arm-cci: CCI-500: Work around PMU counter writes
[deliverable/linux.git] / drivers / bus / arm-cci.c
CommitLineData
ed69bdd8
LP
1/*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/arm-cci.h>
18#include <linux/io.h>
c6f85cb4 19#include <linux/interrupt.h>
ed69bdd8
LP
20#include <linux/module.h>
21#include <linux/of_address.h>
b91c8f28
PA
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
c6f85cb4 24#include <linux/perf_event.h>
b91c8f28 25#include <linux/platform_device.h>
ed69bdd8 26#include <linux/slab.h>
b91c8f28 27#include <linux/spinlock.h>
ed69bdd8
LP
28
29#include <asm/cacheflush.h>
30#include <asm/smp_plat.h>
31
f6b9e83c
SP
32static void __iomem *cci_ctrl_base;
33static unsigned long cci_ctrl_phys;
ed69bdd8 34
ee8e5d5f 35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
ed69bdd8
LP
36struct cci_nb_ports {
37 unsigned int nb_ace;
38 unsigned int nb_ace_lite;
39};
40
f6b9e83c
SP
41static const struct cci_nb_ports cci400_ports = {
42 .nb_ace = 2,
43 .nb_ace_lite = 3
ed69bdd8
LP
44};
45
ee8e5d5f
SP
46#define CCI400_PORTS_DATA (&cci400_ports)
47#else
48#define CCI400_PORTS_DATA (NULL)
49#endif
50
f6b9e83c 51static const struct of_device_id arm_cci_matches[] = {
ee8e5d5f
SP
52#ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
a95791ef
SP
54#endif
55#ifdef CONFIG_ARM_CCI500_PMU
56 { .compatible = "arm,cci-500", },
ee8e5d5f 57#endif
f6b9e83c 58 {},
ed69bdd8
LP
59};
60
f4d58938 61#ifdef CONFIG_ARM_CCI_PMU
b91c8f28 62
f4d58938 63#define DRIVER_NAME "ARM-CCI"
f6b9e83c
SP
64#define DRIVER_NAME_PMU DRIVER_NAME " PMU"
65
b91c8f28
PA
66#define CCI_PMCR 0x0100
67#define CCI_PID2 0x0fe8
68
69#define CCI_PMCR_CEN 0x00000001
70#define CCI_PMCR_NCNT_MASK 0x0000f800
71#define CCI_PMCR_NCNT_SHIFT 11
72
73#define CCI_PID2_REV_MASK 0xf0
74#define CCI_PID2_REV_SHIFT 4
75
f6b9e83c
SP
76#define CCI_PMU_EVT_SEL 0x000
77#define CCI_PMU_CNTR 0x004
78#define CCI_PMU_CNTR_CTRL 0x008
79#define CCI_PMU_OVRFLW 0x00c
80
81#define CCI_PMU_OVRFLW_FLAG 1
82
ab5b316d
SP
83#define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
84#define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
85#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
86#define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
f6b9e83c 87
ab5b316d
SP
88#define CCI_PMU_MAX_HW_CNTRS(model) \
89 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
f6b9e83c 90
fc17c839
SP
91/* Types of interfaces that can generate events */
92enum {
93 CCI_IF_SLAVE,
94 CCI_IF_MASTER,
a95791ef
SP
95#ifdef CONFIG_ARM_CCI500_PMU
96 CCI_IF_GLOBAL,
97#endif
fc17c839
SP
98 CCI_IF_MAX,
99};
100
101struct event_range {
102 u32 min;
103 u32 max;
104};
105
f6b9e83c 106struct cci_pmu_hw_events {
ab5b316d
SP
107 struct perf_event **events;
108 unsigned long *used_mask;
f6b9e83c
SP
109 raw_spinlock_t pmu_lock;
110};
111
31216290 112struct cci_pmu;
ab5b316d
SP
113/*
114 * struct cci_pmu_model:
115 * @fixed_hw_cntrs - Number of fixed event counters
116 * @num_hw_cntrs - Maximum number of programmable event counters
117 * @cntr_size - Size of an event counter mapping
118 */
fc17c839
SP
119struct cci_pmu_model {
120 char *name;
ab5b316d
SP
121 u32 fixed_hw_cntrs;
122 u32 num_hw_cntrs;
123 u32 cntr_size;
5e442eba
MR
124 struct attribute **format_attrs;
125 struct attribute **event_attrs;
fc17c839 126 struct event_range event_ranges[CCI_IF_MAX];
31216290
SP
127 int (*validate_hw_event)(struct cci_pmu *, unsigned long);
128 int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
fff3f1a0 129 void (*write_counters)(struct cci_pmu *, unsigned long *);
fc17c839
SP
130};
131
132static struct cci_pmu_model cci_pmu_models[];
133
f6b9e83c
SP
134struct cci_pmu {
135 void __iomem *base;
136 struct pmu pmu;
137 int nr_irqs;
ab5b316d 138 int *irqs;
f6b9e83c 139 unsigned long active_irqs;
fc17c839 140 const struct cci_pmu_model *model;
f6b9e83c
SP
141 struct cci_pmu_hw_events hw_events;
142 struct platform_device *plat_device;
ab5b316d 143 int num_cntrs;
f6b9e83c
SP
144 atomic_t active_events;
145 struct mutex reserve_mutex;
a1a076d7 146 struct notifier_block cpu_nb;
f6b9e83c
SP
147 cpumask_t cpus;
148};
f6b9e83c
SP
149
150#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
151
f4d58938
SP
152enum cci_models {
153#ifdef CONFIG_ARM_CCI400_PMU
154 CCI400_R0,
155 CCI400_R1,
a95791ef
SP
156#endif
157#ifdef CONFIG_ARM_CCI500_PMU
158 CCI500_R0,
f4d58938
SP
159#endif
160 CCI_MODEL_MAX
161};
162
c66eea5f
SP
163static void pmu_write_counters(struct cci_pmu *cci_pmu,
164 unsigned long *mask);
e14cfad3
SP
165static ssize_t cci_pmu_format_show(struct device *dev,
166 struct device_attribute *attr, char *buf);
167static ssize_t cci_pmu_event_show(struct device *dev,
168 struct device_attribute *attr, char *buf);
169
5e442eba
MR
170#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
171 &((struct dev_ext_attribute[]) { \
172 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \
173 })[0].attr.attr
e14cfad3
SP
174
175#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
176 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
177#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
178 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
179
f4d58938
SP
180/* CCI400 PMU Specific definitions */
181
182#ifdef CONFIG_ARM_CCI400_PMU
183
b91c8f28 184/* Port ids */
f4d58938
SP
185#define CCI400_PORT_S0 0
186#define CCI400_PORT_S1 1
187#define CCI400_PORT_S2 2
188#define CCI400_PORT_S3 3
189#define CCI400_PORT_S4 4
190#define CCI400_PORT_M0 5
191#define CCI400_PORT_M1 6
192#define CCI400_PORT_M2 7
193
194#define CCI400_R1_PX 5
b91c8f28 195
b91c8f28
PA
196/*
197 * Instead of an event id to monitor CCI cycles, a dedicated counter is
198 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
199 * make use of this event in hardware.
200 */
201enum cci400_perf_events {
f4d58938 202 CCI400_PMU_CYCLES = 0xff
b91c8f28
PA
203};
204
f4d58938
SP
205#define CCI400_PMU_CYCLE_CNTR_IDX 0
206#define CCI400_PMU_CNTR0_IDX 1
b91c8f28
PA
207
208/*
209 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
210 * ports and bits 4:0 are event codes. There are different event codes
211 * associated with each port type.
212 *
213 * Additionally, the range of events associated with the port types changed
214 * between Rev0 and Rev1.
215 *
216 * The constants below define the range of valid codes for each port type for
217 * the different revisions and are used to validate the event to be monitored.
