libata: add deadline support to prereset and reset methods
[deliverable/linux.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
0dd4b21f 603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
0b8efb0a
TH
607 dev->class++;
608 }
609}
610
1da177e4 611/**
0d5ff566 612 * ata_devchk - PATA device presence detection
1da177e4
LT
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
0d5ff566 629static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
630{
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
0d5ff566
TH
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 638
0d5ff566
TH
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 641
0d5ff566
TH
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 644
0d5ff566
TH
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652}
653
1da177e4
LT
654/**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
057ace5e 670unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
671{
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691}
692
693/**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
b4dc7623 697 * @r_err: Value of error register on completion
1da177e4
LT
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
b4dc7623
TH
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
713 */
714
a619f981 715unsigned int
b4dc7623 716ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 717{
1da177e4
LT
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
1da177e4 726 ap->ops->tf_read(ap, &tf);
0169e284 727 err = tf.feature;
b4dc7623
TH
728 if (r_err)
729 *r_err = err;
1da177e4 730
93590859
AC
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
1da177e4
LT
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
b4dc7623 740 return ATA_DEV_NONE;
1da177e4 741
b4dc7623 742 /* determine if device is ATA or ATAPI */
1da177e4 743 class = ata_dev_classify(&tf);
b4dc7623 744
1da177e4 745 if (class == ATA_DEV_UNKNOWN)
b4dc7623 746 return ATA_DEV_NONE;
1da177e4 747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
748 return ATA_DEV_NONE;
749 return class;
1da177e4
LT
750}
751
752/**
6a62a04d 753 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
6a62a04d
TH
767void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
1da177e4
LT
769{
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784}
785
0e949ff3 786/**
6a62a04d 787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
6a62a04d 793 * This function is identical to ata_id_string except that it
0e949ff3
TH
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
6a62a04d
TH
800void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
0e949ff3
TH
802{
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
6a62a04d 807 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813}
0baab86b 814
1e999736
AC
815static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816{
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827}
828
829static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830{
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839}
840
841/**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850{
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866}
867
868/**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876static u64 ata_read_native_max_address(struct ata_device *dev)
877{
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893}
894
895/**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 *
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
901 */
902
903static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
904{
905 unsigned int err;
906 struct ata_taskfile tf;
907
908 new_sectors--;
909
910 ata_tf_init(dev, &tf);
911
912 tf.command = ATA_CMD_SET_MAX_EXT;
913 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
914 tf.protocol |= ATA_PROT_NODATA;
915 tf.device |= 0x40;
916
917 tf.lbal = (new_sectors >> 0) & 0xff;
918 tf.lbam = (new_sectors >> 8) & 0xff;
919 tf.lbah = (new_sectors >> 16) & 0xff;
920
921 tf.hob_lbal = (new_sectors >> 24) & 0xff;
922 tf.hob_lbam = (new_sectors >> 32) & 0xff;
923 tf.hob_lbah = (new_sectors >> 40) & 0xff;
924
925 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
926 if (err)
927 return 0;
928
929 return ata_tf_to_lba48(&tf);
930}
931
932/**
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
935 *
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
938 */
939
940static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
941{
942 unsigned int err;
943 struct ata_taskfile tf;
944
945 new_sectors--;
946
947 ata_tf_init(dev, &tf);
948
949 tf.command = ATA_CMD_SET_MAX;
950 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
951 tf.protocol |= ATA_PROT_NODATA;
952
953 tf.lbal = (new_sectors >> 0) & 0xff;
954 tf.lbam = (new_sectors >> 8) & 0xff;
955 tf.lbah = (new_sectors >> 16) & 0xff;
956 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
957
958 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
959 if (err)
960 return 0;
961
962 return ata_tf_to_lba(&tf);
963}
964
965/**
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
968 *
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
972 */
973
974static u64 ata_hpa_resize(struct ata_device *dev)
975{
976 u64 sectors = dev->n_sectors;
977 u64 hpa_sectors;
978
979 if (ata_id_has_lba48(dev->id))
980 hpa_sectors = ata_read_native_max_address_ext(dev);
981 else
982 hpa_sectors = ata_read_native_max_address(dev);
983
984 /* if no hpa, both should be equal */
bd1d5ec6
AM
985 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
1e999736
AC
988
989 if (hpa_sectors > sectors) {
990 ata_dev_printk(dev, KERN_INFO,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
bd1d5ec6 994 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
995
996 if (ata_ignore_hpa) {
997 if (ata_id_has_lba48(dev->id))
998 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
999 else
bd1d5ec6
AM
1000 hpa_sectors = ata_set_native_max_address(dev,
1001 hpa_sectors);
1e999736
AC
1002
1003 if (hpa_sectors) {
bd1d5ec6
AM
1004 ata_dev_printk(dev, KERN_INFO, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors);
1e999736
AC
1007 return hpa_sectors;
1008 }
1009 }
1010 }
1011 return sectors;
1012}
1013
2940740b
TH
1014static u64 ata_id_n_sectors(const u16 *id)
1015{
1016 if (ata_id_has_lba(id)) {
1017 if (ata_id_has_lba48(id))
1018 return ata_id_u64(id, 100);
1019 else
1020 return ata_id_u32(id, 60);
1021 } else {
1022 if (ata_id_current_chs_valid(id))
1023 return ata_id_u32(id, 57);
1024 else
1025 return id[1] * id[3] * id[6];
1026 }
1027}
1028
10305f0f
A
1029/**
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
cc261267 1032 * @unknown: mode to assume if we cannot tell
10305f0f
A
1033 *
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1038 *
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1041 * presentation.
1042 */
1043
1044void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1045{
1046 unsigned int mask;
1047 u8 mode;
1048
1049 /* Pack the DMA modes */
1050 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1051 if (dev->id[53] & 0x04)
1052 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1053
1054 /* Select the mode in use */
1055 mode = ata_xfer_mask2mode(mask);
1056
1057 if (mode != 0) {
1058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1059 ata_mode_string(mask));
1060 } else {
1061 /* SWDMA perhaps ? */
1062 mode = unknown;
1063 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1064 }
1065
1066 /* Configure the device reporting */
1067 dev->xfer_mode = mode;
1068 dev->xfer_shift = ata_xfer_mode2shift(mode);
1069}
1070
0baab86b
EF
1071/**
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1075 *
1076 * This function performs no actual function.
1077 *
1078 * May be used as the dev_select() entry in ata_port_operations.
1079 *
1080 * LOCKING:
1081 * caller.
1082 */
1da177e4
LT
1083void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1084{
1085}
1086
0baab86b 1087
1da177e4
LT
1088/**
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1092 *
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
0baab86b
EF
1095 * ATA channel. Works with both PIO and MMIO.
1096 *
1097 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
1103void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1104{
1105 u8 tmp;
1106
1107 if (device == 0)
1108 tmp = ATA_DEVICE_OBS;
1109 else
1110 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1111
0d5ff566 1112 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1113 ata_pause(ap); /* needed; also flushes, for mmio */
1114}
1115
1116/**
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1122 *
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1125 * ATA channel.
1126 *
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1130 *
1131 * LOCKING:
1132 * caller.
1133 */
1134
1135void ata_dev_select(struct ata_port *ap, unsigned int device,
1136 unsigned int wait, unsigned int can_sleep)
1137{
88574551 1138 if (ata_msg_probe(ap))
44877b4e
TH
1139 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device, wait);
1da177e4
LT
1141
1142 if (wait)
1143 ata_wait_idle(ap);
1144
1145 ap->ops->dev_select(ap, device);
1146
1147 if (wait) {
1148 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1149 msleep(150);
1150 ata_wait_idle(ap);
1151 }
1152}
1153
1154/**
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1156 * @id: IDENTIFY DEVICE page to dump
1da177e4 1157 *
0bd3300a
TH
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1159 * page.
1da177e4
LT
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164
0bd3300a 1165static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1166{
1167 DPRINTK("49==0x%04x "
1168 "53==0x%04x "
1169 "63==0x%04x "
1170 "64==0x%04x "
1171 "75==0x%04x \n",
0bd3300a
TH
1172 id[49],
1173 id[53],
1174 id[63],
1175 id[64],
1176 id[75]);
1da177e4
LT
1177 DPRINTK("80==0x%04x "
1178 "81==0x%04x "
1179 "82==0x%04x "
1180 "83==0x%04x "
1181 "84==0x%04x \n",
0bd3300a
TH
1182 id[80],
1183 id[81],
1184 id[82],
1185 id[83],
1186 id[84]);
1da177e4
LT
1187 DPRINTK("88==0x%04x "
1188 "93==0x%04x\n",
0bd3300a
TH
1189 id[88],
1190 id[93]);
1da177e4
LT
1191}
1192
cb95d562
TH
1193/**
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1196 *
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1199 *
1200 * FIXME: pre IDE drive timing (do we care ?).
1201 *
1202 * LOCKING:
1203 * None.
1204 *
1205 * RETURNS:
1206 * Computed xfermask
1207 */
1208static unsigned int ata_id_xfermask(const u16 *id)
1209{
1210 unsigned int pio_mask, mwdma_mask, udma_mask;
1211
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1214 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1215 pio_mask <<= 3;
1216 pio_mask |= 0x7;
1217 } else {
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1220 * a mask.
1221 */
7a0f1c8a 1222 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1223 if (mode < 5) /* Valid PIO range */
1224 pio_mask = (2 << mode) - 1;
1225 else
1226 pio_mask = 1;
cb95d562
TH
1227
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1233 */
1234 }
1235
1236 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1237
b352e57d
AC
1238 if (ata_id_is_cfa(id)) {
1239 /*
1240 * Process compact flash extended modes
1241 */
1242 int pio = id[163] & 0x7;
1243 int dma = (id[163] >> 3) & 7;
1244
1245 if (pio)
1246 pio_mask |= (1 << 5);
1247 if (pio > 1)
1248 pio_mask |= (1 << 6);
1249 if (dma)
1250 mwdma_mask |= (1 << 3);
1251 if (dma > 1)
1252 mwdma_mask |= (1 << 4);
1253 }
1254
fb21f0d0
TH
1255 udma_mask = 0;
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1257 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1258
1259 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1260}
1261
86e45b6b
TH
1262/**
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
e2a7f77a 1265 * @fn: workqueue function to be scheduled
65f27f38 1266 * @data: data for @fn to use
e2a7f77a 1267 * @delay: delay time for workqueue function
86e45b6b
TH
1268 *
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1273 *
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1276 * synchronization.
1277 *
1278 * LOCKING:
1279 * Inherited from caller.
1280 */
65f27f38 1281void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1282 unsigned long delay)
1283{
1284 int rc;
1285
b51e9e5d 1286 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1287 return;
1288
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
52bad64d 1292 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1293
1294 /* rc == 0 means that another user is using port task */
1295 WARN_ON(rc == 0);
1296}
1297
1298/**
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1301 *
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1304 *
1305 * LOCKING:
1306 * Kernel thread context (may sleep)
1307 */
1308void ata_port_flush_task(struct ata_port *ap)
1309{
1310 unsigned long flags;
1311
1312 DPRINTK("ENTER\n");
1313
ba6a1308 1314 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1315 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1316 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1317
1318 DPRINTK("flush #1\n");
1319 flush_workqueue(ata_wq);
1320
1321 /*
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1324 * Cancel and flush.
1325 */
1326 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1327 if (ata_msg_ctl(ap))
88574551
TH
1328 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1329 __FUNCTION__);
86e45b6b
TH
1330 flush_workqueue(ata_wq);
1331 }
1332
ba6a1308 1333 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1334 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1335 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1336
0dd4b21f
BP
1337 if (ata_msg_ctl(ap))
1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1339}
1340
7102d230 1341static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1342{
77853bf2 1343 struct completion *waiting = qc->private_data;
a2a7a662 1344
a2a7a662 1345 complete(waiting);
a2a7a662
TH
1346}
1347
1348/**
2432697b 1349 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
d69cf37d 1352 * @cdb: CDB for packet command
a2a7a662 1353 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
a2a7a662
TH
1356 *
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1362 *
1363 * LOCKING:
1364 * None. Should be called with kernel context, might sleep.
551e8889
TH
1365 *
1366 * RETURNS:
1367 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1368 */
2432697b
TH
1369unsigned ata_exec_internal_sg(struct ata_device *dev,
1370 struct ata_taskfile *tf, const u8 *cdb,
1371 int dma_dir, struct scatterlist *sg,
1372 unsigned int n_elem)
a2a7a662 1373{
3373efd8 1374 struct ata_port *ap = dev->ap;
a2a7a662
TH
1375 u8 command = tf->command;
1376 struct ata_queued_cmd *qc;
2ab7db1f 1377 unsigned int tag, preempted_tag;
dedaf2b0 1378 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1379 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1380 unsigned long flags;
77853bf2 1381 unsigned int err_mask;
d95a717f 1382 int rc;
a2a7a662 1383
ba6a1308 1384 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1385
e3180499 1386 /* no internal command while frozen */
b51e9e5d 1387 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1388 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1389 return AC_ERR_SYSTEM;
1390 }
1391
2ab7db1f 1392 /* initialize internal qc */
a2a7a662 1393
2ab7db1f
TH
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1398 */
1399 if (ap->ops->error_handler)
1400 tag = ATA_TAG_INTERNAL;
1401 else
1402 tag = 0;
1403
6cec4a39 1404 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1405 BUG();
f69499f4 1406 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1407
1408 qc->tag = tag;
1409 qc->scsicmd = NULL;
1410 qc->ap = ap;
1411 qc->dev = dev;
1412 ata_qc_reinit(qc);
1413
1414 preempted_tag = ap->active_tag;
dedaf2b0
TH
1415 preempted_sactive = ap->sactive;
1416 preempted_qc_active = ap->qc_active;
2ab7db1f 1417 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1418 ap->sactive = 0;
1419 ap->qc_active = 0;
2ab7db1f
TH
1420
1421 /* prepare & issue qc */
a2a7a662 1422 qc->tf = *tf;
d69cf37d
TH
1423 if (cdb)
1424 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1425 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1426 qc->dma_dir = dma_dir;
1427 if (dma_dir != DMA_NONE) {
2432697b
TH
1428 unsigned int i, buflen = 0;
1429
1430 for (i = 0; i < n_elem; i++)
1431 buflen += sg[i].length;
1432
1433 ata_sg_init(qc, sg, n_elem);
49c80429 1434 qc->nbytes = buflen;
a2a7a662
TH
1435 }
1436
77853bf2 1437 qc->private_data = &wait;
a2a7a662
TH
1438 qc->complete_fn = ata_qc_complete_internal;
1439
8e0e694a 1440 ata_qc_issue(qc);
a2a7a662 1441
ba6a1308 1442 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1443
a8601e5f 1444 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1445
1446 ata_port_flush_task(ap);
41ade50c 1447
d95a717f 1448 if (!rc) {
ba6a1308 1449 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1450
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
d95a717f
TH
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
a2a7a662 1455 */
77853bf2 1456 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1457 qc->err_mask |= AC_ERR_TIMEOUT;
1458
1459 if (ap->ops->error_handler)
1460 ata_port_freeze(ap);
1461 else
1462 ata_qc_complete(qc);
f15a1daf 1463
0dd4b21f
BP
1464 if (ata_msg_warn(ap))
1465 ata_dev_printk(dev, KERN_WARNING,
88574551 1466 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1467 }
1468
ba6a1308 1469 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1470 }
1471
d95a717f
TH
1472 /* do post_internal_cmd */
1473 if (ap->ops->post_internal_cmd)
1474 ap->ops->post_internal_cmd(qc);
1475
a51d644a
TH
1476 /* perform minimal error analysis */
1477 if (qc->flags & ATA_QCFLAG_FAILED) {
1478 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1479 qc->err_mask |= AC_ERR_DEV;
1480
1481 if (!qc->err_mask)
1482 qc->err_mask |= AC_ERR_OTHER;
1483
1484 if (qc->err_mask & ~AC_ERR_OTHER)
1485 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1486 }
1487
15869303 1488 /* finish up */
ba6a1308 1489 spin_lock_irqsave(ap->lock, flags);
15869303 1490
e61e0672 1491 *tf = qc->result_tf;
77853bf2
TH
1492 err_mask = qc->err_mask;
1493
1494 ata_qc_free(qc);
2ab7db1f 1495 ap->active_tag = preempted_tag;
dedaf2b0
TH
1496 ap->sactive = preempted_sactive;
1497 ap->qc_active = preempted_qc_active;
77853bf2 1498
1f7dd3e9
TH
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1502 * port.
1503 *
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1507 *
1508 * Kill the following code as soon as those drivers are fixed.
1509 */
198e0fed 1510 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1511 err_mask |= AC_ERR_SYSTEM;
1512 ata_port_probe(ap);
1513 }
1514
ba6a1308 1515 spin_unlock_irqrestore(ap->lock, flags);
15869303 1516
77853bf2 1517 return err_mask;
a2a7a662
TH
1518}
1519
2432697b 1520/**
33480a0e 1521 * ata_exec_internal - execute libata internal command
2432697b
TH
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1528 *
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1531 *
1532 * LOCKING:
1533 * None. Should be called with kernel context, might sleep.
1534 *
1535 * RETURNS:
1536 * Zero on success, AC_ERR_* mask on failure
1537 */
1538unsigned ata_exec_internal(struct ata_device *dev,
1539 struct ata_taskfile *tf, const u8 *cdb,
1540 int dma_dir, void *buf, unsigned int buflen)
1541{
33480a0e
TH
1542 struct scatterlist *psg = NULL, sg;
1543 unsigned int n_elem = 0;
2432697b 1544
33480a0e
TH
1545 if (dma_dir != DMA_NONE) {
1546 WARN_ON(!buf);
1547 sg_init_one(&sg, buf, buflen);
1548 psg = &sg;
1549 n_elem++;
1550 }
2432697b 1551
33480a0e 1552 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1553}
1554
977e6b9f
TH
1555/**
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1559 *
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1562 *
1563 * LOCKING:
1564 * Kernel thread context (may sleep).
1565 *
1566 * RETURNS:
1567 * Zero on success, AC_ERR_* mask on failure
e58eb583 1568 */
77b08fb5 1569unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1570{
1571 struct ata_taskfile tf;
e58eb583
TH
1572
1573 ata_tf_init(dev, &tf);
1574
1575 tf.command = cmd;
1576 tf.flags |= ATA_TFLAG_DEVICE;
1577 tf.protocol = ATA_PROT_NODATA;
1578
977e6b9f 1579 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1580}
1581
1bc4ccff
AC
1582/**
1583 * ata_pio_need_iordy - check if iordy needed
1584 * @adev: ATA device
1585 *
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1588 */
432729f0 1589
1bc4ccff
AC
1590unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1591{
432729f0
AC
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1595 return 0;
432729f0
AC
1596 /* PIO3 and higher it is mandatory */
1597 if (adev->pio_mode > XFER_PIO_2)
1598 return 1;
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev->id))
1bc4ccff 1601 return 1;
432729f0
AC
1602 return 0;
1603}
2e9edbf8 1604
432729f0
AC
1605/**
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1607 * @adev: ATA device
1608 *
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1611 */
1612
1613static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1614{
1bc4ccff 1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1616 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1617 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1618 /* Is the speed faster than the drive allows non IORDY ? */
1619 if (pio) {
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1622 return 3 << ATA_SHIFT_PIO;
1623 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1624 }
1625 }
432729f0 1626 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1627}
1628
1da177e4 1629/**
49016aca 1630 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
bff04647 1633 * @flags: ATA_READID_* flags
fe635c7e 1634 * @id: buffer to read IDENTIFY data into
1da177e4 1635 *
49016aca
TH
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1da177e4
LT
1640 *
1641 * LOCKING:
49016aca
TH
1642 * Kernel thread context (may sleep)
1643 *
1644 * RETURNS:
1645 * 0 on success, -errno otherwise.
1da177e4 1646 */
a9beec95 1647int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1648 unsigned int flags, u16 *id)
1da177e4 1649{
3373efd8 1650 struct ata_port *ap = dev->ap;
49016aca 1651 unsigned int class = *p_class;
a0123703 1652 struct ata_taskfile tf;
49016aca
TH
1653 unsigned int err_mask = 0;
1654 const char *reason;
169439c2 1655 int tried_spinup = 0;
49016aca 1656 int rc;
1da177e4 1657
0dd4b21f 1658 if (ata_msg_ctl(ap))
44877b4e 1659 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1660
49016aca 1661 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1662 retry:
3373efd8 1663 ata_tf_init(dev, &tf);
a0123703 1664
49016aca
TH
1665 switch (class) {
1666 case ATA_DEV_ATA:
a0123703 1667 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1668 break;
1669 case ATA_DEV_ATAPI:
a0123703 1670 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1671 break;
1672 default:
1673 rc = -ENODEV;
1674 reason = "unsupported class";
1675 goto err_out;
1da177e4
LT
1676 }
1677
a0123703 1678 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1679
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1682 */
1683 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1684
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1687 */
1688 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1689
3373efd8 1690 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1691 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1692 if (err_mask) {
800b3996 1693 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1695 ap->print_id, dev->devno);
55a8e2c8
TH
1696 return -ENOENT;
1697 }
1698
49016aca
TH
1699 rc = -EIO;
1700 reason = "I/O error";
1da177e4
LT
1701 goto err_out;
1702 }
1703
49016aca 1704 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1705
49016aca 1706 /* sanity check */
a4f5749b
TH
1707 rc = -EINVAL;
1708 reason = "device reports illegal type";
1709
1710 if (class == ATA_DEV_ATA) {
1711 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1712 goto err_out;
1713 } else {
1714 if (ata_id_is_ata(id))
1715 goto err_out;
49016aca
TH
1716 }
1717
169439c2
ML
1718 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1719 tried_spinup = 1;
1720 /*
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1724 */
1725 ata_tf_init(dev, &tf);
1726 tf.command = ATA_CMD_SET_FEATURES;
1727 tf.feature = SETFEATURES_SPINUP;
1728 tf.protocol = ATA_PROT_NODATA;
1729 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1730 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1731 if (err_mask) {
1732 rc = -EIO;
1733 reason = "SPINUP failed";
1734 goto err_out;
1735 }
1736 /*
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1739 */
1740 if (id[2] == 0x37c8)
1741 goto retry;
1742 }
1743
bff04647 1744 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1745 /*
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1747 * SRST RESET
1748 * IDENTIFY
1749 * INITIALIZE DEVICE PARAMETERS
1750 * anything else..
