[PATCH] IPMI: remove zero inits
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
1da177e4
LT
41#include <linux/module.h>
42#include <linux/moduleparam.h>
43#include <asm/system.h>
44#include <linux/sched.h>
45#include <linux/timer.h>
46#include <linux/errno.h>
47#include <linux/spinlock.h>
48#include <linux/slab.h>
49#include <linux/delay.h>
50#include <linux/list.h>
51#include <linux/pci.h>
52#include <linux/ioport.h>
ea94027b 53#include <linux/notifier.h>
b0defcdb 54#include <linux/mutex.h>
e9a705a0 55#include <linux/kthread.h>
1da177e4 56#include <asm/irq.h>
1da177e4
LT
57#include <linux/interrupt.h>
58#include <linux/rcupdate.h>
59#include <linux/ipmi_smi.h>
60#include <asm/io.h>
61#include "ipmi_si_sm.h"
62#include <linux/init.h>
b224cd3a 63#include <linux/dmi.h>
b361e27b
CM
64#include <linux/string.h>
65#include <linux/ctype.h>
66
67#define PFX "ipmi_si: "
1da177e4
LT
68
69/* Measure times between events in the driver. */
70#undef DEBUG_TIMING
71
72/* Call every 10 ms. */
73#define SI_TIMEOUT_TIME_USEC 10000
74#define SI_USEC_PER_JIFFY (1000000/HZ)
75#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
76#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
77 short timeout */
78
79enum si_intf_state {
80 SI_NORMAL,
81 SI_GETTING_FLAGS,
82 SI_GETTING_EVENTS,
83 SI_CLEARING_FLAGS,
84 SI_CLEARING_FLAGS_THEN_SET_IRQ,
85 SI_GETTING_MESSAGES,
86 SI_ENABLE_INTERRUPTS1,
87 SI_ENABLE_INTERRUPTS2
88 /* FIXME - add watchdog stuff. */
89};
90
9dbf68f9
CM
91/* Some BT-specific defines we need here. */
92#define IPMI_BT_INTMASK_REG 2
93#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
94#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
95
1da177e4
LT
96enum si_type {
97 SI_KCS, SI_SMIC, SI_BT
98};
b361e27b 99static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 100
50c812b2
CM
101#define DEVICE_NAME "ipmi_si"
102
103static struct device_driver ipmi_driver =
104{
105 .name = DEVICE_NAME,
106 .bus = &platform_bus_type
107};
3ae0e0f9 108
1da177e4
LT
109struct smi_info
110{
a9a2c44f 111 int intf_num;
1da177e4
LT
112 ipmi_smi_t intf;
113 struct si_sm_data *si_sm;
114 struct si_sm_handlers *handlers;
115 enum si_type si_type;
116 spinlock_t si_lock;
117 spinlock_t msg_lock;
118 struct list_head xmit_msgs;
119 struct list_head hp_xmit_msgs;
120 struct ipmi_smi_msg *curr_msg;
121 enum si_intf_state si_state;
122
123 /* Used to handle the various types of I/O that can occur with
124 IPMI */
125 struct si_sm_io io;
126 int (*io_setup)(struct smi_info *info);
127 void (*io_cleanup)(struct smi_info *info);
128 int (*irq_setup)(struct smi_info *info);
129 void (*irq_cleanup)(struct smi_info *info);
130 unsigned int io_size;
b0defcdb
CM
131 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
132 void (*addr_source_cleanup)(struct smi_info *info);
133 void *addr_source_data;
1da177e4 134
3ae0e0f9
CM
135 /* Per-OEM handler, called from handle_flags().
136 Returns 1 when handle_flags() needs to be re-run
137 or 0 indicating it set si_state itself.
138 */
139 int (*oem_data_avail_handler)(struct smi_info *smi_info);
140
1da177e4
LT
141 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
142 is set to hold the flags until we are done handling everything
143 from the flags. */
144#define RECEIVE_MSG_AVAIL 0x01
145#define EVENT_MSG_BUFFER_FULL 0x02
146#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
147#define OEM0_DATA_AVAIL 0x20
148#define OEM1_DATA_AVAIL 0x40
149#define OEM2_DATA_AVAIL 0x80
150#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
151 OEM1_DATA_AVAIL | \
152 OEM2_DATA_AVAIL)
1da177e4
LT
153 unsigned char msg_flags;
154
155 /* If set to true, this will request events the next time the
156 state machine is idle. */
157 atomic_t req_events;
158
159 /* If true, run the state machine to completion on every send
160 call. Generally used after a panic to make sure stuff goes
161 out. */
162 int run_to_completion;
163
164 /* The I/O port of an SI interface. */
165 int port;
166
167 /* The space between start addresses of the two ports. For
168 instance, if the first port is 0xca2 and the spacing is 4, then
169 the second port is 0xca6. */
170 unsigned int spacing;
171
172 /* zero if no irq; */
173 int irq;
174
175 /* The timer for this si. */
176 struct timer_list si_timer;
177
178 /* The time (in jiffies) the last timeout occurred at. */
179 unsigned long last_timeout_jiffies;
180
181 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 182 atomic_t stop_operation;
1da177e4
LT
183
184 /* The driver will disable interrupts when it gets into a
185 situation where it cannot handle messages due to lack of
186 memory. Once that situation clears up, it will re-enable
187 interrupts. */
188 int interrupt_disabled;
189
50c812b2 190 /* From the get device id response... */
3ae0e0f9 191 struct ipmi_device_id device_id;
1da177e4 192
50c812b2
CM
193 /* Driver model stuff. */
194 struct device *dev;
195 struct platform_device *pdev;
196
197 /* True if we allocated the device, false if it came from
198 * someplace else (like PCI). */
199 int dev_registered;
200
1da177e4
LT
201 /* Slave address, could be reported from DMI. */
202 unsigned char slave_addr;
203
204 /* Counters and things for the proc filesystem. */
205 spinlock_t count_lock;
206 unsigned long short_timeouts;
207 unsigned long long_timeouts;
208 unsigned long timeout_restarts;
209 unsigned long idles;
210 unsigned long interrupts;
211 unsigned long attentions;
212 unsigned long flag_fetches;
213 unsigned long hosed_count;
214 unsigned long complete_transactions;
215 unsigned long events;
216 unsigned long watchdog_pretimeouts;
217 unsigned long incoming_messages;
a9a2c44f 218
e9a705a0 219 struct task_struct *thread;
b0defcdb
CM
220
221 struct list_head link;
1da177e4
LT
222};
223
a51f4a81
CM
224#define SI_MAX_PARMS 4
225
226static int force_kipmid[SI_MAX_PARMS];
227static int num_force_kipmid;
228
b361e27b
CM
229static int unload_when_empty = 1;
230
b0defcdb 231static int try_smi_init(struct smi_info *smi);
b361e27b 232static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 233
e041c683 234static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
ea94027b
CM
235static int register_xaction_notifier(struct notifier_block * nb)
236{
e041c683 237 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
238}
239
1da177e4
LT
240static void deliver_recv_msg(struct smi_info *smi_info,
241 struct ipmi_smi_msg *msg)
242{
243 /* Deliver the message to the upper layer with the lock
244 released. */
245 spin_unlock(&(smi_info->si_lock));
246 ipmi_smi_msg_received(smi_info->intf, msg);
247 spin_lock(&(smi_info->si_lock));
248}
249
4d7cbac7 250static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
251{
252 struct ipmi_smi_msg *msg = smi_info->curr_msg;
253
4d7cbac7
CM
254 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
255 cCode = IPMI_ERR_UNSPECIFIED;
256 /* else use it as is */
257
1da177e4
LT
258 /* Make it a reponse */
259 msg->rsp[0] = msg->data[0] | 4;
260 msg->rsp[1] = msg->data[1];
4d7cbac7 261 msg->rsp[2] = cCode;
1da177e4
LT
262 msg->rsp_size = 3;
263
264 smi_info->curr_msg = NULL;
265 deliver_recv_msg(smi_info, msg);
266}
267
268static enum si_sm_result start_next_msg(struct smi_info *smi_info)
269{
270 int rv;
271 struct list_head *entry = NULL;
272#ifdef DEBUG_TIMING
273 struct timeval t;
274#endif
275
276 /* No need to save flags, we aleady have interrupts off and we
277 already hold the SMI lock. */
278 spin_lock(&(smi_info->msg_lock));
279
280 /* Pick the high priority queue first. */
b0defcdb 281 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 282 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 283 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
284 entry = smi_info->xmit_msgs.next;
285 }
286
b0defcdb 287 if (!entry) {
1da177e4
LT
288 smi_info->curr_msg = NULL;
289 rv = SI_SM_IDLE;
290 } else {
291 int err;
292
293 list_del(entry);
294 smi_info->curr_msg = list_entry(entry,
295 struct ipmi_smi_msg,
296 link);
297#ifdef DEBUG_TIMING
298 do_gettimeofday(&t);
299 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
300#endif
e041c683
AS
301 err = atomic_notifier_call_chain(&xaction_notifier_list,
302 0, smi_info);
ea94027b
CM
303 if (err & NOTIFY_STOP_MASK) {
304 rv = SI_SM_CALL_WITHOUT_DELAY;
305 goto out;
306 }
1da177e4
LT
307 err = smi_info->handlers->start_transaction(
308 smi_info->si_sm,
309 smi_info->curr_msg->data,
310 smi_info->curr_msg->data_size);
311 if (err) {
4d7cbac7 312 return_hosed_msg(smi_info, err);
1da177e4
LT
313 }
314
315 rv = SI_SM_CALL_WITHOUT_DELAY;
316 }
ea94027b 317 out:
1da177e4
LT
318 spin_unlock(&(smi_info->msg_lock));
319
320 return rv;
321}
322
323static void start_enable_irq(struct smi_info *smi_info)
324{
325 unsigned char msg[2];
326
327 /* If we are enabling interrupts, we have to tell the
328 BMC to use them. */
329 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
330 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
331
332 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
333 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
334}
335
336static void start_clear_flags(struct smi_info *smi_info)
337{
338 unsigned char msg[3];
339
340 /* Make sure the watchdog pre-timeout flag is not set at startup. */
341 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
342 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
343 msg[2] = WDT_PRE_TIMEOUT_INT;
344
345 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
346 smi_info->si_state = SI_CLEARING_FLAGS;
347}
348
349/* When we have a situtaion where we run out of memory and cannot
350 allocate messages, we just leave them in the BMC and run the system
351 polled until we can allocate some memory. Once we have some
352 memory, we will re-enable the interrupt. */
353static inline void disable_si_irq(struct smi_info *smi_info)
354{
b0defcdb 355 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
356 disable_irq_nosync(smi_info->irq);
357 smi_info->interrupt_disabled = 1;
358 }
359}
360
361static inline void enable_si_irq(struct smi_info *smi_info)
362{
363 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
364 enable_irq(smi_info->irq);
365 smi_info->interrupt_disabled = 0;
366 }
367}
368
369static void handle_flags(struct smi_info *smi_info)
370{
3ae0e0f9 371 retry:
1da177e4
LT
372 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
373 /* Watchdog pre-timeout */
374 spin_lock(&smi_info->count_lock);
375 smi_info->watchdog_pretimeouts++;
376 spin_unlock(&smi_info->count_lock);
377
378 start_clear_flags(smi_info);
379 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
380 spin_unlock(&(smi_info->si_lock));
381 ipmi_smi_watchdog_pretimeout(smi_info->intf);
382 spin_lock(&(smi_info->si_lock));
383 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
384 /* Messages available. */
385 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 386 if (!smi_info->curr_msg) {
1da177e4
LT
387 disable_si_irq(smi_info);
388 smi_info->si_state = SI_NORMAL;
389 return;
390 }
391 enable_si_irq(smi_info);
392
393 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
394 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
395 smi_info->curr_msg->data_size = 2;
396
397 smi_info->handlers->start_transaction(
398 smi_info->si_sm,
399 smi_info->curr_msg->data,
400 smi_info->curr_msg->data_size);
401 smi_info->si_state = SI_GETTING_MESSAGES;
402 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
403 /* Events available. */
404 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 405 if (!smi_info->curr_msg) {
1da177e4
LT
406 disable_si_irq(smi_info);
407 smi_info->si_state = SI_NORMAL;
408 return;
409 }
410 enable_si_irq(smi_info);
411
412 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
413 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
414 smi_info->curr_msg->data_size = 2;
415
416 smi_info->handlers->start_transaction(
417 smi_info->si_sm,
418 smi_info->curr_msg->data,
419 smi_info->curr_msg->data_size);
420 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef
CM
421 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
422 smi_info->oem_data_avail_handler) {
