regmap: Fix leftover from struct reg_default to struct reg_sequence change
[deliverable/linux.git] / drivers / base / regmap / regmap.c
CommitLineData
b83a313b
MB
1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
f5d6eba7 13#include <linux/device.h>
b83a313b 14#include <linux/slab.h>
19694b5e 15#include <linux/export.h>
b83a313b
MB
16#include <linux/mutex.h>
17#include <linux/err.h>
d647c199 18#include <linux/of.h>
6863ca62 19#include <linux/rbtree.h>
30b2a553 20#include <linux/sched.h>
2de9d600 21#include <linux/delay.h>
b83a313b 22
fb2736bb 23#define CREATE_TRACE_POINTS
f58078da 24#include "trace.h"
fb2736bb 25
93de9124 26#include "internal.h"
b83a313b 27
1044c180
MB
28/*
29 * Sometimes for failures during very early init the trace
30 * infrastructure isn't available early enough to be used. For this
31 * sort of problem defining LOG_DEVICE will add printks for basic
32 * register I/O on a specific device.
33 */
34#undef LOG_DEVICE
35
36static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37 unsigned int mask, unsigned int val,
7ff0589c 38 bool *change, bool force_write);
1044c180 39
3ac17037
BB
40static int _regmap_bus_reg_read(void *context, unsigned int reg,
41 unsigned int *val);
ad278406
AS
42static int _regmap_bus_read(void *context, unsigned int reg,
43 unsigned int *val);
07c320dc
AS
44static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45 unsigned int val);
3ac17037
BB
46static int _regmap_bus_reg_write(void *context, unsigned int reg,
47 unsigned int val);
07c320dc
AS
48static int _regmap_bus_raw_write(void *context, unsigned int reg,
49 unsigned int val);
ad278406 50
76aad392
DC
51bool regmap_reg_in_ranges(unsigned int reg,
52 const struct regmap_range *ranges,
53 unsigned int nranges)
54{
55 const struct regmap_range *r;
56 int i;
57
58 for (i = 0, r = ranges; i < nranges; i++, r++)
59 if (regmap_reg_in_range(reg, r))
60 return true;
61 return false;
62}
63EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
154881e5
MB
65bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66 const struct regmap_access_table *table)
76aad392
DC
67{
68 /* Check "no ranges" first */
69 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70 return false;
71
72 /* In case zero "yes ranges" are supplied, any reg is OK */
73 if (!table->n_yes_ranges)
74 return true;
75
76 return regmap_reg_in_ranges(reg, table->yes_ranges,
77 table->n_yes_ranges);
78}
154881e5 79EXPORT_SYMBOL_GPL(regmap_check_range_table);
76aad392 80
8de2f081
MB
81bool regmap_writeable(struct regmap *map, unsigned int reg)
82{
83 if (map->max_register && reg > map->max_register)
84 return false;
85
86 if (map->writeable_reg)
87 return map->writeable_reg(map->dev, reg);
88
76aad392 89 if (map->wr_table)
154881e5 90 return regmap_check_range_table(map, reg, map->wr_table);
76aad392 91
8de2f081
MB
92 return true;
93}
94
95bool regmap_readable(struct regmap *map, unsigned int reg)
96{
04dc91ce
LPC
97 if (!map->reg_read)
98 return false;
99
8de2f081
MB
100 if (map->max_register && reg > map->max_register)
101 return false;
102
4191f197
WS
103 if (map->format.format_write)
104 return false;
105
8de2f081
MB
106 if (map->readable_reg)
107 return map->readable_reg(map->dev, reg);
108
76aad392 109 if (map->rd_table)
154881e5 110 return regmap_check_range_table(map, reg, map->rd_table);
76aad392 111
8de2f081
MB
112 return true;
113}
114
115bool regmap_volatile(struct regmap *map, unsigned int reg)
116{
5844a8b9 117 if (!map->format.format_write && !regmap_readable(map, reg))
8de2f081
MB
118 return false;
119
120 if (map->volatile_reg)
121 return map->volatile_reg(map->dev, reg);
122
76aad392 123 if (map->volatile_table)
154881e5 124 return regmap_check_range_table(map, reg, map->volatile_table);
76aad392 125
b92be6fe
MB
126 if (map->cache_ops)
127 return false;
128 else
129 return true;
8de2f081
MB
130}
131
132bool regmap_precious(struct regmap *map, unsigned int reg)
133{
4191f197 134 if (!regmap_readable(map, reg))
8de2f081
MB
135 return false;
136
137 if (map->precious_reg)
138 return map->precious_reg(map->dev, reg);
139
76aad392 140 if (map->precious_table)
154881e5 141 return regmap_check_range_table(map, reg, map->precious_table);
76aad392 142
8de2f081
MB
143 return false;
144}
145
82cd9965 146static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
a8f28cfa 147 size_t num)
82cd9965
LPC
148{
149 unsigned int i;
150
151 for (i = 0; i < num; i++)
152 if (!regmap_volatile(map, reg + i))
153 return false;
154
155 return true;
156}
157
9aa50750
WS
158static void regmap_format_2_6_write(struct regmap *map,
159 unsigned int reg, unsigned int val)
160{
161 u8 *out = map->work_buf;
162
163 *out = (reg << 6) | val;
164}
165
b83a313b
MB
166static void regmap_format_4_12_write(struct regmap *map,
167 unsigned int reg, unsigned int val)
168{
169 __be16 *out = map->work_buf;
170 *out = cpu_to_be16((reg << 12) | val);
171}
172
173static void regmap_format_7_9_write(struct regmap *map,
174 unsigned int reg, unsigned int val)
175{
176 __be16 *out = map->work_buf;
177 *out = cpu_to_be16((reg << 9) | val);
178}
179
7e5ec63e
LPC
180static void regmap_format_10_14_write(struct regmap *map,
181 unsigned int reg, unsigned int val)
182{
183 u8 *out = map->work_buf;
184
185 out[2] = val;
186 out[1] = (val >> 8) | (reg << 6);
187 out[0] = reg >> 2;
188}
189
d939fb9a 190static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
191{
192 u8 *b = buf;
193
d939fb9a 194 b[0] = val << shift;
b83a313b
MB
195}
196
141eba2e 197static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
b83a313b
MB
198{
199 __be16 *b = buf;
200
d939fb9a 201 b[0] = cpu_to_be16(val << shift);
b83a313b
MB
202}
203
4aa8c069
XL
204static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205{
206 __le16 *b = buf;
207
208 b[0] = cpu_to_le16(val << shift);
209}
210
141eba2e
SW
211static void regmap_format_16_native(void *buf, unsigned int val,
212 unsigned int shift)
213{
214 *(u16 *)buf = val << shift;
215}
216
d939fb9a 217static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
ea279fc5
MR
218{
219 u8 *b = buf;
220
d939fb9a
MR
221 val <<= shift;
222
ea279fc5
MR
223 b[0] = val >> 16;
224 b[1] = val >> 8;
225 b[2] = val;
226}
227
141eba2e 228static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
7d5e525b
MB
229{
230 __be32 *b = buf;
231
d939fb9a 232 b[0] = cpu_to_be32(val << shift);
7d5e525b
MB
233}
234
4aa8c069
XL
235static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236{
237 __le32 *b = buf;
238
239 b[0] = cpu_to_le32(val << shift);
240}
241
141eba2e
SW
242static void regmap_format_32_native(void *buf, unsigned int val,
243 unsigned int shift)
244{
245 *(u32 *)buf = val << shift;
246}
247
8a819ff8 248static void regmap_parse_inplace_noop(void *buf)
b83a313b 249{
8a819ff8
MB
250}
251
252static unsigned int regmap_parse_8(const void *buf)
253{
254 const u8 *b = buf;
b83a313b
MB
255
256 return b[0];
257}
258
8a819ff8
MB
259static unsigned int regmap_parse_16_be(const void *buf)
260{
261 const __be16 *b = buf;
262
263 return be16_to_cpu(b[0]);
264}
265
4aa8c069
XL
266static unsigned int regmap_parse_16_le(const void *buf)
267{
268 const __le16 *b = buf;
269
270 return le16_to_cpu(b[0]);
271}
272
8a819ff8 273static void regmap_parse_16_be_inplace(void *buf)
b83a313b
MB
274{
275 __be16 *b = buf;
276
277 b[0] = be16_to_cpu(b[0]);
b83a313b
MB
278}
279
4aa8c069
XL
280static void regmap_parse_16_le_inplace(void *buf)
281{
282 __le16 *b = buf;
283
284 b[0] = le16_to_cpu(b[0]);
285}
286
8a819ff8 287static unsigned int regmap_parse_16_native(const void *buf)
141eba2e
SW
288{
289 return *(u16 *)buf;
290}
291
8a819ff8 292static unsigned int regmap_parse_24(const void *buf)
ea279fc5 293{
8a819ff8 294 const u8 *b = buf;
ea279fc5
MR
295 unsigned int ret = b[2];
296 ret |= ((unsigned int)b[1]) << 8;
297 ret |= ((unsigned int)b[0]) << 16;
298
299 return ret;
300}
301
8a819ff8
MB
302static unsigned int regmap_parse_32_be(const void *buf)
303{
304 const __be32 *b = buf;
305
306 return be32_to_cpu(b[0]);
307}
308
4aa8c069
XL
309static unsigned int regmap_parse_32_le(const void *buf)
310{
311 const __le32 *b = buf;
312
313 return le32_to_cpu(b[0]);
314}
315
8a819ff8 316static void regmap_parse_32_be_inplace(void *buf)
7d5e525b
MB
317{
318 __be32 *b = buf;
319
320 b[0] = be32_to_cpu(b[0]);
7d5e525b
MB
321}
322
4aa8c069
XL
323static void regmap_parse_32_le_inplace(void *buf)
324{
325 __le32 *b = buf;
326
327 b[0] = le32_to_cpu(b[0]);
328}
329
8a819ff8 330static unsigned int regmap_parse_32_native(const void *buf)
141eba2e
SW
331{
332 return *(u32 *)buf;
333}
334
0d4529c5 335static void regmap_lock_mutex(void *__map)
bacdbe07 336{
0d4529c5 337 struct regmap *map = __map;
bacdbe07
SW
338 mutex_lock(&map->mutex);
339}
340
0d4529c5 341static void regmap_unlock_mutex(void *__map)
bacdbe07 342{
0d4529c5 343 struct regmap *map = __map;
bacdbe07
SW
344 mutex_unlock(&map->mutex);
345}
346
0d4529c5 347static void regmap_lock_spinlock(void *__map)
b4519c71 348__acquires(&map->spinlock)
bacdbe07 349{
0d4529c5 350 struct regmap *map = __map;
92ab1aab
LPC
351 unsigned long flags;
352
353 spin_lock_irqsave(&map->spinlock, flags);
354 map->spinlock_flags = flags;
bacdbe07
SW
355}
356
0d4529c5 357static void regmap_unlock_spinlock(void *__map)
b4519c71 358__releases(&map->spinlock)
bacdbe07 359{
0d4529c5 360 struct regmap *map = __map;
92ab1aab 361 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
bacdbe07
SW
362}
363
72b39f6f
MB
364static void dev_get_regmap_release(struct device *dev, void *res)
365{
366 /*
367 * We don't actually have anything to do here; the goal here
368 * is not to manage the regmap but to provide a simple way to
369 * get the regmap back given a struct device.