1751 * Some drives were very specific about that exact sequence.
1752 */
1753 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1754 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1755 if (err_mask) {
1756 rc = -EIO;
1757 reason = "INIT_DEV_PARAMS failed";
1758 goto err_out;
1759 }
1760
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1763 */
bff04647 1764 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1765 goto retry;
1766 }
1767 }
1768
1769 *p_class = class;
fe635c7e 1770
49016aca
TH
1771 return 0;
1772
1773 err_out:
88574551 1774 if (ata_msg_warn(ap))
0dd4b21f 1775 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1776 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1777 return rc;
1778}
1779
3373efd8 1780static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1781{
3373efd8 1782 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1783}
1784
a6e6ce8e
TH
1785static void ata_dev_config_ncq(struct ata_device *dev,
1786 char *desc, size_t desc_sz)
1787{
1788 struct ata_port *ap = dev->ap;
1789 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1790
1791 if (!ata_id_has_ncq(dev->id)) {
1792 desc[0] = '\0';
1793 return;
1794 }
6919a0a6
AC
1795 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1796 snprintf(desc, desc_sz, "NCQ (not used)");
1797 return;
1798 }
a6e6ce8e 1799 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1800 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1801 dev->flags |= ATA_DFLAG_NCQ;
1802 }
1803
1804 if (hdepth >= ddepth)
1805 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1806 else
1807 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808}
1809
49016aca 1810/**
ffeae418 1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1812 * @dev: Target device to configure
1813 *
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
49016aca
TH
1816 *
1817 * LOCKING:
ffeae418
TH
1818 * Kernel thread context (may sleep)
1819 *
1820 * RETURNS:
1821 * 0 on success, -errno otherwise
49016aca 1822 */
efdaedc4 1823int ata_dev_configure(struct ata_device *dev)
49016aca 1824{
3373efd8 1825 struct ata_port *ap = dev->ap;
efdaedc4 1826 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1827 const u16 *id = dev->id;
ff8854b2 1828 unsigned int xfer_mask;
b352e57d 1829 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1830 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1831 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1832 int rc;
49016aca 1833
0dd4b21f 1834 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1835 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1836 __FUNCTION__);
ffeae418 1837 return 0;
49016aca
TH
1838 }
1839
0dd4b21f 1840 if (ata_msg_probe(ap))
44877b4e 1841 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1842
08573a86
KCA
1843 /* set _SDD */
1844 rc = ata_acpi_push_id(ap, dev->devno);
1845 if (rc) {
1846 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1847 rc);
1848 }
1849
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap);
1852
c39f5ebe 1853 /* print device capabilities */
0dd4b21f 1854 if (ata_msg_probe(ap))
88574551
TH
1855 ata_dev_printk(dev, KERN_DEBUG,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1858 __FUNCTION__,
f15a1daf
TH
1859 id[49], id[82], id[83], id[84],
1860 id[85], id[86], id[87], id[88]);
c39f5ebe 1861
208a9933 1862 /* initialize to-be-configured parameters */
ea1dd4e1 1863 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1864 dev->max_sectors = 0;
1865 dev->cdb_len = 0;
1866 dev->n_sectors = 0;
1867 dev->cylinders = 0;
1868 dev->heads = 0;
1869 dev->sectors = 0;
1870
1da177e4
LT
1871 /*
1872 * common ATA, ATAPI feature tests
1873 */
1874
ff8854b2 1875 /* find max transfer mode; for printk only */
1148c3a7 1876 xfer_mask = ata_id_xfermask(id);
1da177e4 1877
0dd4b21f
BP
1878 if (ata_msg_probe(ap))
1879 ata_dump_id(id);
1da177e4
LT
1880
1881 /* ATA-specific feature tests */
1882 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1883 if (ata_id_is_cfa(id)) {
1884 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1885 ata_dev_printk(dev, KERN_WARNING,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
b352e57d
AC
1888 snprintf(revbuf, 7, "CFA");
1889 }
1890 else
1891 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1892
1148c3a7 1893 dev->n_sectors = ata_id_n_sectors(id);
1e999736 1894 dev->n_sectors_boot = dev->n_sectors;
2940740b 1895
3f64f565 1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1897 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1898 sizeof(fwrevbuf));
1899
591a6e8e 1900 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1901 sizeof(modelbuf));
1902
1903 if (dev->id[59] & 0x100)
1904 dev->multi_count = dev->id[59] & 0xff;
1905
1148c3a7 1906 if (ata_id_has_lba(id)) {
4c2d721a 1907 const char *lba_desc;
a6e6ce8e 1908 char ncq_desc[20];
8bf62ece 1909
4c2d721a
TH
1910 lba_desc = "LBA";
1911 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1912 if (ata_id_has_lba48(id)) {
8bf62ece 1913 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1914 lba_desc = "LBA48";
6fc49adb
TH
1915
1916 if (dev->n_sectors >= (1UL << 28) &&
1917 ata_id_has_flush_ext(id))
1918 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1919 }
8bf62ece 1920
1e999736
AC
1921 if (ata_id_hpa_enabled(dev->id))
1922 dev->n_sectors = ata_hpa_resize(dev);
1923
a6e6ce8e
TH
1924 /* config NCQ */
1925 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1926
8bf62ece 1927 /* print device info to dmesg */
3f64f565
EM
1928 if (ata_msg_drv(ap) && print_info) {
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%s: %s, %s, max %s\n",
1931 revbuf, modelbuf, fwrevbuf,
1932 ata_mode_string(xfer_mask));
1933 ata_dev_printk(dev, KERN_INFO,
1934 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1935 (unsigned long long)dev->n_sectors,
3f64f565
EM
1936 dev->multi_count, lba_desc, ncq_desc);
1937 }
ffeae418 1938 } else {
8bf62ece
AL
1939 /* CHS */
1940
1941 /* Default translation */
1148c3a7
TH
1942 dev->cylinders = id[1];
1943 dev->heads = id[3];
1944 dev->sectors = id[6];
8bf62ece 1945
1148c3a7 1946 if (ata_id_current_chs_valid(id)) {
8bf62ece 1947 /* Current CHS translation is valid. */
1148c3a7
TH
1948 dev->cylinders = id[54];
1949 dev->heads = id[55];
1950 dev->sectors = id[56];
8bf62ece
AL
1951 }
1952
1953 /* print device info to dmesg */
3f64f565 1954 if (ata_msg_drv(ap) && print_info) {
88574551 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%s: %s, %s, max %s\n",
1957 revbuf, modelbuf, fwrevbuf,
1958 ata_mode_string(xfer_mask));
a84471fe 1959 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev->n_sectors,
1962 dev->multi_count, dev->cylinders,
1963 dev->heads, dev->sectors);
1964 }
07f6f7d0
AL
1965 }
1966
6e7846e9 1967 dev->cdb_len = 16;
1da177e4
LT
1968 }
1969
1970 /* ATAPI-specific feature tests */
2c13b7ce 1971 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1972 char *cdb_intr_string = "";
1973
1148c3a7 1974 rc = atapi_cdb_len(id);
1da177e4 1975 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1976 if (ata_msg_warn(ap))
88574551
TH
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "unsupported CDB len\n");
ffeae418 1979 rc = -EINVAL;
1da177e4
LT
1980 goto err_out_nosup;
1981 }
6e7846e9 1982 dev->cdb_len = (unsigned int) rc;
1da177e4 1983
08a556db 1984 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1985 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1986 cdb_intr_string = ", CDB intr";
1987 }
312f7da2 1988
1da177e4 1989 /* print device info to dmesg */
5afc8142 1990 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1991 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask),
1993 cdb_intr_string);
1da177e4
LT
1994 }
1995
914ed354
TH
1996 /* determine max_sectors */
1997 dev->max_sectors = ATA_MAX_SECTORS;
1998 if (dev->flags & ATA_DFLAG_LBA48)
1999 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2000
93590859
AC
2001 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2004 idiot */
2005 if (print_info) {
2006 ata_dev_printk(dev, KERN_WARNING,
2007"Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev, KERN_WARNING,
2009"fault or invalid emulation. Contact drive vendor for information.\n");
2010 }
2011 }
2012
4b2f3ede 2013 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2014 if (ata_dev_knobble(dev)) {
5afc8142 2015 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2016 ata_dev_printk(dev, KERN_INFO,
2017 "applying bridge limits\n");
5a529139 2018 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2019 dev->max_sectors = ATA_MAX_SECTORS;
2020 }
2021
18d6e9d5 2022 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2023 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 dev->max_sectors);
18d6e9d5 2025
6f23a31d
AL
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2028 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2029
4b2f3ede 2030 if (ap->ops->dev_config)
cd0d3bbc 2031 ap->ops->dev_config(dev);
4b2f3ede 2032
0dd4b21f
BP
2033 if (ata_msg_probe(ap))
2034 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__, ata_chk_status(ap));
ffeae418 2036 return 0;
1da177e4
LT
2037
2038err_out_nosup:
0dd4b21f 2039 if (ata_msg_probe(ap))
88574551
TH
2040 ata_dev_printk(dev, KERN_DEBUG,
2041 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2042 return rc;
1da177e4
LT
2043}
2044
be0d18df 2045/**
2e41e8e6 2046 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2047 * @ap: port
2048 *
2e41e8e6 2049 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2050 * detection.
2051 */
2052
2053int ata_cable_40wire(struct ata_port *ap)
2054{
2055 return ATA_CBL_PATA40;
2056}
2057
2058/**
2e41e8e6 2059 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2060 * @ap: port
2061 *
2e41e8e6 2062 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2063 * detection.
2064 */
2065
2066int ata_cable_80wire(struct ata_port *ap)
2067{
2068 return ATA_CBL_PATA80;
2069}
2070
2071/**
2072 * ata_cable_unknown - return unknown PATA cable.
2073 * @ap: port
2074 *
2075 * Helper method for drivers which have no PATA cable detection.
2076 */
2077
2078int ata_cable_unknown(struct ata_port *ap)
2079{
2080 return ATA_CBL_PATA_UNK;
2081}
2082
2083/**
2084 * ata_cable_sata - return SATA cable type
2085 * @ap: port
2086 *
2087 * Helper method for drivers which have SATA cables
2088 */
2089
2090int ata_cable_sata(struct ata_port *ap)
2091{
2092 return ATA_CBL_SATA;
2093}
2094
1da177e4
LT
2095/**
2096 * ata_bus_probe - Reset and probe ATA bus
2097 * @ap: Bus to probe
2098 *
0cba632b
JG
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2101 * the bus.
2102 *
1da177e4 2103 * LOCKING:
0cba632b 2104 * PCI/etc. bus probe sem.
1da177e4
LT
2105 *
2106 * RETURNS:
96072e69 2107 * Zero on success, negative errno otherwise.
1da177e4
LT
2108 */
2109
80289167 2110int ata_bus_probe(struct ata_port *ap)
1da177e4 2111{
28ca5c57 2112 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2113 int tries[ATA_MAX_DEVICES];
4ae72a1e 2114 int i, rc;
e82cbdb9 2115 struct ata_device *dev;
1da177e4 2116
28ca5c57 2117 ata_port_probe(ap);
c19ba8af 2118
14d2bac1
TH
2119 for (i = 0; i < ATA_MAX_DEVICES; i++)
2120 tries[i] = ATA_PROBE_MAX_TRIES;
2121
2122 retry:
2044470c 2123 /* reset and determine device classes */
52783c5d 2124 ap->ops->phy_reset(ap);
2061a47a 2125
52783c5d
TH
2126 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2127 dev = &ap->device[i];
c19ba8af 2128
52783c5d
TH
2129 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2130 dev->class != ATA_DEV_UNKNOWN)
2131 classes[dev->devno] = dev->class;
2132 else
2133 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2134
52783c5d 2135 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2136 }
1da177e4 2137
52783c5d 2138 ata_port_probe(ap);
2044470c 2139
b6079ca4
AC
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2142
2143 for (i = 0; i < ATA_MAX_DEVICES; i++)
2144 ap->device[i].pio_mode = XFER_PIO_0;
2145
f31f0cc2
JG
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2148 the slave device */
2149
2150 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2151 dev = &ap->device[i];
28ca5c57 2152
ec573755
TH
2153 if (tries[i])
2154 dev->class = classes[i];
ffeae418 2155
14d2bac1 2156 if (!ata_dev_enabled(dev))
ffeae418 2157 continue;
ffeae418 2158
bff04647
TH
2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 dev->id);
14d2bac1
TH
2161 if (rc)
2162 goto fail;
f31f0cc2
JG
2163 }
2164
be0d18df
AC
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap->ops->cable_detect)
2167 ap->cbl = ap->ops->cable_detect(ap);
2168
f31f0cc2
JG
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2171
2172 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2173 dev = &ap->device[i];
2174 if (!ata_dev_enabled(dev))
2175 continue;
14d2bac1 2176
efdaedc4
TH
2177 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2178 rc = ata_dev_configure(dev);
2179 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2180 if (rc)
2181 goto fail;
1da177e4
LT
2182 }
2183
e82cbdb9 2184 /* configure transfer mode */
3adcebb2 2185 rc = ata_set_mode(ap, &dev);
4ae72a1e 2186 if (rc)
51713d35 2187 goto fail;
1da177e4 2188
e82cbdb9
TH
2189 for (i = 0; i < ATA_MAX_DEVICES; i++)
2190 if (ata_dev_enabled(&ap->device[i]))
2191 return 0;
1da177e4 2192
e82cbdb9
TH
2193 /* no device present, disable port */
2194 ata_port_disable(ap);
1da177e4 2195 ap->ops->port_disable(ap);
96072e69 2196 return -ENODEV;
14d2bac1
TH
2197
2198 fail:
4ae72a1e
TH
2199 tries[dev->devno]--;
2200
14d2bac1
TH
2201 switch (rc) {
2202 case -EINVAL:
4ae72a1e 2203 /* eeek, something went very wrong, give up */
14d2bac1
TH
2204 tries[dev->devno] = 0;
2205 break;
4ae72a1e
TH
2206
2207 case -ENODEV:
2208 /* give it just one more chance */
2209 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2210 case -EIO:
4ae72a1e
TH
2211 if (tries[dev->devno] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2214 */
2215 sata_down_spd_limit(ap);
2216 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2217 }
14d2bac1
TH
2218 }
2219
4ae72a1e 2220 if (!tries[dev->devno])
3373efd8 2221 ata_dev_disable(dev);
ec573755 2222
14d2bac1 2223 goto retry;
1da177e4
LT
2224}
2225
2226/**
0cba632b
JG
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
1da177e4 2229 *
0cba632b
JG
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2232 *
cca3974e 2233 * LOCKING: host lock, or some other form of
0cba632b 2234 * serialization.
1da177e4
LT
2235 */
2236
2237void ata_port_probe(struct ata_port *ap)
2238{
198e0fed 2239 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2240}
2241
3be680b7
TH
2242/**
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2245 *
2246 * This function prints link speed and status of a SATA link.
2247 *
2248 * LOCKING:
2249 * None.
2250 */
43727fbc 2251void sata_print_link_status(struct ata_port *ap)
3be680b7 2252{
6d5f9732 2253 u32 sstatus, scontrol, tmp;
3be680b7 2254
81952c54 2255 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2256 return;
81952c54 2257 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2258
81952c54 2259 if (ata_port_online(ap)) {
3be680b7 2260 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2261 ata_port_printk(ap, KERN_INFO,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2264 } else {
f15a1daf
TH
2265 ata_port_printk(ap, KERN_INFO,
2266 "SATA link down (SStatus %X SControl %X)\n",
2267 sstatus, scontrol);
3be680b7
TH
2268 }
2269}
2270
1da177e4 2271/**
780a87f7
JG
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
1da177e4 2274 *
780a87f7
JG
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
1da177e4
LT
2278 *
2279 * LOCKING:
0cba632b 2280 * PCI/etc. bus probe sem.
1da177e4
LT
2281 *
2282 */
2283void __sata_phy_reset(struct ata_port *ap)
2284{
2285 u32 sstatus;
2286 unsigned long timeout = jiffies + (HZ * 5);
2287
2288 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2289 /* issue phy wake/reset */
81952c54 2290 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 mdelay(1);
1da177e4 2294 }
81952c54
TH
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2297
2298 /* wait for phy to become ready, if necessary */
2299 do {
2300 msleep(200);
81952c54 2301 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2302 if ((sstatus & 0xf) != 1)
2303 break;
2304 } while (time_before(jiffies, timeout));
2305
3be680b7
TH
2306 /* print link status */
2307 sata_print_link_status(ap);
656563e3 2308
3be680b7 2309 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2310 if (!ata_port_offline(ap))
1da177e4 2311 ata_port_probe(ap);
3be680b7 2312 else
1da177e4 2313 ata_port_disable(ap);
1da177e4 2314
198e0fed 2315 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2316 return;
2317
2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 ata_port_disable(ap);
2320 return;
2321 }
2322
2323 ap->cbl = ATA_CBL_SATA;
2324}
2325
2326/**
780a87f7
JG
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
1da177e4 2329 *
780a87f7
JG
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
1da177e4
LT
2332 *
2333 * LOCKING:
0cba632b 2334 * PCI/etc. bus probe sem.
1da177e4
LT
2335 *
2336 */
2337void sata_phy_reset(struct ata_port *ap)
2338{
2339 __sata_phy_reset(ap);
198e0fed 2340 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2341 return;
2342 ata_bus_reset(ap);
2343}
2344
ebdfca6e
AC
2345/**
2346 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2347 * @adev: device
2348 *
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2351 */
2e9edbf8 2352
3373efd8 2353struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2354{
3373efd8 2355 struct ata_port *ap = adev->ap;
ebdfca6e 2356 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2357 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2358 return NULL;
2359 return pair;
2360}
2361
1da177e4 2362/**
780a87f7
JG
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
1da177e4 2365 *
780a87f7
JG
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2369 * on this port.
2370 *
cca3974e 2371 * LOCKING: host lock, or some other form of
780a87f7 2372 * serialization.
1da177e4
LT
2373 */
2374
2375void ata_port_disable(struct ata_port *ap)
2376{
2377 ap->device[0].class = ATA_DEV_NONE;
2378 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2379 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2380}
2381
1c3fae4d 2382/**
3c567b7d 2383 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2384 * @ap: Port to adjust SATA spd limit for
2385 *
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
3c567b7d 2388 * using sata_set_spd().
1c3fae4d
TH
2389 *
2390 * LOCKING:
2391 * Inherited from caller.
2392 *
2393 * RETURNS:
2394 * 0 on success, negative errno on failure
2395 */
3c567b7d 2396int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2397{
81952c54
TH
2398 u32 sstatus, spd, mask;
2399 int rc, highbit;
1c3fae4d 2400
81952c54
TH
2401 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2402 if (rc)
2403 return rc;
1c3fae4d
TH
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
81952c54 2411 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2412 if (spd <= 1)
2413 return -EINVAL;
2414 spd--;
2415 mask &= (1 << spd) - 1;
2416 if (!mask)
2417 return -EINVAL;
2418
2419 ap->sata_spd_limit = mask;
2420
f15a1daf
TH
2421 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask)));
1c3fae4d
TH
2423
2424 return 0;
2425}
2426
3c567b7d 2427static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2428{
2429 u32 spd, limit;
2430
2431 if (ap->sata_spd_limit == UINT_MAX)
2432 limit = 0;
2433 else
2434 limit = fls(ap->sata_spd_limit);
2435
2436 spd = (*scontrol >> 4) & 0xf;
2437 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2438
2439 return spd != limit;
2440}
2441
2442/**
3c567b7d 2443 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2444 * @ap: Port in question
2445 *
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2449 * configuration.
2450 *
2451 * LOCKING:
2452 * Inherited from caller.
2453 *
2454 * RETURNS:
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2456 */
3c567b7d 2457int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2458{
2459 u32 scontrol;
2460
81952c54 2461 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2462 return 0;
2463
3c567b7d 2464 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2465}
2466
2467/**
3c567b7d 2468 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2469 * @ap: Port to set SATA spd for
2470 *
2471 * Set SATA spd of @ap according to sata_spd_limit.
2472 *
2473 * LOCKING:
2474 * Inherited from caller.
2475 *
2476 * RETURNS:
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2478 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2479 */
3c567b7d 2480int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2481{
2482 u32 scontrol;
81952c54 2483 int rc;
1c3fae4d 2484
81952c54
TH
2485 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2486 return rc;
1c3fae4d 2487
3c567b7d 2488 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2489 return 0;
2490
81952c54
TH
2491 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2492 return rc;
2493
1c3fae4d
TH
2494 return 1;
2495}
2496
452503f9
AC
2497/*
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2500 */
2501/*
b352e57d 2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2505 *
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2507 */
2508
2509static const struct ata_timing ata_timing[] = {
2510
2511 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2515
b352e57d
AC
2516 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2518 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2521
2522/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2523
452503f9
AC
2524 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2527
452503f9
AC
2528 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2531
b352e57d
AC
2532 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2534 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2536
2537 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2540
2541/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2542
2543 { 0xFF }
2544};
2545
2546#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2548
2549static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2550{
2551 q->setup = EZ(t->setup * 1000, T);
2552 q->act8b = EZ(t->act8b * 1000, T);
2553 q->rec8b = EZ(t->rec8b * 1000, T);
2554 q->cyc8b = EZ(t->cyc8b * 1000, T);
2555 q->active = EZ(t->active * 1000, T);
2556 q->recover = EZ(t->recover * 1000, T);
2557 q->cycle = EZ(t->cycle * 1000, T);
2558 q->udma = EZ(t->udma * 1000, UT);
2559}
2560
2561void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2562 struct ata_timing *m, unsigned int what)
2563{
2564 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2565 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2566 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2567 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2568 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2569 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2570 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2571 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2572}
2573
2574static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2575{
2576 const struct ata_timing *t;
2577
2578 for (t = ata_timing; t->mode != speed; t++)
91190758 2579 if (t->mode == 0xFF)
452503f9 2580 return NULL;
2e9edbf8 2581 return t;
452503f9
AC
2582}
2583
2584int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2585 struct ata_timing *t, int T, int UT)
2586{
2587 const struct ata_timing *s;
2588 struct ata_timing p;
2589
2590 /*
2e9edbf8 2591 * Find the mode.