423 if (smi_info->oem_data_avail_handler(smi_info))
424 goto retry;
1da177e4
LT
425 } else {
426 smi_info->si_state = SI_NORMAL;
427 }
428}
429
430static void handle_transaction_done(struct smi_info *smi_info)
431{
432 struct ipmi_smi_msg *msg;
433#ifdef DEBUG_TIMING
434 struct timeval t;
435
436 do_gettimeofday(&t);
437 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
438#endif
439 switch (smi_info->si_state) {
440 case SI_NORMAL:
b0defcdb 441 if (!smi_info->curr_msg)
1da177e4
LT
442 break;
443
444 smi_info->curr_msg->rsp_size
445 = smi_info->handlers->get_result(
446 smi_info->si_sm,
447 smi_info->curr_msg->rsp,
448 IPMI_MAX_MSG_LENGTH);
449
450 /* Do this here becase deliver_recv_msg() releases the
451 lock, and a new message can be put in during the
452 time the lock is released. */
453 msg = smi_info->curr_msg;
454 smi_info->curr_msg = NULL;
455 deliver_recv_msg(smi_info, msg);
456 break;
457
458 case SI_GETTING_FLAGS:
459 {
460 unsigned char msg[4];
461 unsigned int len;
462
463 /* We got the flags from the SMI, now handle them. */
464 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
465 if (msg[2] != 0) {
466 /* Error fetching flags, just give up for
467 now. */
468 smi_info->si_state = SI_NORMAL;
469 } else if (len < 4) {
470 /* Hmm, no flags. That's technically illegal, but
471 don't use uninitialized data. */
472 smi_info->si_state = SI_NORMAL;
473 } else {
474 smi_info->msg_flags = msg[3];
475 handle_flags(smi_info);
476 }
477 break;
478 }
479
480 case SI_CLEARING_FLAGS:
481 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
482 {
483 unsigned char msg[3];
484
485 /* We cleared the flags. */
486 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
487 if (msg[2] != 0) {
488 /* Error clearing flags */
489 printk(KERN_WARNING
490 "ipmi_si: Error clearing flags: %2.2x\n",
491 msg[2]);
492 }
493 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
494 start_enable_irq(smi_info);
495 else
496 smi_info->si_state = SI_NORMAL;
497 break;
498 }
499
500 case SI_GETTING_EVENTS:
501 {
502 smi_info->curr_msg->rsp_size
503 = smi_info->handlers->get_result(
504 smi_info->si_sm,
505 smi_info->curr_msg->rsp,
506 IPMI_MAX_MSG_LENGTH);
507
508 /* Do this here becase deliver_recv_msg() releases the
509 lock, and a new message can be put in during the
510 time the lock is released. */
511 msg = smi_info->curr_msg;
512 smi_info->curr_msg = NULL;
513 if (msg->rsp[2] != 0) {
514 /* Error getting event, probably done. */
515 msg->done(msg);
516
517 /* Take off the event flag. */
518 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
519 handle_flags(smi_info);
520 } else {
521 spin_lock(&smi_info->count_lock);
522 smi_info->events++;
523 spin_unlock(&smi_info->count_lock);
524
525 /* Do this before we deliver the message
526 because delivering the message releases the
527 lock and something else can mess with the
528 state. */
529 handle_flags(smi_info);
530
531 deliver_recv_msg(smi_info, msg);
532 }
533 break;
534 }
535
536 case SI_GETTING_MESSAGES:
537 {
538 smi_info->curr_msg->rsp_size
539 = smi_info->handlers->get_result(
540 smi_info->si_sm,
541 smi_info->curr_msg->rsp,
542 IPMI_MAX_MSG_LENGTH);
543
544 /* Do this here becase deliver_recv_msg() releases the
545 lock, and a new message can be put in during the
546 time the lock is released. */
547 msg = smi_info->curr_msg;
548 smi_info->curr_msg = NULL;
549 if (msg->rsp[2] != 0) {
550 /* Error getting event, probably done. */
551 msg->done(msg);
552
553 /* Take off the msg flag. */
554 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
555 handle_flags(smi_info);
556 } else {
557 spin_lock(&smi_info->count_lock);
558 smi_info->incoming_messages++;
559 spin_unlock(&smi_info->count_lock);
560
561 /* Do this before we deliver the message
562 because delivering the message releases the
563 lock and something else can mess with the
564 state. */
565 handle_flags(smi_info);
566
567 deliver_recv_msg(smi_info, msg);
568 }
569 break;
570 }
571
572 case SI_ENABLE_INTERRUPTS1:
573 {
574 unsigned char msg[4];
575
576 /* We got the flags from the SMI, now handle them. */
577 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
578 if (msg[2] != 0) {
579 printk(KERN_WARNING
580 "ipmi_si: Could not enable interrupts"
581 ", failed get, using polled mode.\n");
582 smi_info->si_state = SI_NORMAL;
583 } else {
584 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
585 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
586 msg[2] = msg[3] | 1; /* enable msg queue int */
587 smi_info->handlers->start_transaction(
588 smi_info->si_sm, msg, 3);
589 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
590 }
591 break;
592 }
593
594 case SI_ENABLE_INTERRUPTS2:
595 {
596 unsigned char msg[4];
597
598 /* We got the flags from the SMI, now handle them. */
599 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
600 if (msg[2] != 0) {
601 printk(KERN_WARNING
602 "ipmi_si: Could not enable interrupts"
603 ", failed set, using polled mode.\n");
604 }
605 smi_info->si_state = SI_NORMAL;
606 break;
607 }
608 }
609}
610
611/* Called on timeouts and events. Timeouts should pass the elapsed
612 time, interrupts should pass in zero. */
613static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
614 int time)
615{
616 enum si_sm_result si_sm_result;
617
618 restart:
619 /* There used to be a loop here that waited a little while
620 (around 25us) before giving up. That turned out to be
621 pointless, the minimum delays I was seeing were in the 300us
622 range, which is far too long to wait in an interrupt. So
623 we just run until the state machine tells us something
624 happened or it needs a delay. */
625 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
626 time = 0;
627 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
628 {
629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
630 }
631
632 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
633 {
634 spin_lock(&smi_info->count_lock);
635 smi_info->complete_transactions++;
636 spin_unlock(&smi_info->count_lock);
637
638 handle_transaction_done(smi_info);
639 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
640 }
641 else if (si_sm_result == SI_SM_HOSED)
642 {
643 spin_lock(&smi_info->count_lock);
644 smi_info->hosed_count++;
645 spin_unlock(&smi_info->count_lock);
646
647 /* Do the before return_hosed_msg, because that
648 releases the lock. */
649 smi_info->si_state = SI_NORMAL;
650 if (smi_info->curr_msg != NULL) {
651 /* If we were handling a user message, format
652 a response to send to the upper layer to
653 tell it about the error. */
4d7cbac7 654 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
655 }
656 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
657 }
658
659 /* We prefer handling attn over new messages. */
660 if (si_sm_result == SI_SM_ATTN)
661 {
662 unsigned char msg[2];
663
664 spin_lock(&smi_info->count_lock);
665 smi_info->attentions++;
666 spin_unlock(&smi_info->count_lock);
667
668 /* Got a attn, send down a get message flags to see
669 what's causing it. It would be better to handle
670 this in the upper layer, but due to the way
671 interrupts work with the SMI, that's not really
672 possible. */
673 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
674 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
675
676 smi_info->handlers->start_transaction(
677 smi_info->si_sm, msg, 2);
678 smi_info->si_state = SI_GETTING_FLAGS;
679 goto restart;
680 }
681
682 /* If we are currently idle, try to start the next message. */
683 if (si_sm_result == SI_SM_IDLE) {
684 spin_lock(&smi_info->count_lock);
685 smi_info->idles++;
686 spin_unlock(&smi_info->count_lock);
687
688 si_sm_result = start_next_msg(smi_info);
689 if (si_sm_result != SI_SM_IDLE)
690 goto restart;
691 }
692
693 if ((si_sm_result == SI_SM_IDLE)
694 && (atomic_read(&smi_info->req_events)))
695 {
696 /* We are idle and the upper layer requested that I fetch
697 events, so do so. */
55162fb1 698 atomic_set(&smi_info->req_events, 0);
1da177e4 699
55162fb1
CM
700 smi_info->curr_msg = ipmi_alloc_smi_msg();
701 if (!smi_info->curr_msg)
702 goto out;
1da177e4 703
55162fb1
CM
704 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
705 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
706 smi_info->curr_msg->data_size = 2;
1da177e4
LT
707
708 smi_info->handlers->start_transaction(
55162fb1
CM
709 smi_info->si_sm,
710 smi_info->curr_msg->data,
711 smi_info->curr_msg->data_size);
712 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
713 goto restart;
714 }
55162fb1 715 out:
1da177e4
LT
716 return si_sm_result;
717}
718
719static void sender(void *send_info,
720 struct ipmi_smi_msg *msg,
721 int priority)
722{
723 struct smi_info *smi_info = send_info;
724 enum si_sm_result result;
725 unsigned long flags;
726#ifdef DEBUG_TIMING
727 struct timeval t;
728#endif
729
b361e27b
CM
730 if (atomic_read(&smi_info->stop_operation)) {
731 msg->rsp[0] = msg->data[0] | 4;
732 msg->rsp[1] = msg->data[1];
733 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
734 msg->rsp_size = 3;
735 deliver_recv_msg(smi_info, msg);
736 return;
737 }
738
1da177e4
LT
739 spin_lock_irqsave(&(smi_info->msg_lock), flags);
740#ifdef DEBUG_TIMING
741 do_gettimeofday(&t);
742 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
743#endif
744
745 if (smi_info->run_to_completion) {
746 /* If we are running to completion, then throw it in
747 the list and run transactions until everything is
748 clear. Priority doesn't matter here. */
749 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
750
751 /* We have to release the msg lock and claim the smi
752 lock in this case, because of race conditions. */
753 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
754
755 spin_lock_irqsave(&(smi_info->si_lock), flags);
756 result = smi_event_handler(smi_info, 0);
757 while (result != SI_SM_IDLE) {
758 udelay(SI_SHORT_TIMEOUT_USEC);
759 result = smi_event_handler(smi_info,
760 SI_SHORT_TIMEOUT_USEC);
761 }
762 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
763 return;
764 } else {
765 if (priority > 0) {
766 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
767 } else {
768 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
769 }
770 }
771 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
772
773 spin_lock_irqsave(&(smi_info->si_lock), flags);
774 if ((smi_info->si_state == SI_NORMAL)
775 && (smi_info->curr_msg == NULL))
776 {
777 start_next_msg(smi_info);
1da177e4
LT
778 }
779 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
780}
781
782static void set_run_to_completion(void *send_info, int i_run_to_completion)
783{
784 struct smi_info *smi_info = send_info;
785 enum si_sm_result result;
786 unsigned long flags;
787
788 spin_lock_irqsave(&(smi_info->si_lock), flags);
789
790 smi_info->run_to_completion = i_run_to_completion;
791 if (i_run_to_completion) {
792 result = smi_event_handler(smi_info, 0);
793 while (result != SI_SM_IDLE) {
794 udelay(SI_SHORT_TIMEOUT_USEC);
795 result = smi_event_handler(smi_info,
796 SI_SHORT_TIMEOUT_USEC);
797 }
798 }
799
800 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
801}
802
a9a2c44f
CM
803static int ipmi_thread(void *data)
804{
805 struct smi_info *smi_info = data;
e9a705a0 806 unsigned long flags;
a9a2c44f
CM
807 enum si_sm_result smi_result;
808
a9a2c44f 809 set_user_nice(current, 19);
e9a705a0 810 while (!kthread_should_stop()) {
a9a2c44f 811 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 812 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 813 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
814 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
815 /* do nothing */
a9a2c44f 816 }
e9a705a0 817 else if (smi_result == SI_SM_CALL_WITH_DELAY)
33979734 818 schedule();
e9a705a0
MD
819 else
820 schedule_timeout_interruptible(1);
a9a2c44f 821 }
a9a2c44f
CM
822 return 0;
823}
824
825
1da177e4
LT
826static void poll(void *send_info)
827{
828 struct smi_info *smi_info = send_info;
829
15c62e10
CM
830 /*
831 * Make sure there is some delay in the poll loop so we can
832 * drive time forward and timeout things.
