f0d36efd
TH
5495 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5496 GFP_KERNEL);
1da177e4
LT
5497 if (!ap->prd)
5498 return -ENOMEM;
5499
6037d6bb 5500 rc = ata_pad_alloc(ap, dev);
f0d36efd 5501 if (rc)
6037d6bb 5502 return rc;
1da177e4 5503
f0d36efd
TH
5504 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5505 (unsigned long long)ap->prd_dma);
1da177e4
LT
5506 return 0;
5507}
5508
3ef3b43d
TH
5509/**
5510 * ata_dev_init - Initialize an ata_device structure
5511 * @dev: Device structure to initialize
5512 *
5513 * Initialize @dev in preparation for probing.
5514 *
5515 * LOCKING:
5516 * Inherited from caller.
5517 */
5518void ata_dev_init(struct ata_device *dev)
5519{
5520 struct ata_port *ap = dev->ap;
72fa4b74
TH
5521 unsigned long flags;
5522
5a04bf4b
TH
5523 /* SATA spd limit is bound to the first device */
5524 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5525
72fa4b74
TH
5526 /* High bits of dev->flags are used to record warm plug
5527 * requests which occur asynchronously. Synchronize using
cca3974e 5528 * host lock.
72fa4b74 5529 */
ba6a1308 5530 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5531 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5532 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5533
72fa4b74
TH
5534 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5535 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5536 dev->pio_mask = UINT_MAX;
5537 dev->mwdma_mask = UINT_MAX;
5538 dev->udma_mask = UINT_MAX;
5539}
5540
1da177e4 5541/**
155a8a9c 5542 * ata_port_init - Initialize an ata_port structure
1da177e4 5543 * @ap: Structure to initialize
cca3974e 5544 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5545 * @ent: Probe information provided by low-level driver
5546 * @port_no: Port number associated with this ata_port
5547 *
155a8a9c 5548 * Initialize a new ata_port structure.
0cba632b 5549 *
1da177e4 5550 * LOCKING:
0cba632b 5551 * Inherited from caller.
1da177e4 5552 */
cca3974e 5553void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5554 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5555{
5556 unsigned int i;
5557
cca3974e 5558 ap->lock = &host->lock;
198e0fed 5559 ap->flags = ATA_FLAG_DISABLED;
44877b4e 5560 ap->print_id = ata_print_id++;
1da177e4 5561 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5562 ap->host = host;
2f1f610b 5563 ap->dev = ent->dev;
1da177e4 5564 ap->port_no = port_no;
fea63e38
TH
5565 if (port_no == 1 && ent->pinfo2) {
5566 ap->pio_mask = ent->pinfo2->pio_mask;
5567 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5568 ap->udma_mask = ent->pinfo2->udma_mask;
5569 ap->flags |= ent->pinfo2->flags;
5570 ap->ops = ent->pinfo2->port_ops;
5571 } else {
5572 ap->pio_mask = ent->pio_mask;
5573 ap->mwdma_mask = ent->mwdma_mask;
5574 ap->udma_mask = ent->udma_mask;
5575 ap->flags |= ent->port_flags;
5576 ap->ops = ent->port_ops;
5577 }
5a04bf4b 5578 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5579 ap->active_tag = ATA_TAG_POISON;
5580 ap->last_ctl = 0xFF;
bd5d825c
BP
5581
5582#if defined(ATA_VERBOSE_DEBUG)
5583 /* turn on all debugging levels */
5584 ap->msg_enable = 0x00FF;
5585#elif defined(ATA_DEBUG)
5586 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5587#else
0dd4b21f 5588 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5589#endif
1da177e4 5590
65f27f38
DH
5591 INIT_DELAYED_WORK(&ap->port_task, NULL);
5592 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5593 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5594 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5595 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5596
838df628
TH
5597 /* set cable type */
5598 ap->cbl = ATA_CBL_NONE;
5599 if (ap->flags & ATA_FLAG_SATA)
5600 ap->cbl = ATA_CBL_SATA;
5601
acf356b1
TH
5602 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5603 struct ata_device *dev = &ap->device[i];
38d87234 5604 dev->ap = ap;
72fa4b74 5605 dev->devno = i;
3ef3b43d 5606 ata_dev_init(dev);
acf356b1 5607 }
1da177e4
LT
5608
5609#ifdef ATA_IRQ_TRAP
5610 ap->stats.unhandled_irq = 1;
5611 ap->stats.idle_irq = 1;
5612#endif
5613
5614 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5615}
5616
155a8a9c 5617/**
4608c160
TH
5618 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5619 * @ap: ATA port to initialize SCSI host for
5620 * @shost: SCSI host associated with @ap
155a8a9c 5621 *
4608c160 5622 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5623 *
5624 * LOCKING:
5625 * Inherited from caller.
