arm-cci: Split the code for PMU vs driver support
[deliverable/linux.git] / drivers / bus / arm-cci.c
CommitLineData
ed69bdd8
LP
1/*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/arm-cci.h>
18#include <linux/io.h>
c6f85cb4 19#include <linux/interrupt.h>
ed69bdd8
LP
20#include <linux/module.h>
21#include <linux/of_address.h>
b91c8f28
PA
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
c6f85cb4 24#include <linux/perf_event.h>
b91c8f28 25#include <linux/platform_device.h>
ed69bdd8 26#include <linux/slab.h>
b91c8f28 27#include <linux/spinlock.h>
ed69bdd8
LP
28
29#include <asm/cacheflush.h>
30#include <asm/smp_plat.h>
31
f6b9e83c
SP
32static void __iomem *cci_ctrl_base;
33static unsigned long cci_ctrl_phys;
ed69bdd8 34
ee8e5d5f 35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
ed69bdd8
LP
36struct cci_nb_ports {
37 unsigned int nb_ace;
38 unsigned int nb_ace_lite;
39};
40
f6b9e83c
SP
41static const struct cci_nb_ports cci400_ports = {
42 .nb_ace = 2,
43 .nb_ace_lite = 3
ed69bdd8
LP
44};
45
ee8e5d5f
SP
46#define CCI400_PORTS_DATA (&cci400_ports)
47#else
48#define CCI400_PORTS_DATA (NULL)
49#endif
50
f6b9e83c 51static const struct of_device_id arm_cci_matches[] = {
ee8e5d5f
SP
52#ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54#endif
f6b9e83c 55 {},
ed69bdd8
LP
56};
57
ee8e5d5f 58#ifdef CONFIG_ARM_CCI400_PMU
b91c8f28 59
f6b9e83c
SP
60#define DRIVER_NAME "CCI-400"
61#define DRIVER_NAME_PMU DRIVER_NAME " PMU"
62
b91c8f28
PA
63#define CCI_PMCR 0x0100
64#define CCI_PID2 0x0fe8
65
66#define CCI_PMCR_CEN 0x00000001
67#define CCI_PMCR_NCNT_MASK 0x0000f800
68#define CCI_PMCR_NCNT_SHIFT 11
69
70#define CCI_PID2_REV_MASK 0xf0
71#define CCI_PID2_REV_SHIFT 4
72
f6b9e83c
SP
73#define CCI_PMU_EVT_SEL 0x000
74#define CCI_PMU_CNTR 0x004
75#define CCI_PMU_CNTR_CTRL 0x008
76#define CCI_PMU_OVRFLW 0x00c
77
78#define CCI_PMU_OVRFLW_FLAG 1
79
80#define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K)
81
82#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
83
84#define CCI_PMU_EVENT_MASK 0xff
85#define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7)
86#define CCI_PMU_EVENT_CODE(event) (event & 0x1f)
87
88#define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */
89
fc17c839
SP
90/* Types of interfaces that can generate events */
91enum {
92 CCI_IF_SLAVE,
93 CCI_IF_MASTER,
94 CCI_IF_MAX,
95};
96
97struct event_range {
98 u32 min;
99 u32 max;
100};
101
f6b9e83c
SP
102struct cci_pmu_hw_events {
103 struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
104 unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
105 raw_spinlock_t pmu_lock;
106};
107
fc17c839
SP
108struct cci_pmu_model {
109 char *name;
110 struct event_range event_ranges[CCI_IF_MAX];
111};
112
113static struct cci_pmu_model cci_pmu_models[];
114
f6b9e83c
SP
115struct cci_pmu {
116 void __iomem *base;
117 struct pmu pmu;
118 int nr_irqs;
119 int irqs[CCI_PMU_MAX_HW_EVENTS];
120 unsigned long active_irqs;
fc17c839 121 const struct cci_pmu_model *model;
f6b9e83c
SP
122 struct cci_pmu_hw_events hw_events;
123 struct platform_device *plat_device;
124 int num_events;
125 atomic_t active_events;
126 struct mutex reserve_mutex;
127 cpumask_t cpus;
128};
129static struct cci_pmu *pmu;
130
131#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
132
b91c8f28
PA
133/* Port ids */
134#define CCI_PORT_S0 0
135#define CCI_PORT_S1 1
136#define CCI_PORT_S2 2
137#define CCI_PORT_S3 3
138#define CCI_PORT_S4 4
139#define CCI_PORT_M0 5
140#define CCI_PORT_M1 6
141#define CCI_PORT_M2 7
142
143#define CCI_REV_R0 0
144#define CCI_REV_R1 1
6fb0c4a7 145#define CCI_REV_R1_PX 5
b91c8f28 146
b91c8f28
PA
147/*
148 * Instead of an event id to monitor CCI cycles, a dedicated counter is
149 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
150 * make use of this event in hardware.
151 */
152enum cci400_perf_events {
153 CCI_PMU_CYCLES = 0xff
154};
155
b91c8f28
PA
156#define CCI_PMU_CYCLE_CNTR_IDX 0
157#define CCI_PMU_CNTR0_IDX 1
158#define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
159
160/*
161 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
162 * ports and bits 4:0 are event codes. There are different event codes
163 * associated with each port type.
164 *
165 * Additionally, the range of events associated with the port types changed
166 * between Rev0 and Rev1.
167 *
168 * The constants below define the range of valid codes for each port type for
169 * the different revisions and are used to validate the event to be monitored.