370 */
371}
372
6863ca62
KG
373static bool _regmap_range_add(struct regmap *map,
374 struct regmap_range_node *data)
375{
376 struct rb_root *root = &map->range_tree;
377 struct rb_node **new = &(root->rb_node), *parent = NULL;
378
379 while (*new) {
380 struct regmap_range_node *this =
381 container_of(*new, struct regmap_range_node, node);
382
383 parent = *new;
384 if (data->range_max < this->range_min)
385 new = &((*new)->rb_left);
386 else if (data->range_min > this->range_max)
387 new = &((*new)->rb_right);
388 else
389 return false;
390 }
391
392 rb_link_node(&data->node, parent, new);
393 rb_insert_color(&data->node, root);
394
395 return true;
396}
397
398static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
399 unsigned int reg)
400{
401 struct rb_node *node = map->range_tree.rb_node;
402
403 while (node) {
404 struct regmap_range_node *this =
405 container_of(node, struct regmap_range_node, node);
406
407 if (reg < this->range_min)
408 node = node->rb_left;
409 else if (reg > this->range_max)
410 node = node->rb_right;
411 else
412 return this;
413 }
414
415 return NULL;
416}
417
418static void regmap_range_exit(struct regmap *map)
419{
420 struct rb_node *next;
421 struct regmap_range_node *range_node;
422
423 next = rb_first(&map->range_tree);
424 while (next) {
425 range_node = rb_entry(next, struct regmap_range_node, node);
426 next = rb_next(&range_node->node);
427 rb_erase(&range_node->node, &map->range_tree);
428 kfree(range_node);
429 }
430
431 kfree(map->selector_work_buf);
432}
433
6cfec04b
MS
434int regmap_attach_dev(struct device *dev, struct regmap *map,
435 const struct regmap_config *config)
436{
437 struct regmap **m;
438
439 map->dev = dev;
440
441 regmap_debugfs_init(map, config->name);
442
443 /* Add a devres resource for dev_get_regmap() */
444 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
445 if (!m) {
446 regmap_debugfs_exit(map);
447 return -ENOMEM;
448 }
449 *m = map;
450 devres_add(dev, m);
451
452 return 0;
453}
454EXPORT_SYMBOL_GPL(regmap_attach_dev);
455
cf673fbc
GU
456static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
457 const struct regmap_config *config)
458{
459 enum regmap_endian endian;
460
461 /* Retrieve the endianness specification from the regmap config */
462 endian = config->reg_format_endian;
463
464 /* If the regmap config specified a non-default value, use that */
465 if (endian != REGMAP_ENDIAN_DEFAULT)
466 return endian;
467
468 /* Retrieve the endianness specification from the bus config */
469 if (bus && bus->reg_format_endian_default)
470 endian = bus->reg_format_endian_default;
d647c199 471
cf673fbc
GU
472 /* If the bus specified a non-default value, use that */
473 if (endian != REGMAP_ENDIAN_DEFAULT)
474 return endian;
475
476 /* Use this if no other value was found */
477 return REGMAP_ENDIAN_BIG;
478}
479
3c174d29
GR
480enum regmap_endian regmap_get_val_endian(struct device *dev,
481 const struct regmap_bus *bus,
482 const struct regmap_config *config)
d647c199 483{
6e64b6cc 484 struct device_node *np;
cf673fbc 485 enum regmap_endian endian;
d647c199 486
45e1a279 487 /* Retrieve the endianness specification from the regmap config */
cf673fbc 488 endian = config->val_format_endian;
d647c199 489
45e1a279 490 /* If the regmap config specified a non-default value, use that */
cf673fbc
GU
491 if (endian != REGMAP_ENDIAN_DEFAULT)
492 return endian;
d647c199 493
6e64b6cc
PD
494 /* If the dev and dev->of_node exist try to get endianness from DT */
495 if (dev && dev->of_node) {
496 np = dev->of_node;
d647c199 497
6e64b6cc
PD
498 /* Parse the device's DT node for an endianness specification */
499 if (of_property_read_bool(np, "big-endian"))
500 endian = REGMAP_ENDIAN_BIG;
501 else if (of_property_read_bool(np, "little-endian"))
502 endian = REGMAP_ENDIAN_LITTLE;
503
504 /* If the endianness was specified in DT, use that */
505 if (endian != REGMAP_ENDIAN_DEFAULT)
506 return endian;
507 }
45e1a279
SW
508
509 /* Retrieve the endianness specification from the bus config */
cf673fbc
GU
510 if (bus && bus->val_format_endian_default)
511 endian = bus->val_format_endian_default;
d647c199 512
45e1a279 513 /* If the bus specified a non-default value, use that */
cf673fbc
GU
514 if (endian != REGMAP_ENDIAN_DEFAULT)
515 return endian;
45e1a279
SW
516
517 /* Use this if no other value was found */
cf673fbc 518 return REGMAP_ENDIAN_BIG;
d647c199 519}
3c174d29 520EXPORT_SYMBOL_GPL(regmap_get_val_endian);
d647c199 521
3cfe7a74
NB
522struct regmap *__regmap_init(struct device *dev,
523 const struct regmap_bus *bus,
524 void *bus_context,
525 const struct regmap_config *config,
526 struct lock_class_key *lock_key,
527 const char *lock_name)
b83a313b 528{
6cfec04b 529 struct regmap *map;
b83a313b 530 int ret = -EINVAL;
141eba2e 531 enum regmap_endian reg_endian, val_endian;
6863ca62 532 int i, j;
b83a313b 533
d2a5884a 534 if (!config)
abbb18fb 535 goto err;
b83a313b
MB
536
537 map = kzalloc(sizeof(*map), GFP_KERNEL);
538 if (map == NULL) {
539 ret = -ENOMEM;
540 goto err;
541 }
542
0d4529c5
DC
543 if (config->lock && config->unlock) {
544 map->lock = config->lock;
545 map->unlock = config->unlock;
546 map->lock_arg = config->lock_arg;
bacdbe07 547 } else {
d2a5884a
AS
548 if ((bus && bus->fast_io) ||
549 config->fast_io) {
0d4529c5
DC
550 spin_lock_init(&map->spinlock);
551 map->lock = regmap_lock_spinlock;
552 map->unlock = regmap_unlock_spinlock;
3cfe7a74
NB
553 lockdep_set_class_and_name(&map->spinlock,
554 lock_key, lock_name);
0d4529c5
DC
555 } else {
556 mutex_init(&map->mutex);
557 map->lock = regmap_lock_mutex;
558 map->unlock = regmap_unlock_mutex;
3cfe7a74
NB
559 lockdep_set_class_and_name(&map->mutex,
560 lock_key, lock_name);
0d4529c5
DC
561 }
562 map->lock_arg = map;
bacdbe07 563 }
b4a21fc2
SB
564
565 /*
566 * When we write in fast-paths with regmap_bulk_write() don't allocate
567 * scratch buffers with sleeping allocations.
568 */
569 if ((bus && bus->fast_io) || config->fast_io)
570 map->alloc_flags = GFP_ATOMIC;
571 else
572 map->alloc_flags = GFP_KERNEL;
573
c212accc 574 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
82159ba8 575 map->format.pad_bytes = config->pad_bits / 8;
c212accc 576 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
5494a98f
FE
577 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
578 config->val_bits + config->pad_bits, 8);
d939fb9a 579 map->reg_shift = config->pad_bits % 8;
f01ee60f
SW
580 if (config->reg_stride)
581 map->reg_stride = config->reg_stride;
582 else
583 map->reg_stride = 1;
67921a1a
MP
584 map->use_single_read = config->use_single_rw || !bus || !bus->read;
585 map->use_single_write = config->use_single_rw || !bus || !bus->write;
9c9f7f67 586 map->can_multi_write = config->can_multi_write && bus && bus->write;
17649c90
SS
587 if (bus) {
588 map->max_raw_read = bus->max_raw_read;
589 map->max_raw_write = bus->max_raw_write;
590 }
b83a313b
MB
591 map->dev = dev;
592 map->bus = bus;
0135bbcc 593 map->bus_context = bus_context;
2e2ae66d 594 map->max_register = config->max_register;
76aad392
DC
595 map->wr_table = config->wr_table;
596 map->rd_table = config->rd_table;
597 map->volatile_table = config->volatile_table;
598 map->precious_table = config->precious_table;
2e2ae66d
MB
599 map->writeable_reg = config->writeable_reg;
600 map->readable_reg = config->readable_reg;
601 map->volatile_reg = config->volatile_reg;
2efe1642 602 map->precious_reg = config->precious_reg;
5d1729e7 603 map->cache_type = config->cache_type;
72b39f6f 604 map->name = config->name;
b83a313b 605
0d509f2b
MB
606 spin_lock_init(&map->async_lock);
607 INIT_LIST_HEAD(&map->async_list);
7e09a979 608 INIT_LIST_HEAD(&map->async_free);
0d509f2b
MB
609 init_waitqueue_head(&map->async_waitq);
610
6f306441
LPC
611 if (config->read_flag_mask || config->write_flag_mask) {
612 map->read_flag_mask = config->read_flag_mask;
613 map->write_flag_mask = config->write_flag_mask;
d2a5884a 614 } else if (bus) {
6f306441
LPC
615 map->read_flag_mask = bus->read_flag_mask;
616 }
617
d2a5884a
AS
618 if (!bus) {
619 map->reg_read = config->reg_read;
620 map->reg_write = config->reg_write;
621
3ac17037
BB
622 map->defer_caching = false;
623 goto skip_format_initialization;
624 } else if (!bus->read || !bus->write) {
625 map->reg_read = _regmap_bus_reg_read;
626 map->reg_write = _regmap_bus_reg_write;
627
d2a5884a
AS
628 map->defer_caching = false;
629 goto skip_format_initialization;
630 } else {
631 map->reg_read = _regmap_bus_read;
77792b11 632 map->reg_update_bits = bus->reg_update_bits;
d2a5884a 633 }
ad278406 634
cf673fbc
GU
635 reg_endian = regmap_get_reg_endian(bus, config);
636 val_endian = regmap_get_val_endian(dev, bus, config);
141eba2e 637
d939fb9a 638 switch (config->reg_bits + map->reg_shift) {
9aa50750
WS
639 case 2:
640 switch (config->val_bits) {
641 case 6:
642 map->format.format_write = regmap_format_2_6_write;
643 break;
644 default:
645 goto err_map;
646 }
647 break;
648
b83a313b
MB
649 case 4:
650 switch (config->val_bits) {
651 case 12:
652 map->format.format_write = regmap_format_4_12_write;
653 break;
654 default:
655 goto err_map;
656 }
657 break;
658
659 case 7:
660 switch (config->val_bits) {
661 case 9:
662 map->format.format_write = regmap_format_7_9_write;
663 break;
664 default:
665 goto err_map;
666 }
667 break;
668
7e5ec63e
LPC
669 case 10:
670 switch (config->val_bits) {
671 case 14:
672 map->format.format_write = regmap_format_10_14_write;
673 break;
674 default:
675 goto err_map;
676 }
677 break;
678
b83a313b
MB
679 case 8:
680 map->format.format_reg = regmap_format_8;
681 break;
682
683 case 16:
141eba2e
SW
684 switch (reg_endian) {
685 case REGMAP_ENDIAN_BIG:
686 map->format.format_reg = regmap_format_16_be;
687 break;
688 case REGMAP_ENDIAN_NATIVE:
689 map->format.format_reg = regmap_format_16_native;
690 break;
691 default:
692 goto err_map;
693 }
b83a313b
MB
694 break;
695
237019e7
LPC
696 case 24:
697 if (reg_endian != REGMAP_ENDIAN_BIG)
698 goto err_map;
699 map->format.format_reg = regmap_format_24;
700 break;
701
7d5e525b 702 case 32:
141eba2e
SW
703 switch (reg_endian) {
704 case REGMAP_ENDIAN_BIG:
705 map->format.format_reg = regmap_format_32_be;
706 break;
707 case REGMAP_ENDIAN_NATIVE:
708 map->format.format_reg = regmap_format_32_native;
709 break;
710 default:
711 goto err_map;
712 }
7d5e525b
MB
713 break;
714
b83a313b
MB
715 default:
716 goto err_map;
717 }
718
8a819ff8
MB
719 if (val_endian == REGMAP_ENDIAN_NATIVE)
720 map->format.parse_inplace = regmap_parse_inplace_noop;
721
b83a313b
MB
722 switch (config->val_bits) {
723 case 8:
724 map->format.format_val = regmap_format_8;
725 map->format.parse_val = regmap_parse_8;
8a819ff8 726 map->format.parse_inplace = regmap_parse_inplace_noop;
b83a313b
MB
727 break;
728 case 16:
141eba2e
SW
729 switch (val_endian) {
730 case REGMAP_ENDIAN_BIG:
731 map->format.format_val = regmap_format_16_be;
732 map->format.parse_val = regmap_parse_16_be;
8a819ff8 733 map->format.parse_inplace = regmap_parse_16_be_inplace;
141eba2e 734 break;
4aa8c069
XL
735 case REGMAP_ENDIAN_LITTLE:
736 map->format.format_val = regmap_format_16_le;
737 map->format.parse_val = regmap_parse_16_le;
738 map->format.parse_inplace = regmap_parse_16_le_inplace;
739 break;
141eba2e
SW
740 case REGMAP_ENDIAN_NATIVE:
741 map->format.format_val = regmap_format_16_native;
742 map->format.parse_val = regmap_parse_16_native;
743 break;
744 default:
745 goto err_map;
746 }
b83a313b 747 break;
ea279fc5 748 case 24:
141eba2e
SW
749 if (val_endian != REGMAP_ENDIAN_BIG)
