[PATCH] Fix snd-usb-audio in 32-bit compat environment
[deliverable/linux.git] / drivers / block / pktcdvd.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 *
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
7 *
a676f8d0
PO
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9 * DVD-RAM devices.
1da177e4
LT
10 *
11 * Theory of operation:
12 *
a676f8d0
PO
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
21 *
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
25 *
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
32 *
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
37 *
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
1da177e4
LT
43 *
44 *************************************************************************/
45
1da177e4
LT
46#include <linux/pktcdvd.h>
47#include <linux/config.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/kthread.h>
52#include <linux/errno.h>
53#include <linux/spinlock.h>
54#include <linux/file.h>
55#include <linux/proc_fs.h>
56#include <linux/seq_file.h>
57#include <linux/miscdevice.h>
58#include <linux/suspend.h>
59#include <scsi/scsi_cmnd.h>
60#include <scsi/scsi_ioctl.h>
61
62#include <asm/uaccess.h>
63
64#if PACKET_DEBUG
65#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
66#else
67#define DPRINTK(fmt, args...)
68#endif
69
70#if PACKET_DEBUG > 1
71#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72#else
73#define VPRINTK(fmt, args...)
74#endif
75
76#define MAX_SPEED 0xffff
77
78#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
79
80static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
81static struct proc_dir_entry *pkt_proc;
82static int pkt_major;
83static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
84static mempool_t *psd_pool;
85
86
87static void pkt_bio_finished(struct pktcdvd_device *pd)
88{
89 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
90 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
91 VPRINTK("pktcdvd: queue empty\n");
92 atomic_set(&pd->iosched.attention, 1);
93 wake_up(&pd->wqueue);
94 }
95}
96
97static void pkt_bio_destructor(struct bio *bio)
98{
99 kfree(bio->bi_io_vec);
100 kfree(bio);
101}
102
103static struct bio *pkt_bio_alloc(int nr_iovecs)
104{
105 struct bio_vec *bvl = NULL;
106 struct bio *bio;
107
108 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
109 if (!bio)
110 goto no_bio;
111 bio_init(bio);
112
1107d2e0 113 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
1da177e4
LT
114 if (!bvl)
115 goto no_bvl;
1da177e4
LT
116
117 bio->bi_max_vecs = nr_iovecs;
118 bio->bi_io_vec = bvl;
119 bio->bi_destructor = pkt_bio_destructor;
120
121 return bio;
122
123 no_bvl:
124 kfree(bio);
125 no_bio:
126 return NULL;
127}
128
129/*
130 * Allocate a packet_data struct
131 */
e1bc89bc 132static struct packet_data *pkt_alloc_packet_data(int frames)
1da177e4
LT
133{
134 int i;
135 struct packet_data *pkt;
136
1107d2e0 137 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
1da177e4
LT
138 if (!pkt)
139 goto no_pkt;
1da177e4 140
e1bc89bc
PO
141 pkt->frames = frames;
142 pkt->w_bio = pkt_bio_alloc(frames);
1da177e4
LT
143 if (!pkt->w_bio)
144 goto no_bio;
145
e1bc89bc 146 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
1da177e4
LT
147 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
148 if (!pkt->pages[i])
149 goto no_page;
150 }
151
152 spin_lock_init(&pkt->lock);
153
e1bc89bc 154 for (i = 0; i < frames; i++) {
1da177e4
LT
155 struct bio *bio = pkt_bio_alloc(1);
156 if (!bio)
157 goto no_rd_bio;
158 pkt->r_bios[i] = bio;
159 }
160
161 return pkt;
162
163no_rd_bio:
e1bc89bc 164 for (i = 0; i < frames; i++) {
1da177e4
LT
165 struct bio *bio = pkt->r_bios[i];
166 if (bio)
167 bio_put(bio);
168 }
169
170no_page:
e1bc89bc 171 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
1da177e4
LT
172 if (pkt->pages[i])
173 __free_page(pkt->pages[i]);
174 bio_put(pkt->w_bio);
175no_bio:
176 kfree(pkt);
177no_pkt:
178 return NULL;
179}
180
181/*
182 * Free a packet_data struct
183 */
184static void pkt_free_packet_data(struct packet_data *pkt)
185{
186 int i;
187
e1bc89bc 188 for (i = 0; i < pkt->frames; i++) {
1da177e4
LT
189 struct bio *bio = pkt->r_bios[i];
190 if (bio)
191 bio_put(bio);
192 }
e1bc89bc 193 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
1da177e4
LT
194 __free_page(pkt->pages[i]);
195 bio_put(pkt->w_bio);
196 kfree(pkt);
197}
198
199static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
200{
201 struct packet_data *pkt, *next;
202
203 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
204
205 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
206 pkt_free_packet_data(pkt);
207 }
e1bc89bc 208 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
1da177e4
LT
209}
210
211static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
212{
213 struct packet_data *pkt;
214
e1bc89bc
PO
215 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
216
1da177e4 217 while (nr_packets > 0) {
e1bc89bc 218 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
1da177e4
LT
219 if (!pkt) {
220 pkt_shrink_pktlist(pd);
221 return 0;
222 }
223 pkt->id = nr_packets;
224 pkt->pd = pd;
225 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
226 nr_packets--;
227 }
228 return 1;
229}
230
dd0fc66f 231static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
1da177e4
LT
232{
233 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
234}
235
236static void pkt_rb_free(void *ptr, void *data)
237{
238 kfree(ptr);
239}
240
241static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
242{
243 struct rb_node *n = rb_next(&node->rb_node);
244 if (!n)
245 return NULL;
246 return rb_entry(n, struct pkt_rb_node, rb_node);
247}
248
ac893963 249static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
1da177e4
LT
250{
251 rb_erase(&node->rb_node, &pd->bio_queue);
252 mempool_free(node, pd->rb_pool);
253 pd->bio_queue_size--;
254 BUG_ON(pd->bio_queue_size < 0);
255}
256
257/*
258 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
259 */
260static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
261{
262 struct rb_node *n = pd->bio_queue.rb_node;
263 struct rb_node *next;
264 struct pkt_rb_node *tmp;
265
266 if (!n) {
267 BUG_ON(pd->bio_queue_size > 0);
268 return NULL;
269 }
270
271 for (;;) {
272 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
273 if (s <= tmp->bio->bi_sector)
274 next = n->rb_left;
275 else
276 next = n->rb_right;
277 if (!next)
278 break;
279 n = next;
280 }
281
282 if (s > tmp->bio->bi_sector) {
283 tmp = pkt_rbtree_next(tmp);
284 if (!tmp)
285 return NULL;
286 }
287 BUG_ON(s > tmp->bio->bi_sector);
288 return tmp;
289}
290
291/*
292 * Insert a node into the pd->bio_queue rb tree.
293 */
294static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
295{
296 struct rb_node **p = &pd->bio_queue.rb_node;
297 struct rb_node *parent = NULL;
298 sector_t s = node->bio->bi_sector;
299 struct pkt_rb_node *tmp;
300
301 while (*p) {
302 parent = *p;
303 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
304 if (s < tmp->bio->bi_sector)
305 p = &(*p)->rb_left;
306 else
307 p = &(*p)->rb_right;
308 }
309 rb_link_node(&node->rb_node, parent, p);
310 rb_insert_color(&node->rb_node, &pd->bio_queue);
311 pd->bio_queue_size++;
312}
313
314/*
315 * Add a bio to a single linked list defined by its head and tail pointers.
316 */
ac893963 317static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
1da177e4
LT
318{
319 bio->bi_next = NULL;
320 if (*list_tail) {
321 BUG_ON((*list_head) == NULL);
322 (*list_tail)->bi_next = bio;
323 (*list_tail) = bio;
324 } else {
325 BUG_ON((*list_head) != NULL);
326 (*list_head) = bio;
327 (*list_tail) = bio;
328 }
329}
330
331/*
332 * Remove and return the first bio from a single linked list defined by its
333 * head and tail pointers.
334 */
335static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
336{
337 struct bio *bio;
338
339 if (*list_head == NULL)
340 return NULL;
341
342 bio = *list_head;
343 *list_head = bio->bi_next;
344 if (*list_head == NULL)
345 *list_tail = NULL;
346
347 bio->bi_next = NULL;
348 return bio;
349}
350
351/*
352 * Send a packet_command to the underlying block device and
353 * wait for completion.
354 */
355static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
356{
357 char sense[SCSI_SENSE_BUFFERSIZE];
358 request_queue_t *q;
359 struct request *rq;
360 DECLARE_COMPLETION(wait);
361 int err = 0;
362
363 q = bdev_get_queue(pd->bdev);
364
365 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
366 __GFP_WAIT);
367 rq->errors = 0;
368 rq->rq_disk = pd->bdev->bd_disk;
369 rq->bio = NULL;
370 rq->buffer = NULL;
371 rq->timeout = 60*HZ;
372 rq->data = cgc->buffer;
373 rq->data_len = cgc->buflen;
374 rq->sense = sense;
375 memset(sense, 0, sizeof(sense));
376 rq->sense_len = 0;
377 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
378 if (cgc->quiet)
379 rq->flags |= REQ_QUIET;
380 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
381 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
382 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
383
384 rq->ref_count++;
385 rq->flags |= REQ_NOMERGE;
386 rq->waiting = &wait;
387 rq->end_io = blk_end_sync_rq;
388 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
389 generic_unplug_device(q);
390 wait_for_completion(&wait);
391
392 if (rq->errors)
393 err = -EIO;
394
395 blk_put_request(rq);
396 return err;
397}
398
399/*
400 * A generic sense dump / resolve mechanism should be implemented across
401 * all ATAPI + SCSI devices.
