regmap: merge regmap_field_update_bits() into macro
[deliverable/linux.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
d647c199 18#include <linux/of.h>
6863ca62 19#include <linux/rbtree.h>
30b2a553 20#include <linux/sched.h>
2de9d600 21#include <linux/delay.h>
b83a313b 22
fb2736bb 23#define CREATE_TRACE_POINTS
f58078da 24#include "trace.h"
fb2736bb 25
93de9124 26#include "internal.h"
b83a313b 27
1044c180
MB
28/*
29 * Sometimes for failures during very early init the trace
30 * infrastructure isn't available early enough to be used. For this
31 * sort of problem defining LOG_DEVICE will add printks for basic
32 * register I/O on a specific device.
33 */
34#undef LOG_DEVICE
35
36static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 unsigned int mask, unsigned int val,
7ff0589c 38 bool *change, bool force_write);
1044c180 39
3ac17037
BB
40static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 unsigned int *val);
ad278406
AS
42static int _regmap_bus_read(void *context, unsigned int reg,
43 unsigned int *val);
07c320dc
AS
44static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 unsigned int val);
3ac17037
BB
46static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 unsigned int val);
07c320dc
AS
48static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 unsigned int val);
ad278406 50
76aad392
DC
51bool regmap_reg_in_ranges(unsigned int reg,
52 const struct regmap_range *ranges,
53 unsigned int nranges)
54{
55 const struct regmap_range *r;
56 int i;
57
58 for (i = 0, r = ranges; i < nranges; i++, r++)
59 if (regmap_reg_in_range(reg, r))
60 return true;
61 return false;
62}
63EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
154881e5
MB
65bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 const struct regmap_access_table *table)
76aad392
DC
67{
68 /* Check "no ranges" first */
69 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 return false;
71
72 /* In case zero "yes ranges" are supplied, any reg is OK */
73 if (!table->n_yes_ranges)
74 return true;
75
76 return regmap_reg_in_ranges(reg, table->yes_ranges,
77 table->n_yes_ranges);
78}
154881e5 79EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 80
8de2f081
MB
81bool regmap_writeable(struct regmap *map, unsigned int reg)
82{
83 if (map->max_register && reg > map->max_register)
84 return false;
85
86 if (map->writeable_reg)
87 return map->writeable_reg(map->dev, reg);
88
76aad392 89 if (map->wr_table)
154881e5 90 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 91
8de2f081
MB
92 return true;
93}
94
95bool regmap_readable(struct regmap *map, unsigned int reg)
96{
04dc91ce
LPC
97 if (!map->reg_read)
98 return false;
99
8de2f081
MB
100 if (map->max_register && reg > map->max_register)
101 return false;
102
4191f197
WS
103 if (map->format.format_write)
104 return false;
105
8de2f081
MB
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
108
76aad392 109 if (map->rd_table)
154881e5 110 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 111
8de2f081
MB
112 return true;
113}
114
115bool regmap_volatile(struct regmap *map, unsigned int reg)
116{
5844a8b9 117 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
118 return false;
119
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
122
76aad392 123 if (map->volatile_table)
154881e5 124 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 125
b92be6fe
MB
126 if (map->cache_ops)
127 return false;
128 else
129 return true;
8de2f081
MB
130}
131
132bool regmap_precious(struct regmap *map, unsigned int reg)
133{
4191f197 134 if (!regmap_readable(map, reg))
8de2f081
MB
135 return false;
136
137 if (map->precious_reg)
138 return map->precious_reg(map->dev, reg);
139
76aad392 140 if (map->precious_table)
154881e5 141 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 142
8de2f081
MB
143 return false;
144}
145
82cd9965 146static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 147 size_t num)
82cd9965
LPC
148{
149 unsigned int i;
150
151 for (i = 0; i < num; i++)
152 if (!regmap_volatile(map, reg + i))
153 return false;
154
155 return true;
156}
157
9aa50750
WS
158static void regmap_format_2_6_write(struct regmap *map,
159 unsigned int reg, unsigned int val)
160{
161 u8 *out = map->work_buf;
162
163 *out = (reg << 6) | val;
164}
165
b83a313b
MB
166static void regmap_format_4_12_write(struct regmap *map,
167 unsigned int reg, unsigned int val)
168{
169 __be16 *out = map->work_buf;
170 *out = cpu_to_be16((reg << 12) | val);
171}
172
173static void regmap_format_7_9_write(struct regmap *map,
174 unsigned int reg, unsigned int val)
175{
176 __be16 *out = map->work_buf;
177 *out = cpu_to_be16((reg << 9) | val);
178}
179
7e5ec63e
LPC
180static void regmap_format_10_14_write(struct regmap *map,
181 unsigned int reg, unsigned int val)
182{
183 u8 *out = map->work_buf;
184
185 out[2] = val;
186 out[1] = (val >> 8) | (reg << 6);
187 out[0] = reg >> 2;
188}
189
d939fb9a 190static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
191{
192 u8 *b = buf;
193
d939fb9a 194 b[0] = val << shift;
b83a313b
MB
195}
196
141eba2e 197static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
198{
199 __be16 *b = buf;
200
d939fb9a 201 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
202}
203
4aa8c069
XL
204static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205{
206 __le16 *b = buf;
207
208 b[0] = cpu_to_le16(val << shift);
209}
210
141eba2e
SW
211static void regmap_format_16_native(void *buf, unsigned int val,
212 unsigned int shift)
213{
214 *(u16 *)buf = val << shift;
215}
216
d939fb9a 217static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
218{
219 u8 *b = buf;
220
d939fb9a
MR
221 val <<= shift;
222
ea279fc5
MR
223 b[0] = val >> 16;
224 b[1] = val >> 8;
225 b[2] = val;
226}
227
141eba2e 228static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
229{
230 __be32 *b = buf;
231
d939fb9a 232 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
233}
234
4aa8c069
XL
235static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236{
237 __le32 *b = buf;
238
239 b[0] = cpu_to_le32(val << shift);
240}
241
141eba2e
SW
242static void regmap_format_32_native(void *buf, unsigned int val,
243 unsigned int shift)
244{
245 *(u32 *)buf = val << shift;
246}
247
afcc00b9
XL
248#ifdef CONFIG_64BIT
249static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250{
251 __be64 *b = buf;
252
01c377bf 253 b[0] = cpu_to_be64((u64)val << shift);
afcc00b9
XL
254}
255
256static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257{
258 __le64 *b = buf;
259
01c377bf 260 b[0] = cpu_to_le64((u64)val << shift);
afcc00b9
XL
261}
262
263static void regmap_format_64_native(void *buf, unsigned int val,
264 unsigned int shift)
265{
01c377bf 266 *(u64 *)buf = (u64)val << shift;
afcc00b9
XL
267}
268#endif
269
8a819ff8 270static void regmap_parse_inplace_noop(void *buf)
b83a313b 271{
8a819ff8
MB
272}
273
274static unsigned int regmap_parse_8(const void *buf)
275{
276 const u8 *b = buf;
b83a313b
MB
277
278 return b[0];
279}
280
8a819ff8
MB
281static unsigned int regmap_parse_16_be(const void *buf)
282{
283 const __be16 *b = buf;
284
285 return be16_to_cpu(b[0]);
286}
287
4aa8c069
XL
288static unsigned int regmap_parse_16_le(const void *buf)
289{
290 const __le16 *b = buf;
291
292 return le16_to_cpu(b[0]);
293}
294
8a819ff8 295static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
296{
297 __be16 *b = buf;
298
299 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
300}
301
4aa8c069
XL
302static void regmap_parse_16_le_inplace(void *buf)
303{
304 __le16 *b = buf;
305
306 b[0] = le16_to_cpu(b[0]);
307}
308
8a819ff8 309static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
310{
311 return *(u16 *)buf;
312}
313
8a819ff8 314static unsigned int regmap_parse_24(const void *buf)
ea279fc5 315{
8a819ff8 316 const u8 *b = buf;
ea279fc5
MR
317 unsigned int ret = b[2];
318 ret |= ((unsigned int)b[1]) << 8;
319 ret |= ((unsigned int)b[0]) << 16;
320
321 return ret;
322}
323
8a819ff8
MB
324static unsigned int regmap_parse_32_be(const void *buf)
325{
326 const __be32 *b = buf;
327
328 return be32_to_cpu(b[0]);
329}
330
4aa8c069
XL
331static unsigned int regmap_parse_32_le(const void *buf)
332{
333 const __le32 *b = buf;
334
335 return le32_to_cpu(b[0]);
336}
337
8a819ff8 338static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
339{
340 __be32 *b = buf;
341
342 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
343}
344
4aa8c069
XL
345static void regmap_parse_32_le_inplace(void *buf)
346{
347 __le32 *b = buf;
348
349 b[0] = le32_to_cpu(b[0]);
350}
351
8a819ff8 352static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
353{
354 return *(u32 *)buf;
355}
356
afcc00b9
XL
357#ifdef CONFIG_64BIT
358static unsigned int regmap_parse_64_be(const void *buf)
359{
360 const __be64 *b = buf;
361
362 return be64_to_cpu(b[0]);
363}
364
365static unsigned int regmap_parse_64_le(const void *buf)
366{
367 const __le64 *b = buf;
368
369 return le64_to_cpu(b[0]);
370}
371
372static void regmap_parse_64_be_inplace(void *buf)
373{
374 __be64 *b = buf;
375
376 b[0] = be64_to_cpu(b[0]);
377}
378
379static void regmap_parse_64_le_inplace(void *buf)
380{
381 __le64 *b = buf;
382
383 b[0] = le64_to_cpu(b[0]);
384}
385
386static unsigned int regmap_parse_64_native(const void *buf)
387{
388 return *(u64 *)buf;
389}
390#endif
391
0d4529c5 392static void regmap_lock_mutex(void *__map)
bacdbe07 393{
0d4529c5 394 struct regmap *map = __map;
bacdbe07
SW
395 mutex_lock(&map->mutex);
396}
397
0d4529c5 398static void regmap_unlock_mutex(void *__map)
bacdbe07 399{
0d4529c5 400 struct regmap *map = __map;
bacdbe07
SW
401 mutex_unlock(&map->mutex);
402}
403
0d4529c5 404static void regmap_lock_spinlock(void *__map)
b4519c71 405__acquires(&map->spinlock)
bacdbe07 406{
0d4529c5 407 struct regmap *map = __map;
92ab1aab
LPC
408 unsigned long flags;
409
410 spin_lock_irqsave(&map->spinlock, flags);
411 map->spinlock_flags = flags;
bacdbe07
SW
412}
413
0d4529c5 414static void regmap_unlock_spinlock(void *__map)
b4519c71 415__releases(&map->spinlock)
bacdbe07 416{
0d4529c5 417 struct regmap *map = __map;
92ab1aab 418 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
419}
420
72b39f6f
MB
421static void dev_get_regmap_release(struct device *dev, void *res)
422{
423 /*
424 * We don't actually have anything to do here; the goal here
425 * is not to manage the regmap but to provide a simple way to
426 * get the regmap back given a struct device.
