Merge branch 'kvm-updates-2.6.27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / atm / fore200e.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 A FORE Systems 200E-series driver for ATM on Linux.
3 Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5 Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7 This driver simultaneously supports PCA-200E and SBA-200E adapters
8 on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23*/
24
25
1da177e4
LT
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
1da177e4
LT
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
e92481f9 39#include <linux/firmware.h>
1da177e4
LT
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <asm/atomic.h>
48
e92481f9 49#ifdef CONFIG_SBUS
1da177e4
LT
50#include <asm/idprom.h>
51#include <asm/sbus.h>
52#include <asm/openprom.h>
53#include <asm/oplib.h>
54#include <asm/pgtable.h>
55#endif
56
57#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
58#define FORE200E_USE_TASKLET
59#endif
60
61#if 0 /* enable the debugging code of the buffer supply queues */
62#define FORE200E_BSQ_DEBUG
63#endif
64
65#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
66#define FORE200E_52BYTE_AAL0_SDU
67#endif
68
69#include "fore200e.h"
70#include "suni.h"
71
72#define FORE200E_VERSION "0.3e"
73
74#define FORE200E "fore200e: "
75
76#if 0 /* override .config */
77#define CONFIG_ATM_FORE200E_DEBUG 1
78#endif
79#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
80#define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
81 printk(FORE200E format, ##args); } while (0)
82#else
83#define DPRINTK(level, format, args...) do {} while (0)
84#endif
85
86
87#define FORE200E_ALIGN(addr, alignment) \
88 ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
89
90#define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type))
91
92#define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ])
93
94#define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo))
95
96#if 1
97#define ASSERT(expr) if (!(expr)) { \
98 printk(FORE200E "assertion failed! %s[%d]: %s\n", \
5a346a10
HH
99 __func__, __LINE__, #expr); \
100 panic(FORE200E "%s", __func__); \
1da177e4
LT
101 }
102#else
103#define ASSERT(expr) do {} while (0)
104#endif
105
106
107static const struct atmdev_ops fore200e_ops;
108static const struct fore200e_bus fore200e_bus[];
109
110static LIST_HEAD(fore200e_boards);
111
112
113MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
114MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
115MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
116
117
118static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
119 { BUFFER_S1_NBR, BUFFER_L1_NBR },
120 { BUFFER_S2_NBR, BUFFER_L2_NBR }
121};
122
123static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
124 { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
125 { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
126};
127
128
129#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
130static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
131#endif
132
133
134#if 0 /* currently unused */
135static int
136fore200e_fore2atm_aal(enum fore200e_aal aal)
137{
138 switch(aal) {
139 case FORE200E_AAL0: return ATM_AAL0;
140 case FORE200E_AAL34: return ATM_AAL34;
141 case FORE200E_AAL5: return ATM_AAL5;
142 }
143
144 return -EINVAL;
145}
146#endif
147
148
149static enum fore200e_aal
150fore200e_atm2fore_aal(int aal)
151{
152 switch(aal) {
153 case ATM_AAL0: return FORE200E_AAL0;
154 case ATM_AAL34: return FORE200E_AAL34;
155 case ATM_AAL1:
156 case ATM_AAL2:
157 case ATM_AAL5: return FORE200E_AAL5;
158 }
159
160 return -EINVAL;
161}
162
163
164static char*
165fore200e_irq_itoa(int irq)
166{
1da177e4
LT
167 static char str[8];
168 sprintf(str, "%d", irq);
169 return str;
1da177e4
LT
170}
171
172
1da177e4
LT
173/* allocate and align a chunk of memory intended to hold the data behing exchanged
174 between the driver and the adapter (using streaming DVMA) */
175
176static int
177fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
178{
179 unsigned long offset = 0;
180
181 if (alignment <= sizeof(int))
182 alignment = 0;
183
184 chunk->alloc_size = size + alignment;
185 chunk->align_size = size;
186 chunk->direction = direction;
187
1f8a5fb8 188 chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
1da177e4
LT
189 if (chunk->alloc_addr == NULL)
190 return -ENOMEM;
191
192 if (alignment > 0)
193 offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
194
195 chunk->align_addr = chunk->alloc_addr + offset;
196
197 chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
198
199 return 0;
200}
201
202
203/* free a chunk of memory */
204
205static void
206fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
207{
208 fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
209
1f8a5fb8 210 kfree(chunk->alloc_addr);
1da177e4
LT
211}
212
213
214static void
215fore200e_spin(int msecs)
216{
217 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
218 while (time_before(jiffies, timeout));
219}
220
221
222static int
223fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
224{
225 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
226 int ok;
227
228 mb();
229 do {
230 if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
231 break;
232
233 } while (time_before(jiffies, timeout));
234
235#if 1
236 if (!ok) {
237 printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
238 *addr, val);
239 }
240#endif
241
242 return ok;
243}
244
245
246static int
247fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
248{
249 unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
250 int ok;
251
252 do {
253 if ((ok = (fore200e->bus->read(addr) == val)))
254 break;
255
256 } while (time_before(jiffies, timeout));
257
258#if 1
259 if (!ok) {
260 printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
261 fore200e->bus->read(addr), val);
262 }
263#endif
264
265 return ok;
266}
267
268
269static void
270fore200e_free_rx_buf(struct fore200e* fore200e)
271{
272 int scheme, magn, nbr;
273 struct buffer* buffer;
274
275 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
276 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
277
278 if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
279
280 for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
281
282 struct chunk* data = &buffer[ nbr ].data;
283
284 if (data->alloc_addr != NULL)
285 fore200e_chunk_free(fore200e, data);
286 }
287 }
288 }
289 }
290}
291
292
293static void
294fore200e_uninit_bs_queue(struct fore200e* fore200e)
295{
296 int scheme, magn;
297
298 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
299 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
300
301 struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status;
302 struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
303
304 if (status->alloc_addr)
305 fore200e->bus->dma_chunk_free(fore200e, status);
306
307 if (rbd_block->alloc_addr)
308 fore200e->bus->dma_chunk_free(fore200e, rbd_block);
309 }
310 }
311}
312
313
314static int
315fore200e_reset(struct fore200e* fore200e, int diag)
316{
317 int ok;
318
319 fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
320
321 fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
322
323 fore200e->bus->reset(fore200e);
324
325 if (diag) {
326 ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
327 if (ok == 0) {
328
329 printk(FORE200E "device %s self-test failed\n", fore200e->name);
330 return -ENODEV;
331 }
332
333 printk(FORE200E "device %s self-test passed\n", fore200e->name);
334
335 fore200e->state = FORE200E_STATE_RESET;
336 }
337
338 return 0;
339}
340
341
342static void
343fore200e_shutdown(struct fore200e* fore200e)
344{
345 printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
346 fore200e->name, fore200e->phys_base,
347 fore200e_irq_itoa(fore200e->irq));
348
349 if (fore200e->state > FORE200E_STATE_RESET) {
350 /* first, reset the board to prevent further interrupts or data transfers */
351 fore200e_reset(fore200e, 0);
352 }
353
354 /* then, release all allocated resources */
355 switch(fore200e->state) {
356
357 case FORE200E_STATE_COMPLETE:
a2c1aa54 358 kfree(fore200e->stats);
1da177e4
LT
359
360 case FORE200E_STATE_IRQ:
361 free_irq(fore200e->irq, fore200e->atm_dev);
362
363 case FORE200E_STATE_ALLOC_BUF:
364 fore200e_free_rx_buf(fore200e);
365
366 case FORE200E_STATE_INIT_BSQ:
367 fore200e_uninit_bs_queue(fore200e);
368
369 case FORE200E_STATE_INIT_RXQ:
370 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
371 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
372
373 case FORE200E_STATE_INIT_TXQ:
374 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
375 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
376
377 case FORE200E_STATE_INIT_CMDQ:
378 fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
379
380 case FORE200E_STATE_INITIALIZE:
381 /* nothing to do for that state */
382
383 case FORE200E_STATE_START_FW:
384 /* nothing to do for that state */
385
1da177e4
LT
386 case FORE200E_STATE_RESET:
387 /* nothing to do for that state */
388
389 case FORE200E_STATE_MAP:
390 fore200e->bus->unmap(fore200e);
391
392 case FORE200E_STATE_CONFIGURE:
393 /* nothing to do for that state */
394
395 case FORE200E_STATE_REGISTER:
396 /* XXX shouldn't we *start* by deregistering the device? */
397 atm_dev_deregister(fore200e->atm_dev);
398
399 case FORE200E_STATE_BLANK:
400 /* nothing to do for that state */
401 break;
402 }
403}
404
405
e92481f9 406#ifdef CONFIG_PCI
1da177e4
LT
407
408static u32 fore200e_pca_read(volatile u32 __iomem *addr)
409{
410 /* on big-endian hosts, the board is configured to convert
411 the endianess of slave RAM accesses */
412 return le32_to_cpu(readl(addr));
413}
414
415
416static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
417{
418 /* on big-endian hosts, the board is configured to convert
419 the endianess of slave RAM accesses */
420 writel(cpu_to_le32(val), addr);
421}
422
423
424static u32
425fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
426{
427 u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
428
429 DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n",
430 virt_addr, size, direction, dma_addr);
431
432 return dma_addr;
433}
434
435
436static void
437fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
438{
439 DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
440 dma_addr, size, direction);
441
442 pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
443}
444
445
446static void
447fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
448{
449 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
450
451 pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
452}
453
454static void
455fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
456{
457 DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
458
459 pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
460}
461
462
463/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
464 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
465
466static int
467fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
468 int size, int nbr, int alignment)
469{
470 /* returned chunks are page-aligned */
471 chunk->alloc_size = size * nbr;
472 chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
473 chunk->alloc_size,
474 &chunk->dma_addr);
475
476 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
477 return -ENOMEM;
478
479 chunk->align_addr = chunk->alloc_addr;
480
481 return 0;
482}
483
484
485/* free a DMA consistent chunk of memory */
486
487static void
488fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
489{
490 pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
491 chunk->alloc_size,
492 chunk->alloc_addr,
493 chunk->dma_addr);
494}
495
496
497static int
498fore200e_pca_irq_check(struct fore200e* fore200e)
499{
500 /* this is a 1 bit register */
501 int irq_posted = readl(fore200e->regs.pca.psr);
502
503#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
504 if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
505 DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
506 }
507#endif
508
509 return irq_posted;
510}
511
512
513static void
514fore200e_pca_irq_ack(struct fore200e* fore200e)
515{
516 writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
517}
518
519
520static void
521fore200e_pca_reset(struct fore200e* fore200e)
522{
523 writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
