arm-cci: fix handling cpumask_any_but return value
[deliverable/linux.git] / drivers / bus / arm-cci.c
CommitLineData
ed69bdd8
LP
1/*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/arm-cci.h>
18#include <linux/io.h>
c6f85cb4 19#include <linux/interrupt.h>
ed69bdd8
LP
20#include <linux/module.h>
21#include <linux/of_address.h>
b91c8f28
PA
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
c6f85cb4 24#include <linux/perf_event.h>
b91c8f28 25#include <linux/platform_device.h>
ed69bdd8 26#include <linux/slab.h>
b91c8f28 27#include <linux/spinlock.h>
ed69bdd8
LP
28
29#include <asm/cacheflush.h>
30#include <asm/smp_plat.h>
31
f6b9e83c
SP
32static void __iomem *cci_ctrl_base;
33static unsigned long cci_ctrl_phys;
ed69bdd8 34
ee8e5d5f 35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
ed69bdd8
LP
36struct cci_nb_ports {
37 unsigned int nb_ace;
38 unsigned int nb_ace_lite;
39};
40
f6b9e83c
SP
41static const struct cci_nb_ports cci400_ports = {
42 .nb_ace = 2,
43 .nb_ace_lite = 3
ed69bdd8
LP
44};
45
ee8e5d5f
SP
46#define CCI400_PORTS_DATA (&cci400_ports)
47#else
48#define CCI400_PORTS_DATA (NULL)
49#endif
50
f6b9e83c 51static const struct of_device_id arm_cci_matches[] = {
ee8e5d5f
SP
52#ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
a95791ef
SP
54#endif
55#ifdef CONFIG_ARM_CCI500_PMU
56 { .compatible = "arm,cci-500", },
ee8e5d5f 57#endif
f6b9e83c 58 {},
ed69bdd8
LP
59};
60
f4d58938 61#ifdef CONFIG_ARM_CCI_PMU
b91c8f28 62
f4d58938 63#define DRIVER_NAME "ARM-CCI"
f6b9e83c
SP
64#define DRIVER_NAME_PMU DRIVER_NAME " PMU"
65
b91c8f28
PA
66#define CCI_PMCR 0x0100
67#define CCI_PID2 0x0fe8
68
69#define CCI_PMCR_CEN 0x00000001
70#define CCI_PMCR_NCNT_MASK 0x0000f800
71#define CCI_PMCR_NCNT_SHIFT 11
72
73#define CCI_PID2_REV_MASK 0xf0
74#define CCI_PID2_REV_SHIFT 4
75
f6b9e83c
SP
76#define CCI_PMU_EVT_SEL 0x000
77#define CCI_PMU_CNTR 0x004
78#define CCI_PMU_CNTR_CTRL 0x008
79#define CCI_PMU_OVRFLW 0x00c
80
81#define CCI_PMU_OVRFLW_FLAG 1
82
ab5b316d
SP
83#define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
84#define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
85#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
86#define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
f6b9e83c 87
ab5b316d
SP
88#define CCI_PMU_MAX_HW_CNTRS(model) \
89 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
f6b9e83c 90
fc17c839
SP
91/* Types of interfaces that can generate events */
92enum {
93 CCI_IF_SLAVE,
94 CCI_IF_MASTER,
a95791ef
SP
95#ifdef CONFIG_ARM_CCI500_PMU
96 CCI_IF_GLOBAL,
97#endif
fc17c839
SP
98 CCI_IF_MAX,
99};
100
101struct event_range {
102 u32 min;
103 u32 max;
104};
105
f6b9e83c 106struct cci_pmu_hw_events {
ab5b316d
SP
107 struct perf_event **events;
108 unsigned long *used_mask;
f6b9e83c
SP
109 raw_spinlock_t pmu_lock;
110};
111
31216290 112struct cci_pmu;
ab5b316d
SP
113/*
114 * struct cci_pmu_model:
115 * @fixed_hw_cntrs - Number of fixed event counters
116 * @num_hw_cntrs - Maximum number of programmable event counters
117 * @cntr_size - Size of an event counter mapping
118 */
fc17c839
SP
119struct cci_pmu_model {
120 char *name;
ab5b316d
SP
121 u32 fixed_hw_cntrs;
122 u32 num_hw_cntrs;
123 u32 cntr_size;
5e442eba
MR
124 struct attribute **format_attrs;
125 struct attribute **event_attrs;
fc17c839 126 struct event_range event_ranges[CCI_IF_MAX];
31216290
SP
127 int (*validate_hw_event)(struct cci_pmu *, unsigned long);
128 int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
fc17c839
SP
129};
130
131static struct cci_pmu_model cci_pmu_models[];
132
f6b9e83c
SP
133struct cci_pmu {
134 void __iomem *base;
135 struct pmu pmu;
136 int nr_irqs;
ab5b316d 137 int *irqs;
f6b9e83c 138 unsigned long active_irqs;
fc17c839 139 const struct cci_pmu_model *model;
f6b9e83c
SP
140 struct cci_pmu_hw_events hw_events;
141 struct platform_device *plat_device;
ab5b316d 142 int num_cntrs;
f6b9e83c
SP
143 atomic_t active_events;
144 struct mutex reserve_mutex;
a1a076d7 145 struct notifier_block cpu_nb;
f6b9e83c
SP
146 cpumask_t cpus;
147};
f6b9e83c
SP
148
149#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
150
f4d58938
SP
151enum cci_models {
152#ifdef CONFIG_ARM_CCI400_PMU
153 CCI400_R0,
154 CCI400_R1,
a95791ef
SP
155#endif
156#ifdef CONFIG_ARM_CCI500_PMU
157 CCI500_R0,
f4d58938
SP
158#endif
159 CCI_MODEL_MAX
160};
161
e14cfad3
SP
162static ssize_t cci_pmu_format_show(struct device *dev,
163 struct device_attribute *attr, char *buf);
164static ssize_t cci_pmu_event_show(struct device *dev,
165 struct device_attribute *attr, char *buf);
166
5e442eba
MR
167#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
168 &((struct dev_ext_attribute[]) { \
169 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \
170 })[0].attr.attr
e14cfad3
SP
171
172#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
173 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
174#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
175 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
176
f4d58938
SP
177/* CCI400 PMU Specific definitions */
178
179#ifdef CONFIG_ARM_CCI400_PMU
180
b91c8f28 181/* Port ids */
f4d58938
SP
182#define CCI400_PORT_S0 0
183#define CCI400_PORT_S1 1
184#define CCI400_PORT_S2 2
185#define CCI400_PORT_S3 3
186#define CCI400_PORT_S4 4
187#define CCI400_PORT_M0 5
188#define CCI400_PORT_M1 6
189#define CCI400_PORT_M2 7
190
191#define CCI400_R1_PX 5
b91c8f28 192
b91c8f28
PA
193/*
194 * Instead of an event id to monitor CCI cycles, a dedicated counter is
195 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
196 * make use of this event in hardware.
197 */
198enum cci400_perf_events {
f4d58938 199 CCI400_PMU_CYCLES = 0xff
b91c8f28
PA
200};
201
f4d58938
SP
202#define CCI400_PMU_CYCLE_CNTR_IDX 0
203#define CCI400_PMU_CNTR0_IDX 1
b91c8f28
PA
204
205/*
206 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
207 * ports and bits 4:0 are event codes. There are different event codes
208 * associated with each port type.
209 *
210 * Additionally, the range of events associated with the port types changed
211 * between Rev0 and Rev1.
212 *
213 * The constants below define the range of valid codes for each port type for
214 * the different revisions and are used to validate the event to be monitored.
