NVMe: Fix off-by-one when filling in PRP lists
[deliverable/linux.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/pci.h>
be7b6275 35#include <linux/poison.h>
b60503ba
MW
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/types.h>
39#include <linux/version.h>
40
41#define NVME_Q_DEPTH 1024
42#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
43#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
44#define NVME_MINORS 64
e85248e5
MW
45#define IO_TIMEOUT (5 * HZ)
46#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
47
48static int nvme_major;
49module_param(nvme_major, int, 0);
50
58ffacb5
MW
51static int use_threaded_interrupts;
52module_param(use_threaded_interrupts, int, 0);
53
1fa6aead
MW
54static DEFINE_SPINLOCK(dev_list_lock);
55static LIST_HEAD(dev_list);
56static struct task_struct *nvme_thread;
57
b60503ba
MW
58/*
59 * Represents an NVM Express device. Each nvme_dev is a PCI function.
60 */
61struct nvme_dev {
1fa6aead 62 struct list_head node;
b60503ba
MW
63 struct nvme_queue **queues;
64 u32 __iomem *dbs;
65 struct pci_dev *pci_dev;
091b6092 66 struct dma_pool *prp_page_pool;
99802a7a 67 struct dma_pool *prp_small_pool;
b60503ba
MW
68 int instance;
69 int queue_count;
70 u32 ctrl_config;
71 struct msix_entry *entry;
72 struct nvme_bar __iomem *bar;
73 struct list_head namespaces;
51814232
MW
74 char serial[20];
75 char model[40];
76 char firmware_rev[8];
b60503ba
MW
77};
78
79/*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82struct nvme_ns {
83 struct list_head list;
84
85 struct nvme_dev *dev;
86 struct request_queue *queue;
87 struct gendisk *disk;
88
89 int ns_id;
90 int lba_shift;
91};
92
93/*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97struct nvme_queue {
98 struct device *q_dmadev;
091b6092 99 struct nvme_dev *dev;
b60503ba
MW
100 spinlock_t q_lock;
101 struct nvme_command *sq_cmds;
102 volatile struct nvme_completion *cqes;
103 dma_addr_t sq_dma_addr;
104 dma_addr_t cq_dma_addr;
105 wait_queue_head_t sq_full;
1fa6aead 106 wait_queue_t sq_cong_wait;
b60503ba
MW
107 struct bio_list sq_cong;
108 u32 __iomem *q_db;
109 u16 q_depth;
110 u16 cq_vector;
111 u16 sq_head;
112 u16 sq_tail;
113 u16 cq_head;
82123460 114 u16 cq_phase;
b60503ba
MW
115 unsigned long cmdid_data[];
116};
117
118/*
119 * Check we didin't inadvertently grow the command struct
120 */
121static inline void _nvme_check_size(void)
122{
123 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132}
133
e85248e5
MW
134struct nvme_cmd_info {
135 unsigned long ctx;
136 unsigned long timeout;
137};
138
139static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140{
141 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142}
143
b60503ba 144/**
714a7a22
MW
145 * alloc_cmdid() - Allocate a Command ID
146 * @nvmeq: The queue that will be used for this command
147 * @ctx: A pointer that will be passed to the handler
148 * @handler: The ID of the handler to call
b60503ba
MW
149 *
150 * Allocate a Command ID for a queue. The data passed in will
151 * be passed to the completion handler. This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
e85248e5
MW
156static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157 unsigned timeout)
b60503ba 158{
e6d15f79 159 int depth = nvmeq->q_depth - 1;
e85248e5 160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
161 int cmdid;
162
163 BUG_ON((unsigned long)ctx & 3);
164
165 do {
166 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167 if (cmdid >= depth)
168 return -EBUSY;
169 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
e85248e5
MW
171 info[cmdid].ctx = (unsigned long)ctx | handler;
172 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
173 return cmdid;
174}
175
176static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 177 int handler, unsigned timeout)
b60503ba
MW
178{
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
e85248e5 181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
182 return (cmdid < 0) ? -EINTR : cmdid;
183}
184
fa922821
MW
185/*
186 * If you need more than four handlers, you'll need to change how
be7b6275
MW
187 * alloc_cmdid and nvme_process_cq work. Consider using a special
188 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
189 */
190enum {
191 sync_completion_id = 0,
192 bio_completion_id,
193};
194
00df5cb4 195/* Special values must be a multiple of 4, and less than 0x1000 */
be7b6275 196#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
197#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 200#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 201
b60503ba
MW
202static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
203{
204 unsigned long data;
e85248e5 205 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 206
e85248e5 207 if (cmdid >= nvmeq->q_depth)
48e3d398 208 return CMD_CTX_INVALID;
e85248e5
MW
209 data = info[cmdid].ctx;
210 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
211 clear_bit(cmdid, nvmeq->cmdid_data);
212 wake_up(&nvmeq->sq_full);
213 return data;
214}
215
be7b6275 216static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 217{
e85248e5
MW
218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
220}
221
b60503ba
MW
222static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
223{
1b23484b
MW
224 int qid, cpu = get_cpu();
225 if (cpu < ns->dev->queue_count)
226 qid = cpu + 1;
227 else
228 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
229 return ns->dev->queues[qid];
b60503ba
MW
230}
231
232static void put_nvmeq(struct nvme_queue *nvmeq)
233{
1b23484b 234 put_cpu();
b60503ba
MW
235}
236
237/**
714a7a22 238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245{
246 unsigned long flags;
247 u16 tail;
b60503ba
MW
248 spin_lock_irqsave(&nvmeq->q_lock, flags);
249 tail = nvmeq->sq_tail;
250 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
251 if (++tail == nvmeq->q_depth)
252 tail = 0;
7547881d 253 writel(tail, nvmeq->q_db);
b60503ba
MW
254 nvmeq->sq_tail = tail;