218 */
219
f4d58938
SP
220#define CCI400_PMU_EVENT_MASK 0xffUL
221#define CCI400_PMU_EVENT_SOURCE_SHIFT 5
222#define CCI400_PMU_EVENT_SOURCE_MASK 0x7
223#define CCI400_PMU_EVENT_CODE_SHIFT 0
224#define CCI400_PMU_EVENT_CODE_MASK 0x1f
225#define CCI400_PMU_EVENT_SOURCE(event) \
226 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
227 CCI400_PMU_EVENT_SOURCE_MASK)
228#define CCI400_PMU_EVENT_CODE(event) \
229 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
230
231#define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
232#define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
233#define CCI400_R0_MASTER_PORT_MIN_EV 0x14
234#define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
235
236#define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
237#define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
238#define CCI400_R1_MASTER_PORT_MIN_EV 0x00
239#define CCI400_R1_MASTER_PORT_MAX_EV 0x11
b91c8f28 240
e14cfad3
SP
241#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
242 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
243 (unsigned long)_config)
244
245static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
246 struct device_attribute *attr, char *buf);
247
5e442eba 248static struct attribute *cci400_pmu_format_attrs[] = {
e14cfad3
SP
249 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
250 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
5e442eba 251 NULL
e14cfad3
SP
252};
253
5e442eba 254static struct attribute *cci400_r0_pmu_event_attrs[] = {
e14cfad3
SP
255 /* Slave events */
256 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
257 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
262 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
263 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
264 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
265 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
266 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
267 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
268 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
269 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
272 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
273 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
274 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
275 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
276 /* Master events */
277 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
278 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
279 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
280 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
281 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
282 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
283 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
284 /* Special event for cycles counter */
285 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
5e442eba 286 NULL
e14cfad3
SP
287};
288
5e442eba 289static struct attribute *cci400_r1_pmu_event_attrs[] = {
e14cfad3
SP
290 /* Slave events */
291 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
292 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
296 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
297 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
298 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
299 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
300 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
301 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
302 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
303 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
304 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
306 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
307 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
308 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
309 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
310 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
311 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
312 /* Master events */
313 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
314 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
315 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
316 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
318 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
319 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
320 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
321 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
322 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
323 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
324 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
325 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
326 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
327 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
328 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
329 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
330 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
331 /* Special event for cycles counter */
332 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
5e442eba 333 NULL
e14cfad3
SP
334};
335
336static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
337 struct device_attribute *attr, char *buf)
338{
339 struct dev_ext_attribute *eattr = container_of(attr,
340 struct dev_ext_attribute, attr);
341 return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
342}
343
31216290
SP
344static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
345 struct cci_pmu_hw_events *hw,
346 unsigned long cci_event)
347{
348 int idx;
349
350 /* cycles event idx is fixed */
f4d58938
SP
351 if (cci_event == CCI400_PMU_CYCLES) {
352 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
31216290
SP
353 return -EAGAIN;
354
f4d58938 355 return CCI400_PMU_CYCLE_CNTR_IDX;
31216290
SP
356 }
357
f4d58938 358 for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
31216290
SP
359 if (!test_and_set_bit(idx, hw->used_mask))
360 return idx;
361
362 /* No counters available */
363 return -EAGAIN;
364}
365
366static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
b91c8f28 367{
f4d58938
SP
368 u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
369 u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
fc17c839 370 int if_type;
b91c8f28 371
f4d58938 372 if (hw_event & ~CCI400_PMU_EVENT_MASK)
874c5714
SP
373 return -ENOENT;
374
f4d58938 375 if (hw_event == CCI400_PMU_CYCLES)
31216290
SP
376 return hw_event;
377
b91c8f28 378 switch (ev_source) {
f4d58938
SP
379 case CCI400_PORT_S0:
380 case CCI400_PORT_S1:
381 case CCI400_PORT_S2:
382 case CCI400_PORT_S3:
383 case CCI400_PORT_S4:
b91c8f28 384 /* Slave Interface */
fc17c839 385 if_type = CCI_IF_SLAVE;
b91c8f28 386 break;
f4d58938
SP
387 case CCI400_PORT_M0:
388 case CCI400_PORT_M1:
389 case CCI400_PORT_M2:
b91c8f28 390 /* Master Interface */
fc17c839 391 if_type = CCI_IF_MASTER;
b91c8f28 392 break;
fc17c839
SP
393 default:
394 return -ENOENT;
b91c8f28
PA
395 }
396
a1a076d7
SP
397 if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
398 ev_code <= cci_pmu->model->event_ranges[if_type].max)
fc17c839
SP
399 return hw_event;
400
b91c8f28
PA
401 return -ENOENT;
402}
403
f4d58938 404static int probe_cci400_revision(void)
f6b9e83c
SP
405{
406 int rev;
407 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
408 rev >>= CCI_PID2_REV_SHIFT;
409
f4d58938
SP
410 if (rev < CCI400_R1_PX)
411 return CCI400_R0;
f6b9e83c 412 else
f4d58938 413 return CCI400_R1;
f6b9e83c
SP
414}
415
fc17c839 416static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
f6b9e83c 417{
772742a6 418 if (platform_has_secure_cci_access())
f4d58938
SP
419 return &cci_pmu_models[probe_cci400_revision()];
420 return NULL;
421}
422#else /* !CONFIG_ARM_CCI400_PMU */
423static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
424{
772742a6 425 return NULL;
f6b9e83c 426}
f4d58938 427#endif /* CONFIG_ARM_CCI400_PMU */
f6b9e83c 428
a95791ef
SP
429#ifdef CONFIG_ARM_CCI500_PMU
430
431/*
432 * CCI500 provides 8 independent event counters that can count
433 * any of the events available.
434 *
435 * CCI500 PMU event id is an 9-bit value made of two parts.
436 * bits [8:5] - Source for the event
437 * 0x0-0x6 - Slave interfaces
438 * 0x8-0xD - Master interfaces
439 * 0xf - Global Events
440 * 0x7,0xe - Reserved
441 *
442 * bits [4:0] - Event code (specific to type of interface)
443 */
444
445/* Port ids */
446#define CCI500_PORT_S0 0x0
447#define CCI500_PORT_S1 0x1
448#define CCI500_PORT_S2 0x2
449#define CCI500_PORT_S3 0x3
450#define CCI500_PORT_S4 0x4
451#define CCI500_PORT_S5 0x5
452#define CCI500_PORT_S6 0x6
453
454#define CCI500_PORT_M0 0x8
455#define CCI500_PORT_M1 0x9
456#define CCI500_PORT_M2 0xa
457#define CCI500_PORT_M3 0xb
458#define CCI500_PORT_M4 0xc
459#define CCI500_PORT_M5 0xd
460
461#define CCI500_PORT_GLOBAL 0xf
462
463#define CCI500_PMU_EVENT_MASK 0x1ffUL
464#define CCI500_PMU_EVENT_SOURCE_SHIFT 0x5
465#define CCI500_PMU_EVENT_SOURCE_MASK 0xf
466#define CCI500_PMU_EVENT_CODE_SHIFT 0x0
467#define CCI500_PMU_EVENT_CODE_MASK 0x1f
468
469#define CCI500_PMU_EVENT_SOURCE(event) \
470 ((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
471#define CCI500_PMU_EVENT_CODE(event) \
472 ((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
473
474#define CCI500_SLAVE_PORT_MIN_EV 0x00
475#define CCI500_SLAVE_PORT_MAX_EV 0x1f
476#define CCI500_MASTER_PORT_MIN_EV 0x00
477#define CCI500_MASTER_PORT_MAX_EV 0x06
478#define CCI500_GLOBAL_PORT_MIN_EV 0x00
479#define CCI500_GLOBAL_PORT_MAX_EV 0x0f
480
e14cfad3
SP
481
482#define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
483 CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
484 (unsigned long) _config)
485
486static ssize_t cci500_pmu_global_event_show(struct device *dev,
487 struct device_attribute *attr, char *buf);
488
5e442eba 489static struct attribute *cci500_pmu_format_attrs[] = {
e14cfad3
SP
490 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
491 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
5e442eba 492 NULL,
e14cfad3
SP
493};
494
5e442eba 495static struct attribute *cci500_pmu_event_attrs[] = {
e14cfad3
SP
496 /* Slave events */
497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
500 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
501 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
502 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
503 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
504 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
505 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
506 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
508 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
509 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
510 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
511 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
512 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
513 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
514 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
515 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
516 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
517 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
518 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
519 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
520 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
521 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
522 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
523 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
524 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
525 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
526 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
527 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
528 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
529
530 /* Master events */
531 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
532 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
533 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
534 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
535 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
536 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
537 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
538
539 /* Global events */
540 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
541 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
542 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
543 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
544 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
545 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
546 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
547 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
548 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
549 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
550 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
551 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
552 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
553 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
554 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
555 CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
5e442eba 556 NULL
e14cfad3
SP
557};
558
559static ssize_t cci500_pmu_global_event_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561{
562 struct dev_ext_attribute *eattr = container_of(attr,
563 struct dev_ext_attribute, attr);
564 /* Global events have single fixed source code */
565 return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
566 (unsigned long)eattr->var, CCI500_PORT_GLOBAL);
567}
568
a95791ef
SP
569static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
570 unsigned long hw_event)
571{
572 u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event);
573 u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event);
574 int if_type;
575
576 if (hw_event & ~CCI500_PMU_EVENT_MASK)
577 return -ENOENT;
578
579 switch (ev_source) {
580 case CCI500_PORT_S0:
581 case CCI500_PORT_S1:
582 case CCI500_PORT_S2:
583 case CCI500_PORT_S3:
584 case CCI500_PORT_S4:
585 case CCI500_PORT_S5:
586 case CCI500_PORT_S6:
587 if_type = CCI_IF_SLAVE;
588 break;
589 case CCI500_PORT_M0:
590 case CCI500_PORT_M1:
591 case CCI500_PORT_M2:
592 case CCI500_PORT_M3:
593 case CCI500_PORT_M4:
594 case CCI500_PORT_M5:
595 if_type = CCI_IF_MASTER;
596 break;
597 case CCI500_PORT_GLOBAL:
598 if_type = CCI_IF_GLOBAL;
599 break;
600 default:
601 return -ENOENT;
602 }
603
604 if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
605 ev_code <= cci_pmu->model->event_ranges[if_type].max)
606 return hw_event;
607
608 return -ENOENT;
609}
610#endif /* CONFIG_ARM_CCI500_PMU */
611
c66eea5f
SP
612/*
613 * Program the CCI PMU counters which have PERF_HES_ARCH set
614 * with the event period and mark them ready before we enable
615 * PMU.