75b1f2f8 2592 */
452503f9
AC
2593
2594 if (!(s = ata_timing_find_mode(speed)))
2595 return -EINVAL;
2596
75b1f2f8
AL
2597 memcpy(t, s, sizeof(*s));
2598
452503f9
AC
2599 /*
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2602 */
2603
2604 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2605 memset(&p, 0, sizeof(p));
2606 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2607 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2608 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2609 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2610 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2611 }
2612 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2613 }
2614
2615 /*
2616 * Convert the timing to bus clock counts.
2617 */
2618
75b1f2f8 2619 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2620
2621 /*
c893a3ae
RD
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2625 */
2626
fd3367af 2627 if (speed > XFER_PIO_6) {
452503f9
AC
2628 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2629 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2630 }
2631
2632 /*
c893a3ae 2633 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2634 */
2635
2636 if (t->act8b + t->rec8b < t->cyc8b) {
2637 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2638 t->rec8b = t->cyc8b - t->act8b;
2639 }
2640
2641 if (t->active + t->recover < t->cycle) {
2642 t->active += (t->cycle - (t->active + t->recover)) / 2;
2643 t->recover = t->cycle - t->active;
2644 }
4f701d1e
AC
2645
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t->active + t->recover > t->cycle)
2650 t->cycle = t->active + t->recover;
452503f9
AC
2651
2652 return 0;
2653}
2654
cf176e1a
TH
2655/**
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2657 * @dev: Device to adjust xfer masks
458337db 2658 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2659 *
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2663 *
2664 * LOCKING:
2665 * Inherited from caller.
2666 *
2667 * RETURNS:
2668 * 0 on success, negative errno on failure
2669 */
458337db 2670int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2671{
458337db
TH
2672 char buf[32];
2673 unsigned int orig_mask, xfer_mask;
2674 unsigned int pio_mask, mwdma_mask, udma_mask;
2675 int quiet, highbit;
cf176e1a 2676
458337db
TH
2677 quiet = !!(sel & ATA_DNXFER_QUIET);
2678 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2679
458337db
TH
2680 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2681 dev->mwdma_mask,
2682 dev->udma_mask);
2683 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2684
458337db
TH
2685 switch (sel) {
2686 case ATA_DNXFER_PIO:
2687 highbit = fls(pio_mask) - 1;
2688 pio_mask &= ~(1 << highbit);
2689 break;
2690
2691 case ATA_DNXFER_DMA:
2692 if (udma_mask) {
2693 highbit = fls(udma_mask) - 1;
2694 udma_mask &= ~(1 << highbit);
2695 if (!udma_mask)
2696 return -ENOENT;
2697 } else if (mwdma_mask) {
2698 highbit = fls(mwdma_mask) - 1;
2699 mwdma_mask &= ~(1 << highbit);
2700 if (!mwdma_mask)
2701 return -ENOENT;
2702 }
2703 break;
2704
2705 case ATA_DNXFER_40C:
2706 udma_mask &= ATA_UDMA_MASK_40C;
2707 break;
2708
2709 case ATA_DNXFER_FORCE_PIO0:
2710 pio_mask &= 1;
2711 case ATA_DNXFER_FORCE_PIO:
2712 mwdma_mask = 0;
2713 udma_mask = 0;
2714 break;
2715
458337db
TH
2716 default:
2717 BUG();
2718 }
2719
2720 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2721
2722 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2723 return -ENOENT;
2724
2725 if (!quiet) {
2726 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2727 snprintf(buf, sizeof(buf), "%s:%s",
2728 ata_mode_string(xfer_mask),
2729 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2730 else
2731 snprintf(buf, sizeof(buf), "%s",
2732 ata_mode_string(xfer_mask));
2733
2734 ata_dev_printk(dev, KERN_WARNING,
2735 "limiting speed to %s\n", buf);
2736 }
cf176e1a
TH
2737
2738 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2739 &dev->udma_mask);
2740
cf176e1a 2741 return 0;
cf176e1a
TH
2742}
2743
3373efd8 2744static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2745{
baa1e78a 2746 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2747 unsigned int err_mask;
2748 int rc;
1da177e4 2749
e8384607 2750 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2751 if (dev->xfer_shift == ATA_SHIFT_PIO)
2752 dev->flags |= ATA_DFLAG_PIO;
2753
3373efd8 2754 err_mask = ata_dev_set_xfermode(dev);
11750a40
A
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2757 err_mask &= ~AC_ERR_DEV;
2758
83206a29 2759 if (err_mask) {
f15a1daf
TH
2760 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2762 return -EIO;
2763 }
1da177e4 2764
baa1e78a 2765 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2766 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2767 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2768 if (rc)
83206a29 2769 return rc;
48a8a14f 2770
23e71c3d
TH
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2773
f15a1daf
TH
2774 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2776 return 0;
1da177e4
LT
2777}
2778
1da177e4 2779/**
04351821 2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2781 * @ap: port on which timings will be programmed
e82cbdb9 2782 * @r_failed_dev: out paramter for failed device
1da177e4 2783 *
04351821
A
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2787 * returned in @r_failed_dev.
780a87f7 2788 *
1da177e4 2789 * LOCKING:
0cba632b 2790 * PCI/etc. bus probe sem.
e82cbdb9
TH
2791 *
2792 * RETURNS:
2793 * 0 on success, negative errno otherwise
1da177e4 2794 */
04351821
A
2795
2796int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2797{
e8e0619f 2798 struct ata_device *dev;
e82cbdb9 2799 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2800
3adcebb2 2801
a6d5a51c
TH
2802 /* step 1: calculate xfer_mask */
2803 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2804 unsigned int pio_mask, dma_mask;
a6d5a51c 2805
e8e0619f
TH
2806 dev = &ap->device[i];
2807
e1211e3f 2808 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2809 continue;
2810
3373efd8 2811 ata_dev_xfermask(dev);
1da177e4 2812
acf356b1
TH
2813 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2814 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2815 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2816 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2817
4f65977d 2818 found = 1;
5444a6f4
AC
2819 if (dev->dma_mode)
2820 used_dma = 1;
a6d5a51c 2821 }
4f65977d 2822 if (!found)
e82cbdb9 2823 goto out;
a6d5a51c
TH
2824
2825 /* step 2: always set host PIO timings */
e8e0619f
TH
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 dev = &ap->device[i];
2828 if (!ata_dev_enabled(dev))
2829 continue;
2830
2831 if (!dev->pio_mode) {
f15a1daf 2832 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2833 rc = -EINVAL;
e82cbdb9 2834 goto out;
e8e0619f
TH
2835 }
2836
2837 dev->xfer_mode = dev->pio_mode;
2838 dev->xfer_shift = ATA_SHIFT_PIO;
2839 if (ap->ops->set_piomode)
2840 ap->ops->set_piomode(ap, dev);
2841 }
1da177e4 2842
a6d5a51c 2843 /* step 3: set host DMA timings */
e8e0619f
TH
2844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2845 dev = &ap->device[i];
2846
2847 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2848 continue;
2849
2850 dev->xfer_mode = dev->dma_mode;
2851 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2852 if (ap->ops->set_dmamode)
2853 ap->ops->set_dmamode(ap, dev);
2854 }
1da177e4
LT
2855
2856 /* step 4: update devices' xfer mode */
83206a29 2857 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2858 dev = &ap->device[i];
1da177e4 2859
18d90deb 2860 /* don't update suspended devices' xfer mode */
02670bf3 2861 if (!ata_dev_ready(dev))
83206a29
TH
2862 continue;
2863
3373efd8 2864 rc = ata_dev_set_mode(dev);
5bbc53f4 2865 if (rc)
e82cbdb9 2866 goto out;
83206a29 2867 }
1da177e4 2868
e8e0619f
TH
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
5444a6f4 2871 */
cca3974e 2872 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2873 ap->host->simplex_claimed = ap;
5444a6f4 2874
e8e0619f 2875 /* step5: chip specific finalisation */
1da177e4
LT
2876 if (ap->ops->post_set_mode)
2877 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2878 out:
2879 if (rc)
2880 *r_failed_dev = dev;
2881 return rc;
1da177e4
LT
2882}
2883
04351821
A
2884/**
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2888 *
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2892 *
2893 * LOCKING:
2894 * PCI/etc. bus probe sem.
2895 *
2896 * RETURNS:
2897 * 0 on success, negative errno otherwise
2898 */
2899int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2900{
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
2903 return ap->ops->set_mode(ap, r_failed_dev);
2904 return ata_do_set_mode(ap, r_failed_dev);
2905}
2906
1fdffbce
JG
2907/**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
cca3974e 2917 * spin_lock_irqsave(host lock)
1fdffbce
JG
2918 */
2919
2920static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922{
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925}
2926
1da177e4
LT
2927/**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
780a87f7
JG
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
d1adc1bb
TH
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
1da177e4 2941 */
d1adc1bb
TH
2942int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2944{
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
1da177e4
LT
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
d1adc1bb 2957 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2958 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
1da177e4
LT
2961
2962 timeout = timer_start + tmout;
d1adc1bb
TH
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
1da177e4
LT
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
d1adc1bb
TH
2969 if (status == 0xff)
2970 return -ENODEV;
2971
1da177e4 2972 if (status & ATA_BUSY) {
f15a1daf 2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
d1adc1bb 2976 return -EBUSY;
1da177e4
LT
2977 }
2978
2979 return 0;
2980}
2981
d4b2bab4
TH
2982/**
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2986 *
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2988 * occurs.
2989 *
2990 * LOCKING:
2991 * Kernel thread context (may sleep).
2992 *
2993 * RETURNS:
2994 * 0 on success, -errno otherwise.
2995 */
2996int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2997{
2998 unsigned long start = jiffies;
2999 int warned = 0;
3000
3001 while (1) {
3002 u8 status = ata_chk_status(ap);
3003 unsigned long now = jiffies;
3004
3005 if (!(status & ATA_BUSY))
3006 return 0;
3007 if (status == 0xff)
3008 return -ENODEV;
3009 if (time_after(now, deadline))
3010 return -EBUSY;
3011
3012 if (!warned && time_after(now, start + 5 * HZ) &&
3013 (deadline - now > 3 * HZ)) {
3014 ata_port_printk(ap, KERN_WARNING,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status);
3017 warned = 1;
3018 }
3019
3020 msleep(50);
3021 }
3022}
3023
3024static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3025 unsigned long deadline)
1da177e4
LT
3026{
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028 unsigned int dev0 = devmask & (1 << 0);
3029 unsigned int dev1 = devmask & (1 << 1);
d4b2bab4 3030 int rc;
1da177e4
LT
3031
3032 /* if device 0 was found in ata_devchk, wait for its
3033 * BSY bit to clear
3034 */
d4b2bab4
TH
3035 if (dev0) {
3036 rc = ata_wait_ready(ap, deadline);
3037 if (rc && rc != -ENODEV)
3038 return rc;
3039 }
1da177e4
LT
3040
3041 /* if device 1 was found in ata_devchk, wait for
3042 * register access, then wait for BSY to clear
3043 */
1da177e4
LT
3044 while (dev1) {
3045 u8 nsect, lbal;
3046
3047 ap->ops->dev_select(ap, 1);
0d5ff566
TH
3048 nsect = ioread8(ioaddr->nsect_addr);
3049 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
3050 if ((nsect == 1) && (lbal == 1))
3051 break;
d4b2bab4
TH
3052 if (time_after(jiffies, deadline))
3053 return -EBUSY;
1da177e4
LT
3054 msleep(50); /* give drive a breather */
3055 }
d4b2bab4
TH
3056 if (dev1) {
3057 rc = ata_wait_ready(ap, deadline);
3058 if (rc && rc != -ENODEV)
3059 return rc;
3060 }
1da177e4
LT
3061
3062 /* is all this really necessary? */
3063 ap->ops->dev_select(ap, 0);
3064 if (dev1)
3065 ap->ops->dev_select(ap, 1);
3066 if (dev0)
3067 ap->ops->dev_select(ap, 0);
d4b2bab4
TH
3068
3069 return 0;
1da177e4
LT
3070}
3071
d4b2bab4
TH
3072static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3073 unsigned long deadline)
1da177e4
LT
3074{
3075 struct ata_ioports *ioaddr = &ap->ioaddr;
3076
44877b4e 3077 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3078
3079 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3080 iowrite8(ap->ctl, ioaddr->ctl_addr);
3081 udelay(20); /* FIXME: flush */
3082 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3083 udelay(20); /* FIXME: flush */
3084 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3085
3086 /* spec mandates ">= 2ms" before checking status.
3087 * We wait 150ms, because that was the magic delay used for
3088 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3089 * between when the ATA command register is written, and then
3090 * status is checked. Because waiting for "a while" before
3091 * checking status is fine, post SRST, we perform this magic
3092 * delay here as well.
09c7ad79
AC
3093 *
3094 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3095 */
3096 msleep(150);
3097
2e9edbf8 3098 /* Before we perform post reset processing we want to see if
298a41ca
TH
3099 * the bus shows 0xFF because the odd clown forgets the D7
3100 * pulldown resistor.
3101 */
d1adc1bb
TH
3102 if (ata_check_status(ap) == 0xFF)
3103 return 0;
09c7ad79 3104
d4b2bab4 3105 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3106}
3107
3108/**
3109 * ata_bus_reset - reset host port and associated ATA channel
3110 * @ap: port to reset
3111 *
3112 * This is typically the first time we actually start issuing
3113 * commands to the ATA channel. We wait for BSY to clear, then
3114 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3115 * result. Determine what devices, if any, are on the channel
3116 * by looking at the device 0/1 error register. Look at the signature
3117 * stored in each device's taskfile registers, to determine if
3118 * the device is ATA or ATAPI.
3119 *
3120 * LOCKING:
0cba632b 3121 * PCI/etc. bus probe sem.
cca3974e 3122 * Obtains host lock.
1da177e4
LT
3123 *
3124 * SIDE EFFECTS:
198e0fed 3125 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3126 */
3127
3128void ata_bus_reset(struct ata_port *ap)
3129{
3130 struct ata_ioports *ioaddr = &ap->ioaddr;
3131 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3132 u8 err;
aec5c3c1 3133 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4 3134
44877b4e 3135 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3136
3137 /* determine if device 0/1 are present */
3138 if (ap->flags & ATA_FLAG_SATA_RESET)
3139 dev0 = 1;
3140 else {
3141 dev0 = ata_devchk(ap, 0);
3142 if (slave_possible)
3143 dev1 = ata_devchk(ap, 1);
3144 }
3145
3146 if (dev0)
3147 devmask |= (1 << 0);
3148 if (dev1)
3149 devmask |= (1 << 1);
3150
3151 /* select device 0 again */
3152 ap->ops->dev_select(ap, 0);
3153
3154 /* issue bus reset */
3155 if (ap->flags & ATA_FLAG_SRST)
d4b2bab4 3156 if (ata_bus_softreset(ap, devmask, jiffies + 40 * HZ))
aec5c3c1 3157 goto err_out;
1da177e4
LT
3158
3159 /*
3160 * determine by signature whether we have ATA or ATAPI devices
3161 */
b4dc7623 3162 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3163 if ((slave_possible) && (err != 0x81))
b4dc7623 3164 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3165
3166 /* re-enable interrupts */
83625006 3167 ap->ops->irq_on(ap);
1da177e4
LT
3168
3169 /* is double-select really necessary? */
3170 if (ap->device[1].class != ATA_DEV_NONE)
3171 ap->ops->dev_select(ap, 1);
3172 if (ap->device[0].class != ATA_DEV_NONE)
3173 ap->ops->dev_select(ap, 0);
3174
3175 /* if no devices were detected, disable this port */
3176 if ((ap->device[0].class == ATA_DEV_NONE) &&
3177 (ap->device[1].class == ATA_DEV_NONE))
3178 goto err_out;
3179
3180 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3181 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3182 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3183 }
3184
3185 DPRINTK("EXIT\n");
3186 return;
3187
3188err_out:
f15a1daf 3189 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3190 ap->ops->port_disable(ap);
3191
3192 DPRINTK("EXIT\n");
3193}
3194
d7bb4cc7
TH
3195/**
3196 * sata_phy_debounce - debounce SATA phy status
3197 * @ap: ATA port to debounce SATA phy status for
3198 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3199 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3200 *
3201 * Make sure SStatus of @ap reaches stable state, determined by
3202 * holding the same value where DET is not 1 for @duration polled
3203 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3204 * beginning of the stable state. Because DET gets stuck at 1 on
3205 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3206 * until timeout then returns 0 if DET is stable at 1.
3207 *
d4b2bab4
TH
3208 * @timeout is further limited by @deadline. The sooner of the
3209 * two is used.
3210 *
d7bb4cc7
TH
3211 * LOCKING:
3212 * Kernel thread context (may sleep)
3213 *
3214 * RETURNS:
3215 * 0 on success, -errno on failure.
3216 */
d4b2bab4
TH
3217int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3218 unsigned long deadline)
7a7921e8 3219{
d7bb4cc7 3220 unsigned long interval_msec = params[0];
d4b2bab4
TH
3221 unsigned long duration = msecs_to_jiffies(params[1]);
3222 unsigned long last_jiffies, t;
d7bb4cc7
TH
3223 u32 last, cur;
3224 int rc;
3225
d4b2bab4
TH
3226 t = jiffies + msecs_to_jiffies(params[2]);
3227 if (time_before(t, deadline))
3228 deadline = t;
3229
d7bb4cc7
TH
3230 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3231 return rc;
3232 cur &= 0xf;
3233
3234 last = cur;
3235 last_jiffies = jiffies;
3236
3237 while (1) {
3238 msleep(interval_msec);
3239 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3240 return rc;
3241 cur &= 0xf;
3242
3243 /* DET stable? */
3244 if (cur == last) {
d4b2bab4 3245 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3246 continue;
3247 if (time_after(jiffies, last_jiffies + duration))
3248 return 0;
3249 continue;
3250 }
3251
3252 /* unstable, start over */
3253 last = cur;
3254 last_jiffies = jiffies;
3255
d4b2bab4
TH
3256 /* check deadline */
3257 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3258 return -EBUSY;
3259 }
3260}
3261
3262/**
3263 * sata_phy_resume - resume SATA phy
3264 * @ap: ATA port to resume SATA phy for
3265 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3266 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3267 *
3268 * Resume SATA phy of @ap and debounce it.
3269 *
3270 * LOCKING:
3271 * Kernel thread context (may sleep)
3272 *
3273 * RETURNS:
3274 * 0 on success, -errno on failure.
3275 */
d4b2bab4
TH
3276int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3277 unsigned long deadline)
d7bb4cc7
TH
3278{
3279 u32 scontrol;
81952c54
TH
3280 int rc;
3281
3282 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3283 return rc;
7a7921e8 3284
852ee16a 3285 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3286
3287 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3288 return rc;
7a7921e8 3289
d7bb4cc7
TH
3290 /* Some PHYs react badly if SStatus is pounded immediately
3291 * after resuming. Delay 200ms before debouncing.
3292 */
3293 msleep(200);
7a7921e8 3294
d4b2bab4 3295 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3296}
3297
d4b2bab4 3298static void ata_wait_spinup(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3299{
3300 struct ata_eh_context *ehc = &ap->eh_context;
3301 unsigned long end, secs;
3302 int rc;
3303
3304 /* first, debounce phy if SATA */
3305 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3306 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug, deadline);
f5914a46
TH
3307
3308 /* if debounced successfully and offline, no need to wait */
3309 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3310 return;
3311 }
3312
3313 /* okay, let's give the drive time to spin up */
3314 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3315 secs = ((end - jiffies) + HZ - 1) / HZ;
3316
3317 if (time_after(jiffies, end))
3318 return;
3319
3320 if (secs > 5)
3321 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3322 "(%lu secs)\n", secs);
3323
3324 schedule_timeout_uninterruptible(end - jiffies);
3325}
3326
3327/**
3328 * ata_std_prereset - prepare for reset
3329 * @ap: ATA port to be reset
d4b2bab4 3330 * @deadline: deadline jiffies for the operation
f5914a46
TH
3331 *
3332 * @ap is about to be reset. Initialize it.
3333 *
3334 * LOCKING:
3335 * Kernel thread context (may sleep)
3336 *
3337 * RETURNS:
3338 * 0 on success, -errno otherwise.
3339 */
d4b2bab4 3340int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3341{
3342 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3343 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3344 int rc;
3345
28324304
TH
3346 /* handle link resume & hotplug spinup */
3347 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3348 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3349 ehc->i.action |= ATA_EH_HARDRESET;
3350
3351 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3352 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
d4b2bab4 3353 ata_wait_spinup(ap, deadline);
f5914a46
TH
3354
3355 /* if we're about to do hardreset, nothing more to do */
3356 if (ehc->i.action & ATA_EH_HARDRESET)
3357 return 0;
3358
3359 /* if SATA, resume phy */
3360 if (ap->cbl == ATA_CBL_SATA) {
d4b2bab4 3361 rc = sata_phy_resume(ap, timing, deadline);
f5914a46
TH
3362 if (rc && rc != -EOPNOTSUPP) {
3363 /* phy resume failed */
3364 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3365 "link for reset (errno=%d)\n", rc);
3366 return rc;
3367 }
3368 }
3369
3370 /* Wait for !BSY if the controller can wait for the first D2H
3371 * Reg FIS and we don't know that no device is attached.
