ipmi: update driver to use dev_printk and its constructs
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
305
ae74e823
MW
306static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307static int num_max_busy_us;
308
b361e27b
CM
309static int unload_when_empty = 1;
310
2407d77a 311static int add_smi(struct smi_info *smi);
b0defcdb 312static int try_smi_init(struct smi_info *smi);
b361e27b 313static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 314
e041c683 315static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 316static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 317{
e041c683 318 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
319}
320
1da177e4
LT
321static void deliver_recv_msg(struct smi_info *smi_info,
322 struct ipmi_smi_msg *msg)
323{
324 /* Deliver the message to the upper layer with the lock
c305e3d3 325 released. */
1da177e4
LT
326 spin_unlock(&(smi_info->si_lock));
327 ipmi_smi_msg_received(smi_info->intf, msg);
328 spin_lock(&(smi_info->si_lock));
329}
330
4d7cbac7 331static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
332{
333 struct ipmi_smi_msg *msg = smi_info->curr_msg;
334
4d7cbac7
CM
335 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
336 cCode = IPMI_ERR_UNSPECIFIED;
337 /* else use it as is */
338
1da177e4
LT
339 /* Make it a reponse */
340 msg->rsp[0] = msg->data[0] | 4;
341 msg->rsp[1] = msg->data[1];
4d7cbac7 342 msg->rsp[2] = cCode;
1da177e4
LT
343 msg->rsp_size = 3;
344
345 smi_info->curr_msg = NULL;
346 deliver_recv_msg(smi_info, msg);
347}
348
349static enum si_sm_result start_next_msg(struct smi_info *smi_info)
350{
351 int rv;
352 struct list_head *entry = NULL;
353#ifdef DEBUG_TIMING
354 struct timeval t;
355#endif
356
c305e3d3
CM
357 /*
358 * No need to save flags, we aleady have interrupts off and we
359 * already hold the SMI lock.
360 */
5956dce1
KB
361 if (!smi_info->run_to_completion)
362 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
363
364 /* Pick the high priority queue first. */
b0defcdb 365 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 366 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 367 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
368 entry = smi_info->xmit_msgs.next;
369 }
370
b0defcdb 371 if (!entry) {
1da177e4
LT
372 smi_info->curr_msg = NULL;
373 rv = SI_SM_IDLE;
374 } else {
375 int err;
376
377 list_del(entry);
378 smi_info->curr_msg = list_entry(entry,
379 struct ipmi_smi_msg,
380 link);
381#ifdef DEBUG_TIMING
382 do_gettimeofday(&t);
c305e3d3 383 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 384#endif
e041c683
AS
385 err = atomic_notifier_call_chain(&xaction_notifier_list,
386 0, smi_info);
ea94027b
CM
387 if (err & NOTIFY_STOP_MASK) {
388 rv = SI_SM_CALL_WITHOUT_DELAY;
389 goto out;
390 }
1da177e4
LT
391 err = smi_info->handlers->start_transaction(
392 smi_info->si_sm,
393 smi_info->curr_msg->data,
394 smi_info->curr_msg->data_size);
c305e3d3 395 if (err)
4d7cbac7 396 return_hosed_msg(smi_info, err);
1da177e4
LT
397
398 rv = SI_SM_CALL_WITHOUT_DELAY;
399 }
c305e3d3 400 out:
5956dce1
KB
401 if (!smi_info->run_to_completion)
402 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
403
404 return rv;
405}
406
407static void start_enable_irq(struct smi_info *smi_info)
408{
409 unsigned char msg[2];
410
c305e3d3
CM
411 /*
412 * If we are enabling interrupts, we have to tell the
413 * BMC to use them.
414 */
1da177e4
LT
415 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
416 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
417
418 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
419 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
420}
421
ee6cd5f8
CM
422static void start_disable_irq(struct smi_info *smi_info)
423{
424 unsigned char msg[2];
425
426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
431}
432
1da177e4
LT
433static void start_clear_flags(struct smi_info *smi_info)
434{
435 unsigned char msg[3];
436
437 /* Make sure the watchdog pre-timeout flag is not set at startup. */
438 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
440 msg[2] = WDT_PRE_TIMEOUT_INT;
441
442 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
443 smi_info->si_state = SI_CLEARING_FLAGS;
444}
445
c305e3d3
CM
446/*
447 * When we have a situtaion where we run out of memory and cannot
448 * allocate messages, we just leave them in the BMC and run the system
449 * polled until we can allocate some memory. Once we have some
450 * memory, we will re-enable the interrupt.
451 */
1da177e4
LT
452static inline void disable_si_irq(struct smi_info *smi_info)
453{
b0defcdb 454 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 455 start_disable_irq(smi_info);
1da177e4 456 smi_info->interrupt_disabled = 1;
ea4078ca
MG
457 if (!atomic_read(&smi_info->stop_operation))
458 mod_timer(&smi_info->si_timer,
459 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
460 }
461}
462
463static inline void enable_si_irq(struct smi_info *smi_info)
464{
465 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 466 start_enable_irq(smi_info);
1da177e4
LT
467 smi_info->interrupt_disabled = 0;
468 }
469}
470
471static void handle_flags(struct smi_info *smi_info)
472{
3ae0e0f9 473 retry:
1da177e4
LT
474 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
475 /* Watchdog pre-timeout */
64959e2d 476 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
477
478 start_clear_flags(smi_info);
479 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
480 spin_unlock(&(smi_info->si_lock));
481 ipmi_smi_watchdog_pretimeout(smi_info->intf);
482 spin_lock(&(smi_info->si_lock));
483 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
484 /* Messages available. */
485 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 486 if (!smi_info->curr_msg) {
1da177e4
LT
487 disable_si_irq(smi_info);
488 smi_info->si_state = SI_NORMAL;
489 return;
490 }
491 enable_si_irq(smi_info);
492
493 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
494 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
495 smi_info->curr_msg->data_size = 2;
496
497 smi_info->handlers->start_transaction(
498 smi_info->si_sm,
499 smi_info->curr_msg->data,
500 smi_info->curr_msg->data_size);
501 smi_info->si_state = SI_GETTING_MESSAGES;
502 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
503 /* Events available. */
504 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 505 if (!smi_info->curr_msg) {
1da177e4
LT
506 disable_si_irq(smi_info);
507 smi_info->si_state = SI_NORMAL;
508 return;
509 }
510 enable_si_irq(smi_info);
511
512 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
513 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
514 smi_info->curr_msg->data_size = 2;
515
516 smi_info->handlers->start_transaction(
517 smi_info->si_sm,
518 smi_info->curr_msg->data,
519 smi_info->curr_msg->data_size);
520 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 521 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 522 smi_info->oem_data_avail_handler) {
4064d5ef
CM
523 if (smi_info->oem_data_avail_handler(smi_info))
524 goto retry;
c305e3d3 525 } else
1da177e4 526 smi_info->si_state = SI_NORMAL;
1da177e4
LT
527}
528
529static void handle_transaction_done(struct smi_info *smi_info)
530{
531 struct ipmi_smi_msg *msg;
532#ifdef DEBUG_TIMING
533 struct timeval t;
534
535 do_gettimeofday(&t);
c305e3d3 536 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
537#endif
538 switch (smi_info->si_state) {
539 case SI_NORMAL:
b0defcdb 540 if (!smi_info->curr_msg)
1da177e4
LT
541 break;
542
543 smi_info->curr_msg->rsp_size
544 = smi_info->handlers->get_result(
545 smi_info->si_sm,
546 smi_info->curr_msg->rsp,
547 IPMI_MAX_MSG_LENGTH);
548
c305e3d3
CM
549 /*
550 * Do this here becase deliver_recv_msg() releases the
551 * lock, and a new message can be put in during the
552 * time the lock is released.
553 */
1da177e4
LT
554 msg = smi_info->curr_msg;
555 smi_info->curr_msg = NULL;
556 deliver_recv_msg(smi_info, msg);
557 break;
558
559 case SI_GETTING_FLAGS:
560 {
561 unsigned char msg[4];
562 unsigned int len;
563
564 /* We got the flags from the SMI, now handle them. */
565 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
566 if (msg[2] != 0) {
c305e3d3 567 /* Error fetching flags, just give up for now. */
1da177e4
LT
568 smi_info->si_state = SI_NORMAL;
569 } else if (len < 4) {
c305e3d3
CM
570 /*
571 * Hmm, no flags. That's technically illegal, but
572 * don't use uninitialized data.