255 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257 return 0;
258}
259
e025344c
SMM
260struct nvme_prps {
261 int npages;
262 dma_addr_t first_dma;
263 __le64 *list[0];
264};
265
d567760c 266static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
267{
268 const int last_prp = PAGE_SIZE / 8 - 1;
269 int i;
270 dma_addr_t prp_dma;
271
272 if (!prps)
273 return;
274
275 prp_dma = prps->first_dma;
99802a7a
MW
276
277 if (prps->npages == 0)
278 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
279 for (i = 0; i < prps->npages; i++) {
280 __le64 *prp_list = prps->list[i];
281 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 282 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
283 prp_dma = next_prp_dma;
284 }
285 kfree(prps);
286}
287
d534df3c 288struct nvme_bio {
b60503ba
MW
289 struct bio *bio;
290 int nents;
e025344c 291 struct nvme_prps *prps;
b60503ba
MW
292 struct scatterlist sg[0];
293};
294
295/* XXX: use a mempool */
d534df3c 296static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 297{
d534df3c 298 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
299 sizeof(struct scatterlist) * nseg, gfp);
300}
301
d534df3c 302static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 303{
d567760c 304 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 305 kfree(nbio);
b60503ba
MW
306}
307
308static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
309 struct nvme_completion *cqe)
310{
d534df3c
MW
311 struct nvme_bio *nbio = ctx;
312 struct bio *bio = nbio->bio;
b60503ba
MW
313 u16 status = le16_to_cpup(&cqe->status) >> 1;
314
d534df3c 315 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 316 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 317 free_nbio(nvmeq, nbio);
1ad2f893
MW
318 if (status)
319 bio_endio(bio, -EIO);
320 if (bio->bi_vcnt > bio->bi_idx) {
321 bio_list_add(&nvmeq->sq_cong, bio);
322 wake_up_process(nvme_thread);
323 } else {
324 bio_endio(bio, 0);
325 }
b60503ba
MW
326}
327
ff22b54f 328/* length is in bytes */
d567760c 329static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 330 struct nvme_common_command *cmd,
ff22b54f
MW
331 struct scatterlist *sg, int length)
332{
99802a7a 333 struct dma_pool *pool;
ff22b54f
MW
334 int dma_len = sg_dma_len(sg);
335 u64 dma_addr = sg_dma_address(sg);
336 int offset = offset_in_page(dma_addr);
e025344c
SMM
337 __le64 *prp_list;
338 dma_addr_t prp_dma;
339 int nprps, npages, i, prp_page;
340 struct nvme_prps *prps = NULL;
ff22b54f
MW
341
342 cmd->prp1 = cpu_to_le64(dma_addr);
343 length -= (PAGE_SIZE - offset);
344 if (length <= 0)
e025344c 345 return prps;
ff22b54f
MW
346
347 dma_len -= (PAGE_SIZE - offset);
348 if (dma_len) {
349 dma_addr += (PAGE_SIZE - offset);
350 } else {
351 sg = sg_next(sg);
352 dma_addr = sg_dma_address(sg);
353 dma_len = sg_dma_len(sg);
354 }
355
356 if (length <= PAGE_SIZE) {
357 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
358 return prps;
359 }
360
361 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
362 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
363 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
e025344c 364 prp_page = 0;
99802a7a
MW
365 if (nprps <= (256 / 8)) {
366 pool = dev->prp_small_pool;
367 prps->npages = 0;
368 } else {
369 pool = dev->prp_page_pool;
370 prps->npages = npages;
371 }
372
373 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
374 prps->list[prp_page++] = prp_list;
375 prps->first_dma = prp_dma;
376 cmd->prp2 = cpu_to_le64(prp_dma);
377 i = 0;
378 for (;;) {
7523d834 379 if (i == PAGE_SIZE / 8) {
e025344c 380 __le64 *old_prp_list = prp_list;
99802a7a 381 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c 382 prps->list[prp_page++] = prp_list;
7523d834
MW
383 prp_list[0] = old_prp_list[i - 1];
384 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
385 i = 1;
e025344c
SMM
386 }
387 prp_list[i++] = cpu_to_le64(dma_addr);
388 dma_len -= PAGE_SIZE;
389 dma_addr += PAGE_SIZE;
390 length -= PAGE_SIZE;
391 if (length <= 0)
392 break;
393 if (dma_len > 0)
394 continue;
395 BUG_ON(dma_len < 0);
396 sg = sg_next(sg);
397 dma_addr = sg_dma_address(sg);
398 dma_len = sg_dma_len(sg);
ff22b54f
MW
399 }
400
e025344c 401 return prps;
ff22b54f
MW
402}
403
1ad2f893
MW
404/* NVMe scatterlists require no holes in the virtual address */
405#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
406 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
407
d534df3c 408static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
409 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
410{
76830840
MW
411 struct bio_vec *bvec, *bvprv = NULL;
412 struct scatterlist *sg = NULL;
1ad2f893 413 int i, old_idx, length = 0, nsegs = 0;
b60503ba 414
76830840 415 sg_init_table(nbio->sg, psegs);
1ad2f893 416 old_idx = bio->bi_idx;
b60503ba 417 bio_for_each_segment(bvec, bio, i) {
76830840
MW
418 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
419 sg->length += bvec->bv_len;
420 } else {
1ad2f893
MW
421 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
422 break;
76830840
MW
423 sg = sg ? sg + 1 : nbio->sg;
424 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
425 bvec->bv_offset);
426 nsegs++;
427 }
1ad2f893 428 length += bvec->bv_len;
76830840 429 bvprv = bvec;
b60503ba 430 }
1ad2f893 431 bio->bi_idx = i;
d534df3c 432 nbio->nents = nsegs;
76830840 433 sg_mark_end(sg);
1ad2f893
MW
434 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
435 bio->bi_idx = old_idx;
436 return -ENOMEM;
437 }
438 return length;
b60503ba
MW
439}
440
00df5cb4
MW
441static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
442 int cmdid)
443{
444 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
445
446 memset(cmnd, 0, sizeof(*cmnd));
447 cmnd->common.opcode = nvme_cmd_flush;
448 cmnd->common.command_id = cmdid;
449 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
450
451 if (++nvmeq->sq_tail == nvmeq->q_depth)
452 nvmeq->sq_tail = 0;