3372 */
3373 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
d4b2bab4 3374 ata_wait_ready(ap, deadline);
f5914a46
TH
3375
3376 return 0;
3377}
3378
c2bd5804
TH
3379/**
3380 * ata_std_softreset - reset host port via ATA SRST
3381 * @ap: port to reset
c2bd5804 3382 * @classes: resulting classes of attached devices
d4b2bab4 3383 * @deadline: deadline jiffies for the operation
c2bd5804 3384 *
52783c5d 3385 * Reset host port using ATA SRST.
c2bd5804
TH
3386 *
3387 * LOCKING:
3388 * Kernel thread context (may sleep)
3389 *
3390 * RETURNS:
3391 * 0 on success, -errno otherwise.
3392 */
d4b2bab4
TH
3393int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3394 unsigned long deadline)
c2bd5804
TH
3395{
3396 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3397 unsigned int devmask = 0;
3398 int rc;
c2bd5804
TH
3399 u8 err;
3400
3401 DPRINTK("ENTER\n");
3402
81952c54 3403 if (ata_port_offline(ap)) {
3a39746a
TH
3404 classes[0] = ATA_DEV_NONE;
3405 goto out;
3406 }
3407
c2bd5804
TH
3408 /* determine if device 0/1 are present */
3409 if (ata_devchk(ap, 0))
3410 devmask |= (1 << 0);
3411 if (slave_possible && ata_devchk(ap, 1))
3412 devmask |= (1 << 1);
3413
c2bd5804
TH
3414 /* select device 0 again */
3415 ap->ops->dev_select(ap, 0);
3416
3417 /* issue bus reset */
3418 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4
TH
3419 rc = ata_bus_softreset(ap, devmask, deadline);
3420 if (rc) {
3421 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3422 return rc;
c2bd5804
TH
3423 }
3424
3425 /* determine by signature whether we have ATA or ATAPI devices */
3426 classes[0] = ata_dev_try_classify(ap, 0, &err);
3427 if (slave_possible && err != 0x81)
3428 classes[1] = ata_dev_try_classify(ap, 1, &err);
3429
3a39746a 3430 out:
c2bd5804
TH
3431 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3432 return 0;
3433}
3434
3435/**
b6103f6d 3436 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3437 * @ap: port to reset
b6103f6d 3438 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3439 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3440 *
3441 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3442 *
3443 * LOCKING:
3444 * Kernel thread context (may sleep)
3445 *
3446 * RETURNS:
3447 * 0 on success, -errno otherwise.
3448 */
d4b2bab4
TH
3449int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3450 unsigned long deadline)
c2bd5804 3451{
852ee16a 3452 u32 scontrol;
81952c54 3453 int rc;
852ee16a 3454
c2bd5804
TH
3455 DPRINTK("ENTER\n");
3456
3c567b7d 3457 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3458 /* SATA spec says nothing about how to reconfigure
3459 * spd. To be on the safe side, turn off phy during
3460 * reconfiguration. This works for at least ICH7 AHCI
3461 * and Sil3124.
3462 */
81952c54 3463 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3464 goto out;
81952c54 3465
a34b6fc0 3466 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3467
3468 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3469 goto out;
1c3fae4d 3470
3c567b7d 3471 sata_set_spd(ap);
1c3fae4d
TH
3472 }
3473
3474 /* issue phy wake/reset */
81952c54 3475 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3476 goto out;
81952c54 3477
852ee16a 3478 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3479
3480 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3481 goto out;
c2bd5804 3482
1c3fae4d 3483 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3484 * 10.4.2 says at least 1 ms.
3485 */
3486 msleep(1);
3487
1c3fae4d 3488 /* bring phy back */
d4b2bab4 3489 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3490 out:
3491 DPRINTK("EXIT, rc=%d\n", rc);
3492 return rc;
3493}
3494
3495/**
3496 * sata_std_hardreset - reset host port via SATA phy reset
3497 * @ap: port to reset
3498 * @class: resulting class of attached device
d4b2bab4 3499 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3500 *
3501 * SATA phy-reset host port using DET bits of SControl register,
3502 * wait for !BSY and classify the attached device.
3503 *
3504 * LOCKING:
3505 * Kernel thread context (may sleep)
3506 *
3507 * RETURNS:
3508 * 0 on success, -errno otherwise.
3509 */
d4b2bab4
TH
3510int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3511 unsigned long deadline)
b6103f6d
TH
3512{
3513 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3514 int rc;
3515
3516 DPRINTK("ENTER\n");
3517
3518 /* do hardreset */
d4b2bab4 3519 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3520 if (rc) {
3521 ata_port_printk(ap, KERN_ERR,
3522 "COMRESET failed (errno=%d)\n", rc);
3523 return rc;
3524 }
c2bd5804 3525
c2bd5804 3526 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3527 if (ata_port_offline(ap)) {
c2bd5804
TH
3528 *class = ATA_DEV_NONE;
3529 DPRINTK("EXIT, link offline\n");
3530 return 0;
3531 }
3532
34fee227
TH
3533 /* wait a while before checking status, see SRST for more info */
3534 msleep(150);
3535
d4b2bab4
TH
3536 rc = ata_wait_ready(ap, deadline);
3537 if (rc && rc != -ENODEV) {
f15a1daf 3538 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3539 "COMRESET failed (errno=%d)\n", rc);
3540 return rc;
c2bd5804
TH
3541 }
3542
3a39746a
TH
3543 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3544
c2bd5804
TH
3545 *class = ata_dev_try_classify(ap, 0, NULL);
3546
3547 DPRINTK("EXIT, class=%u\n", *class);
3548 return 0;
3549}
3550
3551/**
3552 * ata_std_postreset - standard postreset callback
3553 * @ap: the target ata_port
3554 * @classes: classes of attached devices
3555 *
3556 * This function is invoked after a successful reset. Note that
3557 * the device might have been reset more than once using
3558 * different reset methods before postreset is invoked.
c2bd5804 3559 *
c2bd5804
TH
3560 * LOCKING:
3561 * Kernel thread context (may sleep)
3562 */
3563void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3564{
dc2b3515
TH
3565 u32 serror;
3566
c2bd5804
TH
3567 DPRINTK("ENTER\n");
3568
c2bd5804 3569 /* print link status */
81952c54 3570 sata_print_link_status(ap);
c2bd5804 3571
dc2b3515
TH
3572 /* clear SError */
3573 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3574 sata_scr_write(ap, SCR_ERROR, serror);
3575
3a39746a 3576 /* re-enable interrupts */
83625006
AI
3577 if (!ap->ops->error_handler)
3578 ap->ops->irq_on(ap);
c2bd5804
TH
3579
3580 /* is double-select really necessary? */
3581 if (classes[0] != ATA_DEV_NONE)
3582 ap->ops->dev_select(ap, 1);
3583 if (classes[1] != ATA_DEV_NONE)
3584 ap->ops->dev_select(ap, 0);
3585
3a39746a
TH
3586 /* bail out if no device is present */
3587 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3588 DPRINTK("EXIT, no device\n");
3589 return;
3590 }
3591
3592 /* set up device control */
0d5ff566
TH
3593 if (ap->ioaddr.ctl_addr)
3594 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3595
3596 DPRINTK("EXIT\n");
3597}
3598
623a3128
TH
3599/**
3600 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3601 * @dev: device to compare against
3602 * @new_class: class of the new device
3603 * @new_id: IDENTIFY page of the new device
3604 *
3605 * Compare @new_class and @new_id against @dev and determine
3606 * whether @dev is the device indicated by @new_class and
3607 * @new_id.
3608 *
3609 * LOCKING:
3610 * None.
3611 *
3612 * RETURNS:
3613 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3614 */
3373efd8
TH
3615static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3616 const u16 *new_id)
623a3128
TH
3617{
3618 const u16 *old_id = dev->id;
a0cf733b
TH
3619 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3620 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3621 u64 new_n_sectors;
3622
3623 if (dev->class != new_class) {
f15a1daf
TH
3624 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3625 dev->class, new_class);
623a3128
TH
3626 return 0;
3627 }
3628
a0cf733b
TH
3629 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3630 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3631 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3632 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3633 new_n_sectors = ata_id_n_sectors(new_id);
3634
3635 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3636 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3637 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3638 return 0;
3639 }
3640
3641 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3642 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3643 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3644 return 0;
3645 }
3646
3647 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3648 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3649 "%llu != %llu\n",
3650 (unsigned long long)dev->n_sectors,
3651 (unsigned long long)new_n_sectors);
1e999736
AC
3652 /* Are we the boot time size - if so we appear to be the
3653 same disk at this point and our HPA got reapplied */
3654 if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
3655 && ata_id_hpa_enabled(new_id))
3656 return 1;
623a3128
TH
3657 return 0;
3658 }
3659
3660 return 1;
3661}
3662
3663/**
3664 * ata_dev_revalidate - Revalidate ATA device
623a3128 3665 * @dev: device to revalidate
bff04647 3666 * @readid_flags: read ID flags
623a3128
TH
3667 *
3668 * Re-read IDENTIFY page and make sure @dev is still attached to
3669 * the port.
3670 *
3671 * LOCKING:
3672 * Kernel thread context (may sleep)
3673 *
3674 * RETURNS:
3675 * 0 on success, negative errno otherwise
3676 */
bff04647 3677int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3678{
5eb45c02 3679 unsigned int class = dev->class;
f15a1daf 3680 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3681 int rc;
3682
5eb45c02
TH
3683 if (!ata_dev_enabled(dev)) {
3684 rc = -ENODEV;
3685 goto fail;
3686 }
623a3128 3687
fe635c7e 3688 /* read ID data */
bff04647 3689 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3690 if (rc)
3691 goto fail;
3692
3693 /* is the device still there? */
3373efd8 3694 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3695 rc = -ENODEV;
3696 goto fail;
3697 }
3698
fe635c7e 3699 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3700
3701 /* configure device according to the new ID */
efdaedc4 3702 rc = ata_dev_configure(dev);
5eb45c02
TH
3703 if (rc == 0)
3704 return 0;
623a3128
TH
3705
3706 fail:
f15a1daf 3707 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3708 return rc;
3709}
3710
6919a0a6
AC
3711struct ata_blacklist_entry {
3712 const char *model_num;
3713 const char *model_rev;
3714 unsigned long horkage;
3715};
3716
3717static const struct ata_blacklist_entry ata_device_blacklist [] = {
3718 /* Devices with DMA related problems under Linux */
3719 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3720 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3721 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3722 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3723 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3724 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3725 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3726 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3727 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3728 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3729 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3730 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3731 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3732 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3733 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3734 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3735 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3736 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3737 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3738 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3739 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3740 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3741 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3742 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3743 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3744 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3745 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3746 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3747 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3748
18d6e9d5 3749 /* Weird ATAPI devices */
6f23a31d
AL
3750 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3751 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3752
6919a0a6
AC
3753 /* Devices we expect to fail diagnostics */
3754
3755 /* Devices where NCQ should be avoided */
3756 /* NCQ is slow */
3757 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3758 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3759 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3760 /* NCQ is broken */
3761 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3762 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3763 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3764 /* Blacklist entries taken from Silicon Image 3124/3132
3765 Windows driver .inf file - also several Linux problem reports */
3766 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3767 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3768 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3769
3770 /* Devices with NCQ limits */
3771
3772 /* End Marker */
3773 { }
1da177e4 3774};
2e9edbf8 3775
6919a0a6 3776unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3777{
8bfa79fc
TH
3778 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3779 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3780 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3781
8bfa79fc
TH
3782 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3783 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3784
6919a0a6 3785 while (ad->model_num) {
8bfa79fc 3786 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3787 if (ad->model_rev == NULL)
3788 return ad->horkage;
8bfa79fc 3789 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3790 return ad->horkage;
f4b15fef 3791 }
6919a0a6 3792 ad++;
f4b15fef 3793 }
1da177e4
LT
3794 return 0;
3795}
3796
6919a0a6
AC
3797static int ata_dma_blacklisted(const struct ata_device *dev)
3798{
3799 /* We don't support polling DMA.
3800 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3801 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3802 */
3803 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3804 (dev->flags & ATA_DFLAG_CDB_INTR))
3805 return 1;
3806 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3807}
3808
a6d5a51c
TH
3809/**
3810 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3811 * @dev: Device to compute xfermask for
3812 *
acf356b1
TH
3813 * Compute supported xfermask of @dev and store it in
3814 * dev->*_mask. This function is responsible for applying all
3815 * known limits including host controller limits, device
3816 * blacklist, etc...
a6d5a51c
TH
3817 *
3818 * LOCKING:
3819 * None.
a6d5a51c 3820 */
3373efd8 3821static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3822{
3373efd8 3823 struct ata_port *ap = dev->ap;
cca3974e 3824 struct ata_host *host = ap->host;
a6d5a51c 3825 unsigned long xfer_mask;
1da177e4 3826
37deecb5 3827 /* controller modes available */
565083e1
TH
3828 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3829 ap->mwdma_mask, ap->udma_mask);
3830
8343f889 3831 /* drive modes available */
37deecb5
TH
3832 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3833 dev->mwdma_mask, dev->udma_mask);
3834 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3835
b352e57d
AC
3836 /*
3837 * CFA Advanced TrueIDE timings are not allowed on a shared
3838 * cable
3839 */
3840 if (ata_dev_pair(dev)) {
3841 /* No PIO5 or PIO6 */
3842 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3843 /* No MWDMA3 or MWDMA 4 */
3844 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3845 }
3846
37deecb5
TH
3847 if (ata_dma_blacklisted(dev)) {
3848 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3849 ata_dev_printk(dev, KERN_WARNING,
3850 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3851 }
a6d5a51c 3852
14d66ab7
PV
3853 if ((host->flags & ATA_HOST_SIMPLEX) &&
3854 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3855 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3856 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3857 "other device, disabling DMA\n");
5444a6f4 3858 }
565083e1 3859
e424675f
JG
3860 if (ap->flags & ATA_FLAG_NO_IORDY)
3861 xfer_mask &= ata_pio_mask_no_iordy(dev);
3862
5444a6f4 3863 if (ap->ops->mode_filter)
a76b62ca 3864 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3865
8343f889
RH
3866 /* Apply cable rule here. Don't apply it early because when
3867 * we handle hot plug the cable type can itself change.
3868 * Check this last so that we know if the transfer rate was
3869 * solely limited by the cable.
3870 * Unknown or 80 wire cables reported host side are checked
3871 * drive side as well. Cases where we know a 40wire cable
3872 * is used safely for 80 are not checked here.
3873 */
3874 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3875 /* UDMA/44 or higher would be available */
3876 if((ap->cbl == ATA_CBL_PATA40) ||
3877 (ata_drive_40wire(dev->id) &&
3878 (ap->cbl == ATA_CBL_PATA_UNK ||
3879 ap->cbl == ATA_CBL_PATA80))) {
3880 ata_dev_printk(dev, KERN_WARNING,
3881 "limited to UDMA/33 due to 40-wire cable\n");
3882 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3883 }
3884
565083e1
TH
3885 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3886 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3887}
3888
1da177e4
LT
3889/**
3890 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3891 * @dev: Device to which command will be sent
3892 *
780a87f7
JG
3893 * Issue SET FEATURES - XFER MODE command to device @dev
3894 * on port @ap.
3895 *
1da177e4 3896 * LOCKING:
0cba632b 3897 * PCI/etc. bus probe sem.
83206a29
TH
3898 *
3899 * RETURNS:
3900 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3901 */
3902
3373efd8 3903static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3904{
a0123703 3905 struct ata_taskfile tf;
83206a29 3906 unsigned int err_mask;
1da177e4
LT
3907
3908 /* set up set-features taskfile */
3909 DPRINTK("set features - xfer mode\n");
3910
3373efd8 3911 ata_tf_init(dev, &tf);
a0123703
TH
3912 tf.command = ATA_CMD_SET_FEATURES;
3913 tf.feature = SETFEATURES_XFER;
3914 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3915 tf.protocol = ATA_PROT_NODATA;
3916 tf.nsect = dev->xfer_mode;
1da177e4 3917
3373efd8 3918 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3919
83206a29
TH
3920 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3921 return err_mask;
1da177e4
LT
3922}
3923
8bf62ece
AL
3924/**
3925 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3926 * @dev: Device to which command will be sent
e2a7f77a
RD
3927 * @heads: Number of heads (taskfile parameter)
3928 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3929 *
3930 * LOCKING:
6aff8f1f
TH
3931 * Kernel thread context (may sleep)
3932 *
3933 * RETURNS:
3934 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3935 */
3373efd8
TH
3936static unsigned int ata_dev_init_params(struct ata_device *dev,
3937 u16 heads, u16 sectors)
8bf62ece 3938{
a0123703 3939 struct ata_taskfile tf;
6aff8f1f 3940 unsigned int err_mask;
8bf62ece
AL
3941
3942 /* Number of sectors per track 1-255. Number of heads 1-16 */
3943 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3944 return AC_ERR_INVALID;
8bf62ece
AL
3945
3946 /* set up init dev params taskfile */
3947 DPRINTK("init dev params \n");
3948
3373efd8 3949 ata_tf_init(dev, &tf);
a0123703
TH
3950 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3951 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3952 tf.protocol = ATA_PROT_NODATA;
3953 tf.nsect = sectors;
3954 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3955
3373efd8 3956 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3957
6aff8f1f
TH
3958 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3959 return err_mask;
8bf62ece
AL
3960}
3961
1da177e4 3962/**
0cba632b
JG
3963 * ata_sg_clean - Unmap DMA memory associated with command
3964 * @qc: Command containing DMA memory to be released
3965 *
3966 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3967 *
3968 * LOCKING:
cca3974e 3969 * spin_lock_irqsave(host lock)
1da177e4 3970 */
70e6ad0c 3971void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3972{
3973 struct ata_port *ap = qc->ap;
cedc9a47 3974 struct scatterlist *sg = qc->__sg;
1da177e4 3975 int dir = qc->dma_dir;
cedc9a47 3976 void *pad_buf = NULL;
1da177e4 3977
a4631474
TH
3978 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3979 WARN_ON(sg == NULL);
1da177e4
LT
3980
3981 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3982 WARN_ON(qc->n_elem > 1);
1da177e4 3983
2c13b7ce 3984 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3985
cedc9a47
JG
3986 /* if we padded the buffer out to 32-bit bound, and data
3987 * xfer direction is from-device, we must copy from the
3988 * pad buffer back into the supplied buffer
3989 */
3990 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3991 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3992
3993 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3994 if (qc->n_elem)
2f1f610b 3995 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3996 /* restore last sg */
3997 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3998 if (pad_buf) {
3999 struct scatterlist *psg = &qc->pad_sgent;
4000 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4001 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4002 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4003 }
4004 } else {
2e242fa9 4005 if (qc->n_elem)
2f1f610b 4006 dma_unmap_single(ap->dev,
e1410f2d
JG
4007 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4008 dir);
cedc9a47
JG
4009 /* restore sg */
4010 sg->length += qc->pad_len;
4011 if (pad_buf)
4012 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4013 pad_buf, qc->pad_len);
4014 }
1da177e4
LT
4015
4016 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4017 qc->__sg = NULL;
1da177e4
LT
4018}
4019
4020/**
4021 * ata_fill_sg - Fill PCI IDE PRD table
4022 * @qc: Metadata associated with taskfile to be transferred
4023 *
780a87f7
JG
4024 * Fill PCI IDE PRD (scatter-gather) table with segments
4025 * associated with the current disk command.
4026 *
1da177e4 4027 * LOCKING:
cca3974e 4028 * spin_lock_irqsave(host lock)
1da177e4
LT
4029 *
4030 */
4031static void ata_fill_sg(struct ata_queued_cmd *qc)
4032{
1da177e4 4033 struct ata_port *ap = qc->ap;
cedc9a47
JG
4034 struct scatterlist *sg;
4035 unsigned int idx;
1da177e4 4036
a4631474 4037 WARN_ON(qc->__sg == NULL);
f131883e 4038 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4039
4040 idx = 0;
cedc9a47 4041 ata_for_each_sg(sg, qc) {
1da177e4
LT
4042 u32 addr, offset;
4043 u32 sg_len, len;
4044
4045 /* determine if physical DMA addr spans 64K boundary.
4046 * Note h/w doesn't support 64-bit, so we unconditionally
4047 * truncate dma_addr_t to u32.
4048 */
4049 addr = (u32) sg_dma_address(sg);
4050 sg_len = sg_dma_len(sg);
4051
4052 while (sg_len) {
4053 offset = addr & 0xffff;
4054 len = sg_len;
4055 if ((offset + sg_len) > 0x10000)
4056 len = 0x10000 - offset;
4057
4058 ap->prd[idx].addr = cpu_to_le32(addr);
4059 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4060 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4061
4062 idx++;
4063 sg_len -= len;
4064 addr += len;
4065 }
4066 }
4067
4068 if (idx)
4069 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4070}
4071/**
4072 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4073 * @qc: Metadata associated with taskfile to check
4074 *
780a87f7
JG
4075 * Allow low-level driver to filter ATA PACKET commands, returning
4076 * a status indicating whether or not it is OK to use DMA for the
4077 * supplied PACKET command.