750 goto err_map;
ea279fc5
MR
751 map->format.format_val = regmap_format_24;
752 map->format.parse_val = regmap_parse_24;
753 break;
7d5e525b 754 case 32:
141eba2e
SW
755 switch (val_endian) {
756 case REGMAP_ENDIAN_BIG:
757 map->format.format_val = regmap_format_32_be;
758 map->format.parse_val = regmap_parse_32_be;
8a819ff8 759 map->format.parse_inplace = regmap_parse_32_be_inplace;
141eba2e 760 break;
4aa8c069
XL
761 case REGMAP_ENDIAN_LITTLE:
762 map->format.format_val = regmap_format_32_le;
763 map->format.parse_val = regmap_parse_32_le;
764 map->format.parse_inplace = regmap_parse_32_le_inplace;
765 break;
141eba2e
SW
766 case REGMAP_ENDIAN_NATIVE:
767 map->format.format_val = regmap_format_32_native;
768 map->format.parse_val = regmap_parse_32_native;
769 break;
770 default:
771 goto err_map;
772 }
7d5e525b 773 break;
b83a313b
MB
774 }
775
141eba2e
SW
776 if (map->format.format_write) {
777 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
778 (val_endian != REGMAP_ENDIAN_BIG))
779 goto err_map;
67921a1a 780 map->use_single_write = true;
141eba2e 781 }
7a647614 782
b83a313b
MB
783 if (!map->format.format_write &&
784 !(map->format.format_reg && map->format.format_val))
785 goto err_map;
786
82159ba8 787 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
b83a313b
MB
788 if (map->work_buf == NULL) {
789 ret = -ENOMEM;
5204f5e3 790 goto err_map;
b83a313b
MB
791 }
792
d2a5884a
AS
793 if (map->format.format_write) {
794 map->defer_caching = false;
07c320dc 795 map->reg_write = _regmap_bus_formatted_write;
d2a5884a
AS
796 } else if (map->format.format_val) {
797 map->defer_caching = true;
07c320dc 798 map->reg_write = _regmap_bus_raw_write;
d2a5884a
AS
799 }
800
801skip_format_initialization:
07c320dc 802
6863ca62 803 map->range_tree = RB_ROOT;
e3549cd0 804 for (i = 0; i < config->num_ranges; i++) {
6863ca62
KG
805 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
806 struct regmap_range_node *new;
807
808 /* Sanity check */
061adc06
MB
809 if (range_cfg->range_max < range_cfg->range_min) {
810 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
811 range_cfg->range_max, range_cfg->range_min);
6863ca62 812 goto err_range;
061adc06
MB
813 }
814
815 if (range_cfg->range_max > map->max_register) {
816 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
817 range_cfg->range_max, map->max_register);
818 goto err_range;
819 }
820
821 if (range_cfg->selector_reg > map->max_register) {
822 dev_err(map->dev,
823 "Invalid range %d: selector out of map\n", i);
824 goto err_range;
825 }
826
827 if (range_cfg->window_len == 0) {
828 dev_err(map->dev, "Invalid range %d: window_len 0\n",
829 i);
830 goto err_range;
831 }
6863ca62
KG
832
833 /* Make sure, that this register range has no selector
834 or data window within its boundary */
e3549cd0 835 for (j = 0; j < config->num_ranges; j++) {
6863ca62
KG
836 unsigned sel_reg = config->ranges[j].selector_reg;
837 unsigned win_min = config->ranges[j].window_start;
838 unsigned win_max = win_min +
839 config->ranges[j].window_len - 1;
840
f161d220
PZ
841 /* Allow data window inside its own virtual range */
842 if (j == i)
843 continue;
844
6863ca62
KG
845 if (range_cfg->range_min <= sel_reg &&
846 sel_reg <= range_cfg->range_max) {
061adc06
MB
847 dev_err(map->dev,
848 "Range %d: selector for %d in window\n",
849 i, j);
6863ca62
KG
850 goto err_range;
851 }
852
853 if (!(win_max < range_cfg->range_min ||
854 win_min > range_cfg->range_max)) {
061adc06
MB
855 dev_err(map->dev,
856 "Range %d: window for %d in window\n",
857 i, j);
6863ca62
KG
858 goto err_range;
859 }
860 }
861
862 new = kzalloc(sizeof(*new), GFP_KERNEL);
863 if (new == NULL) {
864 ret = -ENOMEM;
865 goto err_range;
866 }
867
4b020b3f 868 new->map = map;
d058bb49 869 new->name = range_cfg->name;
6863ca62
KG
870 new->range_min = range_cfg->range_min;
871 new->range_max = range_cfg->range_max;
872 new->selector_reg = range_cfg->selector_reg;
873 new->selector_mask = range_cfg->selector_mask;
874 new->selector_shift = range_cfg->selector_shift;
875 new->window_start = range_cfg->window_start;
876 new->window_len = range_cfg->window_len;
877
53e87f88 878 if (!_regmap_range_add(map, new)) {
061adc06 879 dev_err(map->dev, "Failed to add range %d\n", i);
6863ca62
KG
880 kfree(new);
881 goto err_range;
882 }
883
884 if (map->selector_work_buf == NULL) {
885 map->selector_work_buf =
886 kzalloc(map->format.buf_size, GFP_KERNEL);
887 if (map->selector_work_buf == NULL) {
888 ret = -ENOMEM;
889 goto err_range;
890 }
891 }
892 }
052d2cd1 893
e5e3b8ab 894 ret = regcache_init(map, config);
0ff3e62f 895 if (ret != 0)
6863ca62
KG
896 goto err_range;
897
a7a037c8 898 if (dev) {
6cfec04b
MS
899 ret = regmap_attach_dev(dev, map, config);
900 if (ret != 0)
901 goto err_regcache;
a7a037c8 902 }
72b39f6f 903
b83a313b
MB
904 return map;
905
6cfec04b 906err_regcache:
72b39f6f 907 regcache_exit(map);
6863ca62
KG
908err_range:
909 regmap_range_exit(map);
58072cbf 910 kfree(map->work_buf);
b83a313b
MB
911err_map:
912 kfree(map);
913err:
914 return ERR_PTR(ret);
915}
3cfe7a74 916EXPORT_SYMBOL_GPL(__regmap_init);
b83a313b 917
c0eb4676
MB
918static void devm_regmap_release(struct device *dev, void *res)
919{
920 regmap_exit(*(struct regmap **)res);
921}
922
3cfe7a74
NB
923struct regmap *__devm_regmap_init(struct device *dev,
924 const struct regmap_bus *bus,
925 void *bus_context,
926 const struct regmap_config *config,
927 struct lock_class_key *lock_key,
928 const char *lock_name)
c0eb4676
MB
929{
930 struct regmap **ptr, *regmap;
931
932 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
933 if (!ptr)
934 return ERR_PTR(-ENOMEM);
935
3cfe7a74
NB
936 regmap = __regmap_init(dev, bus, bus_context, config,
937 lock_key, lock_name);
c0eb4676
MB
938 if (!IS_ERR(regmap)) {
939 *ptr = regmap;
940 devres_add(dev, ptr);
941 } else {
942 devres_free(ptr);
943 }
944
945 return regmap;
946}
3cfe7a74 947EXPORT_SYMBOL_GPL(__devm_regmap_init);
c0eb4676 948
67252287
SK
949static void regmap_field_init(struct regmap_field *rm_field,
950 struct regmap *regmap, struct reg_field reg_field)
951{
67252287
SK
952 rm_field->regmap = regmap;
953 rm_field->reg = reg_field.reg;
954 rm_field->shift = reg_field.lsb;
921cc294 955 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
a0102375
KM
956 rm_field->id_size = reg_field.id_size;
957 rm_field->id_offset = reg_field.id_offset;
67252287
SK
958}
959
960/**
961 * devm_regmap_field_alloc(): Allocate and initialise a register field
962 * in a register map.
963 *
964 * @dev: Device that will be interacted with
965 * @regmap: regmap bank in which this register field is located.
966 * @reg_field: Register field with in the bank.
967 *
968 * The return value will be an ERR_PTR() on error or a valid pointer
969 * to a struct regmap_field. The regmap_field will be automatically freed
970 * by the device management code.
971 */
972struct regmap_field *devm_regmap_field_alloc(struct device *dev,
973 struct regmap *regmap, struct reg_field reg_field)
974{
975 struct regmap_field *rm_field = devm_kzalloc(dev,
976 sizeof(*rm_field), GFP_KERNEL);
977 if (!rm_field)
978 return ERR_PTR(-ENOMEM);
979
980 regmap_field_init(rm_field, regmap, reg_field);
981
982 return rm_field;
983
984}
985EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
986
987/**
988 * devm_regmap_field_free(): Free register field allocated using
989 * devm_regmap_field_alloc. Usally drivers need not call this function,
990 * as the memory allocated via devm will be freed as per device-driver
991 * life-cyle.
992 *
993 * @dev: Device that will be interacted with
994 * @field: regmap field which should be freed.
995 */
996void devm_regmap_field_free(struct device *dev,
997 struct regmap_field *field)
998{
999 devm_kfree(dev, field);
1000}
1001EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1002
1003/**
1004 * regmap_field_alloc(): Allocate and initialise a register field
1005 * in a register map.
1006 *
1007 * @regmap: regmap bank in which this register field is located.
1008 * @reg_field: Register field with in the bank.
1009 *
1010 * The return value will be an ERR_PTR() on error or a valid pointer
1011 * to a struct regmap_field. The regmap_field should be freed by the
1012 * user once its finished working with it using regmap_field_free().
1013 */
1014struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1015 struct reg_field reg_field)
1016{
1017 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1018
1019 if (!rm_field)
1020 return ERR_PTR(-ENOMEM);
1021
1022 regmap_field_init(rm_field, regmap, reg_field);
1023
1024 return rm_field;
1025}
1026EXPORT_SYMBOL_GPL(regmap_field_alloc);
1027
1028/**
1029 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1030 *
1031 * @field: regmap field which should be freed.
1032 */
1033void regmap_field_free(struct regmap_field *field)
1034{
1035 kfree(field);
1036}
1037EXPORT_SYMBOL_GPL(regmap_field_free);
1038
bf315173
MB
1039/**
1040 * regmap_reinit_cache(): Reinitialise the current register cache
1041 *
1042 * @map: Register map to operate on.
1043 * @config: New configuration. Only the cache data will be used.
1044 *
1045 * Discard any existing register cache for the map and initialize a
1046 * new cache. This can be used to restore the cache to defaults or to
1047 * update the cache configuration to reflect runtime discovery of the
1048 * hardware.
4d879514
DP
1049 *
1050 * No explicit locking is done here, the user needs to ensure that
1051 * this function will not race with other calls to regmap.
bf315173
MB
1052 */
1053int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1054{
bf315173 1055 regcache_exit(map);
a24f64a6 1056 regmap_debugfs_exit(map);
bf315173
MB
1057
1058 map->max_register = config->max_register;
1059 map->writeable_reg = config->writeable_reg;
1060 map->readable_reg = config->readable_reg;
1061 map->volatile_reg = config->volatile_reg;
1062 map->precious_reg = config->precious_reg;
1063 map->cache_type = config->cache_type;
1064
d3c242e1 1065 regmap_debugfs_init(map, config->name);
a24f64a6 1066
421e8d2d
MB
1067 map->cache_bypass = false;
1068 map->cache_only = false;
1069
4d879514 1070 return regcache_init(map, config);
bf315173 1071}
752a6a5f 1072EXPORT_SYMBOL_GPL(regmap_reinit_cache);
bf315173 1073
b83a313b
MB
1074/**
1075 * regmap_exit(): Free a previously allocated register map
1076 */
1077void regmap_exit(struct regmap *map)
1078{
7e09a979
MB
1079 struct regmap_async *async;
1080
5d1729e7 1081 regcache_exit(map);
31244e39 1082 regmap_debugfs_exit(map);
6863ca62 1083 regmap_range_exit(map);
d2a5884a 1084 if (map->bus && map->bus->free_context)
0135bbcc 1085 map->bus->free_context(map->bus_context);
b83a313b 1086 kfree(map->work_buf);
7e09a979
MB
1087 while (!list_empty(&map->async_free)) {
1088 async = list_first_entry_or_null(&map->async_free,
1089 struct regmap_async,
1090 list);
1091 list_del(&async->list);
1092 kfree(async->work_buf);
1093 kfree(async);
1094 }
b83a313b
MB
1095 kfree(map);
1096}
1097EXPORT_SYMBOL_GPL(regmap_exit);
1098
72b39f6f
MB
1099static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1100{
1101 struct regmap **r = res;
1102 if (!r || !*r) {
1103 WARN_ON(!r || !*r);
1104 return 0;
1105 }
1106
1107 /* If the user didn't specify a name match any */
1108 if (data)
1109 return (*r)->name == data;
1110 else
1111 return 1;
1112}
1113
1114/**
1115 * dev_get_regmap(): Obtain the regmap (if any) for a device
1116 *
1117 * @dev: Device to retrieve the map for
1118 * @name: Optional name for the register map, usually NULL.