427 */
428}
429
6863ca62
KG
430static bool _regmap_range_add(struct regmap *map,
431 struct regmap_range_node *data)
432{
433 struct rb_root *root = &map->range_tree;
434 struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436 while (*new) {
437 struct regmap_range_node *this =
438 container_of(*new, struct regmap_range_node, node);
439
440 parent = *new;
441 if (data->range_max < this->range_min)
442 new = &((*new)->rb_left);
443 else if (data->range_min > this->range_max)
444 new = &((*new)->rb_right);
445 else
446 return false;
447 }
448
449 rb_link_node(&data->node, parent, new);
450 rb_insert_color(&data->node, root);
451
452 return true;
453}
454
455static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456 unsigned int reg)
457{
458 struct rb_node *node = map->range_tree.rb_node;
459
460 while (node) {
461 struct regmap_range_node *this =
462 container_of(node, struct regmap_range_node, node);
463
464 if (reg < this->range_min)
465 node = node->rb_left;
466 else if (reg > this->range_max)
467 node = node->rb_right;
468 else
469 return this;
470 }
471
472 return NULL;
473}
474
475static void regmap_range_exit(struct regmap *map)
476{
477 struct rb_node *next;
478 struct regmap_range_node *range_node;
479
480 next = rb_first(&map->range_tree);
481 while (next) {
482 range_node = rb_entry(next, struct regmap_range_node, node);
483 next = rb_next(&range_node->node);
484 rb_erase(&range_node->node, &map->range_tree);
485 kfree(range_node);
486 }
487
488 kfree(map->selector_work_buf);
489}
490
6cfec04b
MS
491int regmap_attach_dev(struct device *dev, struct regmap *map,
492 const struct regmap_config *config)
493{
494 struct regmap **m;
495
496 map->dev = dev;
497
498 regmap_debugfs_init(map, config->name);
499
500 /* Add a devres resource for dev_get_regmap() */
501 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502 if (!m) {
503 regmap_debugfs_exit(map);
504 return -ENOMEM;
505 }
506 *m = map;
507 devres_add(dev, m);
508
509 return 0;
510}
511EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
cf673fbc
GU
513static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514 const struct regmap_config *config)
515{
516 enum regmap_endian endian;
517
518 /* Retrieve the endianness specification from the regmap config */
519 endian = config->reg_format_endian;
520
521 /* If the regmap config specified a non-default value, use that */
522 if (endian != REGMAP_ENDIAN_DEFAULT)
523 return endian;
524
525 /* Retrieve the endianness specification from the bus config */
526 if (bus && bus->reg_format_endian_default)
527 endian = bus->reg_format_endian_default;
d647c199 528
cf673fbc
GU
529 /* If the bus specified a non-default value, use that */
530 if (endian != REGMAP_ENDIAN_DEFAULT)
531 return endian;
532
533 /* Use this if no other value was found */
534 return REGMAP_ENDIAN_BIG;
535}
536
3c174d29
GR
537enum regmap_endian regmap_get_val_endian(struct device *dev,
538 const struct regmap_bus *bus,
539 const struct regmap_config *config)
d647c199 540{
6e64b6cc 541 struct device_node *np;
cf673fbc 542 enum regmap_endian endian;
d647c199 543
45e1a279 544 /* Retrieve the endianness specification from the regmap config */
cf673fbc 545 endian = config->val_format_endian;
d647c199 546
45e1a279 547 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
548 if (endian != REGMAP_ENDIAN_DEFAULT)
549 return endian;
d647c199 550
6e64b6cc
PD
551 /* If the dev and dev->of_node exist try to get endianness from DT */
552 if (dev && dev->of_node) {
553 np = dev->of_node;
d647c199 554
6e64b6cc
PD
555 /* Parse the device's DT node for an endianness specification */
556 if (of_property_read_bool(np, "big-endian"))
557 endian = REGMAP_ENDIAN_BIG;
558 else if (of_property_read_bool(np, "little-endian"))
559 endian = REGMAP_ENDIAN_LITTLE;
560
561 /* If the endianness was specified in DT, use that */
562 if (endian != REGMAP_ENDIAN_DEFAULT)
563 return endian;
564 }
45e1a279
SW
565
566 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
567 if (bus && bus->val_format_endian_default)
568 endian = bus->val_format_endian_default;
d647c199 569
45e1a279 570 /* If the bus specified a non-default value, use that */
cf673fbc
GU
571 if (endian != REGMAP_ENDIAN_DEFAULT)
572 return endian;
45e1a279
SW
573
574 /* Use this if no other value was found */
cf673fbc 575 return REGMAP_ENDIAN_BIG;
d647c199 576}
3c174d29 577EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 578
3cfe7a74
NB
579struct regmap *__regmap_init(struct device *dev,
580 const struct regmap_bus *bus,
581 void *bus_context,
582 const struct regmap_config *config,
583 struct lock_class_key *lock_key,
584 const char *lock_name)
b83a313b 585{
6cfec04b 586 struct regmap *map;
b83a313b 587 int ret = -EINVAL;
141eba2e 588 enum regmap_endian reg_endian, val_endian;
6863ca62 589 int i, j;
b83a313b 590
d2a5884a 591 if (!config)
abbb18fb 592 goto err;
b83a313b
MB
593
594 map = kzalloc(sizeof(*map), GFP_KERNEL);
595 if (map == NULL) {
596 ret = -ENOMEM;
597 goto err;
598 }
599
0d4529c5
DC
600 if (config->lock && config->unlock) {
601 map->lock = config->lock;
602 map->unlock = config->unlock;
603 map->lock_arg = config->lock_arg;
bacdbe07 604 } else {
d2a5884a
AS
605 if ((bus && bus->fast_io) ||
606 config->fast_io) {
0d4529c5
DC
607 spin_lock_init(&map->spinlock);
608 map->lock = regmap_lock_spinlock;
609 map->unlock = regmap_unlock_spinlock;
3cfe7a74
NB
610 lockdep_set_class_and_name(&map->spinlock,
611 lock_key, lock_name);
0d4529c5
DC
612 } else {
613 mutex_init(&map->mutex);
614 map->lock = regmap_lock_mutex;
615 map->unlock = regmap_unlock_mutex;
3cfe7a74
NB
616 lockdep_set_class_and_name(&map->mutex,
617 lock_key, lock_name);
0d4529c5
DC
618 }
619 map->lock_arg = map;
bacdbe07 620 }
b4a21fc2
SB
621
622 /*
623 * When we write in fast-paths with regmap_bulk_write() don't allocate
624 * scratch buffers with sleeping allocations.
625 */
626 if ((bus && bus->fast_io) || config->fast_io)
627 map->alloc_flags = GFP_ATOMIC;
628 else
629 map->alloc_flags = GFP_KERNEL;
630
c212accc 631 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 632 map->format.pad_bytes = config->pad_bits / 8;
c212accc 633 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
634 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635 config->val_bits + config->pad_bits, 8);
d939fb9a 636 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
637 if (config->reg_stride)
638 map->reg_stride = config->reg_stride;
639 else
640 map->reg_stride = 1;
67921a1a
MP
641 map->use_single_read = config->use_single_rw || !bus || !bus->read;
642 map->use_single_write = config->use_single_rw || !bus || !bus->write;
9c9f7f67 643 map->can_multi_write = config->can_multi_write && bus && bus->write;
17649c90
SS
644 if (bus) {
645 map->max_raw_read = bus->max_raw_read;
646 map->max_raw_write = bus->max_raw_write;
647 }
b83a313b
MB
648 map->dev = dev;
649 map->bus = bus;
0135bbcc 650 map->bus_context = bus_context;
2e2ae66d 651 map->max_register = config->max_register;
76aad392
DC
652 map->wr_table = config->wr_table;
653 map->rd_table = config->rd_table;
654 map->volatile_table = config->volatile_table;
655 map->precious_table = config->precious_table;
2e2ae66d
MB
656 map->writeable_reg = config->writeable_reg;
657 map->readable_reg = config->readable_reg;
658 map->volatile_reg = config->volatile_reg;
2efe1642 659 map->precious_reg = config->precious_reg;
5d1729e7 660 map->cache_type = config->cache_type;
72b39f6f 661 map->name = config->name;
b83a313b 662
0d509f2b
MB
663 spin_lock_init(&map->async_lock);
664 INIT_LIST_HEAD(&map->async_list);
7e09a979 665 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
666 init_waitqueue_head(&map->async_waitq);
667
6f306441
LPC
668 if (config->read_flag_mask || config->write_flag_mask) {
669 map->read_flag_mask = config->read_flag_mask;
670 map->write_flag_mask = config->write_flag_mask;
d2a5884a 671 } else if (bus) {
6f306441
LPC
672 map->read_flag_mask = bus->read_flag_mask;
673 }
674
d2a5884a
AS
675 if (!bus) {
676 map->reg_read = config->reg_read;
677 map->reg_write = config->reg_write;
678
3ac17037
BB
679 map->defer_caching = false;
680 goto skip_format_initialization;
681 } else if (!bus->read || !bus->write) {
682 map->reg_read = _regmap_bus_reg_read;
683 map->reg_write = _regmap_bus_reg_write;
684
d2a5884a
AS
685 map->defer_caching = false;
686 goto skip_format_initialization;
687 } else {
688 map->reg_read = _regmap_bus_read;
77792b11 689 map->reg_update_bits = bus->reg_update_bits;
d2a5884a 690 }
ad278406 691
cf673fbc
GU
692 reg_endian = regmap_get_reg_endian(bus, config);
693 val_endian = regmap_get_val_endian(dev, bus, config);
141eba2e 694
d939fb9a 695 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
696 case 2:
697 switch (config->val_bits) {
698 case 6:
699 map->format.format_write = regmap_format_2_6_write;
700 break;
701 default:
702 goto err_map;
703 }
704 break;
705
b83a313b
MB
706 case 4:
707 switch (config->val_bits) {
708 case 12:
709 map->format.format_write = regmap_format_4_12_write;
710 break;
711 default:
712 goto err_map;
713 }
714 break;
715
716 case 7:
717 switch (config->val_bits) {
718 case 9:
719 map->format.format_write = regmap_format_7_9_write;
720 break;
721 default:
722 goto err_map;
723 }
724 break;
725
7e5ec63e
LPC
726 case 10:
727 switch (config->val_bits) {
728 case 14:
729 map->format.format_write = regmap_format_10_14_write;
730 break;
731 default:
732 goto err_map;
733 }
734 break;
735
b83a313b
MB
736 case 8:
737 map->format.format_reg = regmap_format_8;
738 break;
739
740 case 16:
141eba2e
SW
741 switch (reg_endian) {
742 case REGMAP_ENDIAN_BIG:
743 map->format.format_reg = regmap_format_16_be;
744 break;
745 case REGMAP_ENDIAN_NATIVE:
746 map->format.format_reg = regmap_format_16_native;
747 break;
748 default:
749 goto err_map;
750 }
b83a313b
MB
751 break;
752
237019e7
LPC
753 case 24:
754 if (reg_endian != REGMAP_ENDIAN_BIG)
755 goto err_map;
756 map->format.format_reg = regmap_format_24;
757 break;
758
7d5e525b 759 case 32:
141eba2e
SW
760 switch (reg_endian) {
761 case REGMAP_ENDIAN_BIG:
762 map->format.format_reg = regmap_format_32_be;
763 break;
764 case REGMAP_ENDIAN_NATIVE:
765 map->format.format_reg = regmap_format_32_native;
766 break;
767 default:
768 goto err_map;
769 }
7d5e525b
MB
770 break;
771
afcc00b9
XL
772#ifdef CONFIG_64BIT
773 case 64:
774 switch (reg_endian) {
775 case REGMAP_ENDIAN_BIG:
776 map->format.format_reg = regmap_format_64_be;
777 break;
778 case REGMAP_ENDIAN_NATIVE:
779 map->format.format_reg = regmap_format_64_native;
780 break;
781 default:
782 goto err_map;
783 }
784 break;
785#endif
786
b83a313b
MB
787 default:
788 goto err_map;