215 */
216
f4d58938
SP
217#define CCI400_PMU_EVENT_MASK 0xffUL
218#define CCI400_PMU_EVENT_SOURCE_SHIFT 5
219#define CCI400_PMU_EVENT_SOURCE_MASK 0x7
220#define CCI400_PMU_EVENT_CODE_SHIFT 0
221#define CCI400_PMU_EVENT_CODE_MASK 0x1f
222#define CCI400_PMU_EVENT_SOURCE(event) \
223 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
224 CCI400_PMU_EVENT_SOURCE_MASK)
225#define CCI400_PMU_EVENT_CODE(event) \
226 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
227
228#define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
229#define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
230#define CCI400_R0_MASTER_PORT_MIN_EV 0x14
231#define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
232
233#define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
234#define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
235#define CCI400_R1_MASTER_PORT_MIN_EV 0x00
236#define CCI400_R1_MASTER_PORT_MAX_EV 0x11
b91c8f28 237
e14cfad3
SP
238#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
239 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
240 (unsigned long)_config)
241
242static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
243 struct device_attribute *attr, char *buf);
244
5e442eba 245static struct attribute *cci400_pmu_format_attrs[] = {
e14cfad3
SP
246 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
247 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
5e442eba 248 NULL
e14cfad3
SP
249};
250
5e442eba 251static struct attribute *cci400_r0_pmu_event_attrs[] = {
e14cfad3
SP
252 /* Slave events */
253 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
254 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
255 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
256 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
257 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
262 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
263 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
264 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
265 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
266 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
267 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
268 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
269 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
272 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
273 /* Master events */
274 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
275 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
276 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
277 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
278 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
279 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
280 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
281 /* Special event for cycles counter */
282 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
5e442eba 283 NULL
e14cfad3
SP
284};
285
5e442eba 286static struct attribute *cci400_r1_pmu_event_attrs[] = {
e14cfad3
SP
287 /* Slave events */
288 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
289 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
290 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
291 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
292 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
296 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
297 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
298 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
299 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
300 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
301 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
302 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
303 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
304 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
306 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
307 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
308 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
309 /* Master events */
310 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
311 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
312 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
313 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
314 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
315 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
316 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
318 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
319 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
320 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
321 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
322 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
323 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
324 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
325 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
326 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
327 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
328 /* Special event for cycles counter */
329 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
5e442eba 330 NULL
e14cfad3
SP
331};
332
333static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
334 struct device_attribute *attr, char *buf)
335{
336 struct dev_ext_attribute *eattr = container_of(attr,
337 struct dev_ext_attribute, attr);
338 return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
339}
340
31216290
SP
341static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
342 struct cci_pmu_hw_events *hw,
343 unsigned long cci_event)
344{
345 int idx;
346
347 /* cycles event idx is fixed */
f4d58938
SP
348 if (cci_event == CCI400_PMU_CYCLES) {
349 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
31216290
SP
350 return -EAGAIN;
351
f4d58938 352 return CCI400_PMU_CYCLE_CNTR_IDX;
31216290
SP
353 }
354
f4d58938 355 for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
31216290
SP
356 if (!test_and_set_bit(idx, hw->used_mask))
357 return idx;
358
359 /* No counters available */
360 return -EAGAIN;
361}
362
363static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
b91c8f28 364{
f4d58938
SP
365 u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
366 u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
fc17c839 367 int if_type;
b91c8f28 368
f4d58938 369 if (hw_event & ~CCI400_PMU_EVENT_MASK)
874c5714
SP
370 return -ENOENT;
371
f4d58938 372 if (hw_event == CCI400_PMU_CYCLES)
31216290
SP
373 return hw_event;
374
b91c8f28 375 switch (ev_source) {
f4d58938
SP
376 case CCI400_PORT_S0:
377 case CCI400_PORT_S1:
378 case CCI400_PORT_S2:
379 case CCI400_PORT_S3:
380 case CCI400_PORT_S4:
b91c8f28 381 /* Slave Interface */
fc17c839 382 if_type = CCI_IF_SLAVE;
b91c8f28 383 break;
f4d58938
SP
384 case CCI400_PORT_M0:
385 case CCI400_PORT_M1:
386 case CCI400_PORT_M2:
b91c8f28 387 /* Master Interface */
fc17c839 388 if_type = CCI_IF_MASTER;
b91c8f28 389 break;
fc17c839
SP
390 default:
391 return -ENOENT;
b91c8f28
PA
392 }
393
a1a076d7
SP
394 if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
395 ev_code <= cci_pmu->model->event_ranges[if_type].max)
fc17c839
SP
396 return hw_event;
397
b91c8f28
PA
398 return -ENOENT;
399}
400
f4d58938 401static int probe_cci400_revision(void)
f6b9e83c
SP
402{
403 int rev;
404 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
405 rev >>= CCI_PID2_REV_SHIFT;
406
f4d58938
SP
407 if (rev < CCI400_R1_PX)
408 return CCI400_R0;
f6b9e83c 409 else
f4d58938 410 return CCI400_R1;
f6b9e83c
SP
411}
412
fc17c839 413static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
f6b9e83c 414{
772742a6 415 if (platform_has_secure_cci_access())
f4d58938
SP
416 return &cci_pmu_models[probe_cci400_revision()];
417 return NULL;
418}
419#else /* !CONFIG_ARM_CCI400_PMU */
420static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
421{
772742a6 422 return NULL;
f6b9e83c 423}
f4d58938 424#endif /* CONFIG_ARM_CCI400_PMU */
f6b9e83c 425
a95791ef
SP
426#ifdef CONFIG_ARM_CCI500_PMU
427
428/*
429 * CCI500 provides 8 independent event counters that can count
430 * any of the events available.
431 *
432 * CCI500 PMU event id is an 9-bit value made of two parts.
433 * bits [8:5] - Source for the event
434 * 0x0-0x6 - Slave interfaces
435 * 0x8-0xD - Master interfaces
436 * 0xf - Global Events
437 * 0x7,0xe - Reserved
438 *
439 * bits [4:0] - Event code (specific to type of interface)
440 */
441
442/* Port ids */
443#define CCI500_PORT_S0 0x0
444#define CCI500_PORT_S1 0x1
445#define CCI500_PORT_S2 0x2
446#define CCI500_PORT_S3 0x3
447#define CCI500_PORT_S4 0x4
448#define CCI500_PORT_S5 0x5
449#define CCI500_PORT_S6 0x6
450
451#define CCI500_PORT_M0 0x8
452#define CCI500_PORT_M1 0x9
453#define CCI500_PORT_M2 0xa
454#define CCI500_PORT_M3 0xb
455#define CCI500_PORT_M4 0xc
456#define CCI500_PORT_M5 0xd
457
458#define CCI500_PORT_GLOBAL 0xf
459
460#define CCI500_PMU_EVENT_MASK 0x1ffUL
461#define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5
462#define CCI500_PMU_EVENT_SOURCE_MASK 0xf
463#define CCI500_PMU_EVENT_CODE_SHIFT 0x0
464#define CCI500_PMU_EVENT_CODE_MASK 0x1f
465
466#define CCI500_PMU_EVENT_SOURCE(event) \
467 ((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
468#define CCI500_PMU_EVENT_CODE(event) \
469 ((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
470
471#define CCI500_SLAVE_PORT_MIN_EV 0x00
472#define CCI500_SLAVE_PORT_MAX_EV 0x1f
473#define CCI500_MASTER_PORT_MIN_EV 0x00
474#define CCI500_MASTER_PORT_MAX_EV 0x06
475#define CCI500_GLOBAL_PORT_MIN_EV 0x00
476#define CCI500_GLOBAL_PORT_MAX_EV 0x0f
477
e14cfad3
SP
478
479#define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
480 CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
481 (unsigned long) _config)
482
483static ssize_t cci500_pmu_global_event_show(struct device *dev,
484 struct device_attribute *attr, char *buf);
485
5e442eba 486static struct attribute *cci500_pmu_format_attrs[] = {
e14cfad3
SP
487 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
488 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
5e442eba 489 NULL,
e14cfad3
SP
490};
491
5e442eba 492static struct attribute *cci500_pmu_event_attrs[] = {
e14cfad3
SP
493 /* Slave events */
494 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
495 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
496 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
500 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
501 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
502 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
503 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
504 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
505 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
506 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
508 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