170 */
171
172#define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00
173#define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13
174#define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14
175#define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a
176
177#define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00
178#define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14
179#define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00
180#define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11
181
b91c8f28
PA
182static int pmu_validate_hw_event(u8 hw_event)
183{
184 u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
185 u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
fc17c839 186 int if_type;
b91c8f28
PA
187
188 switch (ev_source) {
189 case CCI_PORT_S0:
190 case CCI_PORT_S1:
191 case CCI_PORT_S2:
192 case CCI_PORT_S3:
193 case CCI_PORT_S4:
194 /* Slave Interface */
fc17c839 195 if_type = CCI_IF_SLAVE;
b91c8f28
PA
196 break;
197 case CCI_PORT_M0:
198 case CCI_PORT_M1:
199 case CCI_PORT_M2:
200 /* Master Interface */
fc17c839 201 if_type = CCI_IF_MASTER;
b91c8f28 202 break;
fc17c839
SP
203 default:
204 return -ENOENT;
b91c8f28
PA
205 }
206
fc17c839
SP
207 if (ev_code >= pmu->model->event_ranges[if_type].min &&
208 ev_code <= pmu->model->event_ranges[if_type].max)
209 return hw_event;
210
b91c8f28
PA
211 return -ENOENT;
212}
213
f6b9e83c
SP
214static int probe_cci_revision(void)
215{
216 int rev;
217 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
218 rev >>= CCI_PID2_REV_SHIFT;
219
220 if (rev < CCI_REV_R1_PX)
221 return CCI_REV_R0;
222 else
223 return CCI_REV_R1;
224}
225
fc17c839 226static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
f6b9e83c 227{
772742a6
SP
228 if (platform_has_secure_cci_access())
229 return &cci_pmu_models[probe_cci_revision()];
230 return NULL;
f6b9e83c
SP
231}
232
c6f85cb4 233static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
b91c8f28
PA
234{
235 return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
236 idx <= CCI_PMU_CNTR_LAST(cci_pmu);
237}
238
239static u32 pmu_read_register(int idx, unsigned int offset)
240{
241 return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
242}
243
244static void pmu_write_register(u32 value, int idx, unsigned int offset)
245{
246 return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
247}
248
249static void pmu_disable_counter(int idx)
250{
251 pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
252}
253
254static void pmu_enable_counter(int idx)
255{
256 pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
257}
258
259static void pmu_set_event(int idx, unsigned long event)
260{
261 event &= CCI_PMU_EVENT_MASK;
262 pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
263}
264
265static u32 pmu_get_max_counters(void)
266{
267 u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
268 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
269
270 /* add 1 for cycle counter */
271 return n_cnts + 1;
272}
273
c6f85cb4 274static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
b91c8f28 275{
c6f85cb4 276 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
b91c8f28
PA
277 struct hw_perf_event *hw_event = &event->hw;
278 unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
279 int idx;
280
281 if (cci_event == CCI_PMU_CYCLES) {
282 if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
283 return -EAGAIN;
284
285 return CCI_PMU_CYCLE_CNTR_IDX;
286 }
287
288 for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
289 if (!test_and_set_bit(idx, hw->used_mask))
290 return idx;
291
292 /* No counters available */
293 return -EAGAIN;
294}
295
296static int pmu_map_event(struct perf_event *event)
297{
298 int mapping;
299 u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
300
301 if (event->attr.type < PERF_TYPE_MAX)
302 return -ENOENT;
303
304 if (config == CCI_PMU_CYCLES)
305 mapping = config;
306 else
307 mapping = pmu_validate_hw_event(config);
308
309 return mapping;
310}
311
c6f85cb4 312static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
b91c8f28
PA
313{
314 int i;
315 struct platform_device *pmu_device = cci_pmu->plat_device;
316
317 if (unlikely(!pmu_device))
318 return -ENODEV;
319
320 if (pmu->nr_irqs < 1) {
321 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
322 return -ENODEV;
323 }
324
325 /*
326 * Register all available CCI PMU interrupts. In the interrupt handler
327 * we iterate over the counters checking for interrupt source (the
328 * overflowing counter) and clear it.
329 *
330 * This should allow handling of non-unique interrupt for the counters.
331 */
332 for (i = 0; i < pmu->nr_irqs; i++) {
333 int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
334 "arm-cci-pmu", cci_pmu);
335 if (err) {
336 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
337 pmu->irqs[i]);
338 return err;
339 }
340
341 set_bit(i, &pmu->active_irqs);
342 }
343
344 return 0;
345}
346
c6f85cb4
MR
347static void pmu_free_irq(struct cci_pmu *cci_pmu)
348{
349 int i;
350
351 for (i = 0; i < pmu->nr_irqs; i++) {
352 if (!test_and_clear_bit(i, &pmu->active_irqs))
353 continue;
354
355 free_irq(pmu->irqs[i], cci_pmu);
356 }
357}
358
359static u32 pmu_read_counter(struct perf_event *event)
360{
361 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
362 struct hw_perf_event *hw_counter = &event->hw;
363 int idx = hw_counter->idx;
364 u32 value;
365
366 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
367 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
368 return 0;
369 }
370 value = pmu_read_register(idx, CCI_PMU_CNTR);
371
372 return value;
373}
374
375static void pmu_write_counter(struct perf_event *event, u32 value)
376{
377 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
378 struct hw_perf_event *hw_counter = &event->hw;
379 int idx = hw_counter->idx;
380
381 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
382 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
383 else
384 pmu_write_register(value, idx, CCI_PMU_CNTR);
385}
386
387static u64 pmu_event_update(struct perf_event *event)
388{
389 struct hw_perf_event *hwc = &event->hw;
390 u64 delta, prev_raw_count, new_raw_count;
391
392 do {
393 prev_raw_count = local64_read(&hwc->prev_count);
394 new_raw_count = pmu_read_counter(event);
395 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
396 new_raw_count) != prev_raw_count);
397
398 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
399
400 local64_add(delta, &event->count);
401
402 return new_raw_count;
403}
404
405static void pmu_read(struct perf_event *event)
406{
407 pmu_event_update(event);
408}
409
410void pmu_event_set_period(struct perf_event *event)
411{
412 struct hw_perf_event *hwc = &event->hw;
413 /*
414 * The CCI PMU counters have a period of 2^32. To account for the
415 * possiblity of extreme interrupt latency we program for a period of
416 * half that. Hopefully we can handle the interrupt before another 2^31
417 * events occur and the counter overtakes its previous value.