453 writel(nvmeq->sq_tail, nvmeq->q_db);
454
455 return 0;
456}
457
458static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
459{
460 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
461 sync_completion_id, IO_TIMEOUT);
462 if (unlikely(cmdid < 0))
463 return cmdid;
464
465 return nvme_submit_flush(nvmeq, ns, cmdid);
466}
467
b60503ba
MW
468static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
469 struct bio *bio)
470{
ff22b54f 471 struct nvme_command *cmnd;
d534df3c 472 struct nvme_bio *nbio;
b60503ba 473 enum dma_data_direction dma_dir;
1ad2f893 474 int cmdid, length, result = -ENOMEM;
b60503ba
MW
475 u16 control;
476 u32 dsmgmt;
b60503ba
MW
477 int psegs = bio_phys_segments(ns->queue, bio);
478
00df5cb4
MW
479 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
480 result = nvme_submit_flush_data(nvmeq, ns);
481 if (result)
482 return result;
483 }
484
eeee3226 485 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 486 if (!nbio)
eeee3226 487 goto nomem;
d534df3c 488 nbio->bio = bio;
b60503ba 489
eeee3226 490 result = -EBUSY;
d534df3c 491 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 492 if (unlikely(cmdid < 0))
d534df3c 493 goto free_nbio;
b60503ba 494
00df5cb4
MW
495 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
496 return nvme_submit_flush(nvmeq, ns, cmdid);
497
b60503ba
MW
498 control = 0;
499 if (bio->bi_rw & REQ_FUA)
500 control |= NVME_RW_FUA;
501 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
502 control |= NVME_RW_LR;
503
504 dsmgmt = 0;
505 if (bio->bi_rw & REQ_RAHEAD)
506 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
507
ff22b54f 508 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 509
b8deb62c 510 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 511 if (bio_data_dir(bio)) {
ff22b54f 512 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
513 dma_dir = DMA_TO_DEVICE;
514 } else {
ff22b54f 515 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
516 dma_dir = DMA_FROM_DEVICE;
517 }
518
1ad2f893
MW
519 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
520 if (result < 0)
eeee3226 521 goto free_nbio;
1ad2f893 522 length = result;
b60503ba 523
ff22b54f
MW
524 cmnd->rw.command_id = cmdid;
525 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 526 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
1ad2f893 527 length);
ff22b54f 528 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 529 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
530 cmnd->rw.control = cpu_to_le16(control);
531 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 532
d8ee9d69
MW
533 bio->bi_sector += length >> 9;
534
b60503ba
MW
535 if (++nvmeq->sq_tail == nvmeq->q_depth)
536 nvmeq->sq_tail = 0;
7547881d 537 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 538
1974b1ae
MW
539 return 0;
540
d534df3c
MW
541 free_nbio:
542 free_nbio(nvmeq, nbio);
eeee3226
MW
543 nomem:
544 return result;
b60503ba
MW
545}
546
547/*
548 * NB: return value of non-zero would mean that we were a stacking driver.
549 * make_request must always succeed.
550 */
551static int nvme_make_request(struct request_queue *q, struct bio *bio)
552{
553 struct nvme_ns *ns = q->queuedata;
554 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
555 int result = -EBUSY;
556
557 spin_lock_irq(&nvmeq->q_lock);
558 if (bio_list_empty(&nvmeq->sq_cong))
559 result = nvme_submit_bio_queue(nvmeq, ns, bio);
560 if (unlikely(result)) {
561 if (bio_list_empty(&nvmeq->sq_cong))
562 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
563 bio_list_add(&nvmeq->sq_cong, bio);
564 }
eeee3226
MW
565
566 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
567 put_nvmeq(nvmeq);
568
569 return 0;
570}
571
572struct sync_cmd_info {
573 struct task_struct *task;
574 u32 result;
575 int status;
576};
577
578static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
579 struct nvme_completion *cqe)
580{
581 struct sync_cmd_info *cmdinfo = ctx;
c4270559 582 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
be7b6275 583 return;
00df5cb4
MW
584 if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
585 return;
b36235df
MW
586 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
587 dev_warn(nvmeq->q_dmadev,
588 "completed id %d twice on queue %d\n",
589 cqe->command_id, le16_to_cpup(&cqe->sq_id));
590 return;
591 }
48e3d398
MW
592 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
593 dev_warn(nvmeq->q_dmadev,
594 "invalid id %d completed on queue %d\n",
595 cqe->command_id, le16_to_cpup(&cqe->sq_id));
596 return;
597 }
b60503ba
MW
598 cmdinfo->result = le32_to_cpup(&cqe->result);
599 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
600 wake_up_process(cmdinfo->task);
601}
602
603typedef void (*completion_fn)(struct nvme_queue *, void *,
604 struct nvme_completion *);
605
606static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
607{
82123460 608 u16 head, phase;
b60503ba
MW
609
610 static const completion_fn completions[4] = {
611 [sync_completion_id] = sync_completion,
612 [bio_completion_id] = bio_completion,
613 };
614
615 head = nvmeq->cq_head;
82123460 616 phase = nvmeq->cq_phase;
b60503ba
MW
617
618 for (;;) {
619 unsigned long data;
620 void *ptr;
621 unsigned char handler;
622 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 623 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
624 break;
625 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
626 if (++head == nvmeq->q_depth) {
627 head = 0;
82123460 628 phase = !phase;
b60503ba
MW
629 }
630
631 data = free_cmdid(nvmeq, cqe.command_id);
632 handler = data & 3;
633 ptr = (void *)(data & ~3UL);
634 completions[handler](nvmeq, ptr, &cqe);
635 }
636
637 /* If the controller ignores the cq head doorbell and continuously
638 * writes to the queue, it is theoretically possible to wrap around
639 * the queue twice and mistakenly return IRQ_NONE. Linux only
640 * requires that 0.1% of your interrupts are handled, so this isn't
641 * a big problem.