509 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
510 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
511 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
512 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
513 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
514 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
515 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
516 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
517 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
518 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
519 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
520 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
521 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
522 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
523 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
524 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
525 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
526
527 /* Master events */
528 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
529 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
530 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
531 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
532 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
533 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
534 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
535
536 /* Global events */
537 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
538 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
539 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
540 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
541 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
542 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
543 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
544 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
545 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
546 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
547 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
548 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
549 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
550 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
551 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
552 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
5e442eba 553 NULL
e14cfad3
SP
554};
555
556static ssize_t cci500_pmu_global_event_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558{
559 struct dev_ext_attribute *eattr = container_of(attr,
560 struct dev_ext_attribute, attr);
561 /* Global events have single fixed source code */
562 return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
563 (unsigned long)eattr->var, CCI500_PORT_GLOBAL);
564}
565
a95791ef
SP
566static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
567 unsigned long hw_event)
568{
569 u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event);
570 u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event);
571 int if_type;
572
573 if (hw_event & ~CCI500_PMU_EVENT_MASK)
574 return -ENOENT;
575
576 switch (ev_source) {
577 case CCI500_PORT_S0:
578 case CCI500_PORT_S1:
579 case CCI500_PORT_S2:
580 case CCI500_PORT_S3:
581 case CCI500_PORT_S4:
582 case CCI500_PORT_S5:
583 case CCI500_PORT_S6:
584 if_type = CCI_IF_SLAVE;
585 break;
586 case CCI500_PORT_M0:
587 case CCI500_PORT_M1:
588 case CCI500_PORT_M2:
589 case CCI500_PORT_M3:
590 case CCI500_PORT_M4:
591 case CCI500_PORT_M5:
592 if_type = CCI_IF_MASTER;
593 break;
594 case CCI500_PORT_GLOBAL:
595 if_type = CCI_IF_GLOBAL;
596 break;
597 default:
598 return -ENOENT;
599 }
600
601 if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
602 ev_code <= cci_pmu->model->event_ranges[if_type].max)
603 return hw_event;
604
605 return -ENOENT;
606}
607#endif /* CONFIG_ARM_CCI500_PMU */
608
e14cfad3
SP
609static ssize_t cci_pmu_format_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611{
612 struct dev_ext_attribute *eattr = container_of(attr,
613 struct dev_ext_attribute, attr);
614 return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
615}
616
617static ssize_t cci_pmu_event_show(struct device *dev,
618 struct device_attribute *attr, char *buf)
619{
620 struct dev_ext_attribute *eattr = container_of(attr,
621 struct dev_ext_attribute, attr);
622 /* source parameter is mandatory for normal PMU events */
623 return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
624 (unsigned long)eattr->var);
625}
626
c6f85cb4 627static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 628{
ab5b316d 629 return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
b91c8f28
PA
630}
631
a1a076d7 632static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
b91c8f28 633{
ab5b316d
SP
634 return readl_relaxed(cci_pmu->base +
635 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
b91c8f28
PA
636}
637
a1a076d7
SP
638static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
639 int idx, unsigned int offset)
b91c8f28 640{
a1a076d7 641 return writel_relaxed(value, cci_pmu->base +
ab5b316d 642 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
b91c8f28
PA
643}
644
a1a076d7 645static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 646{
a1a076d7 647 pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
b91c8f28
PA
648}
649
a1a076d7 650static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 651{
a1a076d7 652 pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
b91c8f28
PA
653}
654
a1a076d7 655static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
b91c8f28 656{
a1a076d7 657 pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
b91c8f28
PA
658}
659
ab5b316d
SP
660/*
661 * Returns the number of programmable counters actually implemented
662 * by the cci
663 */
b91c8f28
PA
664static u32 pmu_get_max_counters(void)
665{
ab5b316d
SP
666 return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
667 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
b91c8f28
PA
668}
669
c6f85cb4 670static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
b91c8f28 671{
c6f85cb4 672 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
31216290 673 unsigned long cci_event = event->hw.config_base;
b91c8f28
PA
674 int idx;
675
31216290
SP
676 if (cci_pmu->model->get_event_idx)
677 return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
b91c8f28 678
31216290
SP
679 /* Generic code to find an unused idx from the mask */
680 for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
b91c8f28
PA
681 if (!test_and_set_bit(idx, hw->used_mask))
682 return idx;
683
684 /* No counters available */
685 return -EAGAIN;
686}
687
688static int pmu_map_event(struct perf_event *event)
689{
31216290 690 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
b91c8f28 691
31216290
SP
692 if (event->attr.type < PERF_TYPE_MAX ||
693 !cci_pmu->model->validate_hw_event)
b91c8f28
PA
694 return -ENOENT;
695
31216290 696 return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
b91c8f28
PA
697}
698
c6f85cb4 699static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
b91c8f28
PA
700{
701 int i;
702 struct platform_device *pmu_device = cci_pmu->plat_device;
703
704 if (unlikely(!pmu_device))
705 return -ENODEV;
706
a1a076d7 707 if (cci_pmu->nr_irqs < 1) {
b91c8f28
PA
708 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
709 return -ENODEV;
710 }
711
712 /*
713 * Register all available CCI PMU interrupts. In the interrupt handler
714 * we iterate over the counters checking for interrupt source (the
715 * overflowing counter) and clear it.
716 *
717 * This should allow handling of non-unique interrupt for the counters.
718 */
a1a076d7
SP
719 for (i = 0; i < cci_pmu->nr_irqs; i++) {
720 int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
b91c8f28
PA
721 "arm-cci-pmu", cci_pmu);
722 if (err) {
723 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
a1a076d7 724 cci_pmu->irqs[i]);
b91c8f28
PA
725 return err;
726 }
727
a1a076d7 728 set_bit(i, &cci_pmu->active_irqs);
b91c8f28
PA
729 }
730
731 return 0;
732}
733
c6f85cb4
MR
734static void pmu_free_irq(struct cci_pmu *cci_pmu)
735{
736 int i;
737
a1a076d7
SP
738 for (i = 0; i < cci_pmu->nr_irqs; i++) {
739 if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
c6f85cb4
MR
740 continue;
741
a1a076d7 742 free_irq(cci_pmu->irqs[i], cci_pmu);
c6f85cb4
MR
743 }
744}
745
746static u32 pmu_read_counter(struct perf_event *event)
747{
748 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
749 struct hw_perf_event *hw_counter = &event->hw;
750 int idx = hw_counter->idx;
751 u32 value;
752
753 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
754 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
755 return 0;
756 }
a1a076d7 757 value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
c6f85cb4
MR
758
759 return value;
760}
761
762static void pmu_write_counter(struct perf_event *event, u32 value)
763{
764 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
765 struct hw_perf_event *hw_counter = &event->hw;
766 int idx = hw_counter->idx;
767
768 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
769 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
770 else
a1a076d7 771 pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
c6f85cb4
MR
772}
773
774static u64 pmu_event_update(struct perf_event *event)
775{
776 struct hw_perf_event *hwc = &event->hw;
777 u64 delta, prev_raw_count, new_raw_count;
778
779 do {
780 prev_raw_count = local64_read(&hwc->prev_count);
781 new_raw_count = pmu_read_counter(event);
782 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
783 new_raw_count) != prev_raw_count);
784
785 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
786
787 local64_add(delta, &event->count);
788
789 return new_raw_count;
790}
791
792static void pmu_read(struct perf_event *event)
793{
794 pmu_event_update(event);
795}
796
797void pmu_event_set_period(struct perf_event *event)
798{
799 struct hw_perf_event *hwc = &event->hw;
800 /*
801 * The CCI PMU counters have a period of 2^32. To account for the
802 * possiblity of extreme interrupt latency we program for a period of
803 * half that. Hopefully we can handle the interrupt before another 2^31
804 * events occur and the counter overtakes its previous value.
805 */
806 u64 val = 1ULL << 31;
807 local64_set(&hwc->prev_count, val);
808 pmu_write_counter(event, val);
809}
810
b91c8f28
PA
811static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
812{
813 unsigned long flags;
c6f85cb4 814 struct cci_pmu *cci_pmu = dev;
a1a076d7 815 struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
b91c8f28
PA
816 int idx, handled = IRQ_NONE;
817
818 raw_spin_lock_irqsave(&events->pmu_lock, flags);
b91c8f28
PA
819 /*
820 * Iterate over counters and update the corresponding perf events.
821 * This should work regardless of whether we have per-counter overflow
822 * interrupt or a combined overflow interrupt.