616 */
617void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
618{
619 int i;
620 struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
621
622 DECLARE_BITMAP(mask, cci_pmu->num_cntrs);
623
624 bitmap_zero(mask, cci_pmu->num_cntrs);
625 for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
626 struct perf_event *event = cci_hw->events[i];
627
628 if (WARN_ON(!event))
629 continue;
630
631 /* Leave the events which are not counting */
632 if (event->hw.state & PERF_HES_STOPPED)
633 continue;
634 if (event->hw.state & PERF_HES_ARCH) {
635 set_bit(i, mask);
636 event->hw.state &= ~PERF_HES_ARCH;
637 }
638 }
639
640 pmu_write_counters(cci_pmu, mask);
641}
642
a077c52f 643/* Should be called with cci_pmu->hw_events->pmu_lock held */
11300027 644static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
a077c52f
SP
645{
646 u32 val;
647
648 /* Enable all the PMU counters. */
649 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
650 writel(val, cci_ctrl_base + CCI_PMCR);
651}
652
11300027
SP
653/* Should be called with cci_pmu->hw_events->pmu_lock held */
654static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
655{
656 cci_pmu_sync_counters(cci_pmu);
657 __cci_pmu_enable_nosync(cci_pmu);
658}
659
a077c52f
SP
660/* Should be called with cci_pmu->hw_events->pmu_lock held */
661static void __cci_pmu_disable(void)
662{
663 u32 val;
664
665 /* Disable all the PMU counters. */
666 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
667 writel(val, cci_ctrl_base + CCI_PMCR);
668}
669
e14cfad3
SP
670static ssize_t cci_pmu_format_show(struct device *dev,
671 struct device_attribute *attr, char *buf)
672{
673 struct dev_ext_attribute *eattr = container_of(attr,
674 struct dev_ext_attribute, attr);
675 return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
676}
677
678static ssize_t cci_pmu_event_show(struct device *dev,
679 struct device_attribute *attr, char *buf)
680{
681 struct dev_ext_attribute *eattr = container_of(attr,
682 struct dev_ext_attribute, attr);
683 /* source parameter is mandatory for normal PMU events */
684 return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
685 (unsigned long)eattr->var);
686}
687
c6f85cb4 688static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 689{
ab5b316d 690 return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
b91c8f28
PA
691}
692
a1a076d7 693static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
b91c8f28 694{
ab5b316d
SP
695 return readl_relaxed(cci_pmu->base +
696 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
b91c8f28
PA
697}
698
a1a076d7
SP
699static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
700 int idx, unsigned int offset)
b91c8f28 701{
a1a076d7 702 return writel_relaxed(value, cci_pmu->base +
ab5b316d 703 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
b91c8f28
PA
704}
705
a1a076d7 706static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 707{
a1a076d7 708 pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
b91c8f28
PA
709}
710
a1a076d7 711static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28 712{
a1a076d7 713 pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
b91c8f28
PA
714}
715
1ce6311b
SP
716static bool __maybe_unused
717pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
718{
719 return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
720}
721
a1a076d7 722static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
b91c8f28 723{
a1a076d7 724 pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
b91c8f28
PA
725}
726
cea16f8b
SP
727/*
728 * For all counters on the CCI-PMU, disable any 'enabled' counters,
729 * saving the changed counters in the mask, so that we can restore
730 * it later using pmu_restore_counters. The mask is private to the
731 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
732 * as it only tells us if the counter is assigned to perf_event or not.
733 * The state of the perf_event cannot be locked by the PMU layer, hence
734 * we check the individual counter status (which can be locked by
735 * cci_pm->hw_events->pmu_lock).
736 *
737 * @mask should be initialised to empty by the caller.
738 */
739static void __maybe_unused
740pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
741{
742 int i;
743
744 for (i = 0; i < cci_pmu->num_cntrs; i++) {
745 if (pmu_counter_is_enabled(cci_pmu, i)) {
746 set_bit(i, mask);
747 pmu_disable_counter(cci_pmu, i);
748 }
749 }
750}
751
752/*
753 * Restore the status of the counters. Reversal of the pmu_save_counters().
754 * For each counter set in the mask, enable the counter back.
755 */
756static void __maybe_unused
757pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
758{
759 int i;
760
761 for_each_set_bit(i, mask, cci_pmu->num_cntrs)
762 pmu_enable_counter(cci_pmu, i);
763}
764
ab5b316d
SP
765/*
766 * Returns the number of programmable counters actually implemented
767 * by the cci
768 */
b91c8f28
PA
769static u32 pmu_get_max_counters(void)
770{
ab5b316d
SP
771 return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
772 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
b91c8f28
PA
773}
774
c6f85cb4 775static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
b91c8f28 776{
c6f85cb4 777 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
31216290 778 unsigned long cci_event = event->hw.config_base;
b91c8f28
PA
779 int idx;
780
31216290
SP
781 if (cci_pmu->model->get_event_idx)
782 return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
b91c8f28 783
31216290
SP
784 /* Generic code to find an unused idx from the mask */
785 for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
b91c8f28
PA
786 if (!test_and_set_bit(idx, hw->used_mask))
787 return idx;
788
789 /* No counters available */
790 return -EAGAIN;
791}
792
793static int pmu_map_event(struct perf_event *event)
794{
31216290 795 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
b91c8f28 796
31216290
SP
797 if (event->attr.type < PERF_TYPE_MAX ||
798 !cci_pmu->model->validate_hw_event)
b91c8f28
PA
799 return -ENOENT;
800
31216290 801 return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
b91c8f28
PA
802}
803
c6f85cb4 804static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
b91c8f28
PA
805{
806 int i;
807 struct platform_device *pmu_device = cci_pmu->plat_device;
808
809 if (unlikely(!pmu_device))
810 return -ENODEV;
811
a1a076d7 812 if (cci_pmu->nr_irqs < 1) {
b91c8f28
PA
813 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
814 return -ENODEV;
815 }
816
817 /*
818 * Register all available CCI PMU interrupts. In the interrupt handler
819 * we iterate over the counters checking for interrupt source (the
820 * overflowing counter) and clear it.
821 *
822 * This should allow handling of non-unique interrupt for the counters.
823 */
a1a076d7
SP
824 for (i = 0; i < cci_pmu->nr_irqs; i++) {
825 int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
b91c8f28
PA
826 "arm-cci-pmu", cci_pmu);
827 if (err) {
828 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
a1a076d7 829 cci_pmu->irqs[i]);
b91c8f28
PA
830 return err;
831 }
832
a1a076d7 833 set_bit(i, &cci_pmu->active_irqs);
b91c8f28
PA
834 }
835
836 return 0;
837}
838
c6f85cb4
MR
839static void pmu_free_irq(struct cci_pmu *cci_pmu)
840{
841 int i;
842
a1a076d7
SP
843 for (i = 0; i < cci_pmu->nr_irqs; i++) {
844 if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
c6f85cb4
MR
845 continue;
846
a1a076d7 847 free_irq(cci_pmu->irqs[i], cci_pmu);
c6f85cb4
MR
848 }
849}
850
851static u32 pmu_read_counter(struct perf_event *event)
852{
853 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
854 struct hw_perf_event *hw_counter = &event->hw;
855 int idx = hw_counter->idx;
856 u32 value;
857
858 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
859 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
860 return 0;
861 }
a1a076d7 862 value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
c6f85cb4
MR
863
864 return value;
865}
866
c8bc2b11 867static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
c6f85cb4 868{
c8bc2b11 869 pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
c6f85cb4
MR
870}
871
fff3f1a0 872static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
a53eb5c6
SP
873{
874 int i;
875 struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
876
877 for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
878 struct perf_event *event = cci_hw->events[i];
879
880 if (WARN_ON(!event))
881 continue;
c8bc2b11 882 pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
a53eb5c6
SP
883 }
884}
885
fff3f1a0
SP
886static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
887{
888 if (cci_pmu->model->write_counters)
889 cci_pmu->model->write_counters(cci_pmu, mask);
890 else
891 __pmu_write_counters(cci_pmu, mask);
892}
893
a445fcc9
SP
894#ifdef CONFIG_ARM_CCI500_PMU
895
896/*
897 * CCI-500 has advanced power saving policies, which could gate the
898 * clocks to the PMU counters, which makes the writes to them ineffective.
899 * The only way to write to those counters is when the global counters
900 * are enabled and the particular counter is enabled.
901 *
902 * So we do the following :
903 *
904 * 1) Disable all the PMU counters, saving their current state
905 * 2) Enable the global PMU profiling, now that all counters are
906 * disabled.
907 *
908 * For each counter to be programmed, repeat steps 3-7:
909 *
910 * 3) Write an invalid event code to the event control register for the
911 counter, so that the counters are not modified.
912 * 4) Enable the counter control for the counter.
913 * 5) Set the counter value
914 * 6) Disable the counter
915 * 7) Restore the event in the target counter
916 *
917 * 8) Disable the global PMU.
918 * 9) Restore the status of the rest of the counters.
919 *
920 * We choose an event which for CCI-500 is guaranteed not to count.
921 * We use the highest possible event code (0x1f) for the master interface 0.