642 */
82123460 643 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
644 return IRQ_NONE;
645
646 writel(head, nvmeq->q_db + 1);
647 nvmeq->cq_head = head;
82123460 648 nvmeq->cq_phase = phase;
b60503ba
MW
649
650 return IRQ_HANDLED;
651}
652
653static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
654{
655 irqreturn_t result;
656 struct nvme_queue *nvmeq = data;
657 spin_lock(&nvmeq->q_lock);
658 result = nvme_process_cq(nvmeq);
659 spin_unlock(&nvmeq->q_lock);
660 return result;
661}
662
663static irqreturn_t nvme_irq_check(int irq, void *data)
664{
665 struct nvme_queue *nvmeq = data;
666 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
667 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
668 return IRQ_NONE;
669 return IRQ_WAKE_THREAD;
670}
671
3c0cf138
MW
672static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
673{
674 spin_lock_irq(&nvmeq->q_lock);
be7b6275 675 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
676 spin_unlock_irq(&nvmeq->q_lock);
677}
678
b60503ba
MW
679/*
680 * Returns 0 on success. If the result is negative, it's a Linux error code;
681 * if the result is positive, it's an NVM Express status code
682 */
3c0cf138 683static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 684 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
685{
686 int cmdid;
687 struct sync_cmd_info cmdinfo;
688
689 cmdinfo.task = current;
690 cmdinfo.status = -EINTR;
691
e85248e5
MW
692 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
693 timeout);
b60503ba
MW
694 if (cmdid < 0)
695 return cmdid;
696 cmd->common.command_id = cmdid;
697
3c0cf138
MW
698 set_current_state(TASK_KILLABLE);
699 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
700 schedule();
701
3c0cf138
MW
702 if (cmdinfo.status == -EINTR) {
703 nvme_abort_command(nvmeq, cmdid);
704 return -EINTR;
705 }
706
b60503ba
MW
707 if (result)
708 *result = cmdinfo.result;
709
710 return cmdinfo.status;
711}
712
713static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
714 u32 *result)
715{
e85248e5 716 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
717}
718
719static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
720{
721 int status;
722 struct nvme_command c;
723
724 memset(&c, 0, sizeof(c));
725 c.delete_queue.opcode = opcode;
726 c.delete_queue.qid = cpu_to_le16(id);
727
728 status = nvme_submit_admin_cmd(dev, &c, NULL);
729 if (status)
730 return -EIO;
731 return 0;
732}
733
734static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
735 struct nvme_queue *nvmeq)
736{
737 int status;
738 struct nvme_command c;
739 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
740
741 memset(&c, 0, sizeof(c));
742 c.create_cq.opcode = nvme_admin_create_cq;
743 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
744 c.create_cq.cqid = cpu_to_le16(qid);
745 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
746 c.create_cq.cq_flags = cpu_to_le16(flags);
747 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
748
749 status = nvme_submit_admin_cmd(dev, &c, NULL);
750 if (status)
751 return -EIO;
752 return 0;
753}
754
755static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
756 struct nvme_queue *nvmeq)
757{
758 int status;
759 struct nvme_command c;
760 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
761
762 memset(&c, 0, sizeof(c));
763 c.create_sq.opcode = nvme_admin_create_sq;
764 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
765 c.create_sq.sqid = cpu_to_le16(qid);
766 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
767 c.create_sq.sq_flags = cpu_to_le16(flags);
768 c.create_sq.cqid = cpu_to_le16(qid);
769
770 status = nvme_submit_admin_cmd(dev, &c, NULL);
771 if (status)
772 return -EIO;
773 return 0;
774}
775
776static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
777{
778 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
779}
780
781static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
782{
783 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
784}
785
786static void nvme_free_queue(struct nvme_dev *dev, int qid)
787{
788 struct nvme_queue *nvmeq = dev->queues[qid];
789
790 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
791
792 /* Don't tell the adapter to delete the admin queue */
793 if (qid) {
794 adapter_delete_sq(dev, qid);
795 adapter_delete_cq(dev, qid);
796 }
797
798 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
799 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
800 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
801 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
802 kfree(nvmeq);
803}
804
805static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
806 int depth, int vector)
807{
808 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 809 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
810 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
811 if (!nvmeq)
812 return NULL;
813
814 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
815 &nvmeq->cq_dma_addr, GFP_KERNEL);
816 if (!nvmeq->cqes)
817 goto free_nvmeq;
818 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
819
820 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
821 &nvmeq->sq_dma_addr, GFP_KERNEL);
822 if (!nvmeq->sq_cmds)
823 goto free_cqdma;
824
825 nvmeq->q_dmadev = dmadev;
091b6092 826 nvmeq->dev = dev;
b60503ba
MW
827 spin_lock_init(&nvmeq->q_lock);
828 nvmeq->cq_head = 0;
82123460 829 nvmeq->cq_phase = 1;
b60503ba 830 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 831 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba
MW
832 bio_list_init(&nvmeq->sq_cong);
833 nvmeq->q_db = &dev->dbs[qid * 2];
834 nvmeq->q_depth = depth;
835 nvmeq->cq_vector = vector;
836
837 return nvmeq;
838
839 free_cqdma:
840 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
841 nvmeq->cq_dma_addr);
842 free_nvmeq:
843 kfree(nvmeq);
844 return NULL;
845}
846
3001082c
MW
847static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
848 const char *name)
849{
58ffacb5
MW
850 if (use_threaded_interrupts)
851 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 852 nvme_irq_check, nvme_irq,
58ffacb5
MW
853 IRQF_DISABLED | IRQF_SHARED,
854 name, nvmeq);
3001082c
MW
855 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
856 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
857}
858
b60503ba
MW
859static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
860 int qid, int cq_size, int vector)
861{
862 int result;
863 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
864
3f85d50b
MW
865 if (!nvmeq)