418 */
419 u64 val = 1ULL << 31;
420 local64_set(&hwc->prev_count, val);
421 pmu_write_counter(event, val);
422}
423
b91c8f28
PA
424static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
425{
426 unsigned long flags;
c6f85cb4
MR
427 struct cci_pmu *cci_pmu = dev;
428 struct cci_pmu_hw_events *events = &pmu->hw_events;
b91c8f28
PA
429 int idx, handled = IRQ_NONE;
430
431 raw_spin_lock_irqsave(&events->pmu_lock, flags);
b91c8f28
PA
432 /*
433 * Iterate over counters and update the corresponding perf events.
434 * This should work regardless of whether we have per-counter overflow
435 * interrupt or a combined overflow interrupt.
436 */
437 for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
438 struct perf_event *event = events->events[idx];
439 struct hw_perf_event *hw_counter;
440
441 if (!event)
442 continue;
443
444 hw_counter = &event->hw;
445
446 /* Did this counter overflow? */
fc5130de
HS
447 if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
448 CCI_PMU_OVRFLW_FLAG))
b91c8f28
PA
449 continue;
450
451 pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
452
c6f85cb4
MR
453 pmu_event_update(event);
454 pmu_event_set_period(event);
b91c8f28 455 handled = IRQ_HANDLED;
b91c8f28
PA
456 }
457 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
458
459 return IRQ_RETVAL(handled);
460}
461
c6f85cb4 462static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
b91c8f28 463{
c6f85cb4
MR
464 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
465 if (ret) {
466 pmu_free_irq(cci_pmu);
467 return ret;
468 }
469 return 0;
470}
b91c8f28 471
c6f85cb4
MR
472static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
473{
474 pmu_free_irq(cci_pmu);
475}
b91c8f28 476
c6f85cb4
MR
477static void hw_perf_event_destroy(struct perf_event *event)
478{
479 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
480 atomic_t *active_events = &cci_pmu->active_events;
481 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
482
483 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
484 cci_pmu_put_hw(cci_pmu);
485 mutex_unlock(reserve_mutex);
b91c8f28
PA
486 }
487}
488
c6f85cb4 489static void cci_pmu_enable(struct pmu *pmu)
b91c8f28 490{
c6f85cb4
MR
491 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
492 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
493 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
b91c8f28 494 unsigned long flags;
c6f85cb4
MR
495 u32 val;
496
497 if (!enabled)
498 return;
499
500 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
501
502 /* Enable all the PMU counters. */
503 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
504 writel(val, cci_ctrl_base + CCI_PMCR);
505 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
506
507}
508
509static void cci_pmu_disable(struct pmu *pmu)
510{
511 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
512 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
513 unsigned long flags;
514 u32 val;
515
516 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
517
518 /* Disable all the PMU counters. */
519 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
520 writel(val, cci_ctrl_base + CCI_PMCR);
521 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
522}
523
524static void cci_pmu_start(struct perf_event *event, int pmu_flags)
525{
526 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
527 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
528 struct hw_perf_event *hwc = &event->hw;
529 int idx = hwc->idx;
530 unsigned long flags;
531
532 /*
533 * To handle interrupt latency, we always reprogram the period
534 * regardlesss of PERF_EF_RELOAD.
535 */
536 if (pmu_flags & PERF_EF_RELOAD)
537 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
538
539 hwc->state = 0;
b91c8f28
PA
540
541 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
542 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
543 return;
544 }
545
c6f85cb4 546 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
b91c8f28
PA
547
548 /* Configure the event to count, unless you are counting cycles */
549 if (idx != CCI_PMU_CYCLE_CNTR_IDX)
c6f85cb4 550 pmu_set_event(idx, hwc->config_base);
b91c8f28 551
c6f85cb4 552 pmu_event_set_period(event);
b91c8f28
PA
553 pmu_enable_counter(idx);
554
c6f85cb4 555 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
b91c8f28
PA
556}
557
c6f85cb4 558static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
b91c8f28 559{
c6f85cb4
MR
560 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
561 struct hw_perf_event *hwc = &event->hw;
562 int idx = hwc->idx;
563
564 if (hwc->state & PERF_HES_STOPPED)
565 return;
b91c8f28
PA
566
567 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
568 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
569 return;
570 }
571
c6f85cb4
MR
572 /*
573 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
574 * cci_pmu_start()
575 */
b91c8f28 576 pmu_disable_counter(idx);
c6f85cb4
MR
577 pmu_event_update(event);
578 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
b91c8f28
PA
579}
580
c6f85cb4 581static int cci_pmu_add(struct perf_event *event, int flags)
b91c8f28 582{
c6f85cb4
MR
583 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
584 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
585 struct hw_perf_event *hwc = &event->hw;
586 int idx;
587 int err = 0;
b91c8f28 588
c6f85cb4 589 perf_pmu_disable(event->pmu);
b91c8f28 590
c6f85cb4
MR
591 /* If we don't have a space for the counter then finish early. */
592 idx = pmu_get_event_idx(hw_events, event);
593 if (idx < 0) {
594 err = idx;
595 goto out;
596 }
b91c8f28 597
c6f85cb4
MR
598 event->hw.idx = idx;
599 hw_events->events[idx] = event;
600
601 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
602 if (flags & PERF_EF_START)
603 cci_pmu_start(event, PERF_EF_RELOAD);
604
605 /* Propagate our changes to the userspace mapping. */
606 perf_event_update_userpage(event);
607
608out:
609 perf_pmu_enable(event->pmu);
610 return err;
b91c8f28
PA
611}
612
c6f85cb4 613static void cci_pmu_del(struct perf_event *event, int flags)
b91c8f28 614{
c6f85cb4
MR
615 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
616 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
617 struct hw_perf_event *hwc = &event->hw;
618 int idx = hwc->idx;
b91c8f28 619
c6f85cb4
MR
620 cci_pmu_stop(event, PERF_EF_UPDATE);
621 hw_events->events[idx] = NULL;
622 clear_bit(idx, hw_events->used_mask);
b91c8f28 623
c6f85cb4
MR
624 perf_event_update_userpage(event);
625}
b91c8f28 626
c6f85cb4 627static int
b1862199
SP
628validate_event(struct pmu *cci_pmu,
629 struct cci_pmu_hw_events *hw_events,
630 struct perf_event *event)
c6f85cb4
MR
631{
632 if (is_software_event(event))
633 return 1;
634
b1862199
SP
635 /*
636 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
637 * core perf code won't check that the pmu->ctx == leader->ctx
638 * until after pmu->event_init(event).
