Linux 4.7-rc1
[deliverable/linux.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
d647c199 18#include <linux/of.h>
6863ca62 19#include <linux/rbtree.h>
30b2a553 20#include <linux/sched.h>
2de9d600 21#include <linux/delay.h>
ca747be2 22#include <linux/log2.h>
b83a313b 23
fb2736bb 24#define CREATE_TRACE_POINTS
f58078da 25#include "trace.h"
fb2736bb 26
93de9124 27#include "internal.h"
b83a313b 28
1044c180
MB
29/*
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
34 */
35#undef LOG_DEVICE
36
37static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
7ff0589c 39 bool *change, bool force_write);
1044c180 40
3ac17037
BB
41static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
ad278406
AS
43static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
07c320dc
AS
45static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
3ac17037
BB
47static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
07c320dc
AS
49static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
ad278406 51
76aad392
DC
52bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
55{
56 const struct regmap_range *r;
57 int i;
58
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
63}
64EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
154881e5
MB
66bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
76aad392
DC
68{
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
72
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
76
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
79}
154881e5 80EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 81
8de2f081
MB
82bool regmap_writeable(struct regmap *map, unsigned int reg)
83{
84 if (map->max_register && reg > map->max_register)
85 return false;
86
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
89
76aad392 90 if (map->wr_table)
154881e5 91 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 92
8de2f081
MB
93 return true;
94}
95
96bool regmap_readable(struct regmap *map, unsigned int reg)
97{
04dc91ce
LPC
98 if (!map->reg_read)
99 return false;
100
8de2f081
MB
101 if (map->max_register && reg > map->max_register)
102 return false;
103
4191f197
WS
104 if (map->format.format_write)
105 return false;
106
8de2f081
MB
107 if (map->readable_reg)
108 return map->readable_reg(map->dev, reg);
109
76aad392 110 if (map->rd_table)
154881e5 111 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 112
8de2f081
MB
113 return true;
114}
115
116bool regmap_volatile(struct regmap *map, unsigned int reg)
117{
5844a8b9 118 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
119 return false;
120
121 if (map->volatile_reg)
122 return map->volatile_reg(map->dev, reg);
123
76aad392 124 if (map->volatile_table)
154881e5 125 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 126
b92be6fe
MB
127 if (map->cache_ops)
128 return false;
129 else
130 return true;
8de2f081
MB
131}
132
133bool regmap_precious(struct regmap *map, unsigned int reg)
134{
4191f197 135 if (!regmap_readable(map, reg))
8de2f081
MB
136 return false;
137
138 if (map->precious_reg)
139 return map->precious_reg(map->dev, reg);
140
76aad392 141 if (map->precious_table)
154881e5 142 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 143
8de2f081
MB
144 return false;
145}
146
82cd9965 147static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 148 size_t num)
82cd9965
LPC
149{
150 unsigned int i;
151
152 for (i = 0; i < num; i++)
153 if (!regmap_volatile(map, reg + i))
154 return false;
155
156 return true;
157}
158
9aa50750
WS
159static void regmap_format_2_6_write(struct regmap *map,
160 unsigned int reg, unsigned int val)
161{
162 u8 *out = map->work_buf;
163
164 *out = (reg << 6) | val;
165}
166
b83a313b
MB
167static void regmap_format_4_12_write(struct regmap *map,
168 unsigned int reg, unsigned int val)
169{
170 __be16 *out = map->work_buf;
171 *out = cpu_to_be16((reg << 12) | val);
172}
173
174static void regmap_format_7_9_write(struct regmap *map,
175 unsigned int reg, unsigned int val)
176{
177 __be16 *out = map->work_buf;
178 *out = cpu_to_be16((reg << 9) | val);
179}
180
7e5ec63e
LPC
181static void regmap_format_10_14_write(struct regmap *map,
182 unsigned int reg, unsigned int val)
183{
184 u8 *out = map->work_buf;
185
186 out[2] = val;
187 out[1] = (val >> 8) | (reg << 6);
188 out[0] = reg >> 2;
189}
190
d939fb9a 191static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
192{
193 u8 *b = buf;
194
d939fb9a 195 b[0] = val << shift;
b83a313b
MB
196}
197
141eba2e 198static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
199{
200 __be16 *b = buf;
201
d939fb9a 202 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
203}
204
4aa8c069
XL
205static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206{
207 __le16 *b = buf;
208
209 b[0] = cpu_to_le16(val << shift);
210}
211
141eba2e
SW
212static void regmap_format_16_native(void *buf, unsigned int val,
213 unsigned int shift)
214{
215 *(u16 *)buf = val << shift;
216}
217
d939fb9a 218static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
219{
220 u8 *b = buf;
221
d939fb9a
MR
222 val <<= shift;
223
ea279fc5
MR
224 b[0] = val >> 16;
225 b[1] = val >> 8;
226 b[2] = val;
227}
228
141eba2e 229static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
230{
231 __be32 *b = buf;
232
d939fb9a 233 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
234}
235
4aa8c069
XL
236static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237{
238 __le32 *b = buf;
239
240 b[0] = cpu_to_le32(val << shift);
241}
242
141eba2e
SW
243static void regmap_format_32_native(void *buf, unsigned int val,
244 unsigned int shift)
245{
246 *(u32 *)buf = val << shift;
247}
248
afcc00b9
XL
249#ifdef CONFIG_64BIT
250static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be64 *b = buf;
253
01c377bf 254 b[0] = cpu_to_be64((u64)val << shift);
afcc00b9
XL
255}
256
257static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le64 *b = buf;
260
01c377bf 261 b[0] = cpu_to_le64((u64)val << shift);
afcc00b9
XL
262}
263
264static void regmap_format_64_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
01c377bf 267 *(u64 *)buf = (u64)val << shift;
afcc00b9
XL
268}
269#endif
270
8a819ff8 271static void regmap_parse_inplace_noop(void *buf)
b83a313b 272{
8a819ff8
MB
273}
274
275static unsigned int regmap_parse_8(const void *buf)
276{
277 const u8 *b = buf;
b83a313b
MB
278
279 return b[0];
280}
281
8a819ff8
MB
282static unsigned int regmap_parse_16_be(const void *buf)
283{
284 const __be16 *b = buf;
285
286 return be16_to_cpu(b[0]);
287}
288
4aa8c069
XL
289static unsigned int regmap_parse_16_le(const void *buf)
290{
291 const __le16 *b = buf;
292
293 return le16_to_cpu(b[0]);
294}
295
8a819ff8 296static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
297{
298 __be16 *b = buf;
299
300 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
301}
302
4aa8c069
XL
303static void regmap_parse_16_le_inplace(void *buf)
304{
305 __le16 *b = buf;
306
307 b[0] = le16_to_cpu(b[0]);
308}
309
8a819ff8 310static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
311{
312 return *(u16 *)buf;
313}
314
8a819ff8 315static unsigned int regmap_parse_24(const void *buf)
ea279fc5 316{
8a819ff8 317 const u8 *b = buf;
ea279fc5
MR
318 unsigned int ret = b[2];
319 ret |= ((unsigned int)b[1]) << 8;
320 ret |= ((unsigned int)b[0]) << 16;
321
322 return ret;
323}
324
8a819ff8
MB
325static unsigned int regmap_parse_32_be(const void *buf)
326{
327 const __be32 *b = buf;
328
329 return be32_to_cpu(b[0]);
330}
331
4aa8c069
XL
332static unsigned int regmap_parse_32_le(const void *buf)
333{
334 const __le32 *b = buf;
335
336 return le32_to_cpu(b[0]);
337}
338
8a819ff8 339static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
340{
341 __be32 *b = buf;
342
343 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
344}
345
4aa8c069
XL
346static void regmap_parse_32_le_inplace(void *buf)
347{
348 __le32 *b = buf;
349
350 b[0] = le32_to_cpu(b[0]);
351}
352
8a819ff8 353static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
354{
355 return *(u32 *)buf;
356}
357
afcc00b9
XL
358#ifdef CONFIG_64BIT
359static unsigned int regmap_parse_64_be(const void *buf)
360{
361 const __be64 *b = buf;
362
363 return be64_to_cpu(b[0]);
364}
365
366static unsigned int regmap_parse_64_le(const void *buf)
367{
368 const __le64 *b = buf;
369
370 return le64_to_cpu(b[0]);
371}
372
373static void regmap_parse_64_be_inplace(void *buf)
374{
375 __be64 *b = buf;
376
377 b[0] = be64_to_cpu(b[0]);
378}
379
380static void regmap_parse_64_le_inplace(void *buf)
381{
382 __le64 *b = buf;
383
384 b[0] = le64_to_cpu(b[0]);
385}
386
387static unsigned int regmap_parse_64_native(const void *buf)
388{
389 return *(u64 *)buf;
390}
391#endif
392
0d4529c5 393static void regmap_lock_mutex(void *__map)
bacdbe07 394{
0d4529c5 395 struct regmap *map = __map;
bacdbe07
SW
396 mutex_lock(&map->mutex);
397}
398
0d4529c5 399static void regmap_unlock_mutex(void *__map)
bacdbe07 400{
0d4529c5 401 struct regmap *map = __map;
bacdbe07
SW
402 mutex_unlock(&map->mutex);
403}
404
0d4529c5 405static void regmap_lock_spinlock(void *__map)
b4519c71 406__acquires(&map->spinlock)
bacdbe07 407{
0d4529c5 408 struct regmap *map = __map;
92ab1aab
LPC
409 unsigned long flags;
410
411 spin_lock_irqsave(&map->spinlock, flags);
412 map->spinlock_flags = flags;
bacdbe07
SW
413}
414
0d4529c5 415static void regmap_unlock_spinlock(void *__map)
b4519c71 416__releases(&map->spinlock)
bacdbe07 417{
0d4529c5 418 struct regmap *map = __map;
92ab1aab 419 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
420}
421
72b39f6f
MB
422static void dev_get_regmap_release(struct device *dev, void *res)
423{
424 /*
425 * We don't actually have anything to do here; the goal here
426 * is not to manage the regmap but to provide a simple way to
427 * get the regmap back given a struct device.