1119 *
1120 * Returns the regmap for the device if one is present, or NULL. If
1121 * name is specified then it must match the name specified when
1122 * registering the device, if it is NULL then the first regmap found
1123 * will be used. Devices with multiple register maps are very rare,
1124 * generic code should normally not need to specify a name.
1125 */
1126struct regmap *dev_get_regmap(struct device *dev, const char *name)
1127{
1128 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1129 dev_get_regmap_match, (void *)name);
1130
1131 if (!r)
1132 return NULL;
1133 return *r;
1134}
1135EXPORT_SYMBOL_GPL(dev_get_regmap);
1136
8d7d3972
TT
1137/**
1138 * regmap_get_device(): Obtain the device from a regmap
1139 *
1140 * @map: Register map to operate on.
1141 *
1142 * Returns the underlying device that the regmap has been created for.
1143 */
1144struct device *regmap_get_device(struct regmap *map)
1145{
1146 return map->dev;
1147}
fa2fbe4a 1148EXPORT_SYMBOL_GPL(regmap_get_device);
8d7d3972 1149
6863ca62 1150static int _regmap_select_page(struct regmap *map, unsigned int *reg,
98bc7dfd 1151 struct regmap_range_node *range,
6863ca62
KG
1152 unsigned int val_num)
1153{
6863ca62
KG
1154 void *orig_work_buf;
1155 unsigned int win_offset;
1156 unsigned int win_page;
1157 bool page_chg;
1158 int ret;
1159
98bc7dfd
MB
1160 win_offset = (*reg - range->range_min) % range->window_len;
1161 win_page = (*reg - range->range_min) / range->window_len;
6863ca62 1162
98bc7dfd
MB
1163 if (val_num > 1) {
1164 /* Bulk write shouldn't cross range boundary */
1165 if (*reg + val_num - 1 > range->range_max)
1166 return -EINVAL;
6863ca62 1167
98bc7dfd
MB
1168 /* ... or single page boundary */
1169 if (val_num > range->window_len - win_offset)
1170 return -EINVAL;
1171 }
6863ca62 1172
98bc7dfd
MB
1173 /* It is possible to have selector register inside data window.
1174 In that case, selector register is located on every page and
1175 it needs no page switching, when accessed alone. */
1176 if (val_num > 1 ||
1177 range->window_start + win_offset != range->selector_reg) {
1178 /* Use separate work_buf during page switching */
1179 orig_work_buf = map->work_buf;
1180 map->work_buf = map->selector_work_buf;
6863ca62 1181
98bc7dfd
MB
1182 ret = _regmap_update_bits(map, range->selector_reg,
1183 range->selector_mask,
1184 win_page << range->selector_shift,
7ff0589c 1185 &page_chg, false);
632a5b01 1186
98bc7dfd 1187 map->work_buf = orig_work_buf;
6863ca62 1188
0ff3e62f 1189 if (ret != 0)
98bc7dfd 1190 return ret;
6863ca62
KG
1191 }
1192
98bc7dfd
MB
1193 *reg = range->window_start + win_offset;
1194
6863ca62
KG
1195 return 0;
1196}
1197
584de329 1198int _regmap_raw_write(struct regmap *map, unsigned int reg,
0a819809 1199 const void *val, size_t val_len)
b83a313b 1200{
98bc7dfd 1201 struct regmap_range_node *range;
0d509f2b 1202 unsigned long flags;
6f306441 1203 u8 *u8 = map->work_buf;
0d509f2b
MB
1204 void *work_val = map->work_buf + map->format.reg_bytes +
1205 map->format.pad_bytes;
b83a313b
MB
1206 void *buf;
1207 int ret = -ENOTSUPP;
1208 size_t len;
73304781
MB
1209 int i;
1210
f1b5c5c3 1211 WARN_ON(!map->bus);
d2a5884a 1212
73304781
MB
1213 /* Check for unwritable registers before we start */
1214 if (map->writeable_reg)
1215 for (i = 0; i < val_len / map->format.val_bytes; i++)
f01ee60f
SW
1216 if (!map->writeable_reg(map->dev,
1217 reg + (i * map->reg_stride)))
73304781 1218 return -EINVAL;
b83a313b 1219
c9157198
LD
1220 if (!map->cache_bypass && map->format.parse_val) {
1221 unsigned int ival;
1222 int val_bytes = map->format.val_bytes;
1223 for (i = 0; i < val_len / val_bytes; i++) {
5a08d156 1224 ival = map->format.parse_val(val + (i * val_bytes));
f01ee60f
SW
1225 ret = regcache_write(map, reg + (i * map->reg_stride),
1226 ival);
c9157198
LD
1227 if (ret) {
1228 dev_err(map->dev,
6d04b8ac 1229 "Error in caching of register: %x ret: %d\n",
c9157198
LD
1230 reg + i, ret);
1231 return ret;
1232 }
1233 }
1234 if (map->cache_only) {
1235 map->cache_dirty = true;
1236 return 0;
1237 }
1238 }
1239
98bc7dfd
MB
1240 range = _regmap_range_lookup(map, reg);
1241 if (range) {
8a2ceac6
MB
1242 int val_num = val_len / map->format.val_bytes;
1243 int win_offset = (reg - range->range_min) % range->window_len;
1244 int win_residue = range->window_len - win_offset;
1245
1246 /* If the write goes beyond the end of the window split it */
1247 while (val_num > win_residue) {
1a61cfe3 1248 dev_dbg(map->dev, "Writing window %d/%zu\n",
8a2ceac6
MB
1249 win_residue, val_len / map->format.val_bytes);
1250 ret = _regmap_raw_write(map, reg, val, win_residue *
0a819809 1251 map->format.val_bytes);
8a2ceac6
MB
1252 if (ret != 0)
1253 return ret;
1254
1255 reg += win_residue;
1256 val_num -= win_residue;
1257 val += win_residue * map->format.val_bytes;
1258 val_len -= win_residue * map->format.val_bytes;
1259
1260 win_offset = (reg - range->range_min) %
1261 range->window_len;
1262 win_residue = range->window_len - win_offset;
1263 }
1264
1265 ret = _regmap_select_page(map, &reg, range, val_num);
0ff3e62f 1266 if (ret != 0)
98bc7dfd
MB
1267 return ret;
1268 }
6863ca62 1269
d939fb9a 1270 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b 1271
6f306441
LPC
1272 u8[0] |= map->write_flag_mask;
1273
651e013e
MB
1274 /*
1275 * Essentially all I/O mechanisms will be faster with a single
1276 * buffer to write. Since register syncs often generate raw
1277 * writes of single registers optimise that case.
1278 */
1279 if (val != work_val && val_len == map->format.val_bytes) {
1280 memcpy(work_val, val, map->format.val_bytes);
1281 val = work_val;
1282 }
1283
0a819809 1284 if (map->async && map->bus->async_write) {
7e09a979 1285 struct regmap_async *async;
0d509f2b 1286
c6b570d9 1287 trace_regmap_async_write_start(map, reg, val_len);
fe7d4ccd 1288
7e09a979
MB
1289 spin_lock_irqsave(&map->async_lock, flags);
1290 async = list_first_entry_or_null(&map->async_free,
1291 struct regmap_async,
1292 list);
1293 if (async)
1294 list_del(&async->list);
1295 spin_unlock_irqrestore(&map->async_lock, flags);
1296
1297 if (!async) {
1298 async = map->bus->async_alloc();
1299 if (!async)
1300 return -ENOMEM;
1301
1302 async->work_buf = kzalloc(map->format.buf_size,
1303 GFP_KERNEL | GFP_DMA);
1304 if (!async->work_buf) {
1305 kfree(async);
1306 return -ENOMEM;
1307 }
0d509f2b
MB
1308 }
1309
0d509f2b
MB
1310 async->map = map;
1311
1312 /* If the caller supplied the value we can use it safely. */
1313 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1314 map->format.reg_bytes + map->format.val_bytes);
0d509f2b
MB
1315
1316 spin_lock_irqsave(&map->async_lock, flags);
1317 list_add_tail(&async->list, &map->async_list);
1318 spin_unlock_irqrestore(&map->async_lock, flags);
1319
04c50ccf
MB
1320 if (val != work_val)
1321 ret = map->bus->async_write(map->bus_context,
1322 async->work_buf,
1323 map->format.reg_bytes +
1324 map->format.pad_bytes,
1325 val, val_len, async);
1326 else
1327 ret = map->bus->async_write(map->bus_context,
1328 async->work_buf,
1329 map->format.reg_bytes +
1330 map->format.pad_bytes +
1331 val_len, NULL, 0, async);
0d509f2b
MB
1332
1333 if (ret != 0) {
1334 dev_err(map->dev, "Failed to schedule write: %d\n",
1335 ret);
1336
1337 spin_lock_irqsave(&map->async_lock, flags);
7e09a979 1338 list_move(&async->list, &map->async_free);
0d509f2b 1339 spin_unlock_irqrestore(&map->async_lock, flags);
0d509f2b 1340 }
f951b658
MB
1341
1342 return ret;
0d509f2b
MB
1343 }
1344
c6b570d9 1345 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 1346
2547e201
MB
1347 /* If we're doing a single register write we can probably just
1348 * send the work_buf directly, otherwise try to do a gather
1349 * write.
1350 */
0d509f2b 1351 if (val == work_val)
0135bbcc 1352 ret = map->bus->write(map->bus_context, map->work_buf,
82159ba8
MB
1353 map->format.reg_bytes +
1354 map->format.pad_bytes +
1355 val_len);
2547e201 1356 else if (map->bus->gather_write)
0135bbcc 1357 ret = map->bus->gather_write(map->bus_context, map->work_buf,
82159ba8
MB
1358 map->format.reg_bytes +
1359 map->format.pad_bytes,
b83a313b
MB
1360 val, val_len);
1361
2547e201 1362 /* If that didn't work fall back on linearising by hand. */
b83a313b 1363 if (ret == -ENOTSUPP) {
82159ba8
MB
1364 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1365 buf = kzalloc(len, GFP_KERNEL);
b83a313b
MB
1366 if (!buf)
1367 return -ENOMEM;
1368
1369 memcpy(buf, map->work_buf, map->format.reg_bytes);
82159ba8
MB
1370 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1371 val, val_len);
0135bbcc 1372 ret = map->bus->write(map->bus_context, buf, len);
b83a313b
MB
1373
1374 kfree(buf);
1375 }
1376
c6b570d9 1377 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
fb2736bb 1378
b83a313b
MB
1379 return ret;
1380}
1381
221ad7f2
MB
1382/**
1383 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1384 *
1385 * @map: Map to check.
1386 */
1387bool regmap_can_raw_write(struct regmap *map)
1388{
07ea400e
MP
1389 return map->bus && map->bus->write && map->format.format_val &&
1390 map->format.format_reg;
221ad7f2
MB
1391}
1392EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1393
f50c9eb4
MP
1394/**
1395 * regmap_get_raw_read_max - Get the maximum size we can read
1396 *
1397 * @map: Map to check.
1398 */
1399size_t regmap_get_raw_read_max(struct regmap *map)
1400{
1401 return map->max_raw_read;
1402}
1403EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1404
1405/**
1406 * regmap_get_raw_write_max - Get the maximum size we can read
1407 *
1408 * @map: Map to check.