524 fore200e_spin(10);
525 writel(0, fore200e->regs.pca.hcr);
526}
527
528
c027f5f9 529static int __devinit
1da177e4
LT
530fore200e_pca_map(struct fore200e* fore200e)
531{
532 DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
533
534 fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
535
536 if (fore200e->virt_base == NULL) {
537 printk(FORE200E "can't map device %s\n", fore200e->name);
538 return -EFAULT;
539 }
540
541 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
542
543 /* gain access to the PCA specific registers */
544 fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
545 fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
546 fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
547
548 fore200e->state = FORE200E_STATE_MAP;
549 return 0;
550}
551
552
553static void
554fore200e_pca_unmap(struct fore200e* fore200e)
555{
556 DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
557
558 if (fore200e->virt_base != NULL)
559 iounmap(fore200e->virt_base);
560}
561
562
c027f5f9 563static int __devinit
1da177e4
LT
564fore200e_pca_configure(struct fore200e* fore200e)
565{
566 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567 u8 master_ctrl, latency;
568
569 DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571 if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572 printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573 return -EIO;
574 }
575
576 pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578 master_ctrl = master_ctrl
579#if defined(__BIG_ENDIAN)
580 /* request the PCA board to convert the endianess of slave RAM accesses */
581 | PCA200E_CTRL_CONVERT_ENDIAN
582#endif
583#if 0
584 | PCA200E_CTRL_DIS_CACHE_RD
585 | PCA200E_CTRL_DIS_WRT_INVAL
586 | PCA200E_CTRL_ENA_CONT_REQ_MODE
587 | PCA200E_CTRL_2_CACHE_WRT_INVAL
588#endif
589 | PCA200E_CTRL_LARGE_PCI_BURSTS;
590
591 pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593 /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594 lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595 this may impact the performances of other PCI devices on the same bus, though */
596 latency = 192;
597 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599 fore200e->state = FORE200E_STATE_CONFIGURE;
600 return 0;
601}
602
603
604static int __init
605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606{
607 struct host_cmdq* cmdq = &fore200e->host_cmdq;
608 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609 struct prom_opcode opcode;
610 int ok;
611 u32 prom_dma;
612
613 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615 opcode.opcode = OPCODE_GET_PROM;
616 opcode.pad = 0;
617
618 prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620 fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621
622 *entry->status = STATUS_PENDING;
623
624 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628 *entry->status = STATUS_FREE;
629
630 fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632 if (ok == 0) {
633 printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634 return -EIO;
635 }
636
637#if defined(__BIG_ENDIAN)
638
639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641 /* MAC address is stored as little-endian */
642 swap_here(&prom->mac_addr[0]);
643 swap_here(&prom->mac_addr[4]);
644#endif
645
646 return 0;
647}
648
649
650static int
651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652{
653 struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655 return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n",
656 pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657}
658
e92481f9 659#endif /* CONFIG_PCI */
1da177e4
LT
660
661
e92481f9 662#ifdef CONFIG_SBUS
1da177e4
LT
663
664static u32
665fore200e_sba_read(volatile u32 __iomem *addr)
666{
667 return sbus_readl(addr);
668}
669
670
671static void
672fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
673{
674 sbus_writel(val, addr);
675}
676
677
678static u32
679fore200e_sba_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
680{
681 u32 dma_addr = sbus_map_single((struct sbus_dev*)fore200e->bus_dev, virt_addr, size, direction);
682
683 DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
684 virt_addr, size, direction, dma_addr);
685
686 return dma_addr;
687}
688
689
690static void
691fore200e_sba_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
692{
693 DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
694 dma_addr, size, direction);
695
696 sbus_unmap_single((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
697}
698
699
700static void
701fore200e_sba_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
702{
703 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
704
705 sbus_dma_sync_single_for_cpu((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
706}
707
708static void
709fore200e_sba_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
710{
711 DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
712
713 sbus_dma_sync_single_for_device((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction);
714}
715
716
717/* allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
718 (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
719
720static int
721fore200e_sba_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
722 int size, int nbr, int alignment)
723{
724 chunk->alloc_size = chunk->align_size = size * nbr;
725
726 /* returned chunks are page-aligned */
727 chunk->alloc_addr = sbus_alloc_consistent((struct sbus_dev*)fore200e->bus_dev,
728 chunk->alloc_size,
729 &chunk->dma_addr);
730
731 if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
732 return -ENOMEM;
733
734 chunk->align_addr = chunk->alloc_addr;
735
736 return 0;
737}
738
739
740/* free a DVMA consistent chunk of memory */
741
742static void
743fore200e_sba_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
744{
745 sbus_free_consistent((struct sbus_dev*)fore200e->bus_dev,
746 chunk->alloc_size,
747 chunk->alloc_addr,
748 chunk->dma_addr);
749}
750
751
752static void
753fore200e_sba_irq_enable(struct fore200e* fore200e)
754{
755 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
756 fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
757}
758
759
760static int
761fore200e_sba_irq_check(struct fore200e* fore200e)
762{
763 return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
764}
765
766
767static void
768fore200e_sba_irq_ack(struct fore200e* fore200e)
769{
770 u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
771 fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
772}
773
774
775static void
776fore200e_sba_reset(struct fore200e* fore200e)
777{
778 fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
779 fore200e_spin(10);
780 fore200e->bus->write(0, fore200e->regs.sba.hcr);
781}
782
783
784static int __init
785fore200e_sba_map(struct fore200e* fore200e)
786{
787 struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
788 unsigned int bursts;
789
790 /* gain access to the SBA specific registers */
791 fore200e->regs.sba.hcr = sbus_ioremap(&sbus_dev->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
792 fore200e->regs.sba.bsr = sbus_ioremap(&sbus_dev->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
793 fore200e->regs.sba.isr = sbus_ioremap(&sbus_dev->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
794 fore200e->virt_base = sbus_ioremap(&sbus_dev->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
795
796 if (fore200e->virt_base == NULL) {
797 printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
798 return -EFAULT;
799 }
800
801 DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
802
803 fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
804
805 /* get the supported DVMA burst sizes */
806 bursts = prom_getintdefault(sbus_dev->bus->prom_node, "burst-sizes", 0x00);
807
808 if (sbus_can_dma_64bit(sbus_dev))
809 sbus_set_sbus64(sbus_dev, bursts);
810
811 fore200e->state = FORE200E_STATE_MAP;
812 return 0;
813}
814
815
816static void
817fore200e_sba_unmap(struct fore200e* fore200e)
818{
819 sbus_iounmap(fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
820 sbus_iounmap(fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
821 sbus_iounmap(fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
822 sbus_iounmap(fore200e->virt_base, SBA200E_RAM_LENGTH);
823}
824
825
826static int __init
827fore200e_sba_configure(struct fore200e* fore200e)
828{
829 fore200e->state = FORE200E_STATE_CONFIGURE;
830 return 0;
831}
832
833
834static struct fore200e* __init
835fore200e_sba_detect(const struct fore200e_bus* bus, int index)
836{
837 struct fore200e* fore200e;
838 struct sbus_bus* sbus_bus;
839 struct sbus_dev* sbus_dev = NULL;
840
841 unsigned int count = 0;
842
843 for_each_sbus (sbus_bus) {
844 for_each_sbusdev (sbus_dev, sbus_bus) {
845 if (strcmp(sbus_dev->prom_name, SBA200E_PROM_NAME) == 0) {
846 if (count >= index)
847 goto found;
848 count++;
849 }
850 }
851 }
852 return NULL;
853
854 found:
855 if (sbus_dev->num_registers != 4) {
856 printk(FORE200E "this %s device has %d instead of 4 registers\n",
857 bus->model_name, sbus_dev->num_registers);
858 return NULL;
859 }
860
1f8a5fb8 861 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
1da177e4
LT
862 if (fore200e == NULL)
863 return NULL;
864
865 fore200e->bus = bus;
866 fore200e->bus_dev = sbus_dev;
867 fore200e->irq = sbus_dev->irqs[ 0 ];
868
869 fore200e->phys_base = (unsigned long)sbus_dev;
870
871 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
872
873 return fore200e;
874}
875
876
877static int __init
878fore200e_sba_prom_read(struct fore200e* fore200e, struct prom_data* prom)
879{
880 struct sbus_dev* sbus_dev = (struct sbus_dev*) fore200e->bus_dev;
881 int len;
882
883 len = prom_getproperty(sbus_dev->prom_node, "macaddrlo2", &prom->mac_addr[ 4 ], 4);
884 if (len < 0)
885 return -EBUSY;
886
887 len = prom_getproperty(sbus_dev->prom_node, "macaddrhi4", &prom->mac_addr[ 2 ], 4);
888 if (len < 0)
889 return -EBUSY;
890
891 prom_getproperty(sbus_dev->prom_node, "serialnumber",
892 (char*)&prom->serial_number, sizeof(prom->serial_number));
893
894 prom_getproperty(sbus_dev->prom_node, "promversion",
895 (char*)&prom->hw_revision, sizeof(prom->hw_revision));
896
897 return 0;
898}
899
900
901static int
902fore200e_sba_proc_read(struct fore200e* fore200e, char *page)
903{
904 struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev;
905
906 return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", sbus_dev->slot, sbus_dev->prom_name);
907}
e92481f9 908#endif /* CONFIG_SBUS */
1da177e4
LT
909
910
911static void
912fore200e_tx_irq(struct fore200e* fore200e)
913{
914 struct host_txq* txq = &fore200e->host_txq;
915 struct host_txq_entry* entry;
916 struct atm_vcc* vcc;
917 struct fore200e_vc_map* vc_map;
918
919 if (fore200e->host_txq.txing == 0)
920 return;
921
922 for (;;) {
923
924 entry = &txq->host_entry[ txq->tail ];
925
926 if ((*entry->status & STATUS_COMPLETE) == 0) {
927 break;
928 }
929
930 DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
931 entry, txq->tail, entry->vc_map, entry->skb);
932
933 /* free copy of misaligned data */
a2c1aa54 934 kfree(entry->data);
1da177e4
LT
935
936 /* remove DMA mapping */
937 fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
938 DMA_TO_DEVICE);
939
940 vc_map = entry->vc_map;
941
942 /* vcc closed since the time the entry was submitted for tx? */
943 if ((vc_map->vcc == NULL) ||
944 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
945
946 DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
947 fore200e->atm_dev->number);
948
949 dev_kfree_skb_any(entry->skb);
950 }
951 else {
952 ASSERT(vc_map->vcc);
953
954 /* vcc closed then immediately re-opened? */
955 if (vc_map->incarn != entry->incarn) {
956
957 /* when a vcc is closed, some PDUs may be still pending in the tx queue.
958 if the same vcc is immediately re-opened, those pending PDUs must
959 not be popped after the completion of their emission, as they refer
960 to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
961 would be decremented by the size of the (unrelated) skb, possibly
962 leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
963 we thus bind the tx entry to the current incarnation of the vcc
964 when the entry is submitted for tx. When the tx later completes,
965 if the incarnation number of the tx entry does not match the one
966 of the vcc, then this implies that the vcc has been closed then re-opened.