922 */
923#define CCI500_INVALID_EVENT ((CCI500_PORT_M0 << CCI500_PMU_EVENT_SOURCE_SHIFT) | \
924 (CCI500_PMU_EVENT_CODE_MASK << CCI500_PMU_EVENT_CODE_SHIFT))
925static void cci500_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
926{
927 int i;
928 DECLARE_BITMAP(saved_mask, cci_pmu->num_cntrs);
929
930 bitmap_zero(saved_mask, cci_pmu->num_cntrs);
931 pmu_save_counters(cci_pmu, saved_mask);
932
933 /*
934 * Now that all the counters are disabled, we can safely turn the PMU on,
935 * without syncing the status of the counters
936 */
937 __cci_pmu_enable_nosync(cci_pmu);
938
939 for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
940 struct perf_event *event = cci_pmu->hw_events.events[i];
941
942 if (WARN_ON(!event))
943 continue;
944
945 pmu_set_event(cci_pmu, i, CCI500_INVALID_EVENT);
946 pmu_enable_counter(cci_pmu, i);
947 pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
948 pmu_disable_counter(cci_pmu, i);
949 pmu_set_event(cci_pmu, i, event->hw.config_base);
950 }
951
952 __cci_pmu_disable();
953
954 pmu_restore_counters(cci_pmu, saved_mask);
955}
956
957#endif /* CONFIG_ARM_CCI500_PMU */
958
c6f85cb4
MR
959static u64 pmu_event_update(struct perf_event *event)
960{
961 struct hw_perf_event *hwc = &event->hw;
962 u64 delta, prev_raw_count, new_raw_count;
963
964 do {
965 prev_raw_count = local64_read(&hwc->prev_count);
966 new_raw_count = pmu_read_counter(event);
967 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
968 new_raw_count) != prev_raw_count);
969
970 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
971
972 local64_add(delta, &event->count);
973
974 return new_raw_count;
975}
976
977static void pmu_read(struct perf_event *event)
978{
979 pmu_event_update(event);
980}
981
982void pmu_event_set_period(struct perf_event *event)
983{
984 struct hw_perf_event *hwc = &event->hw;
985 /*
986 * The CCI PMU counters have a period of 2^32. To account for the
987 * possiblity of extreme interrupt latency we program for a period of
988 * half that. Hopefully we can handle the interrupt before another 2^31
989 * events occur and the counter overtakes its previous value.
990 */
991 u64 val = 1ULL << 31;
992 local64_set(&hwc->prev_count, val);
c66eea5f
SP
993
994 /*
995 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
996 * values needs to be sync-ed with the s/w state before the PMU is
997 * enabled.
998 * Mark this counter for sync.
999 */
1000 hwc->state |= PERF_HES_ARCH;
c6f85cb4
MR
1001}
1002
b91c8f28
PA
1003static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1004{
1005 unsigned long flags;
c6f85cb4 1006 struct cci_pmu *cci_pmu = dev;
a1a076d7 1007 struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
b91c8f28
PA
1008 int idx, handled = IRQ_NONE;
1009
1010 raw_spin_lock_irqsave(&events->pmu_lock, flags);
c66eea5f
SP
1011
1012 /* Disable the PMU while we walk through the counters */
1013 __cci_pmu_disable();
b91c8f28
PA
1014 /*
1015 * Iterate over counters and update the corresponding perf events.
1016 * This should work regardless of whether we have per-counter overflow
1017 * interrupt or a combined overflow interrupt.
1018 */
31216290 1019 for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
b91c8f28
PA
1020 struct perf_event *event = events->events[idx];
1021 struct hw_perf_event *hw_counter;
1022
1023 if (!event)
1024 continue;
1025
1026 hw_counter = &event->hw;
1027
1028 /* Did this counter overflow? */
a1a076d7 1029 if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
fc5130de 1030 CCI_PMU_OVRFLW_FLAG))
b91c8f28
PA
1031 continue;
1032
a1a076d7
SP
1033 pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1034 CCI_PMU_OVRFLW);
b91c8f28 1035
c6f85cb4
MR
1036 pmu_event_update(event);
1037 pmu_event_set_period(event);
b91c8f28 1038 handled = IRQ_HANDLED;
b91c8f28 1039 }
c66eea5f
SP
1040
1041 /* Enable the PMU and sync possibly overflowed counters */
11300027 1042 __cci_pmu_enable_sync(cci_pmu);
b91c8f28
PA
1043 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1044
1045 return IRQ_RETVAL(handled);
1046}
1047
c6f85cb4 1048static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
b91c8f28 1049{
c6f85cb4
MR
1050 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1051 if (ret) {
1052 pmu_free_irq(cci_pmu);
1053 return ret;
1054 }
1055 return 0;
1056}
b91c8f28 1057
c6f85cb4
MR
1058static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1059{
1060 pmu_free_irq(cci_pmu);
1061}
b91c8f28 1062
c6f85cb4
MR
1063static void hw_perf_event_destroy(struct perf_event *event)
1064{
1065 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1066 atomic_t *active_events = &cci_pmu->active_events;
1067 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1068
1069 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1070 cci_pmu_put_hw(cci_pmu);
1071 mutex_unlock(reserve_mutex);
b91c8f28
PA
1072 }
1073}
1074
c6f85cb4 1075static void cci_pmu_enable(struct pmu *pmu)
b91c8f28 1076{
c6f85cb4
MR
1077 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1078 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
ab5b316d 1079 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
b91c8f28 1080 unsigned long flags;
c6f85cb4
MR
1081
1082 if (!enabled)
1083 return;
1084
1085 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
11300027 1086 __cci_pmu_enable_sync(cci_pmu);
c6f85cb4
MR
1087 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1088
1089}
1090
1091static void cci_pmu_disable(struct pmu *pmu)
1092{
1093 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1094 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1095 unsigned long flags;
c6f85cb4
MR
1096
1097 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
a077c52f 1098 __cci_pmu_disable();
c6f85cb4
MR
1099 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1100}
1101
31216290
SP
1102/*
1103 * Check if the idx represents a non-programmable counter.
1104 * All the fixed event counters are mapped before the programmable
1105 * counters.
1106 */
1107static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1108{
1109 return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1110}
1111
c6f85cb4
MR
1112static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1113{
1114 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1115 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1116 struct hw_perf_event *hwc = &event->hw;
1117 int idx = hwc->idx;
1118 unsigned long flags;
1119
1120 /*
1121 * To handle interrupt latency, we always reprogram the period
1122 * regardlesss of PERF_EF_RELOAD.
1123 */
1124 if (pmu_flags & PERF_EF_RELOAD)
1125 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1126
1127 hwc->state = 0;
b91c8f28
PA
1128
1129 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1130 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1131 return;
1132 }
1133
c6f85cb4 1134 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
b91c8f28 1135
31216290
SP
1136 /* Configure the counter unless you are counting a fixed event */
1137 if (!pmu_fixed_hw_idx(cci_pmu, idx))
a1a076d7 1138 pmu_set_event(cci_pmu, idx, hwc->config_base);
b91c8f28 1139
c6f85cb4 1140 pmu_event_set_period(event);
a1a076d7 1141 pmu_enable_counter(cci_pmu, idx);
b91c8f28 1142
c6f85cb4 1143 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
b91c8f28
PA
1144}
1145
c6f85cb4 1146static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
b91c8f28 1147{
c6f85cb4
MR
1148 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1149 struct hw_perf_event *hwc = &event->hw;
1150 int idx = hwc->idx;
1151
1152 if (hwc->state & PERF_HES_STOPPED)
1153 return;
b91c8f28
PA
1154
1155 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1156 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1157 return;
1158 }
1159
c6f85cb4
MR
1160 /*
1161 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1162 * cci_pmu_start()
1163 */
a1a076d7 1164 pmu_disable_counter(cci_pmu, idx);
c6f85cb4
MR
1165 pmu_event_update(event);
1166 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
b91c8f28
PA
1167}
1168
c6f85cb4 1169static int cci_pmu_add(struct perf_event *event, int flags)
b91c8f28 1170{
c6f85cb4
MR
1171 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1172 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1173 struct hw_perf_event *hwc = &event->hw;
1174 int idx;
1175 int err = 0;
b91c8f28 1176
c6f85cb4 1177 perf_pmu_disable(event->pmu);
b91c8f28 1178
c6f85cb4
MR
1179 /* If we don't have a space for the counter then finish early. */
1180 idx = pmu_get_event_idx(hw_events, event);
1181 if (idx < 0) {
1182 err = idx;
1183 goto out;
1184 }
b91c8f28 1185
c6f85cb4
MR
1186 event->hw.idx = idx;
1187 hw_events->events[idx] = event;
1188
1189 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1190 if (flags & PERF_EF_START)
1191 cci_pmu_start(event, PERF_EF_RELOAD);
1192
1193 /* Propagate our changes to the userspace mapping. */
1194 perf_event_update_userpage(event);
1195
1196out:
1197 perf_pmu_enable(event->pmu);
1198 return err;
b91c8f28
PA
1199}
1200
c6f85cb4 1201static void cci_pmu_del(struct perf_event *event, int flags)
b91c8f28 1202{
c6f85cb4
MR
1203 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1204 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1205 struct hw_perf_event *hwc = &event->hw;
1206 int idx = hwc->idx;
b91c8f28 1207
c6f85cb4
MR
1208 cci_pmu_stop(event, PERF_EF_UPDATE);
1209 hw_events->events[idx] = NULL;
1210 clear_bit(idx, hw_events->used_mask);
b91c8f28 1211
c6f85cb4
MR
1212 perf_event_update_userpage(event);
1213}
b91c8f28 1214
c6f85cb4 1215static int
b1862199
SP
1216validate_event(struct pmu *cci_pmu,
1217 struct cci_pmu_hw_events *hw_events,
1218 struct perf_event *event)
c6f85cb4
MR
1219{
1220 if (is_software_event(event))
1221 return 1;
1222
b1862199
SP
1223 /*
1224 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1225 * core perf code won't check that the pmu->ctx == leader->ctx
1226 * until after pmu->event_init(event).