428 */
429}
430
6863ca62
KG
431static bool _regmap_range_add(struct regmap *map,
432 struct regmap_range_node *data)
433{
434 struct rb_root *root = &map->range_tree;
435 struct rb_node **new = &(root->rb_node), *parent = NULL;
436
437 while (*new) {
438 struct regmap_range_node *this =
439 container_of(*new, struct regmap_range_node, node);
440
441 parent = *new;
442 if (data->range_max < this->range_min)
443 new = &((*new)->rb_left);
444 else if (data->range_min > this->range_max)
445 new = &((*new)->rb_right);
446 else
447 return false;
448 }
449
450 rb_link_node(&data->node, parent, new);
451 rb_insert_color(&data->node, root);
452
453 return true;
454}
455
456static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457 unsigned int reg)
458{
459 struct rb_node *node = map->range_tree.rb_node;
460
461 while (node) {
462 struct regmap_range_node *this =
463 container_of(node, struct regmap_range_node, node);
464
465 if (reg < this->range_min)
466 node = node->rb_left;
467 else if (reg > this->range_max)
468 node = node->rb_right;
469 else
470 return this;
471 }
472
473 return NULL;
474}
475
476static void regmap_range_exit(struct regmap *map)
477{
478 struct rb_node *next;
479 struct regmap_range_node *range_node;
480
481 next = rb_first(&map->range_tree);
482 while (next) {
483 range_node = rb_entry(next, struct regmap_range_node, node);
484 next = rb_next(&range_node->node);
485 rb_erase(&range_node->node, &map->range_tree);
486 kfree(range_node);
487 }
488
489 kfree(map->selector_work_buf);
490}
491
6cfec04b
MS
492int regmap_attach_dev(struct device *dev, struct regmap *map,
493 const struct regmap_config *config)
494{
495 struct regmap **m;
496
497 map->dev = dev;
498
499 regmap_debugfs_init(map, config->name);
500
501 /* Add a devres resource for dev_get_regmap() */
502 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503 if (!m) {
504 regmap_debugfs_exit(map);
505 return -ENOMEM;
506 }
507 *m = map;
508 devres_add(dev, m);
509
510 return 0;
511}
512EXPORT_SYMBOL_GPL(regmap_attach_dev);
513
cf673fbc
GU
514static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515 const struct regmap_config *config)
516{
517 enum regmap_endian endian;
518
519 /* Retrieve the endianness specification from the regmap config */
520 endian = config->reg_format_endian;
521
522 /* If the regmap config specified a non-default value, use that */
523 if (endian != REGMAP_ENDIAN_DEFAULT)
524 return endian;
525
526 /* Retrieve the endianness specification from the bus config */
527 if (bus && bus->reg_format_endian_default)
528 endian = bus->reg_format_endian_default;
d647c199 529
cf673fbc
GU
530 /* If the bus specified a non-default value, use that */
531 if (endian != REGMAP_ENDIAN_DEFAULT)
532 return endian;
533
534 /* Use this if no other value was found */
535 return REGMAP_ENDIAN_BIG;
536}
537
3c174d29
GR
538enum regmap_endian regmap_get_val_endian(struct device *dev,
539 const struct regmap_bus *bus,
540 const struct regmap_config *config)
d647c199 541{
6e64b6cc 542 struct device_node *np;
cf673fbc 543 enum regmap_endian endian;
d647c199 544
45e1a279 545 /* Retrieve the endianness specification from the regmap config */
cf673fbc 546 endian = config->val_format_endian;
d647c199 547
45e1a279 548 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
549 if (endian != REGMAP_ENDIAN_DEFAULT)
550 return endian;
d647c199 551
6e64b6cc
PD
552 /* If the dev and dev->of_node exist try to get endianness from DT */
553 if (dev && dev->of_node) {
554 np = dev->of_node;
d647c199 555
6e64b6cc
PD
556 /* Parse the device's DT node for an endianness specification */
557 if (of_property_read_bool(np, "big-endian"))
558 endian = REGMAP_ENDIAN_BIG;
559 else if (of_property_read_bool(np, "little-endian"))
560 endian = REGMAP_ENDIAN_LITTLE;
a06c488d
MB
561 else if (of_property_read_bool(np, "native-endian"))
562 endian = REGMAP_ENDIAN_NATIVE;
6e64b6cc
PD
563
564 /* If the endianness was specified in DT, use that */
565 if (endian != REGMAP_ENDIAN_DEFAULT)
566 return endian;
567 }
45e1a279
SW
568
569 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
570 if (bus && bus->val_format_endian_default)
571 endian = bus->val_format_endian_default;
d647c199 572
45e1a279 573 /* If the bus specified a non-default value, use that */
cf673fbc
GU
574 if (endian != REGMAP_ENDIAN_DEFAULT)
575 return endian;
45e1a279
SW
576
577 /* Use this if no other value was found */
cf673fbc 578 return REGMAP_ENDIAN_BIG;
d647c199 579}
3c174d29 580EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 581
3cfe7a74
NB
582struct regmap *__regmap_init(struct device *dev,
583 const struct regmap_bus *bus,
584 void *bus_context,
585 const struct regmap_config *config,
586 struct lock_class_key *lock_key,
587 const char *lock_name)
b83a313b 588{
6cfec04b 589 struct regmap *map;
b83a313b 590 int ret = -EINVAL;
141eba2e 591 enum regmap_endian reg_endian, val_endian;
6863ca62 592 int i, j;
b83a313b 593
d2a5884a 594 if (!config)
abbb18fb 595 goto err;
b83a313b
MB
596
597 map = kzalloc(sizeof(*map), GFP_KERNEL);
598 if (map == NULL) {
599 ret = -ENOMEM;
600 goto err;
601 }
602
0d4529c5
DC
603 if (config->lock && config->unlock) {
604 map->lock = config->lock;
605 map->unlock = config->unlock;
606 map->lock_arg = config->lock_arg;
bacdbe07 607 } else {
d2a5884a
AS
608 if ((bus && bus->fast_io) ||
609 config->fast_io) {
0d4529c5
DC
610 spin_lock_init(&map->spinlock);
611 map->lock = regmap_lock_spinlock;
612 map->unlock = regmap_unlock_spinlock;
3cfe7a74
NB
613 lockdep_set_class_and_name(&map->spinlock,
614 lock_key, lock_name);
0d4529c5
DC
615 } else {
616 mutex_init(&map->mutex);
617 map->lock = regmap_lock_mutex;
618 map->unlock = regmap_unlock_mutex;
3cfe7a74
NB
619 lockdep_set_class_and_name(&map->mutex,
620 lock_key, lock_name);
0d4529c5
DC
621 }
622 map->lock_arg = map;
bacdbe07 623 }
b4a21fc2
SB
624
625 /*
626 * When we write in fast-paths with regmap_bulk_write() don't allocate
627 * scratch buffers with sleeping allocations.
628 */
629 if ((bus && bus->fast_io) || config->fast_io)
630 map->alloc_flags = GFP_ATOMIC;
631 else
632 map->alloc_flags = GFP_KERNEL;
633
c212accc 634 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 635 map->format.pad_bytes = config->pad_bits / 8;
c212accc 636 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
637 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638 config->val_bits + config->pad_bits, 8);
d939fb9a 639 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
640 if (config->reg_stride)
641 map->reg_stride = config->reg_stride;
642 else
643 map->reg_stride = 1;
ca747be2
XL
644 if (is_power_of_2(map->reg_stride))
645 map->reg_stride_order = ilog2(map->reg_stride);
646 else
647 map->reg_stride_order = -1;
67921a1a
MP
648 map->use_single_read = config->use_single_rw || !bus || !bus->read;
649 map->use_single_write = config->use_single_rw || !bus || !bus->write;
9c9f7f67 650 map->can_multi_write = config->can_multi_write && bus && bus->write;
17649c90
SS
651 if (bus) {
652 map->max_raw_read = bus->max_raw_read;
653 map->max_raw_write = bus->max_raw_write;
654 }
b83a313b
MB
655 map->dev = dev;
656 map->bus = bus;
0135bbcc 657 map->bus_context = bus_context;
2e2ae66d 658 map->max_register = config->max_register;
76aad392
DC
659 map->wr_table = config->wr_table;
660 map->rd_table = config->rd_table;
661 map->volatile_table = config->volatile_table;
662 map->precious_table = config->precious_table;
2e2ae66d
MB
663 map->writeable_reg = config->writeable_reg;
664 map->readable_reg = config->readable_reg;
665 map->volatile_reg = config->volatile_reg;
2efe1642 666 map->precious_reg = config->precious_reg;
5d1729e7 667 map->cache_type = config->cache_type;
72b39f6f 668 map->name = config->name;
b83a313b 669
0d509f2b
MB
670 spin_lock_init(&map->async_lock);
671 INIT_LIST_HEAD(&map->async_list);
7e09a979 672 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
673 init_waitqueue_head(&map->async_waitq);
674
6f306441
LPC
675 if (config->read_flag_mask || config->write_flag_mask) {
676 map->read_flag_mask = config->read_flag_mask;
677 map->write_flag_mask = config->write_flag_mask;
d2a5884a 678 } else if (bus) {
6f306441
LPC
679 map->read_flag_mask = bus->read_flag_mask;
680 }
681
d2a5884a
AS
682 if (!bus) {
683 map->reg_read = config->reg_read;
684 map->reg_write = config->reg_write;
685
3ac17037
BB
686 map->defer_caching = false;
687 goto skip_format_initialization;
688 } else if (!bus->read || !bus->write) {
689 map->reg_read = _regmap_bus_reg_read;
690 map->reg_write = _regmap_bus_reg_write;
691
d2a5884a
AS
692 map->defer_caching = false;
693 goto skip_format_initialization;
694 } else {
695 map->reg_read = _regmap_bus_read;
77792b11 696 map->reg_update_bits = bus->reg_update_bits;
d2a5884a 697 }
ad278406 698
cf673fbc
GU
699 reg_endian = regmap_get_reg_endian(bus, config);
700 val_endian = regmap_get_val_endian(dev, bus, config);
141eba2e 701
d939fb9a 702 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
703 case 2:
704 switch (config->val_bits) {
705 case 6:
706 map->format.format_write = regmap_format_2_6_write;
707 break;
708 default:
709 goto err_map;
710 }
711 break;
712
b83a313b
MB
713 case 4:
714 switch (config->val_bits) {
715 case 12:
716 map->format.format_write = regmap_format_4_12_write;
717 break;
718 default:
719 goto err_map;
720 }
721 break;
722
723 case 7:
724 switch (config->val_bits) {
725 case 9:
726 map->format.format_write = regmap_format_7_9_write;
727 break;
728 default:
729 goto err_map;
730 }
731 break;
732
7e5ec63e
LPC
733 case 10:
734 switch (config->val_bits) {
735 case 14:
736 map->format.format_write = regmap_format_10_14_write;
737 break;
738 default:
739 goto err_map;
740 }
741 break;
742
b83a313b
MB
743 case 8:
744 map->format.format_reg = regmap_format_8;
745 break;
746
747 case 16:
141eba2e
SW
748 switch (reg_endian) {
749 case REGMAP_ENDIAN_BIG:
750 map->format.format_reg = regmap_format_16_be;
751 break;
752 case REGMAP_ENDIAN_NATIVE:
753 map->format.format_reg = regmap_format_16_native;
754 break;
755 default:
756 goto err_map;
757 }
b83a313b
MB
758 break;
759
237019e7
LPC
760 case 24:
761 if (reg_endian != REGMAP_ENDIAN_BIG)
762 goto err_map;
763 map->format.format_reg = regmap_format_24;
764 break;
765
7d5e525b 766 case 32:
141eba2e
SW
767 switch (reg_endian) {
768 case REGMAP_ENDIAN_BIG:
769 map->format.format_reg = regmap_format_32_be;
770 break;
771 case REGMAP_ENDIAN_NATIVE:
772 map->format.format_reg = regmap_format_32_native;
773 break;
774 default:
775 goto err_map;
776 }
7d5e525b
MB