639 */
640 if (event->pmu != cci_pmu)
641 return 0;
642
c6f85cb4
MR
643 if (event->state < PERF_EVENT_STATE_OFF)
644 return 1;
645
646 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
647 return 1;
648
649 return pmu_get_event_idx(hw_events, event) >= 0;
b91c8f28
PA
650}
651
c6f85cb4
MR
652static int
653validate_group(struct perf_event *event)
b91c8f28 654{
c6f85cb4
MR
655 struct perf_event *sibling, *leader = event->group_leader;
656 struct cci_pmu_hw_events fake_pmu = {
657 /*
658 * Initialise the fake PMU. We only need to populate the
659 * used_mask for the purposes of validation.
660 */
661 .used_mask = CPU_BITS_NONE,
662 };
b91c8f28 663
b1862199 664 if (!validate_event(event->pmu, &fake_pmu, leader))
c6f85cb4
MR
665 return -EINVAL;
666
667 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
b1862199 668 if (!validate_event(event->pmu, &fake_pmu, sibling))
c6f85cb4 669 return -EINVAL;
b91c8f28 670 }
b91c8f28 671
b1862199 672 if (!validate_event(event->pmu, &fake_pmu, event))
c6f85cb4
MR
673 return -EINVAL;
674
675 return 0;
b91c8f28
PA
676}
677
c6f85cb4
MR
678static int
679__hw_perf_event_init(struct perf_event *event)
b91c8f28 680{
c6f85cb4
MR
681 struct hw_perf_event *hwc = &event->hw;
682 int mapping;
b91c8f28 683
c6f85cb4
MR
684 mapping = pmu_map_event(event);
685
686 if (mapping < 0) {
687 pr_debug("event %x:%llx not supported\n", event->attr.type,
688 event->attr.config);
689 return mapping;
690 }
691
692 /*
693 * We don't assign an index until we actually place the event onto
694 * hardware. Use -1 to signify that we haven't decided where to put it
695 * yet.
696 */
697 hwc->idx = -1;
698 hwc->config_base = 0;
699 hwc->config = 0;
700 hwc->event_base = 0;
701
702 /*
703 * Store the event encoding into the config_base field.
704 */
705 hwc->config_base |= (unsigned long)mapping;
706
707 /*
708 * Limit the sample_period to half of the counter width. That way, the
709 * new counter value is far less likely to overtake the previous one
710 * unless you have some serious IRQ latency issues.
711 */
712 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
713 hwc->last_period = hwc->sample_period;
714 local64_set(&hwc->period_left, hwc->sample_period);
715
716 if (event->group_leader != event) {
717 if (validate_group(event) != 0)
718 return -EINVAL;
719 }
720
721 return 0;
722}
723
724static int cci_pmu_event_init(struct perf_event *event)
725{
726 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
727 atomic_t *active_events = &cci_pmu->active_events;
728 int err = 0;
729 int cpu;
730
731 if (event->attr.type != event->pmu->type)
732 return -ENOENT;
733
734 /* Shared by all CPUs, no meaningful state to sample */
735 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
736 return -EOPNOTSUPP;
737
738 /* We have no filtering of any kind */
739 if (event->attr.exclude_user ||
740 event->attr.exclude_kernel ||
741 event->attr.exclude_hv ||
742 event->attr.exclude_idle ||
743 event->attr.exclude_host ||
744 event->attr.exclude_guest)
745 return -EINVAL;
746
747 /*
748 * Following the example set by other "uncore" PMUs, we accept any CPU
749 * and rewrite its affinity dynamically rather than having perf core
750 * handle cpu == -1 and pid == -1 for this case.
751 *
752 * The perf core will pin online CPUs for the duration of this call and
753 * the event being installed into its context, so the PMU's CPU can't
754 * change under our feet.
755 */
756 cpu = cpumask_first(&cci_pmu->cpus);
757 if (event->cpu < 0 || cpu < 0)
758 return -EINVAL;
759 event->cpu = cpu;
760
761 event->destroy = hw_perf_event_destroy;
762 if (!atomic_inc_not_zero(active_events)) {
763 mutex_lock(&cci_pmu->reserve_mutex);
764 if (atomic_read(active_events) == 0)
765 err = cci_pmu_get_hw(cci_pmu);
766 if (!err)
767 atomic_inc(active_events);
768 mutex_unlock(&cci_pmu->reserve_mutex);
769 }
770 if (err)
771 return err;
772
773 err = __hw_perf_event_init(event);
774 if (err)
775 hw_perf_event_destroy(event);
776
777 return err;
b91c8f28
PA
778}
779
c6f85cb4
MR
780static ssize_t pmu_attr_cpumask_show(struct device *dev,
781 struct device_attribute *attr, char *buf)
782{
660e5ec0
TH
783 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
784 cpumask_pr_args(&pmu->cpus));
c6f85cb4
MR
785 buf[n++] = '\n';
786 buf[n] = '\0';
787 return n;
788}
789
790static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);
791
792static struct attribute *pmu_attrs[] = {
793 &dev_attr_cpumask.attr,
794 NULL,
795};
796
797static struct attribute_group pmu_attr_group = {
798 .attrs = pmu_attrs,
799};
800
801static const struct attribute_group *pmu_attr_groups[] = {
802 &pmu_attr_group,
803 NULL
804};
805
806static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
807{
fc17c839 808 char *name = cci_pmu->model->name;
c6f85cb4 809 cci_pmu->pmu = (struct pmu) {
fc17c839 810 .name = cci_pmu->model->name,
c6f85cb4
MR
811 .task_ctx_nr = perf_invalid_context,
812 .pmu_enable = cci_pmu_enable,
813 .pmu_disable = cci_pmu_disable,
814 .event_init = cci_pmu_event_init,
815 .add = cci_pmu_add,
816 .del = cci_pmu_del,
817 .start = cci_pmu_start,
818 .stop = cci_pmu_stop,
819 .read = pmu_read,
820 .attr_groups = pmu_attr_groups,
b91c8f28
PA
821 };
822
823 cci_pmu->plat_device = pdev;
824 cci_pmu->num_events = pmu_get_max_counters();
825
c6f85cb4 826 return perf_pmu_register(&cci_pmu->pmu, name, -1);
b91c8f28
PA
827}
828
c6f85cb4
MR
829static int cci_pmu_cpu_notifier(struct notifier_block *self,
830 unsigned long action, void *hcpu)
831{
832 unsigned int cpu = (long)hcpu;
833 unsigned int target;
834
835 switch (action & ~CPU_TASKS_FROZEN) {
836 case CPU_DOWN_PREPARE:
837 if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
838 break;
839 target = cpumask_any_but(cpu_online_mask, cpu);
840 if (target < 0) // UP, last CPU
841 break;
842 /*
843 * TODO: migrate context once core races on event->ctx have
844 * been fixed.