5626 */
4608c160 5627static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5628{
cca3974e 5629 ap->scsi_host = shost;
155a8a9c 5630
44877b4e 5631 shost->unique_id = ap->print_id;
4608c160
TH
5632 shost->max_id = 16;
5633 shost->max_lun = 1;
5634 shost->max_channel = 1;
5635 shost->max_cmd_len = 12;
155a8a9c
BK
5636}
5637
1da177e4 5638/**
996139f1 5639 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5640 * @ent: Information provided by low-level driver
cca3974e 5641 * @host: Collections of ports to which we add
1da177e4
LT
5642 * @port_no: Port number associated with this host
5643 *
0cba632b
JG
5644 * Attach low-level ATA driver to system.
5645 *
1da177e4 5646 * LOCKING:
0cba632b 5647 * PCI/etc. bus probe sem.
1da177e4
LT
5648 *
5649 * RETURNS:
0cba632b 5650 * New ata_port on success, for NULL on error.
1da177e4 5651 */
996139f1 5652static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5653 struct ata_host *host,
1da177e4
LT
5654 unsigned int port_no)
5655{
996139f1 5656 struct Scsi_Host *shost;
1da177e4 5657 struct ata_port *ap;
1da177e4
LT
5658
5659 DPRINTK("ENTER\n");
aec5c3c1 5660
52783c5d 5661 if (!ent->port_ops->error_handler &&
cca3974e 5662 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5663 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5664 port_no);
5665 return NULL;
5666 }
5667
996139f1
JG
5668 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5669 if (!shost)
1da177e4
LT
5670 return NULL;
5671
996139f1 5672 shost->transportt = &ata_scsi_transport_template;
30afc84c 5673
996139f1 5674 ap = ata_shost_to_port(shost);
1da177e4 5675
cca3974e 5676 ata_port_init(ap, host, ent, port_no);
996139f1 5677 ata_port_init_shost(ap, shost);
1da177e4 5678
1da177e4 5679 return ap;
1da177e4
LT
5680}
5681
f0d36efd
TH
5682static void ata_host_release(struct device *gendev, void *res)
5683{
5684 struct ata_host *host = dev_get_drvdata(gendev);
5685 int i;
5686
5687 for (i = 0; i < host->n_ports; i++) {
5688 struct ata_port *ap = host->ports[i];
5689
1aa506e4 5690 if (ap && ap->ops->port_stop)
f0d36efd 5691 ap->ops->port_stop(ap);
f0d36efd
TH
5692 }
5693
5694 if (host->ops->host_stop)
5695 host->ops->host_stop(host);
1aa56cca 5696
1aa506e4
TH
5697 for (i = 0; i < host->n_ports; i++) {
5698 struct ata_port *ap = host->ports[i];
5699
5700 if (ap)
5701 scsi_host_put(ap->scsi_host);
5702
5703 host->ports[i] = NULL;
5704 }
5705
1aa56cca 5706 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5707}
5708
b03732f0 5709/**
cca3974e
JG
5710 * ata_sas_host_init - Initialize a host struct
5711 * @host: host to initialize
5712 * @dev: device host is attached to
5713 * @flags: host flags
5714 * @ops: port_ops
b03732f0
BK
5715 *
5716 * LOCKING:
5717 * PCI/etc. bus probe sem.
5718 *
5719 */
5720
cca3974e
JG
5721void ata_host_init(struct ata_host *host, struct device *dev,
5722 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5723{
cca3974e
JG
5724 spin_lock_init(&host->lock);
5725 host->dev = dev;
5726 host->flags = flags;
5727 host->ops = ops;
b03732f0
BK
5728}
5729
1da177e4 5730/**
0cba632b
JG
5731 * ata_device_add - Register hardware device with ATA and SCSI layers
5732 * @ent: Probe information describing hardware device to be registered
5733 *
5734 * This function processes the information provided in the probe
5735 * information struct @ent, allocates the necessary ATA and SCSI
5736 * host information structures, initializes them, and registers
5737 * everything with requisite kernel subsystems.