777 break;
778
afcc00b9
XL
779#ifdef CONFIG_64BIT
780 case 64:
781 switch (reg_endian) {
782 case REGMAP_ENDIAN_BIG:
783 map->format.format_reg = regmap_format_64_be;
784 break;
785 case REGMAP_ENDIAN_NATIVE:
786 map->format.format_reg = regmap_format_64_native;
787 break;
788 default:
789 goto err_map;
790 }
791 break;
792#endif
793
b83a313b
MB
794 default:
795 goto err_map;
796 }
797
8a819ff8
MB
798 if (val_endian == REGMAP_ENDIAN_NATIVE)
799 map->format.parse_inplace = regmap_parse_inplace_noop;
800
b83a313b
MB
801 switch (config->val_bits) {
802 case 8:
803 map->format.format_val = regmap_format_8;
804 map->format.parse_val = regmap_parse_8;
8a819ff8 805 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
806 break;
807 case 16:
141eba2e
SW
808 switch (val_endian) {
809 case REGMAP_ENDIAN_BIG:
810 map->format.format_val = regmap_format_16_be;
811 map->format.parse_val = regmap_parse_16_be;
8a819ff8 812 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 813 break;
4aa8c069
XL
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_val = regmap_format_16_le;
816 map->format.parse_val = regmap_parse_16_le;
817 map->format.parse_inplace = regmap_parse_16_le_inplace;
818 break;
141eba2e
SW
819 case REGMAP_ENDIAN_NATIVE:
820 map->format.format_val = regmap_format_16_native;
821 map->format.parse_val = regmap_parse_16_native;
822 break;
823 default:
824 goto err_map;
825 }
b83a313b 826 break;
ea279fc5 827 case 24:
141eba2e
SW
828 if (val_endian != REGMAP_ENDIAN_BIG)
829 goto err_map;
ea279fc5
MR
830 map->format.format_val = regmap_format_24;
831 map->format.parse_val = regmap_parse_24;
832 break;
7d5e525b 833 case 32:
141eba2e
SW
834 switch (val_endian) {
835 case REGMAP_ENDIAN_BIG:
836 map->format.format_val = regmap_format_32_be;
837 map->format.parse_val = regmap_parse_32_be;
8a819ff8 838 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 839 break;
4aa8c069
XL
840 case REGMAP_ENDIAN_LITTLE:
841 map->format.format_val = regmap_format_32_le;
842 map->format.parse_val = regmap_parse_32_le;
843 map->format.parse_inplace = regmap_parse_32_le_inplace;
844 break;
141eba2e
SW
845 case REGMAP_ENDIAN_NATIVE:
846 map->format.format_val = regmap_format_32_native;
847 map->format.parse_val = regmap_parse_32_native;
848 break;
849 default:
850 goto err_map;
851 }
7d5e525b 852 break;
afcc00b9 853#ifdef CONFIG_64BIT
782035ea 854 case 64:
afcc00b9
XL
855 switch (val_endian) {
856 case REGMAP_ENDIAN_BIG:
857 map->format.format_val = regmap_format_64_be;
858 map->format.parse_val = regmap_parse_64_be;
859 map->format.parse_inplace = regmap_parse_64_be_inplace;
860 break;
861 case REGMAP_ENDIAN_LITTLE:
862 map->format.format_val = regmap_format_64_le;
863 map->format.parse_val = regmap_parse_64_le;
864 map->format.parse_inplace = regmap_parse_64_le_inplace;
865 break;
866 case REGMAP_ENDIAN_NATIVE:
867 map->format.format_val = regmap_format_64_native;
868 map->format.parse_val = regmap_parse_64_native;
869 break;
870 default:
871 goto err_map;
872 }
873 break;
874#endif
b83a313b
MB
875 }
876
141eba2e
SW
877 if (map->format.format_write) {
878 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879 (val_endian != REGMAP_ENDIAN_BIG))
880 goto err_map;
67921a1a 881 map->use_single_write = true;
141eba2e 882 }
7a647614 883
b83a313b
MB
884 if (!map->format.format_write &&
885 !(map->format.format_reg && map->format.format_val))
886 goto err_map;
887
82159ba8 888 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
889 if (map->work_buf == NULL) {
890 ret = -ENOMEM;
5204f5e3 891 goto err_map;
b83a313b
MB
892 }
893
d2a5884a
AS
894 if (map->format.format_write) {
895 map->defer_caching = false;
07c320dc 896 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
897 } else if (map->format.format_val) {
898 map->defer_caching = true;
07c320dc 899 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
900 }
901
902skip_format_initialization:
07c320dc 903
6863ca62 904 map->range_tree = RB_ROOT;
e3549cd0 905 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
906 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907 struct regmap_range_node *new;
908
909 /* Sanity check */
061adc06
MB
910 if (range_cfg->range_max < range_cfg->range_min) {
911 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912 range_cfg->range_max, range_cfg->range_min);
6863ca62 913 goto err_range;
061adc06
MB
914 }
915
916 if (range_cfg->range_max > map->max_register) {
917 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918 range_cfg->range_max, map->max_register);
919 goto err_range;
920 }
921
922 if (range_cfg->selector_reg > map->max_register) {
923 dev_err(map->dev,
924 "Invalid range %d: selector out of map\n", i);
925 goto err_range;
926 }
927
928 if (range_cfg->window_len == 0) {
929 dev_err(map->dev, "Invalid range %d: window_len 0\n",
930 i);
931 goto err_range;
932 }
6863ca62
KG
933
934 /* Make sure, that this register range has no selector
935 or data window within its boundary */
e3549cd0 936 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
937 unsigned sel_reg = config->ranges[j].selector_reg;
938 unsigned win_min = config->ranges[j].window_start;
939 unsigned win_max = win_min +
940 config->ranges[j].window_len - 1;
941
f161d220
PZ
942 /* Allow data window inside its own virtual range */
943 if (j == i)
944 continue;
945
6863ca62
KG
946 if (range_cfg->range_min <= sel_reg &&
947 sel_reg <= range_cfg->range_max) {
061adc06
MB
948 dev_err(map->dev,
949 "Range %d: selector for %d in window\n",
950 i, j);
6863ca62
KG
951 goto err_range;
952 }
953
954 if (!(win_max < range_cfg->range_min ||
955 win_min > range_cfg->range_max)) {
061adc06
MB
956 dev_err(map->dev,
957 "Range %d: window for %d in window\n",
958 i, j);
6863ca62
KG
959 goto err_range;
960 }
961 }
962
963 new = kzalloc(sizeof(*new), GFP_KERNEL);
964 if (new == NULL) {
965 ret = -ENOMEM;
966 goto err_range;
967 }
968
4b020b3f 969 new->map = map;
d058bb49 970 new->name = range_cfg->name;
6863ca62
KG
971 new->range_min = range_cfg->range_min;
972 new->range_max = range_cfg->range_max;
973 new->selector_reg = range_cfg->selector_reg;
974 new->selector_mask = range_cfg->selector_mask;
975 new->selector_shift = range_cfg->selector_shift;
976 new->window_start = range_cfg->window_start;
977 new->window_len = range_cfg->window_len;
978
53e87f88 979 if (!_regmap_range_add(map, new)) {
061adc06 980 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
981 kfree(new);
982 goto err_range;
983 }
984
985 if (map->selector_work_buf == NULL) {
986 map->selector_work_buf =
987 kzalloc(map->format.buf_size, GFP_KERNEL);
988 if (map->selector_work_buf == NULL) {
989 ret = -ENOMEM;
990 goto err_range;
991 }
992 }
993 }
052d2cd1 994
e5e3b8ab 995 ret = regcache_init(map, config);
0ff3e62f 996 if (ret != 0)
6863ca62
KG
997 goto err_range;
998
a7a037c8 999 if (dev) {
6cfec04b
MS
1000 ret = regmap_attach_dev(dev, map, config);
1001 if (ret != 0)
1002 goto err_regcache;
a7a037c8 1003 }
72b39f6f 1004
b83a313b
MB
1005 return map;
1006
6cfec04b 1007err_regcache:
72b39f6f 1008 regcache_exit(map);
6863ca62
KG
1009err_range:
1010 regmap_range_exit(map);
58072cbf 1011 kfree(map->work_buf);
b83a313b
MB
1012err_map:
1013 kfree(map);
1014err:
1015 return ERR_PTR(ret);
1016}
3cfe7a74 1017EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 1018
c0eb4676
MB
1019static void devm_regmap_release(struct device *dev, void *res)
1020{
1021 regmap_exit(*(struct regmap **)res);
1022}
1023
3cfe7a74
NB
1024struct regmap *__devm_regmap_init(struct device *dev,
1025 const struct regmap_bus *bus,
1026 void *bus_context,
1027 const struct regmap_config *config,
1028 struct lock_class_key *lock_key,
1029 const char *lock_name)
c0eb4676
MB
1030{
1031 struct regmap **ptr, *regmap;
1032
1033 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034 if (!ptr)
1035 return ERR_PTR(-ENOMEM);
1036
3cfe7a74
NB
1037 regmap = __regmap_init(dev, bus, bus_context, config,
1038 lock_key, lock_name);
c0eb4676
MB
1039 if (!IS_ERR(regmap)) {
1040 *ptr = regmap;
1041 devres_add(dev, ptr);
1042 } else {
1043 devres_free(ptr);
1044 }
1045
1046 return regmap;
1047}
3cfe7a74 1048EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 1049
67252287
SK
1050static void regmap_field_init(struct regmap_field *rm_field,
1051 struct regmap *regmap, struct reg_field reg_field)
1052{
67252287
SK
1053 rm_field->regmap = regmap;
1054 rm_field->reg = reg_field.reg;
1055 rm_field->shift = reg_field.lsb;
921cc294 1056 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
a0102375
KM
1057 rm_field->id_size = reg_field.id_size;
1058 rm_field->id_offset = reg_field.id_offset;
67252287
SK
1059}
1060
1061/**
1062 * devm_regmap_field_alloc(): Allocate and initialise a register field
1063 * in a register map.
1064 *
1065 * @dev: Device that will be interacted with
1066 * @regmap: regmap bank in which this register field is located.
1067 * @reg_field: Register field with in the bank.
1068 *
1069 * The return value will be an ERR_PTR() on error or a valid pointer
1070 * to a struct regmap_field. The regmap_field will be automatically freed
1071 * by the device management code.
1072 */
1073struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074 struct regmap *regmap, struct reg_field reg_field)
1075{
1076 struct regmap_field *rm_field = devm_kzalloc(dev,
1077 sizeof(*rm_field), GFP_KERNEL);
1078 if (!rm_field)
1079 return ERR_PTR(-ENOMEM);
1080
1081 regmap_field_init(rm_field, regmap, reg_field);
1082
1083 return rm_field;
1084
1085}
1086EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088/**
1089 * devm_regmap_field_free(): Free register field allocated using
1090 * devm_regmap_field_alloc. Usally drivers need not call this function,
1091 * as the memory allocated via devm will be freed as per device-driver
1092 * life-cyle.
1093 *
1094 * @dev: Device that will be interacted with
1095 * @field: regmap field which should be freed.
1096 */
1097void devm_regmap_field_free(struct device *dev,
1098 struct regmap_field *field)
1099{
1100 devm_kfree(dev, field);
1101}
1102EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104/**
1105 * regmap_field_alloc(): Allocate and initialise a register field
1106 * in a register map.
1107 *
1108 * @regmap: regmap bank in which this register field is located.
1109 * @reg_field: Register field with in the bank.
1110 *
1111 * The return value will be an ERR_PTR() on error or a valid pointer
1112 * to a struct regmap_field. The regmap_field should be freed by the
1113 * user once its finished working with it using regmap_field_free().