833 */
834 udelay(10);
835 smi_event_handler(smi_info, 10);
1da177e4
LT
836}
837
838static void request_events(void *send_info)
839{
840 struct smi_info *smi_info = send_info;
841
b361e27b
CM
842 if (atomic_read(&smi_info->stop_operation))
843 return;
844
1da177e4
LT
845 atomic_set(&smi_info->req_events, 1);
846}
847
0c8204b3 848static int initialized;
1da177e4 849
1da177e4
LT
850static void smi_timeout(unsigned long data)
851{
852 struct smi_info *smi_info = (struct smi_info *) data;
853 enum si_sm_result smi_result;
854 unsigned long flags;
855 unsigned long jiffies_now;
c4edff1c 856 long time_diff;
1da177e4
LT
857#ifdef DEBUG_TIMING
858 struct timeval t;
859#endif
860
a9a2c44f 861 if (atomic_read(&smi_info->stop_operation))
1da177e4 862 return;
1da177e4
LT
863
864 spin_lock_irqsave(&(smi_info->si_lock), flags);
865#ifdef DEBUG_TIMING
866 do_gettimeofday(&t);
867 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868#endif
869 jiffies_now = jiffies;
c4edff1c 870 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
871 * SI_USEC_PER_JIFFY);
872 smi_result = smi_event_handler(smi_info, time_diff);
873
874 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
875
876 smi_info->last_timeout_jiffies = jiffies_now;
877
b0defcdb 878 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
879 /* Running with interrupts, only do long timeouts. */
880 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
881 spin_lock_irqsave(&smi_info->count_lock, flags);
882 smi_info->long_timeouts++;
883 spin_unlock_irqrestore(&smi_info->count_lock, flags);
884 goto do_add_timer;
885 }
886
887 /* If the state machine asks for a short delay, then shorten
888 the timer timeout. */
889 if (smi_result == SI_SM_CALL_WITH_DELAY) {
890 spin_lock_irqsave(&smi_info->count_lock, flags);
891 smi_info->short_timeouts++;
892 spin_unlock_irqrestore(&smi_info->count_lock, flags);
1da177e4 893 smi_info->si_timer.expires = jiffies + 1;
1da177e4
LT
894 } else {
895 spin_lock_irqsave(&smi_info->count_lock, flags);
896 smi_info->long_timeouts++;
897 spin_unlock_irqrestore(&smi_info->count_lock, flags);
898 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
899 }
900
901 do_add_timer:
902 add_timer(&(smi_info->si_timer));
903}
904
7d12e780 905static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
906{
907 struct smi_info *smi_info = data;
908 unsigned long flags;
909#ifdef DEBUG_TIMING
910 struct timeval t;
911#endif
912
913 spin_lock_irqsave(&(smi_info->si_lock), flags);
914
915 spin_lock(&smi_info->count_lock);
916 smi_info->interrupts++;
917 spin_unlock(&smi_info->count_lock);
918
a9a2c44f 919 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
920 goto out;
921
922#ifdef DEBUG_TIMING
923 do_gettimeofday(&t);
924 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
925#endif
926 smi_event_handler(smi_info, 0);
927 out:
928 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
929 return IRQ_HANDLED;
930}
931
7d12e780 932static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
933{
934 struct smi_info *smi_info = data;
935 /* We need to clear the IRQ flag for the BT interface. */
936 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
937 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
938 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 939 return si_irq_handler(irq, data);
9dbf68f9
CM
940}
941
453823ba
CM
942static int smi_start_processing(void *send_info,
943 ipmi_smi_t intf)
944{
945 struct smi_info *new_smi = send_info;
a51f4a81 946 int enable = 0;
453823ba
CM
947
948 new_smi->intf = intf;
949
950 /* Set up the timer that drives the interface. */
951 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
952 new_smi->last_timeout_jiffies = jiffies;
953 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
954
a51f4a81
CM
955 /*
956 * Check if the user forcefully enabled the daemon.
957 */
958 if (new_smi->intf_num < num_force_kipmid)
959 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
960 /*
961 * The BT interface is efficient enough to not need a thread,
962 * and there is no need for a thread if we have interrupts.
963 */
a51f4a81
CM
964 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
965 enable = 1;
966
967 if (enable) {
453823ba
CM
968 new_smi->thread = kthread_run(ipmi_thread, new_smi,
969 "kipmi%d", new_smi->intf_num);
970 if (IS_ERR(new_smi->thread)) {
971 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
972 " kernel thread due to error %ld, only using"
973 " timers to drive the interface\n",
974 PTR_ERR(new_smi->thread));
975 new_smi->thread = NULL;
976 }
977 }
978
979 return 0;
980}
9dbf68f9 981
b9675136
CM
982static void set_maintenance_mode(void *send_info, int enable)
983{
984 struct smi_info *smi_info = send_info;
985
986 if (!enable)
987 atomic_set(&smi_info->req_events, 0);
988}
989
1da177e4
LT
990static struct ipmi_smi_handlers handlers =
991{
992 .owner = THIS_MODULE,
453823ba 993 .start_processing = smi_start_processing,
1da177e4
LT
994 .sender = sender,
995 .request_events = request_events,
b9675136 996 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
997 .set_run_to_completion = set_run_to_completion,
998 .poll = poll,
999};
1000
1001/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1002 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
1003
b0defcdb 1004static LIST_HEAD(smi_infos);
d6dfd131 1005static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1006static int smi_num; /* Used to sequence the SMIs */
1da177e4 1007
1da177e4
LT
1008#define DEFAULT_REGSPACING 1
1009
1010static int si_trydefaults = 1;
1011static char *si_type[SI_MAX_PARMS];
1012#define MAX_SI_TYPE_STR 30
1013static char si_type_str[MAX_SI_TYPE_STR];
1014static unsigned long addrs[SI_MAX_PARMS];
1015static int num_addrs;
1016static unsigned int ports[SI_MAX_PARMS];
1017static int num_ports;
1018static int irqs[SI_MAX_PARMS];
1019static int num_irqs;
1020static int regspacings[SI_MAX_PARMS];
0c8204b3 1021static int num_regspacings;
1da177e4 1022static int regsizes[SI_MAX_PARMS];
0c8204b3 1023static int num_regsizes;
1da177e4 1024static int regshifts[SI_MAX_PARMS];
0c8204b3 1025static int num_regshifts;
1da177e4 1026static int slave_addrs[SI_MAX_PARMS];
0c8204b3 1027static int num_slave_addrs;
1da177e4 1028
b361e27b
CM
1029#define IPMI_IO_ADDR_SPACE 0
1030#define IPMI_MEM_ADDR_SPACE 1
1031static char *addr_space_to_str[] = { "I/O", "mem" };
1032
1033static int hotmod_handler(const char *val, struct kernel_param *kp);
1034
1035module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1036MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1037 " Documentation/IPMI.txt in the kernel sources for the"
1038 " gory details.");
1da177e4
LT
1039
1040module_param_named(trydefaults, si_trydefaults, bool, 0);
1041MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1042 " default scan of the KCS and SMIC interface at the standard"
1043 " address");
1044module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1045MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1046 " interface separated by commas. The types are 'kcs',"
1047 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1048 " the first interface to kcs and the second to bt");
1049module_param_array(addrs, long, &num_addrs, 0);
1050MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1051 " addresses separated by commas. Only use if an interface"
1052 " is in memory. Otherwise, set it to zero or leave"
1053 " it blank.");
1054module_param_array(ports, int, &num_ports, 0);
1055MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1056 " addresses separated by commas. Only use if an interface"
1057 " is a port. Otherwise, set it to zero or leave"
1058 " it blank.");
1059module_param_array(irqs, int, &num_irqs, 0);
1060MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1061 " addresses separated by commas. Only use if an interface"
1062 " has an interrupt. Otherwise, set it to zero or leave"
1063 " it blank.");
1064module_param_array(regspacings, int, &num_regspacings, 0);
1065MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1066 " and each successive register used by the interface. For"
1067 " instance, if the start address is 0xca2 and the spacing"
1068 " is 2, then the second address is at 0xca4. Defaults"
1069 " to 1.");
1070module_param_array(regsizes, int, &num_regsizes, 0);
1071MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1072 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1073 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1074 " the 8-bit IPMI register has to be read from a larger"
1075 " register.");
1076module_param_array(regshifts, int, &num_regshifts, 0);
1077MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1078 " IPMI register, in bits. For instance, if the data"
1079 " is read from a 32-bit word and the IPMI data is in"
1080 " bit 8-15, then the shift would be 8");
1081module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1082MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1083 " the controller. Normally this is 0x20, but can be"
1084 " overridden by this parm. This is an array indexed"
1085 " by interface number.");
a51f4a81
CM
1086module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1087MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1088 " disabled(0). Normally the IPMI driver auto-detects"
1089 " this, but the value may be overridden by this parm.");
b361e27b
CM
1090module_param(unload_when_empty, int, 0);
1091MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1092 " specified or found, default is 1. Setting to 0"
1093 " is useful for hot add of devices using hotmod.");
1da177e4
LT
1094
1095
b0defcdb 1096static void std_irq_cleanup(struct smi_info *info)
1da177e4 1097{
b0defcdb
CM
1098 if (info->si_type == SI_BT)
1099 /* Disable the interrupt in the BT interface. */
1100 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1101 free_irq(info->irq, info);
1da177e4 1102}
1da177e4
LT
1103
1104static int std_irq_setup(struct smi_info *info)
1105{
1106 int rv;
1107
b0defcdb 1108 if (!info->irq)
1da177e4
LT
1109 return 0;
1110
9dbf68f9
CM
1111 if (info->si_type == SI_BT) {
1112 rv = request_irq(info->irq,
1113 si_bt_irq_handler,
0f2ed4c6 1114 IRQF_DISABLED,
9dbf68f9
CM
1115 DEVICE_NAME,
1116 info);
b0defcdb 1117 if (!rv)
9dbf68f9
CM
1118 /* Enable the interrupt in the BT interface. */
1119 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1120 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121 } else
1122 rv = request_irq(info->irq,
1123 si_irq_handler,
0f2ed4c6 1124 IRQF_DISABLED,
9dbf68f9
CM
1125 DEVICE_NAME,
1126 info);
1da177e4
LT
1127 if (rv) {
1128 printk(KERN_WARNING
1129 "ipmi_si: %s unable to claim interrupt %d,"
1130 " running polled\n",
1131 DEVICE_NAME, info->irq);
1132 info->irq = 0;
1133 } else {