845 */
846 cpumask_set_cpu(target, &pmu->cpus);
847 default:
848 break;
849 }
850
851 return NOTIFY_OK;
852}
853
854static struct notifier_block cci_pmu_cpu_nb = {
855 .notifier_call = cci_pmu_cpu_notifier,
856 /*
857 * to migrate uncore events, our notifier should be executed
858 * before perf core's notifier.
859 */
860 .priority = CPU_PRI_PERF + 1,
861};
862
fc17c839
SP
863static struct cci_pmu_model cci_pmu_models[] = {
864 [CCI_REV_R0] = {
865 .name = "CCI_400",
866 .event_ranges = {
867 [CCI_IF_SLAVE] = {
868 CCI_REV_R0_SLAVE_PORT_MIN_EV,
869 CCI_REV_R0_SLAVE_PORT_MAX_EV,
870 },
871 [CCI_IF_MASTER] = {
872 CCI_REV_R0_MASTER_PORT_MIN_EV,
873 CCI_REV_R0_MASTER_PORT_MAX_EV,
874 },
875 },
876 },
877 [CCI_REV_R1] = {
878 .name = "CCI_400_r1",
879 .event_ranges = {
880 [CCI_IF_SLAVE] = {
881 CCI_REV_R1_SLAVE_PORT_MIN_EV,
882 CCI_REV_R1_SLAVE_PORT_MAX_EV,
883 },
884 [CCI_IF_MASTER] = {
885 CCI_REV_R1_MASTER_PORT_MIN_EV,
886 CCI_REV_R1_MASTER_PORT_MAX_EV,
887 },
888 },
889 },
890};
891
b91c8f28
PA
892static const struct of_device_id arm_cci_pmu_matches[] = {
893 {
894 .compatible = "arm,cci-400-pmu",
772742a6
SP
895 .data = NULL,
896 },
897 {
898 .compatible = "arm,cci-400-pmu,r0",
899 .data = &cci_pmu_models[CCI_REV_R0],
900 },
901 {
902 .compatible = "arm,cci-400-pmu,r1",
903 .data = &cci_pmu_models[CCI_REV_R1],
b91c8f28
PA
904 },
905 {},
906};
907
fc17c839
SP
908static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
909{
910 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
911 pdev->dev.of_node);
912 if (!match)
913 return NULL;
772742a6
SP
914 if (match->data)
915 return match->data;
fc17c839 916
772742a6
SP
917 dev_warn(&pdev->dev, "DEPRECATED compatible property,"
918 "requires secure access to CCI registers");
fc17c839
SP
919 return probe_cci_model(pdev);
920}
921
f6b9e83c
SP
922static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
923{
924 int i;
925
926 for (i = 0; i < nr_irqs; i++)
927 if (irq == irqs[i])
928 return true;
929
930 return false;
931}
932
b91c8f28
PA
933static int cci_pmu_probe(struct platform_device *pdev)
934{
935 struct resource *res;
936 int i, ret, irq;
fc17c839
SP
937 const struct cci_pmu_model *model;
938
939 model = get_cci_model(pdev);
940 if (!model) {
941 dev_warn(&pdev->dev, "CCI PMU version not supported\n");
942 return -ENODEV;
943 }
b91c8f28
PA
944
945 pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
946 if (!pmu)
947 return -ENOMEM;
948
fc17c839 949 pmu->model = model;
b91c8f28 950 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
b91c8f28 951 pmu->base = devm_ioremap_resource(&pdev->dev, res);
fee4f2c6
WY
952 if (IS_ERR(pmu->base))
953 return -ENOMEM;
b91c8f28
PA
954
955 /*
956 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
957 * together to a common interrupt.
958 */
959 pmu->nr_irqs = 0;
960 for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
961 irq = platform_get_irq(pdev, i);
962 if (irq < 0)
963 break;
964
965 if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
966 continue;
967
968 pmu->irqs[pmu->nr_irqs++] = irq;
969 }
970
971 /*
972 * Ensure that the device tree has as many interrupts as the number
973 * of counters.