4078 *
1da177e4 4079 * LOCKING:
cca3974e 4080 * spin_lock_irqsave(host lock)
0cba632b 4081 *
1da177e4
LT
4082 * RETURNS: 0 when ATAPI DMA can be used
4083 * nonzero otherwise
4084 */
4085int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4086{
4087 struct ata_port *ap = qc->ap;
4088 int rc = 0; /* Assume ATAPI DMA is OK by default */
4089
6f23a31d
AL
4090 /* some drives can only do ATAPI DMA on read/write */
4091 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4092 struct scsi_cmnd *cmd = qc->scsicmd;
4093 u8 *scsicmd = cmd->cmnd;
4094
4095 switch (scsicmd[0]) {
4096 case READ_10:
4097 case WRITE_10:
4098 case READ_12:
4099 case WRITE_12:
4100 case READ_6:
4101 case WRITE_6:
4102 /* atapi dma maybe ok */
4103 break;
4104 default:
4105 /* turn off atapi dma */
4106 return 1;
4107 }
4108 }
4109
1da177e4
LT
4110 if (ap->ops->check_atapi_dma)
4111 rc = ap->ops->check_atapi_dma(qc);
4112
4113 return rc;
4114}
4115/**
4116 * ata_qc_prep - Prepare taskfile for submission
4117 * @qc: Metadata associated with taskfile to be prepared
4118 *
780a87f7
JG
4119 * Prepare ATA taskfile for submission.
4120 *
1da177e4 4121 * LOCKING:
cca3974e 4122 * spin_lock_irqsave(host lock)
1da177e4
LT
4123 */
4124void ata_qc_prep(struct ata_queued_cmd *qc)
4125{
4126 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4127 return;
4128
4129 ata_fill_sg(qc);
4130}
4131
e46834cd
BK
4132void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4133
0cba632b
JG
4134/**
4135 * ata_sg_init_one - Associate command with memory buffer
4136 * @qc: Command to be associated
4137 * @buf: Memory buffer
4138 * @buflen: Length of memory buffer, in bytes.
4139 *
4140 * Initialize the data-related elements of queued_cmd @qc
4141 * to point to a single memory buffer, @buf of byte length @buflen.
4142 *
4143 * LOCKING:
cca3974e 4144 * spin_lock_irqsave(host lock)
0cba632b
JG
4145 */
4146
1da177e4
LT
4147void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4148{
1da177e4
LT
4149 qc->flags |= ATA_QCFLAG_SINGLE;
4150
cedc9a47 4151 qc->__sg = &qc->sgent;
1da177e4 4152 qc->n_elem = 1;
cedc9a47 4153 qc->orig_n_elem = 1;
1da177e4 4154 qc->buf_virt = buf;
233277ca 4155 qc->nbytes = buflen;
1da177e4 4156
61c0596c 4157 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4158}
4159
0cba632b
JG
4160/**
4161 * ata_sg_init - Associate command with scatter-gather table.
4162 * @qc: Command to be associated
4163 * @sg: Scatter-gather table.
4164 * @n_elem: Number of elements in s/g table.
4165 *
4166 * Initialize the data-related elements of queued_cmd @qc
4167 * to point to a scatter-gather table @sg, containing @n_elem
4168 * elements.
4169 *
4170 * LOCKING:
cca3974e 4171 * spin_lock_irqsave(host lock)
0cba632b
JG
4172 */
4173
1da177e4
LT
4174void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4175 unsigned int n_elem)
4176{
4177 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4178 qc->__sg = sg;
1da177e4 4179 qc->n_elem = n_elem;
cedc9a47 4180 qc->orig_n_elem = n_elem;
1da177e4
LT
4181}
4182
4183/**
0cba632b
JG
4184 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4185 * @qc: Command with memory buffer to be mapped.
4186 *
4187 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4188 *
4189 * LOCKING:
cca3974e 4190 * spin_lock_irqsave(host lock)
1da177e4
LT
4191 *
4192 * RETURNS:
0cba632b 4193 * Zero on success, negative on error.
1da177e4
LT
4194 */
4195
4196static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4197{
4198 struct ata_port *ap = qc->ap;
4199 int dir = qc->dma_dir;
cedc9a47 4200 struct scatterlist *sg = qc->__sg;
1da177e4 4201 dma_addr_t dma_address;
2e242fa9 4202 int trim_sg = 0;
1da177e4 4203
cedc9a47
JG
4204 /* we must lengthen transfers to end on a 32-bit boundary */
4205 qc->pad_len = sg->length & 3;
4206 if (qc->pad_len) {
4207 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4208 struct scatterlist *psg = &qc->pad_sgent;
4209
a4631474 4210 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4211
4212 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4213
4214 if (qc->tf.flags & ATA_TFLAG_WRITE)
4215 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4216 qc->pad_len);
4217
4218 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4219 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4220 /* trim sg */
4221 sg->length -= qc->pad_len;
2e242fa9
TH
4222 if (sg->length == 0)
4223 trim_sg = 1;
cedc9a47
JG
4224
4225 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4226 sg->length, qc->pad_len);
4227 }
4228
2e242fa9
TH
4229 if (trim_sg) {
4230 qc->n_elem--;
e1410f2d
JG
4231 goto skip_map;
4232 }
4233
2f1f610b 4234 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4235 sg->length, dir);
537a95d9
TH
4236 if (dma_mapping_error(dma_address)) {
4237 /* restore sg */
4238 sg->length += qc->pad_len;
1da177e4 4239 return -1;
537a95d9 4240 }
1da177e4
LT
4241
4242 sg_dma_address(sg) = dma_address;
32529e01 4243 sg_dma_len(sg) = sg->length;
1da177e4 4244
2e242fa9 4245skip_map:
1da177e4
LT
4246 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4247 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4248
4249 return 0;
4250}
4251
4252/**
0cba632b
JG
4253 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4254 * @qc: Command with scatter-gather table to be mapped.
4255 *
4256 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4257 *
4258 * LOCKING:
cca3974e 4259 * spin_lock_irqsave(host lock)
1da177e4
LT
4260 *
4261 * RETURNS:
0cba632b 4262 * Zero on success, negative on error.
1da177e4
LT
4263 *
4264 */
4265
4266static int ata_sg_setup(struct ata_queued_cmd *qc)
4267{
4268 struct ata_port *ap = qc->ap;
cedc9a47
JG
4269 struct scatterlist *sg = qc->__sg;
4270 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4271 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4272
44877b4e 4273 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4274 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4275
cedc9a47
JG
4276 /* we must lengthen transfers to end on a 32-bit boundary */
4277 qc->pad_len = lsg->length & 3;
4278 if (qc->pad_len) {
4279 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4280 struct scatterlist *psg = &qc->pad_sgent;
4281 unsigned int offset;
4282
a4631474 4283 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4284
4285 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4286
4287 /*
4288 * psg->page/offset are used to copy to-be-written
4289 * data in this function or read data in ata_sg_clean.
4290 */
4291 offset = lsg->offset + lsg->length - qc->pad_len;
4292 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4293 psg->offset = offset_in_page(offset);
4294
4295 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4296 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4297 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4298 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4299 }
4300
4301 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4302 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4303 /* trim last sg */
4304 lsg->length -= qc->pad_len;
e1410f2d
JG
4305 if (lsg->length == 0)
4306 trim_sg = 1;
cedc9a47
JG
4307
4308 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4309 qc->n_elem - 1, lsg->length, qc->pad_len);
4310 }
4311
e1410f2d
JG
4312 pre_n_elem = qc->n_elem;
4313 if (trim_sg && pre_n_elem)
4314 pre_n_elem--;
4315
4316 if (!pre_n_elem) {
4317 n_elem = 0;
4318 goto skip_map;
4319 }
4320
1da177e4 4321 dir = qc->dma_dir;
2f1f610b 4322 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4323 if (n_elem < 1) {
4324 /* restore last sg */
4325 lsg->length += qc->pad_len;
1da177e4 4326 return -1;
537a95d9 4327 }
1da177e4
LT
4328
4329 DPRINTK("%d sg elements mapped\n", n_elem);
4330
e1410f2d 4331skip_map:
1da177e4
LT
4332 qc->n_elem = n_elem;
4333
4334 return 0;
4335}
4336
0baab86b 4337/**
c893a3ae 4338 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4339 * @buf: Buffer to swap
4340 * @buf_words: Number of 16-bit words in buffer.
4341 *
4342 * Swap halves of 16-bit words if needed to convert from
4343 * little-endian byte order to native cpu byte order, or
4344 * vice-versa.
4345 *
4346 * LOCKING:
6f0ef4fa 4347 * Inherited from caller.
0baab86b 4348 */
1da177e4
LT
4349void swap_buf_le16(u16 *buf, unsigned int buf_words)
4350{
4351#ifdef __BIG_ENDIAN
4352 unsigned int i;
4353
4354 for (i = 0; i < buf_words; i++)
4355 buf[i] = le16_to_cpu(buf[i]);
4356#endif /* __BIG_ENDIAN */
4357}
4358
6ae4cfb5 4359/**
0d5ff566 4360 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4361 * @adev: device to target
6ae4cfb5
AL
4362 * @buf: data buffer
4363 * @buflen: buffer length
344babaa 4364 * @write_data: read/write
6ae4cfb5
AL
4365 *
4366 * Transfer data from/to the device data register by PIO.
4367 *
4368 * LOCKING:
4369 * Inherited from caller.
6ae4cfb5 4370 */
0d5ff566
TH
4371void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4372 unsigned int buflen, int write_data)
1da177e4 4373{
a6b2c5d4 4374 struct ata_port *ap = adev->ap;
6ae4cfb5 4375 unsigned int words = buflen >> 1;
1da177e4 4376
6ae4cfb5 4377 /* Transfer multiple of 2 bytes */
1da177e4 4378 if (write_data)
0d5ff566 4379 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4380 else
0d5ff566 4381 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4382
4383 /* Transfer trailing 1 byte, if any. */
4384 if (unlikely(buflen & 0x01)) {
4385 u16 align_buf[1] = { 0 };
4386 unsigned char *trailing_buf = buf + buflen - 1;
4387
4388 if (write_data) {
4389 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4390 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4391 } else {
0d5ff566 4392 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4393 memcpy(trailing_buf, align_buf, 1);
4394 }
4395 }
1da177e4
LT
4396}
4397
75e99585 4398/**
0d5ff566 4399 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4400 * @adev: device to target
4401 * @buf: data buffer
4402 * @buflen: buffer length
4403 * @write_data: read/write
4404 *
88574551 4405 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4406 * transfer with interrupts disabled.
4407 *
4408 * LOCKING:
4409 * Inherited from caller.
4410 */
0d5ff566
TH
4411void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4412 unsigned int buflen, int write_data)
75e99585
AC
4413{
4414 unsigned long flags;
4415 local_irq_save(flags);
0d5ff566 4416 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4417 local_irq_restore(flags);
4418}
4419
4420
6ae4cfb5 4421/**
5a5dbd18 4422 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4423 * @qc: Command on going
4424 *
5a5dbd18 4425 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4426 *
4427 * LOCKING:
4428 * Inherited from caller.
4429 */
4430
1da177e4
LT
4431static void ata_pio_sector(struct ata_queued_cmd *qc)
4432{
4433 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4434 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4435 struct ata_port *ap = qc->ap;
4436 struct page *page;
4437 unsigned int offset;
4438 unsigned char *buf;
4439
5a5dbd18 4440 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4441 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4442
4443 page = sg[qc->cursg].page;
726f0785 4444 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4445
4446 /* get the current page and offset */
4447 page = nth_page(page, (offset >> PAGE_SHIFT));
4448 offset %= PAGE_SIZE;
4449
1da177e4
LT
4450 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4451
91b8b313
AL
4452 if (PageHighMem(page)) {
4453 unsigned long flags;
4454
a6b2c5d4 4455 /* FIXME: use a bounce buffer */
91b8b313
AL
4456 local_irq_save(flags);
4457 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4458
91b8b313 4459 /* do the actual data transfer */
5a5dbd18 4460 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4461
91b8b313
AL
4462 kunmap_atomic(buf, KM_IRQ0);
4463 local_irq_restore(flags);
4464 } else {
4465 buf = page_address(page);
5a5dbd18 4466 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4467 }
1da177e4 4468
5a5dbd18
ML
4469 qc->curbytes += qc->sect_size;
4470 qc->cursg_ofs += qc->sect_size;
1da177e4 4471
726f0785 4472 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4473 qc->cursg++;
4474 qc->cursg_ofs = 0;
4475 }
1da177e4 4476}
1da177e4 4477
07f6f7d0 4478/**
5a5dbd18 4479 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4480 * @qc: Command on going
4481 *
5a5dbd18 4482 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4483 * ATA device for the DRQ request.
4484 *
4485 * LOCKING:
4486 * Inherited from caller.
4487 */
1da177e4 4488
07f6f7d0
AL
4489static void ata_pio_sectors(struct ata_queued_cmd *qc)
4490{
4491 if (is_multi_taskfile(&qc->tf)) {
4492 /* READ/WRITE MULTIPLE */
4493 unsigned int nsect;
4494
587005de 4495 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4496
5a5dbd18 4497 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4498 qc->dev->multi_count);
07f6f7d0
AL
4499 while (nsect--)
4500 ata_pio_sector(qc);
4501 } else
4502 ata_pio_sector(qc);
4503}
4504
c71c1857
AL
4505/**
4506 * atapi_send_cdb - Write CDB bytes to hardware
4507 * @ap: Port to which ATAPI device is attached.
4508 * @qc: Taskfile currently active
4509 *
4510 * When device has indicated its readiness to accept
4511 * a CDB, this function is called. Send the CDB.
4512 *
4513 * LOCKING:
4514 * caller.
4515 */
4516
4517static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4518{
4519 /* send SCSI cdb */
4520 DPRINTK("send cdb\n");
db024d53 4521 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4522
a6b2c5d4 4523 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4524 ata_altstatus(ap); /* flush */
4525
4526 switch (qc->tf.protocol) {
4527 case ATA_PROT_ATAPI:
4528 ap->hsm_task_state = HSM_ST;
4529 break;
4530 case ATA_PROT_ATAPI_NODATA:
4531 ap->hsm_task_state = HSM_ST_LAST;
4532 break;
4533 case ATA_PROT_ATAPI_DMA:
4534 ap->hsm_task_state = HSM_ST_LAST;
4535 /* initiate bmdma */
4536 ap->ops->bmdma_start(qc);
4537 break;
4538 }
1da177e4
LT
4539}
4540
6ae4cfb5
AL
4541/**
4542 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4543 * @qc: Command on going
4544 * @bytes: number of bytes
4545 *
4546 * Transfer Transfer data from/to the ATAPI device.
4547 *
4548 * LOCKING:
4549 * Inherited from caller.
4550 *
4551 */
4552
1da177e4
LT
4553static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4554{
4555 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4556 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4557 struct ata_port *ap = qc->ap;
4558 struct page *page;
4559 unsigned char *buf;
4560 unsigned int offset, count;
4561
563a6e1f 4562 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4563 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4564
4565next_sg:
563a6e1f 4566 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4567 /*
563a6e1f
AL
4568 * The end of qc->sg is reached and the device expects
4569 * more data to transfer. In order not to overrun qc->sg
4570 * and fulfill length specified in the byte count register,
4571 * - for read case, discard trailing data from the device
4572 * - for write case, padding zero data to the device
4573 */
4574 u16 pad_buf[1] = { 0 };
4575 unsigned int words = bytes >> 1;
4576 unsigned int i;
4577
4578 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4579 ata_dev_printk(qc->dev, KERN_WARNING,
4580 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4581
4582 for (i = 0; i < words; i++)
a6b2c5d4 4583 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4584
14be71f4 4585 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4586 return;
4587 }
4588
cedc9a47 4589 sg = &qc->__sg[qc->cursg];
1da177e4 4590
1da177e4
LT
4591 page = sg->page;
4592 offset = sg->offset + qc->cursg_ofs;
4593
4594 /* get the current page and offset */
4595 page = nth_page(page, (offset >> PAGE_SHIFT));
4596 offset %= PAGE_SIZE;
4597
6952df03 4598 /* don't overrun current sg */
32529e01 4599 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4600
4601 /* don't cross page boundaries */
4602 count = min(count, (unsigned int)PAGE_SIZE - offset);
4603
7282aa4b
AL
4604 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4605
91b8b313
AL
4606 if (PageHighMem(page)) {
4607 unsigned long flags;
4608
a6b2c5d4 4609 /* FIXME: use bounce buffer */
91b8b313
AL
4610 local_irq_save(flags);
4611 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4612
91b8b313 4613 /* do the actual data transfer */
a6b2c5d4 4614 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4615
91b8b313
AL
4616 kunmap_atomic(buf, KM_IRQ0);
4617 local_irq_restore(flags);
4618 } else {
4619 buf = page_address(page);
a6b2c5d4 4620 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4621 }
1da177e4
LT
4622
4623 bytes -= count;
4624 qc->curbytes += count;
4625 qc->cursg_ofs += count;
4626
32529e01 4627 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4628 qc->cursg++;
4629 qc->cursg_ofs = 0;
4630 }
4631
563a6e1f 4632 if (bytes)
1da177e4 4633 goto next_sg;
1da177e4
LT
4634}
4635
6ae4cfb5
AL
4636/**
4637 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4638 * @qc: Command on going
4639 *
4640 * Transfer Transfer data from/to the ATAPI device.
4641 *
4642 * LOCKING:
4643 * Inherited from caller.
6ae4cfb5
AL
4644 */
4645
1da177e4
LT
4646static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4647{
4648 struct ata_port *ap = qc->ap;
4649 struct ata_device *dev = qc->dev;
4650 unsigned int ireason, bc_lo, bc_hi, bytes;
4651 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4652
eec4c3f3
AL
4653 /* Abuse qc->result_tf for temp storage of intermediate TF
4654 * here to save some kernel stack usage.
4655 * For normal completion, qc->result_tf is not relevant. For
4656 * error, qc->result_tf is later overwritten by ata_qc_complete().
4657 * So, the correctness of qc->result_tf is not affected.
4658 */
4659 ap->ops->tf_read(ap, &qc->result_tf);
4660 ireason = qc->result_tf.nsect;
4661 bc_lo = qc->result_tf.lbam;
4662 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4663 bytes = (bc_hi << 8) | bc_lo;
4664
4665 /* shall be cleared to zero, indicating xfer of data */
4666 if (ireason & (1 << 0))
4667 goto err_out;
4668
4669 /* make sure transfer direction matches expected */
4670 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4671 if (do_write != i_write)
4672 goto err_out;
4673
44877b4e 4674 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4675
1da177e4
LT
4676 __atapi_pio_bytes(qc, bytes);
4677
4678 return;
4679
4680err_out:
f15a1daf 4681 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4682 qc->err_mask |= AC_ERR_HSM;
14be71f4 4683 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4684}
4685
4686/**
c234fb00
AL
4687 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4688 * @ap: the target ata_port
4689 * @qc: qc on going
1da177e4 4690 *
c234fb00
AL
4691 * RETURNS:
4692 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4693 */
c234fb00
AL
4694
4695static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4696{
c234fb00
AL
4697 if (qc->tf.flags & ATA_TFLAG_POLLING)
4698 return 1;
1da177e4 4699
c234fb00
AL
4700 if (ap->hsm_task_state == HSM_ST_FIRST) {
4701 if (qc->tf.protocol == ATA_PROT_PIO &&
4702 (qc->tf.flags & ATA_TFLAG_WRITE))
4703 return 1;
1da177e4 4704
c234fb00
AL
4705 if (is_atapi_taskfile(&qc->tf) &&
4706 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4707 return 1;
fe79e683
AL
4708 }
4709
c234fb00
AL
4710 return 0;
4711}
1da177e4 4712
c17ea20d
TH
4713/**
4714 * ata_hsm_qc_complete - finish a qc running on standard HSM
4715 * @qc: Command to complete
4716 * @in_wq: 1 if called from workqueue, 0 otherwise
4717 *
4718 * Finish @qc which is running on standard HSM.
4719 *
4720 * LOCKING:
cca3974e 4721 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4722 * Otherwise, none on entry and grabs host lock.
4723 */
4724static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4725{
4726 struct ata_port *ap = qc->ap;
4727 unsigned long flags;
4728
4729 if (ap->ops->error_handler) {
4730 if (in_wq) {
ba6a1308 4731 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4732
cca3974e
JG
4733 /* EH might have kicked in while host lock is
4734 * released.
c17ea20d
TH
4735 */
4736 qc = ata_qc_from_tag(ap, qc->tag);
4737 if (qc) {
4738 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4739 ap->ops->irq_on(ap);
c17ea20d
TH
4740 ata_qc_complete(qc);
4741 } else
4742 ata_port_freeze(ap);
4743 }
4744
ba6a1308 4745 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4746 } else {
4747 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4748 ata_qc_complete(qc);
4749 else
4750 ata_port_freeze(ap);
4751 }
4752 } else {
4753 if (in_wq) {
ba6a1308 4754 spin_lock_irqsave(ap->lock, flags);
83625006 4755 ap->ops->irq_on(ap);
c17ea20d 4756 ata_qc_complete(qc);
ba6a1308 4757 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4758 } else
4759 ata_qc_complete(qc);
4760 }
1da177e4 4761
c81e29b4 4762 ata_altstatus(ap); /* flush */
c17ea20d
TH
4763}
4764
bb5cb290
AL
4765/**
4766 * ata_hsm_move - move the HSM to the next state.
4767 * @ap: the target ata_port
4768 * @qc: qc on going
4769 * @status: current device status
4770 * @in_wq: 1 if called from workqueue, 0 otherwise
4771 *
4772 * RETURNS:
4773 * 1 when poll next status needed, 0 otherwise.
4774 */
9a1004d0
TH
4775int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4776 u8 status, int in_wq)
e2cec771 4777{
bb5cb290
AL
4778 unsigned long flags = 0;
4779 int poll_next;
4780
6912ccd5
AL
4781 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4782
bb5cb290
AL
4783 /* Make sure ata_qc_issue_prot() does not throw things
4784 * like DMA polling into the workqueue. Notice that
4785 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4786 */
c234fb00 4787 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4788
e2cec771 4789fsm_start:
999bb6f4 4790 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4791 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4792
e2cec771
AL
4793 switch (ap->hsm_task_state) {
4794 case HSM_ST_FIRST:
bb5cb290
AL
4795 /* Send first data block or PACKET CDB */
4796
4797 /* If polling, we will stay in the work queue after
4798 * sending the data. Otherwise, interrupt handler
4799 * takes over after sending the data.