5738 *
5739 * This function requests irqs, probes the ATA bus, and probes
5740 * the SCSI bus.
1da177e4
LT
5741 *
5742 * LOCKING:
0cba632b 5743 * PCI/etc. bus probe sem.
1da177e4
LT
5744 *
5745 * RETURNS:
0cba632b 5746 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5747 */
057ace5e 5748int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5749{
6d0500df 5750 unsigned int i;
1da177e4 5751 struct device *dev = ent->dev;
cca3974e 5752 struct ata_host *host;
39b07ce6 5753 int rc;
1da177e4
LT
5754
5755 DPRINTK("ENTER\n");
f20b16ff 5756
02f076aa
AC
5757 if (ent->irq == 0) {
5758 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5759 return 0;
5760 }
f0d36efd
TH
5761
5762 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5763 return 0;
5764
1da177e4 5765 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5766 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5767 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5768 if (!host)
f0d36efd
TH
5769 goto err_out;
5770 devres_add(dev, host);
5771 dev_set_drvdata(dev, host);
1da177e4 5772
cca3974e
JG
5773 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5774 host->n_ports = ent->n_ports;
5775 host->irq = ent->irq;
5776 host->irq2 = ent->irq2;
0d5ff566 5777 host->iomap = ent->iomap;
cca3974e 5778 host->private_data = ent->private_data;
1da177e4
LT
5779
5780 /* register each port bound to this device */
cca3974e 5781 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5782 struct ata_port *ap;
5783 unsigned long xfer_mode_mask;
2ec7df04 5784 int irq_line = ent->irq;
1da177e4 5785
cca3974e 5786 ap = ata_port_add(ent, host, i);
c38778c3 5787 host->ports[i] = ap;
1da177e4
LT
5788 if (!ap)
5789 goto err_out;
5790
dd5b06c4
TH
5791 /* dummy? */
5792 if (ent->dummy_port_mask & (1 << i)) {
5793 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5794 ap->ops = &ata_dummy_port_ops;
5795 continue;
5796 }
5797
5798 /* start port */
5799 rc = ap->ops->port_start(ap);
5800 if (rc) {
cca3974e
JG
5801 host->ports[i] = NULL;
5802 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5803 goto err_out;
5804 }
5805
2ec7df04
AC
5806 /* Report the secondary IRQ for second channel legacy */
5807 if (i == 1 && ent->irq2)
5808 irq_line = ent->irq2;
5809
1da177e4
LT
5810 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5811 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5812 (ap->pio_mask << ATA_SHIFT_PIO);
5813
5814 /* print per-port info to dmesg */
0d5ff566
TH
5815 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5816 "ctl 0x%p bmdma 0x%p irq %d\n",
f15a1daf
TH
5817 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5818 ata_mode_string(xfer_mode_mask),
5819 ap->ioaddr.cmd_addr,
5820 ap->ioaddr.ctl_addr,
5821 ap->ioaddr.bmdma_addr,
2ec7df04 5822 irq_line);
1da177e4 5823
0f0a3ad3
TH
5824 /* freeze port before requesting IRQ */
5825 ata_eh_freeze_port(ap);
1da177e4
LT
5826 }
5827
2ec7df04 5828 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5829 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5830 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5831 if (rc) {
5832 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5833 ent->irq, rc);
1da177e4 5834 goto err_out;
39b07ce6 5835 }
1da177e4 5836
2ec7df04
AC
5837 /* do we have a second IRQ for the other channel, eg legacy mode */
5838 if (ent->irq2) {
5839 /* We will get weird core code crashes later if this is true
5840 so trap it now */
5841 BUG_ON(ent->irq == ent->irq2);
5842
f0d36efd
TH
5843 rc = devm_request_irq(dev, ent->irq2,
5844 ent->port_ops->irq_handler, ent->irq_flags,
5845 DRV_NAME, host);
2ec7df04
AC
5846 if (rc) {
5847 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5848 ent->irq2, rc);
f0d36efd 5849 goto err_out;
2ec7df04
AC
5850 }
5851 }
5852
f0d36efd 5853 /* resource acquisition complete */
b878ca5d 5854 devres_remove_group(dev, ata_device_add);
f0d36efd 5855
1da177e4
LT
5856 /* perform each probe synchronously */
5857 DPRINTK("probe begin\n");
cca3974e
JG
5858 for (i = 0; i < host->n_ports; i++) {
5859 struct ata_port *ap = host->ports[i];
5a04bf4b 5860 u32 scontrol;
1da177e4
LT
5861 int rc;
5862
5a04bf4b
TH
5863 /* init sata_spd_limit to the current value */
5864 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5865 int spd = (scontrol >> 4) & 0xf;