1409 */
1410size_t regmap_get_raw_write_max(struct regmap *map)
1411{
1412 return map->max_raw_write;
1413}
1414EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1415
07c320dc
AS
1416static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1417 unsigned int val)
1418{
1419 int ret;
1420 struct regmap_range_node *range;
1421 struct regmap *map = context;
1422
f1b5c5c3 1423 WARN_ON(!map->bus || !map->format.format_write);
07c320dc
AS
1424
1425 range = _regmap_range_lookup(map, reg);
1426 if (range) {
1427 ret = _regmap_select_page(map, &reg, range, 1);
1428 if (ret != 0)
1429 return ret;
1430 }
1431
1432 map->format.format_write(map, reg, val);
1433
c6b570d9 1434 trace_regmap_hw_write_start(map, reg, 1);
07c320dc
AS
1435
1436 ret = map->bus->write(map->bus_context, map->work_buf,
1437 map->format.buf_size);
1438
c6b570d9 1439 trace_regmap_hw_write_done(map, reg, 1);
07c320dc
AS
1440
1441 return ret;
1442}
1443
3ac17037
BB
1444static int _regmap_bus_reg_write(void *context, unsigned int reg,
1445 unsigned int val)
1446{
1447 struct regmap *map = context;
1448
1449 return map->bus->reg_write(map->bus_context, reg, val);
1450}
1451
07c320dc
AS
1452static int _regmap_bus_raw_write(void *context, unsigned int reg,
1453 unsigned int val)
1454{
1455 struct regmap *map = context;
1456
f1b5c5c3 1457 WARN_ON(!map->bus || !map->format.format_val);
07c320dc
AS
1458
1459 map->format.format_val(map->work_buf + map->format.reg_bytes
1460 + map->format.pad_bytes, val, 0);
1461 return _regmap_raw_write(map, reg,
1462 map->work_buf +
1463 map->format.reg_bytes +
1464 map->format.pad_bytes,
0a819809 1465 map->format.val_bytes);
07c320dc
AS
1466}
1467
d2a5884a
AS
1468static inline void *_regmap_map_get_context(struct regmap *map)
1469{
1470 return (map->bus) ? map : map->bus_context;
1471}
1472
4d2dc095
DP
1473int _regmap_write(struct regmap *map, unsigned int reg,
1474 unsigned int val)
b83a313b 1475{
fb2736bb 1476 int ret;
d2a5884a 1477 void *context = _regmap_map_get_context(map);
b83a313b 1478
515f2261
IN
1479 if (!regmap_writeable(map, reg))
1480 return -EIO;
1481
d2a5884a 1482 if (!map->cache_bypass && !map->defer_caching) {
5d1729e7
DP
1483 ret = regcache_write(map, reg, val);
1484 if (ret != 0)
1485 return ret;
8ae0d7e8
MB
1486 if (map->cache_only) {
1487 map->cache_dirty = true;
5d1729e7 1488 return 0;
8ae0d7e8 1489 }
5d1729e7
DP
1490 }
1491
1044c180 1492#ifdef LOG_DEVICE
5336be84 1493 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
1494 dev_info(map->dev, "%x <= %x\n", reg, val);
1495#endif
1496
c6b570d9 1497 trace_regmap_reg_write(map, reg, val);
fb2736bb 1498
d2a5884a 1499 return map->reg_write(context, reg, val);
b83a313b
MB
1500}
1501
1502/**
1503 * regmap_write(): Write a value to a single register
1504 *
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1508 *
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1511 */
1512int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1513{
1514 int ret;
1515
f01ee60f
SW
1516 if (reg % map->reg_stride)
1517 return -EINVAL;
1518
0d4529c5 1519 map->lock(map->lock_arg);
b83a313b
MB
1520
1521 ret = _regmap_write(map, reg, val);
1522
0d4529c5 1523 map->unlock(map->lock_arg);
b83a313b
MB
1524
1525 return ret;
1526}
1527EXPORT_SYMBOL_GPL(regmap_write);
1528
915f441b
MB
1529/**
1530 * regmap_write_async(): Write a value to a single register asynchronously
1531 *
1532 * @map: Register map to write to
1533 * @reg: Register to write to
1534 * @val: Value to be written
1535 *
1536 * A value of zero will be returned on success, a negative errno will
1537 * be returned in error cases.
1538 */
1539int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1540{
1541 int ret;
1542
1543 if (reg % map->reg_stride)
1544 return -EINVAL;
1545
1546 map->lock(map->lock_arg);
1547
1548 map->async = true;
1549
1550 ret = _regmap_write(map, reg, val);
1551
1552 map->async = false;
1553
1554 map->unlock(map->lock_arg);
1555
1556 return ret;
1557}
1558EXPORT_SYMBOL_GPL(regmap_write_async);
1559
b83a313b
MB
1560/**
1561 * regmap_raw_write(): Write raw values to one or more registers
1562 *
1563 * @map: Register map to write to
1564 * @reg: Initial register to write to
1565 * @val: Block of data to be written, laid out for direct transmission to the
1566 * device
1567 * @val_len: Length of data pointed to by val.
1568 *
1569 * This function is intended to be used for things like firmware
1570 * download where a large block of data needs to be transferred to the
1571 * device. No formatting will be done on the data provided.
1572 *
1573 * A value of zero will be returned on success, a negative errno will
1574 * be returned in error cases.
1575 */
1576int regmap_raw_write(struct regmap *map, unsigned int reg,
1577 const void *val, size_t val_len)
1578{
1579 int ret;
1580
221ad7f2 1581 if (!regmap_can_raw_write(map))
d2a5884a 1582 return -EINVAL;
851960ba
SW
1583 if (val_len % map->format.val_bytes)
1584 return -EINVAL;
c335931e
MP
1585 if (map->max_raw_write && map->max_raw_write > val_len)
1586 return -E2BIG;
851960ba 1587
0d4529c5 1588 map->lock(map->lock_arg);
b83a313b 1589
0a819809 1590 ret = _regmap_raw_write(map, reg, val, val_len);
b83a313b 1591
0d4529c5 1592 map->unlock(map->lock_arg);
b83a313b
MB
1593
1594 return ret;
1595}
1596EXPORT_SYMBOL_GPL(regmap_raw_write);
1597
67252287
SK
1598/**
1599 * regmap_field_write(): Write a value to a single register field
1600 *
1601 * @field: Register field to write to
1602 * @val: Value to be written
1603 *
1604 * A value of zero will be returned on success, a negative errno will
1605 * be returned in error cases.
1606 */
1607int regmap_field_write(struct regmap_field *field, unsigned int val)
1608{
1609 return regmap_update_bits(field->regmap, field->reg,
1610 field->mask, val << field->shift);
1611}
1612EXPORT_SYMBOL_GPL(regmap_field_write);
1613
fdf20029
KM
1614/**
1615 * regmap_field_update_bits(): Perform a read/modify/write cycle
1616 * on the register field
1617 *
1618 * @field: Register field to write to
1619 * @mask: Bitmask to change
1620 * @val: Value to be written
1621 *
1622 * A value of zero will be returned on success, a negative errno will
1623 * be returned in error cases.
1624 */
1625int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1626{
1627 mask = (mask << field->shift) & field->mask;
1628
1629 return regmap_update_bits(field->regmap, field->reg,
1630 mask, val << field->shift);
1631}
1632EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1633
a0102375
KM
1634/**
1635 * regmap_fields_write(): Write a value to a single register field with port ID
1636 *
1637 * @field: Register field to write to
1638 * @id: port ID
1639 * @val: Value to be written
1640 *
1641 * A value of zero will be returned on success, a negative errno will
1642 * be returned in error cases.
1643 */
1644int regmap_fields_write(struct regmap_field *field, unsigned int id,
1645 unsigned int val)
1646{
1647 if (id >= field->id_size)
1648 return -EINVAL;
1649
1650 return regmap_update_bits(field->regmap,
1651 field->reg + (field->id_offset * id),
1652 field->mask, val << field->shift);
1653}
1654EXPORT_SYMBOL_GPL(regmap_fields_write);
1655
e874e6c7
KM
1656int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1657 unsigned int val)
1658{
1659 if (id >= field->id_size)
1660 return -EINVAL;
1661
1662 return regmap_write_bits(field->regmap,
1663 field->reg + (field->id_offset * id),
1664 field->mask, val << field->shift);
1665}
1666EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1667
a0102375
KM
1668/**
1669 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1670 * on the register field
1671 *
1672 * @field: Register field to write to
1673 * @id: port ID
1674 * @mask: Bitmask to change
1675 * @val: Value to be written
1676 *
1677 * A value of zero will be returned on success, a negative errno will
1678 * be returned in error cases.
1679 */
1680int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1681 unsigned int mask, unsigned int val)
1682{
1683 if (id >= field->id_size)
1684 return -EINVAL;
1685
1686 mask = (mask << field->shift) & field->mask;
1687
1688 return regmap_update_bits(field->regmap,
1689 field->reg + (field->id_offset * id),
1690 mask, val << field->shift);
1691}
1692EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1693
8eaeb219
LD
1694/*
1695 * regmap_bulk_write(): Write multiple registers to the device
1696 *
1697 * @map: Register map to write to
1698 * @reg: First register to be write from
1699 * @val: Block of data to be written, in native register size for device
1700 * @val_count: Number of registers to write
1701 *
1702 * This function is intended to be used for writing a large block of
31b35e9e 1703 * data to the device either in single transfer or multiple transfer.
8eaeb219
LD
1704 *
1705 * A value of zero will be returned on success, a negative errno will
1706 * be returned in error cases.
1707 */
1708int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1709 size_t val_count)
1710{
1711 int ret = 0, i;
1712 size_t val_bytes = map->format.val_bytes;
adaac459 1713 size_t total_size = val_bytes * val_count;
8eaeb219 1714
f4298360 1715 if (map->bus && !map->format.parse_inplace)
8eaeb219 1716 return -EINVAL;
f01ee60f
SW
1717 if (reg % map->reg_stride)
1718 return -EINVAL;
8eaeb219 1719
f4298360
SB
1720 /*
1721 * Some devices don't support bulk write, for
c594b7f2
MP
1722 * them we have a series of single write operations in the first two if
1723 * blocks.
1724 *
1725 * The first if block is used for memory mapped io. It does not allow
1726 * val_bytes of 3 for example.
1727 * The second one is used for busses which do not have this limitation
1728 * and can write arbitrary value lengths.
f4298360 1729 */
c594b7f2 1730 if (!map->bus) {
4999e962 1731 map->lock(map->lock_arg);
f4298360
SB
1732 for (i = 0; i < val_count; i++) {
1733 unsigned int ival;
1734
1735 switch (val_bytes) {
1736 case 1:
1737 ival = *(u8 *)(val + (i * val_bytes));
1738 break;
1739 case 2:
1740 ival = *(u16 *)(val + (i * val_bytes));
1741 break;
1742 case 4:
1743 ival = *(u32 *)(val + (i * val_bytes));
1744 break;
1745#ifdef CONFIG_64BIT
1746 case 8:
1747 ival = *(u64 *)(val + (i * val_bytes));
1748 break;
1749#endif
1750 default:
1751 ret = -EINVAL;
1752 goto out;
1753 }
8eaeb219 1754
f4298360
SB
1755 ret = _regmap_write(map, reg + (i * map->reg_stride),
1756 ival);
1757 if (ret != 0)
1758 goto out;
1759 }
4999e962
TI
1760out:
1761 map->unlock(map->lock_arg);
adaac459
MP
1762 } else if (map->use_single_write ||
1763 (map->max_raw_write && map->max_raw_write < total_size)) {
1764 int chunk_stride = map->reg_stride;
1765 size_t chunk_size = val_bytes;
1766 size_t chunk_count = val_count;
1767
1768 if (!map->use_single_write) {
1769 chunk_size = map->max_raw_write;
1770 if (chunk_size % val_bytes)
1771 chunk_size -= chunk_size % val_bytes;
1772 chunk_count = total_size / chunk_size;
1773 chunk_stride *= chunk_size / val_bytes;
1774 }
1775
c594b7f2 1776 map->lock(map->lock_arg);
adaac459
MP
1777 /* Write as many bytes as possible with chunk_size */
1778 for (i = 0; i < chunk_count; i++) {
c594b7f2 1779 ret = _regmap_raw_write(map,
adaac459
MP
1780 reg + (i * chunk_stride),
1781 val + (i * chunk_size),
1782 chunk_size);
c594b7f2
MP
1783 if (ret)
1784 break;
1785 }
adaac459
MP
1786
1787 /* Write remaining bytes */
1788 if (!ret && chunk_size * i < total_size) {
1789 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1790 val + (i * chunk_size),
1791 total_size - i * chunk_size);
1792 }
c594b7f2 1793 map->unlock(map->lock_arg);
8eaeb219 1794 } else {
f4298360
SB
1795 void *wval;
1796
d6b41cb0
XL
1797 if (!val_count)
1798 return -EINVAL;
1799
b4a21fc2 1800 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
8eaeb219 1801 if (!wval) {
8eaeb219 1802 dev_err(map->dev, "Error in memory allocation\n");
4999e962 1803 return -ENOMEM;
8eaeb219
LD
1804 }
1805 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 1806 map->format.parse_inplace(wval + i);
f4298360 1807
4999e962 1808 map->lock(map->lock_arg);
0a819809 1809 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
4999e962 1810 map->unlock(map->lock_arg);
8eaeb219 1811
8eaeb219 1812 kfree(wval);
f4298360 1813 }
8eaeb219
LD
1814 return ret;
1815}
1816EXPORT_SYMBOL_GPL(regmap_bulk_write);
1817
e894c3f4
OAO
1818/*
1819 * _regmap_raw_multi_reg_write()
1820 *
1821 * the (register,newvalue) pairs in regs have not been formatted, but
1822 * they are all in the same page and have been changed to being page
b486afbd 1823 * relative. The page register has been written if that was necessary.