974 */
975 if (i < CCI_PMU_MAX_HW_EVENTS) {
976 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
977 i, CCI_PMU_MAX_HW_EVENTS);
fee4f2c6 978 return -EINVAL;
b91c8f28
PA
979 }
980
b91c8f28 981 raw_spin_lock_init(&pmu->hw_events.pmu_lock);
c6f85cb4
MR
982 mutex_init(&pmu->reserve_mutex);
983 atomic_set(&pmu->active_events, 0);
984 cpumask_set_cpu(smp_processor_id(), &pmu->cpus);
985
986 ret = register_cpu_notifier(&cci_pmu_cpu_nb);
987 if (ret)
988 return ret;
b91c8f28 989
c6f85cb4 990 ret = cci_pmu_init(pmu, pdev);
b91c8f28 991 if (ret)
fee4f2c6 992 return ret;
b91c8f28 993
fc17c839 994 pr_info("ARM %s PMU driver probed", pmu->model->name);
b91c8f28 995 return 0;
b91c8f28
PA
996}
997
998static int cci_platform_probe(struct platform_device *pdev)
999{
1000 if (!cci_probed())
1001 return -ENODEV;
1002
1003 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1004}
1005
f6b9e83c
SP
1006static struct platform_driver cci_pmu_driver = {
1007 .driver = {
1008 .name = DRIVER_NAME_PMU,
1009 .of_match_table = arm_cci_pmu_matches,
1010 },
1011 .probe = cci_pmu_probe,
1012};
1013
1014static struct platform_driver cci_platform_driver = {
1015 .driver = {
1016 .name = DRIVER_NAME,
1017 .of_match_table = arm_cci_matches,
1018 },
1019 .probe = cci_platform_probe,
1020};
1021
1022static int __init cci_platform_init(void)
1023{
1024 int ret;
1025
1026 ret = platform_driver_register(&cci_pmu_driver);
1027 if (ret)
1028 return ret;
1029
1030 return platform_driver_register(&cci_platform_driver);
1031}
1032
ee8e5d5f 1033#else /* !CONFIG_ARM_CCI400_PMU */
f6b9e83c
SP
1034
1035static int __init cci_platform_init(void)
1036{
1037 return 0;
1038}
1039
ee8e5d5f
SP
1040#endif /* CONFIG_ARM_CCI400_PMU */
1041
1042#ifdef CONFIG_ARM_CCI400_PORT_CTRL
b91c8f28 1043
f6b9e83c
SP
1044#define CCI_PORT_CTRL 0x0
1045#define CCI_CTRL_STATUS 0xc
1046
1047#define CCI_ENABLE_SNOOP_REQ 0x1
1048#define CCI_ENABLE_DVM_REQ 0x2
1049#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1050
1051enum cci_ace_port_type {
1052 ACE_INVALID_PORT = 0x0,
1053 ACE_PORT,
1054 ACE_LITE_PORT,
1055};
1056
1057struct cci_ace_port {
1058 void __iomem *base;
1059 unsigned long phys;
1060 enum cci_ace_port_type type;
1061 struct device_node *dn;
1062};
1063
1064static struct cci_ace_port *ports;
1065static unsigned int nb_cci_ports;
1066
ed69bdd8
LP
1067struct cpu_port {
1068 u64 mpidr;
1069 u32 port;
1070};
62158f81 1071
ed69bdd8
LP
1072/*
1073 * Use the port MSB as valid flag, shift can be made dynamic
1074 * by computing number of bits required for port indexes.
1075 * Code disabling CCI cpu ports runs with D-cache invalidated
1076 * and SCTLR bit clear so data accesses must be kept to a minimum
1077 * to improve performance; for now shift is left static to
1078 * avoid one more data access while disabling the CCI port.
1079 */
1080#define PORT_VALID_SHIFT 31
1081#define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1082
1083static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1084{
1085 port->port = PORT_VALID | index;
1086 port->mpidr = mpidr;
1087}
1088
1089static inline bool cpu_port_is_valid(struct cpu_port *port)
1090{
1091 return !!(port->port & PORT_VALID);
1092}
1093
1094static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1095{
1096 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1097}
1098
1099static struct cpu_port cpu_port[NR_CPUS];
1100
1101/**
1102 * __cci_ace_get_port - Function to retrieve the port index connected to
1103 * a cpu or device.
1104 *
1105 * @dn: device node of the device to look-up
1106 * @type: port type
1107 *
1108 * Return value:
1109 * - CCI port index if success
1110 * - -ENODEV if failure
1111 */
1112static int __cci_ace_get_port(struct device_node *dn, int type)
1113{
1114 int i;
1115 bool ace_match;
1116 struct device_node *cci_portn;
1117
1118 cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1119 for (i = 0; i < nb_cci_ports; i++) {
1120 ace_match = ports[i].type == type;
1121 if (ace_match && cci_portn == ports[i].dn)
1122 return i;
1123 }
1124 return -ENODEV;
1125}
1126
1127int cci_ace_get_port(struct device_node *dn)
1128{
1129 return __cci_ace_get_port(dn, ACE_LITE_PORT);
1130}
1131EXPORT_SYMBOL_GPL(cci_ace_get_port);
1132
b91c8f28 1133static void cci_ace_init_ports(void)
ed69bdd8 1134{
78b4d6e0
SK
1135 int port, cpu;
1136 struct device_node *cpun;
ed69bdd8
LP
1137
1138 /*
1139 * Port index look-up speeds up the function disabling ports by CPU,
1140 * since the logical to port index mapping is done once and does
1141 * not change after system boot.
1142 * The stashed index array is initialized for all possible CPUs
1143 * at probe time.
1144 */
78b4d6e0
SK
1145 for_each_possible_cpu(cpu) {
1146 /* too early to use cpu->of_node */
1147 cpun = of_get_cpu_node(cpu, NULL);
ed69bdd8 1148
78b4d6e0 1149 if (WARN(!cpun, "Missing cpu device node\n"))
ed69bdd8 1150 continue;
78b4d6e0 1151
ed69bdd8
LP
1152 port = __cci_ace_get_port(cpun, ACE_PORT);
1153 if (port < 0)
1154 continue;
1155
1156 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1157 }
1158
1159 for_each_possible_cpu(cpu) {
1160 WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1161 "CPU %u does not have an associated CCI port\n",
1162 cpu);
1163 }
1164}
1165/*
1166 * Functions to enable/disable a CCI interconnect slave port
1167 *
1168 * They are called by low-level power management code to disable slave
1169 * interfaces snoops and DVM broadcast.
1170 * Since they may execute with cache data allocation disabled and
1171 * after the caches have been cleaned and invalidated the functions provide
1172 * no explicit locking since they may run with D-cache disabled, so normal
1173 * cacheable kernel locks based on ldrex/strex may not work.
1174 * Locking has to be provided by BSP implementations to ensure proper
1175 * operations.