1227 */
1228 if (event->pmu != cci_pmu)
1229 return 0;
1230
c6f85cb4
MR
1231 if (event->state < PERF_EVENT_STATE_OFF)
1232 return 1;
1233
1234 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1235 return 1;
1236
1237 return pmu_get_event_idx(hw_events, event) >= 0;
b91c8f28
PA
1238}
1239
c6f85cb4
MR
1240static int
1241validate_group(struct perf_event *event)
b91c8f28 1242{
c6f85cb4 1243 struct perf_event *sibling, *leader = event->group_leader;
ab5b316d
SP
1244 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1245 unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
c6f85cb4
MR
1246 struct cci_pmu_hw_events fake_pmu = {
1247 /*
1248 * Initialise the fake PMU. We only need to populate the
1249 * used_mask for the purposes of validation.
1250 */
ab5b316d 1251 .used_mask = mask,
c6f85cb4 1252 };
ab5b316d 1253 memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
b91c8f28 1254
b1862199 1255 if (!validate_event(event->pmu, &fake_pmu, leader))
c6f85cb4
MR
1256 return -EINVAL;
1257
1258 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
b1862199 1259 if (!validate_event(event->pmu, &fake_pmu, sibling))
c6f85cb4 1260 return -EINVAL;
b91c8f28 1261 }
b91c8f28 1262
b1862199 1263 if (!validate_event(event->pmu, &fake_pmu, event))
c6f85cb4
MR
1264 return -EINVAL;
1265
1266 return 0;
b91c8f28
PA
1267}
1268
c6f85cb4
MR
1269static int
1270__hw_perf_event_init(struct perf_event *event)
b91c8f28 1271{
c6f85cb4
MR
1272 struct hw_perf_event *hwc = &event->hw;
1273 int mapping;
b91c8f28 1274
c6f85cb4
MR
1275 mapping = pmu_map_event(event);
1276
1277 if (mapping < 0) {
1278 pr_debug("event %x:%llx not supported\n", event->attr.type,
1279 event->attr.config);
1280 return mapping;
1281 }
1282
1283 /*
1284 * We don't assign an index until we actually place the event onto
1285 * hardware. Use -1 to signify that we haven't decided where to put it
1286 * yet.
1287 */
1288 hwc->idx = -1;
1289 hwc->config_base = 0;
1290 hwc->config = 0;
1291 hwc->event_base = 0;
1292
1293 /*
1294 * Store the event encoding into the config_base field.
1295 */
1296 hwc->config_base |= (unsigned long)mapping;
1297
1298 /*
1299 * Limit the sample_period to half of the counter width. That way, the
1300 * new counter value is far less likely to overtake the previous one
1301 * unless you have some serious IRQ latency issues.
1302 */
1303 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
1304 hwc->last_period = hwc->sample_period;
1305 local64_set(&hwc->period_left, hwc->sample_period);
1306
1307 if (event->group_leader != event) {
1308 if (validate_group(event) != 0)
1309 return -EINVAL;
1310 }
1311
1312 return 0;
1313}
1314
1315static int cci_pmu_event_init(struct perf_event *event)
1316{
1317 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1318 atomic_t *active_events = &cci_pmu->active_events;
1319 int err = 0;
1320 int cpu;
1321
1322 if (event->attr.type != event->pmu->type)
1323 return -ENOENT;
1324
1325 /* Shared by all CPUs, no meaningful state to sample */
1326 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1327 return -EOPNOTSUPP;
1328
1329 /* We have no filtering of any kind */
1330 if (event->attr.exclude_user ||
1331 event->attr.exclude_kernel ||
1332 event->attr.exclude_hv ||
1333 event->attr.exclude_idle ||
1334 event->attr.exclude_host ||
1335 event->attr.exclude_guest)
1336 return -EINVAL;
1337
1338 /*
1339 * Following the example set by other "uncore" PMUs, we accept any CPU
1340 * and rewrite its affinity dynamically rather than having perf core
1341 * handle cpu == -1 and pid == -1 for this case.
1342 *
1343 * The perf core will pin online CPUs for the duration of this call and
1344 * the event being installed into its context, so the PMU's CPU can't
1345 * change under our feet.
1346 */
1347 cpu = cpumask_first(&cci_pmu->cpus);
1348 if (event->cpu < 0 || cpu < 0)
1349 return -EINVAL;
1350 event->cpu = cpu;
1351
1352 event->destroy = hw_perf_event_destroy;
1353 if (!atomic_inc_not_zero(active_events)) {
1354 mutex_lock(&cci_pmu->reserve_mutex);
1355 if (atomic_read(active_events) == 0)
1356 err = cci_pmu_get_hw(cci_pmu);
1357 if (!err)
1358 atomic_inc(active_events);
1359 mutex_unlock(&cci_pmu->reserve_mutex);
1360 }
1361 if (err)
1362 return err;
1363
1364 err = __hw_perf_event_init(event);
1365 if (err)
1366 hw_perf_event_destroy(event);
1367
1368 return err;
b91c8f28
PA
1369}
1370
a1a076d7 1371static ssize_t pmu_cpumask_attr_show(struct device *dev,
c6f85cb4
MR
1372 struct device_attribute *attr, char *buf)
1373{
5e442eba
MR
1374 struct pmu *pmu = dev_get_drvdata(dev);
1375 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
a1a076d7 1376
660e5ec0 1377 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
a1a076d7 1378 cpumask_pr_args(&cci_pmu->cpus));
c6f85cb4
MR
1379 buf[n++] = '\n';
1380 buf[n] = '\0';
1381 return n;
1382}
1383
5e442eba
MR
1384static struct device_attribute pmu_cpumask_attr =
1385 __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
c6f85cb4
MR
1386
1387static struct attribute *pmu_attrs[] = {
5e442eba 1388 &pmu_cpumask_attr.attr,
c6f85cb4
MR
1389 NULL,
1390};
1391
1392static struct attribute_group pmu_attr_group = {
1393 .attrs = pmu_attrs,
1394};
1395
e14cfad3
SP
1396static struct attribute_group pmu_format_attr_group = {
1397 .name = "format",
1398 .attrs = NULL, /* Filled in cci_pmu_init_attrs */
1399};
1400
1401static struct attribute_group pmu_event_attr_group = {
1402 .name = "events",
1403 .attrs = NULL, /* Filled in cci_pmu_init_attrs */
1404};
1405
c6f85cb4
MR
1406static const struct attribute_group *pmu_attr_groups[] = {
1407 &pmu_attr_group,
e14cfad3
SP
1408 &pmu_format_attr_group,
1409 &pmu_event_attr_group,
c6f85cb4
MR
1410 NULL
1411};
1412
1413static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1414{
5e442eba
MR
1415 const struct cci_pmu_model *model = cci_pmu->model;
1416 char *name = model->name;
ab5b316d 1417 u32 num_cntrs;
e14cfad3 1418
5e442eba
MR
1419 pmu_event_attr_group.attrs = model->event_attrs;
1420 pmu_format_attr_group.attrs = model->format_attrs;
a1a076d7 1421
c6f85cb4 1422 cci_pmu->pmu = (struct pmu) {
fc17c839 1423 .name = cci_pmu->model->name,
c6f85cb4
MR
1424 .task_ctx_nr = perf_invalid_context,
1425 .pmu_enable = cci_pmu_enable,
1426 .pmu_disable = cci_pmu_disable,
1427 .event_init = cci_pmu_event_init,
1428 .add = cci_pmu_add,
1429 .del = cci_pmu_del,
1430 .start = cci_pmu_start,
1431 .stop = cci_pmu_stop,
1432 .read = pmu_read,
1433 .attr_groups = pmu_attr_groups,
b91c8f28
PA
1434 };
1435
1436 cci_pmu->plat_device = pdev;
ab5b316d
SP
1437 num_cntrs = pmu_get_max_counters();
1438 if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1439 dev_warn(&pdev->dev,
1440 "PMU implements more counters(%d) than supported by"
1441 " the model(%d), truncated.",
1442 num_cntrs, cci_pmu->model->num_hw_cntrs);
1443 num_cntrs = cci_pmu->model->num_hw_cntrs;
1444 }
1445 cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
b91c8f28 1446
c6f85cb4 1447 return perf_pmu_register(&cci_pmu->pmu, name, -1);
b91c8f28
PA
1448}
1449
c6f85cb4
MR
1450static int cci_pmu_cpu_notifier(struct notifier_block *self,
1451 unsigned long action, void *hcpu)
1452{
a1a076d7
SP
1453 struct cci_pmu *cci_pmu = container_of(self,
1454 struct cci_pmu, cpu_nb);
c6f85cb4
MR
1455 unsigned int cpu = (long)hcpu;
1456 unsigned int target;
1457
1458 switch (action & ~CPU_TASKS_FROZEN) {
1459 case CPU_DOWN_PREPARE:
a1a076d7 1460 if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
c6f85cb4
MR
1461 break;
1462 target = cpumask_any_but(cpu_online_mask, cpu);
0f17380c 1463 if (target >= nr_cpu_ids) // UP, last CPU
c6f85cb4
MR
1464 break;
1465 /*
1466 * TODO: migrate context once core races on event->ctx have
1467 * been fixed.