823 */
31216290 824 for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
b91c8f28
PA
825 struct perf_event *event = events->events[idx];
826 struct hw_perf_event *hw_counter;
827
828 if (!event)
829 continue;
830
831 hw_counter = &event->hw;
832
833 /* Did this counter overflow? */
a1a076d7 834 if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
fc5130de 835 CCI_PMU_OVRFLW_FLAG))
b91c8f28
PA
836 continue;
837
a1a076d7
SP
838 pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
839 CCI_PMU_OVRFLW);
b91c8f28 840
c6f85cb4
MR
841 pmu_event_update(event);
842 pmu_event_set_period(event);
b91c8f28 843 handled = IRQ_HANDLED;
b91c8f28
PA
844 }
845 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
846
847 return IRQ_RETVAL(handled);
848}
849
c6f85cb4 850static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
b91c8f28 851{
c6f85cb4
MR
852 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
853 if (ret) {
854 pmu_free_irq(cci_pmu);
855 return ret;
856 }
857 return 0;
858}
b91c8f28 859
c6f85cb4
MR
860static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
861{
862 pmu_free_irq(cci_pmu);
863}
b91c8f28 864
c6f85cb4
MR
865static void hw_perf_event_destroy(struct perf_event *event)
866{
867 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
868 atomic_t *active_events = &cci_pmu->active_events;
869 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
870
871 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
872 cci_pmu_put_hw(cci_pmu);
873 mutex_unlock(reserve_mutex);
b91c8f28
PA
874 }
875}
876
c6f85cb4 877static void cci_pmu_enable(struct pmu *pmu)
b91c8f28 878{
c6f85cb4
MR
879 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
880 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
ab5b316d 881 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
b91c8f28 882 unsigned long flags;
c6f85cb4
MR
883 u32 val;
884
885 if (!enabled)
886 return;
887
888 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
889
890 /* Enable all the PMU counters. */
891 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
892 writel(val, cci_ctrl_base + CCI_PMCR);
893 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
894
895}
896
897static void cci_pmu_disable(struct pmu *pmu)
898{
899 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
900 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
901 unsigned long flags;
902 u32 val;
903
904 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
905
906 /* Disable all the PMU counters. */
907 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
908 writel(val, cci_ctrl_base + CCI_PMCR);
909 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
910}
911
31216290
SP
912/*
913 * Check if the idx represents a non-programmable counter.
914 * All the fixed event counters are mapped before the programmable
915 * counters.
916 */
917static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
918{
919 return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
920}
921
c6f85cb4
MR
922static void cci_pmu_start(struct perf_event *event, int pmu_flags)
923{
924 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
925 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
926 struct hw_perf_event *hwc = &event->hw;
927 int idx = hwc->idx;
928 unsigned long flags;
929
930 /*
931 * To handle interrupt latency, we always reprogram the period
932 * regardlesss of PERF_EF_RELOAD.
933 */
934 if (pmu_flags & PERF_EF_RELOAD)
935 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
936
937 hwc->state = 0;
b91c8f28
PA
938
939 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
940 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
941 return;
942 }
943
c6f85cb4 944 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
b91c8f28 945
31216290
SP
946 /* Configure the counter unless you are counting a fixed event */
947 if (!pmu_fixed_hw_idx(cci_pmu, idx))
a1a076d7 948 pmu_set_event(cci_pmu, idx, hwc->config_base);
b91c8f28 949
c6f85cb4 950 pmu_event_set_period(event);
a1a076d7 951 pmu_enable_counter(cci_pmu, idx);
b91c8f28 952
c6f85cb4 953 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
b91c8f28
PA
954}
955
c6f85cb4 956static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
b91c8f28 957{
c6f85cb4
MR
958 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
959 struct hw_perf_event *hwc = &event->hw;
960 int idx = hwc->idx;
961
962 if (hwc->state & PERF_HES_STOPPED)
963 return;
b91c8f28
PA
964
965 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
966 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
967 return;
968 }
969
c6f85cb4
MR
970 /*
971 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
972 * cci_pmu_start()
973 */
a1a076d7 974 pmu_disable_counter(cci_pmu, idx);
c6f85cb4
MR
975 pmu_event_update(event);
976 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
b91c8f28
PA
977}
978
c6f85cb4 979static int cci_pmu_add(struct perf_event *event, int flags)
b91c8f28 980{
c6f85cb4
MR
981 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
982 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
983 struct hw_perf_event *hwc = &event->hw;
984 int idx;
985 int err = 0;
b91c8f28 986
c6f85cb4 987 perf_pmu_disable(event->pmu);
b91c8f28 988
c6f85cb4
MR
989 /* If we don't have a space for the counter then finish early. */
990 idx = pmu_get_event_idx(hw_events, event);
991 if (idx < 0) {
992 err = idx;
993 goto out;
994 }
b91c8f28 995
c6f85cb4
MR
996 event->hw.idx = idx;
997 hw_events->events[idx] = event;
998
999 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1000 if (flags & PERF_EF_START)
1001 cci_pmu_start(event, PERF_EF_RELOAD);
1002
1003 /* Propagate our changes to the userspace mapping. */
1004 perf_event_update_userpage(event);
1005
1006out:
1007 perf_pmu_enable(event->pmu);
1008 return err;
b91c8f28
PA
1009}
1010
c6f85cb4 1011static void cci_pmu_del(struct perf_event *event, int flags)
b91c8f28 1012{
c6f85cb4
MR
1013 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1014 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1015 struct hw_perf_event *hwc = &event->hw;
1016 int idx = hwc->idx;
b91c8f28 1017
c6f85cb4
MR
1018 cci_pmu_stop(event, PERF_EF_UPDATE);
1019 hw_events->events[idx] = NULL;
1020 clear_bit(idx, hw_events->used_mask);
b91c8f28 1021
c6f85cb4
MR
1022 perf_event_update_userpage(event);
1023}
b91c8f28 1024
c6f85cb4 1025static int
b1862199
SP
1026validate_event(struct pmu *cci_pmu,
1027 struct cci_pmu_hw_events *hw_events,
1028 struct perf_event *event)
c6f85cb4
MR
1029{
1030 if (is_software_event(event))
1031 return 1;
1032
b1862199
SP
1033 /*
1034 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1035 * core perf code won't check that the pmu->ctx == leader->ctx
1036 * until after pmu->event_init(event).
1037 */
1038 if (event->pmu != cci_pmu)
1039 return 0;
1040
c6f85cb4
MR
1041 if (event->state < PERF_EVENT_STATE_OFF)
1042 return 1;
1043
1044 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1045 return 1;
1046
1047 return pmu_get_event_idx(hw_events, event) >= 0;
b91c8f28
PA
1048}
1049
c6f85cb4
MR
1050static int
1051validate_group(struct perf_event *event)
b91c8f28 1052{
c6f85cb4 1053 struct perf_event *sibling, *leader = event->group_leader;
ab5b316d
SP
1054 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1055 unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
c6f85cb4
MR
1056 struct cci_pmu_hw_events fake_pmu = {
1057 /*
1058 * Initialise the fake PMU. We only need to populate the
1059 * used_mask for the purposes of validation.
1060 */
ab5b316d 1061 .used_mask = mask,
c6f85cb4 1062 };
ab5b316d 1063 memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
b91c8f28 1064
b1862199 1065 if (!validate_event(event->pmu, &fake_pmu, leader))
c6f85cb4
MR
1066 return -EINVAL;
1067
1068 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
b1862199 1069 if (!validate_event(event->pmu, &fake_pmu, sibling))
c6f85cb4 1070 return -EINVAL;
b91c8f28 1071 }
b91c8f28 1072
b1862199 1073 if (!validate_event(event->pmu, &fake_pmu, event))
c6f85cb4
MR
1074 return -EINVAL;
1075
1076 return 0;
b91c8f28
PA
1077}
1078
c6f85cb4
MR
1079static int
1080__hw_perf_event_init(struct perf_event *event)
b91c8f28 1081{
c6f85cb4
MR
1082 struct hw_perf_event *hwc = &event->hw;
1083 int mapping;
b91c8f28 1084
c6f85cb4
MR
1085 mapping = pmu_map_event(event);
1086
1087 if (mapping < 0) {
1088 pr_debug("event %x:%llx not supported\n", event->attr.type,
1089 event->attr.config);
1090 return mapping;
1091 }
1092
1093 /*
1094 * We don't assign an index until we actually place the event onto
1095 * hardware. Use -1 to signify that we haven't decided where to put it
1096 * yet.
1097 */
1098 hwc->idx = -1;
1099 hwc->config_base = 0;
1100 hwc->config = 0;
1101 hwc->event_base = 0;
1102
1103 /*
1104 * Store the event encoding into the config_base field.
1105 */
1106 hwc->config_base |= (unsigned long)mapping;
1107
1108 /*
1109 * Limit the sample_period to half of the counter width. That way, the
1110 * new counter value is far less likely to overtake the previous one
1111 * unless you have some serious IRQ latency issues.