789 }
790
8a819ff8
MB
791 if (val_endian == REGMAP_ENDIAN_NATIVE)
792 map->format.parse_inplace = regmap_parse_inplace_noop;
793
b83a313b
MB
794 switch (config->val_bits) {
795 case 8:
796 map->format.format_val = regmap_format_8;
797 map->format.parse_val = regmap_parse_8;
8a819ff8 798 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
799 break;
800 case 16:
141eba2e
SW
801 switch (val_endian) {
802 case REGMAP_ENDIAN_BIG:
803 map->format.format_val = regmap_format_16_be;
804 map->format.parse_val = regmap_parse_16_be;
8a819ff8 805 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 806 break;
4aa8c069
XL
807 case REGMAP_ENDIAN_LITTLE:
808 map->format.format_val = regmap_format_16_le;
809 map->format.parse_val = regmap_parse_16_le;
810 map->format.parse_inplace = regmap_parse_16_le_inplace;
811 break;
141eba2e
SW
812 case REGMAP_ENDIAN_NATIVE:
813 map->format.format_val = regmap_format_16_native;
814 map->format.parse_val = regmap_parse_16_native;
815 break;
816 default:
817 goto err_map;
818 }
b83a313b 819 break;
ea279fc5 820 case 24:
141eba2e
SW
821 if (val_endian != REGMAP_ENDIAN_BIG)
822 goto err_map;
ea279fc5
MR
823 map->format.format_val = regmap_format_24;
824 map->format.parse_val = regmap_parse_24;
825 break;
7d5e525b 826 case 32:
141eba2e
SW
827 switch (val_endian) {
828 case REGMAP_ENDIAN_BIG:
829 map->format.format_val = regmap_format_32_be;
830 map->format.parse_val = regmap_parse_32_be;
8a819ff8 831 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 832 break;
4aa8c069
XL
833 case REGMAP_ENDIAN_LITTLE:
834 map->format.format_val = regmap_format_32_le;
835 map->format.parse_val = regmap_parse_32_le;
836 map->format.parse_inplace = regmap_parse_32_le_inplace;
837 break;
141eba2e
SW
838 case REGMAP_ENDIAN_NATIVE:
839 map->format.format_val = regmap_format_32_native;
840 map->format.parse_val = regmap_parse_32_native;
841 break;
842 default:
843 goto err_map;
844 }
7d5e525b 845 break;
afcc00b9 846#ifdef CONFIG_64BIT
782035ea 847 case 64:
afcc00b9
XL
848 switch (val_endian) {
849 case REGMAP_ENDIAN_BIG:
850 map->format.format_val = regmap_format_64_be;
851 map->format.parse_val = regmap_parse_64_be;
852 map->format.parse_inplace = regmap_parse_64_be_inplace;
853 break;
854 case REGMAP_ENDIAN_LITTLE:
855 map->format.format_val = regmap_format_64_le;
856 map->format.parse_val = regmap_parse_64_le;
857 map->format.parse_inplace = regmap_parse_64_le_inplace;
858 break;
859 case REGMAP_ENDIAN_NATIVE:
860 map->format.format_val = regmap_format_64_native;
861 map->format.parse_val = regmap_parse_64_native;
862 break;
863 default:
864 goto err_map;
865 }
866 break;
867#endif
b83a313b
MB
868 }
869
141eba2e
SW
870 if (map->format.format_write) {
871 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872 (val_endian != REGMAP_ENDIAN_BIG))
873 goto err_map;
67921a1a 874 map->use_single_write = true;
141eba2e 875 }
7a647614 876
b83a313b
MB
877 if (!map->format.format_write &&
878 !(map->format.format_reg && map->format.format_val))
879 goto err_map;
880
82159ba8 881 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
882 if (map->work_buf == NULL) {
883 ret = -ENOMEM;
5204f5e3 884 goto err_map;
b83a313b
MB
885 }
886
d2a5884a
AS
887 if (map->format.format_write) {
888 map->defer_caching = false;
07c320dc 889 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
890 } else if (map->format.format_val) {
891 map->defer_caching = true;
07c320dc 892 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
893 }
894
895skip_format_initialization:
07c320dc 896
6863ca62 897 map->range_tree = RB_ROOT;
e3549cd0 898 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
899 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900 struct regmap_range_node *new;
901
902 /* Sanity check */
061adc06
MB
903 if (range_cfg->range_max < range_cfg->range_min) {
904 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905 range_cfg->range_max, range_cfg->range_min);
6863ca62 906 goto err_range;
061adc06
MB
907 }
908
909 if (range_cfg->range_max > map->max_register) {
910 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911 range_cfg->range_max, map->max_register);
912 goto err_range;
913 }
914
915 if (range_cfg->selector_reg > map->max_register) {
916 dev_err(map->dev,
917 "Invalid range %d: selector out of map\n", i);
918 goto err_range;
919 }
920
921 if (range_cfg->window_len == 0) {
922 dev_err(map->dev, "Invalid range %d: window_len 0\n",
923 i);
924 goto err_range;
925 }
6863ca62
KG
926
927 /* Make sure, that this register range has no selector
928 or data window within its boundary */
e3549cd0 929 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
930 unsigned sel_reg = config->ranges[j].selector_reg;
931 unsigned win_min = config->ranges[j].window_start;
932 unsigned win_max = win_min +
933 config->ranges[j].window_len - 1;
934
f161d220
PZ
935 /* Allow data window inside its own virtual range */
936 if (j == i)
937 continue;
938
6863ca62
KG
939 if (range_cfg->range_min <= sel_reg &&
940 sel_reg <= range_cfg->range_max) {
061adc06
MB
941 dev_err(map->dev,
942 "Range %d: selector for %d in window\n",
943 i, j);
6863ca62
KG
944 goto err_range;
945 }
946
947 if (!(win_max < range_cfg->range_min ||
948 win_min > range_cfg->range_max)) {
061adc06
MB
949 dev_err(map->dev,
950 "Range %d: window for %d in window\n",
951 i, j);
6863ca62
KG
952 goto err_range;
953 }
954 }
955
956 new = kzalloc(sizeof(*new), GFP_KERNEL);
957 if (new == NULL) {
958 ret = -ENOMEM;
959 goto err_range;
960 }
961
4b020b3f 962 new->map = map;
d058bb49 963 new->name = range_cfg->name;
6863ca62
KG
964 new->range_min = range_cfg->range_min;
965 new->range_max = range_cfg->range_max;
966 new->selector_reg = range_cfg->selector_reg;
967 new->selector_mask = range_cfg->selector_mask;
968 new->selector_shift = range_cfg->selector_shift;
969 new->window_start = range_cfg->window_start;
970 new->window_len = range_cfg->window_len;
971
53e87f88 972 if (!_regmap_range_add(map, new)) {
061adc06 973 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
974 kfree(new);
975 goto err_range;
976 }
977
978 if (map->selector_work_buf == NULL) {
979 map->selector_work_buf =
980 kzalloc(map->format.buf_size, GFP_KERNEL);
981 if (map->selector_work_buf == NULL) {
982 ret = -ENOMEM;
983 goto err_range;
984 }
985 }
986 }
052d2cd1 987
e5e3b8ab 988 ret = regcache_init(map, config);
0ff3e62f 989 if (ret != 0)
6863ca62
KG
990 goto err_range;
991
a7a037c8 992 if (dev) {
6cfec04b
MS
993 ret = regmap_attach_dev(dev, map, config);
994 if (ret != 0)
995 goto err_regcache;
a7a037c8 996 }
72b39f6f 997
b83a313b
MB
998 return map;
999
6cfec04b 1000err_regcache:
72b39f6f 1001 regcache_exit(map);
6863ca62
KG
1002err_range:
1003 regmap_range_exit(map);
58072cbf 1004 kfree(map->work_buf);
b83a313b
MB
1005err_map:
1006 kfree(map);
1007err:
1008 return ERR_PTR(ret);
1009}
3cfe7a74 1010EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 1011
c0eb4676
MB
1012static void devm_regmap_release(struct device *dev, void *res)
1013{
1014 regmap_exit(*(struct regmap **)res);
1015}
1016
3cfe7a74
NB
1017struct regmap *__devm_regmap_init(struct device *dev,
1018 const struct regmap_bus *bus,
1019 void *bus_context,
1020 const struct regmap_config *config,
1021 struct lock_class_key *lock_key,
1022 const char *lock_name)
c0eb4676
MB
1023{
1024 struct regmap **ptr, *regmap;
1025
1026 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027 if (!ptr)
1028 return ERR_PTR(-ENOMEM);
1029
3cfe7a74
NB
1030 regmap = __regmap_init(dev, bus, bus_context, config,
1031 lock_key, lock_name);
c0eb4676
MB
1032 if (!IS_ERR(regmap)) {
1033 *ptr = regmap;
1034 devres_add(dev, ptr);
1035 } else {
1036 devres_free(ptr);
1037 }
1038
1039 return regmap;
1040}
3cfe7a74 1041EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 1042
67252287
SK
1043static void regmap_field_init(struct regmap_field *rm_field,
1044 struct regmap *regmap, struct reg_field reg_field)
1045{
67252287
SK
1046 rm_field->regmap = regmap;
1047 rm_field->reg = reg_field.reg;
1048 rm_field->shift = reg_field.lsb;
921cc294 1049 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
a0102375
KM
1050 rm_field->id_size = reg_field.id_size;
1051 rm_field->id_offset = reg_field.id_offset;
67252287
SK
1052}
1053
1054/**
1055 * devm_regmap_field_alloc(): Allocate and initialise a register field
1056 * in a register map.
1057 *
1058 * @dev: Device that will be interacted with
1059 * @regmap: regmap bank in which this register field is located.
1060 * @reg_field: Register field with in the bank.
1061 *
1062 * The return value will be an ERR_PTR() on error or a valid pointer
1063 * to a struct regmap_field. The regmap_field will be automatically freed
1064 * by the device management code.
1065 */
1066struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067 struct regmap *regmap, struct reg_field reg_field)
1068{
1069 struct regmap_field *rm_field = devm_kzalloc(dev,
1070 sizeof(*rm_field), GFP_KERNEL);
1071 if (!rm_field)
1072 return ERR_PTR(-ENOMEM);
1073
1074 regmap_field_init(rm_field, regmap, reg_field);
1075
1076 return rm_field;
1077
1078}
1079EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080
1081/**
1082 * devm_regmap_field_free(): Free register field allocated using
1083 * devm_regmap_field_alloc. Usally drivers need not call this function,
1084 * as the memory allocated via devm will be freed as per device-driver
1085 * life-cyle.
1086 *
1087 * @dev: Device that will be interacted with
1088 * @field: regmap field which should be freed.
1089 */
1090void devm_regmap_field_free(struct device *dev,
1091 struct regmap_field *field)
1092{
1093 devm_kfree(dev, field);
1094}
1095EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096
1097/**
1098 * regmap_field_alloc(): Allocate and initialise a register field
1099 * in a register map.
1100 *
1101 * @regmap: regmap bank in which this register field is located.
1102 * @reg_field: Register field with in the bank.
1103 *
1104 * The return value will be an ERR_PTR() on error or a valid pointer
1105 * to a struct regmap_field. The regmap_field should be freed by the
1106 * user once its finished working with it using regmap_field_free().
1107 */
1108struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109 struct reg_field reg_field)
1110{
1111 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112
1113 if (!rm_field)
1114 return ERR_PTR(-ENOMEM);
1115
1116 regmap_field_init(rm_field, regmap, reg_field);
1117
1118 return rm_field;
1119}
1120EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121
1122/**
1123 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124 *
1125 * @field: regmap field which should be freed.