967 we thus just drop the skb here. */
968
969 DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
970 fore200e->atm_dev->number);
971
972 dev_kfree_skb_any(entry->skb);
973 }
974 else {
975 vcc = vc_map->vcc;
976 ASSERT(vcc);
977
978 /* notify tx completion */
979 if (vcc->pop) {
980 vcc->pop(vcc, entry->skb);
981 }
982 else {
983 dev_kfree_skb_any(entry->skb);
984 }
985#if 1
986 /* race fixed by the above incarnation mechanism, but... */
987 if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
988 atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
989 }
990#endif
991 /* check error condition */
992 if (*entry->status & STATUS_ERROR)
993 atomic_inc(&vcc->stats->tx_err);
994 else
995 atomic_inc(&vcc->stats->tx);
996 }
997 }
998
999 *entry->status = STATUS_FREE;
1000
1001 fore200e->host_txq.txing--;
1002
1003 FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
1004 }
1005}
1006
1007
1008#ifdef FORE200E_BSQ_DEBUG
1009int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
1010{
1011 struct buffer* buffer;
1012 int count = 0;
1013
1014 buffer = bsq->freebuf;
1015 while (buffer) {
1016
1017 if (buffer->supplied) {
1018 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
1019 where, scheme, magn, buffer->index);
1020 }
1021
1022 if (buffer->magn != magn) {
1023 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
1024 where, scheme, magn, buffer->index, buffer->magn);
1025 }
1026
1027 if (buffer->scheme != scheme) {
1028 printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
1029 where, scheme, magn, buffer->index, buffer->scheme);
1030 }
1031
1032 if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
1033 printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
1034 where, scheme, magn, buffer->index);
1035 }
1036
1037 count++;
1038 buffer = buffer->next;
1039 }
1040
1041 if (count != bsq->freebuf_count) {
1042 printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
1043 where, scheme, magn, count, bsq->freebuf_count);
1044 }
1045 return 0;
1046}
1047#endif
1048
1049
1050static void
1051fore200e_supply(struct fore200e* fore200e)
1052{
1053 int scheme, magn, i;
1054
1055 struct host_bsq* bsq;
1056 struct host_bsq_entry* entry;
1057 struct buffer* buffer;
1058
1059 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1060 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1061
1062 bsq = &fore200e->host_bsq[ scheme ][ magn ];
1063
1064#ifdef FORE200E_BSQ_DEBUG
1065 bsq_audit(1, bsq, scheme, magn);
1066#endif
1067 while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1068
1069 DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1070 RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1071
1072 entry = &bsq->host_entry[ bsq->head ];
1073
1074 for (i = 0; i < RBD_BLK_SIZE; i++) {
1075
1076 /* take the first buffer in the free buffer list */
1077 buffer = bsq->freebuf;
1078 if (!buffer) {
1079 printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1080 scheme, magn, bsq->freebuf_count);
1081 return;
1082 }
1083 bsq->freebuf = buffer->next;
1084
1085#ifdef FORE200E_BSQ_DEBUG
1086 if (buffer->supplied)
1087 printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1088 scheme, magn, buffer->index);
1089 buffer->supplied = 1;
1090#endif
1091 entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1092 entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer);
1093 }
1094
1095 FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1096
1097 /* decrease accordingly the number of free rx buffers */
1098 bsq->freebuf_count -= RBD_BLK_SIZE;
1099
1100 *entry->status = STATUS_PENDING;
1101 fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1102 }
1103 }
1104 }
1105}
1106
1107
1108static int
1109fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1110{
1111 struct sk_buff* skb;
1112 struct buffer* buffer;
1113 struct fore200e_vcc* fore200e_vcc;
1114 int i, pdu_len = 0;
1115#ifdef FORE200E_52BYTE_AAL0_SDU
1116 u32 cell_header = 0;
1117#endif
1118
1119 ASSERT(vcc);
1120
1121 fore200e_vcc = FORE200E_VCC(vcc);
1122 ASSERT(fore200e_vcc);
1123
1124#ifdef FORE200E_52BYTE_AAL0_SDU
1125 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1126
1127 cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1128 (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1129 (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1130 (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1131 rpd->atm_header.clp;
1132 pdu_len = 4;
1133 }
1134#endif
1135
1136 /* compute total PDU length */
1137 for (i = 0; i < rpd->nseg; i++)
1138 pdu_len += rpd->rsd[ i ].length;
1139
1140 skb = alloc_skb(pdu_len, GFP_ATOMIC);
1141 if (skb == NULL) {
1142 DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1143
1144 atomic_inc(&vcc->stats->rx_drop);
1145 return -ENOMEM;
1146 }
1147
a61bbcf2 1148 __net_timestamp(skb);
1da177e4
LT
1149
1150#ifdef FORE200E_52BYTE_AAL0_SDU
1151 if (cell_header) {
1152 *((u32*)skb_put(skb, 4)) = cell_header;
1153 }
1154#endif
1155
1156 /* reassemble segments */
1157 for (i = 0; i < rpd->nseg; i++) {
1158
1159 /* rebuild rx buffer address from rsd handle */
1160 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1161
1162 /* Make device DMA transfer visible to CPU. */
1163 fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1164
1165 memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1166
1167 /* Now let the device get at it again. */
1168 fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1169 }
1170
1171 DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1172
1173 if (pdu_len < fore200e_vcc->rx_min_pdu)
1174 fore200e_vcc->rx_min_pdu = pdu_len;
1175 if (pdu_len > fore200e_vcc->rx_max_pdu)
1176 fore200e_vcc->rx_max_pdu = pdu_len;
1177 fore200e_vcc->rx_pdu++;
1178
1179 /* push PDU */
1180 if (atm_charge(vcc, skb->truesize) == 0) {
1181
1182 DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1183 vcc->itf, vcc->vpi, vcc->vci);
1184
1185 dev_kfree_skb_any(skb);
1186
1187 atomic_inc(&vcc->stats->rx_drop);
1188 return -ENOMEM;
1189 }
1190
1191 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1192
1193 vcc->push(vcc, skb);
1194 atomic_inc(&vcc->stats->rx);
1195
1196 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1197
1198 return 0;
1199}
1200
1201
1202static void
1203fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1204{
1205 struct host_bsq* bsq;
1206 struct buffer* buffer;
1207 int i;
1208
1209 for (i = 0; i < rpd->nseg; i++) {
1210
1211 /* rebuild rx buffer address from rsd handle */
1212 buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1213
1214 bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1215
1216#ifdef FORE200E_BSQ_DEBUG
1217 bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1218
1219 if (buffer->supplied == 0)
1220 printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1221 buffer->scheme, buffer->magn, buffer->index);
1222 buffer->supplied = 0;
1223#endif
1224
1225 /* re-insert the buffer into the free buffer list */
1226 buffer->next = bsq->freebuf;
1227 bsq->freebuf = buffer;
1228
1229 /* then increment the number of free rx buffers */
1230 bsq->freebuf_count++;
1231 }
1232}
1233
1234
1235static void
1236fore200e_rx_irq(struct fore200e* fore200e)
1237{
1238 struct host_rxq* rxq = &fore200e->host_rxq;
1239 struct host_rxq_entry* entry;
1240 struct atm_vcc* vcc;
1241 struct fore200e_vc_map* vc_map;
1242
1243 for (;;) {
1244
1245 entry = &rxq->host_entry[ rxq->head ];
1246
1247 /* no more received PDUs */
1248 if ((*entry->status & STATUS_COMPLETE) == 0)
1249 break;
1250
1251 vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1252
1253 if ((vc_map->vcc == NULL) ||
1254 (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1255
1256 DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1257 fore200e->atm_dev->number,
1258 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1259 }
1260 else {
1261 vcc = vc_map->vcc;
1262 ASSERT(vcc);
1263
1264 if ((*entry->status & STATUS_ERROR) == 0) {
1265
1266 fore200e_push_rpd(fore200e, vcc, entry->rpd);
1267 }
1268 else {
1269 DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1270 fore200e->atm_dev->number,
1271 entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1272 atomic_inc(&vcc->stats->rx_err);
1273 }
1274 }
1275
1276 FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1277
1278 fore200e_collect_rpd(fore200e, entry->rpd);
1279
1280 /* rewrite the rpd address to ack the received PDU */
1281 fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1282 *entry->status = STATUS_FREE;
1283
1284 fore200e_supply(fore200e);
1285 }
1286}
1287
1288
1289#ifndef FORE200E_USE_TASKLET
1290static void
1291fore200e_irq(struct fore200e* fore200e)
1292{
1293 unsigned long flags;
1294
1295 spin_lock_irqsave(&fore200e->q_lock, flags);
1296 fore200e_rx_irq(fore200e);
1297 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298
1299 spin_lock_irqsave(&fore200e->q_lock, flags);
1300 fore200e_tx_irq(fore200e);
1301 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1302}
1303#endif
1304
1305
1306static irqreturn_t
7d12e780 1307fore200e_interrupt(int irq, void* dev)
1da177e4
LT
1308{
1309 struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1310
1311 if (fore200e->bus->irq_check(fore200e) == 0) {
1312
1313 DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1314 return IRQ_NONE;
1315 }
1316 DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1317
1318#ifdef FORE200E_USE_TASKLET
1319 tasklet_schedule(&fore200e->tx_tasklet);
1320 tasklet_schedule(&fore200e->rx_tasklet);
1321#else
1322 fore200e_irq(fore200e);
1323#endif
1324
1325 fore200e->bus->irq_ack(fore200e);
1326 return IRQ_HANDLED;
1327}
1328
1329
1330#ifdef FORE200E_USE_TASKLET
1331static void
1332fore200e_tx_tasklet(unsigned long data)
1333{
1334 struct fore200e* fore200e = (struct fore200e*) data;
1335 unsigned long flags;
1336
1337 DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1338
1339 spin_lock_irqsave(&fore200e->q_lock, flags);
1340 fore200e_tx_irq(fore200e);
1341 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1342}
1343
1344
1345static void
1346fore200e_rx_tasklet(unsigned long data)
1347{
1348 struct fore200e* fore200e = (struct fore200e*) data;
1349 unsigned long flags;
1350
1351 DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1352
1353 spin_lock_irqsave(&fore200e->q_lock, flags);
1354 fore200e_rx_irq((struct fore200e*) data);
1355 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1356}
1357#endif
1358
1359
1360static int
1361fore200e_select_scheme(struct atm_vcc* vcc)
1362{
1363 /* fairly balance the VCs over (identical) buffer schemes */
1364 int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1365
1366 DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1367 vcc->itf, vcc->vpi, vcc->vci, scheme);
1368
1369 return scheme;
1370}
1371
1372
1373static int