573 */
1da177e4
LT
574 smi_info->si_state = SI_NORMAL;
575 } else {
576 smi_info->msg_flags = msg[3];
577 handle_flags(smi_info);
578 }
579 break;
580 }
581
582 case SI_CLEARING_FLAGS:
583 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
584 {
585 unsigned char msg[3];
586
587 /* We cleared the flags. */
588 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
589 if (msg[2] != 0) {
590 /* Error clearing flags */
279fbd0c
MS
591 dev_warn(smi_info->dev,
592 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
593 }
594 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
595 start_enable_irq(smi_info);
596 else
597 smi_info->si_state = SI_NORMAL;
598 break;
599 }
600
601 case SI_GETTING_EVENTS:
602 {
603 smi_info->curr_msg->rsp_size
604 = smi_info->handlers->get_result(
605 smi_info->si_sm,
606 smi_info->curr_msg->rsp,
607 IPMI_MAX_MSG_LENGTH);
608
c305e3d3
CM
609 /*
610 * Do this here becase deliver_recv_msg() releases the
611 * lock, and a new message can be put in during the
612 * time the lock is released.
613 */
1da177e4
LT
614 msg = smi_info->curr_msg;
615 smi_info->curr_msg = NULL;
616 if (msg->rsp[2] != 0) {
617 /* Error getting event, probably done. */
618 msg->done(msg);
619
620 /* Take off the event flag. */
621 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
622 handle_flags(smi_info);
623 } else {
64959e2d 624 smi_inc_stat(smi_info, events);
1da177e4 625
c305e3d3
CM
626 /*
627 * Do this before we deliver the message
628 * because delivering the message releases the
629 * lock and something else can mess with the
630 * state.
631 */
1da177e4
LT
632 handle_flags(smi_info);
633
634 deliver_recv_msg(smi_info, msg);
635 }
636 break;
637 }
638
639 case SI_GETTING_MESSAGES:
640 {
641 smi_info->curr_msg->rsp_size
642 = smi_info->handlers->get_result(
643 smi_info->si_sm,
644 smi_info->curr_msg->rsp,
645 IPMI_MAX_MSG_LENGTH);
646
c305e3d3
CM
647 /*
648 * Do this here becase deliver_recv_msg() releases the
649 * lock, and a new message can be put in during the
650 * time the lock is released.
651 */
1da177e4
LT
652 msg = smi_info->curr_msg;
653 smi_info->curr_msg = NULL;
654 if (msg->rsp[2] != 0) {
655 /* Error getting event, probably done. */
656 msg->done(msg);
657
658 /* Take off the msg flag. */
659 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
660 handle_flags(smi_info);
661 } else {
64959e2d 662 smi_inc_stat(smi_info, incoming_messages);
1da177e4 663
c305e3d3
CM
664 /*
665 * Do this before we deliver the message
666 * because delivering the message releases the
667 * lock and something else can mess with the
668 * state.
669 */
1da177e4
LT
670 handle_flags(smi_info);
671
672 deliver_recv_msg(smi_info, msg);
673 }
674 break;
675 }
676
677 case SI_ENABLE_INTERRUPTS1:
678 {
679 unsigned char msg[4];
680
681 /* We got the flags from the SMI, now handle them. */
682 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
683 if (msg[2] != 0) {
279fbd0c
MS
684 dev_warn(smi_info->dev, "Could not enable interrupts"
685 ", failed get, using polled mode.\n");
1da177e4
LT
686 smi_info->si_state = SI_NORMAL;
687 } else {
688 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
689 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
690 msg[2] = (msg[3] |
691 IPMI_BMC_RCV_MSG_INTR |
692 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
693 smi_info->handlers->start_transaction(
694 smi_info->si_sm, msg, 3);
695 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
696 }
697 break;
698 }
699
700 case SI_ENABLE_INTERRUPTS2:
701 {
702 unsigned char msg[4];
703
704 /* We got the flags from the SMI, now handle them. */
705 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
706 if (msg[2] != 0)
707 dev_warn(smi_info->dev, "Could not enable interrupts"
708 ", failed set, using polled mode.\n");
709 else
ea4078ca 710 smi_info->interrupt_disabled = 0;
1da177e4
LT
711 smi_info->si_state = SI_NORMAL;
712 break;
713 }
ee6cd5f8
CM
714
715 case SI_DISABLE_INTERRUPTS1:
716 {
717 unsigned char msg[4];
718
719 /* We got the flags from the SMI, now handle them. */
720 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
721 if (msg[2] != 0) {
279fbd0c
MS
722 dev_warn(smi_info->dev, "Could not disable interrupts"
723 ", failed get.\n");
ee6cd5f8
CM
724 smi_info->si_state = SI_NORMAL;
725 } else {
726 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
727 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
728 msg[2] = (msg[3] &
729 ~(IPMI_BMC_RCV_MSG_INTR |
730 IPMI_BMC_EVT_MSG_INTR));
731 smi_info->handlers->start_transaction(
732 smi_info->si_sm, msg, 3);
733 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
734 }
735 break;
736 }
737
738 case SI_DISABLE_INTERRUPTS2:
739 {
740 unsigned char msg[4];
741
742 /* We got the flags from the SMI, now handle them. */
743 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
744 if (msg[2] != 0) {
279fbd0c
MS
745 dev_warn(smi_info->dev, "Could not disable interrupts"
746 ", failed set.\n");
ee6cd5f8
CM
747 }
748 smi_info->si_state = SI_NORMAL;
749 break;
750 }
1da177e4
LT
751 }
752}
753
c305e3d3
CM
754/*
755 * Called on timeouts and events. Timeouts should pass the elapsed
756 * time, interrupts should pass in zero. Must be called with
757 * si_lock held and interrupts disabled.
758 */
1da177e4
LT
759static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
760 int time)
761{
762 enum si_sm_result si_sm_result;
763
764 restart:
c305e3d3
CM
765 /*
766 * There used to be a loop here that waited a little while
767 * (around 25us) before giving up. That turned out to be
768 * pointless, the minimum delays I was seeing were in the 300us
769 * range, which is far too long to wait in an interrupt. So
770 * we just run until the state machine tells us something
771 * happened or it needs a delay.
772 */
1da177e4
LT
773 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
774 time = 0;
775 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 776 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 777
c305e3d3 778 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 779 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
780
781 handle_transaction_done(smi_info);
782 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 783 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 784 smi_inc_stat(smi_info, hosed_count);
1da177e4 785
c305e3d3
CM
786 /*
787 * Do the before return_hosed_msg, because that
788 * releases the lock.
789 */
1da177e4
LT
790 smi_info->si_state = SI_NORMAL;
791 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
792 /*
793 * If we were handling a user message, format
794 * a response to send to the upper layer to
795 * tell it about the error.
796 */
4d7cbac7 797 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
798 }
799 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
800 }
801
4ea18425
CM
802 /*
803 * We prefer handling attn over new messages. But don't do
804 * this if there is not yet an upper layer to handle anything.
805 */
c305e3d3 806 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
807 unsigned char msg[2];
808
64959e2d 809 smi_inc_stat(smi_info, attentions);
1da177e4 810
c305e3d3
CM
811 /*
812 * Got a attn, send down a get message flags to see
813 * what's causing it. It would be better to handle
814 * this in the upper layer, but due to the way
815 * interrupts work with the SMI, that's not really
816 * possible.
817 */
1da177e4
LT
818 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
819 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
820
821 smi_info->handlers->start_transaction(
822 smi_info->si_sm, msg, 2);
823 smi_info->si_state = SI_GETTING_FLAGS;
824 goto restart;
825 }
826
827 /* If we are currently idle, try to start the next message. */
828 if (si_sm_result == SI_SM_IDLE) {
64959e2d 829 smi_inc_stat(smi_info, idles);
1da177e4
LT
830
831 si_sm_result = start_next_msg(smi_info);
832 if (si_sm_result != SI_SM_IDLE)
833 goto restart;
c305e3d3 834 }
1da177e4
LT
835
836 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
837 && (atomic_read(&smi_info->req_events))) {
838 /*
839 * We are idle and the upper layer requested that I fetch
840 * events, so do so.