4800 */
4801 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4802
e2cec771 4803 /* check device status */
3655d1d3
AL
4804 if (unlikely((status & ATA_DRQ) == 0)) {
4805 /* handle BSY=0, DRQ=0 as error */
4806 if (likely(status & (ATA_ERR | ATA_DF)))
4807 /* device stops HSM for abort/error */
4808 qc->err_mask |= AC_ERR_DEV;
4809 else
4810 /* HSM violation. Let EH handle this */
4811 qc->err_mask |= AC_ERR_HSM;
4812
14be71f4 4813 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4814 goto fsm_start;
1da177e4
LT
4815 }
4816
71601958
AL
4817 /* Device should not ask for data transfer (DRQ=1)
4818 * when it finds something wrong.
eee6c32f
AL
4819 * We ignore DRQ here and stop the HSM by
4820 * changing hsm_task_state to HSM_ST_ERR and
4821 * let the EH abort the command or reset the device.
71601958
AL
4822 */
4823 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4824 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4825 "error, dev_stat 0x%X\n", status);
3655d1d3 4826 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4827 ap->hsm_task_state = HSM_ST_ERR;
4828 goto fsm_start;
71601958 4829 }
1da177e4 4830
bb5cb290
AL
4831 /* Send the CDB (atapi) or the first data block (ata pio out).
4832 * During the state transition, interrupt handler shouldn't
4833 * be invoked before the data transfer is complete and
4834 * hsm_task_state is changed. Hence, the following locking.
4835 */
4836 if (in_wq)
ba6a1308 4837 spin_lock_irqsave(ap->lock, flags);
1da177e4 4838
bb5cb290
AL
4839 if (qc->tf.protocol == ATA_PROT_PIO) {
4840 /* PIO data out protocol.
4841 * send first data block.
4842 */
0565c26d 4843
bb5cb290
AL
4844 /* ata_pio_sectors() might change the state
4845 * to HSM_ST_LAST. so, the state is changed here
4846 * before ata_pio_sectors().
4847 */
4848 ap->hsm_task_state = HSM_ST;
4849 ata_pio_sectors(qc);
4850 ata_altstatus(ap); /* flush */
4851 } else
4852 /* send CDB */
4853 atapi_send_cdb(ap, qc);
4854
4855 if (in_wq)
ba6a1308 4856 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4857
4858 /* if polling, ata_pio_task() handles the rest.
4859 * otherwise, interrupt handler takes over from here.
4860 */
e2cec771 4861 break;
1c848984 4862
e2cec771
AL
4863 case HSM_ST:
4864 /* complete command or read/write the data register */
4865 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4866 /* ATAPI PIO protocol */
4867 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4868 /* No more data to transfer or device error.
4869 * Device error will be tagged in HSM_ST_LAST.
4870 */
e2cec771
AL
4871 ap->hsm_task_state = HSM_ST_LAST;
4872 goto fsm_start;
4873 }
1da177e4 4874
71601958
AL
4875 /* Device should not ask for data transfer (DRQ=1)
4876 * when it finds something wrong.
eee6c32f
AL
4877 * We ignore DRQ here and stop the HSM by
4878 * changing hsm_task_state to HSM_ST_ERR and
4879 * let the EH abort the command or reset the device.
71601958
AL
4880 */
4881 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4882 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4883 "device error, dev_stat 0x%X\n",
4884 status);
3655d1d3 4885 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4886 ap->hsm_task_state = HSM_ST_ERR;
4887 goto fsm_start;
71601958 4888 }
1da177e4 4889
e2cec771 4890 atapi_pio_bytes(qc);
7fb6ec28 4891
e2cec771
AL
4892 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4893 /* bad ireason reported by device */
4894 goto fsm_start;
1da177e4 4895
e2cec771
AL
4896 } else {
4897 /* ATA PIO protocol */
4898 if (unlikely((status & ATA_DRQ) == 0)) {
4899 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4900 if (likely(status & (ATA_ERR | ATA_DF)))
4901 /* device stops HSM for abort/error */
4902 qc->err_mask |= AC_ERR_DEV;
4903 else
55a8e2c8
TH
4904 /* HSM violation. Let EH handle this.
4905 * Phantom devices also trigger this
4906 * condition. Mark hint.
4907 */
4908 qc->err_mask |= AC_ERR_HSM |
4909 AC_ERR_NODEV_HINT;
3655d1d3 4910
e2cec771
AL
4911 ap->hsm_task_state = HSM_ST_ERR;
4912 goto fsm_start;
4913 }
1da177e4 4914
eee6c32f
AL
4915 /* For PIO reads, some devices may ask for
4916 * data transfer (DRQ=1) alone with ERR=1.
4917 * We respect DRQ here and transfer one
4918 * block of junk data before changing the
4919 * hsm_task_state to HSM_ST_ERR.
4920 *
4921 * For PIO writes, ERR=1 DRQ=1 doesn't make
4922 * sense since the data block has been
4923 * transferred to the device.
71601958
AL
4924 */
4925 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4926 /* data might be corrputed */
4927 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4928
4929 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4930 ata_pio_sectors(qc);
4931 ata_altstatus(ap);
4932 status = ata_wait_idle(ap);
4933 }
4934
3655d1d3
AL
4935 if (status & (ATA_BUSY | ATA_DRQ))
4936 qc->err_mask |= AC_ERR_HSM;
4937
eee6c32f
AL
4938 /* ata_pio_sectors() might change the
4939 * state to HSM_ST_LAST. so, the state
4940 * is changed after ata_pio_sectors().
4941 */
4942 ap->hsm_task_state = HSM_ST_ERR;
4943 goto fsm_start;
71601958
AL
4944 }
4945
e2cec771
AL
4946 ata_pio_sectors(qc);
4947
4948 if (ap->hsm_task_state == HSM_ST_LAST &&
4949 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4950 /* all data read */
4951 ata_altstatus(ap);
52a32205 4952 status = ata_wait_idle(ap);
e2cec771
AL
4953 goto fsm_start;
4954 }
4955 }
4956
4957 ata_altstatus(ap); /* flush */
bb5cb290 4958 poll_next = 1;
1da177e4
LT
4959 break;
4960
14be71f4 4961 case HSM_ST_LAST:
6912ccd5
AL
4962 if (unlikely(!ata_ok(status))) {
4963 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4964 ap->hsm_task_state = HSM_ST_ERR;
4965 goto fsm_start;
4966 }
4967
4968 /* no more data to transfer */
4332a771 4969 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4970 ap->print_id, qc->dev->devno, status);
e2cec771 4971
6912ccd5
AL
4972 WARN_ON(qc->err_mask);
4973
e2cec771 4974 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4975
e2cec771 4976 /* complete taskfile transaction */
c17ea20d 4977 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4978
4979 poll_next = 0;
1da177e4
LT
4980 break;
4981
14be71f4 4982 case HSM_ST_ERR:
e2cec771
AL
4983 /* make sure qc->err_mask is available to
4984 * know what's wrong and recover
4985 */
4986 WARN_ON(qc->err_mask == 0);
4987
4988 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4989
999bb6f4 4990 /* complete taskfile transaction */
c17ea20d 4991 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4992
4993 poll_next = 0;
e2cec771
AL
4994 break;
4995 default:
bb5cb290 4996 poll_next = 0;
6912ccd5 4997 BUG();
1da177e4
LT
4998 }
4999
bb5cb290 5000 return poll_next;
1da177e4
LT
5001}
5002
65f27f38 5003static void ata_pio_task(struct work_struct *work)
8061f5f0 5004{
65f27f38
DH
5005 struct ata_port *ap =
5006 container_of(work, struct ata_port, port_task.work);
5007 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5008 u8 status;
a1af3734 5009 int poll_next;
8061f5f0 5010
7fb6ec28 5011fsm_start:
a1af3734 5012 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5013
a1af3734
AL
5014 /*
5015 * This is purely heuristic. This is a fast path.
5016 * Sometimes when we enter, BSY will be cleared in
5017 * a chk-status or two. If not, the drive is probably seeking
5018 * or something. Snooze for a couple msecs, then
5019 * chk-status again. If still busy, queue delayed work.
5020 */
5021 status = ata_busy_wait(ap, ATA_BUSY, 5);
5022 if (status & ATA_BUSY) {
5023 msleep(2);
5024 status = ata_busy_wait(ap, ATA_BUSY, 10);
5025 if (status & ATA_BUSY) {
31ce6dae 5026 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5027 return;
5028 }
8061f5f0
TH
5029 }
5030
a1af3734
AL
5031 /* move the HSM */
5032 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5033
a1af3734
AL
5034 /* another command or interrupt handler
5035 * may be running at this point.
5036 */
5037 if (poll_next)
7fb6ec28 5038 goto fsm_start;
8061f5f0
TH
5039}
5040
1da177e4
LT
5041/**
5042 * ata_qc_new - Request an available ATA command, for queueing
5043 * @ap: Port associated with device @dev
5044 * @dev: Device from whom we request an available command structure
5045 *
5046 * LOCKING:
0cba632b 5047 * None.
1da177e4
LT
5048 */
5049
5050static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5051{
5052 struct ata_queued_cmd *qc = NULL;
5053 unsigned int i;
5054
e3180499 5055 /* no command while frozen */
b51e9e5d 5056 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5057 return NULL;
5058
2ab7db1f
TH
5059 /* the last tag is reserved for internal command. */
5060 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5061 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5062 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5063 break;
5064 }
5065
5066 if (qc)
5067 qc->tag = i;
5068
5069 return qc;
5070}
5071
5072/**
5073 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5074 * @dev: Device from whom we request an available command structure
5075 *
5076 * LOCKING:
0cba632b 5077 * None.
1da177e4
LT
5078 */
5079
3373efd8 5080struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5081{
3373efd8 5082 struct ata_port *ap = dev->ap;
1da177e4
LT
5083 struct ata_queued_cmd *qc;
5084
5085 qc = ata_qc_new(ap);
5086 if (qc) {
1da177e4
LT
5087 qc->scsicmd = NULL;
5088 qc->ap = ap;
5089 qc->dev = dev;
1da177e4 5090
2c13b7ce 5091 ata_qc_reinit(qc);
1da177e4
LT
5092 }
5093
5094 return qc;
5095}
5096
1da177e4
LT
5097/**
5098 * ata_qc_free - free unused ata_queued_cmd
5099 * @qc: Command to complete
5100 *
5101 * Designed to free unused ata_queued_cmd object
5102 * in case something prevents using it.
5103 *
5104 * LOCKING:
cca3974e 5105 * spin_lock_irqsave(host lock)
1da177e4
LT
5106 */
5107void ata_qc_free(struct ata_queued_cmd *qc)
5108{
4ba946e9
TH
5109 struct ata_port *ap = qc->ap;
5110 unsigned int tag;
5111
a4631474 5112 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5113
4ba946e9
TH
5114 qc->flags = 0;
5115 tag = qc->tag;
5116 if (likely(ata_tag_valid(tag))) {
4ba946e9 5117 qc->tag = ATA_TAG_POISON;
6cec4a39 5118 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5119 }
1da177e4
LT
5120}
5121
76014427 5122void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5123{
dedaf2b0
TH
5124 struct ata_port *ap = qc->ap;
5125
a4631474
TH
5126 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5127 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5128
5129 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5130 ata_sg_clean(qc);
5131
7401abf2 5132 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5133 if (qc->tf.protocol == ATA_PROT_NCQ)
5134 ap->sactive &= ~(1 << qc->tag);
5135 else
5136 ap->active_tag = ATA_TAG_POISON;
7401abf2 5137
3f3791d3
AL
5138 /* atapi: mark qc as inactive to prevent the interrupt handler
5139 * from completing the command twice later, before the error handler
5140 * is called. (when rc != 0 and atapi request sense is needed)
5141 */
5142 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5143 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5144
1da177e4 5145 /* call completion callback */
77853bf2 5146 qc->complete_fn(qc);
1da177e4
LT
5147}
5148
39599a53
TH
5149static void fill_result_tf(struct ata_queued_cmd *qc)
5150{
5151 struct ata_port *ap = qc->ap;
5152
39599a53 5153 qc->result_tf.flags = qc->tf.flags;
4742d54f 5154 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5155}
5156
f686bcb8
TH
5157/**
5158 * ata_qc_complete - Complete an active ATA command
5159 * @qc: Command to complete
5160 * @err_mask: ATA Status register contents
5161 *
5162 * Indicate to the mid and upper layers that an ATA
5163 * command has completed, with either an ok or not-ok status.
5164 *
5165 * LOCKING:
cca3974e 5166 * spin_lock_irqsave(host lock)
f686bcb8
TH
5167 */
5168void ata_qc_complete(struct ata_queued_cmd *qc)
5169{
5170 struct ata_port *ap = qc->ap;
5171
5172 /* XXX: New EH and old EH use different mechanisms to
5173 * synchronize EH with regular execution path.
5174 *
5175 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5176 * Normal execution path is responsible for not accessing a
5177 * failed qc. libata core enforces the rule by returning NULL
5178 * from ata_qc_from_tag() for failed qcs.
5179 *
5180 * Old EH depends on ata_qc_complete() nullifying completion
5181 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5182 * not synchronize with interrupt handler. Only PIO task is
5183 * taken care of.
5184 */
5185 if (ap->ops->error_handler) {
b51e9e5d 5186 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5187
5188 if (unlikely(qc->err_mask))
5189 qc->flags |= ATA_QCFLAG_FAILED;
5190
5191 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5192 if (!ata_tag_internal(qc->tag)) {
5193 /* always fill result TF for failed qc */
39599a53 5194 fill_result_tf(qc);
f686bcb8
TH
5195 ata_qc_schedule_eh(qc);
5196 return;
5197 }
5198 }
5199
5200 /* read result TF if requested */
5201 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5202 fill_result_tf(qc);
f686bcb8
TH
5203
5204 __ata_qc_complete(qc);
5205 } else {
5206 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5207 return;
5208
5209 /* read result TF if failed or requested */
5210 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5211 fill_result_tf(qc);
f686bcb8
TH
5212
5213 __ata_qc_complete(qc);
5214 }
5215}
5216
dedaf2b0
TH
5217/**
5218 * ata_qc_complete_multiple - Complete multiple qcs successfully
5219 * @ap: port in question
5220 * @qc_active: new qc_active mask
5221 * @finish_qc: LLDD callback invoked before completing a qc
5222 *
5223 * Complete in-flight commands. This functions is meant to be
5224 * called from low-level driver's interrupt routine to complete
5225 * requests normally. ap->qc_active and @qc_active is compared
5226 * and commands are completed accordingly.
5227 *
5228 * LOCKING:
cca3974e 5229 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5230 *
5231 * RETURNS:
5232 * Number of completed commands on success, -errno otherwise.
5233 */
5234int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5235 void (*finish_qc)(struct ata_queued_cmd *))
5236{
5237 int nr_done = 0;
5238 u32 done_mask;
5239 int i;
5240
5241 done_mask = ap->qc_active ^ qc_active;
5242
5243 if (unlikely(done_mask & qc_active)) {
5244 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5245 "(%08x->%08x)\n", ap->qc_active, qc_active);
5246 return -EINVAL;
5247 }
5248
5249 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5250 struct ata_queued_cmd *qc;
5251
5252 if (!(done_mask & (1 << i)))
5253 continue;
5254
5255 if ((qc = ata_qc_from_tag(ap, i))) {
5256 if (finish_qc)
5257 finish_qc(qc);
5258 ata_qc_complete(qc);
5259 nr_done++;
5260 }
5261 }
5262
5263 return nr_done;
5264}
5265
1da177e4
LT
5266static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5267{
5268 struct ata_port *ap = qc->ap;
5269
5270 switch (qc->tf.protocol) {
3dc1d881 5271 case ATA_PROT_NCQ:
1da177e4
LT
5272 case ATA_PROT_DMA:
5273 case ATA_PROT_ATAPI_DMA:
5274 return 1;
5275
5276 case ATA_PROT_ATAPI:
5277 case ATA_PROT_PIO:
1da177e4
LT
5278 if (ap->flags & ATA_FLAG_PIO_DMA)
5279 return 1;
5280
5281 /* fall through */
5282
5283 default:
5284 return 0;
5285 }
5286
5287 /* never reached */
5288}
5289
5290/**
5291 * ata_qc_issue - issue taskfile to device
5292 * @qc: command to issue to device
5293 *
5294 * Prepare an ATA command to submission to device.
5295 * This includes mapping the data into a DMA-able
5296 * area, filling in the S/G table, and finally
5297 * writing the taskfile to hardware, starting the command.
5298 *
5299 * LOCKING:
cca3974e 5300 * spin_lock_irqsave(host lock)
1da177e4 5301 */
8e0e694a 5302void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5303{
5304 struct ata_port *ap = qc->ap;
5305
dedaf2b0
TH
5306 /* Make sure only one non-NCQ command is outstanding. The
5307 * check is skipped for old EH because it reuses active qc to
5308 * request ATAPI sense.
5309 */
5310 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5311
5312 if (qc->tf.protocol == ATA_PROT_NCQ) {
5313 WARN_ON(ap->sactive & (1 << qc->tag));
5314 ap->sactive |= 1 << qc->tag;
5315 } else {
5316 WARN_ON(ap->sactive);
5317 ap->active_tag = qc->tag;
5318 }
5319
e4a70e76 5320 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5321 ap->qc_active |= 1 << qc->tag;
e4a70e76 5322
1da177e4
LT
5323 if (ata_should_dma_map(qc)) {
5324 if (qc->flags & ATA_QCFLAG_SG) {
5325 if (ata_sg_setup(qc))
8e436af9 5326 goto sg_err;
1da177e4
LT
5327 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5328 if (ata_sg_setup_one(qc))
8e436af9 5329 goto sg_err;
1da177e4
LT
5330 }
5331 } else {
5332 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5333 }
5334
5335 ap->ops->qc_prep(qc);
5336
8e0e694a
TH
5337 qc->err_mask |= ap->ops->qc_issue(qc);
5338 if (unlikely(qc->err_mask))
5339 goto err;
5340 return;
1da177e4 5341
8e436af9
TH
5342sg_err:
5343 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5344 qc->err_mask |= AC_ERR_SYSTEM;
5345err:
5346 ata_qc_complete(qc);
1da177e4
LT
5347}
5348
5349/**
5350 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5351 * @qc: command to issue to device
5352 *
5353 * Using various libata functions and hooks, this function
5354 * starts an ATA command. ATA commands are grouped into
5355 * classes called "protocols", and issuing each type of protocol
5356 * is slightly different.
5357 *
0baab86b
EF
5358 * May be used as the qc_issue() entry in ata_port_operations.
5359 *
1da177e4 5360 * LOCKING:
cca3974e 5361 * spin_lock_irqsave(host lock)
1da177e4
LT
5362 *
5363 * RETURNS:
9a3d9eb0 5364 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5365 */
5366
9a3d9eb0 5367unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5368{
5369 struct ata_port *ap = qc->ap;
5370
e50362ec
AL
5371 /* Use polling pio if the LLD doesn't handle
5372 * interrupt driven pio and atapi CDB interrupt.
5373 */
5374 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5375 switch (qc->tf.protocol) {
5376 case ATA_PROT_PIO:
e3472cbe 5377 case ATA_PROT_NODATA:
e50362ec
AL
5378 case ATA_PROT_ATAPI:
5379 case ATA_PROT_ATAPI_NODATA:
5380 qc->tf.flags |= ATA_TFLAG_POLLING;
5381 break;
5382 case ATA_PROT_ATAPI_DMA:
5383 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5384 /* see ata_dma_blacklisted() */
e50362ec
AL
5385 BUG();
5386 break;
5387 default:
5388 break;
5389 }
5390 }
5391
3d3cca37
TH
5392 /* Some controllers show flaky interrupt behavior after
5393 * setting xfer mode. Use polling instead.
5394 */
5395 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5396 qc->tf.feature == SETFEATURES_XFER) &&
5397 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5398 qc->tf.flags |= ATA_TFLAG_POLLING;
5399
312f7da2 5400 /* select the device */
1da177e4
LT
5401 ata_dev_select(ap, qc->dev->devno, 1, 0);
5402
312f7da2 5403 /* start the command */
1da177e4
LT
5404 switch (qc->tf.protocol) {
5405 case ATA_PROT_NODATA:
312f7da2
AL
5406 if (qc->tf.flags & ATA_TFLAG_POLLING)
5407 ata_qc_set_polling(qc);
5408
e5338254 5409 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5410 ap->hsm_task_state = HSM_ST_LAST;
5411
5412 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5413 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5414
1da177e4
LT
5415 break;
5416
5417 case ATA_PROT_DMA:
587005de 5418 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5419
1da177e4
LT
5420 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5421 ap->ops->bmdma_setup(qc); /* set up bmdma */
5422 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5423 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5424 break;
5425
312f7da2
AL
5426 case ATA_PROT_PIO:
5427 if (qc->tf.flags & ATA_TFLAG_POLLING)
5428 ata_qc_set_polling(qc);
1da177e4 5429
e5338254 5430 ata_tf_to_host(ap, &qc->tf);
312f7da2 5431
54f00389
AL
5432 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5433 /* PIO data out protocol */
5434 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5435 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5436
5437 /* always send first data block using
e27486db 5438 * the ata_pio_task() codepath.
54f00389 5439 */
312f7da2 5440 } else {
54f00389
AL
5441 /* PIO data in protocol */
5442 ap->hsm_task_state = HSM_ST;
5443
5444 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5445 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5446
5447 /* if polling, ata_pio_task() handles the rest.
5448 * otherwise, interrupt handler takes over from here.