b0defcdb 1134 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1135 printk(" Using irq %d\n", info->irq);
1136 }
1137
1138 return rv;
1139}
1140
1da177e4
LT
1141static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1142{
b0defcdb 1143 unsigned int addr = io->addr_data;
1da177e4 1144
b0defcdb 1145 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1146}
1147
1148static void port_outb(struct si_sm_io *io, unsigned int offset,
1149 unsigned char b)
1150{
b0defcdb 1151 unsigned int addr = io->addr_data;
1da177e4 1152
b0defcdb 1153 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1154}
1155
1156static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1157{
b0defcdb 1158 unsigned int addr = io->addr_data;
1da177e4 1159
b0defcdb 1160 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1161}
1162
1163static void port_outw(struct si_sm_io *io, unsigned int offset,
1164 unsigned char b)
1165{
b0defcdb 1166 unsigned int addr = io->addr_data;
1da177e4 1167
b0defcdb 1168 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1169}
1170
1171static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1172{
b0defcdb 1173 unsigned int addr = io->addr_data;
1da177e4 1174
b0defcdb 1175 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1176}
1177
1178static void port_outl(struct si_sm_io *io, unsigned int offset,
1179 unsigned char b)
1180{
b0defcdb 1181 unsigned int addr = io->addr_data;
1da177e4 1182
b0defcdb 1183 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1184}
1185
1186static void port_cleanup(struct smi_info *info)
1187{
b0defcdb 1188 unsigned int addr = info->io.addr_data;
d61a3ead 1189 int idx;
1da177e4 1190
b0defcdb 1191 if (addr) {
d61a3ead
CM
1192 for (idx = 0; idx < info->io_size; idx++) {
1193 release_region(addr + idx * info->io.regspacing,
1194 info->io.regsize);
1195 }
1da177e4 1196 }
1da177e4
LT
1197}
1198
1199static int port_setup(struct smi_info *info)
1200{
b0defcdb 1201 unsigned int addr = info->io.addr_data;
d61a3ead 1202 int idx;
1da177e4 1203
b0defcdb 1204 if (!addr)
1da177e4
LT
1205 return -ENODEV;
1206
1207 info->io_cleanup = port_cleanup;
1208
1209 /* Figure out the actual inb/inw/inl/etc routine to use based
1210 upon the register size. */
1211 switch (info->io.regsize) {
1212 case 1:
1213 info->io.inputb = port_inb;
1214 info->io.outputb = port_outb;
1215 break;
1216 case 2:
1217 info->io.inputb = port_inw;
1218 info->io.outputb = port_outw;
1219 break;
1220 case 4:
1221 info->io.inputb = port_inl;
1222 info->io.outputb = port_outl;
1223 break;
1224 default:
1225 printk("ipmi_si: Invalid register size: %d\n",
1226 info->io.regsize);
1227 return -EINVAL;
1228 }
1229
d61a3ead
CM
1230 /* Some BIOSes reserve disjoint I/O regions in their ACPI
1231 * tables. This causes problems when trying to register the
1232 * entire I/O region. Therefore we must register each I/O
1233 * port separately.
1234 */
1235 for (idx = 0; idx < info->io_size; idx++) {
1236 if (request_region(addr + idx * info->io.regspacing,
1237 info->io.regsize, DEVICE_NAME) == NULL) {
1238 /* Undo allocations */
1239 while (idx--) {
1240 release_region(addr + idx * info->io.regspacing,
1241 info->io.regsize);
1242 }
1243 return -EIO;
1244 }
1245 }
1da177e4
LT
1246 return 0;
1247}
1248
546cfdf4 1249static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1250{
1251 return readb((io->addr)+(offset * io->regspacing));
1252}
1253
546cfdf4 1254static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1255 unsigned char b)
1256{
1257 writeb(b, (io->addr)+(offset * io->regspacing));
1258}
1259
546cfdf4 1260static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1261{
1262 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1263 & 0xff;
1da177e4
LT
1264}
1265
546cfdf4 1266static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1267 unsigned char b)
1268{
1269 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1270}
1271
546cfdf4 1272static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1273{
1274 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1275 & 0xff;
1da177e4
LT
1276}
1277
546cfdf4 1278static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1279 unsigned char b)
1280{
1281 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1282}
1283
1284#ifdef readq
1285static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1286{
1287 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1288 & 0xff;
1da177e4
LT
1289}
1290
1291static void mem_outq(struct si_sm_io *io, unsigned int offset,
1292 unsigned char b)
1293{
1294 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1295}
1296#endif
1297
1298static void mem_cleanup(struct smi_info *info)
1299{
b0defcdb 1300 unsigned long addr = info->io.addr_data;
1da177e4
LT
1301 int mapsize;
1302
1303 if (info->io.addr) {
1304 iounmap(info->io.addr);
1305
1306 mapsize = ((info->io_size * info->io.regspacing)
1307 - (info->io.regspacing - info->io.regsize));
1308
b0defcdb 1309 release_mem_region(addr, mapsize);
1da177e4 1310 }
1da177e4
LT
1311}
1312
1313static int mem_setup(struct smi_info *info)
1314{
b0defcdb 1315 unsigned long addr = info->io.addr_data;
1da177e4
LT
1316 int mapsize;
1317
b0defcdb 1318 if (!addr)
1da177e4
LT
1319 return -ENODEV;
1320
1321 info->io_cleanup = mem_cleanup;
1322
1323 /* Figure out the actual readb/readw/readl/etc routine to use based
1324 upon the register size. */
1325 switch (info->io.regsize) {
1326 case 1:
546cfdf4
AD
1327 info->io.inputb = intf_mem_inb;
1328 info->io.outputb = intf_mem_outb;
1da177e4
LT
1329 break;
1330 case 2:
546cfdf4
AD
1331 info->io.inputb = intf_mem_inw;
1332 info->io.outputb = intf_mem_outw;
1da177e4
LT
1333 break;
1334 case 4:
546cfdf4
AD
1335 info->io.inputb = intf_mem_inl;
1336 info->io.outputb = intf_mem_outl;
1da177e4
LT
1337 break;
1338#ifdef readq
1339 case 8:
1340 info->io.inputb = mem_inq;
1341 info->io.outputb = mem_outq;
1342 break;
1343#endif
1344 default:
1345 printk("ipmi_si: Invalid register size: %d\n",
1346 info->io.regsize);
1347 return -EINVAL;
1348 }
1349
1350 /* Calculate the total amount of memory to claim. This is an
1351 * unusual looking calculation, but it avoids claiming any
1352 * more memory than it has to. It will claim everything
1353 * between the first address to the end of the last full
1354 * register. */
1355 mapsize = ((info->io_size * info->io.regspacing)
1356 - (info->io.regspacing - info->io.regsize));
1357
b0defcdb 1358 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1359 return -EIO;
1360
b0defcdb 1361 info->io.addr = ioremap(addr, mapsize);
1da177e4 1362 if (info->io.addr == NULL) {
b0defcdb 1363 release_mem_region(addr, mapsize);
1da177e4
LT
1364 return -EIO;
1365 }
1366 return 0;
1367}
1368
b361e27b
CM
1369/*
1370 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1371 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1372 * Options are:
1373 * rsp=<regspacing>
1374 * rsi=<regsize>
1375 * rsh=<regshift>
1376 * irq=<irq>
1377 * ipmb=<ipmb addr>
1378 */
1379enum hotmod_op { HM_ADD, HM_REMOVE };
1380struct hotmod_vals {
1381 char *name;
1382 int val;
1383};
1384static struct hotmod_vals hotmod_ops[] = {
1385 { "add", HM_ADD },
1386 { "remove", HM_REMOVE },
1387 { NULL }
1388};
1389static struct hotmod_vals hotmod_si[] = {
1390 { "kcs", SI_KCS },
1391 { "smic", SI_SMIC },
1392 { "bt", SI_BT },
1393 { NULL }
1394};
1395static struct hotmod_vals hotmod_as[] = {
1396 { "mem", IPMI_MEM_ADDR_SPACE },
1397 { "i/o", IPMI_IO_ADDR_SPACE },
1398 { NULL }
1399};
1400static int ipmi_strcasecmp(const char *s1, const char *s2)
1401{
1402 while (*s1 || *s2) {
1403 if (!*s1)
1404 return -1;
1405 if (!*s2)
1406 return 1;
1407 if (*s1 != *s2)
1408 return *s1 - *s2;
1409 s1++;
1410 s2++;
1411 }
1412 return 0;
1413}
1414static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1415{
1416 char *s;
1417 int i;
1418
1419 s = strchr(*curr, ',');
1420 if (!s) {
1421 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1422 return -EINVAL;
1423 }
1424 *s = '\0';
1425 s++;
1426 for (i = 0; hotmod_ops[i].name; i++) {
1427 if (ipmi_strcasecmp(*curr, v[i].name) == 0) {
1428 *val = v[i].val;
1429 *curr = s;
1430 return 0;
1431 }
1432 }
1433
1434 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1435 return -EINVAL;
1436}
1437
1438static int hotmod_handler(const char *val, struct kernel_param *kp)
1439{
1440 char *str = kstrdup(val, GFP_KERNEL);
1441 int rv = -EINVAL;
1442 char *next, *curr, *s, *n, *o;
1443 enum hotmod_op op;
1444 enum si_type si_type;
1445 int addr_space;
1446 unsigned long addr;
1447 int regspacing;
1448 int regsize;
1449 int regshift;
1450 int irq;
1451 int ipmb;
1452 int ival;
1453 struct smi_info *info;
1454
1455 if (!str)
1456 return -ENOMEM;
1457
1458 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1459 ival = strlen(str) - 1;
1460 while ((ival >= 0) && isspace(str[ival])) {
1461 str[ival] = '\0';
1462 ival--;
1463 }
1464
1465 for (curr = str; curr; curr = next) {
1466 regspacing = 1;
1467 regsize = 1;
1468 regshift = 0;
1469 irq = 0;
1470 ipmb = 0x20;
1471
1472 next = strchr(curr, ':');
1473 if (next) {
1474 *next = '\0';
1475 next++;
1476 }
1477
1478 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1479 if (rv)
1480 break;
1481 op = ival;
1482
1483 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1484 if (rv)
1485 break;
1486 si_type = ival;
1487
1488 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1489 if (rv)
1490 break;
1491
1492 s = strchr(curr, ',');
1493 if (s) {
1494 *s = '\0';
1495 s++;
1496 }
1497 addr = simple_strtoul(curr, &n, 0);
1498 if ((*n != '\0') || (*curr == '\0')) {
1499 printk(KERN_WARNING PFX "Invalid hotmod address"
1500 " '%s'\n", curr);
1501 break;
1502 }
1503
1504 while (s) {
1505 curr = s;
1506 s = strchr(curr, ',');
1507 if (s) {
1508 *s = '\0';
1509 s++;
1510 }
1511 o = strchr(curr, '=');
1512 if (o) {
1513 *o = '\0';
1514 o++;
1515 }
1516#define HOTMOD_INT_OPT(name, val) \
1517 if (ipmi_strcasecmp(curr, name) == 0) { \
1518 if (!o) { \
1519 printk(KERN_WARNING PFX \
1520 "No option given for '%s'\n", \
1521 curr); \
1522 goto out; \
1523 } \
1524 val = simple_strtoul(o, &n, 0); \
1525 if ((*n != '\0') || (*o == '\0')) { \
1526 printk(KERN_WARNING PFX \
1527 "Bad option given for '%s'\n", \
1528 curr); \
1529 goto out; \
1530 } \
1531 }
1532
1533 HOTMOD_INT_OPT("rsp", regspacing)
1534 else HOTMOD_INT_OPT("rsi", regsize)
1535 else HOTMOD_INT_OPT("rsh", regshift)
1536 else HOTMOD_INT_OPT("irq", irq)
1537 else HOTMOD_INT_OPT("ipmb", ipmb)
1538 else {
1539 printk(KERN_WARNING PFX
1540 "Invalid hotmod option '%s'\n",
1541 curr);
1542 goto out;
1543 }
1544#undef HOTMOD_INT_OPT
1545 }
1546
1547 if (op == HM_ADD) {
1548 info = kzalloc(sizeof(*info), GFP_KERNEL);
1549 if (!info) {
1550 rv = -ENOMEM;
1551 goto out;
1552 }
1553
1554 info->addr_source = "hotmod";
1555 info->si_type = si_type;
1556 info->io.addr_data = addr;
1557 info->io.addr_type = addr_space;