1374fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1375{
1376 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1377 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1378 struct activate_opcode activ_opcode;
1379 struct deactivate_opcode deactiv_opcode;
1380 struct vpvc vpvc;
1381 int ok;
1382 enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal);
1383
1384 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1385
1386 if (activate) {
1387 FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1388
1389 activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1390 activ_opcode.aal = aal;
1391 activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1392 activ_opcode.pad = 0;
1393 }
1394 else {
1395 deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1396 deactiv_opcode.pad = 0;
1397 }
1398
1399 vpvc.vci = vcc->vci;
1400 vpvc.vpi = vcc->vpi;
1401
1402 *entry->status = STATUS_PENDING;
1403
1404 if (activate) {
1405
1406#ifdef FORE200E_52BYTE_AAL0_SDU
1407 mtu = 48;
1408#endif
1409 /* the MTU is not used by the cp, except in the case of AAL0 */
1410 fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu);
1411 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1412 fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1413 }
1414 else {
1415 fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1416 fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1417 }
1418
1419 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1420
1421 *entry->status = STATUS_FREE;
1422
1423 if (ok == 0) {
1424 printk(FORE200E "unable to %s VC %d.%d.%d\n",
1425 activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1426 return -EIO;
1427 }
1428
1429 DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1430 activate ? "open" : "clos");
1431
1432 return 0;
1433}
1434
1435
1436#define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */
1437
1438static void
1439fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1440{
1441 if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1442
1443 /* compute the data cells to idle cells ratio from the tx PCR */
1444 rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1445 rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1446 }
1447 else {
1448 /* disable rate control */
1449 rate->data_cells = rate->idle_cells = 0;
1450 }
1451}
1452
1453
1454static int
1455fore200e_open(struct atm_vcc *vcc)
1456{
1457 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1458 struct fore200e_vcc* fore200e_vcc;
1459 struct fore200e_vc_map* vc_map;
1460 unsigned long flags;
1461 int vci = vcc->vci;
1462 short vpi = vcc->vpi;
1463
1464 ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1465 ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1466
1467 spin_lock_irqsave(&fore200e->q_lock, flags);
1468
1469 vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1470 if (vc_map->vcc) {
1471
1472 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1473
1474 printk(FORE200E "VC %d.%d.%d already in use\n",
1475 fore200e->atm_dev->number, vpi, vci);
1476
1477 return -EINVAL;
1478 }
1479
1480 vc_map->vcc = vcc;
1481
1482 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1483
1f8a5fb8 1484 fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1da177e4
LT
1485 if (fore200e_vcc == NULL) {
1486 vc_map->vcc = NULL;
1487 return -ENOMEM;
1488 }
1489
1490 DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1491 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1492 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1493 fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1494 vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1495 fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1496 vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1497
1498 /* pseudo-CBR bandwidth requested? */
1499 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1500
bfbf3c09 1501 mutex_lock(&fore200e->rate_mtx);
1da177e4 1502 if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
bfbf3c09 1503 mutex_unlock(&fore200e->rate_mtx);
1da177e4 1504
1f8a5fb8 1505 kfree(fore200e_vcc);
1da177e4
LT
1506 vc_map->vcc = NULL;
1507 return -EAGAIN;
1508 }
1509
1510 /* reserve bandwidth */
1511 fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
bfbf3c09 1512 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1513 }
1514
1515 vcc->itf = vcc->dev->number;
1516
1517 set_bit(ATM_VF_PARTIAL,&vcc->flags);
1518 set_bit(ATM_VF_ADDR, &vcc->flags);
1519
1520 vcc->dev_data = fore200e_vcc;
1521
1522 if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1523
1524 vc_map->vcc = NULL;
1525
1526 clear_bit(ATM_VF_ADDR, &vcc->flags);
1527 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1528
1529 vcc->dev_data = NULL;
1530
1531 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1532
1f8a5fb8 1533 kfree(fore200e_vcc);
1da177e4
LT
1534 return -EINVAL;
1535 }
1536
1537 /* compute rate control parameters */
1538 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540 fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1541 set_bit(ATM_VF_HASQOS, &vcc->flags);
1542
1543 DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1544 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1545 vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1546 fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1547 }
1548
1549 fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1550 fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1551 fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0;
1552
1553 /* new incarnation of the vcc */
1554 vc_map->incarn = ++fore200e->incarn_count;
1555
1556 /* VC unusable before this flag is set */
1557 set_bit(ATM_VF_READY, &vcc->flags);
1558
1559 return 0;
1560}
1561
1562
1563static void
1564fore200e_close(struct atm_vcc* vcc)
1565{
1566 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1567 struct fore200e_vcc* fore200e_vcc;
1568 struct fore200e_vc_map* vc_map;
1569 unsigned long flags;
1570
1571 ASSERT(vcc);
1572 ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1573 ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1574
1575 DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1576
1577 clear_bit(ATM_VF_READY, &vcc->flags);
1578
1579 fore200e_activate_vcin(fore200e, 0, vcc, 0);
1580
1581 spin_lock_irqsave(&fore200e->q_lock, flags);
1582
1583 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1584
1585 /* the vc is no longer considered as "in use" by fore200e_open() */
1586 vc_map->vcc = NULL;
1587
1588 vcc->itf = vcc->vci = vcc->vpi = 0;
1589
1590 fore200e_vcc = FORE200E_VCC(vcc);
1591 vcc->dev_data = NULL;
1592
1593 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1594
1595 /* release reserved bandwidth, if any */
1596 if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1597
bfbf3c09 1598 mutex_lock(&fore200e->rate_mtx);
1da177e4 1599 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
bfbf3c09 1600 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
1601
1602 clear_bit(ATM_VF_HASQOS, &vcc->flags);
1603 }
1604
1605 clear_bit(ATM_VF_ADDR, &vcc->flags);
1606 clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1607
1608 ASSERT(fore200e_vcc);
1f8a5fb8 1609 kfree(fore200e_vcc);
1da177e4
LT
1610}
1611
1612
1613static int
1614fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1615{
1616 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
1617 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1618 struct fore200e_vc_map* vc_map;
1619 struct host_txq* txq = &fore200e->host_txq;
1620 struct host_txq_entry* entry;
1621 struct tpd* tpd;
1622 struct tpd_haddr tpd_haddr;
1623 int retry = CONFIG_ATM_FORE200E_TX_RETRY;
1624 int tx_copy = 0;
1625 int tx_len = skb->len;
1626 u32* cell_header = NULL;
1627 unsigned char* skb_data;
1628 int skb_len;
1629 unsigned char* data;
1630 unsigned long flags;
1631
1632 ASSERT(vcc);
1633 ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1634 ASSERT(fore200e);
1635 ASSERT(fore200e_vcc);
1636
1637 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1638 DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1639 dev_kfree_skb_any(skb);
1640 return -EINVAL;
1641 }
1642
1643#ifdef FORE200E_52BYTE_AAL0_SDU
1644 if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1645 cell_header = (u32*) skb->data;
1646 skb_data = skb->data + 4; /* skip 4-byte cell header */
1647 skb_len = tx_len = skb->len - 4;
1648
1649 DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1650 }
1651 else
1652#endif
1653 {
1654 skb_data = skb->data;
1655 skb_len = skb->len;
1656 }
1657
1658 if (((unsigned long)skb_data) & 0x3) {
1659
1660 DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1661 tx_copy = 1;
1662 tx_len = skb_len;
1663 }
1664
1665 if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1666
1667 /* this simply NUKES the PCA board */
1668 DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1669 tx_copy = 1;
1670 tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1671 }
1672
1673 if (tx_copy) {
1674 data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1675 if (data == NULL) {
1676 if (vcc->pop) {
1677 vcc->pop(vcc, skb);
1678 }
1679 else {
1680 dev_kfree_skb_any(skb);
1681 }
1682 return -ENOMEM;
1683 }
1684
1685 memcpy(data, skb_data, skb_len);
1686 if (skb_len < tx_len)
1687 memset(data + skb_len, 0x00, tx_len - skb_len);
1688 }
1689 else {
1690 data = skb_data;
1691 }
1692
1693 vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1694 ASSERT(vc_map->vcc == vcc);
1695
1696 retry_here:
1697
1698 spin_lock_irqsave(&fore200e->q_lock, flags);
1699
1700 entry = &txq->host_entry[ txq->head ];
1701
1702 if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1703
1704 /* try to free completed tx queue entries */
1705 fore200e_tx_irq(fore200e);
1706
1707 if (*entry->status != STATUS_FREE) {
1708
1709 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1710
1711 /* retry once again? */
1712 if (--retry > 0) {
1713 udelay(50);
1714 goto retry_here;
1715 }
1716
1717 atomic_inc(&vcc->stats->tx_err);
1718
1719 fore200e->tx_sat++;
1720 DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1721 fore200e->name, fore200e->cp_queues->heartbeat);
1722 if (vcc->pop) {
1723 vcc->pop(vcc, skb);
1724 }
1725 else {
1726 dev_kfree_skb_any(skb);
1727 }
1728
1729 if (tx_copy)
1730 kfree(data);
1731
1732 return -ENOBUFS;
1733 }
1734 }
1735
1736 entry->incarn = vc_map->incarn;
1737 entry->vc_map = vc_map;
1738 entry->skb = skb;
1739 entry->data = tx_copy ? data : NULL;
1740
1741 tpd = entry->tpd;
1742 tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1743 tpd->tsd[ 0 ].length = tx_len;
1744
1745 FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1746 txq->txing++;
1747
1748 /* The dma_map call above implies a dma_sync so the device can use it,
1749 * thus no explicit dma_sync call is necessary here.