402 */
403static void pkt_dump_sense(struct packet_command *cgc)
404{
405 static char *info[9] = { "No sense", "Recovered error", "Not ready",
406 "Medium error", "Hardware error", "Illegal request",
407 "Unit attention", "Data protect", "Blank check" };
408 int i;
409 struct request_sense *sense = cgc->sense;
410
411 printk("pktcdvd:");
412 for (i = 0; i < CDROM_PACKET_SIZE; i++)
413 printk(" %02x", cgc->cmd[i]);
414 printk(" - ");
415
416 if (sense == NULL) {
417 printk("no sense\n");
418 return;
419 }
420
421 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
422
423 if (sense->sense_key > 8) {
424 printk(" (INVALID)\n");
425 return;
426 }
427
428 printk(" (%s)\n", info[sense->sense_key]);
429}
430
431/*
432 * flush the drive cache to media
433 */
434static int pkt_flush_cache(struct pktcdvd_device *pd)
435{
436 struct packet_command cgc;
437
438 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
439 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
440 cgc.quiet = 1;
441
442 /*
443 * the IMMED bit -- we default to not setting it, although that
444 * would allow a much faster close, this is safer
445 */
446#if 0
447 cgc.cmd[1] = 1 << 1;
448#endif
449 return pkt_generic_packet(pd, &cgc);
450}
451
452/*
453 * speed is given as the normal factor, e.g. 4 for 4x
454 */
455static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
456{
457 struct packet_command cgc;
458 struct request_sense sense;
459 int ret;
460
461 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
462 cgc.sense = &sense;
463 cgc.cmd[0] = GPCMD_SET_SPEED;
464 cgc.cmd[2] = (read_speed >> 8) & 0xff;
465 cgc.cmd[3] = read_speed & 0xff;
466 cgc.cmd[4] = (write_speed >> 8) & 0xff;
467 cgc.cmd[5] = write_speed & 0xff;
468
469 if ((ret = pkt_generic_packet(pd, &cgc)))
470 pkt_dump_sense(&cgc);
471
472 return ret;
473}
474
475/*
476 * Queue a bio for processing by the low-level CD device. Must be called
477 * from process context.
478 */
46c271be 479static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
1da177e4
LT
480{
481 spin_lock(&pd->iosched.lock);
482 if (bio_data_dir(bio) == READ) {
483 pkt_add_list_last(bio, &pd->iosched.read_queue,
484 &pd->iosched.read_queue_tail);
1da177e4
LT
485 } else {
486 pkt_add_list_last(bio, &pd->iosched.write_queue,
487 &pd->iosched.write_queue_tail);
488 }
489 spin_unlock(&pd->iosched.lock);
490
491 atomic_set(&pd->iosched.attention, 1);
492 wake_up(&pd->wqueue);
493}
494
495/*
496 * Process the queued read/write requests. This function handles special
497 * requirements for CDRW drives:
498 * - A cache flush command must be inserted before a read request if the
499 * previous request was a write.
46c271be 500 * - Switching between reading and writing is slow, so don't do it more often
1da177e4 501 * than necessary.
46c271be
PO
502 * - Optimize for throughput at the expense of latency. This means that streaming
503 * writes will never be interrupted by a read, but if the drive has to seek
504 * before the next write, switch to reading instead if there are any pending
505 * read requests.
1da177e4
LT
506 * - Set the read speed according to current usage pattern. When only reading
507 * from the device, it's best to use the highest possible read speed, but
508 * when switching often between reading and writing, it's better to have the
509 * same read and write speeds.
1da177e4
LT
510 */
511static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
512{
1da177e4
LT
513
514 if (atomic_read(&pd->iosched.attention) == 0)
515 return;
516 atomic_set(&pd->iosched.attention, 0);
517
1da177e4
LT
518 for (;;) {
519 struct bio *bio;
46c271be 520 int reads_queued, writes_queued;
1da177e4
LT
521
522 spin_lock(&pd->iosched.lock);
523 reads_queued = (pd->iosched.read_queue != NULL);
524 writes_queued = (pd->iosched.write_queue != NULL);
1da177e4
LT
525 spin_unlock(&pd->iosched.lock);
526
527 if (!reads_queued && !writes_queued)
528 break;
529
530 if (pd->iosched.writing) {
46c271be
PO
531 int need_write_seek = 1;
532 spin_lock(&pd->iosched.lock);
533 bio = pd->iosched.write_queue;
534 spin_unlock(&pd->iosched.lock);
535 if (bio && (bio->bi_sector == pd->iosched.last_write))
536 need_write_seek = 0;
537 if (need_write_seek && reads_queued) {
1da177e4
LT
538 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
539 VPRINTK("pktcdvd: write, waiting\n");
540 break;
541 }
542 pkt_flush_cache(pd);
543 pd->iosched.writing = 0;
544 }
545 } else {
546 if (!reads_queued && writes_queued) {
547 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
548 VPRINTK("pktcdvd: read, waiting\n");
549 break;
550 }
551 pd->iosched.writing = 1;
552 }
553 }
554
555 spin_lock(&pd->iosched.lock);
556 if (pd->iosched.writing) {
557 bio = pkt_get_list_first(&pd->iosched.write_queue,
558 &pd->iosched.write_queue_tail);
559 } else {
560 bio = pkt_get_list_first(&pd->iosched.read_queue,
561 &pd->iosched.read_queue_tail);
562 }
563 spin_unlock(&pd->iosched.lock);
564
565 if (!bio)
566 continue;
567
568 if (bio_data_dir(bio) == READ)
569 pd->iosched.successive_reads += bio->bi_size >> 10;
46c271be 570 else {
1da177e4 571 pd->iosched.successive_reads = 0;
46c271be
PO
572 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
573 }
1da177e4
LT
574 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
575 if (pd->read_speed == pd->write_speed) {
576 pd->read_speed = MAX_SPEED;
577 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
578 }
579 } else {
580 if (pd->read_speed != pd->write_speed) {
581 pd->read_speed = pd->write_speed;
582 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
583 }
584 }
585
586 atomic_inc(&pd->cdrw.pending_bios);
587 generic_make_request(bio);
588 }
589}
590
591/*
592 * Special care is needed if the underlying block device has a small
593 * max_phys_segments value.
594 */
595static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
596{
597 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
598 /*
599 * The cdrom device can handle one segment/frame
600 */
601 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
602 return 0;
603 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
604 /*
605 * We can handle this case at the expense of some extra memory
606 * copies during write operations
607 */
608 set_bit(PACKET_MERGE_SEGS, &pd->flags);
609 return 0;
610 } else {
611 printk("pktcdvd: cdrom max_phys_segments too small\n");
612 return -EIO;
613 }
614}
615
616/*
617 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
618 */
619static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
620{
621 unsigned int copy_size = CD_FRAMESIZE;
622
623 while (copy_size > 0) {
624 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
625 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
626 src_bvl->bv_offset + offs;
627 void *vto = page_address(dst_page) + dst_offs;
628 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
629
630 BUG_ON(len < 0);
631 memcpy(vto, vfrom, len);
632 kunmap_atomic(vfrom, KM_USER0);
633
634 seg++;
635 offs = 0;
636 dst_offs += len;
637 copy_size -= len;
638 }
639}
640
641/*
642 * Copy all data for this packet to pkt->pages[], so that
643 * a) The number of required segments for the write bio is minimized, which
644 * is necessary for some scsi controllers.
645 * b) The data can be used as cache to avoid read requests if we receive a
646 * new write request for the same zone.
647 */
72772323 648static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1da177e4
LT
649{
650 int f, p, offs;
651
652 /* Copy all data to pkt->pages[] */
653 p = 0;
654 offs = 0;
655 for (f = 0; f < pkt->frames; f++) {
72772323
PO
656 if (bvec[f].bv_page != pkt->pages[p]) {
657 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1da177e4
LT
658 void *vto = page_address(pkt->pages[p]) + offs;
659 memcpy(vto, vfrom, CD_FRAMESIZE);
660 kunmap_atomic(vfrom, KM_USER0);
72772323
PO
661 bvec[f].bv_page = pkt->pages[p];
662 bvec[f].bv_offset = offs;
1da177e4 663 } else {
72772323 664 BUG_ON(bvec[f].bv_offset != offs);
1da177e4
LT
665 }
666 offs += CD_FRAMESIZE;
667 if (offs >= PAGE_SIZE) {
1da177e4
LT
668 offs = 0;
669 p++;
670 }
671 }
672}
673
674static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
675{
676 struct packet_data *pkt = bio->bi_private;
677 struct pktcdvd_device *pd = pkt->pd;
678 BUG_ON(!pd);
679
680 if (bio->bi_size)
681 return 1;
682
683 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
684 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
685
686 if (err)
687 atomic_inc(&pkt->io_errors);
688 if (atomic_dec_and_test(&pkt->io_wait)) {
689 atomic_inc(&pkt->run_sm);
690 wake_up(&pd->wqueue);
691 }
692 pkt_bio_finished(pd);
693
694 return 0;
695}
696
697static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
698{
699 struct packet_data *pkt = bio->bi_private;
700 struct pktcdvd_device *pd = pkt->pd;
701 BUG_ON(!pd);
702
703 if (bio->bi_size)
704 return 1;
705
706 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
707
708 pd->stats.pkt_ended++;
709
710 pkt_bio_finished(pd);
711 atomic_dec(&pkt->io_wait);
712 atomic_inc(&pkt->run_sm);
713 wake_up(&pd->wqueue);
714 return 0;
715}
716
717/*
718 * Schedule reads for the holes in a packet
719 */
720static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
721{
722 int frames_read = 0;
723 struct bio *bio;
724 int f;
725 char written[PACKET_MAX_SIZE];
726
727 BUG_ON(!pkt->orig_bios);
728
729 atomic_set(&pkt->io_wait, 0);
730 atomic_set(&pkt->io_errors, 0);
731
1da177e4
LT
732 /*
733 * Figure out which frames we need to read before we can write.