e894c3f4
OAO
1824 */
1825static int _regmap_raw_multi_reg_write(struct regmap *map,
8019ff6c 1826 const struct reg_sequence *regs,
e894c3f4
OAO
1827 size_t num_regs)
1828{
1829 int ret;
1830 void *buf;
1831 int i;
1832 u8 *u8;
1833 size_t val_bytes = map->format.val_bytes;
1834 size_t reg_bytes = map->format.reg_bytes;
1835 size_t pad_bytes = map->format.pad_bytes;
1836 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1837 size_t len = pair_size * num_regs;
1838
f5727cd3
XL
1839 if (!len)
1840 return -EINVAL;
1841
e894c3f4
OAO
1842 buf = kzalloc(len, GFP_KERNEL);
1843 if (!buf)
1844 return -ENOMEM;
1845
1846 /* We have to linearise by hand. */
1847
1848 u8 = buf;
1849
1850 for (i = 0; i < num_regs; i++) {
2f9b660b
MP
1851 unsigned int reg = regs[i].reg;
1852 unsigned int val = regs[i].def;
c6b570d9 1853 trace_regmap_hw_write_start(map, reg, 1);
e894c3f4
OAO
1854 map->format.format_reg(u8, reg, map->reg_shift);
1855 u8 += reg_bytes + pad_bytes;
1856 map->format.format_val(u8, val, 0);
1857 u8 += val_bytes;
1858 }
1859 u8 = buf;
1860 *u8 |= map->write_flag_mask;
1861
1862 ret = map->bus->write(map->bus_context, buf, len);
1863
1864 kfree(buf);
1865
1866 for (i = 0; i < num_regs; i++) {
1867 int reg = regs[i].reg;
c6b570d9 1868 trace_regmap_hw_write_done(map, reg, 1);
e894c3f4
OAO
1869 }
1870 return ret;
1871}
1872
1873static unsigned int _regmap_register_page(struct regmap *map,
1874 unsigned int reg,
1875 struct regmap_range_node *range)
1876{
1877 unsigned int win_page = (reg - range->range_min) / range->window_len;
1878
1879 return win_page;
1880}
1881
1882static int _regmap_range_multi_paged_reg_write(struct regmap *map,
8019ff6c 1883 struct reg_sequence *regs,
e894c3f4
OAO
1884 size_t num_regs)
1885{
1886 int ret;
1887 int i, n;
8019ff6c 1888 struct reg_sequence *base;
b48d1398 1889 unsigned int this_page = 0;
2de9d600 1890 unsigned int page_change = 0;
e894c3f4
OAO
1891 /*
1892 * the set of registers are not neccessarily in order, but
1893 * since the order of write must be preserved this algorithm
2de9d600
NP
1894 * chops the set each time the page changes. This also applies
1895 * if there is a delay required at any point in the sequence.
e894c3f4
OAO
1896 */
1897 base = regs;
1898 for (i = 0, n = 0; i < num_regs; i++, n++) {
1899 unsigned int reg = regs[i].reg;
1900 struct regmap_range_node *range;
1901
1902 range = _regmap_range_lookup(map, reg);
1903 if (range) {
1904 unsigned int win_page = _regmap_register_page(map, reg,
1905 range);
1906
1907 if (i == 0)
1908 this_page = win_page;
1909 if (win_page != this_page) {
1910 this_page = win_page;
2de9d600
NP
1911 page_change = 1;
1912 }
1913 }
1914
1915 /* If we have both a page change and a delay make sure to
1916 * write the regs and apply the delay before we change the
1917 * page.
1918 */
1919
1920 if (page_change || regs[i].delay_us) {
1921
1922 /* For situations where the first write requires
1923 * a delay we need to make sure we don't call
1924 * raw_multi_reg_write with n=0
1925 * This can't occur with page breaks as we
1926 * never write on the first iteration
1927 */
1928 if (regs[i].delay_us && i == 0)
1929 n = 1;
1930
e894c3f4
OAO
1931 ret = _regmap_raw_multi_reg_write(map, base, n);
1932 if (ret != 0)
1933 return ret;
2de9d600
NP
1934
1935 if (regs[i].delay_us)
1936 udelay(regs[i].delay_us);
1937
e894c3f4
OAO
1938 base += n;
1939 n = 0;
2de9d600
NP
1940
1941 if (page_change) {
1942 ret = _regmap_select_page(map,
1943 &base[n].reg,
1944 range, 1);
1945 if (ret != 0)
1946 return ret;
1947
1948 page_change = 0;
1949 }
1950
e894c3f4 1951 }
2de9d600 1952
e894c3f4
OAO
1953 }
1954 if (n > 0)
1955 return _regmap_raw_multi_reg_write(map, base, n);
1956 return 0;
1957}
1958
1d5b40bc 1959static int _regmap_multi_reg_write(struct regmap *map,
8019ff6c 1960 const struct reg_sequence *regs,
e894c3f4 1961 size_t num_regs)
1d5b40bc 1962{
e894c3f4
OAO
1963 int i;
1964 int ret;
1965
1966 if (!map->can_multi_write) {
1967 for (i = 0; i < num_regs; i++) {
1968 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1969 if (ret != 0)
1970 return ret;
2de9d600
NP
1971
1972 if (regs[i].delay_us)
1973 udelay(regs[i].delay_us);
e894c3f4
OAO
1974 }
1975 return 0;
1976 }
1977
1978 if (!map->format.parse_inplace)
1979 return -EINVAL;
1980
1981 if (map->writeable_reg)
1982 for (i = 0; i < num_regs; i++) {
1983 int reg = regs[i].reg;
1984 if (!map->writeable_reg(map->dev, reg))
1985 return -EINVAL;
1986 if (reg % map->reg_stride)
1987 return -EINVAL;
1988 }
1989
1990 if (!map->cache_bypass) {
1991 for (i = 0; i < num_regs; i++) {
1992 unsigned int val = regs[i].def;
1993 unsigned int reg = regs[i].reg;
1994 ret = regcache_write(map, reg, val);
1995 if (ret) {
1996 dev_err(map->dev,
1997 "Error in caching of register: %x ret: %d\n",
1998 reg, ret);
1999 return ret;
2000 }
2001 }
2002 if (map->cache_only) {
2003 map->cache_dirty = true;
2004 return 0;
2005 }
2006 }
2007
2008 WARN_ON(!map->bus);
1d5b40bc
CK
2009
2010 for (i = 0; i < num_regs; i++) {
e894c3f4
OAO
2011 unsigned int reg = regs[i].reg;
2012 struct regmap_range_node *range;
2de9d600
NP
2013
2014 /* Coalesce all the writes between a page break or a delay
2015 * in a sequence
2016 */
e894c3f4 2017 range = _regmap_range_lookup(map, reg);
2de9d600 2018 if (range || regs[i].delay_us) {
8019ff6c
NP
2019 size_t len = sizeof(struct reg_sequence)*num_regs;
2020 struct reg_sequence *base = kmemdup(regs, len,
e894c3f4
OAO
2021 GFP_KERNEL);
2022 if (!base)
2023 return -ENOMEM;
2024 ret = _regmap_range_multi_paged_reg_write(map, base,
2025 num_regs);
2026 kfree(base);
2027
1d5b40bc
CK
2028 return ret;
2029 }
2030 }
e894c3f4 2031 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1d5b40bc
CK
2032}
2033
e33fabd3
AO
2034/*
2035 * regmap_multi_reg_write(): Write multiple registers to the device
2036 *
e894c3f4
OAO
2037 * where the set of register,value pairs are supplied in any order,
2038 * possibly not all in a single range.
e33fabd3
AO
2039 *
2040 * @map: Register map to write to
2041 * @regs: Array of structures containing register,value to be written
2042 * @num_regs: Number of registers to write
2043 *
e894c3f4
OAO
2044 * The 'normal' block write mode will send ultimately send data on the
2045 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2046 * addressed. However, this alternative block multi write mode will send
2047 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2048 * must of course support the mode.
e33fabd3 2049 *
e894c3f4
OAO
2050 * A value of zero will be returned on success, a negative errno will be
2051 * returned in error cases.
e33fabd3 2052 */
8019ff6c 2053int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
f7e2cec0 2054 int num_regs)
e33fabd3 2055{
1d5b40bc 2056 int ret;
e33fabd3
AO
2057
2058 map->lock(map->lock_arg);
2059
1d5b40bc
CK
2060 ret = _regmap_multi_reg_write(map, regs, num_regs);
2061
e33fabd3
AO
2062 map->unlock(map->lock_arg);
2063
2064 return ret;
2065}
2066EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2067
1d5b40bc
CK
2068/*
2069 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2070 * device but not the cache
2071 *
e33fabd3
AO
2072 * where the set of register are supplied in any order
2073 *
2074 * @map: Register map to write to
2075 * @regs: Array of structures containing register,value to be written
2076 * @num_regs: Number of registers to write
2077 *
2078 * This function is intended to be used for writing a large block of data
2079 * atomically to the device in single transfer for those I2C client devices
2080 * that implement this alternative block write mode.
2081 *
2082 * A value of zero will be returned on success, a negative errno will
2083 * be returned in error cases.
2084 */
1d5b40bc 2085int regmap_multi_reg_write_bypassed(struct regmap *map,
8019ff6c 2086 const struct reg_sequence *regs,
1d5b40bc 2087 int num_regs)
e33fabd3 2088{
1d5b40bc
CK
2089 int ret;
2090 bool bypass;
e33fabd3
AO
2091
2092 map->lock(map->lock_arg);
2093
1d5b40bc
CK
2094 bypass = map->cache_bypass;
2095 map->cache_bypass = true;
2096
2097 ret = _regmap_multi_reg_write(map, regs, num_regs);
2098
2099 map->cache_bypass = bypass;
2100
e33fabd3
AO
2101 map->unlock(map->lock_arg);
2102
2103 return ret;
2104}
1d5b40bc 2105EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
e33fabd3 2106
0d509f2b
MB
2107/**
2108 * regmap_raw_write_async(): Write raw values to one or more registers
2109 * asynchronously
2110 *
2111 * @map: Register map to write to
2112 * @reg: Initial register to write to
2113 * @val: Block of data to be written, laid out for direct transmission to the
2114 * device. Must be valid until regmap_async_complete() is called.
2115 * @val_len: Length of data pointed to by val.
2116 *
2117 * This function is intended to be used for things like firmware
2118 * download where a large block of data needs to be transferred to the
2119 * device. No formatting will be done on the data provided.
2120 *
2121 * If supported by the underlying bus the write will be scheduled
2122 * asynchronously, helping maximise I/O speed on higher speed buses
2123 * like SPI. regmap_async_complete() can be called to ensure that all
2124 * asynchrnous writes have been completed.