1176 */
1177
1178/**
1179 * cci_port_control() - function to control a CCI port
1180 *
1181 * @port: index of the port to setup
1182 * @enable: if true enables the port, if false disables it
1183 */
1184static void notrace cci_port_control(unsigned int port, bool enable)
1185{
1186 void __iomem *base = ports[port].base;
1187
1188 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1189 /*
1190 * This function is called from power down procedures
1191 * and must not execute any instruction that might
1192 * cause the processor to be put in a quiescent state
1193 * (eg wfi). Hence, cpu_relax() can not be added to this
1194 * read loop to optimize power, since it might hide possibly
1195 * disruptive operations.
1196 */
1197 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1198 ;
1199}
1200
1201/**
1202 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1203 * reference
1204 *
1205 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1206 *
1207 * Disabling a CCI port for a CPU implies disabling the CCI port
1208 * controlling that CPU cluster. Code disabling CPU CCI ports
1209 * must make sure that the CPU running the code is the last active CPU
1210 * in the cluster ie all other CPUs are quiescent in a low power state.
1211 *
1212 * Return:
1213 * 0 on success
1214 * -ENODEV on port look-up failure
1215 */
1216int notrace cci_disable_port_by_cpu(u64 mpidr)
1217{
1218 int cpu;
1219 bool is_valid;
1220 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1221 is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1222 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1223 cci_port_control(cpu_port[cpu].port, false);
1224 return 0;
1225 }
1226 }
1227 return -ENODEV;
1228}
1229EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1230
62158f81
NP
1231/**
1232 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1233 *
1234 * Enabling a CCI port for the calling CPU implies enabling the CCI
1235 * port controlling that CPU's cluster. Caller must make sure that the
1236 * CPU running the code is the first active CPU in the cluster and all
1237 * other CPUs are quiescent in a low power state or waiting for this CPU
1238 * to complete the CCI initialization.
1239 *
1240 * Because this is called when the MMU is still off and with no stack,
1241 * the code must be position independent and ideally rely on callee
1242 * clobbered registers only. To achieve this we must code this function
1243 * entirely in assembler.
1244 *
1245 * On success this returns with the proper CCI port enabled. In case of
1246 * any failure this never returns as the inability to enable the CCI is
1247 * fatal and there is no possible recovery at this stage.
1248 */
1249asmlinkage void __naked cci_enable_port_for_self(void)
1250{
1251 asm volatile ("\n"
f4902492 1252" .arch armv7-a\n"
62158f81
NP
1253" mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1254" and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1255" adr r1, 5f \n"
1256" ldr r2, [r1] \n"
1257" add r1, r1, r2 @ &cpu_port \n"
1258" add ip, r1, %[sizeof_cpu_port] \n"
1259
1260 /* Loop over the cpu_port array looking for a matching MPIDR */
1261"1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1262" cmp r2, r0 @ compare MPIDR \n"
1263" bne 2f \n"
1264
1265 /* Found a match, now test port validity */
1266" ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1267" tst r3, #"__stringify(PORT_VALID)" \n"
1268" bne 3f \n"
1269
1270 /* no match, loop with the next cpu_port entry */
1271"2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1272" cmp r1, ip @ done? \n"
1273" blo 1b \n"
1274
1275 /* CCI port not found -- cheaply try to stall this CPU */
1276"cci_port_not_found: \n"
1277" wfi \n"
1278" wfe \n"
1279" b cci_port_not_found \n"
1280
1281 /* Use matched port index to look up the corresponding ports entry */
1282"3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
1283" adr r0, 6f \n"
1284" ldmia r0, {r1, r2} \n"
1285" sub r1, r1, r0 @ virt - phys \n"
1286" ldr r0, [r0, r2] @ *(&ports) \n"
1287" mov r2, %[sizeof_struct_ace_port] \n"
1288" mla r0, r2, r3, r0 @ &ports[index] \n"
1289" sub r0, r0, r1 @ virt_to_phys() \n"
1290
1291 /* Enable the CCI port */
1292" ldr r0, [r0, %[offsetof_port_phys]] \n"
fdb07aee 1293" mov r3, %[cci_enable_req]\n"
62158f81
NP
1294" str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1295
1296 /* poll the status reg for completion */
1297" adr r1, 7f \n"
1298" ldr r0, [r1] \n"
1299" ldr r0, [r0, r1] @ cci_ctrl_base \n"
1300"4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
fdb07aee 1301" tst r1, %[cci_control_status_bits] \n"
62158f81
NP
1302" bne 4b \n"
1303
1304" mov r0, #0 \n"
1305" bx lr \n"
1306
1307" .align 2 \n"
1308"5: .word cpu_port - . \n"
1309"6: .word . \n"
1310" .word ports - 6b \n"
1311"7: .word cci_ctrl_phys - . \n"
1312 : :
1313 [sizeof_cpu_port] "i" (sizeof(cpu_port)),
fdb07aee
VK
1314 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1315 [cci_control_status_bits] "i" cpu_to_le32(1),
62158f81
NP
1316#ifndef __ARMEB__
1317 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1318#else
1319 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1320#endif
1321 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1322 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1323 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1324 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1325
1326 unreachable();
1327}
1328
ed69bdd8
LP
1329/**
1330 * __cci_control_port_by_device() - function to control a CCI port by device
1331 * reference
1332 *
1333 * @dn: device node pointer of the device whose CCI port should be
1334 * controlled
1335 * @enable: if true enables the port, if false disables it
1336 *
1337 * Return:
1338 * 0 on success
1339 * -ENODEV on port look-up failure
1340 */
1341int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1342{
1343 int port;
1344
1345 if (!dn)
1346 return -ENODEV;
1347
1348 port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1349 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1350 dn->full_name))
1351 return -ENODEV;
1352 cci_port_control(port, enable);
1353 return 0;
1354}
1355EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1356
1357/**
1358 * __cci_control_port_by_index() - function to control a CCI port by port index
1359 *
1360 * @port: port index previously retrieved with cci_ace_get_port()
1361 * @enable: if true enables the port, if false disables it
1362 *
1363 * Return:
1364 * 0 on success
1365 * -ENODEV on port index out of range
1366 * -EPERM if operation carried out on an ACE PORT
1367 */
1368int notrace __cci_control_port_by_index(u32 port, bool enable)
1369{
1370 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1371 return -ENODEV;
1372 /*
1373 * CCI control for ports connected to CPUS is extremely fragile
1374 * and must be made to go through a specific and controlled
1375 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1376 * indexing is therefore disabled for ACE ports.