734 */
735 memset(written, 0, sizeof(written));
736 spin_lock(&pkt->lock);
737 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
738 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
739 int num_frames = bio->bi_size / CD_FRAMESIZE;
06e7ab53 740 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1da177e4
LT
741 BUG_ON(first_frame < 0);
742 BUG_ON(first_frame + num_frames > pkt->frames);
743 for (f = first_frame; f < first_frame + num_frames; f++)
744 written[f] = 1;
745 }
746 spin_unlock(&pkt->lock);
747
06e7ab53
PO
748 if (pkt->cache_valid) {
749 VPRINTK("pkt_gather_data: zone %llx cached\n",
750 (unsigned long long)pkt->sector);
751 goto out_account;
752 }
753
1da177e4
LT
754 /*
755 * Schedule reads for missing parts of the packet.
756 */
757 for (f = 0; f < pkt->frames; f++) {
758 int p, offset;
759 if (written[f])
760 continue;
761 bio = pkt->r_bios[f];
762 bio_init(bio);
763 bio->bi_max_vecs = 1;
764 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
765 bio->bi_bdev = pd->bdev;
766 bio->bi_end_io = pkt_end_io_read;
767 bio->bi_private = pkt;
768
769 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
770 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
771 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
772 f, pkt->pages[p], offset);
773 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
774 BUG();
775
776 atomic_inc(&pkt->io_wait);
777 bio->bi_rw = READ;
46c271be 778 pkt_queue_bio(pd, bio);
1da177e4
LT
779 frames_read++;
780 }
781
782out_account:
783 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
784 frames_read, (unsigned long long)pkt->sector);
785 pd->stats.pkt_started++;
786 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1da177e4
LT
787}
788
789/*
790 * Find a packet matching zone, or the least recently used packet if
791 * there is no match.
792 */
793static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
794{
795 struct packet_data *pkt;
796
797 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
798 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
799 list_del_init(&pkt->list);
800 if (pkt->sector != zone)
801 pkt->cache_valid = 0;
610827de 802 return pkt;
1da177e4
LT
803 }
804 }
610827de
PO
805 BUG();
806 return NULL;
1da177e4
LT
807}
808
809static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
810{
811 if (pkt->cache_valid) {
812 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
813 } else {
814 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
815 }
816}
817
818/*
819 * recover a failed write, query for relocation if possible
820 *
821 * returns 1 if recovery is possible, or 0 if not
822 *
823 */
824static int pkt_start_recovery(struct packet_data *pkt)
825{
826 /*
827 * FIXME. We need help from the file system to implement
828 * recovery handling.
829 */
830 return 0;
831#if 0
832 struct request *rq = pkt->rq;
833 struct pktcdvd_device *pd = rq->rq_disk->private_data;
834 struct block_device *pkt_bdev;
835 struct super_block *sb = NULL;
836 unsigned long old_block, new_block;
837 sector_t new_sector;
838
839 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
840 if (pkt_bdev) {
841 sb = get_super(pkt_bdev);
842 bdput(pkt_bdev);
843 }
844
845 if (!sb)
846 return 0;
847
848 if (!sb->s_op || !sb->s_op->relocate_blocks)
849 goto out;
850
851 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
852 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
853 goto out;
854
855 new_sector = new_block * (CD_FRAMESIZE >> 9);
856 pkt->sector = new_sector;
857
858 pkt->bio->bi_sector = new_sector;
859 pkt->bio->bi_next = NULL;
860 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
861 pkt->bio->bi_idx = 0;
862
863 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
864 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
865 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
866 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
867 BUG_ON(pkt->bio->bi_private != pkt);
868
869 drop_super(sb);
870 return 1;
871
872out:
873 drop_super(sb);
874 return 0;
875#endif
876}
877
878static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
879{
880#if PACKET_DEBUG > 1
881 static const char *state_name[] = {
882 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
883 };
884 enum packet_data_state old_state = pkt->state;
885 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
886 state_name[old_state], state_name[state]);
887#endif
888 pkt->state = state;
889}
890
891/*
892 * Scan the work queue to see if we can start a new packet.
893 * returns non-zero if any work was done.
894 */
895static int pkt_handle_queue(struct pktcdvd_device *pd)
896{
897 struct packet_data *pkt, *p;
898 struct bio *bio = NULL;
899 sector_t zone = 0; /* Suppress gcc warning */
900 struct pkt_rb_node *node, *first_node;
901 struct rb_node *n;
902
903 VPRINTK("handle_queue\n");
904
905 atomic_set(&pd->scan_queue, 0);
906
907 if (list_empty(&pd->cdrw.pkt_free_list)) {
908 VPRINTK("handle_queue: no pkt\n");
909 return 0;
910 }
911
912 /*
913 * Try to find a zone we are not already working on.
914 */
915 spin_lock(&pd->lock);
916 first_node = pkt_rbtree_find(pd, pd->current_sector);
917 if (!first_node) {
918 n = rb_first(&pd->bio_queue);
919 if (n)
920 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
921 }
922 node = first_node;
923 while (node) {
924 bio = node->bio;
925 zone = ZONE(bio->bi_sector, pd);
926 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
7baeb6a5
PO
927 if (p->sector == zone) {
928 bio = NULL;
1da177e4 929 goto try_next_bio;
7baeb6a5 930 }
1da177e4
LT
931 }
932 break;
933try_next_bio:
934 node = pkt_rbtree_next(node);
935 if (!node) {
936 n = rb_first(&pd->bio_queue);
937 if (n)
938 node = rb_entry(n, struct pkt_rb_node, rb_node);
939 }
940 if (node == first_node)
941 node = NULL;
942 }
943 spin_unlock(&pd->lock);
944 if (!bio) {
945 VPRINTK("handle_queue: no bio\n");
946 return 0;
947 }
948
949 pkt = pkt_get_packet_data(pd, zone);
1da177e4
LT
950
951 pd->current_sector = zone + pd->settings.size;
952 pkt->sector = zone;
e1bc89bc 953 BUG_ON(pkt->frames != pd->settings.size >> 2);
1da177e4
LT
954 pkt->write_size = 0;
955
956 /*
957 * Scan work queue for bios in the same zone and link them
958 * to this packet.
959 */
960 spin_lock(&pd->lock);
961 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
962 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
963 bio = node->bio;
964 VPRINTK("pkt_handle_queue: found zone=%llx\n",
965 (unsigned long long)ZONE(bio->bi_sector, pd));
966 if (ZONE(bio->bi_sector, pd) != zone)
967 break;
968 pkt_rbtree_erase(pd, node);
969 spin_lock(&pkt->lock);
970 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
971 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
972 spin_unlock(&pkt->lock);
973 }
974 spin_unlock(&pd->lock);
975
976 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
977 pkt_set_state(pkt, PACKET_WAITING_STATE);
978 atomic_set(&pkt->run_sm, 1);
979
980 spin_lock(&pd->cdrw.active_list_lock);
981 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
982 spin_unlock(&pd->cdrw.active_list_lock);
983
984 return 1;
985}
986
987/*
988 * Assemble a bio to write one packet and queue the bio for processing
989 * by the underlying block device.
990 */
991static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
992{
993 struct bio *bio;
1da177e4
LT
994 int f;
995 int frames_write;
72772323 996 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1da177e4
LT
997
998 for (f = 0; f < pkt->frames; f++) {
72772323
PO
999 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1000 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1da177e4
LT
1001 }
1002
1003 /*
72772323 1004 * Fill-in bvec with data from orig_bios.
