[libata] AHCI: fix newly introduced host-reset bug
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
1da177e4 623/**
0d5ff566 624 * ata_devchk - PATA device presence detection
1da177e4
LT
625 * @ap: ATA channel to examine
626 * @device: Device to examine (starting at zero)
627 *
628 * This technique was originally described in
629 * Hale Landis's ATADRVR (www.ata-atapi.com), and
630 * later found its way into the ATA/ATAPI spec.
631 *
632 * Write a pattern to the ATA shadow registers,
633 * and if a device is present, it will respond by
634 * correctly storing and echoing back the
635 * ATA shadow register contents.
636 *
637 * LOCKING:
638 * caller.
639 */
640
0d5ff566 641static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
642{
643 struct ata_ioports *ioaddr = &ap->ioaddr;
644 u8 nsect, lbal;
645
646 ap->ops->dev_select(ap, device);
647
0d5ff566
TH
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 650
0d5ff566
TH
651 iowrite8(0xaa, ioaddr->nsect_addr);
652 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 653
0d5ff566
TH
654 iowrite8(0x55, ioaddr->nsect_addr);
655 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 656
0d5ff566
TH
657 nsect = ioread8(ioaddr->nsect_addr);
658 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
659
660 if ((nsect == 0x55) && (lbal == 0xaa))
661 return 1; /* we found a device */
662
663 return 0; /* nothing found */
664}
665
1da177e4
LT
666/**
667 * ata_dev_classify - determine device type based on ATA-spec signature
668 * @tf: ATA taskfile register set for device to be identified
669 *
670 * Determine from taskfile register contents whether a device is
671 * ATA or ATAPI, as per "Signature and persistence" section
672 * of ATA/PI spec (volume 1, sect 5.14).
673 *
674 * LOCKING:
675 * None.
676 *
677 * RETURNS:
633273a3
TH
678 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
679 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 680 */
057ace5e 681unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
682{
683 /* Apple's open source Darwin code hints that some devices only
684 * put a proper signature into the LBA mid/high registers,
685 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
686 *
687 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
688 * signatures for ATA and ATAPI devices attached on SerialATA,
689 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
690 * spec has never mentioned about using different signatures
691 * for ATA/ATAPI devices. Then, Serial ATA II: Port
692 * Multiplier specification began to use 0x69/0x96 to identify
693 * port multpliers and 0x3c/0xc3 to identify SEMB device.
694 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
695 * 0x69/0x96 shortly and described them as reserved for
696 * SerialATA.
697 *
698 * We follow the current spec and consider that 0x69/0x96
699 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 700 */
633273a3 701 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
702 DPRINTK("found ATA device by sig\n");
703 return ATA_DEV_ATA;
704 }
705
633273a3 706 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
707 DPRINTK("found ATAPI device by sig\n");
708 return ATA_DEV_ATAPI;
709 }
710
633273a3
TH
711 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
712 DPRINTK("found PMP device by sig\n");
713 return ATA_DEV_PMP;
714 }
715
716 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 717 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
718 return ATA_DEV_SEMB_UNSUP; /* not yet */
719 }
720
1da177e4
LT
721 DPRINTK("unknown device\n");
722 return ATA_DEV_UNKNOWN;
723}
724
725/**
726 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
727 * @dev: ATA device to classify (starting at zero)
728 * @present: device seems present
b4dc7623 729 * @r_err: Value of error register on completion
1da177e4
LT
730 *
731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
732 * an ATA/ATAPI-defined set of values is placed in the ATA
733 * shadow registers, indicating the results of device detection
734 * and diagnostics.
735 *
736 * Select the ATA device, and read the values from the ATA shadow
737 * registers. Then parse according to the Error register value,
738 * and the spec-defined values examined by ata_dev_classify().
739 *
740 * LOCKING:
741 * caller.
b4dc7623
TH
742 *
743 * RETURNS:
744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 745 */
3f19859e
TH
746unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
747 u8 *r_err)
1da177e4 748{
3f19859e 749 struct ata_port *ap = dev->link->ap;
1da177e4
LT
750 struct ata_taskfile tf;
751 unsigned int class;
752 u8 err;
753
3f19859e 754 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
755
756 memset(&tf, 0, sizeof(tf));
757
1da177e4 758 ap->ops->tf_read(ap, &tf);
0169e284 759 err = tf.feature;
b4dc7623
TH
760 if (r_err)
761 *r_err = err;
1da177e4 762
93590859 763 /* see if device passed diags: if master then continue and warn later */
3f19859e 764 if (err == 0 && dev->devno == 0)
93590859 765 /* diagnostic fail : do nothing _YET_ */
3f19859e 766 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 767 else if (err == 1)
1da177e4 768 /* do nothing */ ;
3f19859e 769 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
770 /* do nothing */ ;
771 else
b4dc7623 772 return ATA_DEV_NONE;
1da177e4 773
b4dc7623 774 /* determine if device is ATA or ATAPI */
1da177e4 775 class = ata_dev_classify(&tf);
b4dc7623 776
d7fbee05
TH
777 if (class == ATA_DEV_UNKNOWN) {
778 /* If the device failed diagnostic, it's likely to
779 * have reported incorrect device signature too.
780 * Assume ATA device if the device seems present but
781 * device signature is invalid with diagnostic
782 * failure.
783 */
784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
785 class = ATA_DEV_ATA;
786 else
787 class = ATA_DEV_NONE;
788 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
789 class = ATA_DEV_NONE;
790
b4dc7623 791 return class;
1da177e4
LT
792}
793
794/**
6a62a04d 795 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an even number.
800 *
801 * The strings in the IDENTIFY DEVICE page are broken up into
802 * 16-bit chunks. Run through the string, and output each
803 * 8-bit chunk linearly, regardless of platform.
804 *
805 * LOCKING:
806 * caller.
807 */
808
6a62a04d
TH
809void ata_id_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
1da177e4
LT
811{
812 unsigned int c;
813
814 while (len > 0) {
815 c = id[ofs] >> 8;
816 *s = c;
817 s++;
818
819 c = id[ofs] & 0xff;
820 *s = c;
821 s++;
822
823 ofs++;
824 len -= 2;
825 }
826}
827
0e949ff3 828/**
6a62a04d 829 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
830 * @id: IDENTIFY DEVICE results we will examine
831 * @s: string into which data is output
832 * @ofs: offset into identify device page
833 * @len: length of string to return. must be an odd number.
834 *
6a62a04d 835 * This function is identical to ata_id_string except that it
0e949ff3
TH
836 * trims trailing spaces and terminates the resulting string with
837 * null. @len must be actual maximum length (even number) + 1.
838 *
839 * LOCKING:
840 * caller.
841 */
6a62a04d
TH
842void ata_id_c_string(const u16 *id, unsigned char *s,
843 unsigned int ofs, unsigned int len)
0e949ff3
TH
844{
845 unsigned char *p;
846
847 WARN_ON(!(len & 1));
848
6a62a04d 849 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
850
851 p = s + strnlen(s, len - 1);
852 while (p > s && p[-1] == ' ')
853 p--;
854 *p = '\0';
855}
0baab86b 856
db6f8759
TH
857static u64 ata_id_n_sectors(const u16 *id)
858{
859 if (ata_id_has_lba(id)) {
860 if (ata_id_has_lba48(id))
861 return ata_id_u64(id, 100);
862 else
863 return ata_id_u32(id, 60);
864 } else {
865 if (ata_id_current_chs_valid(id))
866 return ata_id_u32(id, 57);
867 else
868 return id[1] * id[3] * id[6];
869 }
870}
871
1e999736
AC
872static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
873{
874 u64 sectors = 0;
875
876 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
877 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
878 sectors |= (tf->hob_lbal & 0xff) << 24;
879 sectors |= (tf->lbah & 0xff) << 16;
880 sectors |= (tf->lbam & 0xff) << 8;
881 sectors |= (tf->lbal & 0xff);
882
883 return ++sectors;
884}
885
886static u64 ata_tf_to_lba(struct ata_taskfile *tf)
887{
888 u64 sectors = 0;
889
890 sectors |= (tf->device & 0x0f) << 24;
891 sectors |= (tf->lbah & 0xff) << 16;
892 sectors |= (tf->lbam & 0xff) << 8;
893 sectors |= (tf->lbal & 0xff);
894
895 return ++sectors;
896}
897
898/**
c728a914
TH
899 * ata_read_native_max_address - Read native max address
900 * @dev: target device
901 * @max_sectors: out parameter for the result native max address
1e999736 902 *
c728a914
TH
903 * Perform an LBA48 or LBA28 native size query upon the device in
904 * question.
1e999736 905 *
c728a914
TH
906 * RETURNS:
907 * 0 on success, -EACCES if command is aborted by the drive.
908 * -EIO on other errors.
1e999736 909 */
c728a914 910static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 911{
c728a914 912 unsigned int err_mask;
1e999736 913 struct ata_taskfile tf;
c728a914 914 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
915
916 ata_tf_init(dev, &tf);
917
c728a914 918 /* always clear all address registers */
1e999736 919 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 920
c728a914
TH
921 if (lba48) {
922 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
923 tf.flags |= ATA_TFLAG_LBA48;
924 } else
925 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 926
1e999736 927 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
928 tf.device |= ATA_LBA;
929
2b789108 930 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
931 if (err_mask) {
932 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
933 "max address (err_mask=0x%x)\n", err_mask);
934 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
935 return -EACCES;
936 return -EIO;
937 }
1e999736 938
c728a914
TH
939 if (lba48)
940 *max_sectors = ata_tf_to_lba48(&tf);
941 else
942 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 943 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 944 (*max_sectors)--;
c728a914 945 return 0;
1e999736
AC
946}
947
948/**
c728a914
TH
949 * ata_set_max_sectors - Set max sectors
950 * @dev: target device
6b38d1d1 951 * @new_sectors: new max sectors value to set for the device
1e999736 952 *
c728a914
TH
953 * Set max sectors of @dev to @new_sectors.
954 *
955 * RETURNS:
956 * 0 on success, -EACCES if command is aborted or denied (due to
957 * previous non-volatile SET_MAX) by the drive. -EIO on other
958 * errors.
1e999736 959 */
05027adc 960static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 961{
c728a914 962 unsigned int err_mask;
1e999736 963 struct ata_taskfile tf;
c728a914 964 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
965
966 new_sectors--;
967
968 ata_tf_init(dev, &tf);
969
1e999736 970 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
971
972 if (lba48) {
973 tf.command = ATA_CMD_SET_MAX_EXT;
974 tf.flags |= ATA_TFLAG_LBA48;
975
976 tf.hob_lbal = (new_sectors >> 24) & 0xff;
977 tf.hob_lbam = (new_sectors >> 32) & 0xff;
978 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 979 } else {
c728a914
TH
980 tf.command = ATA_CMD_SET_MAX;
981
1e582ba4
TH
982 tf.device |= (new_sectors >> 24) & 0xf;
983 }
984
1e999736 985 tf.protocol |= ATA_PROT_NODATA;
c728a914 986 tf.device |= ATA_LBA;
1e999736
AC
987
988 tf.lbal = (new_sectors >> 0) & 0xff;
989 tf.lbam = (new_sectors >> 8) & 0xff;
990 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 991
2b789108 992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
993 if (err_mask) {
994 ata_dev_printk(dev, KERN_WARNING, "failed to set "
995 "max address (err_mask=0x%x)\n", err_mask);
996 if (err_mask == AC_ERR_DEV &&
997 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
998 return -EACCES;
999 return -EIO;
1000 }
1001
c728a914 1002 return 0;
1e999736
AC
1003}
1004
1005/**
1006 * ata_hpa_resize - Resize a device with an HPA set
1007 * @dev: Device to resize
1008 *
1009 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1010 * it if required to the full size of the media. The caller must check
1011 * the drive has the HPA feature set enabled.
05027adc
TH
1012 *
1013 * RETURNS:
1014 * 0 on success, -errno on failure.
1e999736 1015 */
05027adc 1016static int ata_hpa_resize(struct ata_device *dev)
1e999736 1017{
05027adc
TH
1018 struct ata_eh_context *ehc = &dev->link->eh_context;
1019 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1020 u64 sectors = ata_id_n_sectors(dev->id);
1021 u64 native_sectors;
c728a914 1022 int rc;
a617c09f 1023
05027adc
TH
1024 /* do we need to do it? */
1025 if (dev->class != ATA_DEV_ATA ||
1026 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1027 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1028 return 0;
1e999736 1029
05027adc
TH
1030 /* read native max address */
1031 rc = ata_read_native_max_address(dev, &native_sectors);
1032 if (rc) {
1033 /* If HPA isn't going to be unlocked, skip HPA
1034 * resizing from the next try.
1035 */
1036 if (!ata_ignore_hpa) {
1037 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1038 "broken, will skip HPA handling\n");
1039 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1040
1041 /* we can continue if device aborted the command */
1042 if (rc == -EACCES)
1043 rc = 0;
1e999736 1044 }
37301a55 1045
05027adc
TH
1046 return rc;
1047 }
1048
1049 /* nothing to do? */
1050 if (native_sectors <= sectors || !ata_ignore_hpa) {
1051 if (!print_info || native_sectors == sectors)
1052 return 0;
1053
1054 if (native_sectors > sectors)
1055 ata_dev_printk(dev, KERN_INFO,
1056 "HPA detected: current %llu, native %llu\n",
1057 (unsigned long long)sectors,
1058 (unsigned long long)native_sectors);
1059 else if (native_sectors < sectors)
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "native sectors (%llu) is smaller than "
1062 "sectors (%llu)\n",
1063 (unsigned long long)native_sectors,
1064 (unsigned long long)sectors);
1065 return 0;
1066 }
1067
1068 /* let's unlock HPA */
1069 rc = ata_set_max_sectors(dev, native_sectors);
1070 if (rc == -EACCES) {
1071 /* if device aborted the command, skip HPA resizing */
1072 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1073 "(%llu -> %llu), skipping HPA handling\n",
1074 (unsigned long long)sectors,
1075 (unsigned long long)native_sectors);
1076 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1077 return 0;
1078 } else if (rc)
1079 return rc;
1080
1081 /* re-read IDENTIFY data */
1082 rc = ata_dev_reread_id(dev, 0);
1083 if (rc) {
1084 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1085 "data after HPA resizing\n");
1086 return rc;
1087 }
1088
1089 if (print_info) {
1090 u64 new_sectors = ata_id_n_sectors(dev->id);
1091 ata_dev_printk(dev, KERN_INFO,
1092 "HPA unlocked: %llu -> %llu, native %llu\n",
1093 (unsigned long long)sectors,
1094 (unsigned long long)new_sectors,
1095 (unsigned long long)native_sectors);
1096 }
1097
1098 return 0;
1e999736
AC
1099}
1100
10305f0f
A
1101/**
1102 * ata_id_to_dma_mode - Identify DMA mode from id block
1103 * @dev: device to identify
cc261267 1104 * @unknown: mode to assume if we cannot tell
10305f0f
A
1105 *
1106 * Set up the timing values for the device based upon the identify
1107 * reported values for the DMA mode. This function is used by drivers
1108 * which rely upon firmware configured modes, but wish to report the
1109 * mode correctly when possible.
1110 *
1111 * In addition we emit similarly formatted messages to the default
1112 * ata_dev_set_mode handler, in order to provide consistency of
1113 * presentation.
1114 */
1115
1116void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1117{
1118 unsigned int mask;
1119 u8 mode;
1120
1121 /* Pack the DMA modes */
1122 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1123 if (dev->id[53] & 0x04)
1124 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1125
1126 /* Select the mode in use */
1127 mode = ata_xfer_mask2mode(mask);
1128
1129 if (mode != 0) {
1130 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1131 ata_mode_string(mask));
1132 } else {
1133 /* SWDMA perhaps ? */
1134 mode = unknown;
1135 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1136 }
1137
1138 /* Configure the device reporting */
1139 dev->xfer_mode = mode;
1140 dev->xfer_shift = ata_xfer_mode2shift(mode);
1141}
1142
0baab86b
EF
1143/**
1144 * ata_noop_dev_select - Select device 0/1 on ATA bus
1145 * @ap: ATA channel to manipulate
1146 * @device: ATA device (numbered from zero) to select
1147 *
1148 * This function performs no actual function.
1149 *
1150 * May be used as the dev_select() entry in ata_port_operations.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
2dcb407e 1155void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1156{
1157}
1158
0baab86b 1159
1da177e4
LT
1160/**
1161 * ata_std_dev_select - Select device 0/1 on ATA bus
1162 * @ap: ATA channel to manipulate
1163 * @device: ATA device (numbered from zero) to select
1164 *
1165 * Use the method defined in the ATA specification to
1166 * make either device 0, or device 1, active on the
0baab86b
EF
1167 * ATA channel. Works with both PIO and MMIO.
1168 *
1169 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
2dcb407e 1175void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1176{
1177 u8 tmp;
1178
1179 if (device == 0)
1180 tmp = ATA_DEVICE_OBS;
1181 else
1182 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1183
0d5ff566 1184 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1185 ata_pause(ap); /* needed; also flushes, for mmio */
1186}
1187
1188/**
1189 * ata_dev_select - Select device 0/1 on ATA bus
1190 * @ap: ATA channel to manipulate
1191 * @device: ATA device (numbered from zero) to select
1192 * @wait: non-zero to wait for Status register BSY bit to clear
1193 * @can_sleep: non-zero if context allows sleeping
1194 *
1195 * Use the method defined in the ATA specification to
1196 * make either device 0, or device 1, active on the
1197 * ATA channel.
1198 *
1199 * This is a high-level version of ata_std_dev_select(),
1200 * which additionally provides the services of inserting
1201 * the proper pauses and status polling, where needed.
1202 *
1203 * LOCKING:
1204 * caller.
1205 */
1206
1207void ata_dev_select(struct ata_port *ap, unsigned int device,
1208 unsigned int wait, unsigned int can_sleep)
1209{
88574551 1210 if (ata_msg_probe(ap))
44877b4e
TH
1211 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1212 "device %u, wait %u\n", device, wait);
1da177e4
LT
1213
1214 if (wait)
1215 ata_wait_idle(ap);
1216
1217 ap->ops->dev_select(ap, device);
1218
1219 if (wait) {
9af5c9c9 1220 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1221 msleep(150);
1222 ata_wait_idle(ap);
1223 }
1224}
1225
1226/**
1227 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1228 * @id: IDENTIFY DEVICE page to dump
1da177e4 1229 *
0bd3300a
TH
1230 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1231 * page.
1da177e4
LT
1232 *
1233 * LOCKING:
1234 * caller.
1235 */
1236
0bd3300a 1237static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1238{
1239 DPRINTK("49==0x%04x "
1240 "53==0x%04x "
1241 "63==0x%04x "
1242 "64==0x%04x "
1243 "75==0x%04x \n",
0bd3300a
TH
1244 id[49],
1245 id[53],
1246 id[63],
1247 id[64],
1248 id[75]);
1da177e4
LT
1249 DPRINTK("80==0x%04x "
1250 "81==0x%04x "
1251 "82==0x%04x "
1252 "83==0x%04x "
1253 "84==0x%04x \n",
0bd3300a
TH
1254 id[80],
1255 id[81],
1256 id[82],
1257 id[83],
1258 id[84]);
1da177e4
LT
1259 DPRINTK("88==0x%04x "
1260 "93==0x%04x\n",
0bd3300a
TH
1261 id[88],
1262 id[93]);
1da177e4
LT
1263}
1264
cb95d562
TH
1265/**
1266 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1267 * @id: IDENTIFY data to compute xfer mask from
1268 *
1269 * Compute the xfermask for this device. This is not as trivial
1270 * as it seems if we must consider early devices correctly.
1271 *
1272 * FIXME: pre IDE drive timing (do we care ?).
1273 *
1274 * LOCKING:
1275 * None.
1276 *
1277 * RETURNS:
1278 * Computed xfermask
1279 */
1280static unsigned int ata_id_xfermask(const u16 *id)
1281{
1282 unsigned int pio_mask, mwdma_mask, udma_mask;
1283
1284 /* Usual case. Word 53 indicates word 64 is valid */
1285 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1286 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1287 pio_mask <<= 3;
1288 pio_mask |= 0x7;
1289 } else {
1290 /* If word 64 isn't valid then Word 51 high byte holds
1291 * the PIO timing number for the maximum. Turn it into
1292 * a mask.
1293 */
7a0f1c8a 1294 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1295 if (mode < 5) /* Valid PIO range */
2dcb407e 1296 pio_mask = (2 << mode) - 1;
46767aeb
AC
1297 else
1298 pio_mask = 1;
cb95d562
TH
1299
1300 /* But wait.. there's more. Design your standards by
1301 * committee and you too can get a free iordy field to
1302 * process. However its the speeds not the modes that
1303 * are supported... Note drivers using the timing API
1304 * will get this right anyway
1305 */
1306 }
1307
1308 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1309
b352e57d
AC
1310 if (ata_id_is_cfa(id)) {
1311 /*
1312 * Process compact flash extended modes
1313 */
1314 int pio = id[163] & 0x7;
1315 int dma = (id[163] >> 3) & 7;
1316
1317 if (pio)
1318 pio_mask |= (1 << 5);
1319 if (pio > 1)
1320 pio_mask |= (1 << 6);
1321 if (dma)
1322 mwdma_mask |= (1 << 3);
1323 if (dma > 1)
1324 mwdma_mask |= (1 << 4);
1325 }
1326
fb21f0d0
TH
1327 udma_mask = 0;
1328 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1329 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1330
1331 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1332}
1333
86e45b6b
TH
1334/**
1335 * ata_port_queue_task - Queue port_task
1336 * @ap: The ata_port to queue port_task for
e2a7f77a 1337 * @fn: workqueue function to be scheduled
65f27f38 1338 * @data: data for @fn to use
e2a7f77a 1339 * @delay: delay time for workqueue function
86e45b6b
TH
1340 *
1341 * Schedule @fn(@data) for execution after @delay jiffies using
1342 * port_task. There is one port_task per port and it's the
1343 * user(low level driver)'s responsibility to make sure that only
1344 * one task is active at any given time.
1345 *
1346 * libata core layer takes care of synchronization between
1347 * port_task and EH. ata_port_queue_task() may be ignored for EH
1348 * synchronization.
1349 *
1350 * LOCKING:
1351 * Inherited from caller.
1352 */
65f27f38 1353void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1354 unsigned long delay)
1355{
65f27f38
DH
1356 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1357 ap->port_task_data = data;
86e45b6b 1358
45a66c1c
ON
1359 /* may fail if ata_port_flush_task() in progress */
1360 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1361}
1362
1363/**
1364 * ata_port_flush_task - Flush port_task
1365 * @ap: The ata_port to flush port_task for
1366 *
1367 * After this function completes, port_task is guranteed not to
1368 * be running or scheduled.
1369 *
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1372 */
1373void ata_port_flush_task(struct ata_port *ap)
1374{
86e45b6b
TH
1375 DPRINTK("ENTER\n");
1376
45a66c1c 1377 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1378
0dd4b21f
BP
1379 if (ata_msg_ctl(ap))
1380 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1381}
1382
7102d230 1383static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1384{
77853bf2 1385 struct completion *waiting = qc->private_data;
a2a7a662 1386
a2a7a662 1387 complete(waiting);
a2a7a662
TH
1388}
1389
1390/**
2432697b 1391 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1392 * @dev: Device to which the command is sent
1393 * @tf: Taskfile registers for the command and the result
d69cf37d 1394 * @cdb: CDB for packet command
a2a7a662 1395 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1396 * @sgl: sg list for the data buffer of the command
2432697b 1397 * @n_elem: Number of sg entries
2b789108 1398 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1399 *
1400 * Executes libata internal command with timeout. @tf contains
1401 * command on entry and result on return. Timeout and error
1402 * conditions are reported via return value. No recovery action
1403 * is taken after a command times out. It's caller's duty to
1404 * clean up after timeout.
1405 *
1406 * LOCKING:
1407 * None. Should be called with kernel context, might sleep.
551e8889
TH
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1411 */
2432697b
TH
1412unsigned ata_exec_internal_sg(struct ata_device *dev,
1413 struct ata_taskfile *tf, const u8 *cdb,
87260216 1414 int dma_dir, struct scatterlist *sgl,
2b789108 1415 unsigned int n_elem, unsigned long timeout)
a2a7a662 1416{
9af5c9c9
TH
1417 struct ata_link *link = dev->link;
1418 struct ata_port *ap = link->ap;
a2a7a662
TH
1419 u8 command = tf->command;
1420 struct ata_queued_cmd *qc;
2ab7db1f 1421 unsigned int tag, preempted_tag;
dedaf2b0 1422 u32 preempted_sactive, preempted_qc_active;
da917d69 1423 int preempted_nr_active_links;
60be6b9a 1424 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1425 unsigned long flags;
77853bf2 1426 unsigned int err_mask;
d95a717f 1427 int rc;
a2a7a662 1428
ba6a1308 1429 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1430
e3180499 1431 /* no internal command while frozen */
b51e9e5d 1432 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1433 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1434 return AC_ERR_SYSTEM;
1435 }
1436
2ab7db1f 1437 /* initialize internal qc */
a2a7a662 1438
2ab7db1f
TH
1439 /* XXX: Tag 0 is used for drivers with legacy EH as some
1440 * drivers choke if any other tag is given. This breaks
1441 * ata_tag_internal() test for those drivers. Don't use new
1442 * EH stuff without converting to it.