841 */
55162fb1 842 atomic_set(&smi_info->req_events, 0);
1da177e4 843
55162fb1
CM
844 smi_info->curr_msg = ipmi_alloc_smi_msg();
845 if (!smi_info->curr_msg)
846 goto out;
1da177e4 847
55162fb1
CM
848 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
849 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
850 smi_info->curr_msg->data_size = 2;
1da177e4
LT
851
852 smi_info->handlers->start_transaction(
55162fb1
CM
853 smi_info->si_sm,
854 smi_info->curr_msg->data,
855 smi_info->curr_msg->data_size);
856 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
857 goto restart;
858 }
55162fb1 859 out:
1da177e4
LT
860 return si_sm_result;
861}
862
863static void sender(void *send_info,
864 struct ipmi_smi_msg *msg,
865 int priority)
866{
867 struct smi_info *smi_info = send_info;
868 enum si_sm_result result;
869 unsigned long flags;
870#ifdef DEBUG_TIMING
871 struct timeval t;
872#endif
873
b361e27b
CM
874 if (atomic_read(&smi_info->stop_operation)) {
875 msg->rsp[0] = msg->data[0] | 4;
876 msg->rsp[1] = msg->data[1];
877 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
878 msg->rsp_size = 3;
879 deliver_recv_msg(smi_info, msg);
880 return;
881 }
882
1da177e4
LT
883#ifdef DEBUG_TIMING
884 do_gettimeofday(&t);
885 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
886#endif
887
ea4078ca
MG
888 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
889
3326f4f2
MG
890 if (smi_info->thread)
891 wake_up_process(smi_info->thread);
892
1da177e4 893 if (smi_info->run_to_completion) {
bda4c30a
CM
894 /*
895 * If we are running to completion, then throw it in
896 * the list and run transactions until everything is
897 * clear. Priority doesn't matter here.
898 */
899
900 /*
901 * Run to completion means we are single-threaded, no
902 * need for locks.
903 */
1da177e4
LT
904 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
905
1da177e4
LT
906 result = smi_event_handler(smi_info, 0);
907 while (result != SI_SM_IDLE) {
908 udelay(SI_SHORT_TIMEOUT_USEC);
909 result = smi_event_handler(smi_info,
910 SI_SHORT_TIMEOUT_USEC);
911 }
1da177e4 912 return;
1da177e4 913 }
1da177e4 914
bda4c30a
CM
915 spin_lock_irqsave(&smi_info->msg_lock, flags);
916 if (priority > 0)
917 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
918 else
919 list_add_tail(&msg->link, &smi_info->xmit_msgs);
920 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
921
922 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 923 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 924 start_next_msg(smi_info);
bda4c30a 925 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
926}
927
928static void set_run_to_completion(void *send_info, int i_run_to_completion)
929{
930 struct smi_info *smi_info = send_info;
931 enum si_sm_result result;
1da177e4
LT
932
933 smi_info->run_to_completion = i_run_to_completion;
934 if (i_run_to_completion) {
935 result = smi_event_handler(smi_info, 0);
936 while (result != SI_SM_IDLE) {
937 udelay(SI_SHORT_TIMEOUT_USEC);
938 result = smi_event_handler(smi_info,
939 SI_SHORT_TIMEOUT_USEC);
940 }
941 }
1da177e4
LT
942}
943
ae74e823
MW
944/*
945 * Use -1 in the nsec value of the busy waiting timespec to tell that
946 * we are spinning in kipmid looking for something and not delaying
947 * between checks
948 */
949static inline void ipmi_si_set_not_busy(struct timespec *ts)
950{
951 ts->tv_nsec = -1;
952}
953static inline int ipmi_si_is_busy(struct timespec *ts)
954{
955 return ts->tv_nsec != -1;
956}
957
958static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
959 const struct smi_info *smi_info,
960 struct timespec *busy_until)
961{
962 unsigned int max_busy_us = 0;
963
964 if (smi_info->intf_num < num_max_busy_us)
965 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
966 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
967 ipmi_si_set_not_busy(busy_until);
968 else if (!ipmi_si_is_busy(busy_until)) {
969 getnstimeofday(busy_until);
970 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
971 } else {
972 struct timespec now;
973 getnstimeofday(&now);
974 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
975 ipmi_si_set_not_busy(busy_until);
976 return 0;
977 }
978 }
979 return 1;
980}
981
982
983/*
984 * A busy-waiting loop for speeding up IPMI operation.
985 *
986 * Lousy hardware makes this hard. This is only enabled for systems
987 * that are not BT and do not have interrupts. It starts spinning
988 * when an operation is complete or until max_busy tells it to stop
989 * (if that is enabled). See the paragraph on kimid_max_busy_us in
990 * Documentation/IPMI.txt for details.
991 */
a9a2c44f
CM
992static int ipmi_thread(void *data)
993{
994 struct smi_info *smi_info = data;
e9a705a0 995 unsigned long flags;
a9a2c44f 996 enum si_sm_result smi_result;
ae74e823 997 struct timespec busy_until;
a9a2c44f 998
ae74e823 999 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1000 set_user_nice(current, 19);
e9a705a0 1001 while (!kthread_should_stop()) {
ae74e823
MW
1002 int busy_wait;
1003
a9a2c44f 1004 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1005 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1006 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1007 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1008 &busy_until);
c305e3d3
CM
1009 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1010 ; /* do nothing */
ae74e823 1011 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1012 schedule();
3326f4f2
MG
1013 else if (smi_result == SI_SM_IDLE)
1014 schedule_timeout_interruptible(100);
e9a705a0 1015 else
ae74e823 1016 schedule_timeout_interruptible(0);
a9a2c44f 1017 }
a9a2c44f
CM
1018 return 0;
1019}
1020
1021
1da177e4
LT
1022static void poll(void *send_info)
1023{
1024 struct smi_info *smi_info = send_info;
fcfa4724 1025 unsigned long flags;
1da177e4 1026
15c62e10
CM
1027 /*
1028 * Make sure there is some delay in the poll loop so we can
1029 * drive time forward and timeout things.
1030 */
1031 udelay(10);
fcfa4724 1032 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1033 smi_event_handler(smi_info, 10);
fcfa4724 1034 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1035}
1036
1037static void request_events(void *send_info)
1038{
1039 struct smi_info *smi_info = send_info;
1040
40112ae7
CM
1041 if (atomic_read(&smi_info->stop_operation) ||
1042 !smi_info->has_event_buffer)
b361e27b
CM
1043 return;
1044
1da177e4
LT
1045 atomic_set(&smi_info->req_events, 1);
1046}
1047
0c8204b3 1048static int initialized;
1da177e4 1049
1da177e4
LT
1050static void smi_timeout(unsigned long data)
1051{
1052 struct smi_info *smi_info = (struct smi_info *) data;
1053 enum si_sm_result smi_result;
1054 unsigned long flags;
1055 unsigned long jiffies_now;
c4edff1c 1056 long time_diff;
3326f4f2 1057 long timeout;
1da177e4
LT
1058#ifdef DEBUG_TIMING
1059 struct timeval t;
1060#endif
1061
1da177e4
LT
1062 spin_lock_irqsave(&(smi_info->si_lock), flags);
1063#ifdef DEBUG_TIMING
1064 do_gettimeofday(&t);
c305e3d3 1065 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1066#endif
1067 jiffies_now = jiffies;
c4edff1c 1068 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1069 * SI_USEC_PER_JIFFY);
1070 smi_result = smi_event_handler(smi_info, time_diff);
1071
1072 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1073
1074 smi_info->last_timeout_jiffies = jiffies_now;
1075
b0defcdb 1076 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1077 /* Running with interrupts, only do long timeouts. */
3326f4f2 1078 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1079 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1080 goto do_mod_timer;
1da177e4
LT
1081 }
1082
c305e3d3
CM
1083 /*
1084 * If the state machine asks for a short delay, then shorten
1085 * the timer timeout.
1086 */
1da177e4 1087 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1088 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1089 timeout = jiffies + 1;
1da177e4 1090 } else {
64959e2d 1091 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1092 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1093 }
1094
3326f4f2
MG
1095 do_mod_timer:
1096 if (smi_result != SI_SM_IDLE)
1097 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1098}
1099
7d12e780 1100static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1101{
1102 struct smi_info *smi_info = data;
1103 unsigned long flags;
1104#ifdef DEBUG_TIMING
1105 struct timeval t;
1106#endif
1107
1108 spin_lock_irqsave(&(smi_info->si_lock), flags);
1109
64959e2d 1110 smi_inc_stat(smi_info, interrupts);
1da177e4 1111
1da177e4
LT
1112#ifdef DEBUG_TIMING
1113 do_gettimeofday(&t);
c305e3d3 1114 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1115#endif
1116 smi_event_handler(smi_info, 0);
1da177e4
LT
1117 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1118 return IRQ_HANDLED;
1119}
1120
7d12e780 1121static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1122{
1123 struct smi_info *smi_info = data;
1124 /* We need to clear the IRQ flag for the BT interface. */
1125 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1126 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1127 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1128 return si_irq_handler(irq, data);
9dbf68f9
CM
1129}
1130
453823ba
CM
1131static int smi_start_processing(void *send_info,
1132 ipmi_smi_t intf)
1133{
1134 struct smi_info *new_smi = send_info;
a51f4a81 1135 int enable = 0;
453823ba
CM
1136
1137 new_smi->intf = intf;
1138
c45adc39
CM
1139 /* Try to claim any interrupts. */
1140 if (new_smi->irq_setup)
1141 new_smi->irq_setup(new_smi);
1142
453823ba
CM
1143 /* Set up the timer that drives the interface. */
1144 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1145 new_smi->last_timeout_jiffies = jiffies;
1146 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1147
a51f4a81
CM
1148 /*
1149 * Check if the user forcefully enabled the daemon.