1114 */
1115struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116 struct reg_field reg_field)
1117{
1118 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120 if (!rm_field)
1121 return ERR_PTR(-ENOMEM);
1122
1123 regmap_field_init(rm_field, regmap, reg_field);
1124
1125 return rm_field;
1126}
1127EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129/**
1130 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131 *
1132 * @field: regmap field which should be freed.
1133 */
1134void regmap_field_free(struct regmap_field *field)
1135{
1136 kfree(field);
1137}
1138EXPORT_SYMBOL_GPL(regmap_field_free);
1139
bf315173
MB
1140/**
1141 * regmap_reinit_cache(): Reinitialise the current register cache
1142 *
1143 * @map: Register map to operate on.
1144 * @config: New configuration. Only the cache data will be used.
1145 *
1146 * Discard any existing register cache for the map and initialize a
1147 * new cache. This can be used to restore the cache to defaults or to
1148 * update the cache configuration to reflect runtime discovery of the
1149 * hardware.
4d879514
DP
1150 *
1151 * No explicit locking is done here, the user needs to ensure that
1152 * this function will not race with other calls to regmap.
bf315173
MB
1153 */
1154int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155{
bf315173 1156 regcache_exit(map);
a24f64a6 1157 regmap_debugfs_exit(map);
bf315173
MB
1158
1159 map->max_register = config->max_register;
1160 map->writeable_reg = config->writeable_reg;
1161 map->readable_reg = config->readable_reg;
1162 map->volatile_reg = config->volatile_reg;
1163 map->precious_reg = config->precious_reg;
1164 map->cache_type = config->cache_type;
1165
d3c242e1 1166 regmap_debugfs_init(map, config->name);
a24f64a6 1167
421e8d2d
MB
1168 map->cache_bypass = false;
1169 map->cache_only = false;
1170
4d879514 1171 return regcache_init(map, config);
bf315173 1172}
752a6a5f 1173EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1174
b83a313b
MB
1175/**
1176 * regmap_exit(): Free a previously allocated register map
1177 */
1178void regmap_exit(struct regmap *map)
1179{
7e09a979
MB
1180 struct regmap_async *async;
1181
5d1729e7 1182 regcache_exit(map);
31244e39 1183 regmap_debugfs_exit(map);
6863ca62 1184 regmap_range_exit(map);
d2a5884a 1185 if (map->bus && map->bus->free_context)
0135bbcc 1186 map->bus->free_context(map->bus_context);
b83a313b 1187 kfree(map->work_buf);
7e09a979
MB
1188 while (!list_empty(&map->async_free)) {
1189 async = list_first_entry_or_null(&map->async_free,
1190 struct regmap_async,
1191 list);
1192 list_del(&async->list);
1193 kfree(async->work_buf);
1194 kfree(async);
1195 }
b83a313b
MB
1196 kfree(map);
1197}
1198EXPORT_SYMBOL_GPL(regmap_exit);
1199
72b39f6f
MB
1200static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201{
1202 struct regmap **r = res;
1203 if (!r || !*r) {
1204 WARN_ON(!r || !*r);
1205 return 0;
1206 }
1207
1208 /* If the user didn't specify a name match any */
1209 if (data)
1210 return (*r)->name == data;
1211 else
1212 return 1;
1213}
1214
1215/**
1216 * dev_get_regmap(): Obtain the regmap (if any) for a device
1217 *
1218 * @dev: Device to retrieve the map for
1219 * @name: Optional name for the register map, usually NULL.
1220 *
1221 * Returns the regmap for the device if one is present, or NULL. If
1222 * name is specified then it must match the name specified when
1223 * registering the device, if it is NULL then the first regmap found
1224 * will be used. Devices with multiple register maps are very rare,
1225 * generic code should normally not need to specify a name.
1226 */
1227struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228{
1229 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230 dev_get_regmap_match, (void *)name);
1231
1232 if (!r)
1233 return NULL;
1234 return *r;
1235}
1236EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
8d7d3972
TT
1238/**
1239 * regmap_get_device(): Obtain the device from a regmap
1240 *
1241 * @map: Register map to operate on.
1242 *
1243 * Returns the underlying device that the regmap has been created for.
1244 */
1245struct device *regmap_get_device(struct regmap *map)
1246{
1247 return map->dev;
1248}
fa2fbe4a 1249EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1250
6863ca62 1251static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1252 struct regmap_range_node *range,
6863ca62
KG
1253 unsigned int val_num)
1254{
6863ca62
KG
1255 void *orig_work_buf;
1256 unsigned int win_offset;
1257 unsigned int win_page;
1258 bool page_chg;
1259 int ret;
1260
98bc7dfd
MB
1261 win_offset = (*reg - range->range_min) % range->window_len;
1262 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1263
98bc7dfd
MB
1264 if (val_num > 1) {
1265 /* Bulk write shouldn't cross range boundary */
1266 if (*reg + val_num - 1 > range->range_max)
1267 return -EINVAL;
6863ca62 1268
98bc7dfd
MB
1269 /* ... or single page boundary */
1270 if (val_num > range->window_len - win_offset)
1271 return -EINVAL;
1272 }
6863ca62 1273
98bc7dfd
MB
1274 /* It is possible to have selector register inside data window.
1275 In that case, selector register is located on every page and
1276 it needs no page switching, when accessed alone. */
1277 if (val_num > 1 ||
1278 range->window_start + win_offset != range->selector_reg) {
1279 /* Use separate work_buf during page switching */
1280 orig_work_buf = map->work_buf;
1281 map->work_buf = map->selector_work_buf;
6863ca62 1282
98bc7dfd
MB
1283 ret = _regmap_update_bits(map, range->selector_reg,
1284 range->selector_mask,
1285 win_page << range->selector_shift,
7ff0589c 1286 &page_chg, false);
632a5b01 1287
98bc7dfd 1288 map->work_buf = orig_work_buf;
6863ca62 1289
0ff3e62f 1290 if (ret != 0)
98bc7dfd 1291 return ret;
6863ca62
KG
1292 }
1293
98bc7dfd
MB
1294 *reg = range->window_start + win_offset;
1295
6863ca62
KG
1296 return 0;
1297}
1298
584de329 1299int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1300 const void *val, size_t val_len)
b83a313b 1301{
98bc7dfd 1302 struct regmap_range_node *range;
0d509f2b 1303 unsigned long flags;
6f306441 1304 u8 *u8 = map->work_buf;
0d509f2b
MB
1305 void *work_val = map->work_buf + map->format.reg_bytes +
1306 map->format.pad_bytes;
b83a313b
MB
1307 void *buf;
1308 int ret = -ENOTSUPP;
1309 size_t len;
73304781
MB
1310 int i;
1311
f1b5c5c3 1312 WARN_ON(!map->bus);
d2a5884a 1313
73304781
MB
1314 /* Check for unwritable registers before we start */
1315 if (map->writeable_reg)
1316 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f 1317 if (!map->writeable_reg(map->dev,
ca747be2 1318 reg + regmap_get_offset(map, i)))
73304781 1319 return -EINVAL;
b83a313b 1320
c9157198
LD
1321 if (!map->cache_bypass && map->format.parse_val) {
1322 unsigned int ival;
1323 int val_bytes = map->format.val_bytes;
1324 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1325 ival = map->format.parse_val(val + (i * val_bytes));
ca747be2
XL
1326 ret = regcache_write(map,
1327 reg + regmap_get_offset(map, i),
f01ee60f 1328 ival);
c9157198
LD
1329 if (ret) {
1330 dev_err(map->dev,
6d04b8ac 1331 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1332 reg + i, ret);
1333 return ret;
1334 }
1335 }
1336 if (map->cache_only) {
1337 map->cache_dirty = true;
1338 return 0;
1339 }
1340 }
1341
98bc7dfd
MB
1342 range = _regmap_range_lookup(map, reg);
1343 if (range) {
8a2ceac6
MB
1344 int val_num = val_len / map->format.val_bytes;
1345 int win_offset = (reg - range->range_min) % range->window_len;
1346 int win_residue = range->window_len - win_offset;
1347
1348 /* If the write goes beyond the end of the window split it */
1349 while (val_num > win_residue) {
1a61cfe3 1350 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1351 win_residue, val_len / map->format.val_bytes);
1352 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1353 map->format.val_bytes);
8a2ceac6
MB
1354 if (ret != 0)
1355 return ret;
1356
1357 reg += win_residue;
1358 val_num -= win_residue;
1359 val += win_residue * map->format.val_bytes;
1360 val_len -= win_residue * map->format.val_bytes;
1361
1362 win_offset = (reg - range->range_min) %
1363 range->window_len;
1364 win_residue = range->window_len - win_offset;
1365 }
1366
1367 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1368 if (ret != 0)
98bc7dfd
MB
1369 return ret;
1370 }
6863ca62 1371
d939fb9a 1372 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b 1373
6f306441
LPC
1374 u8[0] |= map->write_flag_mask;
1375
651e013e
MB
1376 /*
1377 * Essentially all I/O mechanisms will be faster with a single
1378 * buffer to write. Since register syncs often generate raw
1379 * writes of single registers optimise that case.
1380 */
1381 if (val != work_val && val_len == map->format.val_bytes) {
1382 memcpy(work_val, val, map->format.val_bytes);
1383 val = work_val;
1384 }
1385
0a819809 1386 if (map->async && map->bus->async_write) {
7e09a979 1387 struct regmap_async *async;
0d509f2b 1388
c6b570d9 1389 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1390
7e09a979
MB
1391 spin_lock_irqsave(&map->async_lock, flags);
1392 async = list_first_entry_or_null(&map->async_free,
1393 struct regmap_async,
1394 list);
1395 if (async)
1396 list_del(&async->list);
1397 spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399 if (!async) {
1400 async = map->bus->async_alloc();
1401 if (!async)
1402 return -ENOMEM;
1403
1404 async->work_buf = kzalloc(map->format.buf_size,
1405 GFP_KERNEL | GFP_DMA);
1406 if (!async->work_buf) {
1407 kfree(async);
1408 return -ENOMEM;
1409 }
0d509f2b
MB
1410 }
1411
0d509f2b
MB
1412 async->map = map;
1413
1414 /* If the caller supplied the value we can use it safely. */
1415 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1417
1418 spin_lock_irqsave(&map->async_lock, flags);
1419 list_add_tail(&async->list, &map->async_list);
1420 spin_unlock_irqrestore(&map->async_lock, flags);
1421
04c50ccf
MB
1422 if (val != work_val)
1423 ret = map->bus->async_write(map->bus_context,
1424 async->work_buf,
1425 map->format.reg_bytes +
1426 map->format.pad_bytes,
1427 val, val_len, async);
1428 else
1429 ret = map->bus->async_write(map->bus_context,
1430 async->work_buf,
1431 map->format.reg_bytes +
1432 map->format.pad_bytes +
1433 val_len, NULL, 0, async);
0d509f2b
MB
1434
1435 if (ret != 0) {
1436 dev_err(map->dev, "Failed to schedule write: %d\n",
1437 ret);
1438
1439 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1440 list_move(&async->list, &map->async_free);
0d509f2b 1441 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1442 }
f951b658
MB
1443
1444 return ret;
0d509f2b
MB
1445 }
1446
c6b570d9 1447 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1448
2547e201
MB
1449 /* If we're doing a single register write we can probably just
1450 * send the work_buf directly, otherwise try to do a gather
1451 * write.