1443 */
1444 if (ap->ops->error_handler)
1445 tag = ATA_TAG_INTERNAL;
1446 else
1447 tag = 0;
1448
6cec4a39 1449 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1450 BUG();
f69499f4 1451 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1452
1453 qc->tag = tag;
1454 qc->scsicmd = NULL;
1455 qc->ap = ap;
1456 qc->dev = dev;
1457 ata_qc_reinit(qc);
1458
9af5c9c9
TH
1459 preempted_tag = link->active_tag;
1460 preempted_sactive = link->sactive;
dedaf2b0 1461 preempted_qc_active = ap->qc_active;
da917d69 1462 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1463 link->active_tag = ATA_TAG_POISON;
1464 link->sactive = 0;
dedaf2b0 1465 ap->qc_active = 0;
da917d69 1466 ap->nr_active_links = 0;
2ab7db1f
TH
1467
1468 /* prepare & issue qc */
a2a7a662 1469 qc->tf = *tf;
d69cf37d
TH
1470 if (cdb)
1471 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1472 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1473 qc->dma_dir = dma_dir;
1474 if (dma_dir != DMA_NONE) {
2432697b 1475 unsigned int i, buflen = 0;
87260216 1476 struct scatterlist *sg;
2432697b 1477
87260216
JA
1478 for_each_sg(sgl, sg, n_elem, i)
1479 buflen += sg->length;
2432697b 1480
87260216 1481 ata_sg_init(qc, sgl, n_elem);
49c80429 1482 qc->nbytes = buflen;
a2a7a662
TH
1483 }
1484
77853bf2 1485 qc->private_data = &wait;
a2a7a662
TH
1486 qc->complete_fn = ata_qc_complete_internal;
1487
8e0e694a 1488 ata_qc_issue(qc);
a2a7a662 1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1491
2b789108
TH
1492 if (!timeout)
1493 timeout = ata_probe_timeout * 1000 / HZ;
1494
1495 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1496
1497 ata_port_flush_task(ap);
41ade50c 1498
d95a717f 1499 if (!rc) {
ba6a1308 1500 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1501
1502 /* We're racing with irq here. If we lose, the
1503 * following test prevents us from completing the qc
d95a717f
TH
1504 * twice. If we win, the port is frozen and will be
1505 * cleaned up by ->post_internal_cmd().
a2a7a662 1506 */
77853bf2 1507 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1508 qc->err_mask |= AC_ERR_TIMEOUT;
1509
1510 if (ap->ops->error_handler)
1511 ata_port_freeze(ap);
1512 else
1513 ata_qc_complete(qc);
f15a1daf 1514
0dd4b21f
BP
1515 if (ata_msg_warn(ap))
1516 ata_dev_printk(dev, KERN_WARNING,
88574551 1517 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1518 }
1519
ba6a1308 1520 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1521 }
1522
d95a717f
TH
1523 /* do post_internal_cmd */
1524 if (ap->ops->post_internal_cmd)
1525 ap->ops->post_internal_cmd(qc);
1526
a51d644a
TH
1527 /* perform minimal error analysis */
1528 if (qc->flags & ATA_QCFLAG_FAILED) {
1529 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1530 qc->err_mask |= AC_ERR_DEV;
1531
1532 if (!qc->err_mask)
1533 qc->err_mask |= AC_ERR_OTHER;
1534
1535 if (qc->err_mask & ~AC_ERR_OTHER)
1536 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1537 }
1538
15869303 1539 /* finish up */
ba6a1308 1540 spin_lock_irqsave(ap->lock, flags);
15869303 1541
e61e0672 1542 *tf = qc->result_tf;
77853bf2
TH
1543 err_mask = qc->err_mask;
1544
1545 ata_qc_free(qc);
9af5c9c9
TH
1546 link->active_tag = preempted_tag;
1547 link->sactive = preempted_sactive;
dedaf2b0 1548 ap->qc_active = preempted_qc_active;
da917d69 1549 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1550
1f7dd3e9
TH
1551 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1552 * Until those drivers are fixed, we detect the condition
1553 * here, fail the command with AC_ERR_SYSTEM and reenable the
1554 * port.
1555 *
1556 * Note that this doesn't change any behavior as internal
1557 * command failure results in disabling the device in the
1558 * higher layer for LLDDs without new reset/EH callbacks.
1559 *
1560 * Kill the following code as soon as those drivers are fixed.
1561 */
198e0fed 1562 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1563 err_mask |= AC_ERR_SYSTEM;
1564 ata_port_probe(ap);
1565 }
1566
ba6a1308 1567 spin_unlock_irqrestore(ap->lock, flags);
15869303 1568
77853bf2 1569 return err_mask;
a2a7a662
TH
1570}
1571
2432697b 1572/**
33480a0e 1573 * ata_exec_internal - execute libata internal command
2432697b
TH
1574 * @dev: Device to which the command is sent
1575 * @tf: Taskfile registers for the command and the result
1576 * @cdb: CDB for packet command
1577 * @dma_dir: Data tranfer direction of the command
1578 * @buf: Data buffer of the command
1579 * @buflen: Length of data buffer
2b789108 1580 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1581 *
1582 * Wrapper around ata_exec_internal_sg() which takes simple
1583 * buffer instead of sg list.
1584 *
1585 * LOCKING:
1586 * None. Should be called with kernel context, might sleep.
1587 *
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1590 */
1591unsigned ata_exec_internal(struct ata_device *dev,
1592 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1593 int dma_dir, void *buf, unsigned int buflen,
1594 unsigned long timeout)
2432697b 1595{
33480a0e
TH
1596 struct scatterlist *psg = NULL, sg;
1597 unsigned int n_elem = 0;
2432697b 1598
33480a0e
TH
1599 if (dma_dir != DMA_NONE) {
1600 WARN_ON(!buf);
1601 sg_init_one(&sg, buf, buflen);
1602 psg = &sg;
1603 n_elem++;
1604 }
2432697b 1605
2b789108
TH
1606 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1607 timeout);
2432697b
TH
1608}
1609
977e6b9f
TH
1610/**
1611 * ata_do_simple_cmd - execute simple internal command
1612 * @dev: Device to which the command is sent
1613 * @cmd: Opcode to execute
1614 *
1615 * Execute a 'simple' command, that only consists of the opcode
1616 * 'cmd' itself, without filling any other registers
1617 *
1618 * LOCKING:
1619 * Kernel thread context (may sleep).
1620 *
1621 * RETURNS:
1622 * Zero on success, AC_ERR_* mask on failure
e58eb583 1623 */
77b08fb5 1624unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1625{
1626 struct ata_taskfile tf;
e58eb583
TH
1627
1628 ata_tf_init(dev, &tf);
1629
1630 tf.command = cmd;
1631 tf.flags |= ATA_TFLAG_DEVICE;
1632 tf.protocol = ATA_PROT_NODATA;
1633
2b789108 1634 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1635}
1636
1bc4ccff
AC
1637/**
1638 * ata_pio_need_iordy - check if iordy needed
1639 * @adev: ATA device
1640 *
1641 * Check if the current speed of the device requires IORDY. Used
1642 * by various controllers for chip configuration.
1643 */
a617c09f 1644
1bc4ccff
AC
1645unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1646{
432729f0
AC
1647 /* Controller doesn't support IORDY. Probably a pointless check
1648 as the caller should know this */
9af5c9c9 1649 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1650 return 0;
432729f0
AC
1651 /* PIO3 and higher it is mandatory */
1652 if (adev->pio_mode > XFER_PIO_2)
1653 return 1;
1654 /* We turn it on when possible */
1655 if (ata_id_has_iordy(adev->id))
1bc4ccff 1656 return 1;
432729f0
AC
1657 return 0;
1658}
2e9edbf8 1659
432729f0
AC
1660/**
1661 * ata_pio_mask_no_iordy - Return the non IORDY mask
1662 * @adev: ATA device
1663 *
1664 * Compute the highest mode possible if we are not using iordy. Return
1665 * -1 if no iordy mode is available.
1666 */
a617c09f 1667
432729f0
AC
1668static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1669{
1bc4ccff 1670 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1671 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1672 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1673 /* Is the speed faster than the drive allows non IORDY ? */
1674 if (pio) {
1675 /* This is cycle times not frequency - watch the logic! */
1676 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1677 return 3 << ATA_SHIFT_PIO;
1678 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1679 }
1680 }
432729f0 1681 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1682}
1683
1da177e4 1684/**
49016aca 1685 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1686 * @dev: target device
1687 * @p_class: pointer to class of the target device (may be changed)
bff04647 1688 * @flags: ATA_READID_* flags
fe635c7e 1689 * @id: buffer to read IDENTIFY data into
1da177e4 1690 *
49016aca
TH
1691 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1692 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1693 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1694 * for pre-ATA4 drives.
1da177e4 1695 *
50a99018 1696 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1697 * now we abort if we hit that case.
50a99018 1698 *
1da177e4 1699 * LOCKING:
49016aca
TH
1700 * Kernel thread context (may sleep)
1701 *
1702 * RETURNS:
1703 * 0 on success, -errno otherwise.
1da177e4 1704 */
a9beec95 1705int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1706 unsigned int flags, u16 *id)
1da177e4 1707{
9af5c9c9 1708 struct ata_port *ap = dev->link->ap;
49016aca 1709 unsigned int class = *p_class;
a0123703 1710 struct ata_taskfile tf;
49016aca
TH
1711 unsigned int err_mask = 0;
1712 const char *reason;
54936f8b 1713 int may_fallback = 1, tried_spinup = 0;
49016aca 1714 int rc;
1da177e4 1715
0dd4b21f 1716 if (ata_msg_ctl(ap))
44877b4e 1717 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1718
49016aca 1719 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1720 retry:
3373efd8 1721 ata_tf_init(dev, &tf);
a0123703 1722
49016aca
TH
1723 switch (class) {
1724 case ATA_DEV_ATA:
a0123703 1725 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1726 break;
1727 case ATA_DEV_ATAPI:
a0123703 1728 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1729 break;
1730 default:
1731 rc = -ENODEV;
1732 reason = "unsupported class";
1733 goto err_out;
1da177e4
LT
1734 }
1735
a0123703 1736 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1737
1738 /* Some devices choke if TF registers contain garbage. Make
1739 * sure those are properly initialized.
1740 */
1741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1742
1743 /* Device presence detection is unreliable on some
1744 * controllers. Always poll IDENTIFY if available.
1745 */
1746 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1747
3373efd8 1748 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1749 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1750 if (err_mask) {
800b3996 1751 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1752 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1753 ap->print_id, dev->devno);
55a8e2c8
TH
1754 return -ENOENT;
1755 }
1756
54936f8b
TH
1757 /* Device or controller might have reported the wrong
1758 * device class. Give a shot at the other IDENTIFY if
1759 * the current one is aborted by the device.
1760 */
1761 if (may_fallback &&
1762 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1763 may_fallback = 0;
1764
1765 if (class == ATA_DEV_ATA)
1766 class = ATA_DEV_ATAPI;
1767 else
1768 class = ATA_DEV_ATA;
1769 goto retry;
1770 }
1771
49016aca
TH
1772 rc = -EIO;
1773 reason = "I/O error";
1da177e4
LT
1774 goto err_out;
1775 }
1776
54936f8b
TH
1777 /* Falling back doesn't make sense if ID data was read
1778 * successfully at least once.
1779 */
1780 may_fallback = 0;
1781
49016aca 1782 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1783
49016aca 1784 /* sanity check */
a4f5749b 1785 rc = -EINVAL;
6070068b 1786 reason = "device reports invalid type";
a4f5749b
TH
1787
1788 if (class == ATA_DEV_ATA) {
1789 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1790 goto err_out;
1791 } else {
1792 if (ata_id_is_ata(id))
1793 goto err_out;
49016aca
TH
1794 }
1795
169439c2
ML
1796 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1797 tried_spinup = 1;
1798 /*
1799 * Drive powered-up in standby mode, and requires a specific
1800 * SET_FEATURES spin-up subcommand before it will accept
1801 * anything other than the original IDENTIFY command.
1802 */
218f3d30 1803 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1804 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1805 rc = -EIO;
1806 reason = "SPINUP failed";
1807 goto err_out;
1808 }
1809 /*
1810 * If the drive initially returned incomplete IDENTIFY info,
1811 * we now must reissue the IDENTIFY command.
1812 */
1813 if (id[2] == 0x37c8)
1814 goto retry;
1815 }
1816
bff04647 1817 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1818 /*
1819 * The exact sequence expected by certain pre-ATA4 drives is:
1820 * SRST RESET
50a99018
AC
1821 * IDENTIFY (optional in early ATA)
1822 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1823 * anything else..
1824 * Some drives were very specific about that exact sequence.
50a99018
AC
1825 *
1826 * Note that ATA4 says lba is mandatory so the second check
1827 * shoud never trigger.
49016aca
TH
1828 */
1829 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1830 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1831 if (err_mask) {
1832 rc = -EIO;
1833 reason = "INIT_DEV_PARAMS failed";
1834 goto err_out;
1835 }
1836
1837 /* current CHS translation info (id[53-58]) might be
1838 * changed. reread the identify device info.
1839 */
bff04647 1840 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1841 goto retry;
1842 }
1843 }
1844
1845 *p_class = class;
fe635c7e 1846
49016aca
TH
1847 return 0;
1848
1849 err_out:
88574551 1850 if (ata_msg_warn(ap))
0dd4b21f 1851 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1852 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1853 return rc;
1854}
1855
3373efd8 1856static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1857{
9af5c9c9
TH
1858 struct ata_port *ap = dev->link->ap;
1859 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1860}
1861
a6e6ce8e
TH
1862static void ata_dev_config_ncq(struct ata_device *dev,
1863 char *desc, size_t desc_sz)
1864{
9af5c9c9 1865 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1866 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1867
1868 if (!ata_id_has_ncq(dev->id)) {
1869 desc[0] = '\0';
1870 return;
1871 }
75683fe7 1872 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1873 snprintf(desc, desc_sz, "NCQ (not used)");
1874 return;
1875 }
a6e6ce8e 1876 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1877 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1878 dev->flags |= ATA_DFLAG_NCQ;
1879 }
1880
1881 if (hdepth >= ddepth)
1882 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1883 else
1884 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1885}
1886
49016aca 1887/**
ffeae418 1888 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1889 * @dev: Target device to configure
1890 *
1891 * Configure @dev according to @dev->id. Generic and low-level
1892 * driver specific fixups are also applied.
49016aca
TH
1893 *
1894 * LOCKING:
ffeae418
TH
1895 * Kernel thread context (may sleep)
1896 *
1897 * RETURNS:
1898 * 0 on success, -errno otherwise
49016aca 1899 */
efdaedc4 1900int ata_dev_configure(struct ata_device *dev)
49016aca 1901{
9af5c9c9
TH
1902 struct ata_port *ap = dev->link->ap;
1903 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1904 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1905 const u16 *id = dev->id;
ff8854b2 1906 unsigned int xfer_mask;
b352e57d 1907 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1908 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1909 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1910 int rc;
49016aca 1911
0dd4b21f 1912 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1913 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1914 __FUNCTION__);
ffeae418 1915 return 0;
49016aca
TH
1916 }
1917
0dd4b21f 1918 if (ata_msg_probe(ap))
44877b4e 1919 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1920
75683fe7
TH
1921 /* set horkage */
1922 dev->horkage |= ata_dev_blacklisted(dev);
1923
6746544c
TH
1924 /* let ACPI work its magic */
1925 rc = ata_acpi_on_devcfg(dev);
1926 if (rc)
1927 return rc;
08573a86 1928
05027adc
TH
1929 /* massage HPA, do it early as it might change IDENTIFY data */
1930 rc = ata_hpa_resize(dev);
1931 if (rc)
1932 return rc;
1933
c39f5ebe 1934 /* print device capabilities */
0dd4b21f 1935 if (ata_msg_probe(ap))
88574551
TH
1936 ata_dev_printk(dev, KERN_DEBUG,
1937 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1938 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1939 __FUNCTION__,
f15a1daf
TH
1940 id[49], id[82], id[83], id[84],
1941 id[85], id[86], id[87], id[88]);
c39f5ebe 1942
208a9933 1943 /* initialize to-be-configured parameters */
ea1dd4e1 1944 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1945 dev->max_sectors = 0;
1946 dev->cdb_len = 0;
1947 dev->n_sectors = 0;
1948 dev->cylinders = 0;
1949 dev->heads = 0;
1950 dev->sectors = 0;
1951
1da177e4
LT
1952 /*
1953 * common ATA, ATAPI feature tests
1954 */
1955
ff8854b2 1956 /* find max transfer mode; for printk only */
1148c3a7 1957 xfer_mask = ata_id_xfermask(id);
1da177e4 1958
0dd4b21f
BP
1959 if (ata_msg_probe(ap))
1960 ata_dump_id(id);
1da177e4 1961
ef143d57
AL
1962 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1963 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1964 sizeof(fwrevbuf));
1965
1966 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1967 sizeof(modelbuf));
1968
1da177e4
LT
1969 /* ATA-specific feature tests */
1970 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1971 if (ata_id_is_cfa(id)) {
1972 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "supports DRM functions and may "
1975 "not be fully accessable.\n");
b352e57d 1976 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
1977 } else
1978 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 1979
1148c3a7 1980 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1981
3f64f565
EM
1982 if (dev->id[59] & 0x100)
1983 dev->multi_count = dev->id[59] & 0xff;
1984
1148c3a7 1985 if (ata_id_has_lba(id)) {
4c2d721a 1986 const char *lba_desc;
a6e6ce8e 1987 char ncq_desc[20];
8bf62ece 1988
4c2d721a
TH
1989 lba_desc = "LBA";
1990 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1991 if (ata_id_has_lba48(id)) {
8bf62ece 1992 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1993 lba_desc = "LBA48";
6fc49adb
TH
1994
1995 if (dev->n_sectors >= (1UL << 28) &&
1996 ata_id_has_flush_ext(id))
1997 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1998 }
8bf62ece 1999
a6e6ce8e
TH
2000 /* config NCQ */
2001 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2002
8bf62ece 2003 /* print device info to dmesg */
3f64f565
EM
2004 if (ata_msg_drv(ap) && print_info) {
2005 ata_dev_printk(dev, KERN_INFO,
2006 "%s: %s, %s, max %s\n",
2007 revbuf, modelbuf, fwrevbuf,
2008 ata_mode_string(xfer_mask));
2009 ata_dev_printk(dev, KERN_INFO,
2010 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2011 (unsigned long long)dev->n_sectors,
3f64f565
EM
2012 dev->multi_count, lba_desc, ncq_desc);
2013 }
ffeae418 2014 } else {
8bf62ece
AL
2015 /* CHS */
2016
2017 /* Default translation */
1148c3a7
TH
2018 dev->cylinders = id[1];
2019 dev->heads = id[3];
2020 dev->sectors = id[6];
8bf62ece 2021
1148c3a7 2022 if (ata_id_current_chs_valid(id)) {
8bf62ece 2023 /* Current CHS translation is valid. */
1148c3a7
TH
2024 dev->cylinders = id[54];
2025 dev->heads = id[55];
2026 dev->sectors = id[56];
8bf62ece
AL
2027 }
2028
2029 /* print device info to dmesg */
3f64f565 2030 if (ata_msg_drv(ap) && print_info) {
88574551 2031 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2032 "%s: %s, %s, max %s\n",
2033 revbuf, modelbuf, fwrevbuf,
2034 ata_mode_string(xfer_mask));
a84471fe 2035 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2036 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2037 (unsigned long long)dev->n_sectors,
2038 dev->multi_count, dev->cylinders,
2039 dev->heads, dev->sectors);
2040 }
07f6f7d0
AL
2041 }
2042
6e7846e9 2043 dev->cdb_len = 16;
1da177e4
LT
2044 }
2045
2046 /* ATAPI-specific feature tests */
2c13b7ce 2047 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2048 const char *cdb_intr_string = "";
2049 const char *atapi_an_string = "";
7d77b247 2050 u32 sntf;
08a556db 2051
1148c3a7 2052 rc = atapi_cdb_len(id);
1da177e4 2053 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2054 if (ata_msg_warn(ap))
88574551
TH
2055 ata_dev_printk(dev, KERN_WARNING,
2056 "unsupported CDB len\n");
ffeae418 2057 rc = -EINVAL;
1da177e4
LT
2058 goto err_out_nosup;
2059 }
6e7846e9 2060 dev->cdb_len = (unsigned int) rc;
1da177e4 2061
7d77b247
TH
2062 /* Enable ATAPI AN if both the host and device have
2063 * the support. If PMP is attached, SNTF is required
2064 * to enable ATAPI AN to discern between PHY status
2065 * changed notifications and ATAPI ANs.
9f45cbd3 2066 */
7d77b247
TH
2067 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2068 (!ap->nr_pmp_links ||
2069 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2070 unsigned int err_mask;
2071
9f45cbd3 2072 /* issue SET feature command to turn this on */
218f3d30
JG
2073 err_mask = ata_dev_set_feature(dev,
2074 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2075 if (err_mask)
9f45cbd3 2076 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2077 "failed to enable ATAPI AN "
2078 "(err_mask=0x%x)\n", err_mask);
2079 else {
9f45cbd3 2080 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2081 atapi_an_string = ", ATAPI AN";
2082 }
9f45cbd3
KCA
2083 }
2084
08a556db 2085 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2086 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2087 cdb_intr_string = ", CDB intr";
2088 }
312f7da2 2089
1da177e4 2090 /* print device info to dmesg */
5afc8142 2091 if (ata_msg_drv(ap) && print_info)
ef143d57 2092 ata_dev_printk(dev, KERN_INFO,
854c73a2 2093 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2094 modelbuf, fwrevbuf,
12436c30 2095 ata_mode_string(xfer_mask),
854c73a2 2096 cdb_intr_string, atapi_an_string);
1da177e4
LT
2097 }
2098
914ed354
TH
2099 /* determine max_sectors */
2100 dev->max_sectors = ATA_MAX_SECTORS;
2101 if (dev->flags & ATA_DFLAG_LBA48)
2102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2103
93590859
AC
2104 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2105 /* Let the user know. We don't want to disallow opens for
2106 rescue purposes, or in case the vendor is just a blithering
2107 idiot */
2dcb407e 2108 if (print_info) {
93590859
AC
2109 ata_dev_printk(dev, KERN_WARNING,
2110"Drive reports diagnostics failure. This may indicate a drive\n");
2111 ata_dev_printk(dev, KERN_WARNING,
2112"fault or invalid emulation. Contact drive vendor for information.\n");
2113 }
2114 }
2115
4b2f3ede 2116 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2117 if (ata_dev_knobble(dev)) {
5afc8142 2118 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2119 ata_dev_printk(dev, KERN_INFO,
2120 "applying bridge limits\n");
5a529139 2121 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2122 dev->max_sectors = ATA_MAX_SECTORS;
2123 }
2124
75683fe7 2125 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2126 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2127 dev->max_sectors);
18d6e9d5 2128
4b2f3ede 2129 if (ap->ops->dev_config)
cd0d3bbc 2130 ap->ops->dev_config(dev);
4b2f3ede 2131
0dd4b21f
BP
2132 if (ata_msg_probe(ap))
2133 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2134 __FUNCTION__, ata_chk_status(ap));
ffeae418 2135 return 0;
1da177e4
LT
2136
2137err_out_nosup:
0dd4b21f 2138 if (ata_msg_probe(ap))
88574551
TH
2139 ata_dev_printk(dev, KERN_DEBUG,
2140 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2141 return rc;
1da177e4
LT
2142}
2143
be0d18df 2144/**
2e41e8e6 2145 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2146 * @ap: port
2147 *
2e41e8e6 2148 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2149 * detection.
2150 */
2151
2152int ata_cable_40wire(struct ata_port *ap)
2153{
2154 return ATA_CBL_PATA40;
2155}
2156
2157/**
2e41e8e6 2158 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2159 * @ap: port
2160 *
2e41e8e6 2161 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2162 * detection.
2163 */
2164
2165int ata_cable_80wire(struct ata_port *ap)
2166{
2167 return ATA_CBL_PATA80;
2168}
2169
2170/**
2171 * ata_cable_unknown - return unknown PATA cable.
2172 * @ap: port
2173 *
2174 * Helper method for drivers which have no PATA cable detection.
2175 */
2176
2177int ata_cable_unknown(struct ata_port *ap)
2178{
2179 return ATA_CBL_PATA_UNK;
2180}
2181
2182/**
2183 * ata_cable_sata - return SATA cable type
2184 * @ap: port
2185 *
2186 * Helper method for drivers which have SATA cables
2187 */
2188
2189int ata_cable_sata(struct ata_port *ap)
2190{
2191 return ATA_CBL_SATA;
2192}
2193
1da177e4
LT
2194/**
2195 * ata_bus_probe - Reset and probe ATA bus
2196 * @ap: Bus to probe
2197 *
0cba632b
JG
2198 * Master ATA bus probing function. Initiates a hardware-dependent
2199 * bus reset, then attempts to identify any devices found on
2200 * the bus.
2201 *
1da177e4 2202 * LOCKING:
0cba632b 2203 * PCI/etc. bus probe sem.
1da177e4
LT
2204 *
2205 * RETURNS:
96072e69 2206 * Zero on success, negative errno otherwise.
1da177e4
LT
2207 */
2208
80289167 2209int ata_bus_probe(struct ata_port *ap)
1da177e4 2210{
28ca5c57 2211 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2212 int tries[ATA_MAX_DEVICES];
f58229f8 2213 int rc;
e82cbdb9 2214 struct ata_device *dev;
1da177e4 2215
28ca5c57 2216 ata_port_probe(ap);
c19ba8af 2217
f58229f8
TH
2218 ata_link_for_each_dev(dev, &ap->link)
2219 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2220
2221 retry:
cdeab114
TH
2222 ata_link_for_each_dev(dev, &ap->link) {
2223 /* If we issue an SRST then an ATA drive (not ATAPI)
2224 * may change configuration and be in PIO0 timing. If
2225 * we do a hard reset (or are coming from power on)
2226 * this is true for ATA or ATAPI. Until we've set a
2227 * suitable controller mode we should not touch the
2228 * bus as we may be talking too fast.
2229 */
2230 dev->pio_mode = XFER_PIO_0;
2231
2232 /* If the controller has a pio mode setup function
2233 * then use it to set the chipset to rights. Don't
2234 * touch the DMA setup as that will be dealt with when
2235 * configuring devices.