1468 */
a1a076d7 1469 cpumask_set_cpu(target, &cci_pmu->cpus);
c6f85cb4
MR
1470 default:
1471 break;
1472 }
1473
1474 return NOTIFY_OK;
1475}
1476
fc17c839 1477static struct cci_pmu_model cci_pmu_models[] = {
f4d58938
SP
1478#ifdef CONFIG_ARM_CCI400_PMU
1479 [CCI400_R0] = {
fc17c839 1480 .name = "CCI_400",
ab5b316d
SP
1481 .fixed_hw_cntrs = 1, /* Cycle counter */
1482 .num_hw_cntrs = 4,
1483 .cntr_size = SZ_4K,
e14cfad3 1484 .format_attrs = cci400_pmu_format_attrs,
e14cfad3 1485 .event_attrs = cci400_r0_pmu_event_attrs,
fc17c839
SP
1486 .event_ranges = {
1487 [CCI_IF_SLAVE] = {
f4d58938
SP
1488 CCI400_R0_SLAVE_PORT_MIN_EV,
1489 CCI400_R0_SLAVE_PORT_MAX_EV,
fc17c839
SP
1490 },
1491 [CCI_IF_MASTER] = {
f4d58938
SP
1492 CCI400_R0_MASTER_PORT_MIN_EV,
1493 CCI400_R0_MASTER_PORT_MAX_EV,
fc17c839
SP
1494 },
1495 },
31216290
SP
1496 .validate_hw_event = cci400_validate_hw_event,
1497 .get_event_idx = cci400_get_event_idx,
fc17c839 1498 },
f4d58938 1499 [CCI400_R1] = {
fc17c839 1500 .name = "CCI_400_r1",
ab5b316d
SP
1501 .fixed_hw_cntrs = 1, /* Cycle counter */
1502 .num_hw_cntrs = 4,
1503 .cntr_size = SZ_4K,
e14cfad3 1504 .format_attrs = cci400_pmu_format_attrs,
e14cfad3 1505 .event_attrs = cci400_r1_pmu_event_attrs,
fc17c839
SP
1506 .event_ranges = {
1507 [CCI_IF_SLAVE] = {
f4d58938
SP
1508 CCI400_R1_SLAVE_PORT_MIN_EV,
1509 CCI400_R1_SLAVE_PORT_MAX_EV,
fc17c839
SP
1510 },
1511 [CCI_IF_MASTER] = {
f4d58938
SP
1512 CCI400_R1_MASTER_PORT_MIN_EV,
1513 CCI400_R1_MASTER_PORT_MAX_EV,
fc17c839
SP
1514 },
1515 },
31216290
SP
1516 .validate_hw_event = cci400_validate_hw_event,
1517 .get_event_idx = cci400_get_event_idx,
fc17c839 1518 },
f4d58938 1519#endif
a95791ef
SP
1520#ifdef CONFIG_ARM_CCI500_PMU
1521 [CCI500_R0] = {
1522 .name = "CCI_500",
1523 .fixed_hw_cntrs = 0,
1524 .num_hw_cntrs = 8,
1525 .cntr_size = SZ_64K,
e14cfad3 1526 .format_attrs = cci500_pmu_format_attrs,
e14cfad3 1527 .event_attrs = cci500_pmu_event_attrs,
a95791ef
SP
1528 .event_ranges = {
1529 [CCI_IF_SLAVE] = {
1530 CCI500_SLAVE_PORT_MIN_EV,
1531 CCI500_SLAVE_PORT_MAX_EV,
1532 },
1533 [CCI_IF_MASTER] = {
1534 CCI500_MASTER_PORT_MIN_EV,
1535 CCI500_MASTER_PORT_MAX_EV,
1536 },
1537 [CCI_IF_GLOBAL] = {
1538 CCI500_GLOBAL_PORT_MIN_EV,
1539 CCI500_GLOBAL_PORT_MAX_EV,
1540 },
1541 },
1542 .validate_hw_event = cci500_validate_hw_event,
a445fcc9 1543 .write_counters = cci500_pmu_write_counters,
a95791ef
SP
1544 },
1545#endif
fc17c839
SP
1546};
1547
b91c8f28 1548static const struct of_device_id arm_cci_pmu_matches[] = {
f4d58938 1549#ifdef CONFIG_ARM_CCI400_PMU
b91c8f28
PA
1550 {
1551 .compatible = "arm,cci-400-pmu",
772742a6
SP
1552 .data = NULL,
1553 },
1554 {
1555 .compatible = "arm,cci-400-pmu,r0",
f4d58938 1556 .data = &cci_pmu_models[CCI400_R0],
772742a6
SP
1557 },
1558 {
1559 .compatible = "arm,cci-400-pmu,r1",
f4d58938 1560 .data = &cci_pmu_models[CCI400_R1],
b91c8f28 1561 },
a95791ef
SP
1562#endif
1563#ifdef CONFIG_ARM_CCI500_PMU
1564 {
1565 .compatible = "arm,cci-500-pmu,r0",
1566 .data = &cci_pmu_models[CCI500_R0],
1567 },
f4d58938 1568#endif
b91c8f28
PA
1569 {},
1570};
1571
fc17c839
SP
1572static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1573{
1574 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1575 pdev->dev.of_node);
1576 if (!match)
1577 return NULL;
772742a6
SP
1578 if (match->data)
1579 return match->data;
fc17c839 1580
772742a6
SP
1581 dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1582 "requires secure access to CCI registers");
fc17c839
SP
1583 return probe_cci_model(pdev);
1584}
1585
f6b9e83c
SP
1586static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1587{
1588 int i;
1589
1590 for (i = 0; i < nr_irqs; i++)
1591 if (irq == irqs[i])
1592 return true;
1593
1594 return false;
1595}
1596
ab5b316d 1597static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
b91c8f28 1598{
a1a076d7 1599 struct cci_pmu *cci_pmu;
fc17c839
SP
1600 const struct cci_pmu_model *model;
1601
ab5b316d
SP
1602 /*
1603 * All allocations are devm_* hence we don't have to free
1604 * them explicitly on an error, as it would end up in driver
1605 * detach.
1606 */
fc17c839
SP
1607 model = get_cci_model(pdev);
1608 if (!model) {
1609 dev_warn(&pdev->dev, "CCI PMU version not supported\n");
ab5b316d 1610 return ERR_PTR(-ENODEV);
fc17c839 1611 }
b91c8f28 1612
a1a076d7
SP
1613 cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1614 if (!cci_pmu)
ab5b316d 1615 return ERR_PTR(-ENOMEM);
b91c8f28 1616
a1a076d7 1617 cci_pmu->model = model;
ab5b316d
SP
1618 cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1619 sizeof(*cci_pmu->irqs), GFP_KERNEL);
1620 if (!cci_pmu->irqs)
1621 return ERR_PTR(-ENOMEM);
1622 cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1623 CCI_PMU_MAX_HW_CNTRS(model),
1624 sizeof(*cci_pmu->hw_events.events),
1625 GFP_KERNEL);
1626 if (!cci_pmu->hw_events.events)
1627 return ERR_PTR(-ENOMEM);
1628 cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1629 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1630 sizeof(*cci_pmu->hw_events.used_mask),
1631 GFP_KERNEL);
1632 if (!cci_pmu->hw_events.used_mask)
1633 return ERR_PTR(-ENOMEM);
1634
1635 return cci_pmu;
1636}
1637
1638
1639static int cci_pmu_probe(struct platform_device *pdev)
1640{
1641 struct resource *res;
1642 struct cci_pmu *cci_pmu;
1643 int i, ret, irq;
1644
1645 cci_pmu = cci_pmu_alloc(pdev);
1646 if (IS_ERR(cci_pmu))
1647 return PTR_ERR(cci_pmu);
1648
b91c8f28 1649 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
a1a076d7
SP
1650 cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1651 if (IS_ERR(cci_pmu->base))
fee4f2c6 1652 return -ENOMEM;
b91c8f28
PA
1653
1654 /*
ab5b316d 1655 * CCI PMU has one overflow interrupt per counter; but some may be tied
b91c8f28
PA
1656 * together to a common interrupt.
1657 */
a1a076d7 1658 cci_pmu->nr_irqs = 0;
ab5b316d 1659 for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
b91c8f28
PA
1660 irq = platform_get_irq(pdev, i);
1661 if (irq < 0)
1662 break;
1663
a1a076d7 1664 if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
b91c8f28
PA
1665 continue;
1666
a1a076d7 1667 cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
b91c8f28
PA
1668 }
1669
1670 /*
1671 * Ensure that the device tree has as many interrupts as the number
1672 * of counters.
1673 */
ab5b316d 1674 if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
b91c8f28 1675 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
ab5b316d 1676 i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
fee4f2c6 1677 return -EINVAL;
b91c8f28
PA
1678 }
1679
a1a076d7
SP
1680 raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1681 mutex_init(&cci_pmu->reserve_mutex);
1682 atomic_set(&cci_pmu->active_events, 0);
1683 cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
c6f85cb4 1684
a1a076d7
SP
1685 cci_pmu->cpu_nb = (struct notifier_block) {
1686 .notifier_call = cci_pmu_cpu_notifier,
1687 /*
1688 * to migrate uncore events, our notifier should be executed
1689 * before perf core's notifier.