1112 */
1113 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
1114 hwc->last_period = hwc->sample_period;
1115 local64_set(&hwc->period_left, hwc->sample_period);
1116
1117 if (event->group_leader != event) {
1118 if (validate_group(event) != 0)
1119 return -EINVAL;
1120 }
1121
1122 return 0;
1123}
1124
1125static int cci_pmu_event_init(struct perf_event *event)
1126{
1127 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1128 atomic_t *active_events = &cci_pmu->active_events;
1129 int err = 0;
1130 int cpu;
1131
1132 if (event->attr.type != event->pmu->type)
1133 return -ENOENT;
1134
1135 /* Shared by all CPUs, no meaningful state to sample */
1136 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1137 return -EOPNOTSUPP;
1138
1139 /* We have no filtering of any kind */
1140 if (event->attr.exclude_user ||
1141 event->attr.exclude_kernel ||
1142 event->attr.exclude_hv ||
1143 event->attr.exclude_idle ||
1144 event->attr.exclude_host ||
1145 event->attr.exclude_guest)
1146 return -EINVAL;
1147
1148 /*
1149 * Following the example set by other "uncore" PMUs, we accept any CPU
1150 * and rewrite its affinity dynamically rather than having perf core
1151 * handle cpu == -1 and pid == -1 for this case.
1152 *
1153 * The perf core will pin online CPUs for the duration of this call and
1154 * the event being installed into its context, so the PMU's CPU can't
1155 * change under our feet.
1156 */
1157 cpu = cpumask_first(&cci_pmu->cpus);
1158 if (event->cpu < 0 || cpu < 0)
1159 return -EINVAL;
1160 event->cpu = cpu;
1161
1162 event->destroy = hw_perf_event_destroy;
1163 if (!atomic_inc_not_zero(active_events)) {
1164 mutex_lock(&cci_pmu->reserve_mutex);
1165 if (atomic_read(active_events) == 0)
1166 err = cci_pmu_get_hw(cci_pmu);
1167 if (!err)
1168 atomic_inc(active_events);
1169 mutex_unlock(&cci_pmu->reserve_mutex);
1170 }
1171 if (err)
1172 return err;
1173
1174 err = __hw_perf_event_init(event);
1175 if (err)
1176 hw_perf_event_destroy(event);
1177
1178 return err;
b91c8f28
PA
1179}
1180
a1a076d7 1181static ssize_t pmu_cpumask_attr_show(struct device *dev,
c6f85cb4
MR
1182 struct device_attribute *attr, char *buf)
1183{
5e442eba
MR
1184 struct pmu *pmu = dev_get_drvdata(dev);
1185 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
a1a076d7 1186
660e5ec0 1187 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
a1a076d7 1188 cpumask_pr_args(&cci_pmu->cpus));
c6f85cb4
MR
1189 buf[n++] = '\n';
1190 buf[n] = '\0';
1191 return n;
1192}
1193
5e442eba
MR
1194static struct device_attribute pmu_cpumask_attr =
1195 __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
c6f85cb4
MR
1196
1197static struct attribute *pmu_attrs[] = {
5e442eba 1198 &pmu_cpumask_attr.attr,
c6f85cb4
MR
1199 NULL,
1200};
1201
1202static struct attribute_group pmu_attr_group = {
1203 .attrs = pmu_attrs,
1204};
1205
e14cfad3
SP
1206static struct attribute_group pmu_format_attr_group = {
1207 .name = "format",
1208 .attrs = NULL, /* Filled in cci_pmu_init_attrs */
1209};
1210
1211static struct attribute_group pmu_event_attr_group = {
1212 .name = "events",
1213 .attrs = NULL, /* Filled in cci_pmu_init_attrs */
1214};
1215
c6f85cb4
MR
1216static const struct attribute_group *pmu_attr_groups[] = {
1217 &pmu_attr_group,
e14cfad3
SP
1218 &pmu_format_attr_group,
1219 &pmu_event_attr_group,
c6f85cb4
MR
1220 NULL
1221};
1222
1223static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1224{
5e442eba
MR
1225 const struct cci_pmu_model *model = cci_pmu->model;
1226 char *name = model->name;
ab5b316d 1227 u32 num_cntrs;
e14cfad3 1228
5e442eba
MR
1229 pmu_event_attr_group.attrs = model->event_attrs;
1230 pmu_format_attr_group.attrs = model->format_attrs;
a1a076d7 1231
c6f85cb4 1232 cci_pmu->pmu = (struct pmu) {
fc17c839 1233 .name = cci_pmu->model->name,
c6f85cb4
MR
1234 .task_ctx_nr = perf_invalid_context,
1235 .pmu_enable = cci_pmu_enable,
1236 .pmu_disable = cci_pmu_disable,
1237 .event_init = cci_pmu_event_init,
1238 .add = cci_pmu_add,
1239 .del = cci_pmu_del,
1240 .start = cci_pmu_start,
1241 .stop = cci_pmu_stop,
1242 .read = pmu_read,
1243 .attr_groups = pmu_attr_groups,
b91c8f28
PA
1244 };
1245
1246 cci_pmu->plat_device = pdev;
ab5b316d
SP
1247 num_cntrs = pmu_get_max_counters();
1248 if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1249 dev_warn(&pdev->dev,
1250 "PMU implements more counters(%d) than supported by"
1251 " the model(%d), truncated.",
1252 num_cntrs, cci_pmu->model->num_hw_cntrs);
1253 num_cntrs = cci_pmu->model->num_hw_cntrs;
1254 }
1255 cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
b91c8f28 1256
c6f85cb4 1257 return perf_pmu_register(&cci_pmu->pmu, name, -1);
b91c8f28
PA
1258}
1259
c6f85cb4
MR
1260static int cci_pmu_cpu_notifier(struct notifier_block *self,
1261 unsigned long action, void *hcpu)
1262{
a1a076d7
SP
1263 struct cci_pmu *cci_pmu = container_of(self,
1264 struct cci_pmu, cpu_nb);
c6f85cb4
MR
1265 unsigned int cpu = (long)hcpu;
1266 unsigned int target;
1267
1268 switch (action & ~CPU_TASKS_FROZEN) {
1269 case CPU_DOWN_PREPARE:
a1a076d7 1270 if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
c6f85cb4
MR
1271 break;
1272 target = cpumask_any_but(cpu_online_mask, cpu);
0f17380c 1273 if (target >= nr_cpu_ids) // UP, last CPU
c6f85cb4
MR
1274 break;
1275 /*
1276 * TODO: migrate context once core races on event->ctx have
1277 * been fixed.