2236 */
2237 if (ap->ops->set_piomode)
2238 ap->ops->set_piomode(ap, dev);
2239 }
2240
2044470c 2241 /* reset and determine device classes */
52783c5d 2242 ap->ops->phy_reset(ap);
2061a47a 2243
f58229f8 2244 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2245 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2246 dev->class != ATA_DEV_UNKNOWN)
2247 classes[dev->devno] = dev->class;
2248 else
2249 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2250
52783c5d 2251 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2252 }
1da177e4 2253
52783c5d 2254 ata_port_probe(ap);
2044470c 2255
f31f0cc2
JG
2256 /* read IDENTIFY page and configure devices. We have to do the identify
2257 specific sequence bass-ackwards so that PDIAG- is released by
2258 the slave device */
2259
f58229f8
TH
2260 ata_link_for_each_dev(dev, &ap->link) {
2261 if (tries[dev->devno])
2262 dev->class = classes[dev->devno];
ffeae418 2263
14d2bac1 2264 if (!ata_dev_enabled(dev))
ffeae418 2265 continue;
ffeae418 2266
bff04647
TH
2267 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2268 dev->id);
14d2bac1
TH
2269 if (rc)
2270 goto fail;
f31f0cc2
JG
2271 }
2272
be0d18df
AC
2273 /* Now ask for the cable type as PDIAG- should have been released */
2274 if (ap->ops->cable_detect)
2275 ap->cbl = ap->ops->cable_detect(ap);
2276
614fe29b
AC
2277 /* We may have SATA bridge glue hiding here irrespective of the
2278 reported cable types and sensed types */
2279 ata_link_for_each_dev(dev, &ap->link) {
2280 if (!ata_dev_enabled(dev))
2281 continue;
2282 /* SATA drives indicate we have a bridge. We don't know which
2283 end of the link the bridge is which is a problem */
2284 if (ata_id_is_sata(dev->id))
2285 ap->cbl = ATA_CBL_SATA;
2286 }
2287
f31f0cc2
JG
2288 /* After the identify sequence we can now set up the devices. We do
2289 this in the normal order so that the user doesn't get confused */
2290
f58229f8 2291 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2292 if (!ata_dev_enabled(dev))
2293 continue;
14d2bac1 2294
9af5c9c9 2295 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2296 rc = ata_dev_configure(dev);
9af5c9c9 2297 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2298 if (rc)
2299 goto fail;
1da177e4
LT
2300 }
2301
e82cbdb9 2302 /* configure transfer mode */
0260731f 2303 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2304 if (rc)
51713d35 2305 goto fail;
1da177e4 2306
f58229f8
TH
2307 ata_link_for_each_dev(dev, &ap->link)
2308 if (ata_dev_enabled(dev))
e82cbdb9 2309 return 0;
1da177e4 2310
e82cbdb9
TH
2311 /* no device present, disable port */
2312 ata_port_disable(ap);
96072e69 2313 return -ENODEV;
14d2bac1
TH
2314
2315 fail:
4ae72a1e
TH
2316 tries[dev->devno]--;
2317
14d2bac1
TH
2318 switch (rc) {
2319 case -EINVAL:
4ae72a1e 2320 /* eeek, something went very wrong, give up */
14d2bac1
TH
2321 tries[dev->devno] = 0;
2322 break;
4ae72a1e
TH
2323
2324 case -ENODEV:
2325 /* give it just one more chance */
2326 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2327 case -EIO:
4ae72a1e
TH
2328 if (tries[dev->devno] == 1) {
2329 /* This is the last chance, better to slow
2330 * down than lose it.
2331 */
936fd732 2332 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2333 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2334 }
14d2bac1
TH
2335 }
2336
4ae72a1e 2337 if (!tries[dev->devno])
3373efd8 2338 ata_dev_disable(dev);
ec573755 2339
14d2bac1 2340 goto retry;
1da177e4
LT
2341}
2342
2343/**
0cba632b
JG
2344 * ata_port_probe - Mark port as enabled
2345 * @ap: Port for which we indicate enablement
1da177e4 2346 *
0cba632b
JG
2347 * Modify @ap data structure such that the system
2348 * thinks that the entire port is enabled.
2349 *
cca3974e 2350 * LOCKING: host lock, or some other form of
0cba632b 2351 * serialization.
1da177e4
LT
2352 */
2353
2354void ata_port_probe(struct ata_port *ap)
2355{
198e0fed 2356 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2357}
2358
3be680b7
TH
2359/**
2360 * sata_print_link_status - Print SATA link status
936fd732 2361 * @link: SATA link to printk link status about
3be680b7
TH
2362 *
2363 * This function prints link speed and status of a SATA link.
2364 *
2365 * LOCKING:
2366 * None.
2367 */
936fd732 2368void sata_print_link_status(struct ata_link *link)
3be680b7 2369{
6d5f9732 2370 u32 sstatus, scontrol, tmp;
3be680b7 2371
936fd732 2372 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2373 return;
936fd732 2374 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2375
936fd732 2376 if (ata_link_online(link)) {
3be680b7 2377 tmp = (sstatus >> 4) & 0xf;
936fd732 2378 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2379 "SATA link up %s (SStatus %X SControl %X)\n",
2380 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2381 } else {
936fd732 2382 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2383 "SATA link down (SStatus %X SControl %X)\n",
2384 sstatus, scontrol);
3be680b7
TH
2385 }
2386}
2387
1da177e4 2388/**
780a87f7
JG
2389 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2390 * @ap: SATA port associated with target SATA PHY.
1da177e4 2391 *
780a87f7
JG
2392 * This function issues commands to standard SATA Sxxx
2393 * PHY registers, to wake up the phy (and device), and
2394 * clear any reset condition.
1da177e4
LT
2395 *
2396 * LOCKING:
0cba632b 2397 * PCI/etc. bus probe sem.
1da177e4
LT
2398 *
2399 */
2400void __sata_phy_reset(struct ata_port *ap)
2401{
936fd732 2402 struct ata_link *link = &ap->link;
1da177e4 2403 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2404 u32 sstatus;
1da177e4
LT
2405
2406 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2407 /* issue phy wake/reset */
936fd732 2408 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2409 /* Couldn't find anything in SATA I/II specs, but
2410 * AHCI-1.1 10.4.2 says at least 1 ms. */
2411 mdelay(1);
1da177e4 2412 }
81952c54 2413 /* phy wake/clear reset */
936fd732 2414 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2415
2416 /* wait for phy to become ready, if necessary */
2417 do {
2418 msleep(200);
936fd732 2419 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2420 if ((sstatus & 0xf) != 1)
2421 break;
2422 } while (time_before(jiffies, timeout));
2423
3be680b7 2424 /* print link status */
936fd732 2425 sata_print_link_status(link);
656563e3 2426
3be680b7 2427 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2428 if (!ata_link_offline(link))
1da177e4 2429 ata_port_probe(ap);
3be680b7 2430 else
1da177e4 2431 ata_port_disable(ap);
1da177e4 2432
198e0fed 2433 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2434 return;
2435
2436 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2437 ata_port_disable(ap);
2438 return;
2439 }
2440
2441 ap->cbl = ATA_CBL_SATA;
2442}
2443
2444/**
780a87f7
JG
2445 * sata_phy_reset - Reset SATA bus.
2446 * @ap: SATA port associated with target SATA PHY.
1da177e4 2447 *
780a87f7
JG
2448 * This function resets the SATA bus, and then probes
2449 * the bus for devices.
1da177e4
LT
2450 *
2451 * LOCKING:
0cba632b 2452 * PCI/etc. bus probe sem.
1da177e4
LT
2453 *
2454 */
2455void sata_phy_reset(struct ata_port *ap)
2456{
2457 __sata_phy_reset(ap);
198e0fed 2458 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2459 return;
2460 ata_bus_reset(ap);
2461}
2462
ebdfca6e
AC
2463/**
2464 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2465 * @adev: device
2466 *
2467 * Obtain the other device on the same cable, or if none is
2468 * present NULL is returned
2469 */
2e9edbf8 2470
3373efd8 2471struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2472{
9af5c9c9
TH
2473 struct ata_link *link = adev->link;
2474 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2475 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2476 return NULL;
2477 return pair;
2478}
2479
1da177e4 2480/**
780a87f7
JG
2481 * ata_port_disable - Disable port.
2482 * @ap: Port to be disabled.
1da177e4 2483 *
780a87f7
JG
2484 * Modify @ap data structure such that the system
2485 * thinks that the entire port is disabled, and should
2486 * never attempt to probe or communicate with devices
2487 * on this port.
2488 *
cca3974e 2489 * LOCKING: host lock, or some other form of
780a87f7 2490 * serialization.
1da177e4
LT
2491 */
2492
2493void ata_port_disable(struct ata_port *ap)
2494{
9af5c9c9
TH
2495 ap->link.device[0].class = ATA_DEV_NONE;
2496 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2497 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2498}
2499
1c3fae4d 2500/**
3c567b7d 2501 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2502 * @link: Link to adjust SATA spd limit for
1c3fae4d 2503 *
936fd732 2504 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2505 * function only adjusts the limit. The change must be applied
3c567b7d 2506 * using sata_set_spd().
1c3fae4d
TH
2507 *
2508 * LOCKING:
2509 * Inherited from caller.
2510 *
2511 * RETURNS:
2512 * 0 on success, negative errno on failure
2513 */
936fd732 2514int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2515{
81952c54
TH
2516 u32 sstatus, spd, mask;
2517 int rc, highbit;
1c3fae4d 2518
936fd732 2519 if (!sata_scr_valid(link))
008a7896
TH
2520 return -EOPNOTSUPP;
2521
2522 /* If SCR can be read, use it to determine the current SPD.
936fd732 2523 * If not, use cached value in link->sata_spd.
008a7896 2524 */
936fd732 2525 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2526 if (rc == 0)
2527 spd = (sstatus >> 4) & 0xf;
2528 else
936fd732 2529 spd = link->sata_spd;
1c3fae4d 2530
936fd732 2531 mask = link->sata_spd_limit;
1c3fae4d
TH
2532 if (mask <= 1)
2533 return -EINVAL;
008a7896
TH
2534
2535 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2536 highbit = fls(mask) - 1;
2537 mask &= ~(1 << highbit);
2538
008a7896
TH
2539 /* Mask off all speeds higher than or equal to the current
2540 * one. Force 1.5Gbps if current SPD is not available.
2541 */
2542 if (spd > 1)
2543 mask &= (1 << (spd - 1)) - 1;
2544 else
2545 mask &= 1;
2546
2547 /* were we already at the bottom? */
1c3fae4d
TH
2548 if (!mask)
2549 return -EINVAL;
2550
936fd732 2551 link->sata_spd_limit = mask;
1c3fae4d 2552
936fd732 2553 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2554 sata_spd_string(fls(mask)));
1c3fae4d
TH
2555
2556 return 0;
2557}
2558
936fd732 2559static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2560{
2561 u32 spd, limit;
2562
936fd732 2563 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2564 limit = 0;
2565 else
936fd732 2566 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2567
2568 spd = (*scontrol >> 4) & 0xf;
2569 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2570
2571 return spd != limit;
2572}
2573
2574/**
3c567b7d 2575 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2576 * @link: Link in question
1c3fae4d
TH
2577 *
2578 * Test whether the spd limit in SControl matches
936fd732 2579 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2580 * whether hardreset is necessary to apply SATA spd
2581 * configuration.
2582 *
2583 * LOCKING:
2584 * Inherited from caller.
2585 *
2586 * RETURNS:
2587 * 1 if SATA spd configuration is needed, 0 otherwise.
2588 */
936fd732 2589int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2590{
2591 u32 scontrol;
2592
936fd732 2593 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2594 return 0;
2595
936fd732 2596 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2597}
2598
2599/**
3c567b7d 2600 * sata_set_spd - set SATA spd according to spd limit
936fd732 2601 * @link: Link to set SATA spd for
1c3fae4d 2602 *
936fd732 2603 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2604 *
2605 * LOCKING:
2606 * Inherited from caller.
2607 *
2608 * RETURNS:
2609 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2610 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2611 */
936fd732 2612int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2613{
2614 u32 scontrol;
81952c54 2615 int rc;
1c3fae4d 2616
936fd732 2617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2618 return rc;
1c3fae4d 2619
936fd732 2620 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2621 return 0;
2622
936fd732 2623 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2624 return rc;
2625
1c3fae4d
TH
2626 return 1;
2627}
2628
452503f9
AC
2629/*
2630 * This mode timing computation functionality is ported over from
2631 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2632 */
2633/*
b352e57d 2634 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2635 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2636 * for UDMA6, which is currently supported only by Maxtor drives.
2637 *
2638 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2639 */
2640
2641static const struct ata_timing ata_timing[] = {
2642
2643 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2644 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2645 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2646 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2647
b352e57d
AC
2648 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2649 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2650 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2651 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2652 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2653
2654/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2655
452503f9
AC
2656 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2657 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2658 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2659
452503f9
AC
2660 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2661 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2662 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2663
b352e57d
AC
2664 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2665 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2666 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2667 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2668
2669 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2670 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2671 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2672
2673/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2674
2675 { 0xFF }
2676};
2677
2dcb407e
JG
2678#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2679#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2680
2681static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2682{
2683 q->setup = EZ(t->setup * 1000, T);
2684 q->act8b = EZ(t->act8b * 1000, T);
2685 q->rec8b = EZ(t->rec8b * 1000, T);
2686 q->cyc8b = EZ(t->cyc8b * 1000, T);
2687 q->active = EZ(t->active * 1000, T);
2688 q->recover = EZ(t->recover * 1000, T);
2689 q->cycle = EZ(t->cycle * 1000, T);
2690 q->udma = EZ(t->udma * 1000, UT);
2691}
2692
2693void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2694 struct ata_timing *m, unsigned int what)
2695{
2696 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2697 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2698 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2699 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2700 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2701 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2702 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2703 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2704}
2705
2dcb407e 2706static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2707{
2708 const struct ata_timing *t;
2709
2710 for (t = ata_timing; t->mode != speed; t++)
91190758 2711 if (t->mode == 0xFF)
452503f9 2712 return NULL;
2e9edbf8 2713 return t;
452503f9
AC
2714}
2715
2716int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2717 struct ata_timing *t, int T, int UT)
2718{
2719 const struct ata_timing *s;
2720 struct ata_timing p;
2721
2722 /*
2e9edbf8 2723 * Find the mode.
75b1f2f8 2724 */
452503f9
AC
2725
2726 if (!(s = ata_timing_find_mode(speed)))
2727 return -EINVAL;
2728
75b1f2f8
AL
2729 memcpy(t, s, sizeof(*s));
2730
452503f9
AC
2731 /*
2732 * If the drive is an EIDE drive, it can tell us it needs extended
2733 * PIO/MW_DMA cycle timing.
2734 */
2735
2736 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2737 memset(&p, 0, sizeof(p));
2dcb407e 2738 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2739 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2740 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2741 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2742 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2743 }
2744 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2745 }
2746
2747 /*
2748 * Convert the timing to bus clock counts.
2749 */
2750
75b1f2f8 2751 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2752
2753 /*
c893a3ae
RD
2754 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2755 * S.M.A.R.T * and some other commands. We have to ensure that the
2756 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2757 */
2758
fd3367af 2759 if (speed > XFER_PIO_6) {
452503f9
AC
2760 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2761 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2762 }
2763
2764 /*
c893a3ae 2765 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2766 */
2767
2768 if (t->act8b + t->rec8b < t->cyc8b) {
2769 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2770 t->rec8b = t->cyc8b - t->act8b;
2771 }
2772
2773 if (t->active + t->recover < t->cycle) {
2774 t->active += (t->cycle - (t->active + t->recover)) / 2;
2775 t->recover = t->cycle - t->active;
2776 }
a617c09f 2777
4f701d1e
AC
2778 /* In a few cases quantisation may produce enough errors to
2779 leave t->cycle too low for the sum of active and recovery
2780 if so we must correct this */
2781 if (t->active + t->recover > t->cycle)
2782 t->cycle = t->active + t->recover;
452503f9
AC
2783
2784 return 0;
2785}
2786
cf176e1a
TH
2787/**
2788 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2789 * @dev: Device to adjust xfer masks
458337db 2790 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2791 *
2792 * Adjust xfer masks of @dev downward. Note that this function
2793 * does not apply the change. Invoking ata_set_mode() afterwards
2794 * will apply the limit.
2795 *
2796 * LOCKING:
2797 * Inherited from caller.
2798 *
2799 * RETURNS:
2800 * 0 on success, negative errno on failure
2801 */
458337db 2802int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2803{
458337db
TH
2804 char buf[32];
2805 unsigned int orig_mask, xfer_mask;
2806 unsigned int pio_mask, mwdma_mask, udma_mask;
2807 int quiet, highbit;
cf176e1a 2808
458337db
TH
2809 quiet = !!(sel & ATA_DNXFER_QUIET);
2810 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2811
458337db
TH
2812 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2813 dev->mwdma_mask,
2814 dev->udma_mask);
2815 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2816
458337db
TH
2817 switch (sel) {
2818 case ATA_DNXFER_PIO:
2819 highbit = fls(pio_mask) - 1;
2820 pio_mask &= ~(1 << highbit);
2821 break;
2822
2823 case ATA_DNXFER_DMA:
2824 if (udma_mask) {
2825 highbit = fls(udma_mask) - 1;
2826 udma_mask &= ~(1 << highbit);
2827 if (!udma_mask)
2828 return -ENOENT;
2829 } else if (mwdma_mask) {
2830 highbit = fls(mwdma_mask) - 1;
2831 mwdma_mask &= ~(1 << highbit);
2832 if (!mwdma_mask)
2833 return -ENOENT;
2834 }
2835 break;
2836
2837 case ATA_DNXFER_40C:
2838 udma_mask &= ATA_UDMA_MASK_40C;
2839 break;
2840
2841 case ATA_DNXFER_FORCE_PIO0:
2842 pio_mask &= 1;
2843 case ATA_DNXFER_FORCE_PIO:
2844 mwdma_mask = 0;
2845 udma_mask = 0;
2846 break;
2847
458337db
TH
2848 default:
2849 BUG();
2850 }
2851
2852 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2853
2854 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2855 return -ENOENT;
2856
2857 if (!quiet) {
2858 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2859 snprintf(buf, sizeof(buf), "%s:%s",
2860 ata_mode_string(xfer_mask),
2861 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2862 else
2863 snprintf(buf, sizeof(buf), "%s",
2864 ata_mode_string(xfer_mask));
2865
2866 ata_dev_printk(dev, KERN_WARNING,
2867 "limiting speed to %s\n", buf);
2868 }
cf176e1a
TH
2869
2870 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2871 &dev->udma_mask);
2872
cf176e1a 2873 return 0;
cf176e1a
TH
2874}
2875
3373efd8 2876static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2877{
9af5c9c9 2878 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2879 unsigned int err_mask;
2880 int rc;
1da177e4 2881
e8384607 2882 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2883 if (dev->xfer_shift == ATA_SHIFT_PIO)
2884 dev->flags |= ATA_DFLAG_PIO;
2885
3373efd8 2886 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 2887
11750a40
A
2888 /* Old CFA may refuse this command, which is just fine */
2889 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
2890 err_mask &= ~AC_ERR_DEV;
2891
0bc2a79a
AC
2892 /* Some very old devices and some bad newer ones fail any kind of
2893 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2894 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2895 dev->pio_mode <= XFER_PIO_2)
2896 err_mask &= ~AC_ERR_DEV;
2dcb407e 2897
3acaf94b
AC
2898 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
2899 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
2900 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
2901 dev->dma_mode == XFER_MW_DMA_0 &&
2902 (dev->id[63] >> 8) & 1)
2903 err_mask &= ~AC_ERR_DEV;
2904
83206a29 2905 if (err_mask) {
f15a1daf
TH
2906 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2907 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2908 return -EIO;
2909 }
1da177e4 2910
baa1e78a 2911 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2912 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2913 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2914 if (rc)
83206a29 2915 return rc;
48a8a14f 2916
23e71c3d
TH
2917 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2918 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2919
f15a1daf
TH
2920 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2921 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2922 return 0;
1da177e4
LT
2923}
2924
1da177e4 2925/**
04351821 2926 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2927 * @link: link on which timings will be programmed
e82cbdb9 2928 * @r_failed_dev: out paramter for failed device
1da177e4 2929 *
04351821
A
2930 * Standard implementation of the function used to tune and set
2931 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2932 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2933 * returned in @r_failed_dev.
780a87f7 2934 *
1da177e4 2935 * LOCKING:
0cba632b 2936 * PCI/etc. bus probe sem.
e82cbdb9
TH
2937 *
2938 * RETURNS:
2939 * 0 on success, negative errno otherwise
1da177e4 2940 */
04351821 2941
0260731f 2942int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2943{
0260731f 2944 struct ata_port *ap = link->ap;
e8e0619f 2945 struct ata_device *dev;
f58229f8 2946 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2947
a6d5a51c 2948 /* step 1: calculate xfer_mask */
f58229f8 2949 ata_link_for_each_dev(dev, link) {
acf356b1 2950 unsigned int pio_mask, dma_mask;
b3a70601 2951 unsigned int mode_mask;
a6d5a51c 2952
e1211e3f 2953 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2954 continue;
2955
b3a70601
AC
2956 mode_mask = ATA_DMA_MASK_ATA;
2957 if (dev->class == ATA_DEV_ATAPI)
2958 mode_mask = ATA_DMA_MASK_ATAPI;
2959 else if (ata_id_is_cfa(dev->id))
2960 mode_mask = ATA_DMA_MASK_CFA;
2961
3373efd8 2962 ata_dev_xfermask(dev);
1da177e4 2963
acf356b1
TH
2964 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2965 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2966
2967 if (libata_dma_mask & mode_mask)
2968 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2969 else
2970 dma_mask = 0;
2971
acf356b1
TH
2972 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2973 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2974
4f65977d 2975 found = 1;
5444a6f4
AC
2976 if (dev->dma_mode)
2977 used_dma = 1;
a6d5a51c 2978 }
4f65977d 2979 if (!found)
e82cbdb9 2980 goto out;
a6d5a51c
TH
2981
2982 /* step 2: always set host PIO timings */
f58229f8 2983 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2984 if (!ata_dev_enabled(dev))
2985 continue;
2986
2987 if (!dev->pio_mode) {
f15a1daf 2988 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2989 rc = -EINVAL;
e82cbdb9 2990 goto out;
e8e0619f
TH
2991 }
2992
2993 dev->xfer_mode = dev->pio_mode;
2994 dev->xfer_shift = ATA_SHIFT_PIO;
2995 if (ap->ops->set_piomode)
2996 ap->ops->set_piomode(ap, dev);
2997 }
1da177e4 2998
a6d5a51c 2999 /* step 3: set host DMA timings */
f58229f8 3000 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3001 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3002 continue;
3003
3004 dev->xfer_mode = dev->dma_mode;
3005 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3006 if (ap->ops->set_dmamode)
3007 ap->ops->set_dmamode(ap, dev);
3008 }
1da177e4
LT
3009
3010 /* step 4: update devices' xfer mode */
f58229f8 3011 ata_link_for_each_dev(dev, link) {
18d90deb 3012 /* don't update suspended devices' xfer mode */
9666f400 3013 if (!ata_dev_enabled(dev))
83206a29
TH
3014 continue;
3015
3373efd8 3016 rc = ata_dev_set_mode(dev);
5bbc53f4 3017 if (rc)
e82cbdb9 3018 goto out;
83206a29 3019 }
1da177e4 3020
e8e0619f
TH
3021 /* Record simplex status. If we selected DMA then the other
3022 * host channels are not permitted to do so.
5444a6f4 3023 */
cca3974e 3024 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3025 ap->host->simplex_claimed = ap;
5444a6f4 3026
e82cbdb9
TH
3027 out:
3028 if (rc)
3029 *r_failed_dev = dev;
3030 return rc;
1da177e4
LT
3031}
3032
04351821
A
3033/**
3034 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3035 * @link: link on which timings will be programmed
04351821
A
3036 * @r_failed_dev: out paramter for failed device
3037 *
3038 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3039 * ata_set_mode() fails, pointer to the failing device is
3040 * returned in @r_failed_dev.
3041 *
3042 * LOCKING:
3043 * PCI/etc. bus probe sem.
3044 *
3045 * RETURNS:
3046 * 0 on success, negative errno otherwise
3047 */
0260731f 3048int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3049{
0260731f
TH
3050 struct ata_port *ap = link->ap;
3051
04351821
A
3052 /* has private set_mode? */
3053 if (ap->ops->set_mode)
0260731f
TH
3054 return ap->ops->set_mode(link, r_failed_dev);
3055 return ata_do_set_mode(link, r_failed_dev);
04351821
A
3056}
3057
1fdffbce
JG
3058/**
3059 * ata_tf_to_host - issue ATA taskfile to host controller
3060 * @ap: port to which command is being issued
3061 * @tf: ATA taskfile register set
3062 *
3063 * Issues ATA taskfile register set to ATA host controller,
3064 * with proper synchronization with interrupt handler and
3065 * other threads.
3066 *
3067 * LOCKING:
cca3974e 3068 * spin_lock_irqsave(host lock)
1fdffbce
JG
3069 */
3070
3071static inline void ata_tf_to_host(struct ata_port *ap,
3072 const struct ata_taskfile *tf)
3073{
3074 ap->ops->tf_load(ap, tf);
3075 ap->ops->exec_command(ap, tf);
3076}
3077
1da177e4
LT
3078/**
3079 * ata_busy_sleep - sleep until BSY clears, or timeout
3080 * @ap: port containing status register to be polled
3081 * @tmout_pat: impatience timeout
3082 * @tmout: overall timeout
3083 *
780a87f7
JG
3084 * Sleep until ATA Status register bit BSY clears,
3085 * or a timeout occurs.
3086 *
d1adc1bb
TH
3087 * LOCKING:
3088 * Kernel thread context (may sleep).
3089 *
3090 * RETURNS:
3091 * 0 on success, -errno otherwise.
1da177e4 3092 */
d1adc1bb
TH
3093int ata_busy_sleep(struct ata_port *ap,
3094 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3095{
3096 unsigned long timer_start, timeout;
3097 u8 status;
3098
3099 status = ata_busy_wait(ap, ATA_BUSY, 300);
3100 timer_start = jiffies;
3101 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3102 while (status != 0xff && (status & ATA_BUSY) &&
3103 time_before(jiffies, timeout)) {
1da177e4
LT
3104 msleep(50);
3105 status = ata_busy_wait(ap, ATA_BUSY, 3);
3106 }
3107
d1adc1bb 3108 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3109 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3110 "port is slow to respond, please be patient "
3111 "(Status 0x%x)\n", status);
1da177e4
LT
3112
3113 timeout = timer_start + tmout;
d1adc1bb
TH
3114 while (status != 0xff && (status & ATA_BUSY) &&
3115 time_before(jiffies, timeout)) {
1da177e4
LT
3116 msleep(50);
3117 status = ata_chk_status(ap);
3118 }
3119
d1adc1bb
TH
3120 if (status == 0xff)
3121 return -ENODEV;
3122
1da177e4 3123 if (status & ATA_BUSY) {
f15a1daf 3124 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3125 "(%lu secs, Status 0x%x)\n",
3126 tmout / HZ, status);
d1adc1bb 3127 return -EBUSY;
1da177e4
LT
3128 }
3129
3130 return 0;
3131}
3132
88ff6eaf
TH
3133/**
3134 * ata_wait_after_reset - wait before checking status after reset
3135 * @ap: port containing status register to be polled
3136 * @deadline: deadline jiffies for the operation
3137 *
3138 * After reset, we need to pause a while before reading status.
3139 * Also, certain combination of controller and device report 0xff
3140 * for some duration (e.g. until SATA PHY is up and running)
3141 * which is interpreted as empty port in ATA world. This
3142 * function also waits for such devices to get out of 0xff
3143 * status.
3144 *
3145 * LOCKING:
3146 * Kernel thread context (may sleep).
3147 */
3148void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3149{
3150 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3151
3152 if (time_before(until, deadline))
3153 deadline = until;
3154
3155 /* Spec mandates ">= 2ms" before checking status. We wait
3156 * 150ms, because that was the magic delay used for ATAPI
3157 * devices in Hale Landis's ATADRVR, for the period of time
3158 * between when the ATA command register is written, and then
3159 * status is checked. Because waiting for "a while" before
3160 * checking status is fine, post SRST, we perform this magic
3161 * delay here as well.