1690 */
1691 .priority = CPU_PRI_PERF + 1,
1692 };
1693
1694 ret = register_cpu_notifier(&cci_pmu->cpu_nb);
c6f85cb4
MR
1695 if (ret)
1696 return ret;
b91c8f28 1697
a1a076d7
SP
1698 ret = cci_pmu_init(cci_pmu, pdev);
1699 if (ret) {
1700 unregister_cpu_notifier(&cci_pmu->cpu_nb);
fee4f2c6 1701 return ret;
a1a076d7 1702 }
b91c8f28 1703
a1a076d7 1704 pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
b91c8f28 1705 return 0;
b91c8f28
PA
1706}
1707
1708static int cci_platform_probe(struct platform_device *pdev)
1709{
1710 if (!cci_probed())
1711 return -ENODEV;
1712
1713 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1714}
1715
f6b9e83c
SP
1716static struct platform_driver cci_pmu_driver = {
1717 .driver = {
1718 .name = DRIVER_NAME_PMU,
1719 .of_match_table = arm_cci_pmu_matches,
1720 },
1721 .probe = cci_pmu_probe,
1722};
1723
1724static struct platform_driver cci_platform_driver = {
1725 .driver = {
1726 .name = DRIVER_NAME,
1727 .of_match_table = arm_cci_matches,
1728 },
1729 .probe = cci_platform_probe,
1730};
1731
1732static int __init cci_platform_init(void)
1733{
1734 int ret;
1735
1736 ret = platform_driver_register(&cci_pmu_driver);
1737 if (ret)
1738 return ret;
1739
1740 return platform_driver_register(&cci_platform_driver);
1741}
1742
f4d58938 1743#else /* !CONFIG_ARM_CCI_PMU */
f6b9e83c
SP
1744
1745static int __init cci_platform_init(void)
1746{
1747 return 0;
1748}
1749
f4d58938 1750#endif /* CONFIG_ARM_CCI_PMU */
ee8e5d5f
SP
1751
1752#ifdef CONFIG_ARM_CCI400_PORT_CTRL
b91c8f28 1753
f6b9e83c
SP
1754#define CCI_PORT_CTRL 0x0
1755#define CCI_CTRL_STATUS 0xc
1756
1757#define CCI_ENABLE_SNOOP_REQ 0x1
1758#define CCI_ENABLE_DVM_REQ 0x2
1759#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1760
1761enum cci_ace_port_type {
1762 ACE_INVALID_PORT = 0x0,
1763 ACE_PORT,
1764 ACE_LITE_PORT,
1765};
1766
1767struct cci_ace_port {
1768 void __iomem *base;
1769 unsigned long phys;
1770 enum cci_ace_port_type type;
1771 struct device_node *dn;
1772};
1773
1774static struct cci_ace_port *ports;
1775static unsigned int nb_cci_ports;
1776
ed69bdd8
LP
1777struct cpu_port {
1778 u64 mpidr;
1779 u32 port;
1780};
62158f81 1781
ed69bdd8
LP
1782/*
1783 * Use the port MSB as valid flag, shift can be made dynamic
1784 * by computing number of bits required for port indexes.
1785 * Code disabling CCI cpu ports runs with D-cache invalidated
1786 * and SCTLR bit clear so data accesses must be kept to a minimum
1787 * to improve performance; for now shift is left static to
1788 * avoid one more data access while disabling the CCI port.
1789 */
1790#define PORT_VALID_SHIFT 31
1791#define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1792
1793static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1794{
1795 port->port = PORT_VALID | index;
1796 port->mpidr = mpidr;
1797}
1798
1799static inline bool cpu_port_is_valid(struct cpu_port *port)
1800{
1801 return !!(port->port & PORT_VALID);
1802}
1803
1804static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1805{
1806 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1807}
1808
1809static struct cpu_port cpu_port[NR_CPUS];
1810
1811/**
1812 * __cci_ace_get_port - Function to retrieve the port index connected to
1813 * a cpu or device.
1814 *
1815 * @dn: device node of the device to look-up
1816 * @type: port type
1817 *
1818 * Return value:
1819 * - CCI port index if success
1820 * - -ENODEV if failure
1821 */
1822static int __cci_ace_get_port(struct device_node *dn, int type)
1823{
1824 int i;
1825 bool ace_match;
1826 struct device_node *cci_portn;
1827
1828 cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1829 for (i = 0; i < nb_cci_ports; i++) {
1830 ace_match = ports[i].type == type;
1831 if (ace_match && cci_portn == ports[i].dn)
1832 return i;
1833 }
1834 return -ENODEV;
1835}
1836
1837int cci_ace_get_port(struct device_node *dn)
1838{
1839 return __cci_ace_get_port(dn, ACE_LITE_PORT);
1840}
1841EXPORT_SYMBOL_GPL(cci_ace_get_port);
1842
b91c8f28 1843static void cci_ace_init_ports(void)
ed69bdd8 1844{
78b4d6e0
SK
1845 int port, cpu;
1846 struct device_node *cpun;
ed69bdd8
LP
1847
1848 /*
1849 * Port index look-up speeds up the function disabling ports by CPU,
1850 * since the logical to port index mapping is done once and does
1851 * not change after system boot.
1852 * The stashed index array is initialized for all possible CPUs
1853 * at probe time.
1854 */
78b4d6e0
SK
1855 for_each_possible_cpu(cpu) {
1856 /* too early to use cpu->of_node */
1857 cpun = of_get_cpu_node(cpu, NULL);
ed69bdd8 1858
78b4d6e0 1859 if (WARN(!cpun, "Missing cpu device node\n"))
ed69bdd8 1860 continue;
78b4d6e0 1861
ed69bdd8
LP
1862 port = __cci_ace_get_port(cpun, ACE_PORT);
1863 if (port < 0)
1864 continue;
1865
1866 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1867 }
1868
1869 for_each_possible_cpu(cpu) {
1870 WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1871 "CPU %u does not have an associated CCI port\n",
1872 cpu);
1873 }
1874}
1875/*
1876 * Functions to enable/disable a CCI interconnect slave port
1877 *
1878 * They are called by low-level power management code to disable slave
1879 * interfaces snoops and DVM broadcast.
1880 * Since they may execute with cache data allocation disabled and
1881 * after the caches have been cleaned and invalidated the functions provide
1882 * no explicit locking since they may run with D-cache disabled, so normal
1883 * cacheable kernel locks based on ldrex/strex may not work.
1884 * Locking has to be provided by BSP implementations to ensure proper
1885 * operations.
1886 */
1887
1888/**
1889 * cci_port_control() - function to control a CCI port
1890 *
1891 * @port: index of the port to setup
1892 * @enable: if true enables the port, if false disables it
1893 */
1894static void notrace cci_port_control(unsigned int port, bool enable)
1895{
1896 void __iomem *base = ports[port].base;
1897
1898 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1899 /*
1900 * This function is called from power down procedures
1901 * and must not execute any instruction that might
1902 * cause the processor to be put in a quiescent state
1903 * (eg wfi). Hence, cpu_relax() can not be added to this
1904 * read loop to optimize power, since it might hide possibly
1905 * disruptive operations.
1906 */
1907 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1908 ;
1909}
1910
1911/**
1912 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1913 * reference
1914 *
1915 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1916 *
1917 * Disabling a CCI port for a CPU implies disabling the CCI port
1918 * controlling that CPU cluster. Code disabling CPU CCI ports
1919 * must make sure that the CPU running the code is the last active CPU
1920 * in the cluster ie all other CPUs are quiescent in a low power state.
1921 *
1922 * Return:
1923 * 0 on success
1924 * -ENODEV on port look-up failure
1925 */
1926int notrace cci_disable_port_by_cpu(u64 mpidr)
1927{
1928 int cpu;
1929 bool is_valid;
1930 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1931 is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1932 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1933 cci_port_control(cpu_port[cpu].port, false);
1934 return 0;
1935 }
1936 }
1937 return -ENODEV;
1938}
1939EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1940
62158f81
NP
1941/**
1942 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1943 *
1944 * Enabling a CCI port for the calling CPU implies enabling the CCI
1945 * port controlling that CPU's cluster. Caller must make sure that the
1946 * CPU running the code is the first active CPU in the cluster and all
1947 * other CPUs are quiescent in a low power state or waiting for this CPU
1948 * to complete the CCI initialization.
1949 *
1950 * Because this is called when the MMU is still off and with no stack,
1951 * the code must be position independent and ideally rely on callee
1952 * clobbered registers only. To achieve this we must code this function
1953 * entirely in assembler.
1954 *
1955 * On success this returns with the proper CCI port enabled. In case of
1956 * any failure this never returns as the inability to enable the CCI is
1957 * fatal and there is no possible recovery at this stage.