1278 */
a1a076d7 1279 cpumask_set_cpu(target, &cci_pmu->cpus);
c6f85cb4
MR
1280 default:
1281 break;
1282 }
1283
1284 return NOTIFY_OK;
1285}
1286
fc17c839 1287static struct cci_pmu_model cci_pmu_models[] = {
f4d58938
SP
1288#ifdef CONFIG_ARM_CCI400_PMU
1289 [CCI400_R0] = {
fc17c839 1290 .name = "CCI_400",
ab5b316d
SP
1291 .fixed_hw_cntrs = 1, /* Cycle counter */
1292 .num_hw_cntrs = 4,
1293 .cntr_size = SZ_4K,
e14cfad3 1294 .format_attrs = cci400_pmu_format_attrs,
e14cfad3 1295 .event_attrs = cci400_r0_pmu_event_attrs,
fc17c839
SP
1296 .event_ranges = {
1297 [CCI_IF_SLAVE] = {
f4d58938
SP
1298 CCI400_R0_SLAVE_PORT_MIN_EV,
1299 CCI400_R0_SLAVE_PORT_MAX_EV,
fc17c839
SP
1300 },
1301 [CCI_IF_MASTER] = {
f4d58938
SP
1302 CCI400_R0_MASTER_PORT_MIN_EV,
1303 CCI400_R0_MASTER_PORT_MAX_EV,
fc17c839
SP
1304 },
1305 },
31216290
SP
1306 .validate_hw_event = cci400_validate_hw_event,
1307 .get_event_idx = cci400_get_event_idx,
fc17c839 1308 },
f4d58938 1309 [CCI400_R1] = {
fc17c839 1310 .name = "CCI_400_r1",
ab5b316d
SP
1311 .fixed_hw_cntrs = 1, /* Cycle counter */
1312 .num_hw_cntrs = 4,
1313 .cntr_size = SZ_4K,
e14cfad3 1314 .format_attrs = cci400_pmu_format_attrs,
e14cfad3 1315 .event_attrs = cci400_r1_pmu_event_attrs,
fc17c839
SP
1316 .event_ranges = {
1317 [CCI_IF_SLAVE] = {
f4d58938
SP
1318 CCI400_R1_SLAVE_PORT_MIN_EV,
1319 CCI400_R1_SLAVE_PORT_MAX_EV,
fc17c839
SP
1320 },
1321 [CCI_IF_MASTER] = {
f4d58938
SP
1322 CCI400_R1_MASTER_PORT_MIN_EV,
1323 CCI400_R1_MASTER_PORT_MAX_EV,
fc17c839
SP
1324 },
1325 },
31216290
SP
1326 .validate_hw_event = cci400_validate_hw_event,
1327 .get_event_idx = cci400_get_event_idx,
fc17c839 1328 },
f4d58938 1329#endif
a95791ef
SP
1330#ifdef CONFIG_ARM_CCI500_PMU
1331 [CCI500_R0] = {
1332 .name = "CCI_500",
1333 .fixed_hw_cntrs = 0,
1334 .num_hw_cntrs = 8,
1335 .cntr_size = SZ_64K,
e14cfad3 1336 .format_attrs = cci500_pmu_format_attrs,
e14cfad3 1337 .event_attrs = cci500_pmu_event_attrs,
a95791ef
SP
1338 .event_ranges = {
1339 [CCI_IF_SLAVE] = {
1340 CCI500_SLAVE_PORT_MIN_EV,
1341 CCI500_SLAVE_PORT_MAX_EV,
1342 },
1343 [CCI_IF_MASTER] = {
1344 CCI500_MASTER_PORT_MIN_EV,
1345 CCI500_MASTER_PORT_MAX_EV,
1346 },
1347 [CCI_IF_GLOBAL] = {
1348 CCI500_GLOBAL_PORT_MIN_EV,
1349 CCI500_GLOBAL_PORT_MAX_EV,
1350 },
1351 },
1352 .validate_hw_event = cci500_validate_hw_event,
1353 },
1354#endif
fc17c839
SP
1355};
1356
b91c8f28 1357static const struct of_device_id arm_cci_pmu_matches[] = {
f4d58938 1358#ifdef CONFIG_ARM_CCI400_PMU
b91c8f28
PA
1359 {
1360 .compatible = "arm,cci-400-pmu",
772742a6
SP
1361 .data = NULL,
1362 },
1363 {
1364 .compatible = "arm,cci-400-pmu,r0",
f4d58938 1365 .data = &cci_pmu_models[CCI400_R0],
772742a6
SP
1366 },
1367 {
1368 .compatible = "arm,cci-400-pmu,r1",
f4d58938 1369 .data = &cci_pmu_models[CCI400_R1],
b91c8f28 1370 },
a95791ef
SP
1371#endif
1372#ifdef CONFIG_ARM_CCI500_PMU
1373 {
1374 .compatible = "arm,cci-500-pmu,r0",
1375 .data = &cci_pmu_models[CCI500_R0],
1376 },
f4d58938 1377#endif
b91c8f28
PA
1378 {},
1379};
1380
fc17c839
SP
1381static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1382{
1383 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1384 pdev->dev.of_node);
1385 if (!match)
1386 return NULL;
772742a6
SP
1387 if (match->data)
1388 return match->data;
fc17c839 1389
772742a6
SP
1390 dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1391 "requires secure access to CCI registers");
fc17c839
SP
1392 return probe_cci_model(pdev);
1393}
1394
f6b9e83c
SP
1395static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1396{
1397 int i;
1398
1399 for (i = 0; i < nr_irqs; i++)
1400 if (irq == irqs[i])
1401 return true;
1402
1403 return false;
1404}
1405
ab5b316d 1406static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
b91c8f28 1407{
a1a076d7 1408 struct cci_pmu *cci_pmu;
fc17c839
SP
1409 const struct cci_pmu_model *model;
1410
ab5b316d
SP
1411 /*
1412 * All allocations are devm_* hence we don't have to free
1413 * them explicitly on an error, as it would end up in driver
1414 * detach.
1415 */
fc17c839
SP
1416 model = get_cci_model(pdev);
1417 if (!model) {
1418 dev_warn(&pdev->dev, "CCI PMU version not supported\n");
ab5b316d 1419 return ERR_PTR(-ENODEV);
fc17c839 1420 }
b91c8f28 1421
a1a076d7
SP
1422 cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1423 if (!cci_pmu)
ab5b316d 1424 return ERR_PTR(-ENOMEM);
b91c8f28 1425
a1a076d7 1426 cci_pmu->model = model;
ab5b316d
SP
1427 cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1428 sizeof(*cci_pmu->irqs), GFP_KERNEL);
1429 if (!cci_pmu->irqs)
1430 return ERR_PTR(-ENOMEM);
1431 cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1432 CCI_PMU_MAX_HW_CNTRS(model),
1433 sizeof(*cci_pmu->hw_events.events),
1434 GFP_KERNEL);
1435 if (!cci_pmu->hw_events.events)
1436 return ERR_PTR(-ENOMEM);
1437 cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1438 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1439 sizeof(*cci_pmu->hw_events.used_mask),
1440 GFP_KERNEL);
1441 if (!cci_pmu->hw_events.used_mask)
1442 return ERR_PTR(-ENOMEM);
1443
1444 return cci_pmu;
1445}
1446
1447
1448static int cci_pmu_probe(struct platform_device *pdev)
1449{
1450 struct resource *res;
1451 struct cci_pmu *cci_pmu;
1452 int i, ret, irq;
1453
1454 cci_pmu = cci_pmu_alloc(pdev);
1455 if (IS_ERR(cci_pmu))
1456 return PTR_ERR(cci_pmu);
1457
b91c8f28 1458 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
a1a076d7
SP
1459 cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1460 if (IS_ERR(cci_pmu->base))
fee4f2c6 1461 return -ENOMEM;
b91c8f28
PA
1462
1463 /*
ab5b316d 1464 * CCI PMU has one overflow interrupt per counter; but some may be tied
b91c8f28
PA
1465 * together to a common interrupt.
1466 */
a1a076d7 1467 cci_pmu->nr_irqs = 0;
ab5b316d 1468 for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
b91c8f28
PA
1469 irq = platform_get_irq(pdev, i);
1470 if (irq < 0)
1471 break;
1472
a1a076d7 1473 if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
b91c8f28
PA
1474 continue;
1475
a1a076d7 1476 cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
b91c8f28
PA
1477 }
1478
1479 /*
1480 * Ensure that the device tree has as many interrupts as the number
1481 * of counters.
1482 */
ab5b316d 1483 if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
b91c8f28 1484 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
ab5b316d 1485 i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
fee4f2c6 1486 return -EINVAL;
b91c8f28
PA
1487 }
1488
a1a076d7
SP
1489 raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1490 mutex_init(&cci_pmu->reserve_mutex);
1491 atomic_set(&cci_pmu->active_events, 0);
1492 cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
c6f85cb4 1493
a1a076d7
SP
1494 cci_pmu->cpu_nb = (struct notifier_block) {
1495 .notifier_call = cci_pmu_cpu_notifier,
1496 /*
1497 * to migrate uncore events, our notifier should be executed
1498 * before perf core's notifier.
1499 */
1500 .priority = CPU_PRI_PERF + 1,
1501 };
1502
1503 ret = register_cpu_notifier(&cci_pmu->cpu_nb);
c6f85cb4
MR
1504 if (ret)
1505 return ret;
b91c8f28 1506
a1a076d7
SP
1507 ret = cci_pmu_init(cci_pmu, pdev);
1508 if (ret) {
1509 unregister_cpu_notifier(&cci_pmu->cpu_nb);
fee4f2c6 1510 return ret;
a1a076d7 1511 }
b91c8f28 1512
a1a076d7 1513 pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
b91c8f28 1514 return 0;
b91c8f28
PA
1515}
1516
1517static int cci_platform_probe(struct platform_device *pdev)
1518{
1519 if (!cci_probed())
1520 return -ENODEV;
1521
1522 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1523}
1524
f6b9e83c
SP
1525static struct platform_driver cci_pmu_driver = {
1526 .driver = {
1527 .name = DRIVER_NAME_PMU,
1528 .of_match_table = arm_cci_pmu_matches,
1529 },
1530 .probe = cci_pmu_probe,
1531};
1532
1533static struct platform_driver cci_platform_driver = {
1534 .driver = {
1535 .name = DRIVER_NAME,
1536 .of_match_table = arm_cci_matches,
1537 },
1538 .probe = cci_platform_probe,
1539};
1540
1541static int __init cci_platform_init(void)
1542{
1543 int ret;
1544
1545 ret = platform_driver_register(&cci_pmu_driver);
1546 if (ret)
1547 return ret;
1548
1549 return platform_driver_register(&cci_platform_driver);
1550}
1551
f4d58938 1552#else /* !CONFIG_ARM_CCI_PMU */
f6b9e83c
SP
1553
1554static int __init cci_platform_init(void)
1555{
1556 return 0;
1557}
1558
f4d58938 1559#endif /* CONFIG_ARM_CCI_PMU */
ee8e5d5f
SP
1560
1561#ifdef CONFIG_ARM_CCI400_PORT_CTRL
b91c8f28 1562
f6b9e83c
SP
1563#define CCI_PORT_CTRL 0x0
1564#define CCI_CTRL_STATUS 0xc
1565
1566#define CCI_ENABLE_SNOOP_REQ 0x1
1567#define CCI_ENABLE_DVM_REQ 0x2
1568#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1569
1570enum cci_ace_port_type {
1571 ACE_INVALID_PORT = 0x0,
1572 ACE_PORT,
1573 ACE_LITE_PORT,
1574};
1575
1576struct cci_ace_port {
1577 void __iomem *base;
1578 unsigned long phys;
1579 enum cci_ace_port_type type;
1580 struct device_node *dn;
1581};
1582
1583static struct cci_ace_port *ports;
1584static unsigned int nb_cci_ports;
1585
ed69bdd8
LP
1586struct cpu_port {
1587 u64 mpidr;
1588 u32 port;
1589};
62158f81 1590
ed69bdd8
LP
1591/*
1592 * Use the port MSB as valid flag, shift can be made dynamic
1593 * by computing number of bits required for port indexes.