5866 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5867 }
5868 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5869
cca3974e 5870 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5871 if (rc) {
f15a1daf 5872 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5873 /* FIXME: do something useful here */
5874 /* FIXME: handle unconditional calls to
5875 * scsi_scan_host and ata_host_remove, below,
5876 * at the very least
5877 */
5878 }
3e706399 5879
52783c5d 5880 if (ap->ops->error_handler) {
1cdaf534 5881 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5882 unsigned long flags;
5883
5884 ata_port_probe(ap);
5885
5886 /* kick EH for boot probing */
ba6a1308 5887 spin_lock_irqsave(ap->lock, flags);
3e706399 5888
1cdaf534
TH
5889 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5890 ehi->action |= ATA_EH_SOFTRESET;
5891 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5892
b51e9e5d 5893 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5894 ata_port_schedule_eh(ap);
5895
ba6a1308 5896 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5897
5898 /* wait for EH to finish */
5899 ata_port_wait_eh(ap);
5900 } else {
44877b4e 5901 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
3e706399 5902 rc = ata_bus_probe(ap);
44877b4e 5903 DPRINTK("ata%u: bus probe end\n", ap->print_id);
3e706399
TH
5904
5905 if (rc) {
5906 /* FIXME: do something useful here?
5907 * Current libata behavior will
5908 * tear down everything when
5909 * the module is removed
5910 * or the h/w is unplugged.
5911 */
5912 }
5913 }
1da177e4
LT
5914 }
5915
5916 /* probes are done, now scan each port's disk(s) */
c893a3ae 5917 DPRINTK("host probe begin\n");
cca3974e
JG
5918 for (i = 0; i < host->n_ports; i++) {
5919 struct ata_port *ap = host->ports[i];
1da177e4 5920
644dd0cc 5921 ata_scsi_scan_host(ap);
1da177e4
LT
5922 }
5923
1da177e4
LT
5924 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5925 return ent->n_ports; /* success */
5926
f0d36efd
TH
5927 err_out:
5928 devres_release_group(dev, ata_device_add);
f0d36efd 5929 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
5930 return 0;
5931}
5932
720ba126
TH
5933/**
5934 * ata_port_detach - Detach ATA port in prepration of device removal
5935 * @ap: ATA port to be detached
5936 *
5937 * Detach all ATA devices and the associated SCSI devices of @ap;
5938 * then, remove the associated SCSI host. @ap is guaranteed to
5939 * be quiescent on return from this function.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep).
5943 */
5944void ata_port_detach(struct ata_port *ap)
5945{
5946 unsigned long flags;
5947 int i;
5948
5949 if (!ap->ops->error_handler)
c3cf30a9 5950 goto skip_eh;
720ba126
TH
5951
5952 /* tell EH we're leaving & flush EH */
ba6a1308 5953 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5954 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5955 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5956
5957 ata_port_wait_eh(ap);
5958
5959 /* EH is now guaranteed to see UNLOADING, so no new device
5960 * will be attached. Disable all existing devices.
5961 */
ba6a1308 5962 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5963
5964 for (i = 0; i < ATA_MAX_DEVICES; i++)
5965 ata_dev_disable(&ap->device[i]);
5966
ba6a1308 5967 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5968
5969 /* Final freeze & EH. All in-flight commands are aborted. EH
5970 * will be skipped and retrials will be terminated with bad
5971 * target.
5972 */
ba6a1308 5973 spin_lock_irqsave(ap->lock, flags);
720ba126 5974 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5975 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5976
5977 ata_port_wait_eh(ap);
5978
5979 /* Flush hotplug task. The sequence is similar to
5980 * ata_port_flush_task().
5981 */
5982 flush_workqueue(ata_aux_wq);
5983 cancel_delayed_work(&ap->hotplug_task);
5984 flush_workqueue(ata_aux_wq);
5985
c3cf30a9 5986 skip_eh:
720ba126 5987 /* remove the associated SCSI host */
cca3974e 5988 scsi_remove_host(ap->scsi_host);
720ba126
TH
5989}
5990
0529c159
TH
5991/**
5992 * ata_host_detach - Detach all ports of an ATA host
5993 * @host: Host to detach
5994 *
5995 * Detach all ports of @host.