1377 */
1378 if (ports[port].type == ACE_PORT)
1379 return -EPERM;
1380
1381 cci_port_control(port, enable);
1382 return 0;
1383}
1384EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1385
ed69bdd8
LP
1386static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1387 {.compatible = "arm,cci-400-ctrl-if", },
1388 {},
1389};
1390
f6b9e83c 1391static int cci_probe_ports(struct device_node *np)
ed69bdd8
LP
1392{
1393 struct cci_nb_ports const *cci_config;
1394 int ret, i, nb_ace = 0, nb_ace_lite = 0;
f6b9e83c 1395 struct device_node *cp;
62158f81 1396 struct resource res;
ed69bdd8
LP
1397 const char *match_str;
1398 bool is_ace;
1399
896ddd60 1400
ed69bdd8
LP
1401 cci_config = of_match_node(arm_cci_matches, np)->data;
1402 if (!cci_config)
1403 return -ENODEV;
1404
1405 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1406
7c762036 1407 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
ed69bdd8
LP
1408 if (!ports)
1409 return -ENOMEM;
1410
ed69bdd8
LP
1411 for_each_child_of_node(np, cp) {
1412 if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1413 continue;
1414
1415 i = nb_ace + nb_ace_lite;
1416
1417 if (i >= nb_cci_ports)
1418 break;
1419
1420 if (of_property_read_string(cp, "interface-type",
1421 &match_str)) {
1422 WARN(1, "node %s missing interface-type property\n",
1423 cp->full_name);
1424 continue;
1425 }
1426 is_ace = strcmp(match_str, "ace") == 0;
1427 if (!is_ace && strcmp(match_str, "ace-lite")) {
1428 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1429 cp->full_name);
1430 continue;
1431 }
1432
62158f81
NP
1433 ret = of_address_to_resource(cp, 0, &res);
1434 if (!ret) {
1435 ports[i].base = ioremap(res.start, resource_size(&res));
1436 ports[i].phys = res.start;
1437 }
1438 if (ret || !ports[i].base) {
ed69bdd8
LP
1439 WARN(1, "unable to ioremap CCI port %d\n", i);
1440 continue;
1441 }
1442
1443 if (is_ace) {
1444 if (WARN_ON(nb_ace >= cci_config->nb_ace))
1445 continue;
1446 ports[i].type = ACE_PORT;
1447 ++nb_ace;
1448 } else {
1449 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1450 continue;
1451 ports[i].type = ACE_LITE_PORT;
1452 ++nb_ace_lite;
1453 }
1454 ports[i].dn = cp;
1455 }
1456
1457 /* initialize a stashed array of ACE ports to speed-up look-up */
1458 cci_ace_init_ports();
1459
1460 /*
1461 * Multi-cluster systems may need this data when non-coherent, during
1462 * cluster power-up/power-down. Make sure it reaches main memory.
1463 */
1464 sync_cache_w(&cci_ctrl_base);
62158f81 1465 sync_cache_w(&cci_ctrl_phys);
ed69bdd8
LP
1466 sync_cache_w(&ports);
1467 sync_cache_w(&cpu_port);
1468 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1469 pr_info("ARM CCI driver probed\n");
f6b9e83c 1470
ed69bdd8 1471 return 0;
f6b9e83c 1472}
ee8e5d5f
SP
1473#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
1474static inline int cci_probe_ports(struct device_node *np)
1475{
1476 return 0;
1477}
1478#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
ed69bdd8 1479
f6b9e83c
SP
1480static int cci_probe(void)
1481{
1482 int ret;
1483 struct device_node *np;
1484 struct resource res;
ed69bdd8 1485
f6b9e83c
SP
1486 np = of_find_matching_node(NULL, arm_cci_matches);
1487 if(!np || !of_device_is_available(np))
1488 return -ENODEV;
1489
1490 ret = of_address_to_resource(np, 0, &res);
1491 if (!ret) {
1492 cci_ctrl_base = ioremap(res.start, resource_size(&res));
1493 cci_ctrl_phys = res.start;
1494 }
1495 if (ret || !cci_ctrl_base) {
1496 WARN(1, "unable to ioremap CCI ctrl\n");
1497 return -ENXIO;
1498 }
1499
1500 return cci_probe_ports(np);
ed69bdd8
LP
1501}
1502
1503static int cci_init_status = -EAGAIN;
1504static DEFINE_MUTEX(cci_probing);
1505
b91c8f28 1506static int cci_init(void)
ed69bdd8
LP
1507{
1508 if (cci_init_status != -EAGAIN)
1509 return cci_init_status;
1510
1511 mutex_lock(&cci_probing);
1512 if (cci_init_status == -EAGAIN)
1513 cci_init_status = cci_probe();
1514 mutex_unlock(&cci_probing);
1515 return cci_init_status;
1516}
1517
1518/*
1519 * To sort out early init calls ordering a helper function is provided to
1520 * check if the CCI driver has beed initialized. Function check if the driver
1521 * has been initialized, if not it calls the init function that probes
1522 * the driver and updates the return value.
1523 */
b91c8f28 1524bool cci_probed(void)
ed69bdd8
LP
1525{
1526 return cci_init() == 0;
1527}
1528EXPORT_SYMBOL_GPL(cci_probed);
1529
1530early_initcall(cci_init);
b91c8f28 1531core_initcall(cci_platform_init);
ed69bdd8
LP
1532MODULE_LICENSE("GPL");
1533MODULE_DESCRIPTION("ARM CCI support");
This page took 0.157631 seconds and 5 git commands to generate.