1126 */
1127void regmap_field_free(struct regmap_field *field)
1128{
1129 kfree(field);
1130}
1131EXPORT_SYMBOL_GPL(regmap_field_free);
1132
bf315173
MB
1133/**
1134 * regmap_reinit_cache(): Reinitialise the current register cache
1135 *
1136 * @map: Register map to operate on.
1137 * @config: New configuration. Only the cache data will be used.
1138 *
1139 * Discard any existing register cache for the map and initialize a
1140 * new cache. This can be used to restore the cache to defaults or to
1141 * update the cache configuration to reflect runtime discovery of the
1142 * hardware.
4d879514
DP
1143 *
1144 * No explicit locking is done here, the user needs to ensure that
1145 * this function will not race with other calls to regmap.
bf315173
MB
1146 */
1147int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148{
bf315173 1149 regcache_exit(map);
a24f64a6 1150 regmap_debugfs_exit(map);
bf315173
MB
1151
1152 map->max_register = config->max_register;
1153 map->writeable_reg = config->writeable_reg;
1154 map->readable_reg = config->readable_reg;
1155 map->volatile_reg = config->volatile_reg;
1156 map->precious_reg = config->precious_reg;
1157 map->cache_type = config->cache_type;
1158
d3c242e1 1159 regmap_debugfs_init(map, config->name);
a24f64a6 1160
421e8d2d
MB
1161 map->cache_bypass = false;
1162 map->cache_only = false;
1163
4d879514 1164 return regcache_init(map, config);
bf315173 1165}
752a6a5f 1166EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1167
b83a313b
MB
1168/**
1169 * regmap_exit(): Free a previously allocated register map
1170 */
1171void regmap_exit(struct regmap *map)
1172{
7e09a979
MB
1173 struct regmap_async *async;
1174
5d1729e7 1175 regcache_exit(map);
31244e39 1176 regmap_debugfs_exit(map);
6863ca62 1177 regmap_range_exit(map);
d2a5884a 1178 if (map->bus && map->bus->free_context)
0135bbcc 1179 map->bus->free_context(map->bus_context);
b83a313b 1180 kfree(map->work_buf);
7e09a979
MB
1181 while (!list_empty(&map->async_free)) {
1182 async = list_first_entry_or_null(&map->async_free,
1183 struct regmap_async,
1184 list);
1185 list_del(&async->list);
1186 kfree(async->work_buf);
1187 kfree(async);
1188 }
b83a313b
MB
1189 kfree(map);
1190}
1191EXPORT_SYMBOL_GPL(regmap_exit);
1192
72b39f6f
MB
1193static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194{
1195 struct regmap **r = res;
1196 if (!r || !*r) {
1197 WARN_ON(!r || !*r);
1198 return 0;
1199 }
1200
1201 /* If the user didn't specify a name match any */
1202 if (data)
1203 return (*r)->name == data;
1204 else
1205 return 1;
1206}
1207
1208/**
1209 * dev_get_regmap(): Obtain the regmap (if any) for a device
1210 *
1211 * @dev: Device to retrieve the map for
1212 * @name: Optional name for the register map, usually NULL.
1213 *
1214 * Returns the regmap for the device if one is present, or NULL. If
1215 * name is specified then it must match the name specified when
1216 * registering the device, if it is NULL then the first regmap found
1217 * will be used. Devices with multiple register maps are very rare,
1218 * generic code should normally not need to specify a name.
1219 */
1220struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221{
1222 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223 dev_get_regmap_match, (void *)name);
1224
1225 if (!r)
1226 return NULL;
1227 return *r;
1228}
1229EXPORT_SYMBOL_GPL(dev_get_regmap);
1230
8d7d3972
TT
1231/**
1232 * regmap_get_device(): Obtain the device from a regmap
1233 *
1234 * @map: Register map to operate on.
1235 *
1236 * Returns the underlying device that the regmap has been created for.
1237 */
1238struct device *regmap_get_device(struct regmap *map)
1239{
1240 return map->dev;
1241}
fa2fbe4a 1242EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1243
6863ca62 1244static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1245 struct regmap_range_node *range,
6863ca62
KG
1246 unsigned int val_num)
1247{
6863ca62
KG
1248 void *orig_work_buf;
1249 unsigned int win_offset;
1250 unsigned int win_page;
1251 bool page_chg;
1252 int ret;
1253
98bc7dfd
MB
1254 win_offset = (*reg - range->range_min) % range->window_len;
1255 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1256
98bc7dfd
MB
1257 if (val_num > 1) {
1258 /* Bulk write shouldn't cross range boundary */
1259 if (*reg + val_num - 1 > range->range_max)
1260 return -EINVAL;
6863ca62 1261
98bc7dfd
MB
1262 /* ... or single page boundary */
1263 if (val_num > range->window_len - win_offset)
1264 return -EINVAL;
1265 }
6863ca62 1266
98bc7dfd
MB
1267 /* It is possible to have selector register inside data window.
1268 In that case, selector register is located on every page and
1269 it needs no page switching, when accessed alone. */
1270 if (val_num > 1 ||
1271 range->window_start + win_offset != range->selector_reg) {
1272 /* Use separate work_buf during page switching */
1273 orig_work_buf = map->work_buf;
1274 map->work_buf = map->selector_work_buf;
6863ca62 1275
98bc7dfd
MB
1276 ret = _regmap_update_bits(map, range->selector_reg,
1277 range->selector_mask,
1278 win_page << range->selector_shift,
7ff0589c 1279 &page_chg, false);
632a5b01 1280
98bc7dfd 1281 map->work_buf = orig_work_buf;
6863ca62 1282
0ff3e62f 1283 if (ret != 0)
98bc7dfd 1284 return ret;
6863ca62
KG
1285 }
1286
98bc7dfd
MB
1287 *reg = range->window_start + win_offset;
1288
6863ca62
KG
1289 return 0;
1290}
1291
584de329 1292int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1293 const void *val, size_t val_len)
b83a313b 1294{
98bc7dfd 1295 struct regmap_range_node *range;
0d509f2b 1296 unsigned long flags;
6f306441 1297 u8 *u8 = map->work_buf;
0d509f2b
MB
1298 void *work_val = map->work_buf + map->format.reg_bytes +
1299 map->format.pad_bytes;
b83a313b
MB
1300 void *buf;
1301 int ret = -ENOTSUPP;
1302 size_t len;
73304781
MB
1303 int i;
1304
f1b5c5c3 1305 WARN_ON(!map->bus);
d2a5884a 1306
73304781
MB
1307 /* Check for unwritable registers before we start */
1308 if (map->writeable_reg)
1309 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f
SW
1310 if (!map->writeable_reg(map->dev,
1311 reg + (i * map->reg_stride)))
73304781 1312 return -EINVAL;
b83a313b 1313
c9157198
LD
1314 if (!map->cache_bypass && map->format.parse_val) {
1315 unsigned int ival;
1316 int val_bytes = map->format.val_bytes;
1317 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1318 ival = map->format.parse_val(val + (i * val_bytes));
f01ee60f
SW
1319 ret = regcache_write(map, reg + (i * map->reg_stride),
1320 ival);
c9157198
LD
1321 if (ret) {
1322 dev_err(map->dev,
6d04b8ac 1323 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1324 reg + i, ret);
1325 return ret;
1326 }
1327 }
1328 if (map->cache_only) {
1329 map->cache_dirty = true;
1330 return 0;
1331 }
1332 }
1333
98bc7dfd
MB
1334 range = _regmap_range_lookup(map, reg);
1335 if (range) {
8a2ceac6
MB
1336 int val_num = val_len / map->format.val_bytes;
1337 int win_offset = (reg - range->range_min) % range->window_len;
1338 int win_residue = range->window_len - win_offset;
1339
1340 /* If the write goes beyond the end of the window split it */
1341 while (val_num > win_residue) {
1a61cfe3 1342 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1343 win_residue, val_len / map->format.val_bytes);
1344 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1345 map->format.val_bytes);
8a2ceac6
MB
1346 if (ret != 0)
1347 return ret;
1348
1349 reg += win_residue;
1350 val_num -= win_residue;
1351 val += win_residue * map->format.val_bytes;
1352 val_len -= win_residue * map->format.val_bytes;
1353
1354 win_offset = (reg - range->range_min) %
1355 range->window_len;
1356 win_residue = range->window_len - win_offset;
1357 }
1358
1359 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1360 if (ret != 0)
98bc7dfd
MB
1361 return ret;
1362 }
6863ca62 1363
d939fb9a 1364 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b 1365
6f306441
LPC
1366 u8[0] |= map->write_flag_mask;
1367
651e013e
MB
1368 /*
1369 * Essentially all I/O mechanisms will be faster with a single
1370 * buffer to write. Since register syncs often generate raw
1371 * writes of single registers optimise that case.
1372 */
1373 if (val != work_val && val_len == map->format.val_bytes) {
1374 memcpy(work_val, val, map->format.val_bytes);
1375 val = work_val;
1376 }
1377
0a819809 1378 if (map->async && map->bus->async_write) {
7e09a979 1379 struct regmap_async *async;
0d509f2b 1380
c6b570d9 1381 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1382
7e09a979
MB
1383 spin_lock_irqsave(&map->async_lock, flags);
1384 async = list_first_entry_or_null(&map->async_free,
1385 struct regmap_async,
1386 list);
1387 if (async)
1388 list_del(&async->list);
1389 spin_unlock_irqrestore(&map->async_lock, flags);
1390
1391 if (!async) {
1392 async = map->bus->async_alloc();
1393 if (!async)
1394 return -ENOMEM;
1395
1396 async->work_buf = kzalloc(map->format.buf_size,
1397 GFP_KERNEL | GFP_DMA);
1398 if (!async->work_buf) {
1399 kfree(async);
1400 return -ENOMEM;
1401 }
0d509f2b
MB
1402 }
1403
0d509f2b
MB
1404 async->map = map;
1405
1406 /* If the caller supplied the value we can use it safely. */
1407 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1409
1410 spin_lock_irqsave(&map->async_lock, flags);
1411 list_add_tail(&async->list, &map->async_list);
1412 spin_unlock_irqrestore(&map->async_lock, flags);
1413
04c50ccf
MB
1414 if (val != work_val)
1415 ret = map->bus->async_write(map->bus_context,
1416 async->work_buf,
1417 map->format.reg_bytes +
1418 map->format.pad_bytes,
1419 val, val_len, async);
1420 else
1421 ret = map->bus->async_write(map->bus_context,
1422 async->work_buf,
1423 map->format.reg_bytes +
1424 map->format.pad_bytes +
1425 val_len, NULL, 0, async);
0d509f2b
MB
1426
1427 if (ret != 0) {
1428 dev_err(map->dev, "Failed to schedule write: %d\n",
1429 ret);
1430
1431 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1432 list_move(&async->list, &map->async_free);
0d509f2b 1433 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1434 }
f951b658
MB
1435
1436 return ret;
0d509f2b
MB
1437 }
1438
c6b570d9 1439 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1440
2547e201
MB
1441 /* If we're doing a single register write we can probably just
1442 * send the work_buf directly, otherwise try to do a gather
1443 * write.