1750 */
1751
1752 DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1753 vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1754 tpd->tsd[0].length, skb_len);
1755
1756 if (skb_len < fore200e_vcc->tx_min_pdu)
1757 fore200e_vcc->tx_min_pdu = skb_len;
1758 if (skb_len > fore200e_vcc->tx_max_pdu)
1759 fore200e_vcc->tx_max_pdu = skb_len;
1760 fore200e_vcc->tx_pdu++;
1761
1762 /* set tx rate control information */
1763 tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1764 tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1765
1766 if (cell_header) {
1767 tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1768 tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1769 tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1770 tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1771 tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1772 }
1773 else {
1774 /* set the ATM header, common to all cells conveying the PDU */
1775 tpd->atm_header.clp = 0;
1776 tpd->atm_header.plt = 0;
1777 tpd->atm_header.vci = vcc->vci;
1778 tpd->atm_header.vpi = vcc->vpi;
1779 tpd->atm_header.gfc = 0;
1780 }
1781
1782 tpd->spec.length = tx_len;
1783 tpd->spec.nseg = 1;
1784 tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal);
1785 tpd->spec.intr = 1;
1786
1787 tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */
1788 tpd_haddr.pad = 0;
1789 tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */
1790
1791 *entry->status = STATUS_PENDING;
1792 fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1793
1794 spin_unlock_irqrestore(&fore200e->q_lock, flags);
1795
1796 return 0;
1797}
1798
1799
1800static int
1801fore200e_getstats(struct fore200e* fore200e)
1802{
1803 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1804 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1805 struct stats_opcode opcode;
1806 int ok;
1807 u32 stats_dma_addr;
1808
1809 if (fore200e->stats == NULL) {
1f8a5fb8 1810 fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1da177e4
LT
1811 if (fore200e->stats == NULL)
1812 return -ENOMEM;
1813 }
1814
1815 stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1816 sizeof(struct stats), DMA_FROM_DEVICE);
1817
1818 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1819
1820 opcode.opcode = OPCODE_GET_STATS;
1821 opcode.pad = 0;
1822
1823 fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1824
1825 *entry->status = STATUS_PENDING;
1826
1827 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1828
1829 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1830
1831 *entry->status = STATUS_FREE;
1832
1833 fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1834
1835 if (ok == 0) {
1836 printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1837 return -EIO;
1838 }
1839
1840 return 0;
1841}
1842
1843
1844static int
1845fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1846{
1847 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1848
1849 DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1850 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1851
1852 return -EINVAL;
1853}
1854
1855
1856static int
1857fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1858{
1859 /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1860
1861 DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1862 vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1863
1864 return -EINVAL;
1865}
1866
1867
1868#if 0 /* currently unused */
1869static int
1870fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1871{
1872 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1873 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1874 struct oc3_opcode opcode;
1875 int ok;
1876 u32 oc3_regs_dma_addr;
1877
1878 oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1879
1880 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1881
1882 opcode.opcode = OPCODE_GET_OC3;
1883 opcode.reg = 0;
1884 opcode.value = 0;
1885 opcode.mask = 0;
1886
1887 fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1888
1889 *entry->status = STATUS_PENDING;
1890
1891 fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1892
1893 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1894
1895 *entry->status = STATUS_FREE;
1896
1897 fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1898
1899 if (ok == 0) {
1900 printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1901 return -EIO;
1902 }
1903
1904 return 0;
1905}
1906#endif
1907
1908
1909static int
1910fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1911{
1912 struct host_cmdq* cmdq = &fore200e->host_cmdq;
1913 struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1914 struct oc3_opcode opcode;
1915 int ok;
1916
1917 DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1918
1919 FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1920
1921 opcode.opcode = OPCODE_SET_OC3;
1922 opcode.reg = reg;
1923 opcode.value = value;
1924 opcode.mask = mask;
1925
1926 fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1927
1928 *entry->status = STATUS_PENDING;
1929
1930 fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1931
1932 ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1933
1934 *entry->status = STATUS_FREE;
1935
1936 if (ok == 0) {
1937 printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1938 return -EIO;
1939 }
1940
1941 return 0;
1942}
1943
1944
1945static int
1946fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1947{
1948 u32 mct_value, mct_mask;
1949 int error;
1950
1951 if (!capable(CAP_NET_ADMIN))
1952 return -EPERM;
1953
1954 switch (loop_mode) {
1955
1956 case ATM_LM_NONE:
1957 mct_value = 0;
1958 mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE;
1959 break;
1960
1961 case ATM_LM_LOC_PHY:
1962 mct_value = mct_mask = SUNI_MCT_DLE;
1963 break;
1964
1965 case ATM_LM_RMT_PHY:
1966 mct_value = mct_mask = SUNI_MCT_LLE;
1967 break;
1968
1969 default:
1970 return -EINVAL;
1971 }
1972
1973 error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1974 if (error == 0)
1975 fore200e->loop_mode = loop_mode;
1976
1977 return error;
1978}
1979
1980
1da177e4
LT
1981static int
1982fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1983{
1984 struct sonet_stats tmp;
1985
1986 if (fore200e_getstats(fore200e) < 0)
1987 return -EIO;
1988
63734a32
AV
1989 tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1990 tmp.line_bip = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1991 tmp.path_bip = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1992 tmp.line_febe = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1993 tmp.path_febe = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1994 tmp.corr_hcs = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1995 tmp.uncorr_hcs = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1996 tmp.tx_cells = be32_to_cpu(fore200e->stats->aal0.cells_transmitted) +
1997 be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1998 be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1999 tmp.rx_cells = be32_to_cpu(fore200e->stats->aal0.cells_received) +
2000 be32_to_cpu(fore200e->stats->aal34.cells_received) +
2001 be32_to_cpu(fore200e->stats->aal5.cells_received);
1da177e4
LT
2002
2003 if (arg)
2004 return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
2005
2006 return 0;
2007}
2008
2009
2010static int
2011fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
2012{
2013 struct fore200e* fore200e = FORE200E_DEV(dev);
2014
2015 DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
2016
2017 switch (cmd) {
2018
2019 case SONET_GETSTAT:
2020 return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
2021
2022 case SONET_GETDIAG:
2023 return put_user(0, (int __user *)arg) ? -EFAULT : 0;
2024
2025 case ATM_SETLOOP:
2026 return fore200e_setloop(fore200e, (int)(unsigned long)arg);
2027
2028 case ATM_GETLOOP:
2029 return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
2030
2031 case ATM_QUERYLOOP:
2032 return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
2033 }
2034
2035 return -ENOSYS; /* not implemented */
2036}
2037
2038
2039static int
2040fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
2041{
2042 struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
2043 struct fore200e* fore200e = FORE200E_DEV(vcc->dev);
2044
2045 if (!test_bit(ATM_VF_READY, &vcc->flags)) {
2046 DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
2047 return -EINVAL;
2048 }
2049
2050 DPRINTK(2, "change_qos %d.%d.%d, "
2051 "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
2052 "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
2053 "available_cell_rate = %u",
2054 vcc->itf, vcc->vpi, vcc->vci,
2055 fore200e_traffic_class[ qos->txtp.traffic_class ],
2056 qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2057 fore200e_traffic_class[ qos->rxtp.traffic_class ],
2058 qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2059 flags, fore200e->available_cell_rate);
2060
2061 if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2062
bfbf3c09 2063 mutex_lock(&fore200e->rate_mtx);
1da177e4 2064 if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
bfbf3c09 2065 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2066 return -EAGAIN;
2067 }
2068
2069 fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2070 fore200e->available_cell_rate -= qos->txtp.max_pcr;
2071
bfbf3c09 2072 mutex_unlock(&fore200e->rate_mtx);
1da177e4
LT
2073
2074 memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2075
2076 /* update rate control parameters */
2077 fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2078
2079 set_bit(ATM_VF_HASQOS, &vcc->flags);
2080
2081 return 0;
2082 }
2083
2084 return -EINVAL;
2085}
2086
2087
c027f5f9 2088static int __devinit
1da177e4
LT
2089fore200e_irq_request(struct fore200e* fore200e)
2090{
dace1453 2091 if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1da177e4
LT
2092
2093 printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2094 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2095 return -EBUSY;
2096 }
2097
2098 printk(FORE200E "IRQ %s reserved for device %s\n",
2099 fore200e_irq_itoa(fore200e->irq), fore200e->name);
2100
2101#ifdef FORE200E_USE_TASKLET
2102 tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2103 tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2104#endif
2105
2106 fore200e->state = FORE200E_STATE_IRQ;
2107 return 0;
2108}
2109
2110
c027f5f9 2111static int __devinit
1da177e4
LT
2112fore200e_get_esi(struct fore200e* fore200e)
2113{
1f8a5fb8 2114 struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
1da177e4
LT
2115 int ok, i;
2116
2117 if (!prom)
2118 return -ENOMEM;
2119
2120 ok = fore200e->bus->prom_read(fore200e, prom);
2121 if (ok < 0) {
1f8a5fb8 2122 kfree(prom);
1da177e4
LT
2123 return -EBUSY;
2124 }
2125
2126 printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n",