2125 *
2126 * A value of zero will be returned on success, a negative errno will
2127 * be returned in error cases.
2128 */
2129int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2130 const void *val, size_t val_len)
2131{
2132 int ret;
2133
2134 if (val_len % map->format.val_bytes)
2135 return -EINVAL;
2136 if (reg % map->reg_stride)
2137 return -EINVAL;
2138
2139 map->lock(map->lock_arg);
2140
0a819809
MB
2141 map->async = true;
2142
2143 ret = _regmap_raw_write(map, reg, val, val_len);
2144
2145 map->async = false;
0d509f2b
MB
2146
2147 map->unlock(map->lock_arg);
2148
2149 return ret;
2150}
2151EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2152
b83a313b
MB
2153static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2154 unsigned int val_len)
2155{
98bc7dfd 2156 struct regmap_range_node *range;
b83a313b
MB
2157 u8 *u8 = map->work_buf;
2158 int ret;
2159
f1b5c5c3 2160 WARN_ON(!map->bus);
d2a5884a 2161
98bc7dfd
MB
2162 range = _regmap_range_lookup(map, reg);
2163 if (range) {
2164 ret = _regmap_select_page(map, &reg, range,
2165 val_len / map->format.val_bytes);
0ff3e62f 2166 if (ret != 0)
98bc7dfd
MB
2167 return ret;
2168 }
6863ca62 2169
d939fb9a 2170 map->format.format_reg(map->work_buf, reg, map->reg_shift);
b83a313b
MB
2171
2172 /*
6f306441 2173 * Some buses or devices flag reads by setting the high bits in the
b486afbd 2174 * register address; since it's always the high bits for all
b83a313b
MB
2175 * current formats we can do this here rather than in
2176 * formatting. This may break if we get interesting formats.
2177 */
6f306441 2178 u8[0] |= map->read_flag_mask;
b83a313b 2179
c6b570d9 2180 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
fb2736bb 2181
0135bbcc 2182 ret = map->bus->read(map->bus_context, map->work_buf,
82159ba8 2183 map->format.reg_bytes + map->format.pad_bytes,
40c5cc26 2184 val, val_len);
b83a313b 2185
c6b570d9 2186 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
fb2736bb
MB
2187
2188 return ret;
b83a313b
MB
2189}
2190
3ac17037
BB
2191static int _regmap_bus_reg_read(void *context, unsigned int reg,
2192 unsigned int *val)
2193{
2194 struct regmap *map = context;
2195
2196 return map->bus->reg_read(map->bus_context, reg, val);
2197}
2198
ad278406
AS
2199static int _regmap_bus_read(void *context, unsigned int reg,
2200 unsigned int *val)
2201{
2202 int ret;
2203 struct regmap *map = context;
2204
2205 if (!map->format.parse_val)
2206 return -EINVAL;
2207
2208 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2209 if (ret == 0)
2210 *val = map->format.parse_val(map->work_buf);
2211
2212 return ret;
2213}
2214
b83a313b
MB
2215static int _regmap_read(struct regmap *map, unsigned int reg,
2216 unsigned int *val)
2217{
2218 int ret;
d2a5884a
AS
2219 void *context = _regmap_map_get_context(map);
2220
5d1729e7
DP
2221 if (!map->cache_bypass) {
2222 ret = regcache_read(map, reg, val);
2223 if (ret == 0)
2224 return 0;
2225 }
2226
2227 if (map->cache_only)
2228 return -EBUSY;
2229
d4807ad2
MS
2230 if (!regmap_readable(map, reg))
2231 return -EIO;
2232
d2a5884a 2233 ret = map->reg_read(context, reg, val);
fb2736bb 2234 if (ret == 0) {
1044c180 2235#ifdef LOG_DEVICE
5336be84 2236 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1044c180
MB
2237 dev_info(map->dev, "%x => %x\n", reg, *val);
2238#endif
2239
c6b570d9 2240 trace_regmap_reg_read(map, reg, *val);
b83a313b 2241
ad278406
AS
2242 if (!map->cache_bypass)
2243 regcache_write(map, reg, *val);
2244 }
f2985367 2245
b83a313b
MB
2246 return ret;
2247}
2248
2249/**
2250 * regmap_read(): Read a value from a single register
2251 *
0093380c 2252 * @map: Register map to read from
b83a313b
MB
2253 * @reg: Register to be read from
2254 * @val: Pointer to store read value
2255 *
2256 * A value of zero will be returned on success, a negative errno will
2257 * be returned in error cases.
2258 */
2259int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2260{
2261 int ret;
2262
f01ee60f
SW
2263 if (reg % map->reg_stride)
2264 return -EINVAL;
2265
0d4529c5 2266 map->lock(map->lock_arg);
b83a313b
MB
2267
2268 ret = _regmap_read(map, reg, val);
2269
0d4529c5 2270 map->unlock(map->lock_arg);
b83a313b
MB
2271
2272 return ret;
2273}
2274EXPORT_SYMBOL_GPL(regmap_read);
2275
2276/**
2277 * regmap_raw_read(): Read raw data from the device
2278 *
0093380c 2279 * @map: Register map to read from
b83a313b
MB
2280 * @reg: First register to be read from
2281 * @val: Pointer to store read value
2282 * @val_len: Size of data to read
2283 *
2284 * A value of zero will be returned on success, a negative errno will
2285 * be returned in error cases.
2286 */
2287int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2288 size_t val_len)
2289{
b8fb5ab1
MB
2290 size_t val_bytes = map->format.val_bytes;
2291 size_t val_count = val_len / val_bytes;
2292 unsigned int v;
2293 int ret, i;
04e016ad 2294
d2a5884a
AS
2295 if (!map->bus)
2296 return -EINVAL;
851960ba
SW
2297 if (val_len % map->format.val_bytes)
2298 return -EINVAL;
f01ee60f
SW
2299 if (reg % map->reg_stride)
2300 return -EINVAL;
fa3eec77
MB
2301 if (val_count == 0)
2302 return -EINVAL;
851960ba 2303
0d4529c5 2304 map->lock(map->lock_arg);
b83a313b 2305
b8fb5ab1
MB
2306 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2307 map->cache_type == REGCACHE_NONE) {
9a16ea90
MP
2308 if (!map->bus->read) {
2309 ret = -ENOTSUPP;
2310 goto out;
2311 }
c335931e
MP
2312 if (map->max_raw_read && map->max_raw_read < val_len) {
2313 ret = -E2BIG;
2314 goto out;
2315 }
9a16ea90 2316
b8fb5ab1
MB
2317 /* Physical block read if there's no cache involved */
2318 ret = _regmap_raw_read(map, reg, val, val_len);
2319
2320 } else {
2321 /* Otherwise go word by word for the cache; should be low
2322 * cost as we expect to hit the cache.
2323 */
2324 for (i = 0; i < val_count; i++) {
f01ee60f
SW
2325 ret = _regmap_read(map, reg + (i * map->reg_stride),
2326 &v);
b8fb5ab1
MB
2327 if (ret != 0)
2328 goto out;
2329
d939fb9a 2330 map->format.format_val(val + (i * val_bytes), v, 0);
b8fb5ab1
MB
2331 }
2332 }
b83a313b 2333
b8fb5ab1 2334 out:
0d4529c5 2335 map->unlock(map->lock_arg);
b83a313b
MB
2336
2337 return ret;
2338}
2339EXPORT_SYMBOL_GPL(regmap_raw_read);
2340
67252287
SK
2341/**
2342 * regmap_field_read(): Read a value to a single register field
2343 *
2344 * @field: Register field to read from
2345 * @val: Pointer to store read value
2346 *
2347 * A value of zero will be returned on success, a negative errno will
2348 * be returned in error cases.
2349 */
2350int regmap_field_read(struct regmap_field *field, unsigned int *val)
2351{
2352 int ret;
2353 unsigned int reg_val;
2354 ret = regmap_read(field->regmap, field->reg, &reg_val);
2355 if (ret != 0)
2356 return ret;
2357
2358 reg_val &= field->mask;
2359 reg_val >>= field->shift;
2360 *val = reg_val;
2361
2362 return ret;
2363}
2364EXPORT_SYMBOL_GPL(regmap_field_read);
2365
a0102375
KM
2366/**
2367 * regmap_fields_read(): Read a value to a single register field with port ID
2368 *
2369 * @field: Register field to read from
2370 * @id: port ID
2371 * @val: Pointer to store read value
2372 *
2373 * A value of zero will be returned on success, a negative errno will
2374 * be returned in error cases.
2375 */
2376int regmap_fields_read(struct regmap_field *field, unsigned int id,
2377 unsigned int *val)
2378{
2379 int ret;
2380 unsigned int reg_val;
2381
2382 if (id >= field->id_size)
2383 return -EINVAL;
2384
2385 ret = regmap_read(field->regmap,
2386 field->reg + (field->id_offset * id),
2387 &reg_val);
2388 if (ret != 0)
2389 return ret;
2390
2391 reg_val &= field->mask;
2392 reg_val >>= field->shift;
2393 *val = reg_val;
2394
2395 return ret;
2396}
2397EXPORT_SYMBOL_GPL(regmap_fields_read);
2398
b83a313b
MB
2399/**
2400 * regmap_bulk_read(): Read multiple registers from the device
2401 *
0093380c 2402 * @map: Register map to read from
b83a313b
MB
2403 * @reg: First register to be read from
2404 * @val: Pointer to store read value, in native register size for device
2405 * @val_count: Number of registers to read
2406 *
2407 * A value of zero will be returned on success, a negative errno will
2408 * be returned in error cases.
2409 */
2410int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2411 size_t val_count)
2412{
2413 int ret, i;
2414 size_t val_bytes = map->format.val_bytes;
82cd9965 2415 bool vol = regmap_volatile_range(map, reg, val_count);
5d1729e7 2416
f01ee60f
SW
2417 if (reg % map->reg_stride)
2418 return -EINVAL;
b83a313b 2419
3b58ee13 2420 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2e33caf1
AJ
2421 /*
2422 * Some devices does not support bulk read, for
2423 * them we have a series of single read operations.
2424 */
adaac459
MP
2425 size_t total_size = val_bytes * val_count;
2426
2427 if (!map->use_single_read &&
2428 (!map->max_raw_read || map->max_raw_read > total_size)) {
2e33caf1
AJ
2429 ret = regmap_raw_read(map, reg, val,
2430 val_bytes * val_count);
2431 if (ret != 0)
2432 return ret;
adaac459
MP
2433 } else {
2434 /*
2435 * Some devices do not support bulk read or do not
2436 * support large bulk reads, for them we have a series
2437 * of read operations.
2438 */
2439 int chunk_stride = map->reg_stride;
2440 size_t chunk_size = val_bytes;
2441 size_t chunk_count = val_count;
2442
2443 if (!map->use_single_read) {
2444 chunk_size = map->max_raw_read;
2445 if (chunk_size % val_bytes)
2446 chunk_size -= chunk_size % val_bytes;
2447 chunk_count = total_size / chunk_size;
2448 chunk_stride *= chunk_size / val_bytes;
2449 }
2450
2451 /* Read bytes that fit into a multiple of chunk_size */
2452 for (i = 0; i < chunk_count; i++) {
2453 ret = regmap_raw_read(map,
2454 reg + (i * chunk_stride),
2455 val + (i * chunk_size),
2456 chunk_size);
2457 if (ret != 0)
2458 return ret;
2459 }
2460
2461 /* Read remaining bytes */
2462 if (chunk_size * i < total_size) {
2463 ret = regmap_raw_read(map,
2464 reg + (i * chunk_stride),
2465 val + (i * chunk_size),
2466 total_size - i * chunk_size);
2467 if (ret != 0)
2468 return ret;
2469 }
2e33caf1 2470 }
de2d808f
MB
2471
2472 for (i = 0; i < val_count * val_bytes; i += val_bytes)
8a819ff8 2473 map->format.parse_inplace(val + i);
de2d808f
MB
2474 } else {
2475 for (i = 0; i < val_count; i++) {
6560ffd1 2476 unsigned int ival;
f01ee60f 2477 ret = regmap_read(map, reg + (i * map->reg_stride),
25061d28 2478 &ival);
de2d808f
MB
2479 if (ret != 0)
2480 return ret;
d5b98eb1
MB
2481
2482 if (map->format.format_val) {
2483 map->format.format_val(val + (i * val_bytes), ival, 0);
2484 } else {
2485 /* Devices providing read and write
2486 * operations can use the bulk I/O
2487 * functions if they define a val_bytes,
2488 * we assume that the values are native
2489 * endian.