3162 *
3163 * Old drivers/ide uses the 2mS rule and then waits for ready.
3164 */
3165 msleep(150);
3166
3167 /* Wait for 0xff to clear. Some SATA devices take a long time
3168 * to clear 0xff after reset. For example, HHD424020F7SV00
3169 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3170 * than that.
3171 */
3172 while (1) {
3173 u8 status = ata_chk_status(ap);
3174
3175 if (status != 0xff || time_after(jiffies, deadline))
3176 return;
3177
3178 msleep(50);
3179 }
3180}
3181
d4b2bab4
TH
3182/**
3183 * ata_wait_ready - sleep until BSY clears, or timeout
3184 * @ap: port containing status register to be polled
3185 * @deadline: deadline jiffies for the operation
3186 *
3187 * Sleep until ATA Status register bit BSY clears, or timeout
3188 * occurs.
3189 *
3190 * LOCKING:
3191 * Kernel thread context (may sleep).
3192 *
3193 * RETURNS:
3194 * 0 on success, -errno otherwise.
3195 */
3196int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3197{
3198 unsigned long start = jiffies;
3199 int warned = 0;
3200
3201 while (1) {
3202 u8 status = ata_chk_status(ap);
3203 unsigned long now = jiffies;
3204
3205 if (!(status & ATA_BUSY))
3206 return 0;
936fd732 3207 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3208 return -ENODEV;
3209 if (time_after(now, deadline))
3210 return -EBUSY;
3211
3212 if (!warned && time_after(now, start + 5 * HZ) &&
3213 (deadline - now > 3 * HZ)) {
3214 ata_port_printk(ap, KERN_WARNING,
3215 "port is slow to respond, please be patient "
3216 "(Status 0x%x)\n", status);
3217 warned = 1;
3218 }
3219
3220 msleep(50);
3221 }
3222}
3223
3224static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3225 unsigned long deadline)
1da177e4
LT
3226{
3227 struct ata_ioports *ioaddr = &ap->ioaddr;
3228 unsigned int dev0 = devmask & (1 << 0);
3229 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3230 int rc, ret = 0;
1da177e4
LT
3231
3232 /* if device 0 was found in ata_devchk, wait for its
3233 * BSY bit to clear
3234 */
d4b2bab4
TH
3235 if (dev0) {
3236 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3237 if (rc) {
3238 if (rc != -ENODEV)
3239 return rc;
3240 ret = rc;
3241 }
d4b2bab4 3242 }
1da177e4 3243
e141d999
TH
3244 /* if device 1 was found in ata_devchk, wait for register
3245 * access briefly, then wait for BSY to clear.
1da177e4 3246 */
e141d999
TH
3247 if (dev1) {
3248 int i;
1da177e4
LT
3249
3250 ap->ops->dev_select(ap, 1);
e141d999
TH
3251
3252 /* Wait for register access. Some ATAPI devices fail
3253 * to set nsect/lbal after reset, so don't waste too
3254 * much time on it. We're gonna wait for !BSY anyway.
3255 */
3256 for (i = 0; i < 2; i++) {
3257 u8 nsect, lbal;
3258
3259 nsect = ioread8(ioaddr->nsect_addr);
3260 lbal = ioread8(ioaddr->lbal_addr);
3261 if ((nsect == 1) && (lbal == 1))
3262 break;
3263 msleep(50); /* give drive a breather */
3264 }
3265
d4b2bab4 3266 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3267 if (rc) {
3268 if (rc != -ENODEV)
3269 return rc;
3270 ret = rc;
3271 }
d4b2bab4 3272 }
1da177e4
LT
3273
3274 /* is all this really necessary? */
3275 ap->ops->dev_select(ap, 0);
3276 if (dev1)
3277 ap->ops->dev_select(ap, 1);
3278 if (dev0)
3279 ap->ops->dev_select(ap, 0);
d4b2bab4 3280
9b89391c 3281 return ret;
1da177e4
LT
3282}
3283
d4b2bab4
TH
3284static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3285 unsigned long deadline)
1da177e4
LT
3286{
3287 struct ata_ioports *ioaddr = &ap->ioaddr;
3288
44877b4e 3289 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3290
3291 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3292 iowrite8(ap->ctl, ioaddr->ctl_addr);
3293 udelay(20); /* FIXME: flush */
3294 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3295 udelay(20); /* FIXME: flush */
3296 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3297
88ff6eaf
TH
3298 /* wait a while before checking status */
3299 ata_wait_after_reset(ap, deadline);
1da177e4 3300
2e9edbf8 3301 /* Before we perform post reset processing we want to see if
298a41ca
TH
3302 * the bus shows 0xFF because the odd clown forgets the D7
3303 * pulldown resistor.
3304 */
150981b0 3305 if (ata_chk_status(ap) == 0xFF)
9b89391c 3306 return -ENODEV;
09c7ad79 3307
d4b2bab4 3308 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3309}
3310
3311/**
3312 * ata_bus_reset - reset host port and associated ATA channel
3313 * @ap: port to reset
3314 *
3315 * This is typically the first time we actually start issuing
3316 * commands to the ATA channel. We wait for BSY to clear, then
3317 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3318 * result. Determine what devices, if any, are on the channel
3319 * by looking at the device 0/1 error register. Look at the signature
3320 * stored in each device's taskfile registers, to determine if
3321 * the device is ATA or ATAPI.
3322 *
3323 * LOCKING:
0cba632b 3324 * PCI/etc. bus probe sem.
cca3974e 3325 * Obtains host lock.
1da177e4
LT
3326 *
3327 * SIDE EFFECTS:
198e0fed 3328 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3329 */
3330
3331void ata_bus_reset(struct ata_port *ap)
3332{
9af5c9c9 3333 struct ata_device *device = ap->link.device;
1da177e4
LT
3334 struct ata_ioports *ioaddr = &ap->ioaddr;
3335 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3336 u8 err;
aec5c3c1 3337 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3338 int rc;
1da177e4 3339
44877b4e 3340 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3341
3342 /* determine if device 0/1 are present */
3343 if (ap->flags & ATA_FLAG_SATA_RESET)
3344 dev0 = 1;
3345 else {
3346 dev0 = ata_devchk(ap, 0);
3347 if (slave_possible)
3348 dev1 = ata_devchk(ap, 1);
3349 }
3350
3351 if (dev0)
3352 devmask |= (1 << 0);
3353 if (dev1)
3354 devmask |= (1 << 1);
3355
3356 /* select device 0 again */
3357 ap->ops->dev_select(ap, 0);
3358
3359 /* issue bus reset */
9b89391c
TH
3360 if (ap->flags & ATA_FLAG_SRST) {
3361 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3362 if (rc && rc != -ENODEV)
aec5c3c1 3363 goto err_out;
9b89391c 3364 }
1da177e4
LT
3365
3366 /*
3367 * determine by signature whether we have ATA or ATAPI devices
3368 */
3f19859e 3369 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3370 if ((slave_possible) && (err != 0x81))
3f19859e 3371 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3372
1da177e4 3373 /* is double-select really necessary? */
9af5c9c9 3374 if (device[1].class != ATA_DEV_NONE)
1da177e4 3375 ap->ops->dev_select(ap, 1);
9af5c9c9 3376 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3377 ap->ops->dev_select(ap, 0);
3378
3379 /* if no devices were detected, disable this port */
9af5c9c9
TH
3380 if ((device[0].class == ATA_DEV_NONE) &&
3381 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3382 goto err_out;
3383
3384 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3385 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3386 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3387 }
3388
3389 DPRINTK("EXIT\n");
3390 return;
3391
3392err_out:
f15a1daf 3393 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3394 ata_port_disable(ap);
1da177e4
LT
3395
3396 DPRINTK("EXIT\n");
3397}
3398
d7bb4cc7 3399/**
936fd732
TH
3400 * sata_link_debounce - debounce SATA phy status
3401 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3402 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3403 * @deadline: deadline jiffies for the operation
d7bb4cc7 3404 *
936fd732 3405* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3406 * holding the same value where DET is not 1 for @duration polled
3407 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3408 * beginning of the stable state. Because DET gets stuck at 1 on
3409 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3410 * until timeout then returns 0 if DET is stable at 1.
3411 *
d4b2bab4
TH
3412 * @timeout is further limited by @deadline. The sooner of the
3413 * two is used.
3414 *
d7bb4cc7
TH
3415 * LOCKING:
3416 * Kernel thread context (may sleep)
3417 *
3418 * RETURNS:
3419 * 0 on success, -errno on failure.
3420 */
936fd732
TH
3421int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3422 unsigned long deadline)
7a7921e8 3423{
d7bb4cc7 3424 unsigned long interval_msec = params[0];
d4b2bab4
TH
3425 unsigned long duration = msecs_to_jiffies(params[1]);
3426 unsigned long last_jiffies, t;
d7bb4cc7
TH
3427 u32 last, cur;
3428 int rc;
3429
d4b2bab4
TH
3430 t = jiffies + msecs_to_jiffies(params[2]);
3431 if (time_before(t, deadline))
3432 deadline = t;
3433
936fd732 3434 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3435 return rc;
3436 cur &= 0xf;
3437
3438 last = cur;
3439 last_jiffies = jiffies;
3440
3441 while (1) {
3442 msleep(interval_msec);
936fd732 3443 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3444 return rc;
3445 cur &= 0xf;
3446
3447 /* DET stable? */
3448 if (cur == last) {
d4b2bab4 3449 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3450 continue;
3451 if (time_after(jiffies, last_jiffies + duration))
3452 return 0;
3453 continue;
3454 }
3455
3456 /* unstable, start over */
3457 last = cur;
3458 last_jiffies = jiffies;
3459
f1545154
TH
3460 /* Check deadline. If debouncing failed, return
3461 * -EPIPE to tell upper layer to lower link speed.
3462 */
d4b2bab4 3463 if (time_after(jiffies, deadline))
f1545154 3464 return -EPIPE;
d7bb4cc7
TH
3465 }
3466}
3467
3468/**
936fd732
TH
3469 * sata_link_resume - resume SATA link
3470 * @link: ATA link to resume SATA
d7bb4cc7 3471 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3472 * @deadline: deadline jiffies for the operation
d7bb4cc7 3473 *
936fd732 3474 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3475 *
3476 * LOCKING:
3477 * Kernel thread context (may sleep)
3478 *
3479 * RETURNS:
3480 * 0 on success, -errno on failure.
3481 */
936fd732
TH
3482int sata_link_resume(struct ata_link *link, const unsigned long *params,
3483 unsigned long deadline)
d7bb4cc7
TH
3484{
3485 u32 scontrol;
81952c54
TH
3486 int rc;
3487
936fd732 3488 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3489 return rc;
7a7921e8 3490
852ee16a 3491 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3492
936fd732 3493 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3494 return rc;
7a7921e8 3495
d7bb4cc7
TH
3496 /* Some PHYs react badly if SStatus is pounded immediately
3497 * after resuming. Delay 200ms before debouncing.
3498 */
3499 msleep(200);
7a7921e8 3500
936fd732 3501 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3502}
3503
f5914a46
TH
3504/**
3505 * ata_std_prereset - prepare for reset
cc0680a5 3506 * @link: ATA link to be reset
d4b2bab4 3507 * @deadline: deadline jiffies for the operation
f5914a46 3508 *
cc0680a5 3509 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3510 * prereset makes libata abort whole reset sequence and give up
3511 * that port, so prereset should be best-effort. It does its
3512 * best to prepare for reset sequence but if things go wrong, it
3513 * should just whine, not fail.
f5914a46
TH
3514 *
3515 * LOCKING:
3516 * Kernel thread context (may sleep)
3517 *
3518 * RETURNS:
3519 * 0 on success, -errno otherwise.
3520 */
cc0680a5 3521int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3522{
cc0680a5 3523 struct ata_port *ap = link->ap;
936fd732 3524 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3525 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3526 int rc;
3527
31daabda 3528 /* handle link resume */
28324304 3529 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3530 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3531 ehc->i.action |= ATA_EH_HARDRESET;
3532
633273a3
TH
3533 /* Some PMPs don't work with only SRST, force hardreset if PMP
3534 * is supported.
3535 */
3536 if (ap->flags & ATA_FLAG_PMP)
3537 ehc->i.action |= ATA_EH_HARDRESET;
3538
f5914a46
TH
3539 /* if we're about to do hardreset, nothing more to do */
3540 if (ehc->i.action & ATA_EH_HARDRESET)
3541 return 0;
3542
936fd732 3543 /* if SATA, resume link */
a16abc0b 3544 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3545 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3546 /* whine about phy resume failure but proceed */
3547 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3548 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3549 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3550 }
3551
3552 /* Wait for !BSY if the controller can wait for the first D2H
3553 * Reg FIS and we don't know that no device is attached.
3554 */
0c88758b 3555 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3556 rc = ata_wait_ready(ap, deadline);
6dffaf61 3557 if (rc && rc != -ENODEV) {
cc0680a5 3558 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3559 "(errno=%d), forcing hardreset\n", rc);
3560 ehc->i.action |= ATA_EH_HARDRESET;
3561 }
3562 }
f5914a46
TH
3563
3564 return 0;
3565}
3566
c2bd5804
TH
3567/**
3568 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3569 * @link: ATA link to reset
c2bd5804 3570 * @classes: resulting classes of attached devices
d4b2bab4 3571 * @deadline: deadline jiffies for the operation
c2bd5804 3572 *
52783c5d 3573 * Reset host port using ATA SRST.
c2bd5804
TH
3574 *
3575 * LOCKING:
3576 * Kernel thread context (may sleep)
3577 *
3578 * RETURNS:
3579 * 0 on success, -errno otherwise.
3580 */
cc0680a5 3581int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3582 unsigned long deadline)
c2bd5804 3583{
cc0680a5 3584 struct ata_port *ap = link->ap;
c2bd5804 3585 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3586 unsigned int devmask = 0;
3587 int rc;
c2bd5804
TH
3588 u8 err;
3589
3590 DPRINTK("ENTER\n");
3591
936fd732 3592 if (ata_link_offline(link)) {
3a39746a
TH
3593 classes[0] = ATA_DEV_NONE;
3594 goto out;
3595 }
3596
c2bd5804
TH
3597 /* determine if device 0/1 are present */
3598 if (ata_devchk(ap, 0))
3599 devmask |= (1 << 0);
3600 if (slave_possible && ata_devchk(ap, 1))
3601 devmask |= (1 << 1);
3602
c2bd5804
TH
3603 /* select device 0 again */
3604 ap->ops->dev_select(ap, 0);
3605
3606 /* issue bus reset */
3607 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3608 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3609 /* if link is occupied, -ENODEV too is an error */
936fd732 3610 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3611 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3612 return rc;
c2bd5804
TH
3613 }
3614
3615 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3616 classes[0] = ata_dev_try_classify(&link->device[0],
3617 devmask & (1 << 0), &err);
c2bd5804 3618 if (slave_possible && err != 0x81)
3f19859e
TH
3619 classes[1] = ata_dev_try_classify(&link->device[1],
3620 devmask & (1 << 1), &err);
c2bd5804 3621
3a39746a 3622 out:
c2bd5804
TH
3623 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3624 return 0;
3625}
3626
3627/**
cc0680a5
TH
3628 * sata_link_hardreset - reset link via SATA phy reset
3629 * @link: link to reset
b6103f6d 3630 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3631 * @deadline: deadline jiffies for the operation
c2bd5804 3632 *
cc0680a5 3633 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3634 *
3635 * LOCKING:
3636 * Kernel thread context (may sleep)
3637 *
3638 * RETURNS:
3639 * 0 on success, -errno otherwise.
3640 */
cc0680a5 3641int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3642 unsigned long deadline)
c2bd5804 3643{
852ee16a 3644 u32 scontrol;
81952c54 3645 int rc;
852ee16a 3646
c2bd5804
TH
3647 DPRINTK("ENTER\n");
3648
936fd732 3649 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3650 /* SATA spec says nothing about how to reconfigure
3651 * spd. To be on the safe side, turn off phy during
3652 * reconfiguration. This works for at least ICH7 AHCI
3653 * and Sil3124.
3654 */
936fd732 3655 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3656 goto out;
81952c54 3657
a34b6fc0 3658 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3659
936fd732 3660 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3661 goto out;
1c3fae4d 3662
936fd732 3663 sata_set_spd(link);
1c3fae4d
TH
3664 }
3665
3666 /* issue phy wake/reset */
936fd732 3667 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3668 goto out;
81952c54 3669
852ee16a 3670 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3671
936fd732 3672 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3673 goto out;
c2bd5804 3674
1c3fae4d 3675 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3676 * 10.4.2 says at least 1 ms.
3677 */
3678 msleep(1);
3679
936fd732
TH
3680 /* bring link back */
3681 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3682 out:
3683 DPRINTK("EXIT, rc=%d\n", rc);
3684 return rc;
3685}
3686
3687/**
3688 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3689 * @link: link to reset
b6103f6d 3690 * @class: resulting class of attached device
d4b2bab4 3691 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3692 *
3693 * SATA phy-reset host port using DET bits of SControl register,
3694 * wait for !BSY and classify the attached device.
3695 *
3696 * LOCKING:
3697 * Kernel thread context (may sleep)
3698 *
3699 * RETURNS:
3700 * 0 on success, -errno otherwise.
3701 */
cc0680a5 3702int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3703 unsigned long deadline)
b6103f6d 3704{
cc0680a5 3705 struct ata_port *ap = link->ap;
936fd732 3706 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3707 int rc;
3708
3709 DPRINTK("ENTER\n");
3710
3711 /* do hardreset */
cc0680a5 3712 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3713 if (rc) {
cc0680a5 3714 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3715 "COMRESET failed (errno=%d)\n", rc);
3716 return rc;
3717 }
c2bd5804 3718
c2bd5804 3719 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3720 if (ata_link_offline(link)) {
c2bd5804
TH
3721 *class = ATA_DEV_NONE;
3722 DPRINTK("EXIT, link offline\n");
3723 return 0;
3724 }
3725
88ff6eaf
TH
3726 /* wait a while before checking status */
3727 ata_wait_after_reset(ap, deadline);
34fee227 3728
633273a3
TH
3729 /* If PMP is supported, we have to do follow-up SRST. Note
3730 * that some PMPs don't send D2H Reg FIS after hardreset at
3731 * all if the first port is empty. Wait for it just for a
3732 * second and request follow-up SRST.
3733 */
3734 if (ap->flags & ATA_FLAG_PMP) {
3735 ata_wait_ready(ap, jiffies + HZ);
3736 return -EAGAIN;
3737 }
3738
d4b2bab4 3739 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3740 /* link occupied, -ENODEV too is an error */
3741 if (rc) {
cc0680a5 3742 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3743 "COMRESET failed (errno=%d)\n", rc);
3744 return rc;
c2bd5804
TH
3745 }
3746
3a39746a
TH
3747 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3748
3f19859e 3749 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3750
3751 DPRINTK("EXIT, class=%u\n", *class);
3752 return 0;
3753}
3754
3755/**
3756 * ata_std_postreset - standard postreset callback
cc0680a5 3757 * @link: the target ata_link
c2bd5804
TH
3758 * @classes: classes of attached devices
3759 *
3760 * This function is invoked after a successful reset. Note that
3761 * the device might have been reset more than once using
3762 * different reset methods before postreset is invoked.
c2bd5804 3763 *
c2bd5804
TH
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3766 */
cc0680a5 3767void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3768{
cc0680a5 3769 struct ata_port *ap = link->ap;
dc2b3515
TH
3770 u32 serror;
3771
c2bd5804
TH
3772 DPRINTK("ENTER\n");
3773
c2bd5804 3774 /* print link status */
936fd732 3775 sata_print_link_status(link);
c2bd5804 3776
dc2b3515 3777 /* clear SError */
936fd732
TH
3778 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3779 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3780
c2bd5804
TH
3781 /* is double-select really necessary? */
3782 if (classes[0] != ATA_DEV_NONE)
3783 ap->ops->dev_select(ap, 1);
3784 if (classes[1] != ATA_DEV_NONE)
3785 ap->ops->dev_select(ap, 0);
3786
3a39746a
TH
3787 /* bail out if no device is present */
3788 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3789 DPRINTK("EXIT, no device\n");
3790 return;
3791 }
3792
3793 /* set up device control */
0d5ff566
TH
3794 if (ap->ioaddr.ctl_addr)
3795 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3796
3797 DPRINTK("EXIT\n");
3798}
3799
623a3128
TH
3800/**
3801 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3802 * @dev: device to compare against
3803 * @new_class: class of the new device
3804 * @new_id: IDENTIFY page of the new device
3805 *
3806 * Compare @new_class and @new_id against @dev and determine
3807 * whether @dev is the device indicated by @new_class and
3808 * @new_id.
3809 *
3810 * LOCKING:
3811 * None.
3812 *
3813 * RETURNS:
3814 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3815 */
3373efd8
TH
3816static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3817 const u16 *new_id)
623a3128
TH
3818{
3819 const u16 *old_id = dev->id;
a0cf733b
TH
3820 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3821 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3822
3823 if (dev->class != new_class) {
f15a1daf
TH
3824 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3825 dev->class, new_class);
623a3128
TH
3826 return 0;
3827 }
3828
a0cf733b
TH
3829 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3830 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3831 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3832 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3833
3834 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3835 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3836 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3837 return 0;
3838 }
3839
3840 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3841 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3842 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3843 return 0;
3844 }
3845
623a3128
TH
3846 return 1;
3847}
3848
3849/**
fe30911b 3850 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3851 * @dev: target ATA device
bff04647 3852 * @readid_flags: read ID flags
623a3128
TH
3853 *
3854 * Re-read IDENTIFY page and make sure @dev is still attached to
3855 * the port.
3856 *
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3859 *
3860 * RETURNS:
3861 * 0 on success, negative errno otherwise
3862 */
fe30911b 3863int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3864{
5eb45c02 3865 unsigned int class = dev->class;
9af5c9c9 3866 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3867 int rc;
3868
fe635c7e 3869 /* read ID data */
bff04647 3870 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3871 if (rc)
fe30911b 3872 return rc;
623a3128
TH
3873
3874 /* is the device still there? */
fe30911b
TH
3875 if (!ata_dev_same_device(dev, class, id))
3876 return -ENODEV;
623a3128 3877
fe635c7e 3878 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3879 return 0;
3880}
3881
3882/**
3883 * ata_dev_revalidate - Revalidate ATA device
3884 * @dev: device to revalidate
422c9daa 3885 * @new_class: new class code
fe30911b
TH
3886 * @readid_flags: read ID flags
3887 *
3888 * Re-read IDENTIFY page, make sure @dev is still attached to the
3889 * port and reconfigure it according to the new IDENTIFY page.
3890 *
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3893 *
3894 * RETURNS:
3895 * 0 on success, negative errno otherwise
3896 */
422c9daa
TH
3897int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3898 unsigned int readid_flags)
fe30911b 3899{
6ddcd3b0 3900 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3901 int rc;
3902
3903 if (!ata_dev_enabled(dev))
3904 return -ENODEV;
3905
422c9daa
TH
3906 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3907 if (ata_class_enabled(new_class) &&
3908 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3909 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3910 dev->class, new_class);
3911 rc = -ENODEV;
3912 goto fail;
3913 }
3914
fe30911b
TH
3915 /* re-read ID */
3916 rc = ata_dev_reread_id(dev, readid_flags);
3917 if (rc)
3918 goto fail;
623a3128
TH
3919
3920 /* configure device according to the new ID */
efdaedc4 3921 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3922 if (rc)
3923 goto fail;
3924
3925 /* verify n_sectors hasn't changed */
b54eebd6
TH
3926 if (dev->class == ATA_DEV_ATA && n_sectors &&
3927 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3928 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3929 "%llu != %llu\n",
3930 (unsigned long long)n_sectors,
3931 (unsigned long long)dev->n_sectors);
8270bec4
TH
3932
3933 /* restore original n_sectors */
3934 dev->n_sectors = n_sectors;
3935
6ddcd3b0
TH
3936 rc = -ENODEV;
3937 goto fail;
3938 }
3939
3940 return 0;
623a3128
TH
3941
3942 fail:
f15a1daf 3943 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3944 return rc;
3945}
3946
6919a0a6
AC
3947struct ata_blacklist_entry {
3948 const char *model_num;
3949 const char *model_rev;
3950 unsigned long horkage;
3951};
3952
3953static const struct ata_blacklist_entry ata_device_blacklist [] = {
3954 /* Devices with DMA related problems under Linux */
3955 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3956 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3957 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3958 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3959 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3960 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3961 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3962 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3963 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3964 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3965 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3966 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3967 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3968 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3969 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3970 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3971 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3972 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3973 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3974 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3975 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3976 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3977 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3978 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3979 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3980 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3981 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3982 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 3983 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 3984 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3985 /* Odd clown on sil3726/4726 PMPs */
3986 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3987 ATA_HORKAGE_SKIP_PM },
6919a0a6 3988
18d6e9d5 3989 /* Weird ATAPI devices */
40a1d531 3990 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3991
6919a0a6
AC
3992 /* Devices we expect to fail diagnostics */
3993
3994 /* Devices where NCQ should be avoided */
3995 /* NCQ is slow */
2dcb407e 3996 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3997 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3998 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3999 /* NCQ is broken */
539cc7c7 4000 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4001 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4002 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4003 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4004 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4005
36e337d0
RH
4006 /* Blacklist entries taken from Silicon Image 3124/3132
4007 Windows driver .inf file - also several Linux problem reports */
4008 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4009 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4010 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4011 /* Drives which do spurious command completion */
4012 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4013 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4014 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4015 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4016 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4017 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4018 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4019 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4020 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4021 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4022 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4023 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4024 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4025 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4026 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4027 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4028
16c55b03
TH
4029 /* devices which puke on READ_NATIVE_MAX */
4030 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4031 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4032 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4033 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4034
93328e11
AC
4035 /* Devices which report 1 sector over size HPA */
4036 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4037 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4038
6919a0a6
AC
4039 /* End Marker */
4040 { }
1da177e4 4041};
2e9edbf8 4042
741b7763 4043static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4044{
4045 const char *p;
4046 int len;
4047
4048 /*
4049 * check for trailing wildcard: *\0
4050 */
4051 p = strchr(patt, wildchar);
4052 if (p && ((*(p + 1)) == 0))
4053 len = p - patt;
317b50b8 4054 else {
539cc7c7 4055 len = strlen(name);
317b50b8
AP
4056 if (!len) {
4057 if (!*patt)
4058 return 0;
4059 return -1;
4060 }
4061 }
539cc7c7
JG
4062
4063 return strncmp(patt, name, len);
4064}
4065
75683fe7 4066static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4067{
8bfa79fc
TH
4068 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4069 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4070 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4071
8bfa79fc
TH
4072 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4073 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4074
6919a0a6 4075 while (ad->model_num) {
539cc7c7 4076 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4077 if (ad->model_rev == NULL)
4078 return ad->horkage;
539cc7c7 4079 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4080 return ad->horkage;
f4b15fef 4081 }
6919a0a6 4082 ad++;
f4b15fef 4083 }
1da177e4
LT
4084 return 0;
4085}
4086
6919a0a6
AC
4087static int ata_dma_blacklisted(const struct ata_device *dev)
4088{
4089 /* We don't support polling DMA.