2127 fore200e->name,
2128 (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */
2129 prom->serial_number & 0xFFFF,
2130 prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ],
2131 prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]);
2132
2133 for (i = 0; i < ESI_LEN; i++) {
2134 fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2135 }
2136
1f8a5fb8 2137 kfree(prom);
1da177e4
LT
2138
2139 return 0;
2140}
2141
2142
c027f5f9 2143static int __devinit
1da177e4
LT
2144fore200e_alloc_rx_buf(struct fore200e* fore200e)
2145{
2146 int scheme, magn, nbr, size, i;
2147
2148 struct host_bsq* bsq;
2149 struct buffer* buffer;
2150
2151 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2155
2156 nbr = fore200e_rx_buf_nbr[ scheme ][ magn ];
2157 size = fore200e_rx_buf_size[ scheme ][ magn ];
2158
2159 DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2160
2161 /* allocate the array of receive buffers */
1f8a5fb8 2162 buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
1da177e4
LT
2163
2164 if (buffer == NULL)
2165 return -ENOMEM;
2166
2167 bsq->freebuf = NULL;
2168
2169 for (i = 0; i < nbr; i++) {
2170
2171 buffer[ i ].scheme = scheme;
2172 buffer[ i ].magn = magn;
2173#ifdef FORE200E_BSQ_DEBUG
2174 buffer[ i ].index = i;
2175 buffer[ i ].supplied = 0;
2176#endif
2177
2178 /* allocate the receive buffer body */
2179 if (fore200e_chunk_alloc(fore200e,
2180 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2181 DMA_FROM_DEVICE) < 0) {
2182
2183 while (i > 0)
2184 fore200e_chunk_free(fore200e, &buffer[ --i ].data);
1f8a5fb8 2185 kfree(buffer);
1da177e4
LT
2186
2187 return -ENOMEM;
2188 }
2189
2190 /* insert the buffer into the free buffer list */
2191 buffer[ i ].next = bsq->freebuf;
2192 bsq->freebuf = &buffer[ i ];
2193 }
2194 /* all the buffers are free, initially */
2195 bsq->freebuf_count = nbr;
2196
2197#ifdef FORE200E_BSQ_DEBUG
2198 bsq_audit(3, bsq, scheme, magn);
2199#endif
2200 }
2201 }
2202
2203 fore200e->state = FORE200E_STATE_ALLOC_BUF;
2204 return 0;
2205}
2206
2207
c027f5f9 2208static int __devinit
1da177e4
LT
2209fore200e_init_bs_queue(struct fore200e* fore200e)
2210{
2211 int scheme, magn, i;
2212
2213 struct host_bsq* bsq;
2214 struct cp_bsq_entry __iomem * cp_entry;
2215
2216 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2217 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2218
2219 DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2220
2221 bsq = &fore200e->host_bsq[ scheme ][ magn ];
2222
2223 /* allocate and align the array of status words */
2224 if (fore200e->bus->dma_chunk_alloc(fore200e,
2225 &bsq->status,
2226 sizeof(enum status),
2227 QUEUE_SIZE_BS,
2228 fore200e->bus->status_alignment) < 0) {
2229 return -ENOMEM;
2230 }
2231
2232 /* allocate and align the array of receive buffer descriptors */
2233 if (fore200e->bus->dma_chunk_alloc(fore200e,
2234 &bsq->rbd_block,
2235 sizeof(struct rbd_block),
2236 QUEUE_SIZE_BS,
2237 fore200e->bus->descr_alignment) < 0) {
2238
2239 fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2240 return -ENOMEM;
2241 }
2242
2243 /* get the base address of the cp resident buffer supply queue entries */
2244 cp_entry = fore200e->virt_base +
2245 fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2246
2247 /* fill the host resident and cp resident buffer supply queue entries */
2248 for (i = 0; i < QUEUE_SIZE_BS; i++) {
2249
2250 bsq->host_entry[ i ].status =
2251 FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2252 bsq->host_entry[ i ].rbd_block =
2253 FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2254 bsq->host_entry[ i ].rbd_block_dma =
2255 FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2256 bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2257
2258 *bsq->host_entry[ i ].status = STATUS_FREE;
2259
2260 fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2261 &cp_entry[ i ].status_haddr);
2262 }
2263 }
2264 }
2265
2266 fore200e->state = FORE200E_STATE_INIT_BSQ;
2267 return 0;
2268}
2269
2270
c027f5f9 2271static int __devinit
1da177e4
LT
2272fore200e_init_rx_queue(struct fore200e* fore200e)
2273{
2274 struct host_rxq* rxq = &fore200e->host_rxq;
2275 struct cp_rxq_entry __iomem * cp_entry;
2276 int i;
2277
2278 DPRINTK(2, "receive queue is being initialized\n");
2279
2280 /* allocate and align the array of status words */
2281 if (fore200e->bus->dma_chunk_alloc(fore200e,
2282 &rxq->status,
2283 sizeof(enum status),
2284 QUEUE_SIZE_RX,
2285 fore200e->bus->status_alignment) < 0) {
2286 return -ENOMEM;
2287 }
2288
2289 /* allocate and align the array of receive PDU descriptors */
2290 if (fore200e->bus->dma_chunk_alloc(fore200e,
2291 &rxq->rpd,
2292 sizeof(struct rpd),
2293 QUEUE_SIZE_RX,
2294 fore200e->bus->descr_alignment) < 0) {
2295
2296 fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2297 return -ENOMEM;
2298 }
2299
2300 /* get the base address of the cp resident rx queue entries */
2301 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2302
2303 /* fill the host resident and cp resident rx entries */
2304 for (i=0; i < QUEUE_SIZE_RX; i++) {
2305
2306 rxq->host_entry[ i ].status =
2307 FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2308 rxq->host_entry[ i ].rpd =
2309 FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2310 rxq->host_entry[ i ].rpd_dma =
2311 FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2312 rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2313
2314 *rxq->host_entry[ i ].status = STATUS_FREE;
2315
2316 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2317 &cp_entry[ i ].status_haddr);
2318
2319 fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2320 &cp_entry[ i ].rpd_haddr);
2321 }
2322
2323 /* set the head entry of the queue */
2324 rxq->head = 0;
2325
2326 fore200e->state = FORE200E_STATE_INIT_RXQ;
2327 return 0;
2328}
2329
2330
c027f5f9 2331static int __devinit
1da177e4
LT
2332fore200e_init_tx_queue(struct fore200e* fore200e)
2333{
2334 struct host_txq* txq = &fore200e->host_txq;
2335 struct cp_txq_entry __iomem * cp_entry;
2336 int i;
2337
2338 DPRINTK(2, "transmit queue is being initialized\n");
2339
2340 /* allocate and align the array of status words */
2341 if (fore200e->bus->dma_chunk_alloc(fore200e,
2342 &txq->status,
2343 sizeof(enum status),
2344 QUEUE_SIZE_TX,
2345 fore200e->bus->status_alignment) < 0) {
2346 return -ENOMEM;
2347 }
2348
2349 /* allocate and align the array of transmit PDU descriptors */
2350 if (fore200e->bus->dma_chunk_alloc(fore200e,
2351 &txq->tpd,
2352 sizeof(struct tpd),
2353 QUEUE_SIZE_TX,
2354 fore200e->bus->descr_alignment) < 0) {
2355
2356 fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2357 return -ENOMEM;
2358 }
2359
2360 /* get the base address of the cp resident tx queue entries */
2361 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2362
2363 /* fill the host resident and cp resident tx entries */
2364 for (i=0; i < QUEUE_SIZE_TX; i++) {
2365
2366 txq->host_entry[ i ].status =
2367 FORE200E_INDEX(txq->status.align_addr, enum status, i);
2368 txq->host_entry[ i ].tpd =
2369 FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2370 txq->host_entry[ i ].tpd_dma =
2371 FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2372 txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2373
2374 *txq->host_entry[ i ].status = STATUS_FREE;
2375
2376 fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2377 &cp_entry[ i ].status_haddr);
2378
2379 /* although there is a one-to-one mapping of tx queue entries and tpds,
2380 we do not write here the DMA (physical) base address of each tpd into
2381 the related cp resident entry, because the cp relies on this write
2382 operation to detect that a new pdu has been submitted for tx */
2383 }
2384
2385 /* set the head and tail entries of the queue */
2386 txq->head = 0;
2387 txq->tail = 0;
2388
2389 fore200e->state = FORE200E_STATE_INIT_TXQ;
2390 return 0;
2391}
2392
2393
c027f5f9 2394static int __devinit
1da177e4
LT
2395fore200e_init_cmd_queue(struct fore200e* fore200e)
2396{
2397 struct host_cmdq* cmdq = &fore200e->host_cmdq;
2398 struct cp_cmdq_entry __iomem * cp_entry;
2399 int i;
2400
2401 DPRINTK(2, "command queue is being initialized\n");
2402
2403 /* allocate and align the array of status words */
2404 if (fore200e->bus->dma_chunk_alloc(fore200e,
2405 &cmdq->status,
2406 sizeof(enum status),
2407 QUEUE_SIZE_CMD,
2408 fore200e->bus->status_alignment) < 0) {
2409 return -ENOMEM;
2410 }
2411
2412 /* get the base address of the cp resident cmd queue entries */
2413 cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2414
2415 /* fill the host resident and cp resident cmd entries */
2416 for (i=0; i < QUEUE_SIZE_CMD; i++) {
2417
2418 cmdq->host_entry[ i ].status =
2419 FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2420 cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2421
2422 *cmdq->host_entry[ i ].status = STATUS_FREE;
2423
2424 fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2425 &cp_entry[ i ].status_haddr);
2426 }
2427
2428 /* set the head entry of the queue */
2429 cmdq->head = 0;
2430
2431 fore200e->state = FORE200E_STATE_INIT_CMDQ;
2432 return 0;
2433}
2434
2435
8aee929e 2436static void __devinit
1da177e4
LT
2437fore200e_param_bs_queue(struct fore200e* fore200e,
2438 enum buffer_scheme scheme, enum buffer_magn magn,
2439 int queue_length, int pool_size, int supply_blksize)
2440{
2441 struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2442
2443 fore200e->bus->write(queue_length, &bs_spec->queue_length);
2444 fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2445 fore200e->bus->write(pool_size, &bs_spec->pool_size);
2446 fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize);
2447}
2448
2449
c027f5f9 2450static int __devinit
1da177e4
LT
2451fore200e_initialize(struct fore200e* fore200e)
2452{
2453 struct cp_queues __iomem * cpq;
2454 int ok, scheme, magn;
2455
2456 DPRINTK(2, "device %s being initialized\n", fore200e->name);
2457
bfbf3c09 2458 mutex_init(&fore200e->rate_mtx);
1da177e4
LT
2459 spin_lock_init(&fore200e->q_lock);
2460
2461 cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2462
2463 /* enable cp to host interrupts */
2464 fore200e->bus->write(1, &cpq->imask);
2465
2466 if (fore200e->bus->irq_enable)
2467 fore200e->bus->irq_enable(fore200e);
2468
2469 fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2470
2471 fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2472 fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len);
2473 fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len);
2474
2475 fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension);
2476 fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension);
2477
2478 for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2479 for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2480 fore200e_param_bs_queue(fore200e, scheme, magn,