5996 *
5997 * LOCKING:
5998 * Kernel thread context (may sleep).
5999 */
6000void ata_host_detach(struct ata_host *host)
6001{
6002 int i;
6003
6004 for (i = 0; i < host->n_ports; i++)
6005 ata_port_detach(host->ports[i]);
6006}
6007
f6d950e2
BK
6008struct ata_probe_ent *
6009ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6010{
6011 struct ata_probe_ent *probe_ent;
6012
4d05447e 6013 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
6014 if (!probe_ent) {
6015 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6016 kobject_name(&(dev->kobj)));
6017 return NULL;
6018 }
6019
6020 INIT_LIST_HEAD(&probe_ent->node);
6021 probe_ent->dev = dev;
6022
6023 probe_ent->sht = port->sht;
cca3974e 6024 probe_ent->port_flags = port->flags;
f6d950e2
BK
6025 probe_ent->pio_mask = port->pio_mask;
6026 probe_ent->mwdma_mask = port->mwdma_mask;
6027 probe_ent->udma_mask = port->udma_mask;
6028 probe_ent->port_ops = port->port_ops;
d639ca94 6029 probe_ent->private_data = port->private_data;
f6d950e2
BK
6030
6031 return probe_ent;
6032}
6033
1da177e4
LT
6034/**
6035 * ata_std_ports - initialize ioaddr with standard port offsets.
6036 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6037 *
6038 * Utility function which initializes data_addr, error_addr,
6039 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6040 * device_addr, status_addr, and command_addr to standard offsets
6041 * relative to cmd_addr.
6042 *
6043 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6044 */
0baab86b 6045
1da177e4
LT
6046void ata_std_ports(struct ata_ioports *ioaddr)
6047{
6048 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6049 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6050 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6051 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6052 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6053 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6054 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6055 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6056 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6057 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6058}
6059
0baab86b 6060
374b1873
JG
6061#ifdef CONFIG_PCI
6062
1da177e4
LT
6063/**
6064 * ata_pci_remove_one - PCI layer callback for device removal
6065 * @pdev: PCI device that was removed
6066 *
b878ca5d
TH
6067 * PCI layer indicates to libata via this hook that hot-unplug or
6068 * module unload event has occurred. Detach all ports. Resource
6069 * release is handled via devres.
1da177e4
LT
6070 *
6071 * LOCKING:
6072 * Inherited from PCI layer (may sleep).
6073 */
f0d36efd 6074void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6075{
6076 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6077 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6078
b878ca5d 6079 ata_host_detach(host);
1da177e4
LT
6080}
6081
6082/* move to PCI subsystem */
057ace5e 6083int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6084{
6085 unsigned long tmp = 0;
6086
6087 switch (bits->width) {
6088 case 1: {
6089 u8 tmp8 = 0;
6090 pci_read_config_byte(pdev, bits->reg, &tmp8);
6091 tmp = tmp8;
6092 break;
6093 }
6094 case 2: {
6095 u16 tmp16 = 0;
6096 pci_read_config_word(pdev, bits->reg, &tmp16);
6097 tmp = tmp16;
6098 break;
6099 }
6100 case 4: {
6101 u32 tmp32 = 0;
6102 pci_read_config_dword(pdev, bits->reg, &tmp32);
6103 tmp = tmp32;
6104 break;
6105 }
6106
6107 default:
6108 return -EINVAL;
6109 }
6110
6111 tmp &= bits->mask;
6112
6113 return (tmp == bits->val) ? 1 : 0;
6114}
9b847548 6115
6ffa01d8 6116#ifdef CONFIG_PM
3c5100c1 6117void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6118{
6119 pci_save_state(pdev);
4c90d971 6120 pci_disable_device(pdev);
500530f6 6121
4c90d971 6122 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6123 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6124}
6125
553c4aa6 6126int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6127{
553c4aa6
TH
6128 int rc;
6129
9b847548
JA
6130 pci_set_power_state(pdev, PCI_D0);
6131 pci_restore_state(pdev);
553c4aa6 6132
b878ca5d 6133 rc = pcim_enable_device(pdev);
553c4aa6
TH
6134 if (rc) {
6135 dev_printk(KERN_ERR, &pdev->dev,
6136 "failed to enable device after resume (%d)\n", rc);
6137 return rc;
6138 }
6139
9b847548 6140 pci_set_master(pdev);
553c4aa6 6141 return 0;
500530f6
TH
6142}
6143
3c5100c1 6144int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6145{