4090 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4091 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4092 */
9af5c9c9 4093 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4094 (dev->flags & ATA_DFLAG_CDB_INTR))
4095 return 1;
75683fe7 4096 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4097}
4098
a6d5a51c
TH
4099/**
4100 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4101 * @dev: Device to compute xfermask for
4102 *
acf356b1
TH
4103 * Compute supported xfermask of @dev and store it in
4104 * dev->*_mask. This function is responsible for applying all
4105 * known limits including host controller limits, device
4106 * blacklist, etc...
a6d5a51c
TH
4107 *
4108 * LOCKING:
4109 * None.
a6d5a51c 4110 */
3373efd8 4111static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4112{
9af5c9c9
TH
4113 struct ata_link *link = dev->link;
4114 struct ata_port *ap = link->ap;
cca3974e 4115 struct ata_host *host = ap->host;
a6d5a51c 4116 unsigned long xfer_mask;
1da177e4 4117
37deecb5 4118 /* controller modes available */
565083e1
TH
4119 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4120 ap->mwdma_mask, ap->udma_mask);
4121
8343f889 4122 /* drive modes available */
37deecb5
TH
4123 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4124 dev->mwdma_mask, dev->udma_mask);
4125 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4126
b352e57d
AC
4127 /*
4128 * CFA Advanced TrueIDE timings are not allowed on a shared
4129 * cable
4130 */
4131 if (ata_dev_pair(dev)) {
4132 /* No PIO5 or PIO6 */
4133 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4134 /* No MWDMA3 or MWDMA 4 */
4135 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4136 }
4137
37deecb5
TH
4138 if (ata_dma_blacklisted(dev)) {
4139 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4140 ata_dev_printk(dev, KERN_WARNING,
4141 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4142 }
a6d5a51c 4143
14d66ab7 4144 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4145 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4146 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4147 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4148 "other device, disabling DMA\n");
5444a6f4 4149 }
565083e1 4150
e424675f
JG
4151 if (ap->flags & ATA_FLAG_NO_IORDY)
4152 xfer_mask &= ata_pio_mask_no_iordy(dev);
4153
5444a6f4 4154 if (ap->ops->mode_filter)
a76b62ca 4155 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4156
8343f889
RH
4157 /* Apply cable rule here. Don't apply it early because when
4158 * we handle hot plug the cable type can itself change.
4159 * Check this last so that we know if the transfer rate was
4160 * solely limited by the cable.
4161 * Unknown or 80 wire cables reported host side are checked
4162 * drive side as well. Cases where we know a 40wire cable
4163 * is used safely for 80 are not checked here.
4164 */
4165 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4166 /* UDMA/44 or higher would be available */
2dcb407e
JG
4167 if ((ap->cbl == ATA_CBL_PATA40) ||
4168 (ata_drive_40wire(dev->id) &&
4169 (ap->cbl == ATA_CBL_PATA_UNK ||
4170 ap->cbl == ATA_CBL_PATA80))) {
4171 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4172 "limited to UDMA/33 due to 40-wire cable\n");
4173 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4174 }
4175
565083e1
TH
4176 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4177 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4178}
4179
1da177e4
LT
4180/**
4181 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4182 * @dev: Device to which command will be sent
4183 *
780a87f7
JG
4184 * Issue SET FEATURES - XFER MODE command to device @dev
4185 * on port @ap.
4186 *
1da177e4 4187 * LOCKING:
0cba632b 4188 * PCI/etc. bus probe sem.
83206a29
TH
4189 *
4190 * RETURNS:
4191 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4192 */
4193
3373efd8 4194static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4195{
a0123703 4196 struct ata_taskfile tf;
83206a29 4197 unsigned int err_mask;
1da177e4
LT
4198
4199 /* set up set-features taskfile */
4200 DPRINTK("set features - xfer mode\n");
4201
464cf177
TH
4202 /* Some controllers and ATAPI devices show flaky interrupt
4203 * behavior after setting xfer mode. Use polling instead.
4204 */
3373efd8 4205 ata_tf_init(dev, &tf);
a0123703
TH
4206 tf.command = ATA_CMD_SET_FEATURES;
4207 tf.feature = SETFEATURES_XFER;
464cf177 4208 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4209 tf.protocol = ATA_PROT_NODATA;
4210 tf.nsect = dev->xfer_mode;
1da177e4 4211
2b789108 4212 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4213
4214 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4215 return err_mask;
4216}
9f45cbd3 4217/**
218f3d30 4218 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4219 * @dev: Device to which command will be sent
4220 * @enable: Whether to enable or disable the feature
218f3d30 4221 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4222 *
4223 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4224 * on port @ap with sector count
9f45cbd3
KCA
4225 *
4226 * LOCKING:
4227 * PCI/etc. bus probe sem.
4228 *
4229 * RETURNS:
4230 * 0 on success, AC_ERR_* mask otherwise.
4231 */
218f3d30
JG
4232static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4233 u8 feature)
9f45cbd3
KCA
4234{
4235 struct ata_taskfile tf;
4236 unsigned int err_mask;
4237
4238 /* set up set-features taskfile */
4239 DPRINTK("set features - SATA features\n");
4240
4241 ata_tf_init(dev, &tf);
4242 tf.command = ATA_CMD_SET_FEATURES;
4243 tf.feature = enable;
4244 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4245 tf.protocol = ATA_PROT_NODATA;
218f3d30 4246 tf.nsect = feature;
9f45cbd3 4247
2b789108 4248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4249
83206a29
TH
4250 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4251 return err_mask;
1da177e4
LT
4252}
4253
8bf62ece
AL
4254/**
4255 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4256 * @dev: Device to which command will be sent
e2a7f77a
RD
4257 * @heads: Number of heads (taskfile parameter)
4258 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4259 *
4260 * LOCKING:
6aff8f1f
TH
4261 * Kernel thread context (may sleep)
4262 *
4263 * RETURNS:
4264 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4265 */
3373efd8
TH
4266static unsigned int ata_dev_init_params(struct ata_device *dev,
4267 u16 heads, u16 sectors)
8bf62ece 4268{
a0123703 4269 struct ata_taskfile tf;
6aff8f1f 4270 unsigned int err_mask;
8bf62ece
AL
4271
4272 /* Number of sectors per track 1-255. Number of heads 1-16 */
4273 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4274 return AC_ERR_INVALID;
8bf62ece
AL
4275
4276 /* set up init dev params taskfile */
4277 DPRINTK("init dev params \n");
4278
3373efd8 4279 ata_tf_init(dev, &tf);
a0123703
TH
4280 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4281 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4282 tf.protocol = ATA_PROT_NODATA;
4283 tf.nsect = sectors;
4284 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4285
2b789108 4286 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4287 /* A clean abort indicates an original or just out of spec drive
4288 and we should continue as we issue the setup based on the
4289 drive reported working geometry */
4290 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4291 err_mask = 0;
8bf62ece 4292
6aff8f1f
TH
4293 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4294 return err_mask;
8bf62ece
AL
4295}
4296
1da177e4 4297/**
0cba632b
JG
4298 * ata_sg_clean - Unmap DMA memory associated with command
4299 * @qc: Command containing DMA memory to be released
4300 *
4301 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4302 *
4303 * LOCKING:
cca3974e 4304 * spin_lock_irqsave(host lock)
1da177e4 4305 */
70e6ad0c 4306void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4307{
4308 struct ata_port *ap = qc->ap;
cedc9a47 4309 struct scatterlist *sg = qc->__sg;
1da177e4 4310 int dir = qc->dma_dir;
cedc9a47 4311 void *pad_buf = NULL;
1da177e4 4312
a4631474
TH
4313 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4314 WARN_ON(sg == NULL);
1da177e4
LT
4315
4316 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4317 WARN_ON(qc->n_elem > 1);
1da177e4 4318
2c13b7ce 4319 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4320
cedc9a47
JG
4321 /* if we padded the buffer out to 32-bit bound, and data
4322 * xfer direction is from-device, we must copy from the
4323 * pad buffer back into the supplied buffer
4324 */
4325 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4326 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4327
4328 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4329 if (qc->n_elem)
2f1f610b 4330 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4331 /* restore last sg */
87260216 4332 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4333 if (pad_buf) {
4334 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4335 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4336 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4337 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4338 }
4339 } else {
2e242fa9 4340 if (qc->n_elem)
2f1f610b 4341 dma_unmap_single(ap->dev,
e1410f2d
JG
4342 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4343 dir);
cedc9a47
JG
4344 /* restore sg */
4345 sg->length += qc->pad_len;
4346 if (pad_buf)
4347 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4348 pad_buf, qc->pad_len);
4349 }
1da177e4
LT
4350
4351 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4352 qc->__sg = NULL;
1da177e4
LT
4353}
4354
4355/**
4356 * ata_fill_sg - Fill PCI IDE PRD table
4357 * @qc: Metadata associated with taskfile to be transferred
4358 *
780a87f7
JG
4359 * Fill PCI IDE PRD (scatter-gather) table with segments
4360 * associated with the current disk command.
4361 *
1da177e4 4362 * LOCKING:
cca3974e 4363 * spin_lock_irqsave(host lock)
1da177e4
LT
4364 *
4365 */
4366static void ata_fill_sg(struct ata_queued_cmd *qc)
4367{
1da177e4 4368 struct ata_port *ap = qc->ap;
cedc9a47
JG
4369 struct scatterlist *sg;
4370 unsigned int idx;
1da177e4 4371
a4631474 4372 WARN_ON(qc->__sg == NULL);
f131883e 4373 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4374
4375 idx = 0;
cedc9a47 4376 ata_for_each_sg(sg, qc) {
1da177e4
LT
4377 u32 addr, offset;
4378 u32 sg_len, len;
4379
4380 /* determine if physical DMA addr spans 64K boundary.
4381 * Note h/w doesn't support 64-bit, so we unconditionally
4382 * truncate dma_addr_t to u32.
4383 */
4384 addr = (u32) sg_dma_address(sg);
4385 sg_len = sg_dma_len(sg);
4386
4387 while (sg_len) {
4388 offset = addr & 0xffff;
4389 len = sg_len;
4390 if ((offset + sg_len) > 0x10000)
4391 len = 0x10000 - offset;
4392
4393 ap->prd[idx].addr = cpu_to_le32(addr);
4394 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4395 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4396
4397 idx++;
4398 sg_len -= len;
4399 addr += len;
4400 }
4401 }
4402
4403 if (idx)
4404 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4405}
b9a4197e 4406
d26fc955
AC
4407/**
4408 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4409 * @qc: Metadata associated with taskfile to be transferred
4410 *
4411 * Fill PCI IDE PRD (scatter-gather) table with segments
4412 * associated with the current disk command. Perform the fill
4413 * so that we avoid writing any length 64K records for
4414 * controllers that don't follow the spec.
4415 *
4416 * LOCKING:
4417 * spin_lock_irqsave(host lock)
4418 *
4419 */
4420static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4421{
4422 struct ata_port *ap = qc->ap;
4423 struct scatterlist *sg;
4424 unsigned int idx;
4425
4426 WARN_ON(qc->__sg == NULL);
4427 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4428
4429 idx = 0;
4430 ata_for_each_sg(sg, qc) {
4431 u32 addr, offset;
4432 u32 sg_len, len, blen;
4433
2dcb407e 4434 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4435 * Note h/w doesn't support 64-bit, so we unconditionally
4436 * truncate dma_addr_t to u32.
4437 */
4438 addr = (u32) sg_dma_address(sg);
4439 sg_len = sg_dma_len(sg);
4440
4441 while (sg_len) {
4442 offset = addr & 0xffff;
4443 len = sg_len;
4444 if ((offset + sg_len) > 0x10000)
4445 len = 0x10000 - offset;
4446
4447 blen = len & 0xffff;
4448 ap->prd[idx].addr = cpu_to_le32(addr);
4449 if (blen == 0) {
4450 /* Some PATA chipsets like the CS5530 can't
4451 cope with 0x0000 meaning 64K as the spec says */
4452 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4453 blen = 0x8000;
4454 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4455 }
4456 ap->prd[idx].flags_len = cpu_to_le32(blen);
4457 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4458
4459 idx++;
4460 sg_len -= len;
4461 addr += len;
4462 }
4463 }
4464
4465 if (idx)
4466 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4467}
4468
1da177e4
LT
4469/**
4470 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4471 * @qc: Metadata associated with taskfile to check
4472 *
780a87f7
JG
4473 * Allow low-level driver to filter ATA PACKET commands, returning
4474 * a status indicating whether or not it is OK to use DMA for the
4475 * supplied PACKET command.
4476 *
1da177e4 4477 * LOCKING:
cca3974e 4478 * spin_lock_irqsave(host lock)
0cba632b 4479 *
1da177e4
LT
4480 * RETURNS: 0 when ATAPI DMA can be used
4481 * nonzero otherwise
4482 */
4483int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4484{
4485 struct ata_port *ap = qc->ap;
b9a4197e
TH
4486
4487 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4488 * few ATAPI devices choke on such DMA requests.
4489 */
4490 if (unlikely(qc->nbytes & 15))
4491 return 1;
6f23a31d 4492
1da177e4 4493 if (ap->ops->check_atapi_dma)
b9a4197e 4494 return ap->ops->check_atapi_dma(qc);
1da177e4 4495
b9a4197e 4496 return 0;
1da177e4 4497}
b9a4197e 4498
31cc23b3
TH
4499/**
4500 * ata_std_qc_defer - Check whether a qc needs to be deferred
4501 * @qc: ATA command in question
4502 *
4503 * Non-NCQ commands cannot run with any other command, NCQ or
4504 * not. As upper layer only knows the queue depth, we are
4505 * responsible for maintaining exclusion. This function checks
4506 * whether a new command @qc can be issued.
4507 *
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4510 *
4511 * RETURNS:
4512 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4513 */
4514int ata_std_qc_defer(struct ata_queued_cmd *qc)
4515{
4516 struct ata_link *link = qc->dev->link;
4517
4518 if (qc->tf.protocol == ATA_PROT_NCQ) {
4519 if (!ata_tag_valid(link->active_tag))
4520 return 0;
4521 } else {
4522 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4523 return 0;
4524 }
4525
4526 return ATA_DEFER_LINK;
4527}
4528
1da177e4
LT
4529/**
4530 * ata_qc_prep - Prepare taskfile for submission
4531 * @qc: Metadata associated with taskfile to be prepared
4532 *
780a87f7
JG
4533 * Prepare ATA taskfile for submission.
4534 *
1da177e4 4535 * LOCKING:
cca3974e 4536 * spin_lock_irqsave(host lock)
1da177e4
LT
4537 */
4538void ata_qc_prep(struct ata_queued_cmd *qc)
4539{
4540 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4541 return;
4542
4543 ata_fill_sg(qc);
4544}
4545
d26fc955
AC
4546/**
4547 * ata_dumb_qc_prep - Prepare taskfile for submission
4548 * @qc: Metadata associated with taskfile to be prepared
4549 *
4550 * Prepare ATA taskfile for submission.
4551 *
4552 * LOCKING:
4553 * spin_lock_irqsave(host lock)
4554 */
4555void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4556{
4557 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4558 return;
4559
4560 ata_fill_sg_dumb(qc);
4561}
4562
e46834cd
BK
4563void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4564
0cba632b
JG
4565/**
4566 * ata_sg_init_one - Associate command with memory buffer
4567 * @qc: Command to be associated
4568 * @buf: Memory buffer
4569 * @buflen: Length of memory buffer, in bytes.
4570 *
4571 * Initialize the data-related elements of queued_cmd @qc
4572 * to point to a single memory buffer, @buf of byte length @buflen.
4573 *
4574 * LOCKING:
cca3974e 4575 * spin_lock_irqsave(host lock)
0cba632b
JG
4576 */
4577
1da177e4
LT
4578void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4579{
1da177e4
LT
4580 qc->flags |= ATA_QCFLAG_SINGLE;
4581
cedc9a47 4582 qc->__sg = &qc->sgent;
1da177e4 4583 qc->n_elem = 1;
cedc9a47 4584 qc->orig_n_elem = 1;
1da177e4 4585 qc->buf_virt = buf;
233277ca 4586 qc->nbytes = buflen;
87260216 4587 qc->cursg = qc->__sg;
1da177e4 4588
61c0596c 4589 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4590}
4591
0cba632b
JG
4592/**
4593 * ata_sg_init - Associate command with scatter-gather table.
4594 * @qc: Command to be associated
4595 * @sg: Scatter-gather table.
4596 * @n_elem: Number of elements in s/g table.
4597 *
4598 * Initialize the data-related elements of queued_cmd @qc
4599 * to point to a scatter-gather table @sg, containing @n_elem
4600 * elements.
4601 *
4602 * LOCKING:
cca3974e 4603 * spin_lock_irqsave(host lock)
0cba632b
JG
4604 */
4605
1da177e4
LT
4606void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4607 unsigned int n_elem)
4608{
4609 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4610 qc->__sg = sg;
1da177e4 4611 qc->n_elem = n_elem;
cedc9a47 4612 qc->orig_n_elem = n_elem;
87260216 4613 qc->cursg = qc->__sg;
1da177e4
LT
4614}
4615
4616/**
0cba632b
JG
4617 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4618 * @qc: Command with memory buffer to be mapped.
4619 *
4620 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4621 *
4622 * LOCKING:
cca3974e 4623 * spin_lock_irqsave(host lock)
1da177e4
LT
4624 *
4625 * RETURNS:
0cba632b 4626 * Zero on success, negative on error.
1da177e4
LT
4627 */
4628
4629static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4630{
4631 struct ata_port *ap = qc->ap;
4632 int dir = qc->dma_dir;
cedc9a47 4633 struct scatterlist *sg = qc->__sg;
1da177e4 4634 dma_addr_t dma_address;
2e242fa9 4635 int trim_sg = 0;
1da177e4 4636
cedc9a47
JG
4637 /* we must lengthen transfers to end on a 32-bit boundary */
4638 qc->pad_len = sg->length & 3;
4639 if (qc->pad_len) {
4640 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4641 struct scatterlist *psg = &qc->pad_sgent;
4642
a4631474 4643 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4644
4645 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4646
4647 if (qc->tf.flags & ATA_TFLAG_WRITE)
4648 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4649 qc->pad_len);
4650
4651 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4652 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4653 /* trim sg */
4654 sg->length -= qc->pad_len;
2e242fa9
TH
4655 if (sg->length == 0)
4656 trim_sg = 1;
cedc9a47
JG
4657
4658 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4659 sg->length, qc->pad_len);
4660 }
4661
2e242fa9
TH
4662 if (trim_sg) {
4663 qc->n_elem--;
e1410f2d
JG
4664 goto skip_map;
4665 }
4666
2f1f610b 4667 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4668 sg->length, dir);
537a95d9
TH
4669 if (dma_mapping_error(dma_address)) {
4670 /* restore sg */
4671 sg->length += qc->pad_len;
1da177e4 4672 return -1;
537a95d9 4673 }
1da177e4
LT
4674
4675 sg_dma_address(sg) = dma_address;
32529e01 4676 sg_dma_len(sg) = sg->length;
1da177e4 4677
2e242fa9 4678skip_map:
1da177e4
LT
4679 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4680 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4681
4682 return 0;
4683}
4684
4685/**
0cba632b
JG
4686 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4687 * @qc: Command with scatter-gather table to be mapped.
4688 *
4689 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4690 *
4691 * LOCKING:
cca3974e 4692 * spin_lock_irqsave(host lock)
1da177e4
LT
4693 *
4694 * RETURNS:
0cba632b 4695 * Zero on success, negative on error.
1da177e4
LT
4696 *
4697 */
4698
4699static int ata_sg_setup(struct ata_queued_cmd *qc)
4700{
4701 struct ata_port *ap = qc->ap;
cedc9a47 4702 struct scatterlist *sg = qc->__sg;
87260216 4703 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4704 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4705
44877b4e 4706 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4707 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4708
cedc9a47
JG
4709 /* we must lengthen transfers to end on a 32-bit boundary */
4710 qc->pad_len = lsg->length & 3;
4711 if (qc->pad_len) {
4712 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4713 struct scatterlist *psg = &qc->pad_sgent;
4714 unsigned int offset;
4715
a4631474 4716 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4717
4718 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4719
4720 /*
4721 * psg->page/offset are used to copy to-be-written
4722 * data in this function or read data in ata_sg_clean.
4723 */
4724 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490
JA
4725 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4726 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4727
4728 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4729 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4730 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4731 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4732 }
4733
4734 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4735 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4736 /* trim last sg */
4737 lsg->length -= qc->pad_len;
e1410f2d
JG
4738 if (lsg->length == 0)
4739 trim_sg = 1;
cedc9a47
JG
4740
4741 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4742 qc->n_elem - 1, lsg->length, qc->pad_len);
4743 }
4744
e1410f2d
JG
4745 pre_n_elem = qc->n_elem;
4746 if (trim_sg && pre_n_elem)
4747 pre_n_elem--;
4748
4749 if (!pre_n_elem) {
4750 n_elem = 0;
4751 goto skip_map;
4752 }
4753
1da177e4 4754 dir = qc->dma_dir;
2f1f610b 4755 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4756 if (n_elem < 1) {
4757 /* restore last sg */
4758 lsg->length += qc->pad_len;
1da177e4 4759 return -1;
537a95d9 4760 }
1da177e4
LT
4761
4762 DPRINTK("%d sg elements mapped\n", n_elem);
4763
e1410f2d 4764skip_map:
1da177e4
LT
4765 qc->n_elem = n_elem;
4766
4767 return 0;
4768}
4769
0baab86b 4770/**
c893a3ae 4771 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4772 * @buf: Buffer to swap
4773 * @buf_words: Number of 16-bit words in buffer.
4774 *
4775 * Swap halves of 16-bit words if needed to convert from
4776 * little-endian byte order to native cpu byte order, or
4777 * vice-versa.
4778 *
4779 * LOCKING:
6f0ef4fa 4780 * Inherited from caller.
0baab86b 4781 */
1da177e4
LT
4782void swap_buf_le16(u16 *buf, unsigned int buf_words)
4783{
4784#ifdef __BIG_ENDIAN
4785 unsigned int i;
4786
4787 for (i = 0; i < buf_words; i++)
4788 buf[i] = le16_to_cpu(buf[i]);
4789#endif /* __BIG_ENDIAN */
4790}
4791
6ae4cfb5 4792/**
0d5ff566 4793 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4794 * @adev: device to target
6ae4cfb5
AL
4795 * @buf: data buffer
4796 * @buflen: buffer length
344babaa 4797 * @write_data: read/write
6ae4cfb5
AL
4798 *
4799 * Transfer data from/to the device data register by PIO.
4800 *
4801 * LOCKING:
4802 * Inherited from caller.
6ae4cfb5 4803 */
0d5ff566
TH
4804void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4805 unsigned int buflen, int write_data)
1da177e4 4806{
9af5c9c9 4807 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4808 unsigned int words = buflen >> 1;
1da177e4 4809
6ae4cfb5 4810 /* Transfer multiple of 2 bytes */
1da177e4 4811 if (write_data)
0d5ff566 4812 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4813 else
0d5ff566 4814 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4815
4816 /* Transfer trailing 1 byte, if any. */
4817 if (unlikely(buflen & 0x01)) {
4818 u16 align_buf[1] = { 0 };
4819 unsigned char *trailing_buf = buf + buflen - 1;
4820
4821 if (write_data) {
4822 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4823 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4824 } else {
0d5ff566 4825 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4826 memcpy(trailing_buf, align_buf, 1);
4827 }
4828 }
1da177e4
LT
4829}
4830
75e99585 4831/**
0d5ff566 4832 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4833 * @adev: device to target
4834 * @buf: data buffer
4835 * @buflen: buffer length
4836 * @write_data: read/write
4837 *
88574551 4838 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4839 * transfer with interrupts disabled.
4840 *
4841 * LOCKING:
4842 * Inherited from caller.
4843 */
0d5ff566
TH
4844void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4845 unsigned int buflen, int write_data)
75e99585
AC
4846{
4847 unsigned long flags;
4848 local_irq_save(flags);
0d5ff566 4849 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4850 local_irq_restore(flags);
4851}
4852
4853
6ae4cfb5 4854/**
5a5dbd18 4855 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4856 * @qc: Command on going
4857 *
5a5dbd18 4858 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4859 *
4860 * LOCKING:
4861 * Inherited from caller.
4862 */
4863
1da177e4
LT
4864static void ata_pio_sector(struct ata_queued_cmd *qc)
4865{
4866 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
4867 struct ata_port *ap = qc->ap;
4868 struct page *page;
4869 unsigned int offset;
4870 unsigned char *buf;
4871
5a5dbd18 4872 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4873 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 4874
45711f1a 4875 page = sg_page(qc->cursg);
87260216 4876 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
4877
4878 /* get the current page and offset */
4879 page = nth_page(page, (offset >> PAGE_SHIFT));
4880 offset %= PAGE_SIZE;
4881
1da177e4
LT
4882 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4883
91b8b313
AL
4884 if (PageHighMem(page)) {
4885 unsigned long flags;
4886
a6b2c5d4 4887 /* FIXME: use a bounce buffer */
91b8b313
AL
4888 local_irq_save(flags);
4889 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4890
91b8b313 4891 /* do the actual data transfer */
5a5dbd18 4892 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4893
91b8b313
AL
4894 kunmap_atomic(buf, KM_IRQ0);
4895 local_irq_restore(flags);
4896 } else {
4897 buf = page_address(page);
5a5dbd18 4898 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4899 }
1da177e4 4900
5a5dbd18
ML
4901 qc->curbytes += qc->sect_size;
4902 qc->cursg_ofs += qc->sect_size;
1da177e4 4903
87260216
JA
4904 if (qc->cursg_ofs == qc->cursg->length) {
4905 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
4906 qc->cursg_ofs = 0;
4907 }
1da177e4 4908}
1da177e4 4909
07f6f7d0 4910/**
5a5dbd18 4911 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4912 * @qc: Command on going
4913 *
5a5dbd18 4914 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4915 * ATA device for the DRQ request.