1452 */
0d509f2b 1453 if (val == work_val)
0135bbcc 1454 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1455 map->format.reg_bytes +
1456 map->format.pad_bytes +
1457 val_len);
2547e201 1458 else if (map->bus->gather_write)
0135bbcc 1459 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1460 map->format.reg_bytes +
1461 map->format.pad_bytes,
b83a313b
MB
1462 val, val_len);
1463
2547e201 1464 /* If that didn't work fall back on linearising by hand. */
b83a313b 1465 if (ret == -ENOTSUPP) {
82159ba8
MB
1466 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1468 if (!buf)
1469 return -ENOMEM;
1470
1471 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1472 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473 val, val_len);
0135bbcc 1474 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1475
1476 kfree(buf);
1477 }
1478
c6b570d9 1479 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1480
b83a313b
MB
1481 return ret;
1482}
1483
221ad7f2
MB
1484/**
1485 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1486 *
1487 * @map: Map to check.
1488 */
1489bool regmap_can_raw_write(struct regmap *map)
1490{
07ea400e
MP
1491 return map->bus && map->bus->write && map->format.format_val &&
1492 map->format.format_reg;
221ad7f2
MB
1493}
1494EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1495
f50c9eb4
MP
1496/**
1497 * regmap_get_raw_read_max - Get the maximum size we can read
1498 *
1499 * @map: Map to check.
1500 */
1501size_t regmap_get_raw_read_max(struct regmap *map)
1502{
1503 return map->max_raw_read;
1504}
1505EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1506
1507/**
1508 * regmap_get_raw_write_max - Get the maximum size we can read
1509 *
1510 * @map: Map to check.
1511 */
1512size_t regmap_get_raw_write_max(struct regmap *map)
1513{
1514 return map->max_raw_write;
1515}
1516EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1517
07c320dc
AS
1518static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1519 unsigned int val)
1520{
1521 int ret;
1522 struct regmap_range_node *range;
1523 struct regmap *map = context;
1524
f1b5c5c3 1525 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1526
1527 range = _regmap_range_lookup(map, reg);
1528 if (range) {
1529 ret = _regmap_select_page(map, &reg, range, 1);
1530 if (ret != 0)
1531 return ret;
1532 }
1533
1534 map->format.format_write(map, reg, val);
1535
c6b570d9 1536 trace_regmap_hw_write_start(map, reg, 1);
07c320dc
AS
1537
1538 ret = map->bus->write(map->bus_context, map->work_buf,
1539 map->format.buf_size);
1540
c6b570d9 1541 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1542
1543 return ret;
1544}
1545
3ac17037
BB
1546static int _regmap_bus_reg_write(void *context, unsigned int reg,
1547 unsigned int val)
1548{
1549 struct regmap *map = context;
1550
1551 return map->bus->reg_write(map->bus_context, reg, val);
1552}
1553
07c320dc
AS
1554static int _regmap_bus_raw_write(void *context, unsigned int reg,
1555 unsigned int val)
1556{
1557 struct regmap *map = context;
1558
f1b5c5c3 1559 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1560
1561 map->format.format_val(map->work_buf + map->format.reg_bytes
1562 + map->format.pad_bytes, val, 0);
1563 return _regmap_raw_write(map, reg,
1564 map->work_buf +
1565 map->format.reg_bytes +
1566 map->format.pad_bytes,
0a819809 1567 map->format.val_bytes);
07c320dc
AS
1568}
1569
d2a5884a
AS
1570static inline void *_regmap_map_get_context(struct regmap *map)
1571{
1572 return (map->bus) ? map : map->bus_context;
1573}
1574
4d2dc095
DP
1575int _regmap_write(struct regmap *map, unsigned int reg,
1576 unsigned int val)
b83a313b 1577{
fb2736bb 1578 int ret;
d2a5884a 1579 void *context = _regmap_map_get_context(map);
b83a313b 1580
515f2261
IN
1581 if (!regmap_writeable(map, reg))
1582 return -EIO;
1583
d2a5884a 1584 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1585 ret = regcache_write(map, reg, val);
1586 if (ret != 0)
1587 return ret;
8ae0d7e8
MB
1588 if (map->cache_only) {
1589 map->cache_dirty = true;
5d1729e7 1590 return 0;
8ae0d7e8 1591 }
5d1729e7
DP
1592 }
1593
1044c180 1594#ifdef LOG_DEVICE
5336be84 1595 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
1596 dev_info(map->dev, "%x <= %x\n", reg, val);
1597#endif
1598
c6b570d9 1599 trace_regmap_reg_write(map, reg, val);
fb2736bb 1600
d2a5884a 1601 return map->reg_write(context, reg, val);
b83a313b
MB
1602}
1603
1604/**
1605 * regmap_write(): Write a value to a single register
1606 *
1607 * @map: Register map to write to
1608 * @reg: Register to write to
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
1614int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1615{
1616 int ret;
1617
fcac0233 1618 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
1619 return -EINVAL;
1620
0d4529c5 1621 map->lock(map->lock_arg);
b83a313b
MB
1622
1623 ret = _regmap_write(map, reg, val);
1624
0d4529c5 1625 map->unlock(map->lock_arg);
b83a313b
MB
1626
1627 return ret;
1628}
1629EXPORT_SYMBOL_GPL(regmap_write);
1630
915f441b
MB
1631/**
1632 * regmap_write_async(): Write a value to a single register asynchronously
1633 *
1634 * @map: Register map to write to
1635 * @reg: Register to write to
1636 * @val: Value to be written
1637 *
1638 * A value of zero will be returned on success, a negative errno will
1639 * be returned in error cases.
1640 */
1641int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1642{
1643 int ret;
1644
fcac0233 1645 if (!IS_ALIGNED(reg, map->reg_stride))
915f441b
MB
1646 return -EINVAL;
1647
1648 map->lock(map->lock_arg);
1649
1650 map->async = true;
1651
1652 ret = _regmap_write(map, reg, val);
1653
1654 map->async = false;
1655
1656 map->unlock(map->lock_arg);
1657
1658 return ret;
1659}
1660EXPORT_SYMBOL_GPL(regmap_write_async);
1661
b83a313b
MB
1662/**
1663 * regmap_raw_write(): Write raw values to one or more registers
1664 *
1665 * @map: Register map to write to
1666 * @reg: Initial register to write to
1667 * @val: Block of data to be written, laid out for direct transmission to the
1668 * device
1669 * @val_len: Length of data pointed to by val.
1670 *
1671 * This function is intended to be used for things like firmware
1672 * download where a large block of data needs to be transferred to the
1673 * device. No formatting will be done on the data provided.
1674 *
1675 * A value of zero will be returned on success, a negative errno will
1676 * be returned in error cases.
1677 */
1678int regmap_raw_write(struct regmap *map, unsigned int reg,
1679 const void *val, size_t val_len)
1680{
1681 int ret;
1682
221ad7f2 1683 if (!regmap_can_raw_write(map))
d2a5884a 1684 return -EINVAL;
851960ba
SW
1685 if (val_len % map->format.val_bytes)
1686 return -EINVAL;
c335931e
MP
1687 if (map->max_raw_write && map->max_raw_write > val_len)
1688 return -E2BIG;
851960ba 1689
0d4529c5 1690 map->lock(map->lock_arg);
b83a313b 1691
0a819809 1692 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1693
0d4529c5 1694 map->unlock(map->lock_arg);
b83a313b
MB
1695
1696 return ret;
1697}
1698EXPORT_SYMBOL_GPL(regmap_raw_write);
1699
67252287 1700/**
28972eaa
KM
1701 * regmap_field_update_bits_base():
1702 * Perform a read/modify/write cycle on the register field
1703 * with change, async, force option
fdf20029
KM
1704 *
1705 * @field: Register field to write to
1706 * @mask: Bitmask to change
1707 * @val: Value to be written
28972eaa
KM
1708 * @change: Boolean indicating if a write was done
1709 * @async: Boolean indicating asynchronously
1710 * @force: Boolean indicating use force update
fdf20029
KM
1711 *
1712 * A value of zero will be returned on success, a negative errno will
1713 * be returned in error cases.
1714 */
28972eaa
KM
1715int regmap_field_update_bits_base(struct regmap_field *field,
1716 unsigned int mask, unsigned int val,
1717 bool *change, bool async, bool force)
fdf20029
KM
1718{
1719 mask = (mask << field->shift) & field->mask;
1720
28972eaa
KM
1721 return regmap_update_bits_base(field->regmap, field->reg,
1722 mask, val << field->shift,
1723 change, async, force);
e874e6c7 1724}
28972eaa 1725EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
e874e6c7 1726
a0102375 1727/**
e126edec
KM
1728 * regmap_fields_update_bits_base():
1729 * Perform a read/modify/write cycle on the register field
1730 * with change, async, force option
a0102375
KM
1731 *
1732 * @field: Register field to write to
1733 * @id: port ID
1734 * @mask: Bitmask to change
1735 * @val: Value to be written
e126edec
KM
1736 * @change: Boolean indicating if a write was done
1737 * @async: Boolean indicating asynchronously
1738 * @force: Boolean indicating use force update
a0102375
KM
1739 *
1740 * A value of zero will be returned on success, a negative errno will
1741 * be returned in error cases.
1742 */
e126edec
KM
1743int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1744 unsigned int mask, unsigned int val,
1745 bool *change, bool async, bool force)
a0102375
KM
1746{
1747 if (id >= field->id_size)
1748 return -EINVAL;
1749
1750 mask = (mask << field->shift) & field->mask;
1751
e126edec
KM
1752 return regmap_update_bits_base(field->regmap,
1753 field->reg + (field->id_offset * id),
1754 mask, val << field->shift,
1755 change, async, force);
a0102375 1756}
e126edec 1757EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
a0102375 1758
8eaeb219
LD
1759/*
1760 * regmap_bulk_write(): Write multiple registers to the device
1761 *
1762 * @map: Register map to write to
1763 * @reg: First register to be write from
1764 * @val: Block of data to be written, in native register size for device
1765 * @val_count: Number of registers to write
1766 *
1767 * This function is intended to be used for writing a large block of
31b35e9e 1768 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1769 *
1770 * A value of zero will be returned on success, a negative errno will
1771 * be returned in error cases.
1772 */
1773int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1774 size_t val_count)
1775{
1776 int ret = 0, i;
1777 size_t val_bytes = map->format.val_bytes;
adaac459 1778 size_t total_size = val_bytes * val_count;
8eaeb219 1779
f4298360 1780 if (map->bus && !map->format.parse_inplace)
8eaeb219 1781 return -EINVAL;
fcac0233 1782 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 1783 return -EINVAL;
8eaeb219 1784
f4298360
SB
1785 /*
1786 * Some devices don't support bulk write, for
c594b7f2
MP
1787 * them we have a series of single write operations in the first two if
1788 * blocks.
1789 *
1790 * The first if block is used for memory mapped io. It does not allow
1791 * val_bytes of 3 for example.