1558 if (addr_space == IPMI_MEM_ADDR_SPACE)
1559 info->io_setup = mem_setup;
1560 else
1561 info->io_setup = port_setup;
1562
1563 info->io.addr = NULL;
1564 info->io.regspacing = regspacing;
1565 if (!info->io.regspacing)
1566 info->io.regspacing = DEFAULT_REGSPACING;
1567 info->io.regsize = regsize;
1568 if (!info->io.regsize)
1569 info->io.regsize = DEFAULT_REGSPACING;
1570 info->io.regshift = regshift;
1571 info->irq = irq;
1572 if (info->irq)
1573 info->irq_setup = std_irq_setup;
1574 info->slave_addr = ipmb;
1575
1576 try_smi_init(info);
1577 } else {
1578 /* remove */
1579 struct smi_info *e, *tmp_e;
1580
1581 mutex_lock(&smi_infos_lock);
1582 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1583 if (e->io.addr_type != addr_space)
1584 continue;
1585 if (e->si_type != si_type)
1586 continue;
1587 if (e->io.addr_data == addr)
1588 cleanup_one_si(e);
1589 }
1590 mutex_unlock(&smi_infos_lock);
1591 }
1592 }
1593 out:
1594 kfree(str);
1595 return rv;
1596}
b0defcdb
CM
1597
1598static __devinit void hardcode_find_bmc(void)
1da177e4 1599{
b0defcdb 1600 int i;
1da177e4
LT
1601 struct smi_info *info;
1602
b0defcdb
CM
1603 for (i = 0; i < SI_MAX_PARMS; i++) {
1604 if (!ports[i] && !addrs[i])
1605 continue;
1da177e4 1606
b0defcdb
CM
1607 info = kzalloc(sizeof(*info), GFP_KERNEL);
1608 if (!info)
1609 return;
1da177e4 1610
b0defcdb 1611 info->addr_source = "hardcoded";
1da177e4 1612
b361e27b 1613 if (!si_type[i] || ipmi_strcasecmp(si_type[i], "kcs") == 0) {
b0defcdb 1614 info->si_type = SI_KCS;
b361e27b 1615 } else if (ipmi_strcasecmp(si_type[i], "smic") == 0) {
b0defcdb 1616 info->si_type = SI_SMIC;
b361e27b 1617 } else if (ipmi_strcasecmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1618 info->si_type = SI_BT;
1619 } else {
1620 printk(KERN_WARNING
1621 "ipmi_si: Interface type specified "
1622 "for interface %d, was invalid: %s\n",
1623 i, si_type[i]);
1624 kfree(info);
1625 continue;
1626 }
1da177e4 1627
b0defcdb
CM
1628 if (ports[i]) {
1629 /* An I/O port */
1630 info->io_setup = port_setup;
1631 info->io.addr_data = ports[i];
1632 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1633 } else if (addrs[i]) {
1634 /* A memory port */
1635 info->io_setup = mem_setup;
1636 info->io.addr_data = addrs[i];
1637 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1638 } else {
1639 printk(KERN_WARNING
1640 "ipmi_si: Interface type specified "
1641 "for interface %d, "
1642 "but port and address were not set or "
1643 "set to zero.\n", i);
1644 kfree(info);
1645 continue;
1646 }
1da177e4 1647
b0defcdb
CM
1648 info->io.addr = NULL;
1649 info->io.regspacing = regspacings[i];
1650 if (!info->io.regspacing)
1651 info->io.regspacing = DEFAULT_REGSPACING;
1652 info->io.regsize = regsizes[i];
1653 if (!info->io.regsize)
1654 info->io.regsize = DEFAULT_REGSPACING;
1655 info->io.regshift = regshifts[i];
1656 info->irq = irqs[i];
1657 if (info->irq)
1658 info->irq_setup = std_irq_setup;
1da177e4 1659
b0defcdb
CM
1660 try_smi_init(info);
1661 }
1662}
1da177e4 1663
8466361a 1664#ifdef CONFIG_ACPI
1da177e4
LT
1665
1666#include <linux/acpi.h>
1667
1668/* Once we get an ACPI failure, we don't try any more, because we go
1669 through the tables sequentially. Once we don't find a table, there
1670 are no more. */
0c8204b3 1671static int acpi_failure;
1da177e4
LT
1672
1673/* For GPE-type interrupts. */
1674static u32 ipmi_acpi_gpe(void *context)
1675{
1676 struct smi_info *smi_info = context;
1677 unsigned long flags;
1678#ifdef DEBUG_TIMING
1679 struct timeval t;
1680#endif
1681
1682 spin_lock_irqsave(&(smi_info->si_lock), flags);
1683
1684 spin_lock(&smi_info->count_lock);
1685 smi_info->interrupts++;
1686 spin_unlock(&smi_info->count_lock);
1687
a9a2c44f 1688 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
1689 goto out;
1690
1691#ifdef DEBUG_TIMING
1692 do_gettimeofday(&t);
1693 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1694#endif
1695 smi_event_handler(smi_info, 0);
1696 out:
1697 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1698
1699 return ACPI_INTERRUPT_HANDLED;
1700}
1701
b0defcdb
CM
1702static void acpi_gpe_irq_cleanup(struct smi_info *info)
1703{
1704 if (!info->irq)
1705 return;
1706
1707 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1708}
1709
1da177e4
LT
1710static int acpi_gpe_irq_setup(struct smi_info *info)
1711{
1712 acpi_status status;
1713
b0defcdb 1714 if (!info->irq)
1da177e4
LT
1715 return 0;
1716
1717 /* FIXME - is level triggered right? */
1718 status = acpi_install_gpe_handler(NULL,
1719 info->irq,
1720 ACPI_GPE_LEVEL_TRIGGERED,
1721 &ipmi_acpi_gpe,
1722 info);
1723 if (status != AE_OK) {
1724 printk(KERN_WARNING
1725 "ipmi_si: %s unable to claim ACPI GPE %d,"
1726 " running polled\n",
1727 DEVICE_NAME, info->irq);
1728 info->irq = 0;
1729 return -EINVAL;
1730 } else {
b0defcdb 1731 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1732 printk(" Using ACPI GPE %d\n", info->irq);
1733 return 0;
1734 }
1735}
1736
1da177e4
LT
1737/*
1738 * Defined at
1739 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1740 */
1741struct SPMITable {
1742 s8 Signature[4];
1743 u32 Length;
1744 u8 Revision;
1745 u8 Checksum;
1746 s8 OEMID[6];
1747 s8 OEMTableID[8];
1748 s8 OEMRevision[4];
1749 s8 CreatorID[4];
1750 s8 CreatorRevision[4];
1751 u8 InterfaceType;
1752 u8 IPMIlegacy;
1753 s16 SpecificationRevision;
1754
1755 /*
1756 * Bit 0 - SCI interrupt supported
1757 * Bit 1 - I/O APIC/SAPIC
1758 */
1759 u8 InterruptType;
1760
1761 /* If bit 0 of InterruptType is set, then this is the SCI
1762 interrupt in the GPEx_STS register. */
1763 u8 GPE;
1764
1765 s16 Reserved;
1766
1767 /* If bit 1 of InterruptType is set, then this is the I/O
1768 APIC/SAPIC interrupt. */
1769 u32 GlobalSystemInterrupt;
1770
1771 /* The actual register address. */
1772 struct acpi_generic_address addr;
1773
1774 u8 UID[4];
1775
1776 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1777};
1778
b0defcdb 1779static __devinit int try_init_acpi(struct SPMITable *spmi)
1da177e4
LT
1780{
1781 struct smi_info *info;
1da177e4
LT
1782 char *io_type;
1783 u8 addr_space;
1784
1da177e4
LT
1785 if (spmi->IPMIlegacy != 1) {
1786 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1787 return -ENODEV;
1788 }
1789
1790 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1791 addr_space = IPMI_MEM_ADDR_SPACE;
1792 else
1793 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
1794
1795 info = kzalloc(sizeof(*info), GFP_KERNEL);
1796 if (!info) {
1797 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1798 return -ENOMEM;
1799 }
1800
1801 info->addr_source = "ACPI";
1da177e4 1802
1da177e4
LT
1803 /* Figure out the interface type. */
1804 switch (spmi->InterfaceType)
1805 {
1806 case 1: /* KCS */
b0defcdb 1807 info->si_type = SI_KCS;
1da177e4 1808 break;
1da177e4 1809 case 2: /* SMIC */
b0defcdb 1810 info->si_type = SI_SMIC;
1da177e4 1811 break;
1da177e4 1812 case 3: /* BT */
b0defcdb 1813 info->si_type = SI_BT;
1da177e4 1814 break;
1da177e4
LT
1815 default:
1816 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1817 spmi->InterfaceType);
b0defcdb 1818 kfree(info);
1da177e4
LT
1819 return -EIO;
1820 }
1821
1da177e4
LT
1822 if (spmi->InterruptType & 1) {
1823 /* We've got a GPE interrupt. */
1824 info->irq = spmi->GPE;
1825 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
1826 } else if (spmi->InterruptType & 2) {
1827 /* We've got an APIC/SAPIC interrupt. */
1828 info->irq = spmi->GlobalSystemInterrupt;
1829 info->irq_setup = std_irq_setup;
1da177e4
LT
1830 } else {
1831 /* Use the default interrupt setting. */
1832 info->irq = 0;
1833 info->irq_setup = NULL;
1834 }
1835
35bc37a0
CM
1836 if (spmi->addr.register_bit_width) {
1837 /* A (hopefully) properly formed register bit width. */
35bc37a0
CM
1838 info->io.regspacing = spmi->addr.register_bit_width / 8;
1839 } else {
35bc37a0
CM
1840 info->io.regspacing = DEFAULT_REGSPACING;
1841 }
b0defcdb
CM
1842 info->io.regsize = info->io.regspacing;
1843 info->io.regshift = spmi->addr.register_bit_offset;
1da177e4
LT
1844
1845 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1846 io_type = "memory";
1847 info->io_setup = mem_setup;
b0defcdb 1848 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1849 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1850 io_type = "I/O";
1851 info->io_setup = port_setup;
b0defcdb 1852 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1853 } else {
1854 kfree(info);
1855 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1856 return -EIO;
1857 }
b0defcdb 1858 info->io.addr_data = spmi->addr.address;
1da177e4 1859
b0defcdb 1860 try_smi_init(info);
1da177e4 1861
1da177e4
LT
1862 return 0;
1863}
b0defcdb
CM
1864
1865static __devinit void acpi_find_bmc(void)
1866{
1867 acpi_status status;
1868 struct SPMITable *spmi;
1869 int i;
1870
1871 if (acpi_disabled)
1872 return;
1873
1874 if (acpi_failure)
1875 return;
1876
1877 for (i = 0; ; i++) {
1878 status = acpi_get_firmware_table("SPMI", i+1,
1879 ACPI_LOGICAL_ADDRESSING,
1880 (struct acpi_table_header **)
1881 &spmi);
1882 if (status != AE_OK)
1883 return;
1884
1885 try_init_acpi(spmi);
1886 }
1887}
1da177e4
LT
1888#endif
1889
a9fad4cc 1890#ifdef CONFIG_DMI
b0defcdb 1891struct dmi_ipmi_data
1da177e4
LT
1892{
1893 u8 type;
1894 u8 addr_space;
1895 unsigned long base_addr;
1896 u8 irq;
1897 u8 offset;
1898 u8 slave_addr;
b0defcdb 1899};
1da177e4 1900
b0defcdb
CM
1901static int __devinit decode_dmi(struct dmi_header *dm,
1902 struct dmi_ipmi_data *dmi)
1da177e4 1903{
e8b33617 1904 u8 *data = (u8 *)dm;
1da177e4
LT
1905 unsigned long base_addr;
1906 u8 reg_spacing;
b224cd3a 1907 u8 len = dm->length;
1da177e4 1908
b0defcdb 1909 dmi->type = data[4];
1da177e4
LT
1910
1911 memcpy(&base_addr, data+8, sizeof(unsigned long));
1912 if (len >= 0x11) {
1913 if (base_addr & 1) {
1914 /* I/O */
1915 base_addr &= 0xFFFE;
b0defcdb 1916 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1917 }
1918 else {
1919 /* Memory */
b0defcdb 1920 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1921 }
1922 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1923 is odd. */
b0defcdb 1924 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1925
b0defcdb 1926 dmi->irq = data[0x11];
1da177e4
LT
1927
1928 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1929 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1930 switch(reg_spacing){
1931 case 0x00: /* Byte boundaries */
b0defcdb 1932 dmi->offset = 1;
1da177e4
LT
1933 break;
1934 case 0x01: /* 32-bit boundaries */
b0defcdb 1935 dmi->offset = 4;
1da177e4
LT
1936 break;
1937 case 0x02: /* 16-byte boundaries */
b0defcdb 1938 dmi->offset = 16;
1da177e4
LT
1939 break;
1940 default:
1941 /* Some other interface, just ignore it. */
1942 return -EIO;
1943 }
1944 } else {
1945 /* Old DMI spec. */
92068801
CM
1946 /* Note that technically, the lower bit of the base