1150 */
1151 if (new_smi->intf_num < num_force_kipmid)
1152 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1153 /*
1154 * The BT interface is efficient enough to not need a thread,
1155 * and there is no need for a thread if we have interrupts.
1156 */
c305e3d3 1157 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1158 enable = 1;
1159
1160 if (enable) {
453823ba
CM
1161 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1162 "kipmi%d", new_smi->intf_num);
1163 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1164 dev_notice(new_smi->dev, "Could not start"
1165 " kernel thread due to error %ld, only using"
1166 " timers to drive the interface\n",
1167 PTR_ERR(new_smi->thread));
453823ba
CM
1168 new_smi->thread = NULL;
1169 }
1170 }
1171
1172 return 0;
1173}
9dbf68f9 1174
b9675136
CM
1175static void set_maintenance_mode(void *send_info, int enable)
1176{
1177 struct smi_info *smi_info = send_info;
1178
1179 if (!enable)
1180 atomic_set(&smi_info->req_events, 0);
1181}
1182
c305e3d3 1183static struct ipmi_smi_handlers handlers = {
1da177e4 1184 .owner = THIS_MODULE,
453823ba 1185 .start_processing = smi_start_processing,
1da177e4
LT
1186 .sender = sender,
1187 .request_events = request_events,
b9675136 1188 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1189 .set_run_to_completion = set_run_to_completion,
1190 .poll = poll,
1191};
1192
c305e3d3
CM
1193/*
1194 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1195 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1196 */
1da177e4 1197
b0defcdb 1198static LIST_HEAD(smi_infos);
d6dfd131 1199static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1200static int smi_num; /* Used to sequence the SMIs */
1da177e4 1201
1da177e4 1202#define DEFAULT_REGSPACING 1
dba9b4f6 1203#define DEFAULT_REGSIZE 1
1da177e4
LT
1204
1205static int si_trydefaults = 1;
1206static char *si_type[SI_MAX_PARMS];
1207#define MAX_SI_TYPE_STR 30
1208static char si_type_str[MAX_SI_TYPE_STR];
1209static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1210static unsigned int num_addrs;
1da177e4 1211static unsigned int ports[SI_MAX_PARMS];
64a6f950 1212static unsigned int num_ports;
1da177e4 1213static int irqs[SI_MAX_PARMS];
64a6f950 1214static unsigned int num_irqs;
1da177e4 1215static int regspacings[SI_MAX_PARMS];
64a6f950 1216static unsigned int num_regspacings;
1da177e4 1217static int regsizes[SI_MAX_PARMS];
64a6f950 1218static unsigned int num_regsizes;
1da177e4 1219static int regshifts[SI_MAX_PARMS];
64a6f950 1220static unsigned int num_regshifts;
2f95d513 1221static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1222static unsigned int num_slave_addrs;
1da177e4 1223
b361e27b
CM
1224#define IPMI_IO_ADDR_SPACE 0
1225#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1226static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1227
1228static int hotmod_handler(const char *val, struct kernel_param *kp);
1229
1230module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1231MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1232 " Documentation/IPMI.txt in the kernel sources for the"
1233 " gory details.");
1da177e4
LT
1234
1235module_param_named(trydefaults, si_trydefaults, bool, 0);
1236MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1237 " default scan of the KCS and SMIC interface at the standard"
1238 " address");
1239module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1240MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1241 " interface separated by commas. The types are 'kcs',"
1242 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1243 " the first interface to kcs and the second to bt");
64a6f950 1244module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1245MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1246 " addresses separated by commas. Only use if an interface"
1247 " is in memory. Otherwise, set it to zero or leave"
1248 " it blank.");
64a6f950 1249module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1250MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1251 " addresses separated by commas. Only use if an interface"
1252 " is a port. Otherwise, set it to zero or leave"
1253 " it blank.");
1254module_param_array(irqs, int, &num_irqs, 0);
1255MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1256 " addresses separated by commas. Only use if an interface"
1257 " has an interrupt. Otherwise, set it to zero or leave"
1258 " it blank.");
1259module_param_array(regspacings, int, &num_regspacings, 0);
1260MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1261 " and each successive register used by the interface. For"
1262 " instance, if the start address is 0xca2 and the spacing"
1263 " is 2, then the second address is at 0xca4. Defaults"
1264 " to 1.");
1265module_param_array(regsizes, int, &num_regsizes, 0);
1266MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1267 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1268 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1269 " the 8-bit IPMI register has to be read from a larger"
1270 " register.");
1271module_param_array(regshifts, int, &num_regshifts, 0);
1272MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1273 " IPMI register, in bits. For instance, if the data"
1274 " is read from a 32-bit word and the IPMI data is in"
1275 " bit 8-15, then the shift would be 8");
1276module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1277MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1278 " the controller. Normally this is 0x20, but can be"
1279 " overridden by this parm. This is an array indexed"
1280 " by interface number.");
a51f4a81
CM
1281module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1282MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1283 " disabled(0). Normally the IPMI driver auto-detects"
1284 " this, but the value may be overridden by this parm.");
b361e27b
CM
1285module_param(unload_when_empty, int, 0);
1286MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1287 " specified or found, default is 1. Setting to 0"
1288 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1289module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1290MODULE_PARM_DESC(kipmid_max_busy_us,
1291 "Max time (in microseconds) to busy-wait for IPMI data before"
1292 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1293 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1294
1295
b0defcdb 1296static void std_irq_cleanup(struct smi_info *info)
1da177e4 1297{
b0defcdb
CM
1298 if (info->si_type == SI_BT)
1299 /* Disable the interrupt in the BT interface. */
1300 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1301 free_irq(info->irq, info);
1da177e4 1302}
1da177e4
LT
1303
1304static int std_irq_setup(struct smi_info *info)
1305{
1306 int rv;
1307
b0defcdb 1308 if (!info->irq)
1da177e4
LT
1309 return 0;
1310
9dbf68f9
CM
1311 if (info->si_type == SI_BT) {
1312 rv = request_irq(info->irq,
1313 si_bt_irq_handler,
ee6cd5f8 1314 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1315 DEVICE_NAME,
1316 info);
b0defcdb 1317 if (!rv)
9dbf68f9
CM
1318 /* Enable the interrupt in the BT interface. */
1319 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1320 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1321 } else
1322 rv = request_irq(info->irq,
1323 si_irq_handler,
ee6cd5f8 1324 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1325 DEVICE_NAME,
1326 info);
1da177e4 1327 if (rv) {
279fbd0c
MS
1328 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1329 " running polled\n",
1330 DEVICE_NAME, info->irq);
1da177e4
LT
1331 info->irq = 0;
1332 } else {
b0defcdb 1333 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1334 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1335 }
1336
1337 return rv;
1338}
1339
1da177e4
LT
1340static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1341{
b0defcdb 1342 unsigned int addr = io->addr_data;
1da177e4 1343
b0defcdb 1344 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1345}
1346
1347static void port_outb(struct si_sm_io *io, unsigned int offset,
1348 unsigned char b)
1349{
b0defcdb 1350 unsigned int addr = io->addr_data;
1da177e4 1351
b0defcdb 1352 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1353}
1354
1355static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1356{
b0defcdb 1357 unsigned int addr = io->addr_data;
1da177e4 1358
b0defcdb 1359 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1360}
1361
1362static void port_outw(struct si_sm_io *io, unsigned int offset,
1363 unsigned char b)
1364{
b0defcdb 1365 unsigned int addr = io->addr_data;
1da177e4 1366
b0defcdb 1367 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1368}
1369
1370static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1371{
b0defcdb 1372 unsigned int addr = io->addr_data;
1da177e4 1373
b0defcdb 1374 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1375}
1376
1377static void port_outl(struct si_sm_io *io, unsigned int offset,
1378 unsigned char b)
1379{
b0defcdb 1380 unsigned int addr = io->addr_data;
1da177e4 1381
b0defcdb 1382 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1383}
1384
1385static void port_cleanup(struct smi_info *info)
1386{
b0defcdb 1387 unsigned int addr = info->io.addr_data;
d61a3ead 1388 int idx;
1da177e4 1389
b0defcdb 1390 if (addr) {
c305e3d3 1391 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1392 release_region(addr + idx * info->io.regspacing,
1393 info->io.regsize);
1da177e4 1394 }
1da177e4
LT
1395}
1396
1397static int port_setup(struct smi_info *info)
1398{
b0defcdb 1399 unsigned int addr = info->io.addr_data;
d61a3ead 1400 int idx;
1da177e4 1401
b0defcdb 1402 if (!addr)
1da177e4
LT
1403 return -ENODEV;
1404
1405 info->io_cleanup = port_cleanup;
1406
c305e3d3
CM
1407 /*
1408 * Figure out the actual inb/inw/inl/etc routine to use based
1409 * upon the register size.