1792 * The second one is used for busses which do not have this limitation
1793 * and can write arbitrary value lengths.
f4298360 1794 */
c594b7f2 1795 if (!map->bus) {
4999e962 1796 map->lock(map->lock_arg);
f4298360
SB
1797 for (i = 0; i < val_count; i++) {
1798 unsigned int ival;
1799
1800 switch (val_bytes) {
1801 case 1:
1802 ival = *(u8 *)(val + (i * val_bytes));
1803 break;
1804 case 2:
1805 ival = *(u16 *)(val + (i * val_bytes));
1806 break;
1807 case 4:
1808 ival = *(u32 *)(val + (i * val_bytes));
1809 break;
1810#ifdef CONFIG_64BIT
1811 case 8:
1812 ival = *(u64 *)(val + (i * val_bytes));
1813 break;
1814#endif
1815 default:
1816 ret = -EINVAL;
1817 goto out;
1818 }
8eaeb219 1819
ca747be2
XL
1820 ret = _regmap_write(map,
1821 reg + regmap_get_offset(map, i),
1822 ival);
f4298360
SB
1823 if (ret != 0)
1824 goto out;
1825 }
4999e962
TI
1826out:
1827 map->unlock(map->lock_arg);
adaac459
MP
1828 } else if (map->use_single_write ||
1829 (map->max_raw_write && map->max_raw_write < total_size)) {
1830 int chunk_stride = map->reg_stride;
1831 size_t chunk_size = val_bytes;
1832 size_t chunk_count = val_count;
1833
1834 if (!map->use_single_write) {
1835 chunk_size = map->max_raw_write;
1836 if (chunk_size % val_bytes)
1837 chunk_size -= chunk_size % val_bytes;
1838 chunk_count = total_size / chunk_size;
1839 chunk_stride *= chunk_size / val_bytes;
1840 }
1841
c594b7f2 1842 map->lock(map->lock_arg);
adaac459
MP
1843 /* Write as many bytes as possible with chunk_size */
1844 for (i = 0; i < chunk_count; i++) {
c594b7f2 1845 ret = _regmap_raw_write(map,
adaac459
MP
1846 reg + (i * chunk_stride),
1847 val + (i * chunk_size),
1848 chunk_size);
c594b7f2
MP
1849 if (ret)
1850 break;
1851 }
adaac459
MP
1852
1853 /* Write remaining bytes */
1854 if (!ret && chunk_size * i < total_size) {
1855 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1856 val + (i * chunk_size),
1857 total_size - i * chunk_size);
1858 }
c594b7f2 1859 map->unlock(map->lock_arg);
8eaeb219 1860 } else {
f4298360
SB
1861 void *wval;
1862
d6b41cb0
XL
1863 if (!val_count)
1864 return -EINVAL;
1865
b4a21fc2 1866 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
8eaeb219 1867 if (!wval) {
8eaeb219 1868 dev_err(map->dev, "Error in memory allocation\n");
4999e962 1869 return -ENOMEM;
8eaeb219
LD
1870 }
1871 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1872 map->format.parse_inplace(wval + i);
f4298360 1873
4999e962 1874 map->lock(map->lock_arg);
0a819809 1875 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
4999e962 1876 map->unlock(map->lock_arg);
8eaeb219 1877
8eaeb219 1878 kfree(wval);
f4298360 1879 }
8eaeb219
LD
1880 return ret;
1881}
1882EXPORT_SYMBOL_GPL(regmap_bulk_write);
1883
e894c3f4
OAO
1884/*
1885 * _regmap_raw_multi_reg_write()
1886 *
1887 * the (register,newvalue) pairs in regs have not been formatted, but
1888 * they are all in the same page and have been changed to being page
b486afbd 1889 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
1890 */
1891static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 1892 const struct reg_sequence *regs,
e894c3f4
OAO
1893 size_t num_regs)
1894{
1895 int ret;
1896 void *buf;
1897 int i;
1898 u8 *u8;
1899 size_t val_bytes = map->format.val_bytes;
1900 size_t reg_bytes = map->format.reg_bytes;
1901 size_t pad_bytes = map->format.pad_bytes;
1902 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1903 size_t len = pair_size * num_regs;
1904
f5727cd3
XL
1905 if (!len)
1906 return -EINVAL;
1907
e894c3f4
OAO
1908 buf = kzalloc(len, GFP_KERNEL);
1909 if (!buf)
1910 return -ENOMEM;
1911
1912 /* We have to linearise by hand. */
1913
1914 u8 = buf;
1915
1916 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
1917 unsigned int reg = regs[i].reg;
1918 unsigned int val = regs[i].def;
c6b570d9 1919 trace_regmap_hw_write_start(map, reg, 1);
e894c3f4
OAO
1920 map->format.format_reg(u8, reg, map->reg_shift);
1921 u8 += reg_bytes + pad_bytes;
1922 map->format.format_val(u8, val, 0);
1923 u8 += val_bytes;
1924 }
1925 u8 = buf;
1926 *u8 |= map->write_flag_mask;
1927
1928 ret = map->bus->write(map->bus_context, buf, len);
1929
1930 kfree(buf);
1931
1932 for (i = 0; i < num_regs; i++) {
1933 int reg = regs[i].reg;
c6b570d9 1934 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
1935 }
1936 return ret;
1937}
1938
1939static unsigned int _regmap_register_page(struct regmap *map,
1940 unsigned int reg,
1941 struct regmap_range_node *range)
1942{
1943 unsigned int win_page = (reg - range->range_min) / range->window_len;
1944
1945 return win_page;
1946}
1947
1948static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 1949 struct reg_sequence *regs,
e894c3f4
OAO
1950 size_t num_regs)
1951{
1952 int ret;
1953 int i, n;
8019ff6c 1954 struct reg_sequence *base;
b48d1398 1955 unsigned int this_page = 0;
2de9d600 1956 unsigned int page_change = 0;
e894c3f4
OAO
1957 /*
1958 * the set of registers are not neccessarily in order, but
1959 * since the order of write must be preserved this algorithm
2de9d600
NP
1960 * chops the set each time the page changes. This also applies
1961 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
1962 */
1963 base = regs;
1964 for (i = 0, n = 0; i < num_regs; i++, n++) {
1965 unsigned int reg = regs[i].reg;
1966 struct regmap_range_node *range;
1967
1968 range = _regmap_range_lookup(map, reg);
1969 if (range) {
1970 unsigned int win_page = _regmap_register_page(map, reg,
1971 range);
1972
1973 if (i == 0)
1974 this_page = win_page;
1975 if (win_page != this_page) {
1976 this_page = win_page;
2de9d600
NP
1977 page_change = 1;
1978 }
1979 }
1980
1981 /* If we have both a page change and a delay make sure to
1982 * write the regs and apply the delay before we change the
1983 * page.
1984 */
1985
1986 if (page_change || regs[i].delay_us) {
1987
1988 /* For situations where the first write requires
1989 * a delay we need to make sure we don't call
1990 * raw_multi_reg_write with n=0
1991 * This can't occur with page breaks as we
1992 * never write on the first iteration
1993 */
1994 if (regs[i].delay_us && i == 0)
1995 n = 1;
1996
e894c3f4
OAO
1997 ret = _regmap_raw_multi_reg_write(map, base, n);
1998 if (ret != 0)
1999 return ret;
2de9d600
NP
2000
2001 if (regs[i].delay_us)
2002 udelay(regs[i].delay_us);
2003
e894c3f4
OAO
2004 base += n;
2005 n = 0;
2de9d600
NP
2006
2007 if (page_change) {
2008 ret = _regmap_select_page(map,
2009 &base[n].reg,
2010 range, 1);
2011 if (ret != 0)
2012 return ret;
2013
2014 page_change = 0;
2015 }
2016
e894c3f4 2017 }
2de9d600 2018
e894c3f4
OAO
2019 }
2020 if (n > 0)
2021 return _regmap_raw_multi_reg_write(map, base, n);
2022 return 0;
2023}
2024
1d5b40bc 2025static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 2026 const struct reg_sequence *regs,
e894c3f4 2027 size_t num_regs)
1d5b40bc 2028{
e894c3f4
OAO
2029 int i;
2030 int ret;
2031
2032 if (!map->can_multi_write) {
2033 for (i = 0; i < num_regs; i++) {
2034 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2035 if (ret != 0)
2036 return ret;
2de9d600
NP
2037
2038 if (regs[i].delay_us)
2039 udelay(regs[i].delay_us);
e894c3f4
OAO
2040 }
2041 return 0;
2042 }
2043
2044 if (!map->format.parse_inplace)
2045 return -EINVAL;
2046
2047 if (map->writeable_reg)
2048 for (i = 0; i < num_regs; i++) {
2049 int reg = regs[i].reg;
2050 if (!map->writeable_reg(map->dev, reg))
2051 return -EINVAL;
fcac0233 2052 if (!IS_ALIGNED(reg, map->reg_stride))
e894c3f4
OAO
2053 return -EINVAL;
2054 }
2055
2056 if (!map->cache_bypass) {
2057 for (i = 0; i < num_regs; i++) {
2058 unsigned int val = regs[i].def;
2059 unsigned int reg = regs[i].reg;
2060 ret = regcache_write(map, reg, val);
2061 if (ret) {
2062 dev_err(map->dev,
2063 "Error in caching of register: %x ret: %d\n",
2064 reg, ret);
2065 return ret;
2066 }
2067 }
2068 if (map->cache_only) {
2069 map->cache_dirty = true;
2070 return 0;
2071 }
2072 }
2073
2074 WARN_ON(!map->bus);
1d5b40bc
CK
2075
2076 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2077 unsigned int reg = regs[i].reg;
2078 struct regmap_range_node *range;
2de9d600
NP
2079
2080 /* Coalesce all the writes between a page break or a delay
2081 * in a sequence
2082 */
e894c3f4 2083 range = _regmap_range_lookup(map, reg);
2de9d600 2084 if (range || regs[i].delay_us) {
8019ff6c
NP
2085 size_t len = sizeof(struct reg_sequence)*num_regs;
2086 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2087 GFP_KERNEL);
2088 if (!base)
2089 return -ENOMEM;
2090 ret = _regmap_range_multi_paged_reg_write(map, base,
2091 num_regs);
2092 kfree(base);
2093
1d5b40bc
CK
2094 return ret;
2095 }
2096 }
e894c3f4 2097 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2098}
2099
e33fabd3
AO
2100/*
2101 * regmap_multi_reg_write(): Write multiple registers to the device
2102 *
e894c3f4
OAO
2103 * where the set of register,value pairs are supplied in any order,
2104 * possibly not all in a single range.
e33fabd3
AO
2105 *
2106 * @map: Register map to write to
2107 * @regs: Array of structures containing register,value to be written
2108 * @num_regs: Number of registers to write
2109 *
e894c3f4
OAO
2110 * The 'normal' block write mode will send ultimately send data on the
2111 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2112 * addressed. However, this alternative block multi write mode will send
2113 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2114 * must of course support the mode.
e33fabd3 2115 *
e894c3f4
OAO
2116 * A value of zero will be returned on success, a negative errno will be
2117 * returned in error cases.
e33fabd3 2118 */
8019ff6c 2119int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2120 int num_regs)
e33fabd3 2121{
1d5b40bc 2122 int ret;
e33fabd3
AO
2123
2124 map->lock(map->lock_arg);
2125
1d5b40bc
CK
2126 ret = _regmap_multi_reg_write(map, regs, num_regs);
2127
e33fabd3
AO
2128 map->unlock(map->lock_arg);
2129
2130 return ret;
2131}
2132EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2133
1d5b40bc
CK
2134/*
2135 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2136 * device but not the cache
2137 *
e33fabd3
AO
2138 * where the set of register are supplied in any order
2139 *
2140 * @map: Register map to write to
2141 * @regs: Array of structures containing register,value to be written
2142 * @num_regs: Number of registers to write
2143 *
2144 * This function is intended to be used for writing a large block of data
2145 * atomically to the device in single transfer for those I2C client devices
2146 * that implement this alternative block write mode.