4916 *
4917 * LOCKING:
4918 * Inherited from caller.
4919 */
1da177e4 4920
07f6f7d0
AL
4921static void ata_pio_sectors(struct ata_queued_cmd *qc)
4922{
4923 if (is_multi_taskfile(&qc->tf)) {
4924 /* READ/WRITE MULTIPLE */
4925 unsigned int nsect;
4926
587005de 4927 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4928
5a5dbd18 4929 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4930 qc->dev->multi_count);
07f6f7d0
AL
4931 while (nsect--)
4932 ata_pio_sector(qc);
4933 } else
4934 ata_pio_sector(qc);
4cc980b3
AL
4935
4936 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4937}
4938
c71c1857
AL
4939/**
4940 * atapi_send_cdb - Write CDB bytes to hardware
4941 * @ap: Port to which ATAPI device is attached.
4942 * @qc: Taskfile currently active
4943 *
4944 * When device has indicated its readiness to accept
4945 * a CDB, this function is called. Send the CDB.
4946 *
4947 * LOCKING:
4948 * caller.
4949 */
4950
4951static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4952{
4953 /* send SCSI cdb */
4954 DPRINTK("send cdb\n");
db024d53 4955 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4956
a6b2c5d4 4957 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4958 ata_altstatus(ap); /* flush */
4959
4960 switch (qc->tf.protocol) {
4961 case ATA_PROT_ATAPI:
4962 ap->hsm_task_state = HSM_ST;
4963 break;
4964 case ATA_PROT_ATAPI_NODATA:
4965 ap->hsm_task_state = HSM_ST_LAST;
4966 break;
4967 case ATA_PROT_ATAPI_DMA:
4968 ap->hsm_task_state = HSM_ST_LAST;
4969 /* initiate bmdma */
4970 ap->ops->bmdma_start(qc);
4971 break;
4972 }
1da177e4
LT
4973}
4974
6ae4cfb5
AL
4975/**
4976 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4977 * @qc: Command on going
4978 * @bytes: number of bytes
4979 *
4980 * Transfer Transfer data from/to the ATAPI device.
4981 *
4982 * LOCKING:
4983 * Inherited from caller.
4984 *
4985 */
4986
1da177e4
LT
4987static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4988{
4989 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4990 struct scatterlist *sg = qc->__sg;
0874ee76 4991 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
4992 struct ata_port *ap = qc->ap;
4993 struct page *page;
4994 unsigned char *buf;
4995 unsigned int offset, count;
0874ee76 4996 int no_more_sg = 0;
1da177e4 4997
563a6e1f 4998 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4999 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5000
5001next_sg:
0874ee76 5002 if (unlikely(no_more_sg)) {
7fb6ec28 5003 /*
563a6e1f
AL
5004 * The end of qc->sg is reached and the device expects
5005 * more data to transfer. In order not to overrun qc->sg
5006 * and fulfill length specified in the byte count register,
5007 * - for read case, discard trailing data from the device
5008 * - for write case, padding zero data to the device
5009 */
5010 u16 pad_buf[1] = { 0 };
5011 unsigned int words = bytes >> 1;
5012 unsigned int i;
5013
5014 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5015 ata_dev_printk(qc->dev, KERN_WARNING,
5016 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5017
5018 for (i = 0; i < words; i++)
2dcb407e 5019 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5020
14be71f4 5021 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5022 return;
5023 }
5024
87260216 5025 sg = qc->cursg;
1da177e4 5026
45711f1a 5027 page = sg_page(sg);
1da177e4
LT
5028 offset = sg->offset + qc->cursg_ofs;
5029
5030 /* get the current page and offset */
5031 page = nth_page(page, (offset >> PAGE_SHIFT));
5032 offset %= PAGE_SIZE;
5033
6952df03 5034 /* don't overrun current sg */
32529e01 5035 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5036
5037 /* don't cross page boundaries */
5038 count = min(count, (unsigned int)PAGE_SIZE - offset);
5039
7282aa4b
AL
5040 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5041
91b8b313
AL
5042 if (PageHighMem(page)) {
5043 unsigned long flags;
5044
a6b2c5d4 5045 /* FIXME: use bounce buffer */
91b8b313
AL
5046 local_irq_save(flags);
5047 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5048
91b8b313 5049 /* do the actual data transfer */
a6b2c5d4 5050 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5051
91b8b313
AL
5052 kunmap_atomic(buf, KM_IRQ0);
5053 local_irq_restore(flags);
5054 } else {
5055 buf = page_address(page);
a6b2c5d4 5056 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5057 }
1da177e4
LT
5058
5059 bytes -= count;
5060 qc->curbytes += count;
5061 qc->cursg_ofs += count;
5062
32529e01 5063 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5064 if (qc->cursg == lsg)
5065 no_more_sg = 1;
5066
87260216 5067 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5068 qc->cursg_ofs = 0;
5069 }
5070
563a6e1f 5071 if (bytes)
1da177e4 5072 goto next_sg;
1da177e4
LT
5073}
5074
6ae4cfb5
AL
5075/**
5076 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5077 * @qc: Command on going
5078 *
5079 * Transfer Transfer data from/to the ATAPI device.
5080 *
5081 * LOCKING:
5082 * Inherited from caller.
6ae4cfb5
AL
5083 */
5084
1da177e4
LT
5085static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5086{
5087 struct ata_port *ap = qc->ap;
5088 struct ata_device *dev = qc->dev;
5089 unsigned int ireason, bc_lo, bc_hi, bytes;
5090 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5091
eec4c3f3
AL
5092 /* Abuse qc->result_tf for temp storage of intermediate TF
5093 * here to save some kernel stack usage.
5094 * For normal completion, qc->result_tf is not relevant. For
5095 * error, qc->result_tf is later overwritten by ata_qc_complete().
5096 * So, the correctness of qc->result_tf is not affected.
5097 */
5098 ap->ops->tf_read(ap, &qc->result_tf);
5099 ireason = qc->result_tf.nsect;
5100 bc_lo = qc->result_tf.lbam;
5101 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5102 bytes = (bc_hi << 8) | bc_lo;
5103
5104 /* shall be cleared to zero, indicating xfer of data */
5105 if (ireason & (1 << 0))
5106 goto err_out;
5107
5108 /* make sure transfer direction matches expected */
5109 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5110 if (do_write != i_write)
5111 goto err_out;
5112
44877b4e 5113 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5114
1da177e4 5115 __atapi_pio_bytes(qc, bytes);
4cc980b3 5116 ata_altstatus(ap); /* flush */
1da177e4
LT
5117
5118 return;
5119
5120err_out:
f15a1daf 5121 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5122 qc->err_mask |= AC_ERR_HSM;
14be71f4 5123 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5124}
5125
5126/**
c234fb00
AL
5127 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5128 * @ap: the target ata_port
5129 * @qc: qc on going
1da177e4 5130 *
c234fb00
AL
5131 * RETURNS:
5132 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5133 */
c234fb00
AL
5134
5135static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5136{
c234fb00
AL
5137 if (qc->tf.flags & ATA_TFLAG_POLLING)
5138 return 1;
1da177e4 5139
c234fb00
AL
5140 if (ap->hsm_task_state == HSM_ST_FIRST) {
5141 if (qc->tf.protocol == ATA_PROT_PIO &&
5142 (qc->tf.flags & ATA_TFLAG_WRITE))
5143 return 1;
1da177e4 5144
c234fb00
AL
5145 if (is_atapi_taskfile(&qc->tf) &&
5146 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5147 return 1;
fe79e683
AL
5148 }
5149
c234fb00
AL
5150 return 0;
5151}
1da177e4 5152
c17ea20d
TH
5153/**
5154 * ata_hsm_qc_complete - finish a qc running on standard HSM
5155 * @qc: Command to complete
5156 * @in_wq: 1 if called from workqueue, 0 otherwise
5157 *
5158 * Finish @qc which is running on standard HSM.
5159 *
5160 * LOCKING:
cca3974e 5161 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5162 * Otherwise, none on entry and grabs host lock.
5163 */
5164static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5165{
5166 struct ata_port *ap = qc->ap;
5167 unsigned long flags;
5168
5169 if (ap->ops->error_handler) {
5170 if (in_wq) {
ba6a1308 5171 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5172
cca3974e
JG
5173 /* EH might have kicked in while host lock is
5174 * released.
c17ea20d
TH
5175 */
5176 qc = ata_qc_from_tag(ap, qc->tag);
5177 if (qc) {
5178 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5179 ap->ops->irq_on(ap);
c17ea20d
TH
5180 ata_qc_complete(qc);
5181 } else
5182 ata_port_freeze(ap);
5183 }
5184
ba6a1308 5185 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5186 } else {
5187 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5188 ata_qc_complete(qc);
5189 else
5190 ata_port_freeze(ap);
5191 }
5192 } else {
5193 if (in_wq) {
ba6a1308 5194 spin_lock_irqsave(ap->lock, flags);
83625006 5195 ap->ops->irq_on(ap);
c17ea20d 5196 ata_qc_complete(qc);
ba6a1308 5197 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5198 } else
5199 ata_qc_complete(qc);
5200 }
5201}
5202
bb5cb290
AL
5203/**
5204 * ata_hsm_move - move the HSM to the next state.
5205 * @ap: the target ata_port
5206 * @qc: qc on going
5207 * @status: current device status
5208 * @in_wq: 1 if called from workqueue, 0 otherwise
5209 *
5210 * RETURNS:
5211 * 1 when poll next status needed, 0 otherwise.
5212 */
9a1004d0
TH
5213int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5214 u8 status, int in_wq)
e2cec771 5215{
bb5cb290
AL
5216 unsigned long flags = 0;
5217 int poll_next;
5218
6912ccd5
AL
5219 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5220
bb5cb290
AL
5221 /* Make sure ata_qc_issue_prot() does not throw things
5222 * like DMA polling into the workqueue. Notice that
5223 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5224 */
c234fb00 5225 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5226
e2cec771 5227fsm_start:
999bb6f4 5228 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5229 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5230
e2cec771
AL
5231 switch (ap->hsm_task_state) {
5232 case HSM_ST_FIRST:
bb5cb290
AL
5233 /* Send first data block or PACKET CDB */
5234
5235 /* If polling, we will stay in the work queue after
5236 * sending the data. Otherwise, interrupt handler
5237 * takes over after sending the data.
5238 */
5239 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5240
e2cec771 5241 /* check device status */
3655d1d3
AL
5242 if (unlikely((status & ATA_DRQ) == 0)) {
5243 /* handle BSY=0, DRQ=0 as error */
5244 if (likely(status & (ATA_ERR | ATA_DF)))
5245 /* device stops HSM for abort/error */
5246 qc->err_mask |= AC_ERR_DEV;
5247 else
5248 /* HSM violation. Let EH handle this */
5249 qc->err_mask |= AC_ERR_HSM;
5250
14be71f4 5251 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5252 goto fsm_start;
1da177e4
LT
5253 }
5254
71601958
AL
5255 /* Device should not ask for data transfer (DRQ=1)
5256 * when it finds something wrong.
eee6c32f
AL
5257 * We ignore DRQ here and stop the HSM by
5258 * changing hsm_task_state to HSM_ST_ERR and
5259 * let the EH abort the command or reset the device.
71601958
AL
5260 */
5261 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5262 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5263 "error, dev_stat 0x%X\n", status);
3655d1d3 5264 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5265 ap->hsm_task_state = HSM_ST_ERR;
5266 goto fsm_start;
71601958 5267 }
1da177e4 5268
bb5cb290
AL
5269 /* Send the CDB (atapi) or the first data block (ata pio out).
5270 * During the state transition, interrupt handler shouldn't
5271 * be invoked before the data transfer is complete and
5272 * hsm_task_state is changed. Hence, the following locking.
5273 */
5274 if (in_wq)
ba6a1308 5275 spin_lock_irqsave(ap->lock, flags);
1da177e4 5276
bb5cb290
AL
5277 if (qc->tf.protocol == ATA_PROT_PIO) {
5278 /* PIO data out protocol.
5279 * send first data block.
5280 */
0565c26d 5281
bb5cb290
AL
5282 /* ata_pio_sectors() might change the state
5283 * to HSM_ST_LAST. so, the state is changed here
5284 * before ata_pio_sectors().
5285 */
5286 ap->hsm_task_state = HSM_ST;
5287 ata_pio_sectors(qc);
bb5cb290
AL
5288 } else
5289 /* send CDB */
5290 atapi_send_cdb(ap, qc);
5291
5292 if (in_wq)
ba6a1308 5293 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5294
5295 /* if polling, ata_pio_task() handles the rest.
5296 * otherwise, interrupt handler takes over from here.
5297 */
e2cec771 5298 break;
1c848984 5299
e2cec771
AL
5300 case HSM_ST:
5301 /* complete command or read/write the data register */
5302 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5303 /* ATAPI PIO protocol */
5304 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5305 /* No more data to transfer or device error.
5306 * Device error will be tagged in HSM_ST_LAST.
5307 */
e2cec771
AL
5308 ap->hsm_task_state = HSM_ST_LAST;
5309 goto fsm_start;
5310 }
1da177e4 5311
71601958
AL
5312 /* Device should not ask for data transfer (DRQ=1)
5313 * when it finds something wrong.
eee6c32f
AL
5314 * We ignore DRQ here and stop the HSM by
5315 * changing hsm_task_state to HSM_ST_ERR and
5316 * let the EH abort the command or reset the device.
71601958
AL
5317 */
5318 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5319 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5320 "device error, dev_stat 0x%X\n",
5321 status);
3655d1d3 5322 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5323 ap->hsm_task_state = HSM_ST_ERR;
5324 goto fsm_start;
71601958 5325 }
1da177e4 5326
e2cec771 5327 atapi_pio_bytes(qc);
7fb6ec28 5328
e2cec771
AL
5329 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5330 /* bad ireason reported by device */
5331 goto fsm_start;
1da177e4 5332
e2cec771
AL
5333 } else {
5334 /* ATA PIO protocol */
5335 if (unlikely((status & ATA_DRQ) == 0)) {
5336 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5337 if (likely(status & (ATA_ERR | ATA_DF)))
5338 /* device stops HSM for abort/error */
5339 qc->err_mask |= AC_ERR_DEV;
5340 else
55a8e2c8
TH
5341 /* HSM violation. Let EH handle this.
5342 * Phantom devices also trigger this
5343 * condition. Mark hint.
5344 */
5345 qc->err_mask |= AC_ERR_HSM |
5346 AC_ERR_NODEV_HINT;
3655d1d3 5347
e2cec771
AL
5348 ap->hsm_task_state = HSM_ST_ERR;
5349 goto fsm_start;
5350 }
1da177e4 5351
eee6c32f
AL
5352 /* For PIO reads, some devices may ask for
5353 * data transfer (DRQ=1) alone with ERR=1.
5354 * We respect DRQ here and transfer one
5355 * block of junk data before changing the
5356 * hsm_task_state to HSM_ST_ERR.
5357 *
5358 * For PIO writes, ERR=1 DRQ=1 doesn't make
5359 * sense since the data block has been
5360 * transferred to the device.
71601958
AL
5361 */
5362 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5363 /* data might be corrputed */
5364 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5365
5366 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5367 ata_pio_sectors(qc);
eee6c32f
AL
5368 status = ata_wait_idle(ap);
5369 }
5370
3655d1d3
AL
5371 if (status & (ATA_BUSY | ATA_DRQ))
5372 qc->err_mask |= AC_ERR_HSM;
5373
eee6c32f
AL
5374 /* ata_pio_sectors() might change the
5375 * state to HSM_ST_LAST. so, the state
5376 * is changed after ata_pio_sectors().
5377 */
5378 ap->hsm_task_state = HSM_ST_ERR;
5379 goto fsm_start;
71601958
AL
5380 }
5381
e2cec771
AL
5382 ata_pio_sectors(qc);
5383
5384 if (ap->hsm_task_state == HSM_ST_LAST &&
5385 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5386 /* all data read */
52a32205 5387 status = ata_wait_idle(ap);
e2cec771
AL
5388 goto fsm_start;
5389 }
5390 }
5391
bb5cb290 5392 poll_next = 1;
1da177e4
LT
5393 break;
5394
14be71f4 5395 case HSM_ST_LAST:
6912ccd5
AL
5396 if (unlikely(!ata_ok(status))) {
5397 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5398 ap->hsm_task_state = HSM_ST_ERR;
5399 goto fsm_start;
5400 }
5401
5402 /* no more data to transfer */
4332a771 5403 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5404 ap->print_id, qc->dev->devno, status);
e2cec771 5405
6912ccd5
AL
5406 WARN_ON(qc->err_mask);
5407
e2cec771 5408 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5409
e2cec771 5410 /* complete taskfile transaction */
c17ea20d 5411 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5412
5413 poll_next = 0;
1da177e4
LT
5414 break;
5415
14be71f4 5416 case HSM_ST_ERR:
e2cec771
AL
5417 /* make sure qc->err_mask is available to
5418 * know what's wrong and recover
5419 */
5420 WARN_ON(qc->err_mask == 0);
5421
5422 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5423
999bb6f4 5424 /* complete taskfile transaction */
c17ea20d 5425 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5426
5427 poll_next = 0;
e2cec771
AL
5428 break;
5429 default:
bb5cb290 5430 poll_next = 0;
6912ccd5 5431 BUG();
1da177e4
LT
5432 }
5433
bb5cb290 5434 return poll_next;
1da177e4
LT
5435}
5436
65f27f38 5437static void ata_pio_task(struct work_struct *work)
8061f5f0 5438{
65f27f38
DH
5439 struct ata_port *ap =
5440 container_of(work, struct ata_port, port_task.work);
5441 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5442 u8 status;
a1af3734 5443 int poll_next;
8061f5f0 5444
7fb6ec28 5445fsm_start:
a1af3734 5446 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5447
a1af3734
AL
5448 /*
5449 * This is purely heuristic. This is a fast path.
5450 * Sometimes when we enter, BSY will be cleared in
5451 * a chk-status or two. If not, the drive is probably seeking
5452 * or something. Snooze for a couple msecs, then
5453 * chk-status again. If still busy, queue delayed work.
5454 */
5455 status = ata_busy_wait(ap, ATA_BUSY, 5);
5456 if (status & ATA_BUSY) {
5457 msleep(2);
5458 status = ata_busy_wait(ap, ATA_BUSY, 10);
5459 if (status & ATA_BUSY) {
31ce6dae 5460 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5461 return;
5462 }
8061f5f0
TH
5463 }
5464
a1af3734
AL
5465 /* move the HSM */
5466 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5467
a1af3734
AL
5468 /* another command or interrupt handler
5469 * may be running at this point.
5470 */
5471 if (poll_next)
7fb6ec28 5472 goto fsm_start;
8061f5f0
TH
5473}
5474
1da177e4
LT
5475/**
5476 * ata_qc_new - Request an available ATA command, for queueing
5477 * @ap: Port associated with device @dev
5478 * @dev: Device from whom we request an available command structure
5479 *
5480 * LOCKING:
0cba632b 5481 * None.
1da177e4
LT
5482 */
5483
5484static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5485{
5486 struct ata_queued_cmd *qc = NULL;
5487 unsigned int i;
5488
e3180499 5489 /* no command while frozen */
b51e9e5d 5490 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5491 return NULL;
5492
2ab7db1f
TH
5493 /* the last tag is reserved for internal command. */
5494 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5495 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5496 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5497 break;
5498 }
5499
5500 if (qc)
5501 qc->tag = i;
5502
5503 return qc;
5504}
5505
5506/**
5507 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5508 * @dev: Device from whom we request an available command structure
5509 *
5510 * LOCKING:
0cba632b 5511 * None.
1da177e4
LT
5512 */
5513
3373efd8 5514struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5515{
9af5c9c9 5516 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5517 struct ata_queued_cmd *qc;
5518
5519 qc = ata_qc_new(ap);
5520 if (qc) {
1da177e4
LT
5521 qc->scsicmd = NULL;
5522 qc->ap = ap;
5523 qc->dev = dev;
1da177e4 5524
2c13b7ce 5525 ata_qc_reinit(qc);
1da177e4
LT
5526 }
5527
5528 return qc;
5529}
5530
1da177e4
LT
5531/**
5532 * ata_qc_free - free unused ata_queued_cmd
5533 * @qc: Command to complete
5534 *
5535 * Designed to free unused ata_queued_cmd object
5536 * in case something prevents using it.
5537 *
5538 * LOCKING:
cca3974e 5539 * spin_lock_irqsave(host lock)
1da177e4
LT
5540 */
5541void ata_qc_free(struct ata_queued_cmd *qc)
5542{
4ba946e9
TH
5543 struct ata_port *ap = qc->ap;
5544 unsigned int tag;
5545
a4631474 5546 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5547
4ba946e9
TH
5548 qc->flags = 0;
5549 tag = qc->tag;
5550 if (likely(ata_tag_valid(tag))) {
4ba946e9 5551 qc->tag = ATA_TAG_POISON;
6cec4a39 5552 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5553 }
1da177e4
LT
5554}
5555
76014427 5556void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5557{
dedaf2b0 5558 struct ata_port *ap = qc->ap;
9af5c9c9 5559 struct ata_link *link = qc->dev->link;
dedaf2b0 5560
a4631474
TH
5561 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5562 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5563
5564 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5565 ata_sg_clean(qc);
5566
7401abf2 5567 /* command should be marked inactive atomically with qc completion */
da917d69 5568 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5569 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5570 if (!link->sactive)
5571 ap->nr_active_links--;
5572 } else {
9af5c9c9 5573 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5574 ap->nr_active_links--;
5575 }
5576
5577 /* clear exclusive status */
5578 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5579 ap->excl_link == link))
5580 ap->excl_link = NULL;
7401abf2 5581
3f3791d3
AL
5582 /* atapi: mark qc as inactive to prevent the interrupt handler
5583 * from completing the command twice later, before the error handler
5584 * is called. (when rc != 0 and atapi request sense is needed)
5585 */
5586 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5587 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5588
1da177e4 5589 /* call completion callback */
77853bf2 5590 qc->complete_fn(qc);
1da177e4
LT
5591}
5592
39599a53
TH
5593static void fill_result_tf(struct ata_queued_cmd *qc)
5594{
5595 struct ata_port *ap = qc->ap;
5596
39599a53 5597 qc->result_tf.flags = qc->tf.flags;
4742d54f 5598 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5599}
5600
f686bcb8
TH
5601/**
5602 * ata_qc_complete - Complete an active ATA command
5603 * @qc: Command to complete
5604 * @err_mask: ATA Status register contents
5605 *
5606 * Indicate to the mid and upper layers that an ATA
5607 * command has completed, with either an ok or not-ok status.
5608 *
5609 * LOCKING:
cca3974e 5610 * spin_lock_irqsave(host lock)
f686bcb8
TH
5611 */
5612void ata_qc_complete(struct ata_queued_cmd *qc)
5613{
5614 struct ata_port *ap = qc->ap;
5615
5616 /* XXX: New EH and old EH use different mechanisms to
5617 * synchronize EH with regular execution path.
5618 *
5619 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5620 * Normal execution path is responsible for not accessing a
5621 * failed qc. libata core enforces the rule by returning NULL
5622 * from ata_qc_from_tag() for failed qcs.
5623 *
5624 * Old EH depends on ata_qc_complete() nullifying completion
5625 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5626 * not synchronize with interrupt handler. Only PIO task is
5627 * taken care of.
5628 */
5629 if (ap->ops->error_handler) {
4dbfa39b
TH
5630 struct ata_device *dev = qc->dev;
5631 struct ata_eh_info *ehi = &dev->link->eh_info;
5632
b51e9e5d 5633 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5634
5635 if (unlikely(qc->err_mask))
5636 qc->flags |= ATA_QCFLAG_FAILED;
5637
5638 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5639 if (!ata_tag_internal(qc->tag)) {
5640 /* always fill result TF for failed qc */
39599a53 5641 fill_result_tf(qc);
f686bcb8
TH
5642 ata_qc_schedule_eh(qc);
5643 return;
5644 }
5645 }
5646
5647 /* read result TF if requested */
5648 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5649 fill_result_tf(qc);
f686bcb8 5650
4dbfa39b
TH
5651 /* Some commands need post-processing after successful
5652 * completion.
5653 */
5654 switch (qc->tf.command) {
5655 case ATA_CMD_SET_FEATURES:
5656 if (qc->tf.feature != SETFEATURES_WC_ON &&
5657 qc->tf.feature != SETFEATURES_WC_OFF)
5658 break;
5659 /* fall through */
5660 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5661 case ATA_CMD_SET_MULTI: /* multi_count changed */
5662 /* revalidate device */
5663 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5664 ata_port_schedule_eh(ap);
5665 break;
054a5fba
TH
5666
5667 case ATA_CMD_SLEEP:
5668 dev->flags |= ATA_DFLAG_SLEEPING;
5669 break;
4dbfa39b
TH
5670 }
5671
f686bcb8
TH
5672 __ata_qc_complete(qc);
5673 } else {
5674 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5675 return;
5676
5677 /* read result TF if failed or requested */
5678 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5679 fill_result_tf(qc);
f686bcb8
TH
5680
5681 __ata_qc_complete(qc);
5682 }
5683}
5684
dedaf2b0
TH
5685/**
5686 * ata_qc_complete_multiple - Complete multiple qcs successfully
5687 * @ap: port in question
5688 * @qc_active: new qc_active mask
5689 * @finish_qc: LLDD callback invoked before completing a qc
5690 *
5691 * Complete in-flight commands. This functions is meant to be
5692 * called from low-level driver's interrupt routine to complete
5693 * requests normally. ap->qc_active and @qc_active is compared
5694 * and commands are completed accordingly.
5695 *
5696 * LOCKING:
cca3974e 5697 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5698 *
5699 * RETURNS:
5700 * Number of completed commands on success, -errno otherwise.