1410 */
1da177e4
LT
1411 switch (info->io.regsize) {
1412 case 1:
1413 info->io.inputb = port_inb;
1414 info->io.outputb = port_outb;
1415 break;
1416 case 2:
1417 info->io.inputb = port_inw;
1418 info->io.outputb = port_outw;
1419 break;
1420 case 4:
1421 info->io.inputb = port_inl;
1422 info->io.outputb = port_outl;
1423 break;
1424 default:
279fbd0c
MS
1425 dev_warn(info->dev, "Invalid register size: %d\n",
1426 info->io.regsize);
1da177e4
LT
1427 return -EINVAL;
1428 }
1429
c305e3d3
CM
1430 /*
1431 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1432 * tables. This causes problems when trying to register the
1433 * entire I/O region. Therefore we must register each I/O
1434 * port separately.
1435 */
c305e3d3 1436 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1437 if (request_region(addr + idx * info->io.regspacing,
1438 info->io.regsize, DEVICE_NAME) == NULL) {
1439 /* Undo allocations */
1440 while (idx--) {
1441 release_region(addr + idx * info->io.regspacing,
1442 info->io.regsize);
1443 }
1444 return -EIO;
1445 }
1446 }
1da177e4
LT
1447 return 0;
1448}
1449
546cfdf4 1450static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1451{
1452 return readb((io->addr)+(offset * io->regspacing));
1453}
1454
546cfdf4 1455static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1456 unsigned char b)
1457{
1458 writeb(b, (io->addr)+(offset * io->regspacing));
1459}
1460
546cfdf4 1461static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1462{
1463 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1464 & 0xff;
1da177e4
LT
1465}
1466
546cfdf4 1467static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1468 unsigned char b)
1469{
1470 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1471}
1472
546cfdf4 1473static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1474{
1475 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1476 & 0xff;
1da177e4
LT
1477}
1478
546cfdf4 1479static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1480 unsigned char b)
1481{
1482 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1483}
1484
1485#ifdef readq
1486static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1487{
1488 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1489 & 0xff;
1da177e4
LT
1490}
1491
1492static void mem_outq(struct si_sm_io *io, unsigned int offset,
1493 unsigned char b)
1494{
1495 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1496}
1497#endif
1498
1499static void mem_cleanup(struct smi_info *info)
1500{
b0defcdb 1501 unsigned long addr = info->io.addr_data;
1da177e4
LT
1502 int mapsize;
1503
1504 if (info->io.addr) {
1505 iounmap(info->io.addr);
1506
1507 mapsize = ((info->io_size * info->io.regspacing)
1508 - (info->io.regspacing - info->io.regsize));
1509
b0defcdb 1510 release_mem_region(addr, mapsize);
1da177e4 1511 }
1da177e4
LT
1512}
1513
1514static int mem_setup(struct smi_info *info)
1515{
b0defcdb 1516 unsigned long addr = info->io.addr_data;
1da177e4
LT
1517 int mapsize;
1518
b0defcdb 1519 if (!addr)
1da177e4
LT
1520 return -ENODEV;
1521
1522 info->io_cleanup = mem_cleanup;
1523
c305e3d3
CM
1524 /*
1525 * Figure out the actual readb/readw/readl/etc routine to use based
1526 * upon the register size.
1527 */
1da177e4
LT
1528 switch (info->io.regsize) {
1529 case 1:
546cfdf4
AD
1530 info->io.inputb = intf_mem_inb;
1531 info->io.outputb = intf_mem_outb;
1da177e4
LT
1532 break;
1533 case 2:
546cfdf4
AD
1534 info->io.inputb = intf_mem_inw;
1535 info->io.outputb = intf_mem_outw;
1da177e4
LT
1536 break;
1537 case 4:
546cfdf4
AD
1538 info->io.inputb = intf_mem_inl;
1539 info->io.outputb = intf_mem_outl;
1da177e4
LT
1540 break;
1541#ifdef readq
1542 case 8:
1543 info->io.inputb = mem_inq;
1544 info->io.outputb = mem_outq;
1545 break;
1546#endif
1547 default:
279fbd0c
MS
1548 dev_warn(info->dev, "Invalid register size: %d\n",
1549 info->io.regsize);
1da177e4
LT
1550 return -EINVAL;
1551 }
1552
c305e3d3
CM
1553 /*
1554 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1555 * unusual looking calculation, but it avoids claiming any
1556 * more memory than it has to. It will claim everything
1557 * between the first address to the end of the last full
c305e3d3
CM
1558 * register.
1559 */
1da177e4
LT
1560 mapsize = ((info->io_size * info->io.regspacing)
1561 - (info->io.regspacing - info->io.regsize));
1562
b0defcdb 1563 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1564 return -EIO;
1565
b0defcdb 1566 info->io.addr = ioremap(addr, mapsize);
1da177e4 1567 if (info->io.addr == NULL) {
b0defcdb 1568 release_mem_region(addr, mapsize);
1da177e4
LT
1569 return -EIO;
1570 }
1571 return 0;
1572}
1573
b361e27b
CM
1574/*
1575 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1576 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1577 * Options are:
1578 * rsp=<regspacing>
1579 * rsi=<regsize>
1580 * rsh=<regshift>
1581 * irq=<irq>
1582 * ipmb=<ipmb addr>
1583 */
1584enum hotmod_op { HM_ADD, HM_REMOVE };
1585struct hotmod_vals {
1586 char *name;
1587 int val;
1588};
1589static struct hotmod_vals hotmod_ops[] = {
1590 { "add", HM_ADD },
1591 { "remove", HM_REMOVE },
1592 { NULL }
1593};
1594static struct hotmod_vals hotmod_si[] = {
1595 { "kcs", SI_KCS },
1596 { "smic", SI_SMIC },
1597 { "bt", SI_BT },
1598 { NULL }
1599};
1600static struct hotmod_vals hotmod_as[] = {
1601 { "mem", IPMI_MEM_ADDR_SPACE },
1602 { "i/o", IPMI_IO_ADDR_SPACE },
1603 { NULL }
1604};
1d5636cc 1605
b361e27b
CM
1606static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1607{
1608 char *s;
1609 int i;
1610
1611 s = strchr(*curr, ',');
1612 if (!s) {
1613 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1614 return -EINVAL;
1615 }
1616 *s = '\0';
1617 s++;
1618 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1619 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1620 *val = v[i].val;
1621 *curr = s;
1622 return 0;
1623 }
1624 }
1625
1626 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1627 return -EINVAL;
1628}
1629
1d5636cc
CM
1630static int check_hotmod_int_op(const char *curr, const char *option,
1631 const char *name, int *val)
1632{
1633 char *n;
1634
1635 if (strcmp(curr, name) == 0) {
1636 if (!option) {
1637 printk(KERN_WARNING PFX
1638 "No option given for '%s'\n",
1639 curr);
1640 return -EINVAL;
1641 }
1642 *val = simple_strtoul(option, &n, 0);
1643 if ((*n != '\0') || (*option == '\0')) {
1644 printk(KERN_WARNING PFX
1645 "Bad option given for '%s'\n",
1646 curr);