2147 *
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2150 */
1d5b40bc 2151int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2152 const struct reg_sequence *regs,
1d5b40bc 2153 int num_regs)
e33fabd3 2154{
1d5b40bc
CK
2155 int ret;
2156 bool bypass;
e33fabd3
AO
2157
2158 map->lock(map->lock_arg);
2159
1d5b40bc
CK
2160 bypass = map->cache_bypass;
2161 map->cache_bypass = true;
2162
2163 ret = _regmap_multi_reg_write(map, regs, num_regs);
2164
2165 map->cache_bypass = bypass;
2166
e33fabd3
AO
2167 map->unlock(map->lock_arg);
2168
2169 return ret;
2170}
1d5b40bc 2171EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2172
0d509f2b
MB
2173/**
2174 * regmap_raw_write_async(): Write raw values to one or more registers
2175 * asynchronously
2176 *
2177 * @map: Register map to write to
2178 * @reg: Initial register to write to
2179 * @val: Block of data to be written, laid out for direct transmission to the
2180 * device. Must be valid until regmap_async_complete() is called.
2181 * @val_len: Length of data pointed to by val.
2182 *
2183 * This function is intended to be used for things like firmware
2184 * download where a large block of data needs to be transferred to the
2185 * device. No formatting will be done on the data provided.
2186 *
2187 * If supported by the underlying bus the write will be scheduled
2188 * asynchronously, helping maximise I/O speed on higher speed buses
2189 * like SPI. regmap_async_complete() can be called to ensure that all
2190 * asynchrnous writes have been completed.
2191 *
2192 * A value of zero will be returned on success, a negative errno will
2193 * be returned in error cases.
2194 */
2195int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2196 const void *val, size_t val_len)
2197{
2198 int ret;
2199
2200 if (val_len % map->format.val_bytes)
2201 return -EINVAL;
fcac0233 2202 if (!IS_ALIGNED(reg, map->reg_stride))
0d509f2b
MB
2203 return -EINVAL;
2204
2205 map->lock(map->lock_arg);
2206
0a819809
MB
2207 map->async = true;
2208
2209 ret = _regmap_raw_write(map, reg, val, val_len);
2210
2211 map->async = false;
0d509f2b
MB
2212
2213 map->unlock(map->lock_arg);
2214
2215 return ret;
2216}
2217EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2218
b83a313b
MB
2219static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2220 unsigned int val_len)
2221{
98bc7dfd 2222 struct regmap_range_node *range;
b83a313b
MB
2223 u8 *u8 = map->work_buf;
2224 int ret;
2225
f1b5c5c3 2226 WARN_ON(!map->bus);
d2a5884a 2227
bb2bb45d
MB
2228 if (!map->bus || !map->bus->read)
2229 return -EINVAL;
2230
98bc7dfd
MB
2231 range = _regmap_range_lookup(map, reg);
2232 if (range) {
2233 ret = _regmap_select_page(map, &reg, range,
2234 val_len / map->format.val_bytes);
0ff3e62f 2235 if (ret != 0)
98bc7dfd
MB
2236 return ret;
2237 }
6863ca62 2238
d939fb9a 2239 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b
MB
2240
2241 /*
6f306441 2242 * Some buses or devices flag reads by setting the high bits in the
b486afbd 2243 * register address; since it's always the high bits for all
b83a313b
MB
2244 * current formats we can do this here rather than in
2245 * formatting. This may break if we get interesting formats.
2246 */
6f306441 2247 u8[0] |= map->read_flag_mask;
b83a313b 2248
c6b570d9 2249 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2250
0135bbcc 2251 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 2252 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 2253 val, val_len);
b83a313b 2254
c6b570d9 2255 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2256
2257 return ret;
b83a313b
MB
2258}
2259
3ac17037
BB
2260static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261 unsigned int *val)
2262{
2263 struct regmap *map = context;
2264
2265 return map->bus->reg_read(map->bus_context, reg, val);
2266}
2267
ad278406
AS
2268static int _regmap_bus_read(void *context, unsigned int reg,
2269 unsigned int *val)
2270{
2271 int ret;
2272 struct regmap *map = context;
2273
2274 if (!map->format.parse_val)
2275 return -EINVAL;
2276
2277 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278 if (ret == 0)
2279 *val = map->format.parse_val(map->work_buf);
2280
2281 return ret;
2282}
2283
b83a313b
MB
2284static int _regmap_read(struct regmap *map, unsigned int reg,
2285 unsigned int *val)
2286{
2287 int ret;
d2a5884a
AS
2288 void *context = _regmap_map_get_context(map);
2289
5d1729e7
DP
2290 if (!map->cache_bypass) {
2291 ret = regcache_read(map, reg, val);
2292 if (ret == 0)
2293 return 0;
2294 }
2295
2296 if (map->cache_only)
2297 return -EBUSY;
2298
d4807ad2
MS
2299 if (!regmap_readable(map, reg))
2300 return -EIO;
2301
d2a5884a 2302 ret = map->reg_read(context, reg, val);
fb2736bb 2303 if (ret == 0) {
1044c180 2304#ifdef LOG_DEVICE
5336be84 2305 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
2306 dev_info(map->dev, "%x => %x\n", reg, *val);
2307#endif
2308
c6b570d9 2309 trace_regmap_reg_read(map, reg, *val);
b83a313b 2310
ad278406
AS
2311 if (!map->cache_bypass)
2312 regcache_write(map, reg, *val);
2313 }
f2985367 2314
b83a313b
MB
2315 return ret;
2316}
2317
2318/**
2319 * regmap_read(): Read a value from a single register
2320 *
0093380c 2321 * @map: Register map to read from
b83a313b
MB
2322 * @reg: Register to be read from
2323 * @val: Pointer to store read value
2324 *
2325 * A value of zero will be returned on success, a negative errno will
2326 * be returned in error cases.
2327 */
2328int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329{
2330 int ret;
2331
fcac0233 2332 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
2333 return -EINVAL;
2334
0d4529c5 2335 map->lock(map->lock_arg);
b83a313b
MB
2336
2337 ret = _regmap_read(map, reg, val);
2338
0d4529c5 2339 map->unlock(map->lock_arg);
b83a313b
MB
2340
2341 return ret;
2342}
2343EXPORT_SYMBOL_GPL(regmap_read);
2344
2345/**
2346 * regmap_raw_read(): Read raw data from the device
2347 *
0093380c 2348 * @map: Register map to read from
b83a313b
MB
2349 * @reg: First register to be read from
2350 * @val: Pointer to store read value
2351 * @val_len: Size of data to read
2352 *
2353 * A value of zero will be returned on success, a negative errno will
2354 * be returned in error cases.
2355 */
2356int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357 size_t val_len)
2358{
b8fb5ab1
MB
2359 size_t val_bytes = map->format.val_bytes;
2360 size_t val_count = val_len / val_bytes;
2361 unsigned int v;
2362 int ret, i;
04e016ad 2363
d2a5884a
AS
2364 if (!map->bus)
2365 return -EINVAL;
851960ba
SW
2366 if (val_len % map->format.val_bytes)
2367 return -EINVAL;
fcac0233 2368 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2369 return -EINVAL;
fa3eec77
MB
2370 if (val_count == 0)
2371 return -EINVAL;
851960ba 2372
0d4529c5 2373 map->lock(map->lock_arg);
b83a313b 2374
b8fb5ab1
MB
2375 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376 map->cache_type == REGCACHE_NONE) {
9a16ea90
MP
2377 if (!map->bus->read) {
2378 ret = -ENOTSUPP;
2379 goto out;
2380 }
c335931e
MP
2381 if (map->max_raw_read && map->max_raw_read < val_len) {
2382 ret = -E2BIG;
2383 goto out;
2384 }
9a16ea90 2385
b8fb5ab1
MB
2386 /* Physical block read if there's no cache involved */
2387 ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389 } else {
2390 /* Otherwise go word by word for the cache; should be low
2391 * cost as we expect to hit the cache.
2392 */
2393 for (i = 0; i < val_count; i++) {
ca747be2 2394 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
f01ee60f 2395 &v);
b8fb5ab1
MB
2396 if (ret != 0)
2397 goto out;
2398
d939fb9a 2399 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2400 }
2401 }
b83a313b 2402
b8fb5ab1 2403 out:
0d4529c5 2404 map->unlock(map->lock_arg);
b83a313b
MB
2405
2406 return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
67252287
SK
2410/**
2411 * regmap_field_read(): Read a value to a single register field
2412 *
2413 * @field: Register field to read from
2414 * @val: Pointer to store read value
2415 *
2416 * A value of zero will be returned on success, a negative errno will
2417 * be returned in error cases.
2418 */
2419int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420{
2421 int ret;
2422 unsigned int reg_val;
2423 ret = regmap_read(field->regmap, field->reg, &reg_val);
2424 if (ret != 0)
2425 return ret;
2426
2427 reg_val &= field->mask;
2428 reg_val >>= field->shift;
2429 *val = reg_val;
2430
2431 return ret;
2432}
2433EXPORT_SYMBOL_GPL(regmap_field_read);
2434
a0102375
KM
2435/**
2436 * regmap_fields_read(): Read a value to a single register field with port ID
2437 *
2438 * @field: Register field to read from
2439 * @id: port ID
2440 * @val: Pointer to store read value
2441 *
2442 * A value of zero will be returned on success, a negative errno will
2443 * be returned in error cases.
2444 */
2445int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446 unsigned int *val)
2447{
2448 int ret;
2449 unsigned int reg_val;
2450
2451 if (id >= field->id_size)
2452 return -EINVAL;
2453
2454 ret = regmap_read(field->regmap,
2455 field->reg + (field->id_offset * id),
2456 &reg_val);
2457 if (ret != 0)
2458 return ret;
2459
2460 reg_val &= field->mask;
2461 reg_val >>= field->shift;
2462 *val = reg_val;
2463
2464 return ret;
2465}
2466EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
b83a313b
MB
2468/**
2469 * regmap_bulk_read(): Read multiple registers from the device
2470 *
0093380c 2471 * @map: Register map to read from
b83a313b
MB
2472 * @reg: First register to be read from
2473 * @val: Pointer to store read value, in native register size for device
2474 * @val_count: Number of registers to read
2475 *
2476 * A value of zero will be returned on success, a negative errno will
2477 * be returned in error cases.
2478 */
2479int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480 size_t val_count)
2481{
2482 int ret, i;
2483 size_t val_bytes = map->format.val_bytes;
82cd9965 2484 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 2485
fcac0233 2486 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2487 return -EINVAL;
b83a313b 2488
3b58ee13 2489 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2e33caf1
AJ
2490 /*
2491 * Some devices does not support bulk read, for
2492 * them we have a series of single read operations.
2493 */
adaac459
MP
2494 size_t total_size = val_bytes * val_count;
2495
2496 if (!map->use_single_read &&
2497 (!map->max_raw_read || map->max_raw_read > total_size)) {
2e33caf1
AJ
2498 ret = regmap_raw_read(map, reg, val,
2499 val_bytes * val_count);
2500 if (ret != 0)
2501 return ret;
adaac459
MP
2502 } else {
2503 /*
2504 * Some devices do not support bulk read or do not
2505 * support large bulk reads, for them we have a series
2506 * of read operations.