1444 */
0d509f2b 1445 if (val == work_val)
0135bbcc 1446 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1447 map->format.reg_bytes +
1448 map->format.pad_bytes +
1449 val_len);
2547e201 1450 else if (map->bus->gather_write)
0135bbcc 1451 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1452 map->format.reg_bytes +
1453 map->format.pad_bytes,
b83a313b
MB
1454 val, val_len);
1455
2547e201 1456 /* If that didn't work fall back on linearising by hand. */
b83a313b 1457 if (ret == -ENOTSUPP) {
82159ba8
MB
1458 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1460 if (!buf)
1461 return -ENOMEM;
1462
1463 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1464 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465 val, val_len);
0135bbcc 1466 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1467
1468 kfree(buf);
1469 }
1470
c6b570d9 1471 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1472
b83a313b
MB
1473 return ret;
1474}
1475
221ad7f2
MB
1476/**
1477 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478 *
1479 * @map: Map to check.
1480 */
1481bool regmap_can_raw_write(struct regmap *map)
1482{
07ea400e
MP
1483 return map->bus && map->bus->write && map->format.format_val &&
1484 map->format.format_reg;
221ad7f2
MB
1485}
1486EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487
f50c9eb4
MP
1488/**
1489 * regmap_get_raw_read_max - Get the maximum size we can read
1490 *
1491 * @map: Map to check.
1492 */
1493size_t regmap_get_raw_read_max(struct regmap *map)
1494{
1495 return map->max_raw_read;
1496}
1497EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498
1499/**
1500 * regmap_get_raw_write_max - Get the maximum size we can read
1501 *
1502 * @map: Map to check.
1503 */
1504size_t regmap_get_raw_write_max(struct regmap *map)
1505{
1506 return map->max_raw_write;
1507}
1508EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509
07c320dc
AS
1510static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511 unsigned int val)
1512{
1513 int ret;
1514 struct regmap_range_node *range;
1515 struct regmap *map = context;
1516
f1b5c5c3 1517 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1518
1519 range = _regmap_range_lookup(map, reg);
1520 if (range) {
1521 ret = _regmap_select_page(map, &reg, range, 1);
1522 if (ret != 0)
1523 return ret;
1524 }
1525
1526 map->format.format_write(map, reg, val);
1527
c6b570d9 1528 trace_regmap_hw_write_start(map, reg, 1);
07c320dc
AS
1529
1530 ret = map->bus->write(map->bus_context, map->work_buf,
1531 map->format.buf_size);
1532
c6b570d9 1533 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1534
1535 return ret;
1536}
1537
3ac17037
BB
1538static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539 unsigned int val)
1540{
1541 struct regmap *map = context;
1542
1543 return map->bus->reg_write(map->bus_context, reg, val);
1544}
1545
07c320dc
AS
1546static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547 unsigned int val)
1548{
1549 struct regmap *map = context;
1550
f1b5c5c3 1551 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1552
1553 map->format.format_val(map->work_buf + map->format.reg_bytes
1554 + map->format.pad_bytes, val, 0);
1555 return _regmap_raw_write(map, reg,
1556 map->work_buf +
1557 map->format.reg_bytes +
1558 map->format.pad_bytes,
0a819809 1559 map->format.val_bytes);
07c320dc
AS
1560}
1561
d2a5884a
AS
1562static inline void *_regmap_map_get_context(struct regmap *map)
1563{
1564 return (map->bus) ? map : map->bus_context;
1565}
1566
4d2dc095
DP
1567int _regmap_write(struct regmap *map, unsigned int reg,
1568 unsigned int val)
b83a313b 1569{
fb2736bb 1570 int ret;
d2a5884a 1571 void *context = _regmap_map_get_context(map);
b83a313b 1572
515f2261
IN
1573 if (!regmap_writeable(map, reg))
1574 return -EIO;
1575
d2a5884a 1576 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1577 ret = regcache_write(map, reg, val);
1578 if (ret != 0)
1579 return ret;
8ae0d7e8
MB
1580 if (map->cache_only) {
1581 map->cache_dirty = true;
5d1729e7 1582 return 0;
8ae0d7e8 1583 }
5d1729e7
DP
1584 }
1585
1044c180 1586#ifdef LOG_DEVICE
5336be84 1587 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
1588 dev_info(map->dev, "%x <= %x\n", reg, val);
1589#endif
1590
c6b570d9 1591 trace_regmap_reg_write(map, reg, val);
fb2736bb 1592
d2a5884a 1593 return map->reg_write(context, reg, val);
b83a313b
MB
1594}
1595
1596/**
1597 * regmap_write(): Write a value to a single register
1598 *
1599 * @map: Register map to write to
1600 * @reg: Register to write to
1601 * @val: Value to be written
1602 *
1603 * A value of zero will be returned on success, a negative errno will
1604 * be returned in error cases.
1605 */
1606int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607{
1608 int ret;
1609
fcac0233 1610 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
1611 return -EINVAL;
1612
0d4529c5 1613 map->lock(map->lock_arg);
b83a313b
MB
1614
1615 ret = _regmap_write(map, reg, val);
1616
0d4529c5 1617 map->unlock(map->lock_arg);
b83a313b
MB
1618
1619 return ret;
1620}
1621EXPORT_SYMBOL_GPL(regmap_write);
1622
915f441b
MB
1623/**
1624 * regmap_write_async(): Write a value to a single register asynchronously
1625 *
1626 * @map: Register map to write to
1627 * @reg: Register to write to
1628 * @val: Value to be written
1629 *
1630 * A value of zero will be returned on success, a negative errno will
1631 * be returned in error cases.
1632 */
1633int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634{
1635 int ret;
1636
fcac0233 1637 if (!IS_ALIGNED(reg, map->reg_stride))
915f441b
MB
1638 return -EINVAL;
1639
1640 map->lock(map->lock_arg);
1641
1642 map->async = true;
1643
1644 ret = _regmap_write(map, reg, val);
1645
1646 map->async = false;
1647
1648 map->unlock(map->lock_arg);
1649
1650 return ret;
1651}
1652EXPORT_SYMBOL_GPL(regmap_write_async);
1653
b83a313b
MB
1654/**
1655 * regmap_raw_write(): Write raw values to one or more registers
1656 *
1657 * @map: Register map to write to
1658 * @reg: Initial register to write to
1659 * @val: Block of data to be written, laid out for direct transmission to the
1660 * device
1661 * @val_len: Length of data pointed to by val.
1662 *
1663 * This function is intended to be used for things like firmware
1664 * download where a large block of data needs to be transferred to the
1665 * device. No formatting will be done on the data provided.
1666 *
1667 * A value of zero will be returned on success, a negative errno will
1668 * be returned in error cases.
1669 */
1670int regmap_raw_write(struct regmap *map, unsigned int reg,
1671 const void *val, size_t val_len)
1672{
1673 int ret;
1674
221ad7f2 1675 if (!regmap_can_raw_write(map))
d2a5884a 1676 return -EINVAL;
851960ba
SW
1677 if (val_len % map->format.val_bytes)
1678 return -EINVAL;
c335931e
MP
1679 if (map->max_raw_write && map->max_raw_write > val_len)
1680 return -E2BIG;
851960ba 1681
0d4529c5 1682 map->lock(map->lock_arg);
b83a313b 1683
0a819809 1684 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1685
0d4529c5 1686 map->unlock(map->lock_arg);
b83a313b
MB
1687
1688 return ret;
1689}
1690EXPORT_SYMBOL_GPL(regmap_raw_write);
1691
28972eaa
KM
1692/**
1693 * regmap_field_update_bits_base():
1694 * Perform a read/modify/write cycle on the register field
1695 * with change, async, force option
1696 *
1697 * @field: Register field to write to
1698 * @mask: Bitmask to change
1699 * @val: Value to be written
1700 * @change: Boolean indicating if a write was done
1701 * @async: Boolean indicating asynchronously
1702 * @force: Boolean indicating use force update
1703 *
1704 * A value of zero will be returned on success, a negative errno will
1705 * be returned in error cases.
1706 */
1707int regmap_field_update_bits_base(struct regmap_field *field,
1708 unsigned int mask, unsigned int val,
1709 bool *change, bool async, bool force)
1710{
1711 mask = (mask << field->shift) & field->mask;
1712
1713 return regmap_update_bits_base(field->regmap, field->reg,
1714 mask, val << field->shift,
1715 change, async, force);
1716}
1717EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1718
a0102375
KM
1719/**
1720 * regmap_fields_write(): Write a value to a single register field with port ID
1721 *
1722 * @field: Register field to write to
1723 * @id: port ID
1724 * @val: Value to be written
1725 *
1726 * A value of zero will be returned on success, a negative errno will
1727 * be returned in error cases.
1728 */
1729int regmap_fields_write(struct regmap_field *field, unsigned int id,
1730 unsigned int val)
1731{
1732 if (id >= field->id_size)
1733 return -EINVAL;
1734
1735 return regmap_update_bits(field->regmap,
1736 field->reg + (field->id_offset * id),
1737 field->mask, val << field->shift);
1738}
1739EXPORT_SYMBOL_GPL(regmap_fields_write);
1740
e874e6c7
KM
1741int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1742 unsigned int val)
1743{
1744 if (id >= field->id_size)
1745 return -EINVAL;
1746
1747 return regmap_write_bits(field->regmap,
1748 field->reg + (field->id_offset * id),
1749 field->mask, val << field->shift);
1750}
1751EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1752
a0102375
KM
1753/**
1754 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1755 * on the register field
1756 *
1757 * @field: Register field to write to
1758 * @id: port ID
1759 * @mask: Bitmask to change
1760 * @val: Value to be written
1761 *
1762 * A value of zero will be returned on success, a negative errno will
1763 * be returned in error cases.
1764 */
1765int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1766 unsigned int mask, unsigned int val)
1767{
1768 if (id >= field->id_size)
1769 return -EINVAL;
1770
1771 mask = (mask << field->shift) & field->mask;
1772
1773 return regmap_update_bits(field->regmap,
1774 field->reg + (field->id_offset * id),
1775 mask, val << field->shift);
1776}
1777EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1778
8eaeb219
LD
1779/*
1780 * regmap_bulk_write(): Write multiple registers to the device
1781 *
1782 * @map: Register map to write to
1783 * @reg: First register to be write from
1784 * @val: Block of data to be written, in native register size for device
1785 * @val_count: Number of registers to write
1786 *
1787 * This function is intended to be used for writing a large block of
31b35e9e 1788 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1789 *
1790 * A value of zero will be returned on success, a negative errno will
1791 * be returned in error cases.
1792 */
1793int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1794 size_t val_count)
1795{
1796 int ret = 0, i;
1797 size_t val_bytes = map->format.val_bytes;
adaac459 1798 size_t total_size = val_bytes * val_count;
8eaeb219 1799
f4298360 1800 if (map->bus && !map->format.parse_inplace)
8eaeb219 1801 return -EINVAL;
fcac0233 1802 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 1803 return -EINVAL;
8eaeb219 1804
f4298360
SB
1805 /*
1806 * Some devices don't support bulk write, for
c594b7f2
MP
1807 * them we have a series of single write operations in the first two if
1808 * blocks.
1809 *
1810 * The first if block is used for memory mapped io. It does not allow
1811 * val_bytes of 3 for example.