1947 * address should be 1 if the address is I/O and 0 if
1948 * the address is in memory. So many systems get that
1949 * wrong (and all that I have seen are I/O) so we just
1950 * ignore that bit and assume I/O. Systems that use
1951 * memory should use the newer spec, anyway. */
b0defcdb
CM
1952 dmi->base_addr = base_addr & 0xfffe;
1953 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1954 dmi->offset = 1;
1da177e4
LT
1955 }
1956
b0defcdb 1957 dmi->slave_addr = data[6];
1da177e4 1958
b0defcdb 1959 return 0;
1da177e4
LT
1960}
1961
b0defcdb 1962static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 1963{
b0defcdb 1964 struct smi_info *info;
1da177e4 1965
b0defcdb
CM
1966 info = kzalloc(sizeof(*info), GFP_KERNEL);
1967 if (!info) {
1968 printk(KERN_ERR
1969 "ipmi_si: Could not allocate SI data\n");
1970 return;
1da177e4 1971 }
1da177e4 1972
b0defcdb 1973 info->addr_source = "SMBIOS";
1da177e4 1974
e8b33617 1975 switch (ipmi_data->type) {
b0defcdb
CM
1976 case 0x01: /* KCS */
1977 info->si_type = SI_KCS;
1978 break;
1979 case 0x02: /* SMIC */
1980 info->si_type = SI_SMIC;
1981 break;
1982 case 0x03: /* BT */
1983 info->si_type = SI_BT;
1984 break;
1985 default:
1986 return;
1da177e4 1987 }
1da177e4 1988
b0defcdb
CM
1989 switch (ipmi_data->addr_space) {
1990 case IPMI_MEM_ADDR_SPACE:
1da177e4 1991 info->io_setup = mem_setup;
b0defcdb
CM
1992 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1993 break;
1994
1995 case IPMI_IO_ADDR_SPACE:
1da177e4 1996 info->io_setup = port_setup;
b0defcdb
CM
1997 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1998 break;
1999
2000 default:
1da177e4 2001 kfree(info);
b0defcdb
CM
2002 printk(KERN_WARNING
2003 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2004 ipmi_data->addr_space);
2005 return;
1da177e4 2006 }
b0defcdb 2007 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2008
b0defcdb
CM
2009 info->io.regspacing = ipmi_data->offset;
2010 if (!info->io.regspacing)
1da177e4
LT
2011 info->io.regspacing = DEFAULT_REGSPACING;
2012 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2013 info->io.regshift = 0;
1da177e4
LT
2014
2015 info->slave_addr = ipmi_data->slave_addr;
2016
b0defcdb
CM
2017 info->irq = ipmi_data->irq;
2018 if (info->irq)
2019 info->irq_setup = std_irq_setup;
1da177e4 2020
b0defcdb
CM
2021 try_smi_init(info);
2022}
1da177e4 2023
b0defcdb
CM
2024static void __devinit dmi_find_bmc(void)
2025{
2026 struct dmi_device *dev = NULL;
2027 struct dmi_ipmi_data data;
2028 int rv;
2029
2030 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2031 memset(&data, 0, sizeof(data));
b0defcdb
CM
2032 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
2033 if (!rv)
2034 try_init_dmi(&data);
2035 }
1da177e4 2036}
a9fad4cc 2037#endif /* CONFIG_DMI */
1da177e4
LT
2038
2039#ifdef CONFIG_PCI
2040
b0defcdb
CM
2041#define PCI_ERMC_CLASSCODE 0x0C0700
2042#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2043#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2044#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2045#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2046#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2047
1da177e4
LT
2048#define PCI_HP_VENDOR_ID 0x103C
2049#define PCI_MMC_DEVICE_ID 0x121A
2050#define PCI_MMC_ADDR_CW 0x10
2051
b0defcdb
CM
2052static void ipmi_pci_cleanup(struct smi_info *info)
2053{
2054 struct pci_dev *pdev = info->addr_source_data;
2055
2056 pci_disable_device(pdev);
2057}
1da177e4 2058
b0defcdb
CM
2059static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2060 const struct pci_device_id *ent)
1da177e4 2061{
b0defcdb
CM
2062 int rv;
2063 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2064 struct smi_info *info;
2065 int first_reg_offset = 0;
1da177e4 2066
b0defcdb
CM
2067 info = kzalloc(sizeof(*info), GFP_KERNEL);
2068 if (!info)
1cd441f9 2069 return -ENOMEM;
1da177e4 2070
b0defcdb 2071 info->addr_source = "PCI";
1da177e4 2072
b0defcdb
CM
2073 switch (class_type) {
2074 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2075 info->si_type = SI_SMIC;
2076 break;
1da177e4 2077
b0defcdb
CM
2078 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2079 info->si_type = SI_KCS;
2080 break;
2081
2082 case PCI_ERMC_CLASSCODE_TYPE_BT:
2083 info->si_type = SI_BT;
2084 break;
2085
2086 default:
2087 kfree(info);
2088 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2089 pci_name(pdev), class_type);
1cd441f9 2090 return -ENOMEM;
1da177e4
LT
2091 }
2092
b0defcdb
CM
2093 rv = pci_enable_device(pdev);
2094 if (rv) {
2095 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2096 pci_name(pdev));
2097 kfree(info);
2098 return rv;
1da177e4
LT
2099 }
2100
b0defcdb
CM
2101 info->addr_source_cleanup = ipmi_pci_cleanup;
2102 info->addr_source_data = pdev;
1da177e4 2103
b0defcdb
CM
2104 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2105 first_reg_offset = 1;
1da177e4 2106
b0defcdb
CM
2107 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2108 info->io_setup = port_setup;
2109 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2110 } else {
2111 info->io_setup = mem_setup;
2112 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2113 }
b0defcdb 2114 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2115
b0defcdb 2116 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2117 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2118 info->io.regshift = 0;
1da177e4 2119
b0defcdb
CM
2120 info->irq = pdev->irq;
2121 if (info->irq)
2122 info->irq_setup = std_irq_setup;
1da177e4 2123
50c812b2
CM
2124 info->dev = &pdev->dev;
2125
b0defcdb
CM
2126 return try_smi_init(info);
2127}
1da177e4 2128
b0defcdb
CM
2129static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2130{
2131}
1da177e4 2132
b0defcdb
CM
2133#ifdef CONFIG_PM
2134static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2135{
1da177e4
LT
2136 return 0;
2137}
1da177e4 2138
b0defcdb 2139static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2140{
b0defcdb
CM
2141 return 0;
2142}
1da177e4 2143#endif
1da177e4 2144
b0defcdb
CM
2145static struct pci_device_id ipmi_pci_devices[] = {
2146 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
d13adb60 2147 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }
b0defcdb
CM
2148};
2149MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2150
2151static struct pci_driver ipmi_pci_driver = {
2152 .name = DEVICE_NAME,
2153 .id_table = ipmi_pci_devices,
2154 .probe = ipmi_pci_probe,
2155 .remove = __devexit_p(ipmi_pci_remove),
2156#ifdef CONFIG_PM
2157 .suspend = ipmi_pci_suspend,
2158 .resume = ipmi_pci_resume,
2159#endif
2160};
2161#endif /* CONFIG_PCI */
1da177e4
LT
2162
2163
2164static int try_get_dev_id(struct smi_info *smi_info)
2165{
50c812b2
CM
2166 unsigned char msg[2];
2167 unsigned char *resp;
2168 unsigned long resp_len;
2169 enum si_sm_result smi_result;
2170 int rv = 0;
1da177e4
LT
2171
2172 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
b0defcdb 2173 if (!resp)
1da177e4
LT
2174 return -ENOMEM;
2175
2176 /* Do a Get Device ID command, since it comes back with some
2177 useful info. */
2178 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2179 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2180 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2181
2182 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2183 for (;;)
2184 {
c3e7e791
CM
2185 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2186 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2187 schedule_timeout_uninterruptible(1);
1da177e4
LT
2188 smi_result = smi_info->handlers->event(
2189 smi_info->si_sm, 100);
2190 }
2191 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
2192 {
2193 smi_result = smi_info->handlers->event(
2194 smi_info->si_sm, 0);
2195 }
2196 else
2197 break;
2198 }
2199 if (smi_result == SI_SM_HOSED) {
2200 /* We couldn't get the state machine to run, so whatever's at
2201 the port is probably not an IPMI SMI interface. */
2202 rv = -ENODEV;
2203 goto out;
2204 }
2205
2206 /* Otherwise, we got some data. */
2207 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2208 resp, IPMI_MAX_MSG_LENGTH);
50c812b2 2209 if (resp_len < 14) {
1da177e4
LT
2210 /* That's odd, it should be longer. */
2211 rv = -EINVAL;
2212 goto out;
2213 }
2214
2215 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
2216 /* That's odd, it shouldn't be able to fail. */
2217 rv = -EINVAL;
2218 goto out;
2219 }
2220
2221 /* Record info from the get device id, in case we need it. */
50c812b2 2222 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1da177e4
LT
2223
2224 out:
2225 kfree(resp);
2226 return rv;
2227}
2228
2229static int type_file_read_proc(char *page, char **start, off_t off,
2230 int count, int *eof, void *data)
2231{
1da177e4
LT
2232 struct smi_info *smi = data;
2233
b361e27b 2234 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2235}
2236
2237static int stat_file_read_proc(char *page, char **start, off_t off,
2238 int count, int *eof, void *data)
2239{
2240 char *out = (char *) page;
2241 struct smi_info *smi = data;
2242
2243 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2244 smi->irq && !smi->interrupt_disabled);
1da177e4
LT
2245 out += sprintf(out, "short_timeouts: %ld\n",
2246 smi->short_timeouts);
2247 out += sprintf(out, "long_timeouts: %ld\n",
2248 smi->long_timeouts);
2249 out += sprintf(out, "timeout_restarts: %ld\n",
2250 smi->timeout_restarts);
2251 out += sprintf(out, "idles: %ld\n",
2252 smi->idles);
2253 out += sprintf(out, "interrupts: %ld\n",
2254 smi->interrupts);
2255 out += sprintf(out, "attentions: %ld\n",
2256 smi->attentions);
2257 out += sprintf(out, "flag_fetches: %ld\n",
2258 smi->flag_fetches);
2259 out += sprintf(out, "hosed_count: %ld\n",
2260 smi->hosed_count);
2261 out += sprintf(out, "complete_transactions: %ld\n",
2262 smi->complete_transactions);
2263 out += sprintf(out, "events: %ld\n",
2264 smi->events);
2265 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2266 smi->watchdog_pretimeouts);
2267 out += sprintf(out, "incoming_messages: %ld\n",
2268 smi->incoming_messages);
2269
b361e27b
CM
2270 return out - page;
2271}
2272
2273static int param_read_proc(char *page, char **start, off_t off,
2274 int count, int *eof, void *data)
2275{
2276 struct smi_info *smi = data;
2277
2278 return sprintf(page,
2279 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2280 si_to_str[smi->si_type],
2281 addr_space_to_str[smi->io.addr_type],
2282 smi->io.addr_data,
2283 smi->io.regspacing,
2284 smi->io.regsize,
2285 smi->io.regshift,
2286 smi->irq,
2287 smi->slave_addr);
1da177e4
LT
2288}
2289
3ae0e0f9
CM
2290/*
2291 * oem_data_avail_to_receive_msg_avail
2292 * @info - smi_info structure with msg_flags set
2293 *
2294 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2295 * Returns 1 indicating need to re-run handle_flags().