2507 */
2508 int chunk_stride = map->reg_stride;
2509 size_t chunk_size = val_bytes;
2510 size_t chunk_count = val_count;
2511
2512 if (!map->use_single_read) {
2513 chunk_size = map->max_raw_read;
2514 if (chunk_size % val_bytes)
2515 chunk_size -= chunk_size % val_bytes;
2516 chunk_count = total_size / chunk_size;
2517 chunk_stride *= chunk_size / val_bytes;
2518 }
2519
2520 /* Read bytes that fit into a multiple of chunk_size */
2521 for (i = 0; i < chunk_count; i++) {
2522 ret = regmap_raw_read(map,
2523 reg + (i * chunk_stride),
2524 val + (i * chunk_size),
2525 chunk_size);
2526 if (ret != 0)
2527 return ret;
2528 }
2529
2530 /* Read remaining bytes */
2531 if (chunk_size * i < total_size) {
2532 ret = regmap_raw_read(map,
2533 reg + (i * chunk_stride),
2534 val + (i * chunk_size),
2535 total_size - i * chunk_size);
2536 if (ret != 0)
2537 return ret;
2538 }
2e33caf1 2539 }
de2d808f
MB
2540
2541 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2542 map->format.parse_inplace(val + i);
de2d808f
MB
2543 } else {
2544 for (i = 0; i < val_count; i++) {
6560ffd1 2545 unsigned int ival;
ca747be2 2546 ret = regmap_read(map, reg + regmap_get_offset(map, i),
25061d28 2547 &ival);
de2d808f
MB
2548 if (ret != 0)
2549 return ret;
d5b98eb1
MB
2550
2551 if (map->format.format_val) {
2552 map->format.format_val(val + (i * val_bytes), ival, 0);
2553 } else {
2554 /* Devices providing read and write
2555 * operations can use the bulk I/O
2556 * functions if they define a val_bytes,
2557 * we assume that the values are native
2558 * endian.
2559 */
19c04788 2560#ifdef CONFIG_64BIT
afcc00b9 2561 u64 *u64 = val;
19c04788 2562#endif
d5b98eb1
MB
2563 u32 *u32 = val;
2564 u16 *u16 = val;
2565 u8 *u8 = val;
2566
2567 switch (map->format.val_bytes) {
afcc00b9
XL
2568#ifdef CONFIG_64BIT
2569 case 8:
2570 u64[i] = ival;
2571 break;
2572#endif
d5b98eb1
MB
2573 case 4:
2574 u32[i] = ival;
2575 break;
2576 case 2:
2577 u16[i] = ival;
2578 break;
2579 case 1:
2580 u8[i] = ival;
2581 break;
2582 default:
2583 return -EINVAL;
2584 }
2585 }
de2d808f
MB
2586 }
2587 }
b83a313b
MB
2588
2589 return 0;
2590}
2591EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
018690d3
MB
2593static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594 unsigned int mask, unsigned int val,
7ff0589c 2595 bool *change, bool force_write)
b83a313b
MB
2596{
2597 int ret;
d91e8db2 2598 unsigned int tmp, orig;
b83a313b 2599
77792b11
JR
2600 if (change)
2601 *change = false;
b83a313b 2602
77792b11
JR
2603 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605 if (ret == 0 && change)
e2f74dc6 2606 *change = true;
018690d3 2607 } else {
77792b11
JR
2608 ret = _regmap_read(map, reg, &orig);
2609 if (ret != 0)
2610 return ret;
2611
2612 tmp = orig & ~mask;
2613 tmp |= val & mask;
2614
2615 if (force_write || (tmp != orig)) {
2616 ret = _regmap_write(map, reg, tmp);
2617 if (ret == 0 && change)
2618 *change = true;
2619 }
018690d3 2620 }
b83a313b 2621
b83a313b
MB
2622 return ret;
2623}
018690d3
MB
2624
2625/**
91d31b9f
KM
2626 * regmap_update_bits_base:
2627 * Perform a read/modify/write cycle on the
2628 * register map with change, async, force option
915f441b
MB
2629 *
2630 * @map: Register map to update
2631 * @reg: Register to update
2632 * @mask: Bitmask to change
2633 * @val: New value for bitmask
2634 * @change: Boolean indicating if a write was done
91d31b9f
KM
2635 * @async: Boolean indicating asynchronously
2636 * @force: Boolean indicating use force update
915f441b 2637 *
91d31b9f 2638 * if async was true,
915f441b
MB
2639 * With most buses the read must be done synchronously so this is most
2640 * useful for devices with a cache which do not need to interact with
2641 * the hardware to determine the current register value.
2642 *
2643 * Returns zero for success, a negative number on error.
2644 */
91d31b9f
KM
2645int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646 unsigned int mask, unsigned int val,
2647 bool *change, bool async, bool force)
915f441b
MB
2648{
2649 int ret;
2650
2651 map->lock(map->lock_arg);
2652
91d31b9f 2653 map->async = async;
915f441b 2654
91d31b9f 2655 ret = _regmap_update_bits(map, reg, mask, val, change, force);
915f441b
MB
2656
2657 map->async = false;
2658
2659 map->unlock(map->lock_arg);
2660
2661 return ret;
2662}
91d31b9f 2663EXPORT_SYMBOL_GPL(regmap_update_bits_base);
915f441b 2664
0d509f2b
MB
2665void regmap_async_complete_cb(struct regmap_async *async, int ret)
2666{
2667 struct regmap *map = async->map;
2668 bool wake;
2669
c6b570d9 2670 trace_regmap_async_io_complete(map);
fe7d4ccd 2671
0d509f2b 2672 spin_lock(&map->async_lock);
7e09a979 2673 list_move(&async->list, &map->async_free);
0d509f2b
MB
2674 wake = list_empty(&map->async_list);
2675
2676 if (ret != 0)
2677 map->async_ret = ret;
2678
2679 spin_unlock(&map->async_lock);
2680
0d509f2b
MB
2681 if (wake)
2682 wake_up(&map->async_waitq);
2683}
f804fb56 2684EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
2685
2686static int regmap_async_is_done(struct regmap *map)
2687{
2688 unsigned long flags;
2689 int ret;
2690
2691 spin_lock_irqsave(&map->async_lock, flags);
2692 ret = list_empty(&map->async_list);
2693 spin_unlock_irqrestore(&map->async_lock, flags);
2694
2695 return ret;
2696}
2697
2698/**
2699 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2700 *
2701 * @map: Map to operate on.
2702 *
2703 * Blocks until any pending asynchronous I/O has completed. Returns
2704 * an error code for any failed I/O operations.
2705 */
2706int regmap_async_complete(struct regmap *map)
2707{
2708 unsigned long flags;
2709 int ret;
2710
2711 /* Nothing to do with no async support */
f2e055e7 2712 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
2713 return 0;
2714
c6b570d9 2715 trace_regmap_async_complete_start(map);
fe7d4ccd 2716
0d509f2b
MB
2717 wait_event(map->async_waitq, regmap_async_is_done(map));
2718
2719 spin_lock_irqsave(&map->async_lock, flags);
2720 ret = map->async_ret;
2721 map->async_ret = 0;
2722 spin_unlock_irqrestore(&map->async_lock, flags);
2723
c6b570d9 2724 trace_regmap_async_complete_done(map);
fe7d4ccd 2725
0d509f2b
MB
2726 return ret;
2727}
f88948ef 2728EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 2729
22f0d90a
MB
2730/**
2731 * regmap_register_patch: Register and apply register updates to be applied
2732 * on device initialistion
2733 *
2734 * @map: Register map to apply updates to.
2735 * @regs: Values to update.
2736 * @num_regs: Number of entries in regs.
2737 *
2738 * Register a set of register updates to be applied to the device
2739 * whenever the device registers are synchronised with the cache and
2740 * apply them immediately. Typically this is used to apply
2741 * corrections to be applied to the device defaults on startup, such
2742 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
2743 *
2744 * The caller must ensure that this function cannot be called
2745 * concurrently with either itself or regcache_sync().
22f0d90a 2746 */
8019ff6c 2747int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
2748 int num_regs)
2749{
8019ff6c 2750 struct reg_sequence *p;
6bf13103 2751 int ret;
22f0d90a
MB
2752 bool bypass;
2753
bd60e381
CZ
2754 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2755 num_regs))
2756 return 0;
2757
aab13ebc 2758 p = krealloc(map->patch,
8019ff6c 2759 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
2760 GFP_KERNEL);
2761 if (p) {
2762 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2763 map->patch = p;
2764 map->patch_regs += num_regs;
22f0d90a 2765 } else {
56fb1c74 2766 return -ENOMEM;
22f0d90a
MB
2767 }
2768
0d4529c5 2769 map->lock(map->lock_arg);
22f0d90a
MB
2770
2771 bypass = map->cache_bypass;
2772
2773 map->cache_bypass = true;
1a25f261 2774 map->async = true;
22f0d90a 2775
6bf13103 2776 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 2777
1a25f261 2778 map->async = false;
22f0d90a
MB
2779 map->cache_bypass = bypass;
2780
0d4529c5 2781 map->unlock(map->lock_arg);
22f0d90a 2782
1a25f261
MB
2783 regmap_async_complete(map);
2784
22f0d90a
MB
2785 return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_register_patch);
2788
eae4b51b 2789/*
a6539c32
MB
2790 * regmap_get_val_bytes(): Report the size of a register value
2791 *
2792 * Report the size of a register value, mainly intended to for use by
2793 * generic infrastructure built on top of regmap.
2794 */
2795int regmap_get_val_bytes(struct regmap *map)
2796{
2797 if (map->format.format_write)
2798 return -EINVAL;
2799
2800 return map->format.val_bytes;
2801}
2802EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2803
668abc72
SK
2804/**
2805 * regmap_get_max_register(): Report the max register value
2806 *
2807 * Report the max register value, mainly intended to for use by
2808 * generic infrastructure built on top of regmap.
2809 */
2810int regmap_get_max_register(struct regmap *map)
2811{
2812 return map->max_register ? map->max_register : -EINVAL;
2813}
2814EXPORT_SYMBOL_GPL(regmap_get_max_register);
2815
a2f776cb
SK
2816/**
2817 * regmap_get_reg_stride(): Report the register address stride
2818 *
2819 * Report the register address stride, mainly intended to for use by
2820 * generic infrastructure built on top of regmap.
2821 */
2822int regmap_get_reg_stride(struct regmap *map)
2823{
2824 return map->reg_stride;
2825}
2826EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2827
13ff50c8
NC
2828int regmap_parse_val(struct regmap *map, const void *buf,
2829 unsigned int *val)
2830{
2831 if (!map->format.parse_val)
2832 return -EINVAL;
2833
2834 *val = map->format.parse_val(buf);
2835
2836 return 0;
2837}
2838EXPORT_SYMBOL_GPL(regmap_parse_val);
2839
31244e39
MB
2840static int __init regmap_initcall(void)
2841{
2842 regmap_debugfs_initcall();
2843
2844 return 0;
2845}
2846postcore_initcall(regmap_initcall);
This page took 0.429906 seconds and 5 git commands to generate.