1812 * The second one is used for busses which do not have this limitation
1813 * and can write arbitrary value lengths.
f4298360 1814 */
c594b7f2 1815 if (!map->bus) {
4999e962 1816 map->lock(map->lock_arg);
f4298360
SB
1817 for (i = 0; i < val_count; i++) {
1818 unsigned int ival;
1819
1820 switch (val_bytes) {
1821 case 1:
1822 ival = *(u8 *)(val + (i * val_bytes));
1823 break;
1824 case 2:
1825 ival = *(u16 *)(val + (i * val_bytes));
1826 break;
1827 case 4:
1828 ival = *(u32 *)(val + (i * val_bytes));
1829 break;
1830#ifdef CONFIG_64BIT
1831 case 8:
1832 ival = *(u64 *)(val + (i * val_bytes));
1833 break;
1834#endif
1835 default:
1836 ret = -EINVAL;
1837 goto out;
1838 }
8eaeb219 1839
f4298360
SB
1840 ret = _regmap_write(map, reg + (i * map->reg_stride),
1841 ival);
1842 if (ret != 0)
1843 goto out;
1844 }
4999e962
TI
1845out:
1846 map->unlock(map->lock_arg);
adaac459
MP
1847 } else if (map->use_single_write ||
1848 (map->max_raw_write && map->max_raw_write < total_size)) {
1849 int chunk_stride = map->reg_stride;
1850 size_t chunk_size = val_bytes;
1851 size_t chunk_count = val_count;
1852
1853 if (!map->use_single_write) {
1854 chunk_size = map->max_raw_write;
1855 if (chunk_size % val_bytes)
1856 chunk_size -= chunk_size % val_bytes;
1857 chunk_count = total_size / chunk_size;
1858 chunk_stride *= chunk_size / val_bytes;
1859 }
1860
c594b7f2 1861 map->lock(map->lock_arg);
adaac459
MP
1862 /* Write as many bytes as possible with chunk_size */
1863 for (i = 0; i < chunk_count; i++) {
c594b7f2 1864 ret = _regmap_raw_write(map,
adaac459
MP
1865 reg + (i * chunk_stride),
1866 val + (i * chunk_size),
1867 chunk_size);
c594b7f2
MP
1868 if (ret)
1869 break;
1870 }
adaac459
MP
1871
1872 /* Write remaining bytes */
1873 if (!ret && chunk_size * i < total_size) {
1874 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1875 val + (i * chunk_size),
1876 total_size - i * chunk_size);
1877 }
c594b7f2 1878 map->unlock(map->lock_arg);
8eaeb219 1879 } else {
f4298360
SB
1880 void *wval;
1881
d6b41cb0
XL
1882 if (!val_count)
1883 return -EINVAL;
1884
b4a21fc2 1885 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
8eaeb219 1886 if (!wval) {
8eaeb219 1887 dev_err(map->dev, "Error in memory allocation\n");
4999e962 1888 return -ENOMEM;
8eaeb219
LD
1889 }
1890 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1891 map->format.parse_inplace(wval + i);
f4298360 1892
4999e962 1893 map->lock(map->lock_arg);
0a819809 1894 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
4999e962 1895 map->unlock(map->lock_arg);
8eaeb219 1896
8eaeb219 1897 kfree(wval);
f4298360 1898 }
8eaeb219
LD
1899 return ret;
1900}
1901EXPORT_SYMBOL_GPL(regmap_bulk_write);
1902
e894c3f4
OAO
1903/*
1904 * _regmap_raw_multi_reg_write()
1905 *
1906 * the (register,newvalue) pairs in regs have not been formatted, but
1907 * they are all in the same page and have been changed to being page
b486afbd 1908 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
1909 */
1910static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 1911 const struct reg_sequence *regs,
e894c3f4
OAO
1912 size_t num_regs)
1913{
1914 int ret;
1915 void *buf;
1916 int i;
1917 u8 *u8;
1918 size_t val_bytes = map->format.val_bytes;
1919 size_t reg_bytes = map->format.reg_bytes;
1920 size_t pad_bytes = map->format.pad_bytes;
1921 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1922 size_t len = pair_size * num_regs;
1923
f5727cd3
XL
1924 if (!len)
1925 return -EINVAL;
1926
e894c3f4
OAO
1927 buf = kzalloc(len, GFP_KERNEL);
1928 if (!buf)
1929 return -ENOMEM;
1930
1931 /* We have to linearise by hand. */
1932
1933 u8 = buf;
1934
1935 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
1936 unsigned int reg = regs[i].reg;
1937 unsigned int val = regs[i].def;
c6b570d9 1938 trace_regmap_hw_write_start(map, reg, 1);
e894c3f4
OAO
1939 map->format.format_reg(u8, reg, map->reg_shift);
1940 u8 += reg_bytes + pad_bytes;
1941 map->format.format_val(u8, val, 0);
1942 u8 += val_bytes;
1943 }
1944 u8 = buf;
1945 *u8 |= map->write_flag_mask;
1946
1947 ret = map->bus->write(map->bus_context, buf, len);
1948
1949 kfree(buf);
1950
1951 for (i = 0; i < num_regs; i++) {
1952 int reg = regs[i].reg;
c6b570d9 1953 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
1954 }
1955 return ret;
1956}
1957
1958static unsigned int _regmap_register_page(struct regmap *map,
1959 unsigned int reg,
1960 struct regmap_range_node *range)
1961{
1962 unsigned int win_page = (reg - range->range_min) / range->window_len;
1963
1964 return win_page;
1965}
1966
1967static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 1968 struct reg_sequence *regs,
e894c3f4
OAO
1969 size_t num_regs)
1970{
1971 int ret;
1972 int i, n;
8019ff6c 1973 struct reg_sequence *base;
b48d1398 1974 unsigned int this_page = 0;
2de9d600 1975 unsigned int page_change = 0;
e894c3f4
OAO
1976 /*
1977 * the set of registers are not neccessarily in order, but
1978 * since the order of write must be preserved this algorithm
2de9d600
NP
1979 * chops the set each time the page changes. This also applies
1980 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
1981 */
1982 base = regs;
1983 for (i = 0, n = 0; i < num_regs; i++, n++) {
1984 unsigned int reg = regs[i].reg;
1985 struct regmap_range_node *range;
1986
1987 range = _regmap_range_lookup(map, reg);
1988 if (range) {
1989 unsigned int win_page = _regmap_register_page(map, reg,
1990 range);
1991
1992 if (i == 0)
1993 this_page = win_page;
1994 if (win_page != this_page) {
1995 this_page = win_page;
2de9d600
NP
1996 page_change = 1;
1997 }
1998 }
1999
2000 /* If we have both a page change and a delay make sure to
2001 * write the regs and apply the delay before we change the
2002 * page.
2003 */
2004
2005 if (page_change || regs[i].delay_us) {
2006
2007 /* For situations where the first write requires
2008 * a delay we need to make sure we don't call
2009 * raw_multi_reg_write with n=0
2010 * This can't occur with page breaks as we
2011 * never write on the first iteration
2012 */
2013 if (regs[i].delay_us && i == 0)
2014 n = 1;
2015
e894c3f4
OAO
2016 ret = _regmap_raw_multi_reg_write(map, base, n);
2017 if (ret != 0)
2018 return ret;
2de9d600
NP
2019
2020 if (regs[i].delay_us)
2021 udelay(regs[i].delay_us);
2022
e894c3f4
OAO
2023 base += n;
2024 n = 0;
2de9d600
NP
2025
2026 if (page_change) {
2027 ret = _regmap_select_page(map,
2028 &base[n].reg,
2029 range, 1);
2030 if (ret != 0)
2031 return ret;
2032
2033 page_change = 0;
2034 }
2035
e894c3f4 2036 }
2de9d600 2037
e894c3f4
OAO
2038 }
2039 if (n > 0)
2040 return _regmap_raw_multi_reg_write(map, base, n);
2041 return 0;
2042}
2043
1d5b40bc 2044static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 2045 const struct reg_sequence *regs,
e894c3f4 2046 size_t num_regs)
1d5b40bc 2047{
e894c3f4
OAO
2048 int i;
2049 int ret;
2050
2051 if (!map->can_multi_write) {
2052 for (i = 0; i < num_regs; i++) {
2053 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2054 if (ret != 0)
2055 return ret;
2de9d600
NP
2056
2057 if (regs[i].delay_us)
2058 udelay(regs[i].delay_us);
e894c3f4
OAO
2059 }
2060 return 0;
2061 }
2062
2063 if (!map->format.parse_inplace)
2064 return -EINVAL;
2065
2066 if (map->writeable_reg)
2067 for (i = 0; i < num_regs; i++) {
2068 int reg = regs[i].reg;
2069 if (!map->writeable_reg(map->dev, reg))
2070 return -EINVAL;
fcac0233 2071 if (!IS_ALIGNED(reg, map->reg_stride))
e894c3f4
OAO
2072 return -EINVAL;
2073 }
2074
2075 if (!map->cache_bypass) {
2076 for (i = 0; i < num_regs; i++) {
2077 unsigned int val = regs[i].def;
2078 unsigned int reg = regs[i].reg;
2079 ret = regcache_write(map, reg, val);
2080 if (ret) {
2081 dev_err(map->dev,
2082 "Error in caching of register: %x ret: %d\n",
2083 reg, ret);
2084 return ret;
2085 }
2086 }
2087 if (map->cache_only) {
2088 map->cache_dirty = true;
2089 return 0;
2090 }
2091 }
2092
2093 WARN_ON(!map->bus);
1d5b40bc
CK
2094
2095 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2096 unsigned int reg = regs[i].reg;
2097 struct regmap_range_node *range;
2de9d600
NP
2098
2099 /* Coalesce all the writes between a page break or a delay
2100 * in a sequence
2101 */
e894c3f4 2102 range = _regmap_range_lookup(map, reg);
2de9d600 2103 if (range || regs[i].delay_us) {
8019ff6c
NP
2104 size_t len = sizeof(struct reg_sequence)*num_regs;
2105 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2106 GFP_KERNEL);
2107 if (!base)
2108 return -ENOMEM;
2109 ret = _regmap_range_multi_paged_reg_write(map, base,
2110 num_regs);
2111 kfree(base);
2112
1d5b40bc
CK
2113 return ret;
2114 }
2115 }
e894c3f4 2116 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2117}
2118
e33fabd3
AO
2119/*
2120 * regmap_multi_reg_write(): Write multiple registers to the device
2121 *
e894c3f4
OAO
2122 * where the set of register,value pairs are supplied in any order,
2123 * possibly not all in a single range.
e33fabd3
AO
2124 *
2125 * @map: Register map to write to
2126 * @regs: Array of structures containing register,value to be written
2127 * @num_regs: Number of registers to write
2128 *
e894c3f4
OAO
2129 * The 'normal' block write mode will send ultimately send data on the
2130 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2131 * addressed. However, this alternative block multi write mode will send
2132 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2133 * must of course support the mode.
e33fabd3 2134 *
e894c3f4
OAO
2135 * A value of zero will be returned on success, a negative errno will be
2136 * returned in error cases.
e33fabd3 2137 */
8019ff6c 2138int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2139 int num_regs)
e33fabd3 2140{
1d5b40bc 2141 int ret;
e33fabd3
AO
2142
2143 map->lock(map->lock_arg);
2144
1d5b40bc
CK
2145 ret = _regmap_multi_reg_write(map, regs, num_regs);
2146
e33fabd3
AO
2147 map->unlock(map->lock_arg);
2148
2149 return ret;
2150}
2151EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2152
1d5b40bc
CK
2153/*
2154 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2155 * device but not the cache
2156 *
e33fabd3
AO
2157 * where the set of register are supplied in any order
2158 *
2159 * @map: Register map to write to
2160 * @regs: Array of structures containing register,value to be written
2161 * @num_regs: Number of registers to write
2162 *
2163 * This function is intended to be used for writing a large block of data
2164 * atomically to the device in single transfer for those I2C client devices
2165 * that implement this alternative block write mode.
2166 *
2167 * A value of zero will be returned on success, a negative errno will
2168 * be returned in error cases.