1594 * Code disabling CCI cpu ports runs with D-cache invalidated
1595 * and SCTLR bit clear so data accesses must be kept to a minimum
1596 * to improve performance; for now shift is left static to
1597 * avoid one more data access while disabling the CCI port.
1598 */
1599#define PORT_VALID_SHIFT 31
1600#define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1601
1602static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1603{
1604 port->port = PORT_VALID | index;
1605 port->mpidr = mpidr;
1606}
1607
1608static inline bool cpu_port_is_valid(struct cpu_port *port)
1609{
1610 return !!(port->port & PORT_VALID);
1611}
1612
1613static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1614{
1615 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1616}
1617
1618static struct cpu_port cpu_port[NR_CPUS];
1619
1620/**
1621 * __cci_ace_get_port - Function to retrieve the port index connected to
1622 * a cpu or device.
1623 *
1624 * @dn: device node of the device to look-up
1625 * @type: port type
1626 *
1627 * Return value:
1628 * - CCI port index if success
1629 * - -ENODEV if failure
1630 */
1631static int __cci_ace_get_port(struct device_node *dn, int type)
1632{
1633 int i;
1634 bool ace_match;
1635 struct device_node *cci_portn;
1636
1637 cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1638 for (i = 0; i < nb_cci_ports; i++) {
1639 ace_match = ports[i].type == type;
1640 if (ace_match && cci_portn == ports[i].dn)
1641 return i;
1642 }
1643 return -ENODEV;
1644}
1645
1646int cci_ace_get_port(struct device_node *dn)
1647{
1648 return __cci_ace_get_port(dn, ACE_LITE_PORT);
1649}
1650EXPORT_SYMBOL_GPL(cci_ace_get_port);
1651
b91c8f28 1652static void cci_ace_init_ports(void)
ed69bdd8 1653{
78b4d6e0
SK
1654 int port, cpu;
1655 struct device_node *cpun;
ed69bdd8
LP
1656
1657 /*
1658 * Port index look-up speeds up the function disabling ports by CPU,
1659 * since the logical to port index mapping is done once and does
1660 * not change after system boot.
1661 * The stashed index array is initialized for all possible CPUs
1662 * at probe time.
1663 */
78b4d6e0
SK
1664 for_each_possible_cpu(cpu) {
1665 /* too early to use cpu->of_node */
1666 cpun = of_get_cpu_node(cpu, NULL);
ed69bdd8 1667
78b4d6e0 1668 if (WARN(!cpun, "Missing cpu device node\n"))
ed69bdd8 1669 continue;
78b4d6e0 1670
ed69bdd8
LP
1671 port = __cci_ace_get_port(cpun, ACE_PORT);
1672 if (port < 0)
1673 continue;
1674
1675 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1676 }
1677
1678 for_each_possible_cpu(cpu) {
1679 WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1680 "CPU %u does not have an associated CCI port\n",
1681 cpu);
1682 }
1683}
1684/*
1685 * Functions to enable/disable a CCI interconnect slave port
1686 *
1687 * They are called by low-level power management code to disable slave
1688 * interfaces snoops and DVM broadcast.
1689 * Since they may execute with cache data allocation disabled and
1690 * after the caches have been cleaned and invalidated the functions provide
1691 * no explicit locking since they may run with D-cache disabled, so normal
1692 * cacheable kernel locks based on ldrex/strex may not work.
1693 * Locking has to be provided by BSP implementations to ensure proper
1694 * operations.
1695 */
1696
1697/**
1698 * cci_port_control() - function to control a CCI port
1699 *
1700 * @port: index of the port to setup
1701 * @enable: if true enables the port, if false disables it
1702 */
1703static void notrace cci_port_control(unsigned int port, bool enable)
1704{
1705 void __iomem *base = ports[port].base;
1706
1707 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1708 /*
1709 * This function is called from power down procedures
1710 * and must not execute any instruction that might
1711 * cause the processor to be put in a quiescent state
1712 * (eg wfi). Hence, cpu_relax() can not be added to this
1713 * read loop to optimize power, since it might hide possibly
1714 * disruptive operations.
1715 */
1716 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1717 ;
1718}
1719
1720/**
1721 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1722 * reference
1723 *
1724 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1725 *
1726 * Disabling a CCI port for a CPU implies disabling the CCI port
1727 * controlling that CPU cluster. Code disabling CPU CCI ports
1728 * must make sure that the CPU running the code is the last active CPU
1729 * in the cluster ie all other CPUs are quiescent in a low power state.
1730 *
1731 * Return:
1732 * 0 on success
1733 * -ENODEV on port look-up failure
1734 */
1735int notrace cci_disable_port_by_cpu(u64 mpidr)
1736{
1737 int cpu;
1738 bool is_valid;
1739 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1740 is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1741 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1742 cci_port_control(cpu_port[cpu].port, false);
1743 return 0;
1744 }
1745 }
1746 return -ENODEV;
1747}
1748EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1749
62158f81
NP
1750/**
1751 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1752 *
1753 * Enabling a CCI port for the calling CPU implies enabling the CCI
1754 * port controlling that CPU's cluster. Caller must make sure that the
1755 * CPU running the code is the first active CPU in the cluster and all
1756 * other CPUs are quiescent in a low power state or waiting for this CPU
1757 * to complete the CCI initialization.
1758 *
1759 * Because this is called when the MMU is still off and with no stack,
1760 * the code must be position independent and ideally rely on callee
1761 * clobbered registers only. To achieve this we must code this function
1762 * entirely in assembler.
1763 *
1764 * On success this returns with the proper CCI port enabled. In case of
1765 * any failure this never returns as the inability to enable the CCI is
1766 * fatal and there is no possible recovery at this stage.