2481 QUEUE_SIZE_BS,
2482 fore200e_rx_buf_nbr[ scheme ][ magn ],
2483 RBD_BLK_SIZE);
2484
2485 /* issue the initialize command */
2486 fore200e->bus->write(STATUS_PENDING, &cpq->init.status);
2487 fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2488
2489 ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2490 if (ok == 0) {
2491 printk(FORE200E "device %s initialization failed\n", fore200e->name);
2492 return -ENODEV;
2493 }
2494
2495 printk(FORE200E "device %s initialized\n", fore200e->name);
2496
2497 fore200e->state = FORE200E_STATE_INITIALIZE;
2498 return 0;
2499}
2500
2501
c027f5f9 2502static void __devinit
1da177e4
LT
2503fore200e_monitor_putc(struct fore200e* fore200e, char c)
2504{
2505 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2506
2507#if 0
2508 printk("%c", c);
2509#endif
2510 fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2511}
2512
2513
c027f5f9 2514static int __devinit
1da177e4
LT
2515fore200e_monitor_getc(struct fore200e* fore200e)
2516{
2517 struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2518 unsigned long timeout = jiffies + msecs_to_jiffies(50);
2519 int c;
2520
2521 while (time_before(jiffies, timeout)) {
2522
2523 c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2524
2525 if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2526
2527 fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2528#if 0
2529 printk("%c", c & 0xFF);
2530#endif
2531 return c & 0xFF;
2532 }
2533 }
2534
2535 return -1;
2536}
2537
2538
c027f5f9 2539static void __devinit
1da177e4
LT
2540fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2541{
2542 while (*str) {
2543
2544 /* the i960 monitor doesn't accept any new character if it has something to say */
2545 while (fore200e_monitor_getc(fore200e) >= 0);
2546
2547 fore200e_monitor_putc(fore200e, *str++);
2548 }
2549
2550 while (fore200e_monitor_getc(fore200e) >= 0);
2551}
2552
e92481f9
CW
2553#ifdef __LITTLE_ENDIAN
2554#define FW_EXT ".bin"
2555#else
2556#define FW_EXT "_ecd.bin2"
2557#endif
1da177e4 2558
c027f5f9 2559static int __devinit
e92481f9
CW
2560fore200e_load_and_start_fw(struct fore200e* fore200e)
2561{
2562 const struct firmware *firmware;
2563 struct device *device;
2564 struct fw_header *fw_header;
6f75a9b6
CW
2565 const __le32 *fw_data;
2566 u32 fw_size;
e92481f9
CW
2567 u32 __iomem *load_addr;
2568 char buf[48];
2569 int err = -ENODEV;
2570
2571 if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2572 device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2573#ifdef CONFIG_SBUS
2574 else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2575 device = &((struct sbus_dev *) fore200e->bus_dev)->ofdev.dev;
2576#endif
2577 else
2578 return err;
2579
2580 sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2581 if (request_firmware(&firmware, buf, device) == 1) {
2582 printk(FORE200E "missing %s firmware image\n", fore200e->bus->model_name);
2583 return err;
2584 }
2585
6f75a9b6 2586 fw_data = (__le32 *) firmware->data;
e92481f9
CW
2587 fw_size = firmware->size / sizeof(u32);
2588 fw_header = (struct fw_header *) firmware->data;
2589 load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2590
2591 DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2592 fore200e->name, load_addr, fw_size);
2593
2594 if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2595 printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2596 goto release;
2597 }
2598
2599 for (; fw_size--; fw_data++, load_addr++)
2600 fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
1da177e4
LT
2601
2602 DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2603
2604#if defined(__sparc_v9__)
2605 /* reported to be required by SBA cards on some sparc64 hosts */
2606 fore200e_spin(100);
2607#endif
2608
e92481f9
CW
2609 sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2610 fore200e_monitor_puts(fore200e, buf);
1da177e4 2611
e92481f9 2612 if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
1da177e4 2613 printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
e92481f9 2614 goto release;
1da177e4
LT
2615 }
2616
2617 printk(FORE200E "device %s firmware started\n", fore200e->name);
2618
2619 fore200e->state = FORE200E_STATE_START_FW;
e92481f9 2620 err = 0;
1da177e4 2621
e92481f9
CW
2622release:
2623 release_firmware(firmware);
2624 return err;
1da177e4
LT
2625}
2626
2627
c027f5f9 2628static int __devinit
1da177e4
LT
2629fore200e_register(struct fore200e* fore200e)
2630{
2631 struct atm_dev* atm_dev;
2632
2633 DPRINTK(2, "device %s being registered\n", fore200e->name);
2634
2635 atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1,
2636 NULL);
2637 if (atm_dev == NULL) {
2638 printk(FORE200E "unable to register device %s\n", fore200e->name);
2639 return -ENODEV;
2640 }
2641
2642 atm_dev->dev_data = fore200e;
2643 fore200e->atm_dev = atm_dev;
2644
2645 atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2646 atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2647
2648 fore200e->available_cell_rate = ATM_OC3_PCR;
2649
2650 fore200e->state = FORE200E_STATE_REGISTER;
2651 return 0;
2652}
2653
2654
c027f5f9 2655static int __devinit
1da177e4
LT
2656fore200e_init(struct fore200e* fore200e)
2657{
2658 if (fore200e_register(fore200e) < 0)
2659 return -ENODEV;
2660
2661 if (fore200e->bus->configure(fore200e) < 0)
2662 return -ENODEV;
2663
2664 if (fore200e->bus->map(fore200e) < 0)
2665 return -ENODEV;
2666
2667 if (fore200e_reset(fore200e, 1) < 0)
2668 return -ENODEV;
2669
e92481f9 2670 if (fore200e_load_and_start_fw(fore200e) < 0)
1da177e4
LT
2671 return -ENODEV;
2672
2673 if (fore200e_initialize(fore200e) < 0)
2674 return -ENODEV;
2675
2676 if (fore200e_init_cmd_queue(fore200e) < 0)
2677 return -ENOMEM;
2678
2679 if (fore200e_init_tx_queue(fore200e) < 0)
2680 return -ENOMEM;
2681
2682 if (fore200e_init_rx_queue(fore200e) < 0)
2683 return -ENOMEM;
2684
2685 if (fore200e_init_bs_queue(fore200e) < 0)
2686 return -ENOMEM;
2687
2688 if (fore200e_alloc_rx_buf(fore200e) < 0)
2689 return -ENOMEM;
2690
2691 if (fore200e_get_esi(fore200e) < 0)
2692 return -EIO;
2693
2694 if (fore200e_irq_request(fore200e) < 0)
2695 return -EBUSY;
2696
2697 fore200e_supply(fore200e);
c027f5f9 2698
1da177e4
LT
2699 /* all done, board initialization is now complete */
2700 fore200e->state = FORE200E_STATE_COMPLETE;
2701 return 0;
2702}
2703
e92481f9 2704#ifdef CONFIG_PCI
1da177e4
LT
2705static int __devinit
2706fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2707{
2708 const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2709 struct fore200e* fore200e;
2710 int err = 0;
2711 static int index = 0;
2712
2713 if (pci_enable_device(pci_dev)) {
2714 err = -EINVAL;
2715 goto out;
2716 }
2717
1f8a5fb8 2718 fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
1da177e4
LT
2719 if (fore200e == NULL) {
2720 err = -ENOMEM;
2721 goto out_disable;
2722 }
2723
2724 fore200e->bus = bus;
2725 fore200e->bus_dev = pci_dev;
2726 fore200e->irq = pci_dev->irq;
2727 fore200e->phys_base = pci_resource_start(pci_dev, 0);
2728
2729 sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2730
2731 pci_set_master(pci_dev);
2732
2733 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2734 fore200e->bus->model_name,
2735 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2736
2737 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2738
2739 err = fore200e_init(fore200e);
2740 if (err < 0) {
2741 fore200e_shutdown(fore200e);
2742 goto out_free;
2743 }
2744
2745 ++index;
2746 pci_set_drvdata(pci_dev, fore200e);
2747
2748out:
2749 return err;
2750
2751out_free:
2752 kfree(fore200e);
2753out_disable:
2754 pci_disable_device(pci_dev);
2755 goto out;
2756}
2757
2758
2759static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2760{
2761 struct fore200e *fore200e;
2762
2763 fore200e = pci_get_drvdata(pci_dev);
2764
1da177e4
LT
2765 fore200e_shutdown(fore200e);
2766 kfree(fore200e);
2767 pci_disable_device(pci_dev);
2768}
2769
2770
1da177e4
LT
2771static struct pci_device_id fore200e_pca_tbl[] = {
2772 { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2773 0, 0, (unsigned long) &fore200e_bus[0] },
2774 { 0, }
2775};
2776
2777MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2778
2779static struct pci_driver fore200e_pca_driver = {
2780 .name = "fore_200e",
2781 .probe = fore200e_pca_detect,
2782 .remove = __devexit_p(fore200e_pca_remove_one),
2783 .id_table = fore200e_pca_tbl,
2784};
2785#endif
2786
2787
2788static int __init
2789fore200e_module_init(void)
2790{
2791 const struct fore200e_bus* bus;
2792 struct fore200e* fore200e;
2793 int index;
2794
2795 printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2796
2797 /* for each configured bus interface */
2798 for (bus = fore200e_bus; bus->model_name; bus++) {
2799
2800 /* detect all boards present on that bus */
2801 for (index = 0; bus->detect && (fore200e = bus->detect(bus, index)); index++) {
2802
2803 printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2804 fore200e->bus->model_name,
2805 fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2806
2807 sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2808
2809 if (fore200e_init(fore200e) < 0) {
2810
2811 fore200e_shutdown(fore200e);
2812 break;
2813 }
2814
2815 list_add(&fore200e->entry, &fore200e_boards);
2816 }
2817 }
2818
e92481f9 2819#ifdef CONFIG_PCI
18900829 2820 if (!pci_register_driver(&fore200e_pca_driver))
1da177e4
LT
2821 return 0;
2822#endif
2823
2824 if (!list_empty(&fore200e_boards))
2825 return 0;
2826
2827 return -ENODEV;
2828}
2829
2830
2831static void __exit
2832fore200e_module_cleanup(void)
2833{
2834 struct fore200e *fore200e, *next;
2835
e92481f9 2836#ifdef CONFIG_PCI
1da177e4
LT
2837 pci_unregister_driver(&fore200e_pca_driver);
2838#endif
2839
2840 list_for_each_entry_safe(fore200e, next, &fore200e_boards, entry) {
2841 fore200e_shutdown(fore200e);
2842 kfree(fore200e);
2843 }
2844 DPRINTK(1, "module being removed\n");
2845}
2846
2847
2848static int
2849fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2850{
2851 struct fore200e* fore200e = FORE200E_DEV(dev);
2852 struct fore200e_vcc* fore200e_vcc;
2853 struct atm_vcc* vcc;
2854 int i, len, left = *pos;
2855 unsigned long flags;
2856
2857 if (!left--) {
2858
2859 if (fore200e_getstats(fore200e) < 0)
2860 return -EIO;
2861
2862 len = sprintf(page,"\n"
2863 " device:\n"
2864 " internal name:\t\t%s\n", fore200e->name);
2865
2866 /* print bus-specific information */
2867 if (fore200e->bus->proc_read)
2868 len += fore200e->bus->proc_read(fore200e, page + len);
2869
2870 len += sprintf(page + len,
2871 " interrupt line:\t\t%s\n"
2872 " physical base address:\t0x%p\n"
2873 " virtual base address:\t0x%p\n"
2874 " factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n"
2875 " board serial number:\t\t%d\n\n",