1da177e4
LT
1005 */
1006 frames_write = 0;
1007 spin_lock(&pkt->lock);
1008 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1009 int segment = bio->bi_idx;
1010 int src_offs = 0;
1011 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1012 int num_frames = bio->bi_size / CD_FRAMESIZE;
1013 BUG_ON(first_frame < 0);
1014 BUG_ON(first_frame + num_frames > pkt->frames);
1015 for (f = first_frame; f < first_frame + num_frames; f++) {
1016 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1017
1018 while (src_offs >= src_bvl->bv_len) {
1019 src_offs -= src_bvl->bv_len;
1020 segment++;
1021 BUG_ON(segment >= bio->bi_vcnt);
1022 src_bvl = bio_iovec_idx(bio, segment);
1023 }
1024
1025 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
72772323
PO
1026 bvec[f].bv_page = src_bvl->bv_page;
1027 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1da177e4
LT
1028 } else {
1029 pkt_copy_bio_data(bio, segment, src_offs,
72772323 1030 bvec[f].bv_page, bvec[f].bv_offset);
1da177e4
LT
1031 }
1032 src_offs += CD_FRAMESIZE;
1033 frames_write++;
1034 }
1035 }
1036 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1037 spin_unlock(&pkt->lock);
1038
1039 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1040 frames_write, (unsigned long long)pkt->sector);
1041 BUG_ON(frames_write != pkt->write_size);
1042
1043 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
72772323 1044 pkt_make_local_copy(pkt, bvec);
1da177e4
LT
1045 pkt->cache_valid = 1;
1046 } else {
1047 pkt->cache_valid = 0;
1048 }
1049
1050 /* Start the write request */
1051 bio_init(pkt->w_bio);
1052 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1053 pkt->w_bio->bi_sector = pkt->sector;
1054 pkt->w_bio->bi_bdev = pd->bdev;
1055 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1056 pkt->w_bio->bi_private = pkt;
72772323
PO
1057 for (f = 0; f < pkt->frames; f++)
1058 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1059 BUG();
1da177e4
LT
1060 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1061
1062 atomic_set(&pkt->io_wait, 1);
1063 pkt->w_bio->bi_rw = WRITE;
46c271be 1064 pkt_queue_bio(pd, pkt->w_bio);
1da177e4
LT
1065}
1066
1067static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1068{
1069 struct bio *bio, *next;
1070
1071 if (!uptodate)
1072 pkt->cache_valid = 0;
1073
1074 /* Finish all bios corresponding to this packet */
1075 bio = pkt->orig_bios;
1076 while (bio) {
1077 next = bio->bi_next;
1078 bio->bi_next = NULL;
1079 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1080 bio = next;
1081 }
1082 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1083}
1084
1085static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1086{
1087 int uptodate;
1088
1089 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1090
1091 for (;;) {
1092 switch (pkt->state) {
1093 case PACKET_WAITING_STATE:
1094 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1095 return;
1096
1097 pkt->sleep_time = 0;
1098 pkt_gather_data(pd, pkt);
1099 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1100 break;
1101
1102 case PACKET_READ_WAIT_STATE:
1103 if (atomic_read(&pkt->io_wait) > 0)
1104 return;
1105
1106 if (atomic_read(&pkt->io_errors) > 0) {
1107 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1108 } else {
1109 pkt_start_write(pd, pkt);
1110 }
1111 break;
1112
1113 case PACKET_WRITE_WAIT_STATE:
1114 if (atomic_read(&pkt->io_wait) > 0)
1115 return;
1116
1117 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1118 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1119 } else {
1120 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1121 }
1122 break;
1123
1124 case PACKET_RECOVERY_STATE:
1125 if (pkt_start_recovery(pkt)) {
1126 pkt_start_write(pd, pkt);
1127 } else {
1128 VPRINTK("No recovery possible\n");
1129 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1130 }
1131 break;
1132
1133 case PACKET_FINISHED_STATE:
1134 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1135 pkt_finish_packet(pkt, uptodate);
1136 return;
1137
1138 default:
1139 BUG();
1140 break;
1141 }
1142 }
1143}
1144
1145static void pkt_handle_packets(struct pktcdvd_device *pd)
1146{
1147 struct packet_data *pkt, *next;
1148
1149 VPRINTK("pkt_handle_packets\n");
1150
1151 /*
1152 * Run state machine for active packets
1153 */
1154 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1155 if (atomic_read(&pkt->run_sm) > 0) {
1156 atomic_set(&pkt->run_sm, 0);
1157 pkt_run_state_machine(pd, pkt);
1158 }
1159 }
1160
1161 /*
1162 * Move no longer active packets to the free list
1163 */
1164 spin_lock(&pd->cdrw.active_list_lock);
1165 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1166 if (pkt->state == PACKET_FINISHED_STATE) {
1167 list_del(&pkt->list);
1168 pkt_put_packet_data(pd, pkt);
1169 pkt_set_state(pkt, PACKET_IDLE_STATE);
1170 atomic_set(&pd->scan_queue, 1);
1171 }
1172 }
1173 spin_unlock(&pd->cdrw.active_list_lock);
1174}
1175
1176static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1177{
1178 struct packet_data *pkt;
1179 int i;
1180
ae7642bb 1181 for (i = 0; i < PACKET_NUM_STATES; i++)
1da177e4
LT
1182 states[i] = 0;
1183
1184 spin_lock(&pd->cdrw.active_list_lock);
1185 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1186 states[pkt->state]++;
1187 }
1188 spin_unlock(&pd->cdrw.active_list_lock);
1189}
1190
1191/*
1192 * kcdrwd is woken up when writes have been queued for one of our
1193 * registered devices
1194 */
1195static int kcdrwd(void *foobar)
1196{
1197 struct pktcdvd_device *pd = foobar;
1198 struct packet_data *pkt;
1199 long min_sleep_time, residue;
1200
1201 set_user_nice(current, -20);
1202
1203 for (;;) {
1204 DECLARE_WAITQUEUE(wait, current);
1205
1206 /*
1207 * Wait until there is something to do
1208 */
1209 add_wait_queue(&pd->wqueue, &wait);
1210 for (;;) {
1211 set_current_state(TASK_INTERRUPTIBLE);
1212
1213 /* Check if we need to run pkt_handle_queue */
1214 if (atomic_read(&pd->scan_queue) > 0)
1215 goto work_to_do;
1216
1217 /* Check if we need to run the state machine for some packet */
1218 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1219 if (atomic_read(&pkt->run_sm) > 0)
1220 goto work_to_do;
1221 }
1222
1223 /* Check if we need to process the iosched queues */
1224 if (atomic_read(&pd->iosched.attention) != 0)
1225 goto work_to_do;
1226
1227 /* Otherwise, go to sleep */
1228 if (PACKET_DEBUG > 1) {
1229 int states[PACKET_NUM_STATES];
1230 pkt_count_states(pd, states);
1231 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1232 states[0], states[1], states[2], states[3],
1233 states[4], states[5]);
1234 }
1235
1236 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1237 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1238 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1239 min_sleep_time = pkt->sleep_time;
1240 }
1241
1242 generic_unplug_device(bdev_get_queue(pd->bdev));
1243
1244 VPRINTK("kcdrwd: sleeping\n");
1245 residue = schedule_timeout(min_sleep_time);
1246 VPRINTK("kcdrwd: wake up\n");
1247
1248 /* make swsusp happy with our thread */
3e1d1d28 1249 try_to_freeze();
1da177e4
LT
1250
1251 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1252 if (!pkt->sleep_time)
1253 continue;
1254 pkt->sleep_time -= min_sleep_time - residue;
1255 if (pkt->sleep_time <= 0) {
1256 pkt->sleep_time = 0;
1257 atomic_inc(&pkt->run_sm);
1258 }
1259 }
1260
1261 if (signal_pending(current)) {
1262 flush_signals(current);
1263 }
1264 if (kthread_should_stop())
1265 break;
1266 }
1267work_to_do:
1268 set_current_state(TASK_RUNNING);
1269 remove_wait_queue(&pd->wqueue, &wait);
1270
1271 if (kthread_should_stop())
1272 break;
1273
1274 /*
1275 * if pkt_handle_queue returns true, we can queue
1276 * another request.