5449 */
312f7da2
AL
5450 }
5451
1da177e4
LT
5452 break;
5453
1da177e4 5454 case ATA_PROT_ATAPI:
1da177e4 5455 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5456 if (qc->tf.flags & ATA_TFLAG_POLLING)
5457 ata_qc_set_polling(qc);
5458
e5338254 5459 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5460
312f7da2
AL
5461 ap->hsm_task_state = HSM_ST_FIRST;
5462
5463 /* send cdb by polling if no cdb interrupt */
5464 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5465 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5466 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5467 break;
5468
5469 case ATA_PROT_ATAPI_DMA:
587005de 5470 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5471
1da177e4
LT
5472 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5473 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5474 ap->hsm_task_state = HSM_ST_FIRST;
5475
5476 /* send cdb by polling if no cdb interrupt */
5477 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5478 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5479 break;
5480
5481 default:
5482 WARN_ON(1);
9a3d9eb0 5483 return AC_ERR_SYSTEM;
1da177e4
LT
5484 }
5485
5486 return 0;
5487}
5488
1da177e4
LT
5489/**
5490 * ata_host_intr - Handle host interrupt for given (port, task)
5491 * @ap: Port on which interrupt arrived (possibly...)
5492 * @qc: Taskfile currently active in engine
5493 *
5494 * Handle host interrupt for given queued command. Currently,
5495 * only DMA interrupts are handled. All other commands are
5496 * handled via polling with interrupts disabled (nIEN bit).
5497 *
5498 * LOCKING:
cca3974e 5499 * spin_lock_irqsave(host lock)
1da177e4
LT
5500 *
5501 * RETURNS:
5502 * One if interrupt was handled, zero if not (shared irq).
5503 */
5504
5505inline unsigned int ata_host_intr (struct ata_port *ap,
5506 struct ata_queued_cmd *qc)
5507{
ea54763f 5508 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5509 u8 status, host_stat = 0;
1da177e4 5510
312f7da2 5511 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5512 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5513
312f7da2
AL
5514 /* Check whether we are expecting interrupt in this state */
5515 switch (ap->hsm_task_state) {
5516 case HSM_ST_FIRST:
6912ccd5
AL
5517 /* Some pre-ATAPI-4 devices assert INTRQ
5518 * at this state when ready to receive CDB.
5519 */
1da177e4 5520
312f7da2
AL
5521 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5522 * The flag was turned on only for atapi devices.
5523 * No need to check is_atapi_taskfile(&qc->tf) again.
5524 */
5525 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5526 goto idle_irq;
1da177e4 5527 break;
312f7da2
AL
5528 case HSM_ST_LAST:
5529 if (qc->tf.protocol == ATA_PROT_DMA ||
5530 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5531 /* check status of DMA engine */
5532 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5533 VPRINTK("ata%u: host_stat 0x%X\n",
5534 ap->print_id, host_stat);
312f7da2
AL
5535
5536 /* if it's not our irq... */
5537 if (!(host_stat & ATA_DMA_INTR))
5538 goto idle_irq;
5539
5540 /* before we do anything else, clear DMA-Start bit */
5541 ap->ops->bmdma_stop(qc);
a4f16610
AL
5542
5543 if (unlikely(host_stat & ATA_DMA_ERR)) {
5544 /* error when transfering data to/from memory */
5545 qc->err_mask |= AC_ERR_HOST_BUS;
5546 ap->hsm_task_state = HSM_ST_ERR;
5547 }
312f7da2
AL
5548 }
5549 break;
5550 case HSM_ST:
5551 break;
1da177e4
LT
5552 default:
5553 goto idle_irq;
5554 }
5555
312f7da2
AL
5556 /* check altstatus */
5557 status = ata_altstatus(ap);
5558 if (status & ATA_BUSY)
5559 goto idle_irq;
1da177e4 5560
312f7da2
AL
5561 /* check main status, clearing INTRQ */
5562 status = ata_chk_status(ap);
5563 if (unlikely(status & ATA_BUSY))
5564 goto idle_irq;
1da177e4 5565
312f7da2
AL
5566 /* ack bmdma irq events */
5567 ap->ops->irq_clear(ap);
1da177e4 5568
bb5cb290 5569 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5570
5571 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5572 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5573 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5574
1da177e4
LT
5575 return 1; /* irq handled */
5576
5577idle_irq:
5578 ap->stats.idle_irq++;
5579
5580#ifdef ATA_IRQ_TRAP
5581 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5582 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5583 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5584 return 1;
1da177e4
LT
5585 }
5586#endif
5587 return 0; /* irq not handled */
5588}
5589
5590/**
5591 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5592 * @irq: irq line (unused)
cca3974e 5593 * @dev_instance: pointer to our ata_host information structure
1da177e4 5594 *
0cba632b
JG
5595 * Default interrupt handler for PCI IDE devices. Calls
5596 * ata_host_intr() for each port that is not disabled.
5597 *
1da177e4 5598 * LOCKING:
cca3974e 5599 * Obtains host lock during operation.
1da177e4
LT
5600 *
5601 * RETURNS:
0cba632b 5602 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5603 */
5604
7d12e780 5605irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5606{
cca3974e 5607 struct ata_host *host = dev_instance;
1da177e4
LT
5608 unsigned int i;
5609 unsigned int handled = 0;
5610 unsigned long flags;
5611
5612 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5613 spin_lock_irqsave(&host->lock, flags);
1da177e4 5614
cca3974e 5615 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5616 struct ata_port *ap;
5617
cca3974e 5618 ap = host->ports[i];
c1389503 5619 if (ap &&
029f5468 5620 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5621 struct ata_queued_cmd *qc;
5622
5623 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5624 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5625 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5626 handled |= ata_host_intr(ap, qc);
5627 }
5628 }
5629
cca3974e 5630 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5631
5632 return IRQ_RETVAL(handled);
5633}
5634
34bf2170
TH
5635/**
5636 * sata_scr_valid - test whether SCRs are accessible
5637 * @ap: ATA port to test SCR accessibility for
5638 *
5639 * Test whether SCRs are accessible for @ap.
5640 *
5641 * LOCKING:
5642 * None.
5643 *
5644 * RETURNS:
5645 * 1 if SCRs are accessible, 0 otherwise.
5646 */
5647int sata_scr_valid(struct ata_port *ap)
5648{
5649 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5650}
5651
5652/**
5653 * sata_scr_read - read SCR register of the specified port
5654 * @ap: ATA port to read SCR for
5655 * @reg: SCR to read
5656 * @val: Place to store read value
5657 *
5658 * Read SCR register @reg of @ap into *@val. This function is
5659 * guaranteed to succeed if the cable type of the port is SATA
5660 * and the port implements ->scr_read.
5661 *
5662 * LOCKING:
5663 * None.
5664 *
5665 * RETURNS:
5666 * 0 on success, negative errno on failure.
5667 */
5668int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5669{
5670 if (sata_scr_valid(ap)) {
5671 *val = ap->ops->scr_read(ap, reg);
5672 return 0;
5673 }
5674 return -EOPNOTSUPP;
5675}
5676
5677/**
5678 * sata_scr_write - write SCR register of the specified port
5679 * @ap: ATA port to write SCR for
5680 * @reg: SCR to write
5681 * @val: value to write
5682 *
5683 * Write @val to SCR register @reg of @ap. This function is
5684 * guaranteed to succeed if the cable type of the port is SATA
5685 * and the port implements ->scr_read.
5686 *
5687 * LOCKING:
5688 * None.
5689 *
5690 * RETURNS:
5691 * 0 on success, negative errno on failure.
5692 */
5693int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5694{
5695 if (sata_scr_valid(ap)) {
5696 ap->ops->scr_write(ap, reg, val);
5697 return 0;
5698 }
5699 return -EOPNOTSUPP;
5700}
5701
5702/**
5703 * sata_scr_write_flush - write SCR register of the specified port and flush
5704 * @ap: ATA port to write SCR for
5705 * @reg: SCR to write
5706 * @val: value to write
5707 *
5708 * This function is identical to sata_scr_write() except that this
5709 * function performs flush after writing to the register.
5710 *
5711 * LOCKING:
5712 * None.
5713 *
5714 * RETURNS:
5715 * 0 on success, negative errno on failure.
5716 */
5717int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5718{
5719 if (sata_scr_valid(ap)) {
5720 ap->ops->scr_write(ap, reg, val);
5721 ap->ops->scr_read(ap, reg);
5722 return 0;
5723 }
5724 return -EOPNOTSUPP;
5725}
5726
5727/**
5728 * ata_port_online - test whether the given port is online
5729 * @ap: ATA port to test
5730 *
5731 * Test whether @ap is online. Note that this function returns 0
5732 * if online status of @ap cannot be obtained, so
5733 * ata_port_online(ap) != !ata_port_offline(ap).
5734 *
5735 * LOCKING:
5736 * None.
5737 *
5738 * RETURNS:
5739 * 1 if the port online status is available and online.
5740 */
5741int ata_port_online(struct ata_port *ap)
5742{
5743 u32 sstatus;
5744
5745 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5746 return 1;
5747 return 0;
5748}
5749
5750/**
5751 * ata_port_offline - test whether the given port is offline
5752 * @ap: ATA port to test
5753 *
5754 * Test whether @ap is offline. Note that this function returns
5755 * 0 if offline status of @ap cannot be obtained, so
5756 * ata_port_online(ap) != !ata_port_offline(ap).
5757 *
5758 * LOCKING:
5759 * None.
5760 *
5761 * RETURNS:
5762 * 1 if the port offline status is available and offline.
5763 */
5764int ata_port_offline(struct ata_port *ap)
5765{
5766 u32 sstatus;
5767
5768 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5769 return 1;
5770 return 0;
5771}
0baab86b 5772
77b08fb5 5773int ata_flush_cache(struct ata_device *dev)
9b847548 5774{
977e6b9f 5775 unsigned int err_mask;
9b847548
JA
5776 u8 cmd;
5777
5778 if (!ata_try_flush_cache(dev))
5779 return 0;
5780
6fc49adb 5781 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5782 cmd = ATA_CMD_FLUSH_EXT;
5783 else
5784 cmd = ATA_CMD_FLUSH;
5785
977e6b9f
TH
5786 err_mask = ata_do_simple_cmd(dev, cmd);
5787 if (err_mask) {
5788 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5789 return -EIO;
5790 }
5791
5792 return 0;
9b847548
JA
5793}
5794
6ffa01d8 5795#ifdef CONFIG_PM
cca3974e
JG
5796static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5797 unsigned int action, unsigned int ehi_flags,
5798 int wait)
500530f6
TH
5799{
5800 unsigned long flags;
5801 int i, rc;
5802
cca3974e
JG
5803 for (i = 0; i < host->n_ports; i++) {
5804 struct ata_port *ap = host->ports[i];
500530f6
TH
5805
5806 /* Previous resume operation might still be in
5807 * progress. Wait for PM_PENDING to clear.
5808 */
5809 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5810 ata_port_wait_eh(ap);
5811 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5812 }
5813
5814 /* request PM ops to EH */
5815 spin_lock_irqsave(ap->lock, flags);
5816
5817 ap->pm_mesg = mesg;
5818 if (wait) {
5819 rc = 0;
5820 ap->pm_result = &rc;
5821 }
5822
5823 ap->pflags |= ATA_PFLAG_PM_PENDING;
5824 ap->eh_info.action |= action;
5825 ap->eh_info.flags |= ehi_flags;
5826
5827 ata_port_schedule_eh(ap);
5828
5829 spin_unlock_irqrestore(ap->lock, flags);
5830
5831 /* wait and check result */
5832 if (wait) {
5833 ata_port_wait_eh(ap);
5834 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5835 if (rc)
5836 return rc;
5837 }
5838 }
5839
5840 return 0;
5841}
5842
5843/**
cca3974e
JG
5844 * ata_host_suspend - suspend host
5845 * @host: host to suspend
500530f6
TH
5846 * @mesg: PM message
5847 *
cca3974e 5848 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5849 * function requests EH to perform PM operations and waits for EH
5850 * to finish.
5851 *
5852 * LOCKING:
5853 * Kernel thread context (may sleep).
5854 *
5855 * RETURNS:
5856 * 0 on success, -errno on failure.
5857 */
cca3974e 5858int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5859{
5860 int i, j, rc;
5861
cca3974e 5862 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5863 if (rc)
5864 goto fail;
5865
5866 /* EH is quiescent now. Fail if we have any ready device.
5867 * This happens if hotplug occurs between completion of device
5868 * suspension and here.
5869 */
cca3974e
JG
5870 for (i = 0; i < host->n_ports; i++) {
5871 struct ata_port *ap = host->ports[i];
500530f6
TH
5872
5873 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5874 struct ata_device *dev = &ap->device[j];
5875
5876 if (ata_dev_ready(dev)) {
5877 ata_port_printk(ap, KERN_WARNING,
5878 "suspend failed, device %d "
5879 "still active\n", dev->devno);
5880 rc = -EBUSY;
5881 goto fail;
5882 }
5883 }
5884 }
5885
cca3974e 5886 host->dev->power.power_state = mesg;
500530f6
TH
5887 return 0;
5888
5889 fail:
cca3974e 5890 ata_host_resume(host);
500530f6
TH
5891 return rc;
5892}
5893
5894/**
cca3974e
JG
5895 * ata_host_resume - resume host
5896 * @host: host to resume
500530f6 5897 *
cca3974e 5898 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5899 * function requests EH to perform PM operations and returns.
5900 * Note that all resume operations are performed parallely.
5901 *
5902 * LOCKING:
5903 * Kernel thread context (may sleep).
5904 */
cca3974e 5905void ata_host_resume(struct ata_host *host)
500530f6 5906{
cca3974e
JG
5907 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5908 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5909 host->dev->power.power_state = PMSG_ON;
500530f6 5910}
6ffa01d8 5911#endif
500530f6 5912
c893a3ae
RD
5913/**
5914 * ata_port_start - Set port up for dma.
5915 * @ap: Port to initialize
5916 *
5917 * Called just after data structures for each port are
5918 * initialized. Allocates space for PRD table.
5919 *
5920 * May be used as the port_start() entry in ata_port_operations.
5921 *
5922 * LOCKING:
5923 * Inherited from caller.
5924 */
f0d36efd 5925int ata_port_start(struct ata_port *ap)
1da177e4 5926{
2f1f610b 5927 struct device *dev = ap->dev;
6037d6bb 5928 int rc;
1da177e4 5929
f0d36efd
TH
5930 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5931 GFP_KERNEL);
1da177e4
LT
5932 if (!ap->prd)
5933 return -ENOMEM;
5934
6037d6bb 5935 rc = ata_pad_alloc(ap, dev);
f0d36efd 5936 if (rc)
6037d6bb 5937 return rc;
1da177e4 5938
f0d36efd
TH
5939 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5940 (unsigned long long)ap->prd_dma);
1da177e4
LT
5941 return 0;
5942}
5943
3ef3b43d
TH
5944/**
5945 * ata_dev_init - Initialize an ata_device structure
5946 * @dev: Device structure to initialize
5947 *
5948 * Initialize @dev in preparation for probing.
5949 *
5950 * LOCKING:
5951 * Inherited from caller.
5952 */
5953void ata_dev_init(struct ata_device *dev)
5954{
5955 struct ata_port *ap = dev->ap;
72fa4b74
TH
5956 unsigned long flags;
5957
5a04bf4b
TH
5958 /* SATA spd limit is bound to the first device */
5959 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5960
72fa4b74
TH
5961 /* High bits of dev->flags are used to record warm plug
5962 * requests which occur asynchronously. Synchronize using
cca3974e 5963 * host lock.
72fa4b74 5964 */
ba6a1308 5965 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5966 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5967 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5968
72fa4b74
TH
5969 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5970 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5971 dev->pio_mask = UINT_MAX;
5972 dev->mwdma_mask = UINT_MAX;
5973 dev->udma_mask = UINT_MAX;
5974}
5975
1da177e4 5976/**
f3187195
TH
5977 * ata_port_alloc - allocate and initialize basic ATA port resources
5978 * @host: ATA host this allocated port belongs to
1da177e4 5979 *
f3187195
TH
5980 * Allocate and initialize basic ATA port resources.
5981 *
5982 * RETURNS:
5983 * Allocate ATA port on success, NULL on failure.
0cba632b 5984 *
1da177e4 5985 * LOCKING:
f3187195 5986 * Inherited from calling layer (may sleep).
1da177e4 5987 */
f3187195 5988struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5989{
f3187195 5990 struct ata_port *ap;
1da177e4
LT
5991 unsigned int i;
5992
f3187195
TH
5993 DPRINTK("ENTER\n");
5994
5995 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5996 if (!ap)
5997 return NULL;
5998
cca3974e 5999 ap->lock = &host->lock;
198e0fed 6000 ap->flags = ATA_FLAG_DISABLED;
f3187195 6001 ap->print_id = -1;
1da177e4 6002 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6003 ap->host = host;
f3187195
TH
6004 ap->dev = host->dev;
6005
5a04bf4b 6006 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6007 ap->active_tag = ATA_TAG_POISON;
6008 ap->last_ctl = 0xFF;
bd5d825c
BP
6009
6010#if defined(ATA_VERBOSE_DEBUG)
6011 /* turn on all debugging levels */
6012 ap->msg_enable = 0x00FF;
6013#elif defined(ATA_DEBUG)
6014 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6015#else
0dd4b21f 6016 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6017#endif
1da177e4 6018
65f27f38
DH
6019 INIT_DELAYED_WORK(&ap->port_task, NULL);
6020 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6021 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6022 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6023 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6024
838df628 6025 ap->cbl = ATA_CBL_NONE;
838df628 6026
acf356b1
TH
6027 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6028 struct ata_device *dev = &ap->device[i];
38d87234 6029 dev->ap = ap;
72fa4b74 6030 dev->devno = i;
3ef3b43d 6031 ata_dev_init(dev);
acf356b1 6032 }
1da177e4
LT
6033
6034#ifdef ATA_IRQ_TRAP
6035 ap->stats.unhandled_irq = 1;
6036 ap->stats.idle_irq = 1;
6037#endif
1da177e4 6038 return ap;
1da177e4
LT
6039}
6040
f0d36efd
TH
6041static void ata_host_release(struct device *gendev, void *res)
6042{
6043 struct ata_host *host = dev_get_drvdata(gendev);
6044 int i;
6045
6046 for (i = 0; i < host->n_ports; i++) {
6047 struct ata_port *ap = host->ports[i];
6048
ecef7253
TH
6049 if (!ap)
6050 continue;
6051
6052 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6053 ap->ops->port_stop(ap);
f0d36efd
TH
6054 }
6055
ecef7253 6056 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6057 host->ops->host_stop(host);
1aa56cca 6058
1aa506e4
TH
6059 for (i = 0; i < host->n_ports; i++) {
6060 struct ata_port *ap = host->ports[i];
6061
4911487a
TH
6062 if (!ap)
6063 continue;
6064
6065 if (ap->scsi_host)
1aa506e4
TH
6066 scsi_host_put(ap->scsi_host);
6067
4911487a 6068 kfree(ap);
1aa506e4
TH
6069 host->ports[i] = NULL;
6070 }
6071
1aa56cca 6072 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6073}
6074
f3187195
TH
6075/**
6076 * ata_host_alloc - allocate and init basic ATA host resources
6077 * @dev: generic device this host is associated with
6078 * @max_ports: maximum number of ATA ports associated with this host
6079 *
6080 * Allocate and initialize basic ATA host resources. LLD calls
6081 * this function to allocate a host, initializes it fully and
6082 * attaches it using ata_host_register().
6083 *
6084 * @max_ports ports are allocated and host->n_ports is
6085 * initialized to @max_ports. The caller is allowed to decrease
6086 * host->n_ports before calling ata_host_register(). The unused
6087 * ports will be automatically freed on registration.
6088 *
6089 * RETURNS:
6090 * Allocate ATA host on success, NULL on failure.
6091 *
6092 * LOCKING:
6093 * Inherited from calling layer (may sleep).
6094 */
6095struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6096{
6097 struct ata_host *host;
6098 size_t sz;
6099 int i;
6100
6101 DPRINTK("ENTER\n");
6102
6103 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6104 return NULL;
6105
6106 /* alloc a container for our list of ATA ports (buses) */
6107 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6108 /* alloc a container for our list of ATA ports (buses) */
6109 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6110 if (!host)
6111 goto err_out;
6112
6113 devres_add(dev, host);
6114 dev_set_drvdata(dev, host);
6115
6116 spin_lock_init(&host->lock);
6117 host->dev = dev;
6118 host->n_ports = max_ports;
6119
6120 /* allocate ports bound to this host */
6121 for (i = 0; i < max_ports; i++) {
6122 struct ata_port *ap;
6123
6124 ap = ata_port_alloc(host);
6125 if (!ap)
6126 goto err_out;
6127
6128 ap->port_no = i;
6129 host->ports[i] = ap;
6130 }
6131
6132 devres_remove_group(dev, NULL);
6133 return host;
6134
6135 err_out:
6136 devres_release_group(dev, NULL);
6137 return NULL;
6138}
6139
f5cda257
TH
6140/**
6141 * ata_host_alloc_pinfo - alloc host and init with port_info array
6142 * @dev: generic device this host is associated with
6143 * @ppi: array of ATA port_info to initialize host with
6144 * @n_ports: number of ATA ports attached to this host
6145 *
6146 * Allocate ATA host and initialize with info from @ppi. If NULL
6147 * terminated, @ppi may contain fewer entries than @n_ports. The
6148 * last entry will be used for the remaining ports.
6149 *
6150 * RETURNS:
6151 * Allocate ATA host on success, NULL on failure.
6152 *
6153 * LOCKING:
6154 * Inherited from calling layer (may sleep).