866 return NULL;
867
b60503ba
MW
868 result = adapter_alloc_cq(dev, qid, nvmeq);
869 if (result < 0)
870 goto free_nvmeq;
871
872 result = adapter_alloc_sq(dev, qid, nvmeq);
873 if (result < 0)
874 goto release_cq;
875
3001082c 876 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
877 if (result < 0)
878 goto release_sq;
879
880 return nvmeq;
881
882 release_sq:
883 adapter_delete_sq(dev, qid);
884 release_cq:
885 adapter_delete_cq(dev, qid);
886 free_nvmeq:
887 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
888 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
889 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
890 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
891 kfree(nvmeq);
892 return NULL;
893}
894
895static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
896{
897 int result;
898 u32 aqa;
899 struct nvme_queue *nvmeq;
900
901 dev->dbs = ((void __iomem *)dev->bar) + 4096;
902
903 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
904 if (!nvmeq)
905 return -ENOMEM;
b60503ba
MW
906
907 aqa = nvmeq->q_depth - 1;
908 aqa |= aqa << 16;
909
910 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
911 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
912 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
913
5911f200 914 writel(0, &dev->bar->cc);
b60503ba
MW
915 writel(aqa, &dev->bar->aqa);
916 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
917 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
918 writel(dev->ctrl_config, &dev->bar->cc);
919
920 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
921 msleep(100);
922 if (fatal_signal_pending(current))
923 return -EINTR;
924 }
925
3001082c 926 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
927 dev->queues[0] = nvmeq;
928 return result;
929}
930
7fc3cdab
MW
931static int nvme_map_user_pages(struct nvme_dev *dev, int write,
932 unsigned long addr, unsigned length,
933 struct scatterlist **sgp)
b60503ba 934{
36c14ed9 935 int i, err, count, nents, offset;
7fc3cdab
MW
936 struct scatterlist *sg;
937 struct page **pages;
36c14ed9
MW
938
939 if (addr & 3)
940 return -EINVAL;
7fc3cdab
MW
941 if (!length)
942 return -EINVAL;
943
36c14ed9 944 offset = offset_in_page(addr);
7fc3cdab
MW
945 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
946 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
947
948 err = get_user_pages_fast(addr, count, 1, pages);
949 if (err < count) {
950 count = err;
951 err = -EFAULT;
952 goto put_pages;
953 }
7fc3cdab
MW
954
955 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 956 sg_init_table(sg, count);
ff22b54f 957 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
958 length -= (PAGE_SIZE - offset);
959 for (i = 1; i < count; i++) {
960 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
961 length -= PAGE_SIZE;
962 }
963
964 err = -ENOMEM;
965 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
966 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
967 if (!nents)
968 goto put_pages;
b60503ba 969
7fc3cdab
MW
970 kfree(pages);
971 *sgp = sg;
972 return nents;
b60503ba 973
7fc3cdab
MW
974 put_pages:
975 for (i = 0; i < count; i++)
976 put_page(pages[i]);
977 kfree(pages);
978 return err;
979}
b60503ba 980
7fc3cdab
MW
981static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
982 unsigned long addr, int length,
983 struct scatterlist *sg, int nents)
984{
985 int i, count;
b60503ba 986
7fc3cdab 987 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 988 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 989
36c14ed9 990 for (i = 0; i < count; i++)
7fc3cdab
MW
991 put_page(sg_page(&sg[i]));
992}
b60503ba 993
7fc3cdab
MW
994static int nvme_submit_user_admin_command(struct nvme_dev *dev,
995 unsigned long addr, unsigned length,
996 struct nvme_command *cmd)
997{
998 int err, nents;
999 struct scatterlist *sg;
e025344c 1000 struct nvme_prps *prps;
7fc3cdab
MW
1001
1002 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
1003 if (nents < 0)
1004 return nents;
d567760c 1005 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
7fc3cdab
MW
1006 err = nvme_submit_admin_cmd(dev, cmd, NULL);
1007 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 1008 nvme_free_prps(dev, prps);
7fc3cdab 1009 return err ? -EIO : 0;
b60503ba
MW
1010}
1011
bd38c555 1012static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 1013{
b60503ba 1014 struct nvme_command c;
b60503ba 1015
bd38c555
MW
1016 memset(&c, 0, sizeof(c));
1017 c.identify.opcode = nvme_admin_identify;
1018 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
1019 c.identify.cns = cpu_to_le32(cns);
1020
1021 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
1022}
1023
1024static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
1025{
1026 struct nvme_command c;
b60503ba
MW
1027
1028 memset(&c, 0, sizeof(c));
1029 c.features.opcode = nvme_admin_get_features;
1030 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
1031 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1032
bd38c555 1033 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
1034}
1035
a53295b6
MW
1036static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1037{
1038 struct nvme_dev *dev = ns->dev;
1039 struct nvme_queue *nvmeq;
1040 struct nvme_user_io io;
1041 struct nvme_command c;
1042 unsigned length;
1043 u32 result;
1044 int nents, status;
1045 struct scatterlist *sg;
e025344c 1046 struct nvme_prps *prps;
a53295b6
MW
1047
1048 if (copy_from_user(&io, uio, sizeof(io)))
1049 return -EFAULT;
1050 length = io.nblocks << io.block_shift;
1051 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
1052 if (nents < 0)
1053 return nents;
1054
1055 memset(&c, 0, sizeof(c));
1056 c.rw.opcode = io.opcode;
1057 c.rw.flags = io.flags;
1058 c.rw.nsid = cpu_to_le32(io.nsid);
1059 c.rw.slba = cpu_to_le64(io.slba);
1060 c.rw.length = cpu_to_le16(io.nblocks - 1);
1061 c.rw.control = cpu_to_le16(io.control);
1062 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1063 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
1064 c.rw.apptag = cpu_to_le16(io.apptag);
1065 c.rw.appmask = cpu_to_le16(io.appmask);
1066 /* XXX: metadata */
d567760c 1067 prps = nvme_setup_prps(dev, &c.common, sg, length);
a53295b6 1068
d567760c 1069 nvmeq = get_nvmeq(ns);
fa922821
MW
1070 /*
1071 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1072 * disabled. We may be preempted at any point, and be rescheduled
1073 * to a different CPU. That will cause cacheline bouncing, but no
1074 * additional races since q_lock already protects against other CPUs.