2169 */
1d5b40bc 2170int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2171 const struct reg_sequence *regs,
1d5b40bc 2172 int num_regs)
e33fabd3 2173{
1d5b40bc
CK
2174 int ret;
2175 bool bypass;
e33fabd3
AO
2176
2177 map->lock(map->lock_arg);
2178
1d5b40bc
CK
2179 bypass = map->cache_bypass;
2180 map->cache_bypass = true;
2181
2182 ret = _regmap_multi_reg_write(map, regs, num_regs);
2183
2184 map->cache_bypass = bypass;
2185
e33fabd3
AO
2186 map->unlock(map->lock_arg);
2187
2188 return ret;
2189}
1d5b40bc 2190EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2191
0d509f2b
MB
2192/**
2193 * regmap_raw_write_async(): Write raw values to one or more registers
2194 * asynchronously
2195 *
2196 * @map: Register map to write to
2197 * @reg: Initial register to write to
2198 * @val: Block of data to be written, laid out for direct transmission to the
2199 * device. Must be valid until regmap_async_complete() is called.
2200 * @val_len: Length of data pointed to by val.
2201 *
2202 * This function is intended to be used for things like firmware
2203 * download where a large block of data needs to be transferred to the
2204 * device. No formatting will be done on the data provided.
2205 *
2206 * If supported by the underlying bus the write will be scheduled
2207 * asynchronously, helping maximise I/O speed on higher speed buses
2208 * like SPI. regmap_async_complete() can be called to ensure that all
2209 * asynchrnous writes have been completed.
2210 *
2211 * A value of zero will be returned on success, a negative errno will
2212 * be returned in error cases.
2213 */
2214int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2215 const void *val, size_t val_len)
2216{
2217 int ret;
2218
2219 if (val_len % map->format.val_bytes)
2220 return -EINVAL;
fcac0233 2221 if (!IS_ALIGNED(reg, map->reg_stride))
0d509f2b
MB
2222 return -EINVAL;
2223
2224 map->lock(map->lock_arg);
2225
0a819809
MB
2226 map->async = true;
2227
2228 ret = _regmap_raw_write(map, reg, val, val_len);
2229
2230 map->async = false;
0d509f2b
MB
2231
2232 map->unlock(map->lock_arg);
2233
2234 return ret;
2235}
2236EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2237
b83a313b
MB
2238static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2239 unsigned int val_len)
2240{
98bc7dfd 2241 struct regmap_range_node *range;
b83a313b
MB
2242 u8 *u8 = map->work_buf;
2243 int ret;
2244
f1b5c5c3 2245 WARN_ON(!map->bus);
d2a5884a 2246
98bc7dfd
MB
2247 range = _regmap_range_lookup(map, reg);
2248 if (range) {
2249 ret = _regmap_select_page(map, &reg, range,
2250 val_len / map->format.val_bytes);
0ff3e62f 2251 if (ret != 0)
98bc7dfd
MB
2252 return ret;
2253 }
6863ca62 2254
d939fb9a 2255 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b
MB
2256
2257 /*
6f306441 2258 * Some buses or devices flag reads by setting the high bits in the
b486afbd 2259 * register address; since it's always the high bits for all
b83a313b
MB
2260 * current formats we can do this here rather than in
2261 * formatting. This may break if we get interesting formats.
2262 */
6f306441 2263 u8[0] |= map->read_flag_mask;
b83a313b 2264
c6b570d9 2265 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2266
0135bbcc 2267 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 2268 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 2269 val, val_len);
b83a313b 2270
c6b570d9 2271 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2272
2273 return ret;
b83a313b
MB
2274}
2275
3ac17037
BB
2276static int _regmap_bus_reg_read(void *context, unsigned int reg,
2277 unsigned int *val)
2278{
2279 struct regmap *map = context;
2280
2281 return map->bus->reg_read(map->bus_context, reg, val);
2282}
2283
ad278406
AS
2284static int _regmap_bus_read(void *context, unsigned int reg,
2285 unsigned int *val)
2286{
2287 int ret;
2288 struct regmap *map = context;
2289
2290 if (!map->format.parse_val)
2291 return -EINVAL;
2292
2293 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2294 if (ret == 0)
2295 *val = map->format.parse_val(map->work_buf);
2296
2297 return ret;
2298}
2299
b83a313b
MB
2300static int _regmap_read(struct regmap *map, unsigned int reg,
2301 unsigned int *val)
2302{
2303 int ret;
d2a5884a
AS
2304 void *context = _regmap_map_get_context(map);
2305
5d1729e7
DP
2306 if (!map->cache_bypass) {
2307 ret = regcache_read(map, reg, val);
2308 if (ret == 0)
2309 return 0;
2310 }
2311
2312 if (map->cache_only)
2313 return -EBUSY;
2314
d4807ad2
MS
2315 if (!regmap_readable(map, reg))
2316 return -EIO;
2317
d2a5884a 2318 ret = map->reg_read(context, reg, val);
fb2736bb 2319 if (ret == 0) {
1044c180 2320#ifdef LOG_DEVICE
5336be84 2321 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
2322 dev_info(map->dev, "%x => %x\n", reg, *val);
2323#endif
2324
c6b570d9 2325 trace_regmap_reg_read(map, reg, *val);
b83a313b 2326
ad278406
AS
2327 if (!map->cache_bypass)
2328 regcache_write(map, reg, *val);
2329 }
f2985367 2330
b83a313b
MB
2331 return ret;
2332}
2333
2334/**
2335 * regmap_read(): Read a value from a single register
2336 *
0093380c 2337 * @map: Register map to read from
b83a313b
MB
2338 * @reg: Register to be read from
2339 * @val: Pointer to store read value
2340 *
2341 * A value of zero will be returned on success, a negative errno will
2342 * be returned in error cases.
2343 */
2344int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2345{
2346 int ret;
2347
fcac0233 2348 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f
SW
2349 return -EINVAL;
2350
0d4529c5 2351 map->lock(map->lock_arg);
b83a313b
MB
2352
2353 ret = _regmap_read(map, reg, val);
2354
0d4529c5 2355 map->unlock(map->lock_arg);
b83a313b
MB
2356
2357 return ret;
2358}
2359EXPORT_SYMBOL_GPL(regmap_read);
2360
2361/**
2362 * regmap_raw_read(): Read raw data from the device
2363 *
0093380c 2364 * @map: Register map to read from
b83a313b
MB
2365 * @reg: First register to be read from
2366 * @val: Pointer to store read value
2367 * @val_len: Size of data to read
2368 *
2369 * A value of zero will be returned on success, a negative errno will
2370 * be returned in error cases.
2371 */
2372int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2373 size_t val_len)
2374{
b8fb5ab1
MB
2375 size_t val_bytes = map->format.val_bytes;
2376 size_t val_count = val_len / val_bytes;
2377 unsigned int v;
2378 int ret, i;
04e016ad 2379
d2a5884a
AS
2380 if (!map->bus)
2381 return -EINVAL;
851960ba
SW
2382 if (val_len % map->format.val_bytes)
2383 return -EINVAL;
fcac0233 2384 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2385 return -EINVAL;
fa3eec77
MB
2386 if (val_count == 0)
2387 return -EINVAL;
851960ba 2388
0d4529c5 2389 map->lock(map->lock_arg);
b83a313b 2390
b8fb5ab1
MB
2391 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2392 map->cache_type == REGCACHE_NONE) {
9a16ea90
MP
2393 if (!map->bus->read) {
2394 ret = -ENOTSUPP;
2395 goto out;
2396 }
c335931e
MP
2397 if (map->max_raw_read && map->max_raw_read < val_len) {
2398 ret = -E2BIG;
2399 goto out;
2400 }
9a16ea90 2401
b8fb5ab1
MB
2402 /* Physical block read if there's no cache involved */
2403 ret = _regmap_raw_read(map, reg, val, val_len);
2404
2405 } else {
2406 /* Otherwise go word by word for the cache; should be low
2407 * cost as we expect to hit the cache.
2408 */
2409 for (i = 0; i < val_count; i++) {
f01ee60f
SW
2410 ret = _regmap_read(map, reg + (i * map->reg_stride),
2411 &v);
b8fb5ab1
MB
2412 if (ret != 0)
2413 goto out;
2414
d939fb9a 2415 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2416 }
2417 }
b83a313b 2418
b8fb5ab1 2419 out:
0d4529c5 2420 map->unlock(map->lock_arg);
b83a313b
MB
2421
2422 return ret;
2423}
2424EXPORT_SYMBOL_GPL(regmap_raw_read);
2425
67252287
SK
2426/**
2427 * regmap_field_read(): Read a value to a single register field
2428 *
2429 * @field: Register field to read from
2430 * @val: Pointer to store read value
2431 *
2432 * A value of zero will be returned on success, a negative errno will
2433 * be returned in error cases.
2434 */
2435int regmap_field_read(struct regmap_field *field, unsigned int *val)
2436{
2437 int ret;
2438 unsigned int reg_val;
2439 ret = regmap_read(field->regmap, field->reg, &reg_val);
2440 if (ret != 0)
2441 return ret;
2442
2443 reg_val &= field->mask;
2444 reg_val >>= field->shift;
2445 *val = reg_val;
2446
2447 return ret;
2448}
2449EXPORT_SYMBOL_GPL(regmap_field_read);
2450
a0102375
KM
2451/**
2452 * regmap_fields_read(): Read a value to a single register field with port ID
2453 *
2454 * @field: Register field to read from
2455 * @id: port ID
2456 * @val: Pointer to store read value
2457 *
2458 * A value of zero will be returned on success, a negative errno will
2459 * be returned in error cases.
2460 */
2461int regmap_fields_read(struct regmap_field *field, unsigned int id,
2462 unsigned int *val)
2463{
2464 int ret;
2465 unsigned int reg_val;
2466
2467 if (id >= field->id_size)
2468 return -EINVAL;
2469
2470 ret = regmap_read(field->regmap,
2471 field->reg + (field->id_offset * id),
2472 &reg_val);
2473 if (ret != 0)
2474 return ret;
2475
2476 reg_val &= field->mask;
2477 reg_val >>= field->shift;
2478 *val = reg_val;
2479
2480 return ret;
2481}
2482EXPORT_SYMBOL_GPL(regmap_fields_read);
2483
b83a313b
MB
2484/**
2485 * regmap_bulk_read(): Read multiple registers from the device
2486 *
0093380c 2487 * @map: Register map to read from
b83a313b
MB
2488 * @reg: First register to be read from
2489 * @val: Pointer to store read value, in native register size for device
2490 * @val_count: Number of registers to read
2491 *
2492 * A value of zero will be returned on success, a negative errno will
2493 * be returned in error cases.
2494 */
2495int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2496 size_t val_count)
2497{
2498 int ret, i;
2499 size_t val_bytes = map->format.val_bytes;
82cd9965 2500 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 2501
fcac0233 2502 if (!IS_ALIGNED(reg, map->reg_stride))
f01ee60f 2503 return -EINVAL;
b83a313b 2504
3b58ee13 2505 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2e33caf1
AJ
2506 /*
2507 * Some devices does not support bulk read, for
2508 * them we have a series of single read operations.
2509 */
adaac459
MP
2510 size_t total_size = val_bytes * val_count;
2511
2512 if (!map->use_single_read &&
2513 (!map->max_raw_read || map->max_raw_read > total_size)) {
2e33caf1
AJ
2514 ret = regmap_raw_read(map, reg, val,
2515 val_bytes * val_count);
2516 if (ret != 0)
2517 return ret;
adaac459
MP
2518 } else {
2519 /*
2520 * Some devices do not support bulk read or do not
2521 * support large bulk reads, for them we have a series
2522 * of read operations.