5701 */
5702int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5703 void (*finish_qc)(struct ata_queued_cmd *))
5704{
5705 int nr_done = 0;
5706 u32 done_mask;
5707 int i;
5708
5709 done_mask = ap->qc_active ^ qc_active;
5710
5711 if (unlikely(done_mask & qc_active)) {
5712 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5713 "(%08x->%08x)\n", ap->qc_active, qc_active);
5714 return -EINVAL;
5715 }
5716
5717 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5718 struct ata_queued_cmd *qc;
5719
5720 if (!(done_mask & (1 << i)))
5721 continue;
5722
5723 if ((qc = ata_qc_from_tag(ap, i))) {
5724 if (finish_qc)
5725 finish_qc(qc);
5726 ata_qc_complete(qc);
5727 nr_done++;
5728 }
5729 }
5730
5731 return nr_done;
5732}
5733
1da177e4
LT
5734static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5735{
5736 struct ata_port *ap = qc->ap;
5737
5738 switch (qc->tf.protocol) {
3dc1d881 5739 case ATA_PROT_NCQ:
1da177e4
LT
5740 case ATA_PROT_DMA:
5741 case ATA_PROT_ATAPI_DMA:
5742 return 1;
5743
5744 case ATA_PROT_ATAPI:
5745 case ATA_PROT_PIO:
1da177e4
LT
5746 if (ap->flags & ATA_FLAG_PIO_DMA)
5747 return 1;
5748
5749 /* fall through */
5750
5751 default:
5752 return 0;
5753 }
5754
5755 /* never reached */
5756}
5757
5758/**
5759 * ata_qc_issue - issue taskfile to device
5760 * @qc: command to issue to device
5761 *
5762 * Prepare an ATA command to submission to device.
5763 * This includes mapping the data into a DMA-able
5764 * area, filling in the S/G table, and finally
5765 * writing the taskfile to hardware, starting the command.
5766 *
5767 * LOCKING:
cca3974e 5768 * spin_lock_irqsave(host lock)
1da177e4 5769 */
8e0e694a 5770void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5771{
5772 struct ata_port *ap = qc->ap;
9af5c9c9 5773 struct ata_link *link = qc->dev->link;
1da177e4 5774
dedaf2b0
TH
5775 /* Make sure only one non-NCQ command is outstanding. The
5776 * check is skipped for old EH because it reuses active qc to
5777 * request ATAPI sense.
5778 */
9af5c9c9 5779 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5780
5781 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5782 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5783
5784 if (!link->sactive)
5785 ap->nr_active_links++;
9af5c9c9 5786 link->sactive |= 1 << qc->tag;
dedaf2b0 5787 } else {
9af5c9c9 5788 WARN_ON(link->sactive);
da917d69
TH
5789
5790 ap->nr_active_links++;
9af5c9c9 5791 link->active_tag = qc->tag;
dedaf2b0
TH
5792 }
5793
e4a70e76 5794 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5795 ap->qc_active |= 1 << qc->tag;
e4a70e76 5796
1da177e4
LT
5797 if (ata_should_dma_map(qc)) {
5798 if (qc->flags & ATA_QCFLAG_SG) {
5799 if (ata_sg_setup(qc))
8e436af9 5800 goto sg_err;
1da177e4
LT
5801 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5802 if (ata_sg_setup_one(qc))
8e436af9 5803 goto sg_err;
1da177e4
LT
5804 }
5805 } else {
5806 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5807 }
5808
054a5fba
TH
5809 /* if device is sleeping, schedule softreset and abort the link */
5810 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5811 link->eh_info.action |= ATA_EH_SOFTRESET;
5812 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5813 ata_link_abort(link);
5814 return;
5815 }
5816
1da177e4
LT
5817 ap->ops->qc_prep(qc);
5818
8e0e694a
TH
5819 qc->err_mask |= ap->ops->qc_issue(qc);
5820 if (unlikely(qc->err_mask))
5821 goto err;
5822 return;
1da177e4 5823
8e436af9
TH
5824sg_err:
5825 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5826 qc->err_mask |= AC_ERR_SYSTEM;
5827err:
5828 ata_qc_complete(qc);
1da177e4
LT
5829}
5830
5831/**
5832 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5833 * @qc: command to issue to device
5834 *
5835 * Using various libata functions and hooks, this function
5836 * starts an ATA command. ATA commands are grouped into
5837 * classes called "protocols", and issuing each type of protocol
5838 * is slightly different.
5839 *
0baab86b
EF
5840 * May be used as the qc_issue() entry in ata_port_operations.
5841 *
1da177e4 5842 * LOCKING:
cca3974e 5843 * spin_lock_irqsave(host lock)
1da177e4
LT
5844 *
5845 * RETURNS:
9a3d9eb0 5846 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5847 */
5848
9a3d9eb0 5849unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5850{
5851 struct ata_port *ap = qc->ap;
5852
e50362ec
AL
5853 /* Use polling pio if the LLD doesn't handle
5854 * interrupt driven pio and atapi CDB interrupt.
5855 */
5856 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5857 switch (qc->tf.protocol) {
5858 case ATA_PROT_PIO:
e3472cbe 5859 case ATA_PROT_NODATA:
e50362ec
AL
5860 case ATA_PROT_ATAPI:
5861 case ATA_PROT_ATAPI_NODATA:
5862 qc->tf.flags |= ATA_TFLAG_POLLING;
5863 break;
5864 case ATA_PROT_ATAPI_DMA:
5865 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5866 /* see ata_dma_blacklisted() */
e50362ec
AL
5867 BUG();
5868 break;
5869 default:
5870 break;
5871 }
5872 }
5873
312f7da2 5874 /* select the device */
1da177e4
LT
5875 ata_dev_select(ap, qc->dev->devno, 1, 0);
5876
312f7da2 5877 /* start the command */
1da177e4
LT
5878 switch (qc->tf.protocol) {
5879 case ATA_PROT_NODATA:
312f7da2
AL
5880 if (qc->tf.flags & ATA_TFLAG_POLLING)
5881 ata_qc_set_polling(qc);
5882
e5338254 5883 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5884 ap->hsm_task_state = HSM_ST_LAST;
5885
5886 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5887 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5888
1da177e4
LT
5889 break;
5890
5891 case ATA_PROT_DMA:
587005de 5892 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5893
1da177e4
LT
5894 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5895 ap->ops->bmdma_setup(qc); /* set up bmdma */
5896 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5897 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5898 break;
5899
312f7da2
AL
5900 case ATA_PROT_PIO:
5901 if (qc->tf.flags & ATA_TFLAG_POLLING)
5902 ata_qc_set_polling(qc);
1da177e4 5903
e5338254 5904 ata_tf_to_host(ap, &qc->tf);
312f7da2 5905
54f00389
AL
5906 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5907 /* PIO data out protocol */
5908 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5909 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5910
5911 /* always send first data block using
e27486db 5912 * the ata_pio_task() codepath.
54f00389 5913 */
312f7da2 5914 } else {
54f00389
AL
5915 /* PIO data in protocol */
5916 ap->hsm_task_state = HSM_ST;
5917
5918 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5919 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5920
5921 /* if polling, ata_pio_task() handles the rest.
5922 * otherwise, interrupt handler takes over from here.
5923 */
312f7da2
AL
5924 }
5925
1da177e4
LT
5926 break;
5927
1da177e4 5928 case ATA_PROT_ATAPI:
1da177e4 5929 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5930 if (qc->tf.flags & ATA_TFLAG_POLLING)
5931 ata_qc_set_polling(qc);
5932
e5338254 5933 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5934
312f7da2
AL
5935 ap->hsm_task_state = HSM_ST_FIRST;
5936
5937 /* send cdb by polling if no cdb interrupt */
5938 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5939 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5940 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5941 break;
5942
5943 case ATA_PROT_ATAPI_DMA:
587005de 5944 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5945
1da177e4
LT
5946 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5947 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5948 ap->hsm_task_state = HSM_ST_FIRST;
5949
5950 /* send cdb by polling if no cdb interrupt */
5951 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5952 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5953 break;
5954
5955 default:
5956 WARN_ON(1);
9a3d9eb0 5957 return AC_ERR_SYSTEM;
1da177e4
LT
5958 }
5959
5960 return 0;
5961}
5962
1da177e4
LT
5963/**
5964 * ata_host_intr - Handle host interrupt for given (port, task)
5965 * @ap: Port on which interrupt arrived (possibly...)
5966 * @qc: Taskfile currently active in engine
5967 *
5968 * Handle host interrupt for given queued command. Currently,
5969 * only DMA interrupts are handled. All other commands are
5970 * handled via polling with interrupts disabled (nIEN bit).
5971 *
5972 * LOCKING:
cca3974e 5973 * spin_lock_irqsave(host lock)
1da177e4
LT
5974 *
5975 * RETURNS:
5976 * One if interrupt was handled, zero if not (shared irq).
5977 */
5978
2dcb407e
JG
5979inline unsigned int ata_host_intr(struct ata_port *ap,
5980 struct ata_queued_cmd *qc)
1da177e4 5981{
9af5c9c9 5982 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5983 u8 status, host_stat = 0;
1da177e4 5984
312f7da2 5985 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5986 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5987
312f7da2
AL
5988 /* Check whether we are expecting interrupt in this state */
5989 switch (ap->hsm_task_state) {
5990 case HSM_ST_FIRST:
6912ccd5
AL
5991 /* Some pre-ATAPI-4 devices assert INTRQ
5992 * at this state when ready to receive CDB.
5993 */
1da177e4 5994
312f7da2
AL
5995 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5996 * The flag was turned on only for atapi devices.
5997 * No need to check is_atapi_taskfile(&qc->tf) again.
5998 */
5999 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6000 goto idle_irq;
1da177e4 6001 break;
312f7da2
AL
6002 case HSM_ST_LAST:
6003 if (qc->tf.protocol == ATA_PROT_DMA ||
6004 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6005 /* check status of DMA engine */
6006 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6007 VPRINTK("ata%u: host_stat 0x%X\n",
6008 ap->print_id, host_stat);
312f7da2
AL
6009
6010 /* if it's not our irq... */
6011 if (!(host_stat & ATA_DMA_INTR))
6012 goto idle_irq;
6013
6014 /* before we do anything else, clear DMA-Start bit */
6015 ap->ops->bmdma_stop(qc);
a4f16610
AL
6016
6017 if (unlikely(host_stat & ATA_DMA_ERR)) {
6018 /* error when transfering data to/from memory */
6019 qc->err_mask |= AC_ERR_HOST_BUS;
6020 ap->hsm_task_state = HSM_ST_ERR;
6021 }
312f7da2
AL
6022 }
6023 break;
6024 case HSM_ST:
6025 break;
1da177e4
LT
6026 default:
6027 goto idle_irq;
6028 }
6029
312f7da2
AL
6030 /* check altstatus */
6031 status = ata_altstatus(ap);
6032 if (status & ATA_BUSY)
6033 goto idle_irq;
1da177e4 6034
312f7da2
AL
6035 /* check main status, clearing INTRQ */
6036 status = ata_chk_status(ap);
6037 if (unlikely(status & ATA_BUSY))
6038 goto idle_irq;
1da177e4 6039
312f7da2
AL
6040 /* ack bmdma irq events */
6041 ap->ops->irq_clear(ap);
1da177e4 6042
bb5cb290 6043 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6044
6045 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6046 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6047 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6048
1da177e4
LT
6049 return 1; /* irq handled */
6050
6051idle_irq:
6052 ap->stats.idle_irq++;
6053
6054#ifdef ATA_IRQ_TRAP
6055 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6056 ata_chk_status(ap);
6057 ap->ops->irq_clear(ap);
f15a1daf 6058 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6059 return 1;
1da177e4
LT
6060 }
6061#endif
6062 return 0; /* irq not handled */
6063}
6064
6065/**
6066 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6067 * @irq: irq line (unused)
cca3974e 6068 * @dev_instance: pointer to our ata_host information structure
1da177e4 6069 *
0cba632b
JG
6070 * Default interrupt handler for PCI IDE devices. Calls
6071 * ata_host_intr() for each port that is not disabled.
6072 *
1da177e4 6073 * LOCKING:
cca3974e 6074 * Obtains host lock during operation.
1da177e4
LT
6075 *
6076 * RETURNS:
0cba632b 6077 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6078 */
6079
2dcb407e 6080irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6081{
cca3974e 6082 struct ata_host *host = dev_instance;
1da177e4
LT
6083 unsigned int i;
6084 unsigned int handled = 0;
6085 unsigned long flags;
6086
6087 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6088 spin_lock_irqsave(&host->lock, flags);
1da177e4 6089
cca3974e 6090 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6091 struct ata_port *ap;
6092
cca3974e 6093 ap = host->ports[i];
c1389503 6094 if (ap &&
029f5468 6095 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6096 struct ata_queued_cmd *qc;
6097
9af5c9c9 6098 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6099 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6100 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6101 handled |= ata_host_intr(ap, qc);
6102 }
6103 }
6104
cca3974e 6105 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6106
6107 return IRQ_RETVAL(handled);
6108}
6109
34bf2170
TH
6110/**
6111 * sata_scr_valid - test whether SCRs are accessible
936fd732 6112 * @link: ATA link to test SCR accessibility for
34bf2170 6113 *
936fd732 6114 * Test whether SCRs are accessible for @link.
34bf2170
TH
6115 *
6116 * LOCKING:
6117 * None.
6118 *
6119 * RETURNS:
6120 * 1 if SCRs are accessible, 0 otherwise.
6121 */
936fd732 6122int sata_scr_valid(struct ata_link *link)
34bf2170 6123{
936fd732
TH
6124 struct ata_port *ap = link->ap;
6125
a16abc0b 6126 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6127}
6128
6129/**
6130 * sata_scr_read - read SCR register of the specified port
936fd732 6131 * @link: ATA link to read SCR for
34bf2170
TH
6132 * @reg: SCR to read
6133 * @val: Place to store read value
6134 *
936fd732 6135 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6136 * guaranteed to succeed if @link is ap->link, the cable type of
6137 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6138 *
6139 * LOCKING:
633273a3 6140 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6141 *
6142 * RETURNS:
6143 * 0 on success, negative errno on failure.
6144 */
936fd732 6145int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6146{
633273a3
TH
6147 if (ata_is_host_link(link)) {
6148 struct ata_port *ap = link->ap;
936fd732 6149
633273a3
TH
6150 if (sata_scr_valid(link))
6151 return ap->ops->scr_read(ap, reg, val);
6152 return -EOPNOTSUPP;
6153 }
6154
6155 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6156}
6157
6158/**
6159 * sata_scr_write - write SCR register of the specified port
936fd732 6160 * @link: ATA link to write SCR for
34bf2170
TH
6161 * @reg: SCR to write
6162 * @val: value to write
6163 *
936fd732 6164 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6165 * guaranteed to succeed if @link is ap->link, the cable type of
6166 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6167 *
6168 * LOCKING:
633273a3 6169 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6170 *
6171 * RETURNS:
6172 * 0 on success, negative errno on failure.
6173 */
936fd732 6174int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6175{
633273a3
TH
6176 if (ata_is_host_link(link)) {
6177 struct ata_port *ap = link->ap;
6178
6179 if (sata_scr_valid(link))
6180 return ap->ops->scr_write(ap, reg, val);
6181 return -EOPNOTSUPP;
6182 }
936fd732 6183
633273a3 6184 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6185}
6186
6187/**
6188 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6189 * @link: ATA link to write SCR for
34bf2170
TH
6190 * @reg: SCR to write
6191 * @val: value to write
6192 *
6193 * This function is identical to sata_scr_write() except that this
6194 * function performs flush after writing to the register.
6195 *
6196 * LOCKING:
633273a3 6197 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6198 *
6199 * RETURNS:
6200 * 0 on success, negative errno on failure.
6201 */
936fd732 6202int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6203{
633273a3
TH
6204 if (ata_is_host_link(link)) {
6205 struct ata_port *ap = link->ap;
6206 int rc;
da3dbb17 6207
633273a3
TH
6208 if (sata_scr_valid(link)) {
6209 rc = ap->ops->scr_write(ap, reg, val);
6210 if (rc == 0)
6211 rc = ap->ops->scr_read(ap, reg, &val);
6212 return rc;
6213 }
6214 return -EOPNOTSUPP;
34bf2170 6215 }
633273a3
TH
6216
6217 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6218}
6219
6220/**
936fd732
TH
6221 * ata_link_online - test whether the given link is online
6222 * @link: ATA link to test
34bf2170 6223 *
936fd732
TH
6224 * Test whether @link is online. Note that this function returns
6225 * 0 if online status of @link cannot be obtained, so
6226 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6227 *
6228 * LOCKING:
6229 * None.
6230 *
6231 * RETURNS:
6232 * 1 if the port online status is available and online.
6233 */
936fd732 6234int ata_link_online(struct ata_link *link)
34bf2170
TH
6235{
6236 u32 sstatus;
6237
936fd732
TH
6238 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6239 (sstatus & 0xf) == 0x3)
34bf2170
TH
6240 return 1;
6241 return 0;
6242}
6243
6244/**
936fd732
TH
6245 * ata_link_offline - test whether the given link is offline
6246 * @link: ATA link to test
34bf2170 6247 *
936fd732
TH
6248 * Test whether @link is offline. Note that this function
6249 * returns 0 if offline status of @link cannot be obtained, so
6250 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6251 *
6252 * LOCKING:
6253 * None.
6254 *
6255 * RETURNS:
6256 * 1 if the port offline status is available and offline.
6257 */
936fd732 6258int ata_link_offline(struct ata_link *link)
34bf2170
TH
6259{
6260 u32 sstatus;
6261
936fd732
TH
6262 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6263 (sstatus & 0xf) != 0x3)
34bf2170
TH
6264 return 1;
6265 return 0;
6266}
0baab86b 6267
77b08fb5 6268int ata_flush_cache(struct ata_device *dev)
9b847548 6269{
977e6b9f 6270 unsigned int err_mask;
9b847548
JA
6271 u8 cmd;
6272
6273 if (!ata_try_flush_cache(dev))
6274 return 0;
6275
6fc49adb 6276 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6277 cmd = ATA_CMD_FLUSH_EXT;
6278 else
6279 cmd = ATA_CMD_FLUSH;
6280
4f34337b
AC
6281 /* This is wrong. On a failed flush we get back the LBA of the lost
6282 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6283 a further flush command to continue the writeback until it
4f34337b 6284 does not error */
977e6b9f
TH
6285 err_mask = ata_do_simple_cmd(dev, cmd);
6286 if (err_mask) {
6287 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6288 return -EIO;
6289 }
6290
6291 return 0;
9b847548
JA
6292}
6293
6ffa01d8 6294#ifdef CONFIG_PM
cca3974e
JG
6295static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6296 unsigned int action, unsigned int ehi_flags,
6297 int wait)
500530f6
TH
6298{
6299 unsigned long flags;
6300 int i, rc;
6301
cca3974e
JG
6302 for (i = 0; i < host->n_ports; i++) {
6303 struct ata_port *ap = host->ports[i];
e3667ebf 6304 struct ata_link *link;
500530f6
TH
6305
6306 /* Previous resume operation might still be in
6307 * progress. Wait for PM_PENDING to clear.
6308 */
6309 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6310 ata_port_wait_eh(ap);
6311 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6312 }
6313
6314 /* request PM ops to EH */
6315 spin_lock_irqsave(ap->lock, flags);
6316
6317 ap->pm_mesg = mesg;
6318 if (wait) {
6319 rc = 0;
6320 ap->pm_result = &rc;
6321 }
6322
6323 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6324 __ata_port_for_each_link(link, ap) {
6325 link->eh_info.action |= action;
6326 link->eh_info.flags |= ehi_flags;
6327 }
500530f6
TH
6328
6329 ata_port_schedule_eh(ap);
6330
6331 spin_unlock_irqrestore(ap->lock, flags);
6332
6333 /* wait and check result */
6334 if (wait) {
6335 ata_port_wait_eh(ap);
6336 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6337 if (rc)
6338 return rc;
6339 }
6340 }
6341
6342 return 0;
6343}
6344
6345/**
cca3974e
JG
6346 * ata_host_suspend - suspend host
6347 * @host: host to suspend
500530f6
TH
6348 * @mesg: PM message
6349 *
cca3974e 6350 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6351 * function requests EH to perform PM operations and waits for EH
6352 * to finish.
6353 *
6354 * LOCKING:
6355 * Kernel thread context (may sleep).
6356 *
6357 * RETURNS:
6358 * 0 on success, -errno on failure.
6359 */
cca3974e 6360int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6361{
9666f400 6362 int rc;
500530f6 6363
cca3974e 6364 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6365 if (rc == 0)
6366 host->dev->power.power_state = mesg;
500530f6
TH
6367 return rc;
6368}
6369
6370/**
cca3974e
JG
6371 * ata_host_resume - resume host
6372 * @host: host to resume
500530f6 6373 *
cca3974e 6374 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6375 * function requests EH to perform PM operations and returns.
6376 * Note that all resume operations are performed parallely.
6377 *
6378 * LOCKING:
6379 * Kernel thread context (may sleep).
6380 */
cca3974e 6381void ata_host_resume(struct ata_host *host)
500530f6 6382{
cca3974e
JG
6383 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6384 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6385 host->dev->power.power_state = PMSG_ON;
500530f6 6386}
6ffa01d8 6387#endif
500530f6 6388
c893a3ae
RD
6389/**
6390 * ata_port_start - Set port up for dma.
6391 * @ap: Port to initialize
6392 *
6393 * Called just after data structures for each port are
6394 * initialized. Allocates space for PRD table.
6395 *
6396 * May be used as the port_start() entry in ata_port_operations.
6397 *
6398 * LOCKING:
6399 * Inherited from caller.
6400 */
f0d36efd 6401int ata_port_start(struct ata_port *ap)
1da177e4 6402{
2f1f610b 6403 struct device *dev = ap->dev;
6037d6bb 6404 int rc;
1da177e4 6405
f0d36efd
TH
6406 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6407 GFP_KERNEL);
1da177e4
LT
6408 if (!ap->prd)
6409 return -ENOMEM;
6410
6037d6bb 6411 rc = ata_pad_alloc(ap, dev);
f0d36efd 6412 if (rc)
6037d6bb 6413 return rc;
1da177e4 6414
f0d36efd
TH
6415 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6416 (unsigned long long)ap->prd_dma);
1da177e4
LT
6417 return 0;
6418}
6419
3ef3b43d
TH
6420/**
6421 * ata_dev_init - Initialize an ata_device structure
6422 * @dev: Device structure to initialize
6423 *
6424 * Initialize @dev in preparation for probing.
6425 *
6426 * LOCKING:
6427 * Inherited from caller.
6428 */
6429void ata_dev_init(struct ata_device *dev)
6430{
9af5c9c9
TH
6431 struct ata_link *link = dev->link;
6432 struct ata_port *ap = link->ap;
72fa4b74
TH
6433 unsigned long flags;
6434
5a04bf4b 6435 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6436 link->sata_spd_limit = link->hw_sata_spd_limit;
6437 link->sata_spd = 0;
5a04bf4b 6438
72fa4b74
TH
6439 /* High bits of dev->flags are used to record warm plug
6440 * requests which occur asynchronously. Synchronize using
cca3974e 6441 * host lock.
72fa4b74 6442 */
ba6a1308 6443 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6444 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6445 dev->horkage = 0;
ba6a1308 6446 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6447
72fa4b74
TH
6448 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6449 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6450 dev->pio_mask = UINT_MAX;
6451 dev->mwdma_mask = UINT_MAX;
6452 dev->udma_mask = UINT_MAX;
6453}
6454
4fb37a25
TH
6455/**
6456 * ata_link_init - Initialize an ata_link structure
6457 * @ap: ATA port link is attached to
6458 * @link: Link structure to initialize
8989805d 6459 * @pmp: Port multiplier port number
4fb37a25
TH
6460 *
6461 * Initialize @link.
6462 *
6463 * LOCKING:
6464 * Kernel thread context (may sleep)
6465 */
fb7fd614 6466void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6467{
6468 int i;
6469
6470 /* clear everything except for devices */
6471 memset(link, 0, offsetof(struct ata_link, device[0]));
6472
6473 link->ap = ap;
8989805d 6474 link->pmp = pmp;
4fb37a25
TH
6475 link->active_tag = ATA_TAG_POISON;
6476 link->hw_sata_spd_limit = UINT_MAX;
6477
6478 /* can't use iterator, ap isn't initialized yet */
6479 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6480 struct ata_device *dev = &link->device[i];
6481
6482 dev->link = link;
6483 dev->devno = dev - link->device;
6484 ata_dev_init(dev);
6485 }
6486}
6487
6488/**
6489 * sata_link_init_spd - Initialize link->sata_spd_limit
6490 * @link: Link to configure sata_spd_limit for
6491 *
6492 * Initialize @link->[hw_]sata_spd_limit to the currently
6493 * configured value.
6494 *
6495 * LOCKING:
6496 * Kernel thread context (may sleep).
6497 *
6498 * RETURNS:
6499 * 0 on success, -errno on failure.
6500 */
fb7fd614 6501int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6502{
6503 u32 scontrol, spd;
6504 int rc;
6505
6506 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6507 if (rc)
6508 return rc;
6509
6510 spd = (scontrol >> 4) & 0xf;
6511 if (spd)
6512 link->hw_sata_spd_limit &= (1 << spd) - 1;
6513
6514 link->sata_spd_limit = link->hw_sata_spd_limit;
6515
6516 return 0;
6517}
6518
1da177e4 6519/**
f3187195
TH
6520 * ata_port_alloc - allocate and initialize basic ATA port resources
6521 * @host: ATA host this allocated port belongs to
1da177e4 6522 *
f3187195
TH
6523 * Allocate and initialize basic ATA port resources.
6524 *
6525 * RETURNS:
6526 * Allocate ATA port on success, NULL on failure.
0cba632b 6527 *
1da177e4 6528 * LOCKING:
f3187195 6529 * Inherited from calling layer (may sleep).
1da177e4 6530 */
f3187195 6531struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6532{
f3187195 6533 struct ata_port *ap;
1da177e4 6534
f3187195
TH
6535 DPRINTK("ENTER\n");
6536
6537 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6538 if (!ap)
6539 return NULL;
6540
f4d6d004 6541 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6542 ap->lock = &host->lock;
198e0fed 6543 ap->flags = ATA_FLAG_DISABLED;
f3187195 6544 ap->print_id = -1;
1da177e4 6545 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6546 ap->host = host;
f3187195 6547 ap->dev = host->dev;
1da177e4 6548 ap->last_ctl = 0xFF;
bd5d825c
BP
6549
6550#if defined(ATA_VERBOSE_DEBUG)
6551 /* turn on all debugging levels */
6552 ap->msg_enable = 0x00FF;
6553#elif defined(ATA_DEBUG)
6554 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6555#else
0dd4b21f 6556 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6557#endif
1da177e4 6558
65f27f38
DH
6559 INIT_DELAYED_WORK(&ap->port_task, NULL);
6560 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6561 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6562 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6563 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6564 init_timer_deferrable(&ap->fastdrain_timer);
6565 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6566 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6567
838df628 6568 ap->cbl = ATA_CBL_NONE;
838df628 6569
8989805d 6570 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6571
6572#ifdef ATA_IRQ_TRAP
6573 ap->stats.unhandled_irq = 1;
6574 ap->stats.idle_irq = 1;
6575#endif
1da177e4 6576 return ap;
1da177e4
LT
6577}
6578
f0d36efd
TH
6579static void ata_host_release(struct device *gendev, void *res)
6580{
6581 struct ata_host *host = dev_get_drvdata(gendev);
6582 int i;
6583
6584 for (i = 0; i < host->n_ports; i++) {
6585 struct ata_port *ap = host->ports[i];
6586
ecef7253
TH
6587 if (!ap)
6588 continue;
6589
6590 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6591 ap->ops->port_stop(ap);
f0d36efd
TH
6592 }
6593
ecef7253 6594 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6595 host->ops->host_stop(host);
1aa56cca 6596
1aa506e4
TH
6597 for (i = 0; i < host->n_ports; i++) {
6598 struct ata_port *ap = host->ports[i];
6599
4911487a
TH
6600 if (!ap)
6601 continue;
6602
6603 if (ap->scsi_host)
1aa506e4
TH
6604 scsi_host_put(ap->scsi_host);
6605
633273a3 6606 kfree(ap->pmp_link);
4911487a 6607 kfree(ap);
1aa506e4
TH
6608 host->ports[i] = NULL;
6609 }
6610
1aa56cca 6611 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6612}
6613
f3187195
TH
6614/**
6615 * ata_host_alloc - allocate and init basic ATA host resources
6616 * @dev: generic device this host is associated with
6617 * @max_ports: maximum number of ATA ports associated with this host
6618 *
6619 * Allocate and initialize basic ATA host resources. LLD calls
6620 * this function to allocate a host, initializes it fully and
6621 * attaches it using ata_host_register().