2490 */
2491 u32 *u32 = val;
2492 u16 *u16 = val;
2493 u8 *u8 = val;
2494
2495 switch (map->format.val_bytes) {
2496 case 4:
2497 u32[i] = ival;
2498 break;
2499 case 2:
2500 u16[i] = ival;
2501 break;
2502 case 1:
2503 u8[i] = ival;
2504 break;
2505 default:
2506 return -EINVAL;
2507 }
2508 }
de2d808f
MB
2509 }
2510 }
b83a313b
MB
2511
2512 return 0;
2513}
2514EXPORT_SYMBOL_GPL(regmap_bulk_read);
2515
018690d3
MB
2516static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2517 unsigned int mask, unsigned int val,
7ff0589c 2518 bool *change, bool force_write)
b83a313b
MB
2519{
2520 int ret;
d91e8db2 2521 unsigned int tmp, orig;
b83a313b 2522
77792b11
JR
2523 if (change)
2524 *change = false;
b83a313b 2525
77792b11
JR
2526 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2527 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2528 if (ret == 0 && change)
e2f74dc6 2529 *change = true;
018690d3 2530 } else {
77792b11
JR
2531 ret = _regmap_read(map, reg, &orig);
2532 if (ret != 0)
2533 return ret;
2534
2535 tmp = orig & ~mask;
2536 tmp |= val & mask;
2537
2538 if (force_write || (tmp != orig)) {
2539 ret = _regmap_write(map, reg, tmp);
2540 if (ret == 0 && change)
2541 *change = true;
2542 }
018690d3 2543 }
b83a313b 2544
b83a313b
MB
2545 return ret;
2546}
018690d3
MB
2547
2548/**
2549 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2550 *
2551 * @map: Register map to update
2552 * @reg: Register to update
2553 * @mask: Bitmask to change
2554 * @val: New value for bitmask
2555 *
2556 * Returns zero for success, a negative number on error.
2557 */
2558int regmap_update_bits(struct regmap *map, unsigned int reg,
2559 unsigned int mask, unsigned int val)
2560{
fc3ebd78
KG
2561 int ret;
2562
0d4529c5 2563 map->lock(map->lock_arg);
7ff0589c 2564 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
0d4529c5 2565 map->unlock(map->lock_arg);
fc3ebd78
KG
2566
2567 return ret;
018690d3 2568}
b83a313b 2569EXPORT_SYMBOL_GPL(regmap_update_bits);
31244e39 2570
fd4b7286
KM
2571/**
2572 * regmap_write_bits: Perform a read/modify/write cycle on the register map
2573 *
2574 * @map: Register map to update
2575 * @reg: Register to update
2576 * @mask: Bitmask to change
2577 * @val: New value for bitmask
2578 *
2579 * Returns zero for success, a negative number on error.
2580 */
2581int regmap_write_bits(struct regmap *map, unsigned int reg,
2582 unsigned int mask, unsigned int val)
2583{
2584 int ret;
2585
2586 map->lock(map->lock_arg);
2587 ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2588 map->unlock(map->lock_arg);
2589
2590 return ret;
2591}
2592EXPORT_SYMBOL_GPL(regmap_write_bits);
2593
915f441b
MB
2594/**
2595 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2596 * map asynchronously
2597 *
2598 * @map: Register map to update
2599 * @reg: Register to update
2600 * @mask: Bitmask to change
2601 * @val: New value for bitmask
2602 *
2603 * With most buses the read must be done synchronously so this is most
2604 * useful for devices with a cache which do not need to interact with
2605 * the hardware to determine the current register value.
2606 *
2607 * Returns zero for success, a negative number on error.
2608 */
2609int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2610 unsigned int mask, unsigned int val)
2611{
915f441b
MB
2612 int ret;
2613
2614 map->lock(map->lock_arg);
2615
2616 map->async = true;
2617
7ff0589c 2618 ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
915f441b
MB
2619
2620 map->async = false;
2621
2622 map->unlock(map->lock_arg);
2623
2624 return ret;
2625}
2626EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2627
018690d3
MB
2628/**
2629 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2630 * register map and report if updated
2631 *
2632 * @map: Register map to update
2633 * @reg: Register to update
2634 * @mask: Bitmask to change
2635 * @val: New value for bitmask
2636 * @change: Boolean indicating if a write was done
2637 *
2638 * Returns zero for success, a negative number on error.
2639 */
2640int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2641 unsigned int mask, unsigned int val,
2642 bool *change)
2643{
fc3ebd78
KG
2644 int ret;
2645
0d4529c5 2646 map->lock(map->lock_arg);
7ff0589c 2647 ret = _regmap_update_bits(map, reg, mask, val, change, false);
0d4529c5 2648 map->unlock(map->lock_arg);
fc3ebd78 2649 return ret;
018690d3
MB
2650}
2651EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2652
915f441b
MB
2653/**
2654 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2655 * register map asynchronously and report if
2656 * updated
2657 *
2658 * @map: Register map to update
2659 * @reg: Register to update
2660 * @mask: Bitmask to change
2661 * @val: New value for bitmask
2662 * @change: Boolean indicating if a write was done
2663 *
2664 * With most buses the read must be done synchronously so this is most
2665 * useful for devices with a cache which do not need to interact with
2666 * the hardware to determine the current register value.
2667 *
2668 * Returns zero for success, a negative number on error.
2669 */
2670int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2671 unsigned int mask, unsigned int val,
2672 bool *change)
2673{
2674 int ret;
2675
2676 map->lock(map->lock_arg);
2677
2678 map->async = true;
2679
7ff0589c 2680 ret = _regmap_update_bits(map, reg, mask, val, change, false);
915f441b
MB
2681
2682 map->async = false;
2683
2684 map->unlock(map->lock_arg);
2685
2686 return ret;
2687}
2688EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2689
0d509f2b
MB
2690void regmap_async_complete_cb(struct regmap_async *async, int ret)
2691{
2692 struct regmap *map = async->map;
2693 bool wake;
2694
c6b570d9 2695 trace_regmap_async_io_complete(map);
fe7d4ccd 2696
0d509f2b 2697 spin_lock(&map->async_lock);
7e09a979 2698 list_move(&async->list, &map->async_free);
0d509f2b
MB
2699 wake = list_empty(&map->async_list);
2700
2701 if (ret != 0)
2702 map->async_ret = ret;
2703
2704 spin_unlock(&map->async_lock);
2705
0d509f2b
MB
2706 if (wake)
2707 wake_up(&map->async_waitq);
2708}
f804fb56 2709EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
0d509f2b
MB
2710
2711static int regmap_async_is_done(struct regmap *map)
2712{
2713 unsigned long flags;
2714 int ret;
2715
2716 spin_lock_irqsave(&map->async_lock, flags);
2717 ret = list_empty(&map->async_list);
2718 spin_unlock_irqrestore(&map->async_lock, flags);
2719
2720 return ret;
2721}
2722
2723/**
2724 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2725 *
2726 * @map: Map to operate on.
2727 *
2728 * Blocks until any pending asynchronous I/O has completed. Returns
2729 * an error code for any failed I/O operations.
2730 */
2731int regmap_async_complete(struct regmap *map)
2732{
2733 unsigned long flags;
2734 int ret;
2735
2736 /* Nothing to do with no async support */
f2e055e7 2737 if (!map->bus || !map->bus->async_write)
0d509f2b
MB
2738 return 0;
2739
c6b570d9 2740 trace_regmap_async_complete_start(map);
fe7d4ccd 2741
0d509f2b
MB
2742 wait_event(map->async_waitq, regmap_async_is_done(map));
2743
2744 spin_lock_irqsave(&map->async_lock, flags);
2745 ret = map->async_ret;
2746 map->async_ret = 0;
2747 spin_unlock_irqrestore(&map->async_lock, flags);
2748
c6b570d9 2749 trace_regmap_async_complete_done(map);
fe7d4ccd 2750
0d509f2b
MB
2751 return ret;
2752}
f88948ef 2753EXPORT_SYMBOL_GPL(regmap_async_complete);
0d509f2b 2754
22f0d90a
MB
2755/**
2756 * regmap_register_patch: Register and apply register updates to be applied
2757 * on device initialistion
2758 *
2759 * @map: Register map to apply updates to.
2760 * @regs: Values to update.
2761 * @num_regs: Number of entries in regs.
2762 *
2763 * Register a set of register updates to be applied to the device
2764 * whenever the device registers are synchronised with the cache and
2765 * apply them immediately. Typically this is used to apply
2766 * corrections to be applied to the device defaults on startup, such
2767 * as the updates some vendors provide to undocumented registers.
56fb1c74
MB
2768 *
2769 * The caller must ensure that this function cannot be called
2770 * concurrently with either itself or regcache_sync().
22f0d90a 2771 */
8019ff6c 2772int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
22f0d90a
MB
2773 int num_regs)
2774{
8019ff6c 2775 struct reg_sequence *p;
6bf13103 2776 int ret;
22f0d90a
MB
2777 bool bypass;
2778
bd60e381
CZ
2779 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2780 num_regs))
2781 return 0;
2782
aab13ebc 2783 p = krealloc(map->patch,
8019ff6c 2784 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
aab13ebc
MB
2785 GFP_KERNEL);
2786 if (p) {
2787 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2788 map->patch = p;
2789 map->patch_regs += num_regs;
22f0d90a 2790 } else {
56fb1c74 2791 return -ENOMEM;
22f0d90a
MB
2792 }
2793
0d4529c5 2794 map->lock(map->lock_arg);
22f0d90a
MB
2795
2796 bypass = map->cache_bypass;
2797
2798 map->cache_bypass = true;
1a25f261 2799 map->async = true;
22f0d90a 2800
6bf13103 2801 ret = _regmap_multi_reg_write(map, regs, num_regs);
22f0d90a 2802
1a25f261 2803 map->async = false;
22f0d90a
MB
2804 map->cache_bypass = bypass;
2805
0d4529c5 2806 map->unlock(map->lock_arg);
22f0d90a 2807
1a25f261
MB
2808 regmap_async_complete(map);
2809
22f0d90a
MB
2810 return ret;
2811}
2812EXPORT_SYMBOL_GPL(regmap_register_patch);
2813
eae4b51b 2814/*
a6539c32
MB
2815 * regmap_get_val_bytes(): Report the size of a register value
2816 *
2817 * Report the size of a register value, mainly intended to for use by
2818 * generic infrastructure built on top of regmap.
2819 */
2820int regmap_get_val_bytes(struct regmap *map)
2821{
2822 if (map->format.format_write)
2823 return -EINVAL;
2824
2825 return map->format.val_bytes;
2826}
2827EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2828
668abc72
SK
2829/**
2830 * regmap_get_max_register(): Report the max register value
2831 *
2832 * Report the max register value, mainly intended to for use by
2833 * generic infrastructure built on top of regmap.
2834 */
2835int regmap_get_max_register(struct regmap *map)
2836{
2837 return map->max_register ? map->max_register : -EINVAL;
2838}
2839EXPORT_SYMBOL_GPL(regmap_get_max_register);
2840
a2f776cb
SK
2841/**
2842 * regmap_get_reg_stride(): Report the register address stride
2843 *
2844 * Report the register address stride, mainly intended to for use by
2845 * generic infrastructure built on top of regmap.
2846 */
2847int regmap_get_reg_stride(struct regmap *map)
2848{
2849 return map->reg_stride;
2850}
2851EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2852
13ff50c8
NC
2853int regmap_parse_val(struct regmap *map, const void *buf,
2854 unsigned int *val)
2855{
2856 if (!map->format.parse_val)
2857 return -EINVAL;
2858
2859 *val = map->format.parse_val(buf);
2860
2861 return 0;
2862}
2863EXPORT_SYMBOL_GPL(regmap_parse_val);
2864
31244e39
MB
2865static int __init regmap_initcall(void)
2866{
2867 regmap_debugfs_initcall();
2868
2869 return 0;
2870}
2871postcore_initcall(regmap_initcall);
This page took 0.446904 seconds and 5 git commands to generate.