1767 */
1768asmlinkage void __naked cci_enable_port_for_self(void)
1769{
1770 asm volatile ("\n"
f4902492 1771" .arch armv7-a\n"
62158f81
NP
1772" mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1773" and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1774" adr r1, 5f \n"
1775" ldr r2, [r1] \n"
1776" add r1, r1, r2 @ &cpu_port \n"
1777" add ip, r1, %[sizeof_cpu_port] \n"
1778
1779 /* Loop over the cpu_port array looking for a matching MPIDR */
1780"1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1781" cmp r2, r0 @ compare MPIDR \n"
1782" bne 2f \n"
1783
1784 /* Found a match, now test port validity */
1785" ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1786" tst r3, #"__stringify(PORT_VALID)" \n"
1787" bne 3f \n"
1788
1789 /* no match, loop with the next cpu_port entry */
1790"2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1791" cmp r1, ip @ done? \n"
1792" blo 1b \n"
1793
1794 /* CCI port not found -- cheaply try to stall this CPU */
1795"cci_port_not_found: \n"
1796" wfi \n"
1797" wfe \n"
1798" b cci_port_not_found \n"
1799
1800 /* Use matched port index to look up the corresponding ports entry */
1801"3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
1802" adr r0, 6f \n"
1803" ldmia r0, {r1, r2} \n"
1804" sub r1, r1, r0 @ virt - phys \n"
1805" ldr r0, [r0, r2] @ *(&ports) \n"
1806" mov r2, %[sizeof_struct_ace_port] \n"
1807" mla r0, r2, r3, r0 @ &ports[index] \n"
1808" sub r0, r0, r1 @ virt_to_phys() \n"
1809
1810 /* Enable the CCI port */
1811" ldr r0, [r0, %[offsetof_port_phys]] \n"
fdb07aee 1812" mov r3, %[cci_enable_req]\n"
62158f81
NP
1813" str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1814
1815 /* poll the status reg for completion */
1816" adr r1, 7f \n"
1817" ldr r0, [r1] \n"
1818" ldr r0, [r0, r1] @ cci_ctrl_base \n"
1819"4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
fdb07aee 1820" tst r1, %[cci_control_status_bits] \n"
62158f81
NP
1821" bne 4b \n"
1822
1823" mov r0, #0 \n"
1824" bx lr \n"
1825
1826" .align 2 \n"
1827"5: .word cpu_port - . \n"
1828"6: .word . \n"
1829" .word ports - 6b \n"
1830"7: .word cci_ctrl_phys - . \n"
1831 : :
1832 [sizeof_cpu_port] "i" (sizeof(cpu_port)),
fdb07aee
VK
1833 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1834 [cci_control_status_bits] "i" cpu_to_le32(1),
62158f81
NP
1835#ifndef __ARMEB__
1836 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1837#else
1838 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1839#endif
1840 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1841 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1842 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1843 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1844
1845 unreachable();
1846}
1847
ed69bdd8
LP
1848/**
1849 * __cci_control_port_by_device() - function to control a CCI port by device
1850 * reference
1851 *
1852 * @dn: device node pointer of the device whose CCI port should be
1853 * controlled
1854 * @enable: if true enables the port, if false disables it
1855 *
1856 * Return:
1857 * 0 on success
1858 * -ENODEV on port look-up failure
1859 */
1860int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1861{
1862 int port;
1863
1864 if (!dn)
1865 return -ENODEV;
1866
1867 port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1868 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1869 dn->full_name))
1870 return -ENODEV;
1871 cci_port_control(port, enable);
1872 return 0;
1873}
1874EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1875
1876/**
1877 * __cci_control_port_by_index() - function to control a CCI port by port index
1878 *
1879 * @port: port index previously retrieved with cci_ace_get_port()
1880 * @enable: if true enables the port, if false disables it
1881 *
1882 * Return:
1883 * 0 on success
1884 * -ENODEV on port index out of range
1885 * -EPERM if operation carried out on an ACE PORT
1886 */
1887int notrace __cci_control_port_by_index(u32 port, bool enable)
1888{
1889 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1890 return -ENODEV;
1891 /*
1892 * CCI control for ports connected to CPUS is extremely fragile
1893 * and must be made to go through a specific and controlled
1894 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1895 * indexing is therefore disabled for ACE ports.
1896 */
1897 if (ports[port].type == ACE_PORT)
1898 return -EPERM;
1899
1900 cci_port_control(port, enable);
1901 return 0;
1902}
1903EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1904
ed69bdd8
LP
1905static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1906 {.compatible = "arm,cci-400-ctrl-if", },
1907 {},
1908};
1909
f6b9e83c 1910static int cci_probe_ports(struct device_node *np)
ed69bdd8
LP
1911{
1912 struct cci_nb_ports const *cci_config;
1913 int ret, i, nb_ace = 0, nb_ace_lite = 0;
f6b9e83c 1914 struct device_node *cp;
62158f81 1915 struct resource res;
ed69bdd8
LP
1916 const char *match_str;
1917 bool is_ace;
1918
896ddd60 1919
ed69bdd8
LP
1920 cci_config = of_match_node(arm_cci_matches, np)->data;
1921 if (!cci_config)
1922 return -ENODEV;
1923
1924 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1925
7c762036 1926 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
ed69bdd8
LP
1927 if (!ports)
1928 return -ENOMEM;
1929
ed69bdd8
LP
1930 for_each_child_of_node(np, cp) {
1931 if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1932 continue;
1933
1934 i = nb_ace + nb_ace_lite;
1935
1936 if (i >= nb_cci_ports)
1937 break;
1938
1939 if (of_property_read_string(cp, "interface-type",
1940 &match_str)) {
1941 WARN(1, "node %s missing interface-type property\n",
1942 cp->full_name);
1943 continue;
1944 }
1945 is_ace = strcmp(match_str, "ace") == 0;
1946 if (!is_ace && strcmp(match_str, "ace-lite")) {
1947 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1948 cp->full_name);
1949 continue;
1950 }
1951
62158f81
NP
1952 ret = of_address_to_resource(cp, 0, &res);
1953 if (!ret) {
1954 ports[i].base = ioremap(res.start, resource_size(&res));
1955 ports[i].phys = res.start;
1956 }
1957 if (ret || !ports[i].base) {
ed69bdd8
LP
1958 WARN(1, "unable to ioremap CCI port %d\n", i);
1959 continue;
1960 }
1961
1962 if (is_ace) {
1963 if (WARN_ON(nb_ace >= cci_config->nb_ace))
1964 continue;
1965 ports[i].type = ACE_PORT;
1966 ++nb_ace;
1967 } else {
1968 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1969 continue;
1970 ports[i].type = ACE_LITE_PORT;
1971 ++nb_ace_lite;
1972 }
1973 ports[i].dn = cp;
1974 }
1975
1976 /* initialize a stashed array of ACE ports to speed-up look-up */
1977 cci_ace_init_ports();
1978
1979 /*
1980 * Multi-cluster systems may need this data when non-coherent, during
1981 * cluster power-up/power-down. Make sure it reaches main memory.
1982 */
1983 sync_cache_w(&cci_ctrl_base);
62158f81 1984 sync_cache_w(&cci_ctrl_phys);
ed69bdd8
LP
1985 sync_cache_w(&ports);
1986 sync_cache_w(&cpu_port);
1987 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1988 pr_info("ARM CCI driver probed\n");
f6b9e83c 1989
ed69bdd8 1990 return 0;
f6b9e83c 1991}
ee8e5d5f
SP
1992#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
1993static inline int cci_probe_ports(struct device_node *np)
1994{
1995 return 0;
1996}
1997#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
ed69bdd8 1998
f6b9e83c
SP
1999static int cci_probe(void)
2000{
2001 int ret;
2002 struct device_node *np;
2003 struct resource res;
ed69bdd8 2004
f6b9e83c
SP
2005 np = of_find_matching_node(NULL, arm_cci_matches);
2006 if(!np || !of_device_is_available(np))
2007 return -ENODEV;
2008
2009 ret = of_address_to_resource(np, 0, &res);
2010 if (!ret) {
2011 cci_ctrl_base = ioremap(res.start, resource_size(&res));
2012 cci_ctrl_phys = res.start;
2013 }
2014 if (ret || !cci_ctrl_base) {
2015 WARN(1, "unable to ioremap CCI ctrl\n");
2016 return -ENXIO;
2017 }
2018
2019 return cci_probe_ports(np);
ed69bdd8
LP
2020}
2021
2022static int cci_init_status = -EAGAIN;
2023static DEFINE_MUTEX(cci_probing);
2024
b91c8f28 2025static int cci_init(void)
ed69bdd8
LP
2026{
2027 if (cci_init_status != -EAGAIN)
2028 return cci_init_status;
2029
2030 mutex_lock(&cci_probing);
2031 if (cci_init_status == -EAGAIN)
2032 cci_init_status = cci_probe();
2033 mutex_unlock(&cci_probing);
2034 return cci_init_status;
2035}
2036
2037/*
2038 * To sort out early init calls ordering a helper function is provided to
2039 * check if the CCI driver has beed initialized. Function check if the driver
2040 * has been initialized, if not it calls the init function that probes
2041 * the driver and updates the return value.
2042 */
b91c8f28 2043bool cci_probed(void)
ed69bdd8
LP
2044{
2045 return cci_init() == 0;
2046}
2047EXPORT_SYMBOL_GPL(cci_probed);
2048
2049early_initcall(cci_init);
b91c8f28 2050core_initcall(cci_platform_init);
ed69bdd8
LP
2051MODULE_LICENSE("GPL");
2052MODULE_DESCRIPTION("ARM CCI support");
This page took 0.214981 seconds and 5 git commands to generate.