6622 *
6623 * @max_ports ports are allocated and host->n_ports is
6624 * initialized to @max_ports. The caller is allowed to decrease
6625 * host->n_ports before calling ata_host_register(). The unused
6626 * ports will be automatically freed on registration.
6627 *
6628 * RETURNS:
6629 * Allocate ATA host on success, NULL on failure.
6630 *
6631 * LOCKING:
6632 * Inherited from calling layer (may sleep).
6633 */
6634struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6635{
6636 struct ata_host *host;
6637 size_t sz;
6638 int i;
6639
6640 DPRINTK("ENTER\n");
6641
6642 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6643 return NULL;
6644
6645 /* alloc a container for our list of ATA ports (buses) */
6646 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6647 /* alloc a container for our list of ATA ports (buses) */
6648 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6649 if (!host)
6650 goto err_out;
6651
6652 devres_add(dev, host);
6653 dev_set_drvdata(dev, host);
6654
6655 spin_lock_init(&host->lock);
6656 host->dev = dev;
6657 host->n_ports = max_ports;
6658
6659 /* allocate ports bound to this host */
6660 for (i = 0; i < max_ports; i++) {
6661 struct ata_port *ap;
6662
6663 ap = ata_port_alloc(host);
6664 if (!ap)
6665 goto err_out;
6666
6667 ap->port_no = i;
6668 host->ports[i] = ap;
6669 }
6670
6671 devres_remove_group(dev, NULL);
6672 return host;
6673
6674 err_out:
6675 devres_release_group(dev, NULL);
6676 return NULL;
6677}
6678
f5cda257
TH
6679/**
6680 * ata_host_alloc_pinfo - alloc host and init with port_info array
6681 * @dev: generic device this host is associated with
6682 * @ppi: array of ATA port_info to initialize host with
6683 * @n_ports: number of ATA ports attached to this host
6684 *
6685 * Allocate ATA host and initialize with info from @ppi. If NULL
6686 * terminated, @ppi may contain fewer entries than @n_ports. The
6687 * last entry will be used for the remaining ports.
6688 *
6689 * RETURNS:
6690 * Allocate ATA host on success, NULL on failure.
6691 *
6692 * LOCKING:
6693 * Inherited from calling layer (may sleep).
6694 */
6695struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6696 const struct ata_port_info * const * ppi,
6697 int n_ports)
6698{
6699 const struct ata_port_info *pi;
6700 struct ata_host *host;
6701 int i, j;
6702
6703 host = ata_host_alloc(dev, n_ports);
6704 if (!host)
6705 return NULL;
6706
6707 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6708 struct ata_port *ap = host->ports[i];
6709
6710 if (ppi[j])
6711 pi = ppi[j++];
6712
6713 ap->pio_mask = pi->pio_mask;
6714 ap->mwdma_mask = pi->mwdma_mask;
6715 ap->udma_mask = pi->udma_mask;
6716 ap->flags |= pi->flags;
0c88758b 6717 ap->link.flags |= pi->link_flags;
f5cda257
TH
6718 ap->ops = pi->port_ops;
6719
6720 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6721 host->ops = pi->port_ops;
6722 if (!host->private_data && pi->private_data)
6723 host->private_data = pi->private_data;
6724 }
6725
6726 return host;
6727}
6728
ecef7253
TH
6729/**
6730 * ata_host_start - start and freeze ports of an ATA host
6731 * @host: ATA host to start ports for
6732 *
6733 * Start and then freeze ports of @host. Started status is
6734 * recorded in host->flags, so this function can be called
6735 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6736 * once. If host->ops isn't initialized yet, its set to the
6737 * first non-dummy port ops.
ecef7253
TH
6738 *
6739 * LOCKING:
6740 * Inherited from calling layer (may sleep).
6741 *
6742 * RETURNS:
6743 * 0 if all ports are started successfully, -errno otherwise.
6744 */
6745int ata_host_start(struct ata_host *host)
6746{
6747 int i, rc;
6748
6749 if (host->flags & ATA_HOST_STARTED)
6750 return 0;
6751
6752 for (i = 0; i < host->n_ports; i++) {
6753 struct ata_port *ap = host->ports[i];
6754
f3187195
TH
6755 if (!host->ops && !ata_port_is_dummy(ap))
6756 host->ops = ap->ops;
6757
ecef7253
TH
6758 if (ap->ops->port_start) {
6759 rc = ap->ops->port_start(ap);
6760 if (rc) {
6761 ata_port_printk(ap, KERN_ERR, "failed to "
6762 "start port (errno=%d)\n", rc);
6763 goto err_out;
6764 }
6765 }
6766
6767 ata_eh_freeze_port(ap);
6768 }
6769
6770 host->flags |= ATA_HOST_STARTED;
6771 return 0;
6772
6773 err_out:
6774 while (--i >= 0) {
6775 struct ata_port *ap = host->ports[i];
6776
6777 if (ap->ops->port_stop)
6778 ap->ops->port_stop(ap);
6779 }
6780 return rc;
6781}
6782
b03732f0 6783/**
cca3974e
JG
6784 * ata_sas_host_init - Initialize a host struct
6785 * @host: host to initialize
6786 * @dev: device host is attached to
6787 * @flags: host flags
6788 * @ops: port_ops
b03732f0
BK
6789 *
6790 * LOCKING:
6791 * PCI/etc. bus probe sem.
6792 *
6793 */
f3187195 6794/* KILLME - the only user left is ipr */
cca3974e
JG
6795void ata_host_init(struct ata_host *host, struct device *dev,
6796 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6797{
cca3974e
JG
6798 spin_lock_init(&host->lock);
6799 host->dev = dev;
6800 host->flags = flags;
6801 host->ops = ops;
b03732f0
BK
6802}
6803
f3187195
TH
6804/**
6805 * ata_host_register - register initialized ATA host
6806 * @host: ATA host to register
6807 * @sht: template for SCSI host
6808 *
6809 * Register initialized ATA host. @host is allocated using
6810 * ata_host_alloc() and fully initialized by LLD. This function
6811 * starts ports, registers @host with ATA and SCSI layers and
6812 * probe registered devices.
6813 *
6814 * LOCKING:
6815 * Inherited from calling layer (may sleep).
6816 *
6817 * RETURNS:
6818 * 0 on success, -errno otherwise.
6819 */
6820int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6821{
6822 int i, rc;
6823
6824 /* host must have been started */
6825 if (!(host->flags & ATA_HOST_STARTED)) {
6826 dev_printk(KERN_ERR, host->dev,
6827 "BUG: trying to register unstarted host\n");
6828 WARN_ON(1);
6829 return -EINVAL;
6830 }
6831
6832 /* Blow away unused ports. This happens when LLD can't
6833 * determine the exact number of ports to allocate at
6834 * allocation time.
6835 */
6836 for (i = host->n_ports; host->ports[i]; i++)
6837 kfree(host->ports[i]);
6838
6839 /* give ports names and add SCSI hosts */
6840 for (i = 0; i < host->n_ports; i++)
6841 host->ports[i]->print_id = ata_print_id++;
6842
6843 rc = ata_scsi_add_hosts(host, sht);
6844 if (rc)
6845 return rc;
6846
fafbae87
TH
6847 /* associate with ACPI nodes */
6848 ata_acpi_associate(host);
6849
f3187195
TH
6850 /* set cable, sata_spd_limit and report */
6851 for (i = 0; i < host->n_ports; i++) {
6852 struct ata_port *ap = host->ports[i];
f3187195
TH
6853 unsigned long xfer_mask;
6854
6855 /* set SATA cable type if still unset */
6856 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6857 ap->cbl = ATA_CBL_SATA;
6858
6859 /* init sata_spd_limit to the current value */
4fb37a25 6860 sata_link_init_spd(&ap->link);
f3187195 6861
cbcdd875 6862 /* print per-port info to dmesg */
f3187195
TH
6863 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6864 ap->udma_mask);
6865
abf6e8ed 6866 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6867 ata_port_printk(ap, KERN_INFO,
6868 "%cATA max %s %s\n",
a16abc0b 6869 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6870 ata_mode_string(xfer_mask),
cbcdd875 6871 ap->link.eh_info.desc);
abf6e8ed
TH
6872 ata_ehi_clear_desc(&ap->link.eh_info);
6873 } else
f3187195
TH
6874 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6875 }
6876
6877 /* perform each probe synchronously */
6878 DPRINTK("probe begin\n");
6879 for (i = 0; i < host->n_ports; i++) {
6880 struct ata_port *ap = host->ports[i];
6881 int rc;
6882
6883 /* probe */
6884 if (ap->ops->error_handler) {
9af5c9c9 6885 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6886 unsigned long flags;
6887
6888 ata_port_probe(ap);
6889
6890 /* kick EH for boot probing */
6891 spin_lock_irqsave(ap->lock, flags);
6892
f58229f8
TH
6893 ehi->probe_mask =
6894 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6895 ehi->action |= ATA_EH_SOFTRESET;
6896 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6897
f4d6d004 6898 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6899 ap->pflags |= ATA_PFLAG_LOADING;
6900 ata_port_schedule_eh(ap);
6901
6902 spin_unlock_irqrestore(ap->lock, flags);
6903
6904 /* wait for EH to finish */
6905 ata_port_wait_eh(ap);
6906 } else {
6907 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6908 rc = ata_bus_probe(ap);
6909 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6910
6911 if (rc) {
6912 /* FIXME: do something useful here?
6913 * Current libata behavior will
6914 * tear down everything when
6915 * the module is removed
6916 * or the h/w is unplugged.
6917 */
6918 }
6919 }
6920 }
6921
6922 /* probes are done, now scan each port's disk(s) */
6923 DPRINTK("host probe begin\n");
6924 for (i = 0; i < host->n_ports; i++) {
6925 struct ata_port *ap = host->ports[i];
6926
1ae46317 6927 ata_scsi_scan_host(ap, 1);
f3187195
TH
6928 }
6929
6930 return 0;
6931}
6932
f5cda257
TH
6933/**
6934 * ata_host_activate - start host, request IRQ and register it
6935 * @host: target ATA host
6936 * @irq: IRQ to request
6937 * @irq_handler: irq_handler used when requesting IRQ
6938 * @irq_flags: irq_flags used when requesting IRQ
6939 * @sht: scsi_host_template to use when registering the host
6940 *
6941 * After allocating an ATA host and initializing it, most libata
6942 * LLDs perform three steps to activate the host - start host,
6943 * request IRQ and register it. This helper takes necessasry
6944 * arguments and performs the three steps in one go.
6945 *
6946 * LOCKING:
6947 * Inherited from calling layer (may sleep).
6948 *
6949 * RETURNS:
6950 * 0 on success, -errno otherwise.
6951 */
6952int ata_host_activate(struct ata_host *host, int irq,
6953 irq_handler_t irq_handler, unsigned long irq_flags,
6954 struct scsi_host_template *sht)
6955{
cbcdd875 6956 int i, rc;
f5cda257
TH
6957
6958 rc = ata_host_start(host);
6959 if (rc)
6960 return rc;
6961
6962 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6963 dev_driver_string(host->dev), host);
6964 if (rc)
6965 return rc;
6966
cbcdd875
TH
6967 for (i = 0; i < host->n_ports; i++)
6968 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6969
f5cda257
TH
6970 rc = ata_host_register(host, sht);
6971 /* if failed, just free the IRQ and leave ports alone */
6972 if (rc)
6973 devm_free_irq(host->dev, irq, host);
6974
6975 return rc;
6976}
6977
720ba126
TH
6978/**
6979 * ata_port_detach - Detach ATA port in prepration of device removal
6980 * @ap: ATA port to be detached
6981 *
6982 * Detach all ATA devices and the associated SCSI devices of @ap;
6983 * then, remove the associated SCSI host. @ap is guaranteed to
6984 * be quiescent on return from this function.
6985 *
6986 * LOCKING:
6987 * Kernel thread context (may sleep).
6988 */
741b7763 6989static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6990{
6991 unsigned long flags;
41bda9c9 6992 struct ata_link *link;
f58229f8 6993 struct ata_device *dev;
720ba126
TH
6994
6995 if (!ap->ops->error_handler)
c3cf30a9 6996 goto skip_eh;
720ba126
TH
6997
6998 /* tell EH we're leaving & flush EH */
ba6a1308 6999 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7000 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7001 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7002
7003 ata_port_wait_eh(ap);
7004
7005 /* EH is now guaranteed to see UNLOADING, so no new device
7006 * will be attached. Disable all existing devices.
7007 */
ba6a1308 7008 spin_lock_irqsave(ap->lock, flags);
720ba126 7009
41bda9c9
TH
7010 ata_port_for_each_link(link, ap) {
7011 ata_link_for_each_dev(dev, link)
7012 ata_dev_disable(dev);
7013 }
720ba126 7014
ba6a1308 7015 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7016
7017 /* Final freeze & EH. All in-flight commands are aborted. EH
7018 * will be skipped and retrials will be terminated with bad
7019 * target.
7020 */
ba6a1308 7021 spin_lock_irqsave(ap->lock, flags);
720ba126 7022 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7023 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7024
7025 ata_port_wait_eh(ap);
45a66c1c 7026 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7027
c3cf30a9 7028 skip_eh:
720ba126 7029 /* remove the associated SCSI host */
cca3974e 7030 scsi_remove_host(ap->scsi_host);
720ba126
TH
7031}
7032
0529c159
TH
7033/**
7034 * ata_host_detach - Detach all ports of an ATA host
7035 * @host: Host to detach
7036 *
7037 * Detach all ports of @host.
7038 *
7039 * LOCKING:
7040 * Kernel thread context (may sleep).
7041 */
7042void ata_host_detach(struct ata_host *host)
7043{
7044 int i;
7045
7046 for (i = 0; i < host->n_ports; i++)
7047 ata_port_detach(host->ports[i]);
7048}
7049
1da177e4
LT
7050/**
7051 * ata_std_ports - initialize ioaddr with standard port offsets.
7052 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7053 *
7054 * Utility function which initializes data_addr, error_addr,
7055 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7056 * device_addr, status_addr, and command_addr to standard offsets
7057 * relative to cmd_addr.
7058 *
7059 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7060 */
0baab86b 7061
1da177e4
LT
7062void ata_std_ports(struct ata_ioports *ioaddr)
7063{
7064 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7065 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7066 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7067 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7068 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7069 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7070 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7071 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7072 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7073 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7074}
7075
0baab86b 7076
374b1873
JG
7077#ifdef CONFIG_PCI
7078
1da177e4
LT
7079/**
7080 * ata_pci_remove_one - PCI layer callback for device removal
7081 * @pdev: PCI device that was removed
7082 *
b878ca5d
TH
7083 * PCI layer indicates to libata via this hook that hot-unplug or
7084 * module unload event has occurred. Detach all ports. Resource
7085 * release is handled via devres.
1da177e4
LT
7086 *
7087 * LOCKING:
7088 * Inherited from PCI layer (may sleep).
7089 */
f0d36efd 7090void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7091{
2855568b 7092 struct device *dev = &pdev->dev;
cca3974e 7093 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7094
b878ca5d 7095 ata_host_detach(host);
1da177e4
LT
7096}
7097
7098/* move to PCI subsystem */
057ace5e 7099int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7100{
7101 unsigned long tmp = 0;
7102
7103 switch (bits->width) {
7104 case 1: {
7105 u8 tmp8 = 0;
7106 pci_read_config_byte(pdev, bits->reg, &tmp8);
7107 tmp = tmp8;
7108 break;
7109 }
7110 case 2: {
7111 u16 tmp16 = 0;
7112 pci_read_config_word(pdev, bits->reg, &tmp16);
7113 tmp = tmp16;
7114 break;
7115 }
7116 case 4: {
7117 u32 tmp32 = 0;
7118 pci_read_config_dword(pdev, bits->reg, &tmp32);
7119 tmp = tmp32;
7120 break;
7121 }
7122
7123 default:
7124 return -EINVAL;
7125 }
7126
7127 tmp &= bits->mask;
7128
7129 return (tmp == bits->val) ? 1 : 0;
7130}
9b847548 7131
6ffa01d8 7132#ifdef CONFIG_PM
3c5100c1 7133void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7134{
7135 pci_save_state(pdev);
4c90d971 7136 pci_disable_device(pdev);
500530f6 7137
4c90d971 7138 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7139 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7140}
7141
553c4aa6 7142int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7143{
553c4aa6
TH
7144 int rc;
7145
9b847548
JA
7146 pci_set_power_state(pdev, PCI_D0);
7147 pci_restore_state(pdev);
553c4aa6 7148
b878ca5d 7149 rc = pcim_enable_device(pdev);
553c4aa6
TH
7150 if (rc) {
7151 dev_printk(KERN_ERR, &pdev->dev,
7152 "failed to enable device after resume (%d)\n", rc);
7153 return rc;
7154 }
7155
9b847548 7156 pci_set_master(pdev);
553c4aa6 7157 return 0;
500530f6
TH
7158}
7159
3c5100c1 7160int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7161{
cca3974e 7162 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7163 int rc = 0;
7164
cca3974e 7165 rc = ata_host_suspend(host, mesg);
500530f6
TH
7166 if (rc)
7167 return rc;
7168
3c5100c1 7169 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7170
7171 return 0;
7172}
7173
7174int ata_pci_device_resume(struct pci_dev *pdev)
7175{
cca3974e 7176 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7177 int rc;
500530f6 7178
553c4aa6
TH
7179 rc = ata_pci_device_do_resume(pdev);
7180 if (rc == 0)
7181 ata_host_resume(host);
7182 return rc;
9b847548 7183}
6ffa01d8
TH
7184#endif /* CONFIG_PM */
7185
1da177e4
LT
7186#endif /* CONFIG_PCI */
7187
7188
1da177e4
LT
7189static int __init ata_init(void)
7190{
a8601e5f 7191 ata_probe_timeout *= HZ;
1da177e4
LT
7192 ata_wq = create_workqueue("ata");
7193 if (!ata_wq)
7194 return -ENOMEM;
7195
453b07ac
TH
7196 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7197 if (!ata_aux_wq) {
7198 destroy_workqueue(ata_wq);
7199 return -ENOMEM;
7200 }
7201
1da177e4
LT
7202 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7203 return 0;
7204}
7205
7206static void __exit ata_exit(void)
7207{
7208 destroy_workqueue(ata_wq);
453b07ac 7209 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7210}
7211
a4625085 7212subsys_initcall(ata_init);
1da177e4
LT
7213module_exit(ata_exit);
7214
67846b30 7215static unsigned long ratelimit_time;
34af946a 7216static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7217
7218int ata_ratelimit(void)
7219{
7220 int rc;
7221 unsigned long flags;
7222
7223 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7224
7225 if (time_after(jiffies, ratelimit_time)) {
7226 rc = 1;
7227 ratelimit_time = jiffies + (HZ/5);
7228 } else
7229 rc = 0;
7230
7231 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7232
7233 return rc;
7234}
7235
c22daff4
TH
7236/**
7237 * ata_wait_register - wait until register value changes
7238 * @reg: IO-mapped register
7239 * @mask: Mask to apply to read register value
7240 * @val: Wait condition
7241 * @interval_msec: polling interval in milliseconds
7242 * @timeout_msec: timeout in milliseconds
7243 *
7244 * Waiting for some bits of register to change is a common
7245 * operation for ATA controllers. This function reads 32bit LE
7246 * IO-mapped register @reg and tests for the following condition.
7247 *
7248 * (*@reg & mask) != val
7249 *
7250 * If the condition is met, it returns; otherwise, the process is
7251 * repeated after @interval_msec until timeout.
7252 *
7253 * LOCKING:
7254 * Kernel thread context (may sleep)
7255 *
7256 * RETURNS:
7257 * The final register value.
7258 */
7259u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7260 unsigned long interval_msec,
7261 unsigned long timeout_msec)
7262{
7263 unsigned long timeout;
7264 u32 tmp;
7265
7266 tmp = ioread32(reg);
7267
7268 /* Calculate timeout _after_ the first read to make sure
7269 * preceding writes reach the controller before starting to
7270 * eat away the timeout.
7271 */
7272 timeout = jiffies + (timeout_msec * HZ) / 1000;
7273
7274 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7275 msleep(interval_msec);
7276 tmp = ioread32(reg);
7277 }
7278
7279 return tmp;
7280}
7281
dd5b06c4
TH
7282/*
7283 * Dummy port_ops
7284 */
7285static void ata_dummy_noret(struct ata_port *ap) { }
7286static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7287static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7288
7289static u8 ata_dummy_check_status(struct ata_port *ap)
7290{
7291 return ATA_DRDY;
7292}
7293
7294static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7295{
7296 return AC_ERR_SYSTEM;
7297}
7298
7299const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7300 .check_status = ata_dummy_check_status,
7301 .check_altstatus = ata_dummy_check_status,
7302 .dev_select = ata_noop_dev_select,
7303 .qc_prep = ata_noop_qc_prep,
7304 .qc_issue = ata_dummy_qc_issue,
7305 .freeze = ata_dummy_noret,
7306 .thaw = ata_dummy_noret,
7307 .error_handler = ata_dummy_noret,
7308 .post_internal_cmd = ata_dummy_qc_noret,
7309 .irq_clear = ata_dummy_noret,
7310 .port_start = ata_dummy_ret0,
7311 .port_stop = ata_dummy_noret,
7312};
7313
21b0ad4f
TH
7314const struct ata_port_info ata_dummy_port_info = {
7315 .port_ops = &ata_dummy_port_ops,
7316};
7317
1da177e4
LT
7318/*
7319 * libata is essentially a library of internal helper functions for
7320 * low-level ATA host controller drivers. As such, the API/ABI is
7321 * likely to change as new drivers are added and updated.
7322 * Do not depend on ABI/API stability.
7323 */
7324
e9c83914
TH
7325EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7326EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7327EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7328EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7329EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7330EXPORT_SYMBOL_GPL(ata_std_bios_param);
7331EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7332EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7333EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7334EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7335EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7336EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7337EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7338EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7339EXPORT_SYMBOL_GPL(ata_sg_init);
7340EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7341EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7342EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7343EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7344EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7345EXPORT_SYMBOL_GPL(ata_tf_load);
7346EXPORT_SYMBOL_GPL(ata_tf_read);
7347EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7348EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7349EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7350EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7351EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7352EXPORT_SYMBOL_GPL(ata_check_status);
7353EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7354EXPORT_SYMBOL_GPL(ata_exec_command);
7355EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7356EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7357EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7358EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7359EXPORT_SYMBOL_GPL(ata_data_xfer);
7360EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7361EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7362EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7363EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7364EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7365EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7366EXPORT_SYMBOL_GPL(ata_bmdma_start);
7367EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7368EXPORT_SYMBOL_GPL(ata_bmdma_status);
7369EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7370EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7371EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7372EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7373EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7374EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7375EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7376EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7377EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7378EXPORT_SYMBOL_GPL(sata_link_debounce);
7379EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7380EXPORT_SYMBOL_GPL(sata_phy_reset);
7381EXPORT_SYMBOL_GPL(__sata_phy_reset);
7382EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7383EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7384EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7385EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7386EXPORT_SYMBOL_GPL(sata_std_hardreset);
7387EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7388EXPORT_SYMBOL_GPL(ata_dev_classify);
7389EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7390EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7391EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7392EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7393EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7394EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7395EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7396EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7397EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7398EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7399EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7400EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7401EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7402EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7403EXPORT_SYMBOL_GPL(sata_scr_valid);
7404EXPORT_SYMBOL_GPL(sata_scr_read);
7405EXPORT_SYMBOL_GPL(sata_scr_write);
7406EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7407EXPORT_SYMBOL_GPL(ata_link_online);
7408EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7409#ifdef CONFIG_PM
cca3974e
JG
7410EXPORT_SYMBOL_GPL(ata_host_suspend);
7411EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7412#endif /* CONFIG_PM */
6a62a04d
TH
7413EXPORT_SYMBOL_GPL(ata_id_string);
7414EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7415EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7416EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7417
1bc4ccff 7418EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7419EXPORT_SYMBOL_GPL(ata_timing_compute);
7420EXPORT_SYMBOL_GPL(ata_timing_merge);
7421
1da177e4
LT
7422#ifdef CONFIG_PCI
7423EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7424EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7425EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7426EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7427EXPORT_SYMBOL_GPL(ata_pci_init_one);
7428EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7429#ifdef CONFIG_PM
500530f6
TH
7430EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7431EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7432EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7433EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7434#endif /* CONFIG_PM */
67951ade
AC
7435EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7436EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7437#endif /* CONFIG_PCI */
9b847548 7438
31f88384 7439EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7440EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7441EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7442EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7443EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7444
b64bbc39
TH
7445EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7446EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7447EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7448EXPORT_SYMBOL_GPL(ata_port_desc);
7449#ifdef CONFIG_PCI
7450EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7451#endif /* CONFIG_PCI */
ece1d636 7452EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7453EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7454EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7455EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7456EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7457EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7458EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7459EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7460EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7461EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7462EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7463EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7464EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7465
7466EXPORT_SYMBOL_GPL(ata_cable_40wire);
7467EXPORT_SYMBOL_GPL(ata_cable_80wire);
7468EXPORT_SYMBOL_GPL(ata_cable_unknown);
7469EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.165181 seconds and 5 git commands to generate.