1958 */
1959asmlinkage void __naked cci_enable_port_for_self(void)
1960{
1961 asm volatile ("\n"
f4902492 1962" .arch armv7-a\n"
62158f81
NP
1963" mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1964" and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1965" adr r1, 5f \n"
1966" ldr r2, [r1] \n"
1967" add r1, r1, r2 @ &cpu_port \n"
1968" add ip, r1, %[sizeof_cpu_port] \n"
1969
1970 /* Loop over the cpu_port array looking for a matching MPIDR */
1971"1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1972" cmp r2, r0 @ compare MPIDR \n"
1973" bne 2f \n"
1974
1975 /* Found a match, now test port validity */
1976" ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1977" tst r3, #"__stringify(PORT_VALID)" \n"
1978" bne 3f \n"
1979
1980 /* no match, loop with the next cpu_port entry */
1981"2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1982" cmp r1, ip @ done? \n"
1983" blo 1b \n"
1984
1985 /* CCI port not found -- cheaply try to stall this CPU */
1986"cci_port_not_found: \n"
1987" wfi \n"
1988" wfe \n"
1989" b cci_port_not_found \n"
1990
1991 /* Use matched port index to look up the corresponding ports entry */
1992"3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
1993" adr r0, 6f \n"
1994" ldmia r0, {r1, r2} \n"
1995" sub r1, r1, r0 @ virt - phys \n"
1996" ldr r0, [r0, r2] @ *(&ports) \n"
1997" mov r2, %[sizeof_struct_ace_port] \n"
1998" mla r0, r2, r3, r0 @ &ports[index] \n"
1999" sub r0, r0, r1 @ virt_to_phys() \n"
2000
2001 /* Enable the CCI port */
2002" ldr r0, [r0, %[offsetof_port_phys]] \n"
fdb07aee 2003" mov r3, %[cci_enable_req]\n"
62158f81
NP
2004" str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
2005
2006 /* poll the status reg for completion */
2007" adr r1, 7f \n"
2008" ldr r0, [r1] \n"
2009" ldr r0, [r0, r1] @ cci_ctrl_base \n"
2010"4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
fdb07aee 2011" tst r1, %[cci_control_status_bits] \n"
62158f81
NP
2012" bne 4b \n"
2013
2014" mov r0, #0 \n"
2015" bx lr \n"
2016
2017" .align 2 \n"
2018"5: .word cpu_port - . \n"
2019"6: .word . \n"
2020" .word ports - 6b \n"
2021"7: .word cci_ctrl_phys - . \n"
2022 : :
2023 [sizeof_cpu_port] "i" (sizeof(cpu_port)),
fdb07aee
VK
2024 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
2025 [cci_control_status_bits] "i" cpu_to_le32(1),
62158f81
NP
2026#ifndef __ARMEB__
2027 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
2028#else
2029 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
2030#endif
2031 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
2032 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
2033 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
2034 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
2035
2036 unreachable();
2037}
2038
ed69bdd8
LP
2039/**
2040 * __cci_control_port_by_device() - function to control a CCI port by device
2041 * reference
2042 *
2043 * @dn: device node pointer of the device whose CCI port should be
2044 * controlled
2045 * @enable: if true enables the port, if false disables it
2046 *
2047 * Return:
2048 * 0 on success
2049 * -ENODEV on port look-up failure
2050 */
2051int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
2052{
2053 int port;
2054
2055 if (!dn)
2056 return -ENODEV;
2057
2058 port = __cci_ace_get_port(dn, ACE_LITE_PORT);
2059 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
2060 dn->full_name))
2061 return -ENODEV;
2062 cci_port_control(port, enable);
2063 return 0;
2064}
2065EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
2066
2067/**
2068 * __cci_control_port_by_index() - function to control a CCI port by port index
2069 *
2070 * @port: port index previously retrieved with cci_ace_get_port()
2071 * @enable: if true enables the port, if false disables it
2072 *
2073 * Return:
2074 * 0 on success
2075 * -ENODEV on port index out of range
2076 * -EPERM if operation carried out on an ACE PORT
2077 */
2078int notrace __cci_control_port_by_index(u32 port, bool enable)
2079{
2080 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
2081 return -ENODEV;
2082 /*
2083 * CCI control for ports connected to CPUS is extremely fragile
2084 * and must be made to go through a specific and controlled
2085 * interface (ie cci_disable_port_by_cpu(); control by general purpose
2086 * indexing is therefore disabled for ACE ports.
2087 */
2088 if (ports[port].type == ACE_PORT)
2089 return -EPERM;
2090
2091 cci_port_control(port, enable);
2092 return 0;
2093}
2094EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
2095
ed69bdd8
LP
2096static const struct of_device_id arm_cci_ctrl_if_matches[] = {
2097 {.compatible = "arm,cci-400-ctrl-if", },
2098 {},
2099};
2100
f6b9e83c 2101static int cci_probe_ports(struct device_node *np)
ed69bdd8
LP
2102{
2103 struct cci_nb_ports const *cci_config;
2104 int ret, i, nb_ace = 0, nb_ace_lite = 0;
f6b9e83c 2105 struct device_node *cp;
62158f81 2106 struct resource res;
ed69bdd8
LP
2107 const char *match_str;
2108 bool is_ace;
2109
896ddd60 2110
ed69bdd8
LP
2111 cci_config = of_match_node(arm_cci_matches, np)->data;
2112 if (!cci_config)
2113 return -ENODEV;
2114
2115 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
2116
7c762036 2117 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
ed69bdd8
LP
2118 if (!ports)
2119 return -ENOMEM;
2120
ed69bdd8
LP
2121 for_each_child_of_node(np, cp) {
2122 if (!of_match_node(arm_cci_ctrl_if_matches, cp))
2123 continue;
2124
2125 i = nb_ace + nb_ace_lite;
2126
2127 if (i >= nb_cci_ports)
2128 break;
2129
2130 if (of_property_read_string(cp, "interface-type",
2131 &match_str)) {
2132 WARN(1, "node %s missing interface-type property\n",
2133 cp->full_name);
2134 continue;
2135 }
2136 is_ace = strcmp(match_str, "ace") == 0;
2137 if (!is_ace && strcmp(match_str, "ace-lite")) {
2138 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
2139 cp->full_name);
2140 continue;
2141 }
2142
62158f81
NP
2143 ret = of_address_to_resource(cp, 0, &res);
2144 if (!ret) {
2145 ports[i].base = ioremap(res.start, resource_size(&res));
2146 ports[i].phys = res.start;
2147 }
2148 if (ret || !ports[i].base) {
ed69bdd8
LP
2149 WARN(1, "unable to ioremap CCI port %d\n", i);
2150 continue;
2151 }
2152
2153 if (is_ace) {
2154 if (WARN_ON(nb_ace >= cci_config->nb_ace))
2155 continue;
2156 ports[i].type = ACE_PORT;
2157 ++nb_ace;
2158 } else {
2159 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2160 continue;
2161 ports[i].type = ACE_LITE_PORT;
2162 ++nb_ace_lite;
2163 }
2164 ports[i].dn = cp;
2165 }
2166
2167 /* initialize a stashed array of ACE ports to speed-up look-up */
2168 cci_ace_init_ports();
2169
2170 /*
2171 * Multi-cluster systems may need this data when non-coherent, during
2172 * cluster power-up/power-down. Make sure it reaches main memory.
2173 */
2174 sync_cache_w(&cci_ctrl_base);
62158f81 2175 sync_cache_w(&cci_ctrl_phys);
ed69bdd8
LP
2176 sync_cache_w(&ports);
2177 sync_cache_w(&cpu_port);
2178 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2179 pr_info("ARM CCI driver probed\n");
f6b9e83c 2180
ed69bdd8 2181 return 0;
f6b9e83c 2182}
ee8e5d5f
SP
2183#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2184static inline int cci_probe_ports(struct device_node *np)
2185{
2186 return 0;
2187}
2188#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
ed69bdd8 2189
f6b9e83c
SP
2190static int cci_probe(void)
2191{
2192 int ret;
2193 struct device_node *np;
2194 struct resource res;
ed69bdd8 2195
f6b9e83c
SP
2196 np = of_find_matching_node(NULL, arm_cci_matches);
2197 if(!np || !of_device_is_available(np))
2198 return -ENODEV;
2199
2200 ret = of_address_to_resource(np, 0, &res);
2201 if (!ret) {
2202 cci_ctrl_base = ioremap(res.start, resource_size(&res));
2203 cci_ctrl_phys = res.start;
2204 }
2205 if (ret || !cci_ctrl_base) {
2206 WARN(1, "unable to ioremap CCI ctrl\n");
2207 return -ENXIO;
2208 }
2209
2210 return cci_probe_ports(np);
ed69bdd8
LP
2211}
2212
2213static int cci_init_status = -EAGAIN;
2214static DEFINE_MUTEX(cci_probing);
2215
b91c8f28 2216static int cci_init(void)
ed69bdd8
LP
2217{
2218 if (cci_init_status != -EAGAIN)
2219 return cci_init_status;
2220
2221 mutex_lock(&cci_probing);
2222 if (cci_init_status == -EAGAIN)
2223 cci_init_status = cci_probe();
2224 mutex_unlock(&cci_probing);
2225 return cci_init_status;
2226}
2227
2228/*
2229 * To sort out early init calls ordering a helper function is provided to
2230 * check if the CCI driver has beed initialized. Function check if the driver
2231 * has been initialized, if not it calls the init function that probes
2232 * the driver and updates the return value.
2233 */
b91c8f28 2234bool cci_probed(void)
ed69bdd8
LP
2235{
2236 return cci_init() == 0;
2237}
2238EXPORT_SYMBOL_GPL(cci_probed);
2239
2240early_initcall(cci_init);
b91c8f28 2241core_initcall(cci_platform_init);
ed69bdd8
LP
2242MODULE_LICENSE("GPL");
2243MODULE_DESCRIPTION("ARM CCI support");
This page took 0.221786 seconds and 5 git commands to generate.