1647 return -EINVAL;
1648 }
1649 return 1;
1650 }
1651 return 0;
1652}
1653
b361e27b
CM
1654static int hotmod_handler(const char *val, struct kernel_param *kp)
1655{
1656 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1657 int rv;
b361e27b
CM
1658 char *next, *curr, *s, *n, *o;
1659 enum hotmod_op op;
1660 enum si_type si_type;
1661 int addr_space;
1662 unsigned long addr;
1663 int regspacing;
1664 int regsize;
1665 int regshift;
1666 int irq;
1667 int ipmb;
1668 int ival;
1d5636cc 1669 int len;
b361e27b
CM
1670 struct smi_info *info;
1671
1672 if (!str)
1673 return -ENOMEM;
1674
1675 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1676 len = strlen(str);
1677 ival = len - 1;
b361e27b
CM
1678 while ((ival >= 0) && isspace(str[ival])) {
1679 str[ival] = '\0';
1680 ival--;
1681 }
1682
1683 for (curr = str; curr; curr = next) {
1684 regspacing = 1;
1685 regsize = 1;
1686 regshift = 0;
1687 irq = 0;
2f95d513 1688 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1689
1690 next = strchr(curr, ':');
1691 if (next) {
1692 *next = '\0';
1693 next++;
1694 }
1695
1696 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1697 if (rv)
1698 break;
1699 op = ival;
1700
1701 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1702 if (rv)
1703 break;
1704 si_type = ival;
1705
1706 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1707 if (rv)
1708 break;
1709
1710 s = strchr(curr, ',');
1711 if (s) {
1712 *s = '\0';
1713 s++;
1714 }
1715 addr = simple_strtoul(curr, &n, 0);
1716 if ((*n != '\0') || (*curr == '\0')) {
1717 printk(KERN_WARNING PFX "Invalid hotmod address"
1718 " '%s'\n", curr);
1719 break;
1720 }
1721
1722 while (s) {
1723 curr = s;
1724 s = strchr(curr, ',');
1725 if (s) {
1726 *s = '\0';
1727 s++;
1728 }
1729 o = strchr(curr, '=');
1730 if (o) {
1731 *o = '\0';
1732 o++;
1733 }
1d5636cc
CM
1734 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1735 if (rv < 0)
b361e27b 1736 goto out;
1d5636cc
CM
1737 else if (rv)
1738 continue;
1739 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1740 if (rv < 0)
1741 goto out;
1742 else if (rv)
1743 continue;
1744 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1745 if (rv < 0)
1746 goto out;
1747 else if (rv)
1748 continue;
1749 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1750 if (rv < 0)
1751 goto out;
1752 else if (rv)
1753 continue;
1754 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1755 if (rv < 0)
1756 goto out;
1757 else if (rv)
1758 continue;
1759
1760 rv = -EINVAL;
1761 printk(KERN_WARNING PFX
1762 "Invalid hotmod option '%s'\n",
1763 curr);
1764 goto out;
b361e27b
CM
1765 }
1766
1767 if (op == HM_ADD) {
1768 info = kzalloc(sizeof(*info), GFP_KERNEL);
1769 if (!info) {
1770 rv = -ENOMEM;
1771 goto out;
1772 }
1773
5fedc4a2 1774 info->addr_source = SI_HOTMOD;
b361e27b
CM
1775 info->si_type = si_type;
1776 info->io.addr_data = addr;
1777 info->io.addr_type = addr_space;
1778 if (addr_space == IPMI_MEM_ADDR_SPACE)
1779 info->io_setup = mem_setup;
1780 else
1781 info->io_setup = port_setup;
1782
1783 info->io.addr = NULL;
1784 info->io.regspacing = regspacing;
1785 if (!info->io.regspacing)
1786 info->io.regspacing = DEFAULT_REGSPACING;
1787 info->io.regsize = regsize;
1788 if (!info->io.regsize)
1789 info->io.regsize = DEFAULT_REGSPACING;
1790 info->io.regshift = regshift;
1791 info->irq = irq;
1792 if (info->irq)
1793 info->irq_setup = std_irq_setup;
1794 info->slave_addr = ipmb;
1795
2407d77a
MG
1796 if (!add_smi(info))
1797 if (try_smi_init(info))
1798 cleanup_one_si(info);
b361e27b
CM
1799 } else {
1800 /* remove */
1801 struct smi_info *e, *tmp_e;
1802
1803 mutex_lock(&smi_infos_lock);
1804 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1805 if (e->io.addr_type != addr_space)
1806 continue;
1807 if (e->si_type != si_type)
1808 continue;
1809 if (e->io.addr_data == addr)
1810 cleanup_one_si(e);
1811 }
1812 mutex_unlock(&smi_infos_lock);
1813 }
1814 }
1d5636cc 1815 rv = len;
b361e27b
CM
1816 out:
1817 kfree(str);
1818 return rv;
1819}
b0defcdb
CM
1820
1821static __devinit void hardcode_find_bmc(void)
1da177e4 1822{
b0defcdb 1823 int i;
1da177e4
LT
1824 struct smi_info *info;
1825
b0defcdb
CM
1826 for (i = 0; i < SI_MAX_PARMS; i++) {
1827 if (!ports[i] && !addrs[i])
1828 continue;
1da177e4 1829
b0defcdb
CM
1830 info = kzalloc(sizeof(*info), GFP_KERNEL);
1831 if (!info)
1832 return;
1da177e4 1833
5fedc4a2 1834 info->addr_source = SI_HARDCODED;
279fbd0c 1835 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1836
1d5636cc 1837 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1838 info->si_type = SI_KCS;
1d5636cc 1839 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1840 info->si_type = SI_SMIC;
1d5636cc 1841 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1842 info->si_type = SI_BT;
1843 } else {
279fbd0c 1844 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1845 "for interface %d, was invalid: %s\n",
1846 i, si_type[i]);
1847 kfree(info);
1848 continue;
1849 }
1da177e4 1850
b0defcdb
CM
1851 if (ports[i]) {
1852 /* An I/O port */
1853 info->io_setup = port_setup;
1854 info->io.addr_data = ports[i];
1855 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1856 } else if (addrs[i]) {
1857 /* A memory port */
1858 info->io_setup = mem_setup;
1859 info->io.addr_data = addrs[i];
1860 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1861 } else {
279fbd0c
MS
1862 printk(KERN_WARNING PFX "Interface type specified "
1863 "for interface %d, but port and address were "
1864 "not set or set to zero.\n", i);
b0defcdb
CM
1865 kfree(info);
1866 continue;
1867 }
1da177e4 1868
b0defcdb
CM
1869 info->io.addr = NULL;
1870 info->io.regspacing = regspacings[i];
1871 if (!info->io.regspacing)
1872 info->io.regspacing = DEFAULT_REGSPACING;
1873 info->io.regsize = regsizes[i];
1874 if (!info->io.regsize)
1875 info->io.regsize = DEFAULT_REGSPACING;
1876 info->io.regshift = regshifts[i];
1877 info->irq = irqs[i];
1878 if (info->irq)
1879 info->irq_setup = std_irq_setup;
2f95d513 1880 info->slave_addr = slave_addrs[i];
1da177e4 1881
2407d77a
MG
1882 if (!add_smi(info))
1883 if (try_smi_init(info))
1884 cleanup_one_si(info);
b0defcdb
CM
1885 }
1886}
1da177e4 1887
8466361a 1888#ifdef CONFIG_ACPI
1da177e4
LT
1889
1890#include <linux/acpi.h>
1891
c305e3d3
CM
1892/*
1893 * Once we get an ACPI failure, we don't try any more, because we go
1894 * through the tables sequentially. Once we don't find a table, there
1895 * are no more.