6155 */
6156struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6157 const struct ata_port_info * const * ppi,
6158 int n_ports)
6159{
6160 const struct ata_port_info *pi;
6161 struct ata_host *host;
6162 int i, j;
6163
6164 host = ata_host_alloc(dev, n_ports);
6165 if (!host)
6166 return NULL;
6167
6168 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6169 struct ata_port *ap = host->ports[i];
6170
6171 if (ppi[j])
6172 pi = ppi[j++];
6173
6174 ap->pio_mask = pi->pio_mask;
6175 ap->mwdma_mask = pi->mwdma_mask;
6176 ap->udma_mask = pi->udma_mask;
6177 ap->flags |= pi->flags;
6178 ap->ops = pi->port_ops;
6179
6180 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6181 host->ops = pi->port_ops;
6182 if (!host->private_data && pi->private_data)
6183 host->private_data = pi->private_data;
6184 }
6185
6186 return host;
6187}
6188
ecef7253
TH
6189/**
6190 * ata_host_start - start and freeze ports of an ATA host
6191 * @host: ATA host to start ports for
6192 *
6193 * Start and then freeze ports of @host. Started status is
6194 * recorded in host->flags, so this function can be called
6195 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6196 * once. If host->ops isn't initialized yet, its set to the
6197 * first non-dummy port ops.
ecef7253
TH
6198 *
6199 * LOCKING:
6200 * Inherited from calling layer (may sleep).
6201 *
6202 * RETURNS:
6203 * 0 if all ports are started successfully, -errno otherwise.
6204 */
6205int ata_host_start(struct ata_host *host)
6206{
6207 int i, rc;
6208
6209 if (host->flags & ATA_HOST_STARTED)
6210 return 0;
6211
6212 for (i = 0; i < host->n_ports; i++) {
6213 struct ata_port *ap = host->ports[i];
6214
f3187195
TH
6215 if (!host->ops && !ata_port_is_dummy(ap))
6216 host->ops = ap->ops;
6217
ecef7253
TH
6218 if (ap->ops->port_start) {
6219 rc = ap->ops->port_start(ap);
6220 if (rc) {
6221 ata_port_printk(ap, KERN_ERR, "failed to "
6222 "start port (errno=%d)\n", rc);
6223 goto err_out;
6224 }
6225 }
6226
6227 ata_eh_freeze_port(ap);
6228 }
6229
6230 host->flags |= ATA_HOST_STARTED;
6231 return 0;
6232
6233 err_out:
6234 while (--i >= 0) {
6235 struct ata_port *ap = host->ports[i];
6236
6237 if (ap->ops->port_stop)
6238 ap->ops->port_stop(ap);
6239 }
6240 return rc;
6241}
6242
b03732f0 6243/**
cca3974e
JG
6244 * ata_sas_host_init - Initialize a host struct
6245 * @host: host to initialize
6246 * @dev: device host is attached to
6247 * @flags: host flags
6248 * @ops: port_ops
b03732f0
BK
6249 *
6250 * LOCKING:
6251 * PCI/etc. bus probe sem.
6252 *
6253 */
f3187195 6254/* KILLME - the only user left is ipr */
cca3974e
JG
6255void ata_host_init(struct ata_host *host, struct device *dev,
6256 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6257{
cca3974e
JG
6258 spin_lock_init(&host->lock);
6259 host->dev = dev;
6260 host->flags = flags;
6261 host->ops = ops;
b03732f0
BK
6262}
6263
f3187195
TH
6264/**
6265 * ata_host_register - register initialized ATA host
6266 * @host: ATA host to register
6267 * @sht: template for SCSI host
6268 *
6269 * Register initialized ATA host. @host is allocated using
6270 * ata_host_alloc() and fully initialized by LLD. This function
6271 * starts ports, registers @host with ATA and SCSI layers and
6272 * probe registered devices.
6273 *
6274 * LOCKING:
6275 * Inherited from calling layer (may sleep).
6276 *
6277 * RETURNS:
6278 * 0 on success, -errno otherwise.
6279 */
6280int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6281{
6282 int i, rc;
6283
6284 /* host must have been started */
6285 if (!(host->flags & ATA_HOST_STARTED)) {
6286 dev_printk(KERN_ERR, host->dev,
6287 "BUG: trying to register unstarted host\n");
6288 WARN_ON(1);
6289 return -EINVAL;
6290 }
6291
6292 /* Blow away unused ports. This happens when LLD can't
6293 * determine the exact number of ports to allocate at
6294 * allocation time.
6295 */
6296 for (i = host->n_ports; host->ports[i]; i++)
6297 kfree(host->ports[i]);
6298
6299 /* give ports names and add SCSI hosts */
6300 for (i = 0; i < host->n_ports; i++)
6301 host->ports[i]->print_id = ata_print_id++;
6302
6303 rc = ata_scsi_add_hosts(host, sht);
6304 if (rc)
6305 return rc;
6306
6307 /* set cable, sata_spd_limit and report */
6308 for (i = 0; i < host->n_ports; i++) {
6309 struct ata_port *ap = host->ports[i];
6310 int irq_line;
6311 u32 scontrol;
6312 unsigned long xfer_mask;
6313
6314 /* set SATA cable type if still unset */
6315 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6316 ap->cbl = ATA_CBL_SATA;
6317
6318 /* init sata_spd_limit to the current value */
6319 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6320 int spd = (scontrol >> 4) & 0xf;
6321 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6322 }
6323 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6324
6325 /* report the secondary IRQ for second channel legacy */
6326 irq_line = host->irq;
6327 if (i == 1 && host->irq2)
6328 irq_line = host->irq2;
6329
6330 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6331 ap->udma_mask);
6332
6333 /* print per-port info to dmesg */
6334 if (!ata_port_is_dummy(ap))
6335 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6336 "ctl 0x%p bmdma 0x%p irq %d\n",
6337 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6338 ata_mode_string(xfer_mask),
6339 ap->ioaddr.cmd_addr,
6340 ap->ioaddr.ctl_addr,
6341 ap->ioaddr.bmdma_addr,
6342 irq_line);
6343 else
6344 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6345 }
6346
6347 /* perform each probe synchronously */
6348 DPRINTK("probe begin\n");
6349 for (i = 0; i < host->n_ports; i++) {
6350 struct ata_port *ap = host->ports[i];
6351 int rc;
6352
6353 /* probe */
6354 if (ap->ops->error_handler) {
6355 struct ata_eh_info *ehi = &ap->eh_info;
6356 unsigned long flags;
6357
6358 ata_port_probe(ap);
6359
6360 /* kick EH for boot probing */
6361 spin_lock_irqsave(ap->lock, flags);
6362
6363 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6364 ehi->action |= ATA_EH_SOFTRESET;
6365 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6366
6367 ap->pflags |= ATA_PFLAG_LOADING;
6368 ata_port_schedule_eh(ap);
6369
6370 spin_unlock_irqrestore(ap->lock, flags);
6371
6372 /* wait for EH to finish */
6373 ata_port_wait_eh(ap);
6374 } else {
6375 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6376 rc = ata_bus_probe(ap);
6377 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6378
6379 if (rc) {
6380 /* FIXME: do something useful here?
6381 * Current libata behavior will
6382 * tear down everything when
6383 * the module is removed
6384 * or the h/w is unplugged.
6385 */
6386 }
6387 }
6388 }
6389
6390 /* probes are done, now scan each port's disk(s) */
6391 DPRINTK("host probe begin\n");
6392 for (i = 0; i < host->n_ports; i++) {
6393 struct ata_port *ap = host->ports[i];
6394
6395 ata_scsi_scan_host(ap);
6396 }
6397
6398 return 0;
6399}
6400
f5cda257
TH
6401/**
6402 * ata_host_activate - start host, request IRQ and register it
6403 * @host: target ATA host
6404 * @irq: IRQ to request
6405 * @irq_handler: irq_handler used when requesting IRQ
6406 * @irq_flags: irq_flags used when requesting IRQ
6407 * @sht: scsi_host_template to use when registering the host
6408 *
6409 * After allocating an ATA host and initializing it, most libata
6410 * LLDs perform three steps to activate the host - start host,
6411 * request IRQ and register it. This helper takes necessasry
6412 * arguments and performs the three steps in one go.
6413 *
6414 * LOCKING:
6415 * Inherited from calling layer (may sleep).
6416 *
6417 * RETURNS:
6418 * 0 on success, -errno otherwise.
6419 */
6420int ata_host_activate(struct ata_host *host, int irq,
6421 irq_handler_t irq_handler, unsigned long irq_flags,
6422 struct scsi_host_template *sht)
6423{
6424 int rc;
6425
6426 rc = ata_host_start(host);
6427 if (rc)
6428 return rc;
6429
6430 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6431 dev_driver_string(host->dev), host);
6432 if (rc)
6433 return rc;
6434
6435 rc = ata_host_register(host, sht);
6436 /* if failed, just free the IRQ and leave ports alone */
6437 if (rc)
6438 devm_free_irq(host->dev, irq, host);
6439
6440 return rc;
6441}
6442
720ba126
TH
6443/**
6444 * ata_port_detach - Detach ATA port in prepration of device removal
6445 * @ap: ATA port to be detached
6446 *
6447 * Detach all ATA devices and the associated SCSI devices of @ap;
6448 * then, remove the associated SCSI host. @ap is guaranteed to
6449 * be quiescent on return from this function.
6450 *
6451 * LOCKING:
6452 * Kernel thread context (may sleep).
6453 */
6454void ata_port_detach(struct ata_port *ap)
6455{
6456 unsigned long flags;
6457 int i;
6458
6459 if (!ap->ops->error_handler)
c3cf30a9 6460 goto skip_eh;
720ba126
TH
6461
6462 /* tell EH we're leaving & flush EH */
ba6a1308 6463 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6464 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6465 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6466
6467 ata_port_wait_eh(ap);
6468
6469 /* EH is now guaranteed to see UNLOADING, so no new device
6470 * will be attached. Disable all existing devices.
6471 */
ba6a1308 6472 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6473
6474 for (i = 0; i < ATA_MAX_DEVICES; i++)
6475 ata_dev_disable(&ap->device[i]);
6476
ba6a1308 6477 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6478
6479 /* Final freeze & EH. All in-flight commands are aborted. EH
6480 * will be skipped and retrials will be terminated with bad
6481 * target.
6482 */
ba6a1308 6483 spin_lock_irqsave(ap->lock, flags);
720ba126 6484 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6485 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6486
6487 ata_port_wait_eh(ap);
6488
6489 /* Flush hotplug task. The sequence is similar to
6490 * ata_port_flush_task().
6491 */
6492 flush_workqueue(ata_aux_wq);
6493 cancel_delayed_work(&ap->hotplug_task);
6494 flush_workqueue(ata_aux_wq);
6495
c3cf30a9 6496 skip_eh:
720ba126 6497 /* remove the associated SCSI host */
cca3974e 6498 scsi_remove_host(ap->scsi_host);
720ba126
TH
6499}
6500
0529c159
TH
6501/**
6502 * ata_host_detach - Detach all ports of an ATA host
6503 * @host: Host to detach
6504 *
6505 * Detach all ports of @host.
6506 *
6507 * LOCKING:
6508 * Kernel thread context (may sleep).
6509 */
6510void ata_host_detach(struct ata_host *host)
6511{
6512 int i;
6513
6514 for (i = 0; i < host->n_ports; i++)
6515 ata_port_detach(host->ports[i]);
6516}
6517
1da177e4
LT
6518/**
6519 * ata_std_ports - initialize ioaddr with standard port offsets.
6520 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6521 *
6522 * Utility function which initializes data_addr, error_addr,
6523 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6524 * device_addr, status_addr, and command_addr to standard offsets
6525 * relative to cmd_addr.
6526 *
6527 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6528 */
0baab86b 6529
1da177e4
LT
6530void ata_std_ports(struct ata_ioports *ioaddr)
6531{
6532 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6533 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6534 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6535 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6536 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6537 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6538 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6539 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6540 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6541 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6542}
6543
0baab86b 6544
374b1873
JG
6545#ifdef CONFIG_PCI
6546
1da177e4
LT
6547/**
6548 * ata_pci_remove_one - PCI layer callback for device removal
6549 * @pdev: PCI device that was removed
6550 *
b878ca5d
TH
6551 * PCI layer indicates to libata via this hook that hot-unplug or
6552 * module unload event has occurred. Detach all ports. Resource
6553 * release is handled via devres.
1da177e4
LT
6554 *
6555 * LOCKING:
6556 * Inherited from PCI layer (may sleep).
6557 */
f0d36efd 6558void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6559{
6560 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6561 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6562
b878ca5d 6563 ata_host_detach(host);
1da177e4
LT
6564}
6565
6566/* move to PCI subsystem */
057ace5e 6567int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6568{
6569 unsigned long tmp = 0;
6570
6571 switch (bits->width) {
6572 case 1: {
6573 u8 tmp8 = 0;
6574 pci_read_config_byte(pdev, bits->reg, &tmp8);
6575 tmp = tmp8;
6576 break;
6577 }
6578 case 2: {
6579 u16 tmp16 = 0;
6580 pci_read_config_word(pdev, bits->reg, &tmp16);
6581 tmp = tmp16;
6582 break;
6583 }
6584 case 4: {
6585 u32 tmp32 = 0;
6586 pci_read_config_dword(pdev, bits->reg, &tmp32);
6587 tmp = tmp32;
6588 break;
6589 }
6590
6591 default:
6592 return -EINVAL;
6593 }
6594
6595 tmp &= bits->mask;
6596
6597 return (tmp == bits->val) ? 1 : 0;
6598}
9b847548 6599
6ffa01d8 6600#ifdef CONFIG_PM
3c5100c1 6601void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6602{
6603 pci_save_state(pdev);
4c90d971 6604 pci_disable_device(pdev);
500530f6 6605
4c90d971 6606 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6607 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6608}
6609
553c4aa6 6610int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6611{
553c4aa6
TH
6612 int rc;
6613
9b847548
JA
6614 pci_set_power_state(pdev, PCI_D0);
6615 pci_restore_state(pdev);
553c4aa6 6616
b878ca5d 6617 rc = pcim_enable_device(pdev);
553c4aa6
TH
6618 if (rc) {
6619 dev_printk(KERN_ERR, &pdev->dev,
6620 "failed to enable device after resume (%d)\n", rc);
6621 return rc;
6622 }
6623
9b847548 6624 pci_set_master(pdev);
553c4aa6 6625 return 0;
500530f6
TH
6626}
6627
3c5100c1 6628int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6629{
cca3974e 6630 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6631 int rc = 0;
6632
cca3974e 6633 rc = ata_host_suspend(host, mesg);
500530f6
TH
6634 if (rc)
6635 return rc;
6636
3c5100c1 6637 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6638
6639 return 0;
6640}
6641
6642int ata_pci_device_resume(struct pci_dev *pdev)
6643{
cca3974e 6644 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6645 int rc;
500530f6 6646
553c4aa6
TH
6647 rc = ata_pci_device_do_resume(pdev);
6648 if (rc == 0)
6649 ata_host_resume(host);
6650 return rc;
9b847548 6651}
6ffa01d8
TH
6652#endif /* CONFIG_PM */
6653
1da177e4
LT
6654#endif /* CONFIG_PCI */
6655
6656
1da177e4
LT
6657static int __init ata_init(void)
6658{
a8601e5f 6659 ata_probe_timeout *= HZ;
1da177e4
LT
6660 ata_wq = create_workqueue("ata");
6661 if (!ata_wq)
6662 return -ENOMEM;
6663
453b07ac
TH
6664 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6665 if (!ata_aux_wq) {
6666 destroy_workqueue(ata_wq);
6667 return -ENOMEM;
6668 }
6669
1da177e4
LT
6670 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6671 return 0;
6672}
6673
6674static void __exit ata_exit(void)
6675{
6676 destroy_workqueue(ata_wq);
453b07ac 6677 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6678}
6679
a4625085 6680subsys_initcall(ata_init);
1da177e4
LT
6681module_exit(ata_exit);
6682
67846b30 6683static unsigned long ratelimit_time;
34af946a 6684static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6685
6686int ata_ratelimit(void)
6687{
6688 int rc;
6689 unsigned long flags;
6690
6691 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6692
6693 if (time_after(jiffies, ratelimit_time)) {
6694 rc = 1;
6695 ratelimit_time = jiffies + (HZ/5);
6696 } else
6697 rc = 0;
6698
6699 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6700
6701 return rc;
6702}
6703
c22daff4
TH
6704/**
6705 * ata_wait_register - wait until register value changes
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
6709 * @interval_msec: polling interval in milliseconds
6710 * @timeout_msec: timeout in milliseconds
6711 *
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6715 *
6716 * (*@reg & mask) != val
6717 *
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6720 *
6721 * LOCKING:
6722 * Kernel thread context (may sleep)
6723 *
6724 * RETURNS:
6725 * The final register value.
6726 */
6727u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6728 unsigned long interval_msec,
6729 unsigned long timeout_msec)
6730{
6731 unsigned long timeout;
6732 u32 tmp;
6733
6734 tmp = ioread32(reg);
6735
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6739 */
6740 timeout = jiffies + (timeout_msec * HZ) / 1000;
6741
6742 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6743 msleep(interval_msec);
6744 tmp = ioread32(reg);
6745 }
6746
6747 return tmp;
6748}
6749
dd5b06c4
TH
6750/*
6751 * Dummy port_ops
6752 */
6753static void ata_dummy_noret(struct ata_port *ap) { }
6754static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6755static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6756
6757static u8 ata_dummy_check_status(struct ata_port *ap)
6758{
6759 return ATA_DRDY;
6760}
6761
6762static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6763{
6764 return AC_ERR_SYSTEM;
6765}
6766
6767const struct ata_port_operations ata_dummy_port_ops = {
6768 .port_disable = ata_port_disable,
6769 .check_status = ata_dummy_check_status,
6770 .check_altstatus = ata_dummy_check_status,
6771 .dev_select = ata_noop_dev_select,
6772 .qc_prep = ata_noop_qc_prep,
6773 .qc_issue = ata_dummy_qc_issue,
6774 .freeze = ata_dummy_noret,
6775 .thaw = ata_dummy_noret,
6776 .error_handler = ata_dummy_noret,
6777 .post_internal_cmd = ata_dummy_qc_noret,
6778 .irq_clear = ata_dummy_noret,
6779 .port_start = ata_dummy_ret0,
6780 .port_stop = ata_dummy_noret,
6781};
6782
21b0ad4f
TH
6783const struct ata_port_info ata_dummy_port_info = {
6784 .port_ops = &ata_dummy_port_ops,
6785};
6786
1da177e4
LT
6787/*
6788 * libata is essentially a library of internal helper functions for
6789 * low-level ATA host controller drivers. As such, the API/ABI is
6790 * likely to change as new drivers are added and updated.
6791 * Do not depend on ABI/API stability.
6792 */
6793
e9c83914
TH
6794EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6795EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6796EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6797EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6798EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6799EXPORT_SYMBOL_GPL(ata_std_bios_param);
6800EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6801EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6802EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6803EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6804EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6805EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6806EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6807EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6808EXPORT_SYMBOL_GPL(ata_sg_init);
6809EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6810EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6811EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6812EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6813EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6814EXPORT_SYMBOL_GPL(ata_tf_load);
6815EXPORT_SYMBOL_GPL(ata_tf_read);
6816EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6817EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6818EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6819EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6820EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6821EXPORT_SYMBOL_GPL(ata_check_status);
6822EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6823EXPORT_SYMBOL_GPL(ata_exec_command);
6824EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6825EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6826EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6827EXPORT_SYMBOL_GPL(ata_data_xfer);
6828EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6829EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6830EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6831EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6832EXPORT_SYMBOL_GPL(ata_bmdma_start);
6833EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6834EXPORT_SYMBOL_GPL(ata_bmdma_status);
6835EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6836EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6837EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6838EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6839EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6840EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6841EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6842EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6843EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6844EXPORT_SYMBOL_GPL(sata_phy_debounce);
6845EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6846EXPORT_SYMBOL_GPL(sata_phy_reset);
6847EXPORT_SYMBOL_GPL(__sata_phy_reset);
6848EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6849EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6850EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6851EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6852EXPORT_SYMBOL_GPL(sata_std_hardreset);
6853EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6854EXPORT_SYMBOL_GPL(ata_dev_classify);
6855EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6856EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6857EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6858EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6859EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6860EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6861EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6862EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6863EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6864EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6865EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6866EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6867EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6868EXPORT_SYMBOL_GPL(sata_scr_valid);
6869EXPORT_SYMBOL_GPL(sata_scr_read);
6870EXPORT_SYMBOL_GPL(sata_scr_write);
6871EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6872EXPORT_SYMBOL_GPL(ata_port_online);
6873EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6874#ifdef CONFIG_PM
cca3974e
JG
6875EXPORT_SYMBOL_GPL(ata_host_suspend);
6876EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6877#endif /* CONFIG_PM */
6a62a04d
TH
6878EXPORT_SYMBOL_GPL(ata_id_string);
6879EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6880EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6881EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6882EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6883
1bc4ccff 6884EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6885EXPORT_SYMBOL_GPL(ata_timing_compute);
6886EXPORT_SYMBOL_GPL(ata_timing_merge);
6887
1da177e4
LT
6888#ifdef CONFIG_PCI
6889EXPORT_SYMBOL_GPL(pci_test_config_bits);
d491b27b 6890EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
21b0ad4f 6891EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
1da177e4
LT
6892EXPORT_SYMBOL_GPL(ata_pci_init_one);
6893EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6894#ifdef CONFIG_PM
500530f6
TH
6895EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6896EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6897EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6898EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6899#endif /* CONFIG_PM */
67951ade
AC
6900EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6901EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6902#endif /* CONFIG_PCI */
9b847548 6903
6ffa01d8 6904#ifdef CONFIG_PM
9b847548
JA
6905EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6906EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6907#endif /* CONFIG_PM */
ece1d636 6908
ece1d636 6909EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6910EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6911EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6912EXPORT_SYMBOL_GPL(ata_port_freeze);
6913EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6914EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6915EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6916EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6917EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6918EXPORT_SYMBOL_GPL(ata_irq_on);
6919EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6920EXPORT_SYMBOL_GPL(ata_irq_ack);
6921EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6922EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6923
6924EXPORT_SYMBOL_GPL(ata_cable_40wire);
6925EXPORT_SYMBOL_GPL(ata_cable_80wire);
6926EXPORT_SYMBOL_GPL(ata_cable_unknown);
6927EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 1.447968 seconds and 5 git commands to generate.