1075 */
a53295b6 1076 put_nvmeq(nvmeq);
e85248e5 1077 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
1078
1079 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1080 nvme_free_prps(dev, prps);
a53295b6
MW
1081 put_user(result, &uio->result);
1082 return status;
1083}
1084
6ee44cdc
MW
1085static int nvme_download_firmware(struct nvme_ns *ns,
1086 struct nvme_dlfw __user *udlfw)
1087{
1088 struct nvme_dev *dev = ns->dev;
1089 struct nvme_dlfw dlfw;
1090 struct nvme_command c;
1091 int nents, status;
1092 struct scatterlist *sg;
e025344c 1093 struct nvme_prps *prps;
6ee44cdc
MW
1094
1095 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1096 return -EFAULT;
1097 if (dlfw.length >= (1 << 30))
1098 return -EINVAL;
1099
1100 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1101 if (nents < 0)
1102 return nents;
1103
1104 memset(&c, 0, sizeof(c));
1105 c.dlfw.opcode = nvme_admin_download_fw;
1106 c.dlfw.numd = cpu_to_le32(dlfw.length);
1107 c.dlfw.offset = cpu_to_le32(dlfw.offset);
d567760c 1108 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1109
1110 status = nvme_submit_admin_cmd(dev, &c, NULL);
1111 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1112 nvme_free_prps(dev, prps);
6ee44cdc
MW
1113 return status;
1114}
1115
1116static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1117{
1118 struct nvme_dev *dev = ns->dev;
1119 struct nvme_command c;
1120
1121 memset(&c, 0, sizeof(c));
1122 c.common.opcode = nvme_admin_activate_fw;
1123 c.common.rsvd10[0] = cpu_to_le32(arg);
1124
1125 return nvme_submit_admin_cmd(dev, &c, NULL);
1126}
1127
b60503ba
MW
1128static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1129 unsigned long arg)
1130{
1131 struct nvme_ns *ns = bdev->bd_disk->private_data;
1132
1133 switch (cmd) {
1134 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1135 return nvme_identify(ns, arg, 0);
b60503ba 1136 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1137 return nvme_identify(ns, arg, 1);
b60503ba 1138 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1139 return nvme_get_range_type(ns, arg);
a53295b6
MW
1140 case NVME_IOCTL_SUBMIT_IO:
1141 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1142 case NVME_IOCTL_DOWNLOAD_FW:
1143 return nvme_download_firmware(ns, (void __user *)arg);
1144 case NVME_IOCTL_ACTIVATE_FW:
1145 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1146 default:
1147 return -ENOTTY;
1148 }
1149}
1150
1151static const struct block_device_operations nvme_fops = {
1152 .owner = THIS_MODULE,
1153 .ioctl = nvme_ioctl,
1154};
1155
1fa6aead
MW
1156static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1157{
1158 while (bio_list_peek(&nvmeq->sq_cong)) {
1159 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1160 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1161 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1162 bio_list_add_head(&nvmeq->sq_cong, bio);
1163 break;
1164 }
1165 }
1166}
1167
1168static int nvme_kthread(void *data)
1169{
1170 struct nvme_dev *dev;
1171
1172 while (!kthread_should_stop()) {
1173 __set_current_state(TASK_RUNNING);
1174 spin_lock(&dev_list_lock);
1175 list_for_each_entry(dev, &dev_list, node) {
1176 int i;
1177 for (i = 0; i < dev->queue_count; i++) {
1178 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1179 if (!nvmeq)
1180 continue;
1fa6aead
MW
1181 spin_lock_irq(&nvmeq->q_lock);
1182 if (nvme_process_cq(nvmeq))
1183 printk("process_cq did something\n");
1184 nvme_resubmit_bios(nvmeq);
1185 spin_unlock_irq(&nvmeq->q_lock);
1186 }
1187 }
1188 spin_unlock(&dev_list_lock);
1189 set_current_state(TASK_INTERRUPTIBLE);
1190 schedule_timeout(HZ);
1191 }
1192 return 0;
1193}
1194
b60503ba
MW
1195static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1196 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1197{
1198 struct nvme_ns *ns;
1199 struct gendisk *disk;
1200 int lbaf;
1201
1202 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1203 return NULL;
1204
1205 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1206 if (!ns)
1207 return NULL;
1208 ns->queue = blk_alloc_queue(GFP_KERNEL);
1209 if (!ns->queue)
1210 goto out_free_ns;
1211 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1212 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1213 blk_queue_make_request(ns->queue, nvme_make_request);
1214 ns->dev = dev;
1215 ns->queue->queuedata = ns;
1216
1217 disk = alloc_disk(NVME_MINORS);
1218 if (!disk)
1219 goto out_free_queue;
1220 ns->ns_id = index;
1221 ns->disk = disk;
1222 lbaf = id->flbas & 0xf;
1223 ns->lba_shift = id->lbaf[lbaf].ds;
1224
1225 disk->major = nvme_major;
1226 disk->minors = NVME_MINORS;
1227 disk->first_minor = NVME_MINORS * index;
1228 disk->fops = &nvme_fops;
1229 disk->private_data = ns;
1230 disk->queue = ns->queue;
388f037f 1231 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1232 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1233 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1234
1235 return ns;
1236
1237 out_free_queue:
1238 blk_cleanup_queue(ns->queue);
1239 out_free_ns:
1240 kfree(ns);
1241 return NULL;
1242}
1243
1244static void nvme_ns_free(struct nvme_ns *ns)
1245{
1246 put_disk(ns->disk);
1247 blk_cleanup_queue(ns->queue);
1248 kfree(ns);
1249}
1250
b3b06812 1251static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1252{
1253 int status;
1254 u32 result;
1255 struct nvme_command c;