cca3974e 6146 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6147 int rc = 0;
6148
cca3974e 6149 rc = ata_host_suspend(host, mesg);
500530f6
TH
6150 if (rc)
6151 return rc;
6152
3c5100c1 6153 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6154
6155 return 0;
6156}
6157
6158int ata_pci_device_resume(struct pci_dev *pdev)
6159{
cca3974e 6160 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6161 int rc;
500530f6 6162
553c4aa6
TH
6163 rc = ata_pci_device_do_resume(pdev);
6164 if (rc == 0)
6165 ata_host_resume(host);
6166 return rc;
9b847548 6167}
6ffa01d8
TH
6168#endif /* CONFIG_PM */
6169
1da177e4
LT
6170#endif /* CONFIG_PCI */
6171
6172
1da177e4
LT
6173static int __init ata_init(void)
6174{
a8601e5f 6175 ata_probe_timeout *= HZ;
1da177e4
LT
6176 ata_wq = create_workqueue("ata");
6177 if (!ata_wq)
6178 return -ENOMEM;
6179
453b07ac
TH
6180 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6181 if (!ata_aux_wq) {
6182 destroy_workqueue(ata_wq);
6183 return -ENOMEM;
6184 }
6185
1da177e4
LT
6186 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6187 return 0;
6188}
6189
6190static void __exit ata_exit(void)
6191{
6192 destroy_workqueue(ata_wq);
453b07ac 6193 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6194}
6195
a4625085 6196subsys_initcall(ata_init);
1da177e4
LT
6197module_exit(ata_exit);
6198
67846b30 6199static unsigned long ratelimit_time;
34af946a 6200static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6201
6202int ata_ratelimit(void)
6203{
6204 int rc;
6205 unsigned long flags;
6206
6207 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6208
6209 if (time_after(jiffies, ratelimit_time)) {
6210 rc = 1;
6211 ratelimit_time = jiffies + (HZ/5);
6212 } else
6213 rc = 0;
6214
6215 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6216
6217 return rc;
6218}
6219
c22daff4
TH
6220/**
6221 * ata_wait_register - wait until register value changes
6222 * @reg: IO-mapped register
6223 * @mask: Mask to apply to read register value
6224 * @val: Wait condition
6225 * @interval_msec: polling interval in milliseconds
6226 * @timeout_msec: timeout in milliseconds
6227 *
6228 * Waiting for some bits of register to change is a common
6229 * operation for ATA controllers. This function reads 32bit LE
6230 * IO-mapped register @reg and tests for the following condition.
6231 *
6232 * (*@reg & mask) != val
6233 *
6234 * If the condition is met, it returns; otherwise, the process is
6235 * repeated after @interval_msec until timeout.
6236 *
6237 * LOCKING:
6238 * Kernel thread context (may sleep)
6239 *
6240 * RETURNS:
6241 * The final register value.
6242 */
6243u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6244 unsigned long interval_msec,
6245 unsigned long timeout_msec)
6246{
6247 unsigned long timeout;
6248 u32 tmp;
6249
6250 tmp = ioread32(reg);
6251
6252 /* Calculate timeout _after_ the first read to make sure
6253 * preceding writes reach the controller before starting to
6254 * eat away the timeout.
6255 */
6256 timeout = jiffies + (timeout_msec * HZ) / 1000;
6257
6258 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6259 msleep(interval_msec);
6260 tmp = ioread32(reg);
6261 }
6262
6263 return tmp;
6264}
6265
dd5b06c4
TH
6266/*
6267 * Dummy port_ops
6268 */
6269static void ata_dummy_noret(struct ata_port *ap) { }
6270static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6271static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6272
6273static u8 ata_dummy_check_status(struct ata_port *ap)
6274{
6275 return ATA_DRDY;
6276}
6277
6278static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6279{
6280 return AC_ERR_SYSTEM;
6281}
6282
6283const struct ata_port_operations ata_dummy_port_ops = {
6284 .port_disable = ata_port_disable,
6285 .check_status = ata_dummy_check_status,
6286 .check_altstatus = ata_dummy_check_status,
6287 .dev_select = ata_noop_dev_select,
6288 .qc_prep = ata_noop_qc_prep,
6289 .qc_issue = ata_dummy_qc_issue,
6290 .freeze = ata_dummy_noret,
6291 .thaw = ata_dummy_noret,
6292 .error_handler = ata_dummy_noret,
6293 .post_internal_cmd = ata_dummy_qc_noret,
6294 .irq_clear = ata_dummy_noret,
6295 .port_start = ata_dummy_ret0,
6296 .port_stop = ata_dummy_noret,
6297};
6298
1da177e4
LT
6299/*
6300 * libata is essentially a library of internal helper functions for
6301 * low-level ATA host controller drivers. As such, the API/ABI is
6302 * likely to change as new drivers are added and updated.