2876 fore200e_irq_itoa(fore200e->irq),
2877 (void*)fore200e->phys_base,
2878 fore200e->virt_base,
2879 fore200e->esi[0], fore200e->esi[1], fore200e->esi[2],
2880 fore200e->esi[3], fore200e->esi[4], fore200e->esi[5],
2881 fore200e->esi[4] * 256 + fore200e->esi[5]);
2882
2883 return len;
2884 }
2885
2886 if (!left--)
2887 return sprintf(page,
2888 " free small bufs, scheme 1:\t%d\n"
2889 " free large bufs, scheme 1:\t%d\n"
2890 " free small bufs, scheme 2:\t%d\n"
2891 " free large bufs, scheme 2:\t%d\n",
2892 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2893 fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2894 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2895 fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2896
2897 if (!left--) {
2898 u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2899
2900 len = sprintf(page,"\n\n"
2901 " cell processor:\n"
2902 " heartbeat state:\t\t");
2903
2904 if (hb >> 16 != 0xDEAD)
2905 len += sprintf(page + len, "0x%08x\n", hb);
2906 else
2907 len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2908
2909 return len;
2910 }
2911
2912 if (!left--) {
2913 static const char* media_name[] = {
2914 "unshielded twisted pair",
2915 "multimode optical fiber ST",
2916 "multimode optical fiber SC",
2917 "single-mode optical fiber ST",
2918 "single-mode optical fiber SC",
2919 "unknown"
2920 };
2921
2922 static const char* oc3_mode[] = {
2923 "normal operation",
2924 "diagnostic loopback",
2925 "line loopback",
2926 "unknown"
2927 };
2928
2929 u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2930 u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2931 u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2932 u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2933 u32 oc3_index;
2934
2935 if ((media_index < 0) || (media_index > 4))
2936 media_index = 5;
2937
2938 switch (fore200e->loop_mode) {
2939 case ATM_LM_NONE: oc3_index = 0;
2940 break;
2941 case ATM_LM_LOC_PHY: oc3_index = 1;
2942 break;
2943 case ATM_LM_RMT_PHY: oc3_index = 2;
2944 break;
2945 default: oc3_index = 3;
2946 }
2947
2948 return sprintf(page,
2949 " firmware release:\t\t%d.%d.%d\n"
2950 " monitor release:\t\t%d.%d\n"
2951 " media type:\t\t\t%s\n"
2952 " OC-3 revision:\t\t0x%x\n"
2953 " OC-3 mode:\t\t\t%s",
2954 fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24,
2955 mon960_release >> 16, mon960_release << 16 >> 16,
2956 media_name[ media_index ],
2957 oc3_revision,
2958 oc3_mode[ oc3_index ]);
2959 }
2960
2961 if (!left--) {
2962 struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2963
2964 return sprintf(page,
2965 "\n\n"
2966 " monitor:\n"
2967 " version number:\t\t%d\n"
2968 " boot status word:\t\t0x%08x\n",
2969 fore200e->bus->read(&cp_monitor->mon_version),
2970 fore200e->bus->read(&cp_monitor->bstat));
2971 }
2972
2973 if (!left--)
2974 return sprintf(page,
2975 "\n"
2976 " device statistics:\n"
2977 " 4b5b:\n"
2978 " crc_header_errors:\t\t%10u\n"
2979 " framing_errors:\t\t%10u\n",
63734a32
AV
2980 be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2981 be32_to_cpu(fore200e->stats->phy.framing_errors));
1da177e4
LT
2982
2983 if (!left--)
2984 return sprintf(page, "\n"
2985 " OC-3:\n"
2986 " section_bip8_errors:\t%10u\n"
2987 " path_bip8_errors:\t\t%10u\n"
2988 " line_bip24_errors:\t\t%10u\n"
2989 " line_febe_errors:\t\t%10u\n"
2990 " path_febe_errors:\t\t%10u\n"
2991 " corr_hcs_errors:\t\t%10u\n"
2992 " ucorr_hcs_errors:\t\t%10u\n",
63734a32
AV
2993 be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2994 be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2995 be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2996 be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2997 be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2998 be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2999 be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
1da177e4
LT
3000
3001 if (!left--)
3002 return sprintf(page,"\n"
3003 " ATM:\t\t\t\t cells\n"
3004 " TX:\t\t\t%10u\n"
3005 " RX:\t\t\t%10u\n"
3006 " vpi out of range:\t\t%10u\n"
3007 " vpi no conn:\t\t%10u\n"
3008 " vci out of range:\t\t%10u\n"
3009 " vci no conn:\t\t%10u\n",
63734a32
AV
3010 be32_to_cpu(fore200e->stats->atm.cells_transmitted),
3011 be32_to_cpu(fore200e->stats->atm.cells_received),
3012 be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
3013 be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
3014 be32_to_cpu(fore200e->stats->atm.vci_bad_range),
3015 be32_to_cpu(fore200e->stats->atm.vci_no_conn));
1da177e4
LT
3016
3017 if (!left--)
3018 return sprintf(page,"\n"
3019 " AAL0:\t\t\t cells\n"
3020 " TX:\t\t\t%10u\n"
3021 " RX:\t\t\t%10u\n"
3022 " dropped:\t\t\t%10u\n",
63734a32
AV
3023 be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3024 be32_to_cpu(fore200e->stats->aal0.cells_received),
3025 be32_to_cpu(fore200e->stats->aal0.cells_dropped));
1da177e4
LT
3026
3027 if (!left--)
3028 return sprintf(page,"\n"
3029 " AAL3/4:\n"
3030 " SAR sublayer:\t\t cells\n"
3031 " TX:\t\t\t%10u\n"
3032 " RX:\t\t\t%10u\n"
3033 " dropped:\t\t\t%10u\n"
3034 " CRC errors:\t\t%10u\n"
3035 " protocol errors:\t\t%10u\n\n"
3036 " CS sublayer:\t\t PDUs\n"
3037 " TX:\t\t\t%10u\n"
3038 " RX:\t\t\t%10u\n"
3039 " dropped:\t\t\t%10u\n"
3040 " protocol errors:\t\t%10u\n",
63734a32
AV
3041 be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3042 be32_to_cpu(fore200e->stats->aal34.cells_received),
3043 be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3044 be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3045 be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3046 be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3047 be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3048 be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3049 be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
1da177e4
LT
3050
3051 if (!left--)
3052 return sprintf(page,"\n"
3053 " AAL5:\n"
3054 " SAR sublayer:\t\t cells\n"
3055 " TX:\t\t\t%10u\n"
3056 " RX:\t\t\t%10u\n"
3057 " dropped:\t\t\t%10u\n"
3058 " congestions:\t\t%10u\n\n"
3059 " CS sublayer:\t\t PDUs\n"
3060 " TX:\t\t\t%10u\n"
3061 " RX:\t\t\t%10u\n"
3062 " dropped:\t\t\t%10u\n"
3063 " CRC errors:\t\t%10u\n"
3064 " protocol errors:\t\t%10u\n",
63734a32
AV
3065 be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3066 be32_to_cpu(fore200e->stats->aal5.cells_received),
3067 be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3068 be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3069 be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3070 be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3071 be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3072 be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3073 be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
1da177e4
LT
3074
3075 if (!left--)
3076 return sprintf(page,"\n"
3077 " AUX:\t\t allocation failures\n"
3078 " small b1:\t\t\t%10u\n"
3079 " large b1:\t\t\t%10u\n"
3080 " small b2:\t\t\t%10u\n"
3081 " large b2:\t\t\t%10u\n"
3082 " RX PDUs:\t\t\t%10u\n"
3083 " TX PDUs:\t\t\t%10lu\n",
63734a32
AV
3084 be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3085 be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3086 be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3087 be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3088 be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
1da177e4
LT
3089 fore200e->tx_sat);
3090
3091 if (!left--)
3092 return sprintf(page,"\n"
3093 " receive carrier:\t\t\t%s\n",
3094 fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3095
3096 if (!left--) {
3097 return sprintf(page,"\n"
3098 " VCCs:\n address VPI VCI AAL "
3099 "TX PDUs TX min/max size RX PDUs RX min/max size\n");
3100 }
3101
3102 for (i = 0; i < NBR_CONNECT; i++) {
3103
3104 vcc = fore200e->vc_map[i].vcc;
3105
3106 if (vcc == NULL)
3107 continue;
3108
3109 spin_lock_irqsave(&fore200e->q_lock, flags);
3110
3111 if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3112
3113 fore200e_vcc = FORE200E_VCC(vcc);
3114 ASSERT(fore200e_vcc);
3115
3116 len = sprintf(page,
3117 " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n",
3118 (u32)(unsigned long)vcc,
3119 vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3120 fore200e_vcc->tx_pdu,
3121 fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3122 fore200e_vcc->tx_max_pdu,
3123 fore200e_vcc->rx_pdu,
3124 fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3125 fore200e_vcc->rx_max_pdu);
3126
3127 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3128 return len;
3129 }
3130
3131 spin_unlock_irqrestore(&fore200e->q_lock, flags);
3132 }
3133
3134 return 0;
3135}
3136
3137module_init(fore200e_module_init);
3138module_exit(fore200e_module_cleanup);
3139
3140
3141static const struct atmdev_ops fore200e_ops =
3142{
3143 .open = fore200e_open,
3144 .close = fore200e_close,
3145 .ioctl = fore200e_ioctl,
3146 .getsockopt = fore200e_getsockopt,
3147 .setsockopt = fore200e_setsockopt,
3148 .send = fore200e_send,
3149 .change_qos = fore200e_change_qos,
3150 .proc_read = fore200e_proc_read,
3151 .owner = THIS_MODULE
3152};
3153
3154
1da177e4 3155static const struct fore200e_bus fore200e_bus[] = {
e92481f9 3156#ifdef CONFIG_PCI
1da177e4 3157 { "PCA-200E", "pca200e", 32, 4, 32,
1da177e4
LT
3158 fore200e_pca_read,
3159 fore200e_pca_write,
3160 fore200e_pca_dma_map,
3161 fore200e_pca_dma_unmap,
3162 fore200e_pca_dma_sync_for_cpu,
3163 fore200e_pca_dma_sync_for_device,
3164 fore200e_pca_dma_chunk_alloc,
3165 fore200e_pca_dma_chunk_free,
3166 NULL,
3167 fore200e_pca_configure,
3168 fore200e_pca_map,
3169 fore200e_pca_reset,
3170 fore200e_pca_prom_read,
3171 fore200e_pca_unmap,
3172 NULL,
3173 fore200e_pca_irq_check,
3174 fore200e_pca_irq_ack,
3175 fore200e_pca_proc_read,
3176 },
3177#endif
e92481f9 3178#ifdef CONFIG_SBUS
1da177e4 3179 { "SBA-200E", "sba200e", 32, 64, 32,
1da177e4
LT
3180 fore200e_sba_read,
3181 fore200e_sba_write,
3182 fore200e_sba_dma_map,
3183 fore200e_sba_dma_unmap,
3184 fore200e_sba_dma_sync_for_cpu,
3185 fore200e_sba_dma_sync_for_device,
3186 fore200e_sba_dma_chunk_alloc,
3187 fore200e_sba_dma_chunk_free,
3188 fore200e_sba_detect,
3189 fore200e_sba_configure,
3190 fore200e_sba_map,
3191 fore200e_sba_reset,
3192 fore200e_sba_prom_read,
3193 fore200e_sba_unmap,
3194 fore200e_sba_irq_enable,
3195 fore200e_sba_irq_check,
3196 fore200e_sba_irq_ack,
3197 fore200e_sba_proc_read,
3198 },
3199#endif
3200 {}
3201};
3202
1da177e4 3203MODULE_LICENSE("GPL");
6f75a9b6
CW
3204#ifdef CONFIG_PCI
3205#ifdef __LITTLE_ENDIAN__
3206MODULE_FIRMWARE("pca200e.bin");
3207#else
3208MODULE_FIRMWARE("pca200e_ecd.bin2");
3209#endif
3210#endif /* CONFIG_PCI */
3211#ifdef CONFIG_SBUS
3212MODULE_FIRMWARE("sba200e_ecd.bin2");
1da177e4 3213#endif
This page took 0.46551 seconds and 5 git commands to generate.