b3b06812 1256 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1257
1258 memset(&c, 0, sizeof(c));
1259 c.features.opcode = nvme_admin_get_features;
1260 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1261 c.features.dword11 = cpu_to_le32(q_count);
1262
1263 status = nvme_submit_admin_cmd(dev, &c, &result);
1264 if (status)
1265 return -EIO;
1266 return min(result & 0xffff, result >> 16) + 1;
1267}
1268
b60503ba
MW
1269static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1270{
b348b7d5 1271 int result, cpu, i, nr_io_queues;
b60503ba 1272
b348b7d5
MW
1273 nr_io_queues = num_online_cpus();
1274 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1275 if (result < 0)
1276 return result;
b348b7d5
MW
1277 if (result < nr_io_queues)
1278 nr_io_queues = result;
b60503ba 1279
1b23484b
MW
1280 /* Deregister the admin queue's interrupt */
1281 free_irq(dev->entry[0].vector, dev->queues[0]);
1282
b348b7d5 1283 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1284 dev->entry[i].entry = i;
1285 for (;;) {
b348b7d5
MW
1286 result = pci_enable_msix(dev->pci_dev, dev->entry,
1287 nr_io_queues);
1b23484b
MW
1288 if (result == 0) {
1289 break;
1290 } else if (result > 0) {
b348b7d5 1291 nr_io_queues = result;
1b23484b
MW
1292 continue;
1293 } else {
b348b7d5 1294 nr_io_queues = 1;
1b23484b
MW
1295 break;
1296 }
1297 }
1298
1299 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1300 /* XXX: handle failure here */
1301
1302 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1303 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1304 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1305 cpu = cpumask_next(cpu, cpu_online_mask);
1306 }
1307
b348b7d5 1308 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1309 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1310 NVME_Q_DEPTH, i);
1311 if (!dev->queues[i + 1])
1312 return -ENOMEM;
1313 dev->queue_count++;
1314 }
b60503ba
MW
1315
1316 return 0;
1317}
1318
1319static void nvme_free_queues(struct nvme_dev *dev)
1320{
1321 int i;
1322
1323 for (i = dev->queue_count - 1; i >= 0; i--)
1324 nvme_free_queue(dev, i);
1325}
1326
1327static int __devinit nvme_dev_add(struct nvme_dev *dev)
1328{
1329 int res, nn, i;
1330 struct nvme_ns *ns, *next;
51814232 1331 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1332 void *id;
1333 dma_addr_t dma_addr;
1334 struct nvme_command cid, crt;
1335
1336 res = nvme_setup_io_queues(dev);
1337 if (res)
1338 return res;
1339
1340 /* XXX: Switch to a SG list once prp2 works */
1341 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1342 GFP_KERNEL);
1343
1344 memset(&cid, 0, sizeof(cid));
1345 cid.identify.opcode = nvme_admin_identify;
1346 cid.identify.nsid = 0;
1347 cid.identify.prp1 = cpu_to_le64(dma_addr);
1348 cid.identify.cns = cpu_to_le32(1);
1349
1350 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1351 if (res) {
1352 res = -EIO;
1353 goto out_free;
1354 }
1355
51814232
MW
1356 ctrl = id;
1357 nn = le32_to_cpup(&ctrl->nn);
1358 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1359 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1360 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1361
1362 cid.identify.cns = 0;
1363 memset(&crt, 0, sizeof(crt));
1364 crt.features.opcode = nvme_admin_get_features;
1365 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1366 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1367
ac88c36a 1368 for (i = 0; i <= nn; i++) {
b60503ba
MW
1369 cid.identify.nsid = cpu_to_le32(i);
1370 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1371 if (res)
1372 continue;
1373
1374 if (((struct nvme_id_ns *)id)->ncap == 0)
1375 continue;
1376
1377 crt.features.nsid = cpu_to_le32(i);
1378 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1379 if (res)
1380 continue;
1381
1382 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1383 if (ns)
1384 list_add_tail(&ns->list, &dev->namespaces);
1385 }
1386 list_for_each_entry(ns, &dev->namespaces, list)
1387 add_disk(ns->disk);
1388
1389 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1390 return 0;
1391
1392 out_free:
1393 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1394 list_del(&ns->list);
1395 nvme_ns_free(ns);
1396 }
1397
1398 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1399 return res;
1400}
1401
1402static int nvme_dev_remove(struct nvme_dev *dev)
1403{
1404 struct nvme_ns *ns, *next;
1405
1fa6aead
MW
1406 spin_lock(&dev_list_lock);
1407 list_del(&dev->node);
1408 spin_unlock(&dev_list_lock);
1409
b60503ba
MW
1410 /* TODO: wait all I/O finished or cancel them */
1411
1412 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1413 list_del(&ns->list);
1414 del_gendisk(ns->disk);
1415 nvme_ns_free(ns);
1416 }
1417
1418 nvme_free_queues(dev);
1419
1420 return 0;
1421}
1422
091b6092
MW
1423static int nvme_setup_prp_pools(struct nvme_dev *dev)
1424{
1425 struct device *dmadev = &dev->pci_dev->dev;
1426 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1427 PAGE_SIZE, PAGE_SIZE, 0);
1428 if (!dev->prp_page_pool)
1429 return -ENOMEM;
1430
99802a7a
MW
1431 /* Optimisation for I/Os between 4k and 128k */
1432 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1433 256, 256, 0);
1434 if (!dev->prp_small_pool) {
1435 dma_pool_destroy(dev->prp_page_pool);
1436 return -ENOMEM;
1437 }
091b6092
MW
1438 return 0;
1439}
1440
1441static void nvme_release_prp_pools(struct nvme_dev *dev)
1442{