6303 * Do not depend on ABI/API stability.
6304 */
6305
e9c83914
TH
6306EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6307EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6308EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6309EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6310EXPORT_SYMBOL_GPL(ata_std_bios_param);
6311EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6312EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6313EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6314EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6315EXPORT_SYMBOL_GPL(ata_sg_init);
6316EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6317EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6318EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6319EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6320EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6321EXPORT_SYMBOL_GPL(ata_tf_load);
6322EXPORT_SYMBOL_GPL(ata_tf_read);
6323EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6324EXPORT_SYMBOL_GPL(ata_std_dev_select);
6325EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6326EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6327EXPORT_SYMBOL_GPL(ata_check_status);
6328EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6329EXPORT_SYMBOL_GPL(ata_exec_command);
6330EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6331EXPORT_SYMBOL_GPL(ata_interrupt);
0d5ff566
TH
6332EXPORT_SYMBOL_GPL(ata_data_xfer);
6333EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6334EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6335EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6336EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6337EXPORT_SYMBOL_GPL(ata_bmdma_start);
6338EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6339EXPORT_SYMBOL_GPL(ata_bmdma_status);
6340EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6341EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6342EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6343EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6344EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6345EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6346EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6347EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6348EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6349EXPORT_SYMBOL_GPL(sata_phy_debounce);
6350EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6351EXPORT_SYMBOL_GPL(sata_phy_reset);
6352EXPORT_SYMBOL_GPL(__sata_phy_reset);
6353EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6354EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6355EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6356EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6357EXPORT_SYMBOL_GPL(sata_std_hardreset);
6358EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6359EXPORT_SYMBOL_GPL(ata_dev_classify);
6360EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6361EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6362EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6363EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6364EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6365EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6366EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6367EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6368EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6369EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6370EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6371EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6372EXPORT_SYMBOL_GPL(sata_scr_valid);
6373EXPORT_SYMBOL_GPL(sata_scr_read);
6374EXPORT_SYMBOL_GPL(sata_scr_write);
6375EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6376EXPORT_SYMBOL_GPL(ata_port_online);
6377EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6378#ifdef CONFIG_PM
cca3974e
JG
6379EXPORT_SYMBOL_GPL(ata_host_suspend);
6380EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6381#endif /* CONFIG_PM */
6a62a04d
TH
6382EXPORT_SYMBOL_GPL(ata_id_string);
6383EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6384EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6385EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6386EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6387
1bc4ccff 6388EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6389EXPORT_SYMBOL_GPL(ata_timing_compute);
6390EXPORT_SYMBOL_GPL(ata_timing_merge);
6391
1da177e4
LT
6392#ifdef CONFIG_PCI
6393EXPORT_SYMBOL_GPL(pci_test_config_bits);
6394EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6395EXPORT_SYMBOL_GPL(ata_pci_init_one);
6396EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6397#ifdef CONFIG_PM
500530f6
TH
6398EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6399EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6400EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6401EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6402#endif /* CONFIG_PM */
67951ade
AC
6403EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6404EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6405#endif /* CONFIG_PCI */
9b847548 6406
6ffa01d8 6407#ifdef CONFIG_PM
9b847548
JA
6408EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6409EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6410#endif /* CONFIG_PM */
ece1d636 6411
ece1d636 6412EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6413EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6414EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6415EXPORT_SYMBOL_GPL(ata_port_freeze);
6416EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6417EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6418EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6419EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6420EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6421EXPORT_SYMBOL_GPL(ata_irq_on);
6422EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6423EXPORT_SYMBOL_GPL(ata_irq_ack);
6424EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6425EXPORT_SYMBOL_GPL(ata_dev_try_classify);
This page took 2.022569 seconds and 5 git commands to generate.