2296 */
2297static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2298{
e8b33617
CM
2299 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2300 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2301 return 1;
2302}
2303
2304/*
2305 * setup_dell_poweredge_oem_data_handler
2306 * @info - smi_info.device_id must be populated
2307 *
2308 * Systems that match, but have firmware version < 1.40 may assert
2309 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2310 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2311 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2312 * as RECEIVE_MSG_AVAIL instead.
2313 *
2314 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2315 * assert the OEM[012] bits, and if it did, the driver would have to
2316 * change to handle that properly, we don't actually check for the
2317 * firmware version.
2318 * Device ID = 0x20 BMC on PowerEdge 8G servers
2319 * Device Revision = 0x80
2320 * Firmware Revision1 = 0x01 BMC version 1.40
2321 * Firmware Revision2 = 0x40 BCD encoded
2322 * IPMI Version = 0x51 IPMI 1.5
2323 * Manufacturer ID = A2 02 00 Dell IANA
2324 *
d5a2b89a
CM
2325 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2326 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2327 *
3ae0e0f9
CM
2328 */
2329#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2330#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2331#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2332#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2333static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2334{
2335 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2336 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2337 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2338 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2339 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2340 smi_info->oem_data_avail_handler =
2341 oem_data_avail_to_receive_msg_avail;
2342 }
2343 else if (ipmi_version_major(id) < 1 ||
2344 (ipmi_version_major(id) == 1 &&
2345 ipmi_version_minor(id) < 5)) {
2346 smi_info->oem_data_avail_handler =
2347 oem_data_avail_to_receive_msg_avail;
2348 }
3ae0e0f9
CM
2349 }
2350}
2351
ea94027b
CM
2352#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2353static void return_hosed_msg_badsize(struct smi_info *smi_info)
2354{
2355 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2356
2357 /* Make it a reponse */
2358 msg->rsp[0] = msg->data[0] | 4;
2359 msg->rsp[1] = msg->data[1];
2360 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2361 msg->rsp_size = 3;
2362 smi_info->curr_msg = NULL;
2363 deliver_recv_msg(smi_info, msg);
2364}
2365
2366/*
2367 * dell_poweredge_bt_xaction_handler
2368 * @info - smi_info.device_id must be populated
2369 *
2370 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2371 * not respond to a Get SDR command if the length of the data
2372 * requested is exactly 0x3A, which leads to command timeouts and no
2373 * data returned. This intercepts such commands, and causes userspace
2374 * callers to try again with a different-sized buffer, which succeeds.
2375 */
2376
2377#define STORAGE_NETFN 0x0A
2378#define STORAGE_CMD_GET_SDR 0x23
2379static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2380 unsigned long unused,
2381 void *in)
2382{
2383 struct smi_info *smi_info = in;
2384 unsigned char *data = smi_info->curr_msg->data;
2385 unsigned int size = smi_info->curr_msg->data_size;
2386 if (size >= 8 &&
2387 (data[0]>>2) == STORAGE_NETFN &&
2388 data[1] == STORAGE_CMD_GET_SDR &&
2389 data[7] == 0x3A) {
2390 return_hosed_msg_badsize(smi_info);
2391 return NOTIFY_STOP;
2392 }
2393 return NOTIFY_DONE;
2394}
2395
2396static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2397 .notifier_call = dell_poweredge_bt_xaction_handler,
2398};
2399
2400/*
2401 * setup_dell_poweredge_bt_xaction_handler
2402 * @info - smi_info.device_id must be filled in already
2403 *
2404 * Fills in smi_info.device_id.start_transaction_pre_hook
2405 * when we know what function to use there.
2406 */
2407static void
2408setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2409{
2410 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2411 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2412 smi_info->si_type == SI_BT)
2413 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2414}
2415
3ae0e0f9
CM
2416/*
2417 * setup_oem_data_handler
2418 * @info - smi_info.device_id must be filled in already
2419 *
2420 * Fills in smi_info.device_id.oem_data_available_handler
2421 * when we know what function to use there.
2422 */
2423
2424static void setup_oem_data_handler(struct smi_info *smi_info)
2425{
2426 setup_dell_poweredge_oem_data_handler(smi_info);
2427}
2428
ea94027b
CM
2429static void setup_xaction_handlers(struct smi_info *smi_info)
2430{
2431 setup_dell_poweredge_bt_xaction_handler(smi_info);
2432}
2433
a9a2c44f
CM
2434static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2435{
453823ba
CM
2436 if (smi_info->intf) {
2437 /* The timer and thread are only running if the
2438 interface has been started up and registered. */
2439 if (smi_info->thread != NULL)
2440 kthread_stop(smi_info->thread);
2441 del_timer_sync(&smi_info->si_timer);
2442 }
a9a2c44f
CM
2443}
2444
7420884c 2445static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2446{
2447 int type;
2448 int port;
7420884c 2449} ipmi_defaults[] =
b0defcdb
CM
2450{
2451 { .type = SI_KCS, .port = 0xca2 },
2452 { .type = SI_SMIC, .port = 0xca9 },
2453 { .type = SI_BT, .port = 0xe4 },
2454 { .port = 0 }
2455};
2456
2457static __devinit void default_find_bmc(void)
2458{
2459 struct smi_info *info;
2460 int i;
2461
2462 for (i = 0; ; i++) {
2463 if (!ipmi_defaults[i].port)
2464 break;
2465
2466 info = kzalloc(sizeof(*info), GFP_KERNEL);
2467 if (!info)
2468 return;
2469
2470 info->addr_source = NULL;
2471
2472 info->si_type = ipmi_defaults[i].type;
2473 info->io_setup = port_setup;
2474 info->io.addr_data = ipmi_defaults[i].port;
2475 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2476
2477 info->io.addr = NULL;
2478 info->io.regspacing = DEFAULT_REGSPACING;
2479 info->io.regsize = DEFAULT_REGSPACING;
2480 info->io.regshift = 0;
2481
2482 if (try_smi_init(info) == 0) {
2483 /* Found one... */
2484 printk(KERN_INFO "ipmi_si: Found default %s state"
2485 " machine at %s address 0x%lx\n",
2486 si_to_str[info->si_type],
2487 addr_space_to_str[info->io.addr_type],
2488 info->io.addr_data);
2489 return;
2490 }
2491 }
2492}
2493
2494static int is_new_interface(struct smi_info *info)
1da177e4 2495{
b0defcdb 2496 struct smi_info *e;
1da177e4 2497
b0defcdb
CM
2498 list_for_each_entry(e, &smi_infos, link) {
2499 if (e->io.addr_type != info->io.addr_type)
2500 continue;
2501 if (e->io.addr_data == info->io.addr_data)
2502 return 0;
2503 }
1da177e4 2504
b0defcdb
CM
2505 return 1;
2506}
1da177e4 2507
b0defcdb
CM
2508static int try_smi_init(struct smi_info *new_smi)
2509{
2510 int rv;
2511
2512 if (new_smi->addr_source) {
2513 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2514 " machine at %s address 0x%lx, slave address 0x%x,"
2515 " irq %d\n",
2516 new_smi->addr_source,
2517 si_to_str[new_smi->si_type],
2518 addr_space_to_str[new_smi->io.addr_type],
2519 new_smi->io.addr_data,
2520 new_smi->slave_addr, new_smi->irq);
2521 }
2522
d6dfd131 2523 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2524 if (!is_new_interface(new_smi)) {
2525 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2526 rv = -EBUSY;
2527 goto out_err;
2528 }
1da177e4
LT
2529
2530 /* So we know not to free it unless we have allocated one. */
2531 new_smi->intf = NULL;
2532 new_smi->si_sm = NULL;
2533 new_smi->handlers = NULL;
2534
b0defcdb
CM
2535 switch (new_smi->si_type) {
2536 case SI_KCS:
1da177e4 2537 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2538 break;
2539
2540 case SI_SMIC:
1da177e4 2541 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2542 break;
2543
2544 case SI_BT:
1da177e4 2545 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2546 break;
2547
2548 default:
1da177e4
LT
2549 /* No support for anything else yet. */
2550 rv = -EIO;
2551 goto out_err;
2552 }
2553
2554 /* Allocate the state machine's data and initialize it. */
2555 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2556 if (!new_smi->si_sm) {
1da177e4
LT
2557 printk(" Could not allocate state machine memory\n");
2558 rv = -ENOMEM;
2559 goto out_err;
2560 }
2561 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2562 &new_smi->io);
2563
2564 /* Now that we know the I/O size, we can set up the I/O. */
2565 rv = new_smi->io_setup(new_smi);
2566 if (rv) {
2567 printk(" Could not set up I/O space\n");
2568 goto out_err;
2569 }
2570
2571 spin_lock_init(&(new_smi->si_lock));
2572 spin_lock_init(&(new_smi->msg_lock));
2573 spin_lock_init(&(new_smi->count_lock));
2574
2575 /* Do low-level detection first. */
2576 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
2577 if (new_smi->addr_source)
2578 printk(KERN_INFO "ipmi_si: Interface detection"
2579 " failed\n");
1da177e4
LT
2580 rv = -ENODEV;
2581 goto out_err;
2582 }
2583
2584 /* Attempt a get device id command. If it fails, we probably