2523 */
2524 int chunk_stride = map->reg_stride;
2525 size_t chunk_size = val_bytes;
2526 size_t chunk_count = val_count;
2527
2528 if (!map->use_single_read) {
2529 chunk_size = map->max_raw_read;
2530 if (chunk_size % val_bytes)
2531 chunk_size -= chunk_size % val_bytes;
2532 chunk_count = total_size / chunk_size;
2533 chunk_stride *= chunk_size / val_bytes;
2534 }
2535
2536 /* Read bytes that fit into a multiple of chunk_size */
2537 for (i = 0; i < chunk_count; i++) {
2538 ret = regmap_raw_read(map,
2539 reg + (i * chunk_stride),
2540 val + (i * chunk_size),
2541 chunk_size);
2542 if (ret != 0)
2543 return ret;
2544 }
2545
2546 /* Read remaining bytes */
2547 if (chunk_size * i < total_size) {
2548 ret = regmap_raw_read(map,
2549 reg + (i * chunk_stride),
2550 val + (i * chunk_size),
2551 total_size - i * chunk_size);
2552 if (ret != 0)
2553 return ret;
2554 }
2e33caf1 2555 }
de2d808f
MB
2556
2557 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2558 map->format.parse_inplace(val + i);
de2d808f
MB
2559 } else {
2560 for (i = 0; i < val_count; i++) {
6560ffd1 2561 unsigned int ival;
f01ee60f 2562 ret = regmap_read(map, reg + (i * map->reg_stride),
25061d28 2563 &ival);
de2d808f
MB
2564 if (ret != 0)
2565 return ret;
d5b98eb1
MB
2566
2567 if (map->format.format_val) {
2568 map->format.format_val(val + (i * val_bytes), ival, 0);
2569 } else {
2570 /* Devices providing read and write
2571 * operations can use the bulk I/O
2572 * functions if they define a val_bytes,
2573 * we assume that the values are native
2574 * endian.
2575 */
19c04788 2576#ifdef CONFIG_64BIT
afcc00b9 2577 u64 *u64 = val;
19c04788 2578#endif
d5b98eb1
MB
2579 u32 *u32 = val;
2580 u16 *u16 = val;
2581 u8 *u8 = val;
2582
2583 switch (map->format.val_bytes) {
afcc00b9
XL
2584#ifdef CONFIG_64BIT
2585 case 8:
2586 u64[i] = ival;
2587 break;
2588#endif
d5b98eb1
MB
2589 case 4:
2590 u32[i] = ival;
2591 break;
2592 case 2:
2593 u16[i] = ival;
2594 break;
2595 case 1:
2596 u8[i] = ival;
2597 break;
2598 default:
2599 return -EINVAL;
2600 }
2601 }
de2d808f
MB
2602 }
2603 }
b83a313b
MB
2604
2605 return 0;
2606}
2607EXPORT_SYMBOL_GPL(regmap_bulk_read);
2608
018690d3
MB
2609static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2610 unsigned int mask, unsigned int val,
7ff0589c 2611 bool *change, bool force_write)
b83a313b
MB
2612{
2613 int ret;
d91e8db2 2614 unsigned int tmp, orig;
b83a313b 2615
77792b11
JR
2616 if (change)
2617 *change = false;
b83a313b 2618
77792b11
JR
2619 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2620 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2621 if (ret == 0 && change)
e2f74dc6 2622 *change = true;
018690d3 2623 } else {
77792b11
JR
2624 ret = _regmap_read(map, reg, &orig);
2625 if (ret != 0)
2626 return ret;
2627
2628 tmp = orig & ~mask;
2629 tmp |= val & mask;
2630
2631 if (force_write || (tmp != orig)) {
2632 ret = _regmap_write(map, reg, tmp);
2633 if (ret == 0 && change)
2634 *change = true;
2635 }
018690d3 2636 }
b83a313b 2637
b83a313b
MB
2638 return ret;
2639}
018690d3 2640
91d31b9f
KM
2641/**
2642 * regmap_update_bits_base:
2643 * Perform a read/modify/write cycle on the
2644 * register map with change, async, force option
2645 *
2646 * @map: Register map to update
2647 * @reg: Register to update
2648 * @mask: Bitmask to change
2649 * @val: New value for bitmask
2650 * @change: Boolean indicating if a write was done
2651 * @async: Boolean indicating asynchronously
2652 * @force: Boolean indicating use force update
2653 *
2654 * if async was true,
2655 * With most buses the read must be done synchronously so this is most
2656 * useful for devices with a cache which do not need to interact with
2657 * the hardware to determine the current register value.
2658 *
2659 * Returns zero for success, a negative number on error.
2660 */
2661int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2662 unsigned int mask, unsigned int val,
2663 bool *change, bool async, bool force)
2664{
2665 int ret;
2666
2667 map->lock(map->lock_arg);
2668
2669 map->async = async;
2670
2671 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2672
2673 map->async = false;
2674
2675 map->unlock(map->lock_arg);
2676
2677 return ret;
2678}
2679EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2680
fd4b7286
KM
2681/**
2682 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2683 *
2684 * @map: Register map to update
2685 * @reg: Register to update
2686 * @mask: Bitmask to change
2687 * @val: New value for bitmask
2688 *
2689 * Returns zero for success, a negative number on error.
2690 */
2691int regmap_write_bits(struct regmap *map, unsigned int reg,
2692 unsigned int mask, unsigned int val)
2693{
2694 int ret;
2695
2696 map->lock(map->lock_arg);
2697 ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2698 map->unlock(map->lock_arg);
2699
2700 return ret;
2701}
2702EXPORT_SYMBOL_GPL(regmap_write_bits);
2703
0d509f2b
MB
2704void regmap_async_complete_cb(struct regmap_async *async, int ret)
2705{
2706 struct regmap *map = async->map;
2707 bool wake;
2708
c6b570d9 2709 trace_regmap_async_io_complete(map);
fe7d4ccd 2710
0d509f2b 2711 spin_lock(&map->async_lock);
7e09a979 2712 list_move(&async->list, &map->async_free);
0d509f2b
MB
2713 wake = list_empty(&map->async_list);
2714
2715 if (ret != 0)
2716 map->async_ret = ret;
2717
2718 spin_unlock(&map->async_lock);
2719
0d509f2b
MB
2720 if (wake)
2721 wake_up(&map->async_waitq);
2722}
f804fb56 2723EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
2724
2725static int regmap_async_is_done(struct regmap *map)
2726{
2727 unsigned long flags;
2728 int ret;
2729
2730 spin_lock_irqsave(&map->async_lock, flags);
2731 ret = list_empty(&map->async_list);
2732 spin_unlock_irqrestore(&map->async_lock, flags);
2733
2734 return ret;
2735}
2736
2737/**
2738 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2739 *
2740 * @map: Map to operate on.
2741 *
2742 * Blocks until any pending asynchronous I/O has completed. Returns
2743 * an error code for any failed I/O operations.
2744 */
2745int regmap_async_complete(struct regmap *map)
2746{
2747 unsigned long flags;
2748 int ret;
2749
2750 /* Nothing to do with no async support */
f2e055e7 2751 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
2752 return 0;
2753
c6b570d9 2754 trace_regmap_async_complete_start(map);
fe7d4ccd 2755
0d509f2b
MB
2756 wait_event(map->async_waitq, regmap_async_is_done(map));
2757
2758 spin_lock_irqsave(&map->async_lock, flags);
2759 ret = map->async_ret;
2760 map->async_ret = 0;
2761 spin_unlock_irqrestore(&map->async_lock, flags);
2762
c6b570d9 2763 trace_regmap_async_complete_done(map);
fe7d4ccd 2764
0d509f2b
MB
2765 return ret;
2766}
f88948ef 2767EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 2768
22f0d90a
MB
2769/**
2770 * regmap_register_patch: Register and apply register updates to be applied
2771 * on device initialistion
2772 *
2773 * @map: Register map to apply updates to.
2774 * @regs: Values to update.
2775 * @num_regs: Number of entries in regs.
2776 *
2777 * Register a set of register updates to be applied to the device
2778 * whenever the device registers are synchronised with the cache and
2779 * apply them immediately. Typically this is used to apply
2780 * corrections to be applied to the device defaults on startup, such
2781 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
2782 *
2783 * The caller must ensure that this function cannot be called
2784 * concurrently with either itself or regcache_sync().
22f0d90a 2785 */
8019ff6c 2786int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
2787 int num_regs)
2788{
8019ff6c 2789 struct reg_sequence *p;
6bf13103 2790 int ret;
22f0d90a
MB
2791 bool bypass;
2792
bd60e381
CZ
2793 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2794 num_regs))
2795 return 0;
2796
aab13ebc 2797 p = krealloc(map->patch,
8019ff6c 2798 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
2799 GFP_KERNEL);
2800 if (p) {
2801 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2802 map->patch = p;
2803 map->patch_regs += num_regs;
22f0d90a 2804 } else {
56fb1c74 2805 return -ENOMEM;
22f0d90a
MB
2806 }
2807
0d4529c5 2808 map->lock(map->lock_arg);
22f0d90a
MB
2809
2810 bypass = map->cache_bypass;
2811
2812 map->cache_bypass = true;
1a25f261 2813 map->async = true;
22f0d90a 2814
6bf13103 2815 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 2816
1a25f261 2817 map->async = false;
22f0d90a
MB
2818 map->cache_bypass = bypass;
2819
0d4529c5 2820 map->unlock(map->lock_arg);
22f0d90a 2821
1a25f261
MB
2822 regmap_async_complete(map);
2823
22f0d90a
MB
2824 return ret;
2825}
2826EXPORT_SYMBOL_GPL(regmap_register_patch);
2827
eae4b51b 2828/*
a6539c32
MB
2829 * regmap_get_val_bytes(): Report the size of a register value
2830 *
2831 * Report the size of a register value, mainly intended to for use by
2832 * generic infrastructure built on top of regmap.
2833 */
2834int regmap_get_val_bytes(struct regmap *map)
2835{
2836 if (map->format.format_write)
2837 return -EINVAL;
2838
2839 return map->format.val_bytes;
2840}
2841EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2842
668abc72
SK
2843/**
2844 * regmap_get_max_register(): Report the max register value
2845 *
2846 * Report the max register value, mainly intended to for use by
2847 * generic infrastructure built on top of regmap.
2848 */
2849int regmap_get_max_register(struct regmap *map)
2850{
2851 return map->max_register ? map->max_register : -EINVAL;
2852}
2853EXPORT_SYMBOL_GPL(regmap_get_max_register);
2854
a2f776cb
SK
2855/**
2856 * regmap_get_reg_stride(): Report the register address stride
2857 *
2858 * Report the register address stride, mainly intended to for use by
2859 * generic infrastructure built on top of regmap.
2860 */
2861int regmap_get_reg_stride(struct regmap *map)
2862{
2863 return map->reg_stride;
2864}
2865EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2866
13ff50c8
NC
2867int regmap_parse_val(struct regmap *map, const void *buf,
2868 unsigned int *val)
2869{
2870 if (!map->format.parse_val)
2871 return -EINVAL;
2872
2873 *val = map->format.parse_val(buf);
2874
2875 return 0;
2876}
2877EXPORT_SYMBOL_GPL(regmap_parse_val);
2878
31244e39
MB
2879static int __init regmap_initcall(void)
2880{
2881 regmap_debugfs_initcall();
2882
2883 return 0;
2884}
2885postcore_initcall(regmap_initcall);
This page took 0.434856 seconds and 5 git commands to generate.