1277 */
1278 while (pkt_handle_queue(pd))
1279 ;
1280
1281 /*
1282 * Handle packet state machine
1283 */
1284 pkt_handle_packets(pd);
1285
1286 /*
1287 * Handle iosched queues
1288 */
1289 pkt_iosched_process_queue(pd);
1290 }
1291
1292 return 0;
1293}
1294
1295static void pkt_print_settings(struct pktcdvd_device *pd)
1296{
1297 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1298 printk("%u blocks, ", pd->settings.size >> 2);
1299 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1300}
1301
1302static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1303{
1304 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1305
1306 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1307 cgc->cmd[2] = page_code | (page_control << 6);
1308 cgc->cmd[7] = cgc->buflen >> 8;
1309 cgc->cmd[8] = cgc->buflen & 0xff;
1310 cgc->data_direction = CGC_DATA_READ;
1311 return pkt_generic_packet(pd, cgc);
1312}
1313
1314static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1315{
1316 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1317 memset(cgc->buffer, 0, 2);
1318 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1319 cgc->cmd[1] = 0x10; /* PF */
1320 cgc->cmd[7] = cgc->buflen >> 8;
1321 cgc->cmd[8] = cgc->buflen & 0xff;
1322 cgc->data_direction = CGC_DATA_WRITE;
1323 return pkt_generic_packet(pd, cgc);
1324}
1325
1326static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1327{
1328 struct packet_command cgc;
1329 int ret;
1330
1331 /* set up command and get the disc info */
1332 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1333 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1334 cgc.cmd[8] = cgc.buflen = 2;
1335 cgc.quiet = 1;
1336
1337 if ((ret = pkt_generic_packet(pd, &cgc)))
1338 return ret;
1339
1340 /* not all drives have the same disc_info length, so requeue
1341 * packet with the length the drive tells us it can supply
1342 */
1343 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1344 sizeof(di->disc_information_length);
1345
1346 if (cgc.buflen > sizeof(disc_information))
1347 cgc.buflen = sizeof(disc_information);
1348
1349 cgc.cmd[8] = cgc.buflen;
1350 return pkt_generic_packet(pd, &cgc);
1351}
1352
1353static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1354{
1355 struct packet_command cgc;
1356 int ret;
1357
1358 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1359 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1360 cgc.cmd[1] = type & 3;
1361 cgc.cmd[4] = (track & 0xff00) >> 8;
1362 cgc.cmd[5] = track & 0xff;
1363 cgc.cmd[8] = 8;
1364 cgc.quiet = 1;
1365
1366 if ((ret = pkt_generic_packet(pd, &cgc)))
1367 return ret;
1368
1369 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1370 sizeof(ti->track_information_length);
1371
1372 if (cgc.buflen > sizeof(track_information))
1373 cgc.buflen = sizeof(track_information);
1374
1375 cgc.cmd[8] = cgc.buflen;
1376 return pkt_generic_packet(pd, &cgc);
1377}
1378
1379static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1380{
1381 disc_information di;
1382 track_information ti;
1383 __u32 last_track;
1384 int ret = -1;
1385
1386 if ((ret = pkt_get_disc_info(pd, &di)))
1387 return ret;
1388
1389 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1390 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1391 return ret;
1392
1393 /* if this track is blank, try the previous. */
1394 if (ti.blank) {
1395 last_track--;
1396 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1397 return ret;
1398 }
1399
1400 /* if last recorded field is valid, return it. */
1401 if (ti.lra_v) {
1402 *last_written = be32_to_cpu(ti.last_rec_address);
1403 } else {
1404 /* make it up instead */
1405 *last_written = be32_to_cpu(ti.track_start) +
1406 be32_to_cpu(ti.track_size);
1407 if (ti.free_blocks)
1408 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1409 }
1410 return 0;
1411}
1412
1413/*
1414 * write mode select package based on pd->settings
1415 */
1416static int pkt_set_write_settings(struct pktcdvd_device *pd)
1417{
1418 struct packet_command cgc;
1419 struct request_sense sense;
1420 write_param_page *wp;
1421 char buffer[128];
1422 int ret, size;
1423
1424 /* doesn't apply to DVD+RW or DVD-RAM */
1425 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1426 return 0;
1427
1428 memset(buffer, 0, sizeof(buffer));
1429 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1430 cgc.sense = &sense;
1431 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1432 pkt_dump_sense(&cgc);
1433 return ret;
1434 }
1435
1436 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1437 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1438 if (size > sizeof(buffer))
1439 size = sizeof(buffer);
1440
1441 /*
1442 * now get it all
1443 */
1444 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1445 cgc.sense = &sense;
1446 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1447 pkt_dump_sense(&cgc);
1448 return ret;
1449 }
1450
1451 /*
1452 * write page is offset header + block descriptor length
1453 */
1454 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1455
1456 wp->fp = pd->settings.fp;
1457 wp->track_mode = pd->settings.track_mode;
1458 wp->write_type = pd->settings.write_type;
1459 wp->data_block_type = pd->settings.block_mode;
1460
1461 wp->multi_session = 0;
1462
1463#ifdef PACKET_USE_LS
1464 wp->link_size = 7;
1465 wp->ls_v = 1;
1466#endif
1467
1468 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1469 wp->session_format = 0;
1470 wp->subhdr2 = 0x20;
1471 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1472 wp->session_format = 0x20;
1473 wp->subhdr2 = 8;
1474#if 0
1475 wp->mcn[0] = 0x80;
1476 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1477#endif
1478 } else {
1479 /*
1480 * paranoia
1481 */
1482 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1483 return 1;
1484 }
1485 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1486
1487 cgc.buflen = cgc.cmd[8] = size;
1488 if ((ret = pkt_mode_select(pd, &cgc))) {
1489 pkt_dump_sense(&cgc);
1490 return ret;
1491 }
1492
1493 pkt_print_settings(pd);
1494 return 0;
1495}
1496
1497/*
1498 * 0 -- we can write to this track, 1 -- we can't
1499 */
1500static int pkt_good_track(track_information *ti)
1501{
1502 /*
1503 * only good for CD-RW at the moment, not DVD-RW
1504 */
1505
1506 /*
1507 * FIXME: only for FP
1508 */
1509 if (ti->fp == 0)
1510 return 0;
1511
1512 /*
1513 * "good" settings as per Mt Fuji.
1514 */
1515 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1516 return 0;
1517
1518 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1519 return 0;
1520
1521 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1522 return 0;
1523
1524 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1525 return 1;
1526}
1527
1528/*
1529 * 0 -- we can write to this disc, 1 -- we can't
1530 */
1531static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1532{
1533 switch (pd->mmc3_profile) {
1534 case 0x0a: /* CD-RW */
1535 case 0xffff: /* MMC3 not supported */
1536 break;
1537 case 0x1a: /* DVD+RW */
1538 case 0x13: /* DVD-RW */
1539 case 0x12: /* DVD-RAM */
1540 return 0;
1541 default:
61a34937 1542 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1da177e4
LT
1543 return 1;
1544 }
1545
1546 /*
1547 * for disc type 0xff we should probably reserve a new track.
1548 * but i'm not sure, should we leave this to user apps? probably.
1549 */
1550 if (di->disc_type == 0xff) {
1551 printk("pktcdvd: Unknown disc. No track?\n");
1552 return 1;
1553 }
1554
1555 if (di->disc_type != 0x20 && di->disc_type != 0) {
1556 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1557 return 1;
1558 }
1559
1560 if (di->erasable == 0) {
1561 printk("pktcdvd: Disc not erasable\n");
1562 return 1;
1563 }
1564
1565 if (di->border_status == PACKET_SESSION_RESERVED) {
1566 printk("pktcdvd: Can't write to last track (reserved)\n");
1567 return 1;
1568 }
1569
1570 return 0;
1571}
1572
1573static int pkt_probe_settings(struct pktcdvd_device *pd)
1574{
1575 struct packet_command cgc;
1576 unsigned char buf[12];
1577 disc_information di;
1578 track_information ti;
1579 int ret, track;
1580
1581 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1582 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1583 cgc.cmd[8] = 8;
1584 ret = pkt_generic_packet(pd, &cgc);
1585 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1586
1587 memset(&di, 0, sizeof(disc_information));
1588 memset(&ti, 0, sizeof(track_information));
1589
1590 if ((ret = pkt_get_disc_info(pd, &di))) {
1591 printk("failed get_disc\n");
1592 return ret;
1593 }
1594
1595 if (pkt_good_disc(pd, &di))
1596 return -ENXIO;
1597
1598 switch (pd->mmc3_profile) {
1599 case 0x1a: /* DVD+RW */
1600 printk("pktcdvd: inserted media is DVD+RW\n");
1601 break;
1602 case 0x13: /* DVD-RW */
1603 printk("pktcdvd: inserted media is DVD-RW\n");
1604 break;
1605 case 0x12: /* DVD-RAM */
1606 printk("pktcdvd: inserted media is DVD-RAM\n");
1607 break;
1608 default:
1609 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1610 break;
1611 }
1612 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1613
1614 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1615 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1616 printk("pktcdvd: failed get_track\n");
1617 return ret;
1618 }
1619
1620 if (pkt_good_track(&ti)) {
1621 printk("pktcdvd: can't write to this track\n");
1622 return -ENXIO;
1623 }
1624
1625 /*
1626 * we keep packet size in 512 byte units, makes it easier to
1627 * deal with request calculations.
1628 */
1629 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1630 if (pd->settings.size == 0) {
1631 printk("pktcdvd: detected zero packet size!\n");
a460ad62 1632 return -ENXIO;
1da177e4 1633 }
d0272e78
PO
1634 if (pd->settings.size > PACKET_MAX_SECTORS) {
1635 printk("pktcdvd: packet size is too big\n");
1636 return -ENXIO;
1637 }
1da177e4
LT
1638 pd->settings.fp = ti.fp;
1639 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1640
1641 if (ti.nwa_v) {
1642 pd->nwa = be32_to_cpu(ti.next_writable);
1643 set_bit(PACKET_NWA_VALID, &pd->flags);
1644 }
1645
1646 /*
1647 * in theory we could use lra on -RW media as well and just zero
1648 * blocks that haven't been written yet, but in practice that
1649 * is just a no-go. we'll use that for -R, naturally.