1896 */
0c8204b3 1897static int acpi_failure;
1da177e4
LT
1898
1899/* For GPE-type interrupts. */
1900static u32 ipmi_acpi_gpe(void *context)
1901{
1902 struct smi_info *smi_info = context;
1903 unsigned long flags;
1904#ifdef DEBUG_TIMING
1905 struct timeval t;
1906#endif
1907
1908 spin_lock_irqsave(&(smi_info->si_lock), flags);
1909
64959e2d 1910 smi_inc_stat(smi_info, interrupts);
1da177e4 1911
1da177e4
LT
1912#ifdef DEBUG_TIMING
1913 do_gettimeofday(&t);
1914 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1915#endif
1916 smi_event_handler(smi_info, 0);
1da177e4
LT
1917 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1918
1919 return ACPI_INTERRUPT_HANDLED;
1920}
1921
b0defcdb
CM
1922static void acpi_gpe_irq_cleanup(struct smi_info *info)
1923{
1924 if (!info->irq)
1925 return;
1926
1927 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1928}
1929
1da177e4
LT
1930static int acpi_gpe_irq_setup(struct smi_info *info)
1931{
1932 acpi_status status;
1933
b0defcdb 1934 if (!info->irq)
1da177e4
LT
1935 return 0;
1936
1937 /* FIXME - is level triggered right? */
1938 status = acpi_install_gpe_handler(NULL,
1939 info->irq,
1940 ACPI_GPE_LEVEL_TRIGGERED,
1941 &ipmi_acpi_gpe,
1942 info);
1943 if (status != AE_OK) {
279fbd0c
MS
1944 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1945 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1946 info->irq = 0;
1947 return -EINVAL;
1948 } else {
b0defcdb 1949 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1950 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1951 return 0;
1952 }
1953}
1954
1da177e4
LT
1955/*
1956 * Defined at
c305e3d3
CM
1957 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1958 * Docs/TechPapers/IA64/hpspmi.pdf
1da177e4
LT
1959 */
1960struct SPMITable {
1961 s8 Signature[4];
1962 u32 Length;
1963 u8 Revision;
1964 u8 Checksum;
1965 s8 OEMID[6];
1966 s8 OEMTableID[8];
1967 s8 OEMRevision[4];
1968 s8 CreatorID[4];
1969 s8 CreatorRevision[4];
1970 u8 InterfaceType;
1971 u8 IPMIlegacy;
1972 s16 SpecificationRevision;
1973
1974 /*
1975 * Bit 0 - SCI interrupt supported
1976 * Bit 1 - I/O APIC/SAPIC
1977 */
1978 u8 InterruptType;
1979
c305e3d3
CM
1980 /*
1981 * If bit 0 of InterruptType is set, then this is the SCI
1982 * interrupt in the GPEx_STS register.
1983 */
1da177e4
LT
1984 u8 GPE;
1985
1986 s16 Reserved;
1987
c305e3d3
CM
1988 /*
1989 * If bit 1 of InterruptType is set, then this is the I/O
1990 * APIC/SAPIC interrupt.
1991 */
1da177e4
LT
1992 u32 GlobalSystemInterrupt;
1993
1994 /* The actual register address. */
1995 struct acpi_generic_address addr;
1996
1997 u8 UID[4];
1998
1999 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2000};
2001
18a3e0bf 2002static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2003{
2004 struct smi_info *info;
1da177e4
LT
2005 u8 addr_space;
2006
1da177e4 2007 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2008 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2009 return -ENODEV;
1da177e4
LT
2010 }
2011
15a58ed1 2012 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2013 addr_space = IPMI_MEM_ADDR_SPACE;
2014 else
2015 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2016
2017 info = kzalloc(sizeof(*info), GFP_KERNEL);
2018 if (!info) {
279fbd0c 2019 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2020 return -ENOMEM;
2021 }
2022
5fedc4a2 2023 info->addr_source = SI_SPMI;
279fbd0c 2024 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2025
1da177e4 2026 /* Figure out the interface type. */
c305e3d3 2027 switch (spmi->InterfaceType) {
1da177e4 2028 case 1: /* KCS */
b0defcdb 2029 info->si_type = SI_KCS;
1da177e4 2030 break;
1da177e4 2031 case 2: /* SMIC */
b0defcdb 2032 info->si_type = SI_SMIC;
1da177e4 2033 break;
1da177e4 2034 case 3: /* BT */
b0defcdb 2035 info->si_type = SI_BT;
1da177e4 2036 break;
1da177e4 2037 default:
279fbd0c
MS
2038 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2039 spmi->InterfaceType);
b0defcdb 2040 kfree(info);
1da177e4
LT
2041 return -EIO;
2042 }
2043
1da177e4
LT
2044 if (spmi->InterruptType & 1) {
2045 /* We've got a GPE interrupt. */
2046 info->irq = spmi->GPE;
2047 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2048 } else if (spmi->InterruptType & 2) {
2049 /* We've got an APIC/SAPIC interrupt. */
2050 info->irq = spmi->GlobalSystemInterrupt;
2051 info->irq_setup = std_irq_setup;
1da177e4
LT
2052 } else {
2053 /* Use the default interrupt setting. */
2054 info->irq = 0;
2055 info->irq_setup = NULL;
2056 }
2057
15a58ed1 2058 if (spmi->addr.bit_width) {
35bc37a0 2059 /* A (hopefully) properly formed register bit width. */
15a58ed1 2060 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2061 } else {
35bc37a0
CM
2062 info->io.regspacing = DEFAULT_REGSPACING;
2063 }
b0defcdb 2064 info->io.regsize = info->io.regspacing;
15a58ed1 2065 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2066
15a58ed1 2067 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2068 info->io_setup = mem_setup;
8fe1425a 2069 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2070 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2071 info->io_setup = port_setup;
8fe1425a 2072 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2073 } else {
2074 kfree(info);
279fbd0c 2075 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2076 return -EIO;
2077 }
b0defcdb 2078 info->io.addr_data = spmi->addr.address;
1da177e4 2079
2407d77a 2080 add_smi(info);
1da177e4 2081
1da177e4
LT
2082 return 0;
2083}
b0defcdb 2084
18a3e0bf 2085static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2086{
2087 acpi_status status;
2088 struct SPMITable *spmi;
2089 int i;
2090
2091 if (acpi_disabled)
2092 return;
2093
2094 if (acpi_failure)
2095 return;
2096
2097 for (i = 0; ; i++) {
15a58ed1
AS
2098 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2099 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2100 if (status != AE_OK)
2101 return;
2102
18a3e0bf 2103 try_init_spmi(spmi);
b0defcdb
CM
2104 }
2105}
9e368fa0
BH
2106
2107static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2108 const struct pnp_device_id *dev_id)
2109{
2110 struct acpi_device *acpi_dev;
2111 struct smi_info *info;
279fbd0c 2112 struct resource *res;
9e368fa0
BH
2113 acpi_handle handle;
2114 acpi_status status;
2115 unsigned long long tmp;
2116
2117 acpi_dev = pnp_acpi_device(dev);
2118 if (!acpi_dev)
2119 return -ENODEV;
2120
2121 info = kzalloc(sizeof(*info), GFP_KERNEL);
2122 if (!info)
2123 return -ENOMEM;
2124
5fedc4a2 2125 info->addr_source = SI_ACPI;
279fbd0c 2126 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2127
2128 handle = acpi_dev->handle;
2129
2130 /* _IFT tells us the interface type: KCS, BT, etc */
2131 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2132 if (ACPI_FAILURE(status))
2133 goto err_free;
2134
2135 switch (tmp) {
2136 case 1:
2137 info->si_type = SI_KCS;
2138 break;
2139 case 2:
2140 info->si_type = SI_SMIC;
2141 break;
2142 case 3:
2143 info->si_type = SI_BT;
2144 break;
2145 default:
279fbd0c 2146 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2147 goto err_free;
2148 }
2149
279fbd0c
MS
2150 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2151 if (res) {
9e368fa0
BH
2152 info->io_setup = port_setup;
2153 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2154 } else {
279fbd0c
MS
2155 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2156 if (res) {
2157 info->io_setup = mem_setup;
2158 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2159 }
2160 }
2161 if (!res) {
9e368fa0
BH
2162 dev_err(&dev->dev, "no I/O or memory address\n");
2163 goto err_free;
2164 }
279fbd0c 2165 info->io.addr_data = res->start;
9e368fa0
BH
2166
2167 info->io.regspacing = DEFAULT_REGSPACING;
2168 info->io.regsize = DEFAULT_REGSPACING;
2169 info->io.regshift = 0;
2170
2171 /* If _GPE exists, use it; otherwise use standard interrupts */
2172 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2173 if (ACPI_SUCCESS(status)) {
2174 info->irq = tmp;
2175 info->irq_setup = acpi_gpe_irq_setup;
2176 } else if (pnp_irq_valid(dev, 0)) {
2177 info->irq = pnp_irq(dev, 0);
2178 info->irq_setup = std_irq_setup;
2179 }
2180
8c8eae27 2181 info->dev = &dev->dev;
9e368fa0
BH
2182 pnp_set_drvdata(dev, info);
2183
279fbd0c
MS
2184 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2185 res, info->io.regsize, info->io.regspacing,
2186 info->irq);
2187
2407d77a 2188 return add_smi(info);
9e368fa0
BH
2189
2190err_free:
2191 kfree(info);
2192 return -EINVAL;
2193}
2194
2195static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2196{
2197 struct smi_info *info = pnp_get_drvdata(dev);
2198
2199 cleanup_one_si(info);
2200}
2201
2202static const struct pnp_device_id pnp_dev_table[] = {
2203 {"IPI0001", 0},
2204 {"", 0},
2205};
2206
2207static struct pnp_driver ipmi_pnp_driver = {
2208 .name = DEVICE_NAME,
2209 .probe = ipmi_pnp_probe,
2210 .remove = __devexit_p(ipmi_pnp_remove),
2211 .id_table = pnp_dev_table,
2212};
1da177e4
LT
2213#endif
2214
a9fad4cc 2215#ifdef CONFIG_DMI
c305e3d3 2216struct dmi_ipmi_data {
1da177e4
LT
2217 u8 type;
2218 u8 addr_space;
2219 unsigned long base_addr;
2220 u8 irq;
2221 u8 offset;
2222 u8 slave_addr;
b0defcdb 2223};
1da177e4 2224
1855256c 2225static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2226 struct dmi_ipmi_data *dmi)
1da177e4 2227{
1855256c 2228 const u8 *data = (const u8 *)dm;
1da177e4
LT
2229 unsigned long base_addr;
2230 u8 reg_spacing;
b224cd3a 2231 u8 len = dm->length;
1da177e4 2232
b0defcdb 2233 dmi->type = data[4];
1da177e4
LT
2234
2235 memcpy(&base_addr, data+8, sizeof(unsigned long));
2236 if (len >= 0x11) {
2237 if (base_addr & 1) {
2238 /* I/O */
2239 base_addr &= 0xFFFE;
b0defcdb 2240 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2241 } else
1da177e4 2242 /* Memory */
b0defcdb 2243 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2244
1da177e4
LT
2245 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2246 is odd. */
b0defcdb 2247 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2248
b0defcdb 2249 dmi->irq = data[0x11];
1da177e4
LT
2250
2251 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2252 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2253 switch (reg_spacing) {
1da177e4 2254 case 0x00: /* Byte boundaries */
b0defcdb 2255 dmi->offset = 1;
1da177e4
LT
2256 break;
2257 case 0x01: /* 32-bit boundaries */
b0defcdb 2258 dmi->offset = 4;
1da177e4
LT
2259 break;
2260 case 0x02: /* 16-byte boundaries */
b0defcdb 2261 dmi->offset = 16;
1da177e4
LT
2262 break;
2263 default:
2264 /* Some other interface, just ignore it. */
2265 return -EIO;
2266 }
2267 } else {
2268 /* Old DMI spec. */
c305e3d3
CM
2269 /*
2270 * Note that technically, the lower bit of the base
92068801
CM
2271 * address should be 1 if the address is I/O and 0 if
2272 * the address is in memory. So many systems get that
2273 * wrong (and all that I have seen are I/O) so we just
2274 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2275 * memory should use the newer spec, anyway.