b0defcdb 2585 don't have a BMC here. */
1da177e4 2586 rv = try_get_dev_id(new_smi);
b0defcdb
CM
2587 if (rv) {
2588 if (new_smi->addr_source)
2589 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2590 " at this location\n");
1da177e4 2591 goto out_err;
b0defcdb 2592 }
1da177e4 2593
3ae0e0f9 2594 setup_oem_data_handler(new_smi);
ea94027b 2595 setup_xaction_handlers(new_smi);
3ae0e0f9 2596
1da177e4 2597 /* Try to claim any interrupts. */
b0defcdb
CM
2598 if (new_smi->irq_setup)
2599 new_smi->irq_setup(new_smi);
1da177e4
LT
2600
2601 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2602 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2603 new_smi->curr_msg = NULL;
2604 atomic_set(&new_smi->req_events, 0);
2605 new_smi->run_to_completion = 0;
2606
2607 new_smi->interrupt_disabled = 0;
a9a2c44f 2608 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
2609 new_smi->intf_num = smi_num;
2610 smi_num++;
1da177e4
LT
2611
2612 /* Start clearing the flags before we enable interrupts or the
2613 timer to avoid racing with the timer. */
2614 start_clear_flags(new_smi);
2615 /* IRQ is defined to be set when non-zero. */
2616 if (new_smi->irq)
2617 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2618
50c812b2
CM
2619 if (!new_smi->dev) {
2620 /* If we don't already have a device from something
2621 * else (like PCI), then register a new one. */
2622 new_smi->pdev = platform_device_alloc("ipmi_si",
2623 new_smi->intf_num);
2624 if (rv) {
2625 printk(KERN_ERR
2626 "ipmi_si_intf:"
2627 " Unable to allocate platform device\n");
453823ba 2628 goto out_err;
50c812b2
CM
2629 }
2630 new_smi->dev = &new_smi->pdev->dev;
2631 new_smi->dev->driver = &ipmi_driver;
2632
b48f5457 2633 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
2634 if (rv) {
2635 printk(KERN_ERR
2636 "ipmi_si_intf:"
2637 " Unable to register system interface device:"
2638 " %d\n",
2639 rv);
453823ba 2640 goto out_err;
50c812b2
CM
2641 }
2642 new_smi->dev_registered = 1;
2643 }
2644
1da177e4
LT
2645 rv = ipmi_register_smi(&handlers,
2646 new_smi,
50c812b2
CM
2647 &new_smi->device_id,
2648 new_smi->dev,
759643b8 2649 "bmc",
453823ba 2650 new_smi->slave_addr);
1da177e4
LT
2651 if (rv) {
2652 printk(KERN_ERR
2653 "ipmi_si: Unable to register device: error %d\n",
2654 rv);
2655 goto out_err_stop_timer;
2656 }
2657
2658 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2659 type_file_read_proc, NULL,
2660 new_smi, THIS_MODULE);
2661 if (rv) {
2662 printk(KERN_ERR
2663 "ipmi_si: Unable to create proc entry: %d\n",
2664 rv);
2665 goto out_err_stop_timer;
2666 }
2667
2668 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2669 stat_file_read_proc, NULL,
2670 new_smi, THIS_MODULE);
2671 if (rv) {
2672 printk(KERN_ERR
2673 "ipmi_si: Unable to create proc entry: %d\n",
2674 rv);
2675 goto out_err_stop_timer;
2676 }
2677
b361e27b
CM
2678 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2679 param_read_proc, NULL,
2680 new_smi, THIS_MODULE);
2681 if (rv) {
2682 printk(KERN_ERR
2683 "ipmi_si: Unable to create proc entry: %d\n",
2684 rv);
2685 goto out_err_stop_timer;
2686 }
2687
b0defcdb
CM
2688 list_add_tail(&new_smi->link, &smi_infos);
2689
d6dfd131 2690 mutex_unlock(&smi_infos_lock);
1da177e4 2691
b0defcdb 2692 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
1da177e4
LT
2693
2694 return 0;
2695
2696 out_err_stop_timer:
a9a2c44f
CM
2697 atomic_inc(&new_smi->stop_operation);
2698 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2699
2700 out_err:
2701 if (new_smi->intf)
2702 ipmi_unregister_smi(new_smi->intf);
2703
b0defcdb
CM
2704 if (new_smi->irq_cleanup)
2705 new_smi->irq_cleanup(new_smi);
1da177e4
LT
2706
2707 /* Wait until we know that we are out of any interrupt
2708 handlers might have been running before we freed the
2709 interrupt. */
fbd568a3 2710 synchronize_sched();
1da177e4
LT
2711
2712 if (new_smi->si_sm) {
2713 if (new_smi->handlers)
2714 new_smi->handlers->cleanup(new_smi->si_sm);
2715 kfree(new_smi->si_sm);
2716 }
b0defcdb
CM
2717 if (new_smi->addr_source_cleanup)
2718 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
2719 if (new_smi->io_cleanup)
2720 new_smi->io_cleanup(new_smi);
1da177e4 2721
50c812b2
CM
2722 if (new_smi->dev_registered)
2723 platform_device_unregister(new_smi->pdev);
2724
2725 kfree(new_smi);
2726
d6dfd131 2727 mutex_unlock(&smi_infos_lock);
b0defcdb 2728
1da177e4
LT
2729 return rv;
2730}
2731
b0defcdb 2732static __devinit int init_ipmi_si(void)
1da177e4 2733{
1da177e4
LT
2734 int i;
2735 char *str;
50c812b2 2736 int rv;
1da177e4
LT
2737
2738 if (initialized)
2739 return 0;
2740 initialized = 1;
2741
50c812b2
CM
2742 /* Register the device drivers. */
2743 rv = driver_register(&ipmi_driver);
2744 if (rv) {
2745 printk(KERN_ERR
2746 "init_ipmi_si: Unable to register driver: %d\n",
2747 rv);
2748 return rv;
2749 }
2750
2751
1da177e4
LT
2752 /* Parse out the si_type string into its components. */
2753 str = si_type_str;
2754 if (*str != '\0') {
e8b33617 2755 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2756 si_type[i] = str;
2757 str = strchr(str, ',');
2758 if (str) {
2759 *str = '\0';
2760 str++;
2761 } else {
2762 break;
2763 }
2764 }
2765 }
2766
1fdd75bd 2767 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 2768
b0defcdb
CM
2769 hardcode_find_bmc();
2770
a9fad4cc 2771#ifdef CONFIG_DMI
b224cd3a 2772 dmi_find_bmc();
1da177e4
LT
2773#endif
2774
b0defcdb
CM
2775#ifdef CONFIG_ACPI
2776 if (si_trydefaults)
2777 acpi_find_bmc();
2778#endif
1da177e4 2779
b0defcdb 2780#ifdef CONFIG_PCI
168b35a7
CM
2781 rv = pci_register_driver(&ipmi_pci_driver);
2782 if (rv){
2783 printk(KERN_ERR
2784 "init_ipmi_si: Unable to register PCI driver: %d\n",
2785 rv);
2786 }
b0defcdb
CM
2787#endif
2788
2789 if (si_trydefaults) {
d6dfd131 2790 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2791 if (list_empty(&smi_infos)) {
2792 /* No BMC was found, try defaults. */
d6dfd131 2793 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2794 default_find_bmc();
2795 } else {
d6dfd131 2796 mutex_unlock(&smi_infos_lock);
b0defcdb 2797 }
1da177e4
LT
2798 }
2799
d6dfd131 2800 mutex_lock(&smi_infos_lock);
b361e27b 2801 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 2802 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
2803#ifdef CONFIG_PCI
2804 pci_unregister_driver(&ipmi_pci_driver);
2805#endif
55ebcc38 2806 driver_unregister(&ipmi_driver);
1da177e4
LT
2807 printk("ipmi_si: Unable to find any System Interface(s)\n");
2808 return -ENODEV;
b0defcdb 2809 } else {
d6dfd131 2810 mutex_unlock(&smi_infos_lock);
b0defcdb 2811 return 0;
1da177e4 2812 }
1da177e4
LT
2813}
2814module_init(init_ipmi_si);
2815
b361e27b 2816static void cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
2817{
2818 int rv;
2819 unsigned long flags;
2820
b0defcdb 2821 if (!to_clean)
1da177e4
LT
2822 return;
2823
b0defcdb
CM
2824 list_del(&to_clean->link);
2825
1da177e4
LT
2826 /* Tell the timer and interrupt handlers that we are shutting
2827 down. */
2828 spin_lock_irqsave(&(to_clean->si_lock), flags);
2829 spin_lock(&(to_clean->msg_lock));
2830
a9a2c44f 2831 atomic_inc(&to_clean->stop_operation);
b0defcdb
CM
2832
2833 if (to_clean->irq_cleanup)
2834 to_clean->irq_cleanup(to_clean);
1da177e4
LT
2835
2836 spin_unlock(&(to_clean->msg_lock));
2837 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2838
2839 /* Wait until we know that we are out of any interrupt
2840 handlers might have been running before we freed the
2841 interrupt. */
fbd568a3 2842 synchronize_sched();
1da177e4 2843
a9a2c44f 2844 wait_for_timer_and_thread(to_clean);
1da177e4
LT
2845
2846 /* Interrupts and timeouts are stopped, now make sure the
2847 interface is in a clean state. */
e8b33617 2848 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 2849 poll(to_clean);
da4cd8df 2850 schedule_timeout_uninterruptible(1);
1da177e4
LT
2851 }
2852
2853 rv = ipmi_unregister_smi(to_clean->intf);
2854 if (rv) {
2855 printk(KERN_ERR
2856 "ipmi_si: Unable to unregister device: errno=%d\n",
2857 rv);
2858 }
2859
2860 to_clean->handlers->cleanup(to_clean->si_sm);
2861
2862 kfree(to_clean->si_sm);
2863
b0defcdb
CM
2864 if (to_clean->addr_source_cleanup)
2865 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
2866 if (to_clean->io_cleanup)
2867 to_clean->io_cleanup(to_clean);
50c812b2
CM
2868
2869 if (to_clean->dev_registered)
2870 platform_device_unregister(to_clean->pdev);
2871
2872 kfree(to_clean);
1da177e4
LT
2873}
2874
2875static __exit void cleanup_ipmi_si(void)
2876{
b0defcdb 2877 struct smi_info *e, *tmp_e;
1da177e4 2878
b0defcdb 2879 if (!initialized)
1da177e4
LT
2880 return;
2881
b0defcdb
CM
2882#ifdef CONFIG_PCI
2883 pci_unregister_driver(&ipmi_pci_driver);
2884#endif
2885
d6dfd131 2886 mutex_lock(&smi_infos_lock);
b0defcdb
CM
2887 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2888 cleanup_one_si(e);
d6dfd131 2889 mutex_unlock(&smi_infos_lock);
50c812b2
CM
2890
2891 driver_unregister(&ipmi_driver);
1da177e4
LT
2892}
2893module_exit(cleanup_ipmi_si);
2894
2895MODULE_LICENSE("GPL");
1fdd75bd
CM
2896MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2897MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");
This page took 0.346989 seconds and 5 git commands to generate.