1650 */
1651 if (ti.lra_v) {
1652 pd->lra = be32_to_cpu(ti.last_rec_address);
1653 set_bit(PACKET_LRA_VALID, &pd->flags);
1654 } else {
1655 pd->lra = 0xffffffff;
1656 set_bit(PACKET_LRA_VALID, &pd->flags);
1657 }
1658
1659 /*
1660 * fine for now
1661 */
1662 pd->settings.link_loss = 7;
1663 pd->settings.write_type = 0; /* packet */
1664 pd->settings.track_mode = ti.track_mode;
1665
1666 /*
1667 * mode1 or mode2 disc
1668 */
1669 switch (ti.data_mode) {
1670 case PACKET_MODE1:
1671 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1672 break;
1673 case PACKET_MODE2:
1674 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1675 break;
1676 default:
1677 printk("pktcdvd: unknown data mode\n");
1678 return 1;
1679 }
1680 return 0;
1681}
1682
1683/*
1684 * enable/disable write caching on drive
1685 */
1686static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1687{
1688 struct packet_command cgc;
1689 struct request_sense sense;
1690 unsigned char buf[64];
1691 int ret;
1692
1693 memset(buf, 0, sizeof(buf));
1694 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1695 cgc.sense = &sense;
1696 cgc.buflen = pd->mode_offset + 12;
1697
1698 /*
1699 * caching mode page might not be there, so quiet this command
1700 */
1701 cgc.quiet = 1;
1702
1703 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1704 return ret;
1705
1706 buf[pd->mode_offset + 10] |= (!!set << 2);
1707
1708 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1709 ret = pkt_mode_select(pd, &cgc);
1710 if (ret) {
1711 printk("pktcdvd: write caching control failed\n");
1712 pkt_dump_sense(&cgc);
1713 } else if (!ret && set)
1714 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1715 return ret;
1716}
1717
1718static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1719{
1720 struct packet_command cgc;
1721
1722 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1723 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1724 cgc.cmd[4] = lockflag ? 1 : 0;
1725 return pkt_generic_packet(pd, &cgc);
1726}
1727
1728/*
1729 * Returns drive maximum write speed
1730 */
1731static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1732{
1733 struct packet_command cgc;
1734 struct request_sense sense;
1735 unsigned char buf[256+18];
1736 unsigned char *cap_buf;
1737 int ret, offset;
1738
1739 memset(buf, 0, sizeof(buf));
1740 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1741 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1742 cgc.sense = &sense;
1743
1744 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1745 if (ret) {
1746 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1747 sizeof(struct mode_page_header);
1748 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1749 if (ret) {
1750 pkt_dump_sense(&cgc);
1751 return ret;
1752 }
1753 }
1754
1755 offset = 20; /* Obsoleted field, used by older drives */
1756 if (cap_buf[1] >= 28)
1757 offset = 28; /* Current write speed selected */
1758 if (cap_buf[1] >= 30) {
1759 /* If the drive reports at least one "Logical Unit Write
1760 * Speed Performance Descriptor Block", use the information
1761 * in the first block. (contains the highest speed)
1762 */
1763 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1764 if (num_spdb > 0)
1765 offset = 34;
1766 }
1767
1768 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1769 return 0;
1770}
1771
1772/* These tables from cdrecord - I don't have orange book */
1773/* standard speed CD-RW (1-4x) */
1774static char clv_to_speed[16] = {
1775 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1776 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1777};
1778/* high speed CD-RW (-10x) */
1779static char hs_clv_to_speed[16] = {
1780 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1781 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1782};
1783/* ultra high speed CD-RW */
1784static char us_clv_to_speed[16] = {
1785 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1786 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1787};
1788
1789/*
1790 * reads the maximum media speed from ATIP
1791 */
1792static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1793{
1794 struct packet_command cgc;
1795 struct request_sense sense;
1796 unsigned char buf[64];
1797 unsigned int size, st, sp;
1798 int ret;
1799
1800 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1801 cgc.sense = &sense;
1802 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1803 cgc.cmd[1] = 2;
1804 cgc.cmd[2] = 4; /* READ ATIP */
1805 cgc.cmd[8] = 2;
1806 ret = pkt_generic_packet(pd, &cgc);
1807 if (ret) {
1808 pkt_dump_sense(&cgc);
1809 return ret;
1810 }
1811 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1812 if (size > sizeof(buf))
1813 size = sizeof(buf);
1814
1815 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1816 cgc.sense = &sense;
1817 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1818 cgc.cmd[1] = 2;
1819 cgc.cmd[2] = 4;
1820 cgc.cmd[8] = size;
1821 ret = pkt_generic_packet(pd, &cgc);
1822 if (ret) {
1823 pkt_dump_sense(&cgc);
1824 return ret;
1825 }
1826
1827 if (!buf[6] & 0x40) {
1828 printk("pktcdvd: Disc type is not CD-RW\n");
1829 return 1;
1830 }
1831 if (!buf[6] & 0x4) {
1832 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1833 return 1;
1834 }
1835
1836 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1837
1838 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1839
1840 /* Info from cdrecord */
1841 switch (st) {
1842 case 0: /* standard speed */
1843 *speed = clv_to_speed[sp];
1844 break;
1845 case 1: /* high speed */
1846 *speed = hs_clv_to_speed[sp];
1847 break;
1848 case 2: /* ultra high speed */
1849 *speed = us_clv_to_speed[sp];
1850 break;
1851 default:
1852 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1853 return 1;
1854 }
1855 if (*speed) {
1856 printk("pktcdvd: Max. media speed: %d\n",*speed);
1857 return 0;
1858 } else {
1859 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1860 return 1;
1861 }
1862}
1863
1864static int pkt_perform_opc(struct pktcdvd_device *pd)
1865{
1866 struct packet_command cgc;
1867 struct request_sense sense;
1868 int ret;
1869
1870 VPRINTK("pktcdvd: Performing OPC\n");
1871
1872 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1873 cgc.sense = &sense;
1874 cgc.timeout = 60*HZ;
1875 cgc.cmd[0] = GPCMD_SEND_OPC;
1876 cgc.cmd[1] = 1;
1877 if ((ret = pkt_generic_packet(pd, &cgc)))
1878 pkt_dump_sense(&cgc);
1879 return ret;
1880}
1881
1882static int pkt_open_write(struct pktcdvd_device *pd)
1883{
1884 int ret;
1885 unsigned int write_speed, media_write_speed, read_speed;
1886
1887 if ((ret = pkt_probe_settings(pd))) {
61a34937 1888 VPRINTK("pktcdvd: %s failed probe\n", pd->name);
01fd9fda 1889 return -EROFS;
1da177e4
LT
1890 }
1891
1892 if ((ret = pkt_set_write_settings(pd))) {
1893 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1894 return -EIO;
1895 }
1896
1897 pkt_write_caching(pd, USE_WCACHING);
1898
1899 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1900 write_speed = 16 * 177;
1901 switch (pd->mmc3_profile) {
1902 case 0x13: /* DVD-RW */
1903 case 0x1a: /* DVD+RW */
1904 case 0x12: /* DVD-RAM */
1905 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1906 break;
1907 default:
1908 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1909 media_write_speed = 16;
1910 write_speed = min(write_speed, media_write_speed * 177);
1911 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1912 break;
1913 }
1914 read_speed = write_speed;
1915
1916 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1917 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1918 return -EIO;
1919 }
1920 pd->write_speed = write_speed;
1921 pd->read_speed = read_speed;
1922
1923 if ((ret = pkt_perform_opc(pd))) {
1924 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1925 }
1926
1927 return 0;
1928}
1929
1930/*
1931 * called at open time.
1932 */
1933static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1934{
1935 int ret;
1936 long lba;
1937 request_queue_t *q;
1938
1939 /*
1940 * We need to re-open the cdrom device without O_NONBLOCK to be able
1941 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1942 * so bdget() can't fail.
1943 */
1944 bdget(pd->bdev->bd_dev);
1945 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1946 goto out;
1947
8382bf2e
PO
1948 if ((ret = bd_claim(pd->bdev, pd)))
1949 goto out_putdev;
1950
1da177e4
LT
1951 if ((ret = pkt_get_last_written(pd, &lba))) {
1952 printk("pktcdvd: pkt_get_last_written failed\n");
8382bf2e 1953 goto out_unclaim;
1da177e4
LT
1954 }
1955
1956 set_capacity(pd->disk, lba << 2);
1957 set_capacity(pd->bdev->bd_disk, lba << 2);
1958 bd_set_size(pd->bdev, (loff_t)lba << 11);
1959
1960 q = bdev_get_queue(pd->bdev);
1961 if (write) {
1962 if ((ret = pkt_open_write(pd)))
8382bf2e 1963 goto out_unclaim;
1da177e4
LT
1964 /*
1965 * Some CDRW drives can not handle writes larger than one packet,
1966 * even if the size is a multiple of the packet size.
1967 */
1968 spin_lock_irq(q->queue_lock);
1969 blk_queue_max_sectors(q, pd->settings.size);
1970 spin_unlock_irq(q->queue_lock);
1971 set_bit(PACKET_WRITABLE, &pd->flags);
1972 } else {
1973 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1974 clear_bit(PACKET_WRITABLE, &pd->flags);
1975 }
1976
1977 if ((ret = pkt_set_segment_merging(pd, q)))
8382bf2e 1978 goto out_unclaim;
1da177e4 1979
e1bc89bc
PO
1980 if (write) {
1981 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1982 printk("pktcdvd: not enough memory for buffers\n");
1983 ret = -ENOMEM;
1984 goto out_unclaim;
1985 }
1da177e4 1986 printk("pktcdvd: %lukB available on disc\n", lba << 1);
e1bc89bc 1987 }
1da177e4
LT
1988
1989 return 0;
1990
8382bf2e
PO
1991out_unclaim:
1992 bd_release(pd->bdev);
1da177e4
LT
1993out_putdev:
1994 blkdev_put(pd->bdev);
1995out:
1996 return ret;
1997}
1998
1999/*
2000 * called when the device is closed. makes sure that the device flushes
2001 * the internal cache before we close.