1443 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1444 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1445}
1446
b60503ba
MW
1447/* XXX: Use an ida or something to let remove / add work correctly */
1448static void nvme_set_instance(struct nvme_dev *dev)
1449{
1450 static int instance;
1451 dev->instance = instance++;
1452}
1453
1454static void nvme_release_instance(struct nvme_dev *dev)
1455{
1456}
1457
1458static int __devinit nvme_probe(struct pci_dev *pdev,
1459 const struct pci_device_id *id)
1460{
574e8b95 1461 int bars, result = -ENOMEM;
b60503ba
MW
1462 struct nvme_dev *dev;
1463
1464 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1465 if (!dev)
1466 return -ENOMEM;
1467 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1468 GFP_KERNEL);
1469 if (!dev->entry)
1470 goto free;
1b23484b
MW
1471 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1472 GFP_KERNEL);
b60503ba
MW
1473 if (!dev->queues)
1474 goto free;
1475
0ee5a7d7
SMM
1476 if (pci_enable_device_mem(pdev))
1477 goto free;
f64d3365 1478 pci_set_master(pdev);
574e8b95
MW
1479 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1480 if (pci_request_selected_regions(pdev, bars, "nvme"))
1481 goto disable;
0ee5a7d7 1482
b60503ba
MW
1483 INIT_LIST_HEAD(&dev->namespaces);
1484 dev->pci_dev = pdev;
1485 pci_set_drvdata(pdev, dev);
2930353f
MW
1486 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1487 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1488 nvme_set_instance(dev);
53c9577e 1489 dev->entry[0].vector = pdev->irq;
b60503ba 1490
091b6092
MW
1491 result = nvme_setup_prp_pools(dev);
1492 if (result)
1493 goto disable_msix;
1494
b60503ba
MW
1495 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1496 if (!dev->bar) {
1497 result = -ENOMEM;
574e8b95 1498 goto disable_msix;
b60503ba
MW
1499 }
1500
1501 result = nvme_configure_admin_queue(dev);
1502 if (result)
1503 goto unmap;
1504 dev->queue_count++;
1505
1fa6aead
MW
1506 spin_lock(&dev_list_lock);
1507 list_add(&dev->node, &dev_list);
1508 spin_unlock(&dev_list_lock);
1509
740216fc
MW
1510 result = nvme_dev_add(dev);
1511 if (result)
1512 goto delete;
1513
b60503ba
MW
1514 return 0;
1515
1516 delete:
740216fc
MW
1517 spin_lock(&dev_list_lock);
1518 list_del(&dev->node);
1519 spin_unlock(&dev_list_lock);
1520
b60503ba
MW
1521 nvme_free_queues(dev);
1522 unmap:
1523 iounmap(dev->bar);
574e8b95 1524 disable_msix:
b60503ba
MW
1525 pci_disable_msix(pdev);
1526 nvme_release_instance(dev);
091b6092 1527 nvme_release_prp_pools(dev);
574e8b95 1528 disable:
0ee5a7d7 1529 pci_disable_device(pdev);
574e8b95 1530 pci_release_regions(pdev);
b60503ba
MW
1531 free:
1532 kfree(dev->queues);
1533 kfree(dev->entry);
1534 kfree(dev);
1535 return result;
1536}
1537
1538static void __devexit nvme_remove(struct pci_dev *pdev)
1539{
1540 struct nvme_dev *dev = pci_get_drvdata(pdev);
1541 nvme_dev_remove(dev);
1542 pci_disable_msix(pdev);
1543 iounmap(dev->bar);
1544 nvme_release_instance(dev);
091b6092 1545 nvme_release_prp_pools(dev);
0ee5a7d7 1546 pci_disable_device(pdev);
574e8b95 1547 pci_release_regions(pdev);
b60503ba
MW
1548 kfree(dev->queues);
1549 kfree(dev->entry);
1550 kfree(dev);
1551}
1552
1553/* These functions are yet to be implemented */
1554#define nvme_error_detected NULL
1555#define nvme_dump_registers NULL
1556#define nvme_link_reset NULL
1557#define nvme_slot_reset NULL
1558#define nvme_error_resume NULL
1559#define nvme_suspend NULL
1560#define nvme_resume NULL
1561
1562static struct pci_error_handlers nvme_err_handler = {
1563 .error_detected = nvme_error_detected,
1564 .mmio_enabled = nvme_dump_registers,
1565 .link_reset = nvme_link_reset,
1566 .slot_reset = nvme_slot_reset,
1567 .resume = nvme_error_resume,
1568};
1569
1570/* Move to pci_ids.h later */
1571#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1572
1573static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1574 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1575 { 0, }
1576};
1577MODULE_DEVICE_TABLE(pci, nvme_id_table);
1578
1579static struct pci_driver nvme_driver = {
1580 .name = "nvme",
1581 .id_table = nvme_id_table,
1582 .probe = nvme_probe,
1583 .remove = __devexit_p(nvme_remove),
1584 .suspend = nvme_suspend,
1585 .resume = nvme_resume,
1586 .err_handler = &nvme_err_handler,
1587};
1588
1589static int __init nvme_init(void)
1590{
1fa6aead
MW
1591 int result = -EBUSY;
1592
1593 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1594 if (IS_ERR(nvme_thread))
1595 return PTR_ERR(nvme_thread);
b60503ba
MW
1596
1597 nvme_major = register_blkdev(nvme_major, "nvme");
1598 if (nvme_major <= 0)
1fa6aead 1599 goto kill_kthread;
b60503ba
MW
1600
1601 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1602 if (result)
1603 goto unregister_blkdev;
1604 return 0;
b60503ba 1605
1fa6aead 1606 unregister_blkdev:
b60503ba 1607 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1608 kill_kthread:
1609 kthread_stop(nvme_thread);
b60503ba
MW
1610 return result;
1611}
1612
1613static void __exit nvme_exit(void)
1614{
1615 pci_unregister_driver(&nvme_driver);
1616 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1617 kthread_stop(nvme_thread);
b60503ba
MW
1618}
1619
1620MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1621MODULE_LICENSE("GPL");
b57ab0fa 1622MODULE_VERSION("0.4");
b60503ba
MW
1623module_init(nvme_init);
1624module_exit(nvme_exit);
This page took 0.10553 seconds and 5 git commands to generate.