2002 */
2003static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2004{
2005 if (flush && pkt_flush_cache(pd))
2006 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2007
2008 pkt_lock_door(pd, 0);
2009
2010 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
8382bf2e 2011 bd_release(pd->bdev);
1da177e4 2012 blkdev_put(pd->bdev);
e1bc89bc
PO
2013
2014 pkt_shrink_pktlist(pd);
1da177e4
LT
2015}
2016
2017static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2018{
2019 if (dev_minor >= MAX_WRITERS)
2020 return NULL;
2021 return pkt_devs[dev_minor];
2022}
2023
2024static int pkt_open(struct inode *inode, struct file *file)
2025{
2026 struct pktcdvd_device *pd = NULL;
2027 int ret;
2028
2029 VPRINTK("pktcdvd: entering open\n");
2030
2031 down(&ctl_mutex);
2032 pd = pkt_find_dev_from_minor(iminor(inode));
2033 if (!pd) {
2034 ret = -ENODEV;
2035 goto out;
2036 }
2037 BUG_ON(pd->refcnt < 0);
2038
2039 pd->refcnt++;
46f4e1b7
PO
2040 if (pd->refcnt > 1) {
2041 if ((file->f_mode & FMODE_WRITE) &&
2042 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2043 ret = -EBUSY;
2044 goto out_dec;
2045 }
2046 } else {
01fd9fda
PO
2047 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2048 if (ret)
1da177e4 2049 goto out_dec;
1da177e4
LT
2050 /*
2051 * needed here as well, since ext2 (among others) may change
2052 * the blocksize at mount time
2053 */
2054 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2055 }
2056
2057 up(&ctl_mutex);
2058 return 0;
2059
2060out_dec:
2061 pd->refcnt--;
2062out:
2063 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2064 up(&ctl_mutex);
2065 return ret;
2066}
2067
2068static int pkt_close(struct inode *inode, struct file *file)
2069{
2070 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2071 int ret = 0;
2072
2073 down(&ctl_mutex);
2074 pd->refcnt--;
2075 BUG_ON(pd->refcnt < 0);
2076 if (pd->refcnt == 0) {
2077 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2078 pkt_release_dev(pd, flush);
2079 }
2080 up(&ctl_mutex);
2081 return ret;
2082}
2083
2084
dd0fc66f 2085static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
1da177e4
LT
2086{
2087 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2088}
2089
2090static void psd_pool_free(void *ptr, void *data)
2091{
2092 kfree(ptr);
2093}
2094
2095static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2096{
2097 struct packet_stacked_data *psd = bio->bi_private;
2098 struct pktcdvd_device *pd = psd->pd;
2099
2100 if (bio->bi_size)
2101 return 1;
2102
2103 bio_put(bio);
2104 bio_endio(psd->bio, psd->bio->bi_size, err);
2105 mempool_free(psd, psd_pool);
2106 pkt_bio_finished(pd);
2107 return 0;
2108}
2109
2110static int pkt_make_request(request_queue_t *q, struct bio *bio)
2111{
2112 struct pktcdvd_device *pd;
2113 char b[BDEVNAME_SIZE];
2114 sector_t zone;
2115 struct packet_data *pkt;
2116 int was_empty, blocked_bio;
2117 struct pkt_rb_node *node;
2118
2119 pd = q->queuedata;
2120 if (!pd) {
2121 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2122 goto end_io;
2123 }
2124
2125 /*
2126 * Clone READ bios so we can have our own bi_end_io callback.
2127 */
2128 if (bio_data_dir(bio) == READ) {
2129 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2130 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2131
2132 psd->pd = pd;
2133 psd->bio = bio;
2134 cloned_bio->bi_bdev = pd->bdev;
2135 cloned_bio->bi_private = psd;
2136 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2137 pd->stats.secs_r += bio->bi_size >> 9;
46c271be 2138 pkt_queue_bio(pd, cloned_bio);
1da177e4
LT
2139 return 0;
2140 }
2141
2142 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2143 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2144 pd->name, (unsigned long long)bio->bi_sector);
2145 goto end_io;
2146 }
2147
2148 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2149 printk("pktcdvd: wrong bio size\n");
2150 goto end_io;
2151 }
2152
2153 blk_queue_bounce(q, &bio);
2154
2155 zone = ZONE(bio->bi_sector, pd);
2156 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2157 (unsigned long long)bio->bi_sector,
2158 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2159
2160 /* Check if we have to split the bio */
2161 {
2162 struct bio_pair *bp;
2163 sector_t last_zone;
2164 int first_sectors;
2165
2166 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2167 if (last_zone != zone) {
2168 BUG_ON(last_zone != zone + pd->settings.size);
2169 first_sectors = last_zone - bio->bi_sector;
2170 bp = bio_split(bio, bio_split_pool, first_sectors);
2171 BUG_ON(!bp);
2172 pkt_make_request(q, &bp->bio1);
2173 pkt_make_request(q, &bp->bio2);
2174 bio_pair_release(bp);
2175 return 0;
2176 }
2177 }
2178
2179 /*
2180 * If we find a matching packet in state WAITING or READ_WAIT, we can
2181 * just append this bio to that packet.
2182 */
2183 spin_lock(&pd->cdrw.active_list_lock);
2184 blocked_bio = 0;
2185 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2186 if (pkt->sector == zone) {
2187 spin_lock(&pkt->lock);
2188 if ((pkt->state == PACKET_WAITING_STATE) ||
2189 (pkt->state == PACKET_READ_WAIT_STATE)) {
2190 pkt_add_list_last(bio, &pkt->orig_bios,
2191 &pkt->orig_bios_tail);
2192 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2193 if ((pkt->write_size >= pkt->frames) &&
2194 (pkt->state == PACKET_WAITING_STATE)) {
2195 atomic_inc(&pkt->run_sm);
2196 wake_up(&pd->wqueue);
2197 }
2198 spin_unlock(&pkt->lock);
2199 spin_unlock(&pd->cdrw.active_list_lock);
2200 return 0;
2201 } else {
2202 blocked_bio = 1;
2203 }
2204 spin_unlock(&pkt->lock);
2205 }
2206 }
2207 spin_unlock(&pd->cdrw.active_list_lock);
2208
2209 /*
2210 * No matching packet found. Store the bio in the work queue.
2211 */
2212 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
1da177e4
LT
2213 node->bio = bio;
2214 spin_lock(&pd->lock);
2215 BUG_ON(pd->bio_queue_size < 0);
2216 was_empty = (pd->bio_queue_size == 0);
2217 pkt_rbtree_insert(pd, node);
2218 spin_unlock(&pd->lock);
2219
2220 /*
2221 * Wake up the worker thread.
2222 */
2223 atomic_set(&pd->scan_queue, 1);
2224 if (was_empty) {
2225 /* This wake_up is required for correct operation */
2226 wake_up(&pd->wqueue);
2227 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2228 /*
2229 * This wake up is not required for correct operation,
2230 * but improves performance in some cases.
2231 */
2232 wake_up(&pd->wqueue);
2233 }
2234 return 0;
2235end_io:
2236 bio_io_error(bio, bio->bi_size);
2237 return 0;
2238}
2239
2240
2241
2242static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2243{
2244 struct pktcdvd_device *pd = q->queuedata;
2245 sector_t zone = ZONE(bio->bi_sector, pd);
2246 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2247 int remaining = (pd->settings.size << 9) - used;
2248 int remaining2;
2249
2250 /*
2251 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2252 * boundary, pkt_make_request() will split the bio.
2253 */
2254 remaining2 = PAGE_SIZE - bio->bi_size;
2255 remaining = max(remaining, remaining2);
2256
2257 BUG_ON(remaining < 0);
2258 return remaining;
2259}
2260
2261static void pkt_init_queue(struct pktcdvd_device *pd)
2262{
2263 request_queue_t *q = pd->disk->queue;
2264
2265 blk_queue_make_request(q, pkt_make_request);
2266 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2267 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2268 blk_queue_merge_bvec(q, pkt_merge_bvec);
2269 q->queuedata = pd;
2270}
2271
2272static int pkt_seq_show(struct seq_file *m, void *p)
2273{
2274 struct pktcdvd_device *pd = m->private;
2275 char *msg;
2276 char bdev_buf[BDEVNAME_SIZE];
2277 int states[PACKET_NUM_STATES];
2278
2279 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2280 bdevname(pd->bdev, bdev_buf));
2281
2282 seq_printf(m, "\nSettings:\n");
2283 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2284
2285 if (pd->settings.write_type == 0)
2286 msg = "Packet";
2287 else
2288 msg = "Unknown";
2289 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2290
2291 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2292 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2293
2294 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2295
2296 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2297 msg = "Mode 1";
2298 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2299 msg = "Mode 2";
2300 else
2301 msg = "Unknown";
2302 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2303
2304 seq_printf(m, "\nStatistics:\n");
2305 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2306 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2307 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2308 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2309 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2310
2311 seq_printf(m, "\nMisc:\n");
2312 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2313 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2314 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2315 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2316 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2317 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2318
2319 seq_printf(m, "\nQueue state:\n");
2320 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2321 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2322 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2323
2324 pkt_count_states(pd, states);
2325 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2326 states[0], states[1], states[2], states[3], states[4], states[5]);
2327
2328 return 0;
2329}
2330
2331static int pkt_seq_open(struct inode *inode, struct file *file)
2332{
2333 return single_open(file, pkt_seq_show, PDE(inode)->data);
2334}
2335
2336static struct file_operations pkt_proc_fops = {
2337 .open = pkt_seq_open,
2338 .read = seq_read,
2339 .llseek = seq_lseek,
2340 .release = single_release
2341};
2342
2343static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2344{
2345 int i;
2346 int ret = 0;
2347 char b[BDEVNAME_SIZE];
2348 struct proc_dir_entry *proc;
2349 struct block_device *bdev;
2350
2351 if (pd->pkt_dev == dev) {
2352 printk("pktcdvd: Recursive setup not allowed\n");
2353 return -EBUSY;
2354 }
2355 for (i = 0; i < MAX_WRITERS; i++) {
2356 struct pktcdvd_device *pd2 = pkt_devs[i];
2357 if (!pd2)
2358 continue;
2359 if (pd2->bdev->bd_dev == dev) {
2360 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2361 return -EBUSY;
2362 }
2363 if (pd2->pkt_dev == dev) {
2364 printk("pktcdvd: Can't chain pktcdvd devices\n");
2365 return -EBUSY;
2366 }
2367 }
2368
2369 bdev = bdget(dev);
2370 if (!bdev)
2371 return -ENOMEM;
2372 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2373 if (ret)
2374 return ret;
2375
2376 /* This is safe, since we have a reference from open(). */
2377 __module_get(THIS_MODULE);
2378
1da177e4
LT
2379 pd->bdev = bdev;
2380 set_blocksize(bdev, CD_FRAMESIZE);
2381
2382 pkt_init_queue(pd);
2383
2384 atomic_set(&pd->cdrw.pending_bios, 0);
2385 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2386 if (IS_ERR(pd->cdrw.thread)) {
2387 printk("pktcdvd: can't start kernel thread\n");
2388 ret = -ENOMEM;
e1bc89bc 2389 goto out_mem;
1da177e4
LT
2390 }
2391
2392 proc = create_proc_entry(pd->name, 0, pkt_proc);
2393 if (proc) {
2394 proc->data = pd;
2395 proc->proc_fops = &pkt_proc_fops;
2396 }
2397 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2398 return 0;
2399
1da177e4
LT
2400out_mem:
2401 blkdev_put(bdev);
2402 /* This is safe: open() is still holding a reference. */
2403 module_put(THIS_MODULE);
2404 return ret;
2405}
2406
2407static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2408{
2409 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2410
2411 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
1da177e4
LT
2412
2413 switch (cmd) {
2414 /*
2415 * forward selected CDROM ioctls to CD-ROM, for UDF
2416 */
2417 case CDROMMULTISESSION:
2418 case CDROMREADTOCENTRY:
2419 case CDROM_LAST_WRITTEN:
2420 case CDROM_SEND_PACKET:
2421 case SCSI_IOCTL_SEND_COMMAND:
118326e9 2422 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2423
2424 case CDROMEJECT:
2425 /*
2426 * The door gets locked when the device is opened, so we
2427 * have to unlock it or else the eject command fails.
2428 */
948423e5
PO
2429 if (pd->refcnt == 1)
2430 pkt_lock_door(pd, 0);
118326e9 2431 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2432
2433 default:
61a34937 2434 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
1da177e4
LT
2435 return -ENOTTY;
2436 }
2437
2438 return 0;
2439}
2440
2441static int pkt_media_changed(struct gendisk *disk)
2442{
2443 struct pktcdvd_device *pd = disk->private_data;
2444 struct gendisk *attached_disk;
2445
2446 if (!pd)
2447 return 0;
2448 if (!pd->bdev)
2449 return 0;
2450 attached_disk = pd->bdev->bd_disk;
2451 if (!attached_disk)
2452 return 0;
2453 return attached_disk->fops->media_changed(attached_disk);
2454}
2455
2456static struct block_device_operations pktcdvd_ops = {
2457 .owner = THIS_MODULE,
2458 .open = pkt_open,
2459 .release = pkt_close,
2460 .ioctl = pkt_ioctl,
2461 .media_changed = pkt_media_changed,
2462};
2463
2464/*
2465 * Set up mapping from pktcdvd device to CD-ROM device.
2466 */
2467static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2468{
2469 int idx;
2470 int ret = -ENOMEM;
2471 struct pktcdvd_device *pd;
2472 struct gendisk *disk;
2473 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2474
2475 for (idx = 0; idx < MAX_WRITERS; idx++)
2476 if (!pkt_devs[idx])
2477 break;
2478 if (idx == MAX_WRITERS) {
2479 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2480 return -EBUSY;
2481 }
2482
1107d2e0 2483 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
1da177e4
LT
2484 if (!pd)
2485 return ret;
1da177e4
LT
2486
2487 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2488 if (!pd->rb_pool)
2489 goto out_mem;
2490
2491 disk = alloc_disk(1);
2492 if (!disk)
2493 goto out_mem;
2494 pd->disk = disk;
2495
e1bc89bc
PO
2496 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2497 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2498 spin_lock_init(&pd->cdrw.active_list_lock);
2499
1da177e4
LT
2500 spin_lock_init(&pd->lock);
2501 spin_lock_init(&pd->iosched.lock);
2502 sprintf(pd->name, "pktcdvd%d", idx);
2503 init_waitqueue_head(&pd->wqueue);
2504 pd->bio_queue = RB_ROOT;
2505
2506 disk->major = pkt_major;
2507 disk->first_minor = idx;
2508 disk->fops = &pktcdvd_ops;
2509 disk->flags = GENHD_FL_REMOVABLE;
2510 sprintf(disk->disk_name, "pktcdvd%d", idx);
2511 disk->private_data = pd;
2512 disk->queue = blk_alloc_queue(GFP_KERNEL);
2513 if (!disk->queue)
2514 goto out_mem2;
2515
2516 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2517 ret = pkt_new_dev(pd, dev);
2518 if (ret)
2519 goto out_new_dev;
2520
2521 add_disk(disk);
2522 pkt_devs[idx] = pd;
2523 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2524 return 0;
2525
2526out_new_dev:
2527 blk_put_queue(disk->queue);
2528out_mem2:
2529 put_disk(disk);
2530out_mem:
2531 if (pd->rb_pool)
2532 mempool_destroy(pd->rb_pool);
2533 kfree(pd);
2534 return ret;
2535}
2536
2537/*
2538 * Tear down mapping from pktcdvd device to CD-ROM device.
2539 */
2540static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2541{
2542 struct pktcdvd_device *pd;
2543 int idx;
2544 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2545
2546 for (idx = 0; idx < MAX_WRITERS; idx++) {
2547 pd = pkt_devs[idx];
2548 if (pd && (pd->pkt_dev == pkt_dev))
2549 break;
2550 }
2551 if (idx == MAX_WRITERS) {
2552 DPRINTK("pktcdvd: dev not setup\n");
2553 return -ENXIO;
2554 }
2555
2556 if (pd->refcnt > 0)
2557 return -EBUSY;
2558
2559 if (!IS_ERR(pd->cdrw.thread))
2560 kthread_stop(pd->cdrw.thread);
2561
2562 blkdev_put(pd->bdev);
2563
1da177e4
LT
2564 remove_proc_entry(pd->name, pkt_proc);
2565 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2566
2567 del_gendisk(pd->disk);
2568 blk_put_queue(pd->disk->queue);
2569 put_disk(pd->disk);
2570
2571 pkt_devs[idx] = NULL;
2572 mempool_destroy(pd->rb_pool);
2573 kfree(pd);
2574
2575 /* This is safe: open() is still holding a reference. */
2576 module_put(THIS_MODULE);
2577 return 0;
2578}
2579
2580static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2581{
2582 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2583 if (pd) {
2584 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2585 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2586 } else {
2587 ctrl_cmd->dev = 0;
2588 ctrl_cmd->pkt_dev = 0;
2589 }
2590 ctrl_cmd->num_devices = MAX_WRITERS;
2591}
2592
2593static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2594{
2595 void __user *argp = (void __user *)arg;
2596 struct pkt_ctrl_command ctrl_cmd;
2597 int ret = 0;
2598
2599 if (cmd != PACKET_CTRL_CMD)
2600 return -ENOTTY;
2601
2602 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2603 return -EFAULT;
2604
2605 switch (ctrl_cmd.command) {
2606 case PKT_CTRL_CMD_SETUP:
2607 if (!capable(CAP_SYS_ADMIN))
2608 return -EPERM;
2609 down(&ctl_mutex);
2610 ret = pkt_setup_dev(&ctrl_cmd);
2611 up(&ctl_mutex);
2612 break;
2613 case PKT_CTRL_CMD_TEARDOWN:
2614 if (!capable(CAP_SYS_ADMIN))
2615 return -EPERM;
2616 down(&ctl_mutex);
2617 ret = pkt_remove_dev(&ctrl_cmd);
2618 up(&ctl_mutex);
2619 break;
2620 case PKT_CTRL_CMD_STATUS:
2621 down(&ctl_mutex);
2622 pkt_get_status(&ctrl_cmd);
2623 up(&ctl_mutex);
2624 break;
2625 default:
2626 return -ENOTTY;
2627 }
2628
2629 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2630 return -EFAULT;
2631 return ret;
2632}
2633
2634
2635static struct file_operations pkt_ctl_fops = {
2636 .ioctl = pkt_ctl_ioctl,
2637 .owner = THIS_MODULE,
2638};
2639
2640static struct miscdevice pkt_misc = {
2641 .minor = MISC_DYNAMIC_MINOR,
2642 .name = "pktcdvd",
2643 .devfs_name = "pktcdvd/control",
2644 .fops = &pkt_ctl_fops
2645};
2646
2647static int __init pkt_init(void)
2648{
2649 int ret;
2650
2651 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2652 if (!psd_pool)
2653 return -ENOMEM;
2654
2655 ret = register_blkdev(pkt_major, "pktcdvd");
2656 if (ret < 0) {
2657 printk("pktcdvd: Unable to register block device\n");
2658 goto out2;
2659 }
2660 if (!pkt_major)
2661 pkt_major = ret;
2662
2663 ret = misc_register(&pkt_misc);
2664 if (ret) {
2665 printk("pktcdvd: Unable to register misc device\n");
2666 goto out;
2667 }
2668
2669 init_MUTEX(&ctl_mutex);
2670
2671 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2672
1da177e4
LT
2673 return 0;
2674
2675out:
2676 unregister_blkdev(pkt_major, "pktcdvd");
2677out2:
2678 mempool_destroy(psd_pool);
2679 return ret;
2680}
2681
2682static void __exit pkt_exit(void)
2683{
2684 remove_proc_entry("pktcdvd", proc_root_driver);
2685 misc_deregister(&pkt_misc);
2686 unregister_blkdev(pkt_major, "pktcdvd");
2687 mempool_destroy(psd_pool);
2688}
2689
2690MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2691MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2692MODULE_LICENSE("GPL");
2693
2694module_init(pkt_init);
2695module_exit(pkt_exit);
This page took 0.210265 seconds and 5 git commands to generate.