2276 */
b0defcdb
CM
2277 dmi->base_addr = base_addr & 0xfffe;
2278 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2279 dmi->offset = 1;
1da177e4
LT
2280 }
2281
b0defcdb 2282 dmi->slave_addr = data[6];
1da177e4 2283
b0defcdb 2284 return 0;
1da177e4
LT
2285}
2286
b0defcdb 2287static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2288{
b0defcdb 2289 struct smi_info *info;
1da177e4 2290
b0defcdb
CM
2291 info = kzalloc(sizeof(*info), GFP_KERNEL);
2292 if (!info) {
279fbd0c 2293 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2294 return;
1da177e4 2295 }
1da177e4 2296
5fedc4a2 2297 info->addr_source = SI_SMBIOS;
279fbd0c 2298 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2299
e8b33617 2300 switch (ipmi_data->type) {
b0defcdb
CM
2301 case 0x01: /* KCS */
2302 info->si_type = SI_KCS;
2303 break;
2304 case 0x02: /* SMIC */
2305 info->si_type = SI_SMIC;
2306 break;
2307 case 0x03: /* BT */
2308 info->si_type = SI_BT;
2309 break;
2310 default:
80cd6920 2311 kfree(info);
b0defcdb 2312 return;
1da177e4 2313 }
1da177e4 2314
b0defcdb
CM
2315 switch (ipmi_data->addr_space) {
2316 case IPMI_MEM_ADDR_SPACE:
1da177e4 2317 info->io_setup = mem_setup;
b0defcdb
CM
2318 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2319 break;
2320
2321 case IPMI_IO_ADDR_SPACE:
1da177e4 2322 info->io_setup = port_setup;
b0defcdb
CM
2323 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2324 break;
2325
2326 default:
1da177e4 2327 kfree(info);
279fbd0c 2328 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2329 ipmi_data->addr_space);
2330 return;
1da177e4 2331 }
b0defcdb 2332 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2333
b0defcdb
CM
2334 info->io.regspacing = ipmi_data->offset;
2335 if (!info->io.regspacing)
1da177e4
LT
2336 info->io.regspacing = DEFAULT_REGSPACING;
2337 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2338 info->io.regshift = 0;
1da177e4
LT
2339
2340 info->slave_addr = ipmi_data->slave_addr;
2341
b0defcdb
CM
2342 info->irq = ipmi_data->irq;
2343 if (info->irq)
2344 info->irq_setup = std_irq_setup;
1da177e4 2345
2407d77a 2346 add_smi(info);
b0defcdb 2347}
1da177e4 2348
b0defcdb
CM
2349static void __devinit dmi_find_bmc(void)
2350{
1855256c 2351 const struct dmi_device *dev = NULL;
b0defcdb
CM
2352 struct dmi_ipmi_data data;
2353 int rv;
2354
2355 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2356 memset(&data, 0, sizeof(data));
1855256c
JG
2357 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2358 &data);
b0defcdb
CM
2359 if (!rv)
2360 try_init_dmi(&data);
2361 }
1da177e4 2362}
a9fad4cc 2363#endif /* CONFIG_DMI */
1da177e4
LT
2364
2365#ifdef CONFIG_PCI
2366
b0defcdb
CM
2367#define PCI_ERMC_CLASSCODE 0x0C0700
2368#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2369#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2370#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2371#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2372#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2373
1da177e4
LT
2374#define PCI_HP_VENDOR_ID 0x103C
2375#define PCI_MMC_DEVICE_ID 0x121A
2376#define PCI_MMC_ADDR_CW 0x10
2377
b0defcdb
CM
2378static void ipmi_pci_cleanup(struct smi_info *info)
2379{
2380 struct pci_dev *pdev = info->addr_source_data;
2381
2382 pci_disable_device(pdev);
2383}
1da177e4 2384
b0defcdb
CM
2385static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2386 const struct pci_device_id *ent)
1da177e4 2387{
b0defcdb
CM
2388 int rv;
2389 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2390 struct smi_info *info;
1da177e4 2391
b0defcdb
CM
2392 info = kzalloc(sizeof(*info), GFP_KERNEL);
2393 if (!info)
1cd441f9 2394 return -ENOMEM;
1da177e4 2395
5fedc4a2 2396 info->addr_source = SI_PCI;
279fbd0c 2397 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2398
b0defcdb
CM
2399 switch (class_type) {
2400 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2401 info->si_type = SI_SMIC;
2402 break;
1da177e4 2403
b0defcdb
CM
2404 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2405 info->si_type = SI_KCS;
2406 break;
2407
2408 case PCI_ERMC_CLASSCODE_TYPE_BT:
2409 info->si_type = SI_BT;
2410 break;
2411
2412 default:
2413 kfree(info);
279fbd0c 2414 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2415 return -ENOMEM;
1da177e4
LT
2416 }
2417
b0defcdb
CM
2418 rv = pci_enable_device(pdev);
2419 if (rv) {
279fbd0c 2420 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2421 kfree(info);
2422 return rv;
1da177e4
LT
2423 }
2424
b0defcdb
CM
2425 info->addr_source_cleanup = ipmi_pci_cleanup;
2426 info->addr_source_data = pdev;
1da177e4 2427
b0defcdb
CM
2428 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2429 info->io_setup = port_setup;
2430 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2431 } else {
2432 info->io_setup = mem_setup;
2433 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2434 }
b0defcdb 2435 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2436
b0defcdb 2437 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2438 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2439 info->io.regshift = 0;
1da177e4 2440
b0defcdb
CM
2441 info->irq = pdev->irq;
2442 if (info->irq)
2443 info->irq_setup = std_irq_setup;
1da177e4 2444
50c812b2 2445 info->dev = &pdev->dev;
fca3b747 2446 pci_set_drvdata(pdev, info);
50c812b2 2447
279fbd0c
MS
2448 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2449 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2450 info->irq);
2451
2407d77a 2452 return add_smi(info);
b0defcdb 2453}
1da177e4 2454
b0defcdb
CM
2455static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2456{
fca3b747
CM
2457 struct smi_info *info = pci_get_drvdata(pdev);
2458 cleanup_one_si(info);
b0defcdb 2459}
1da177e4 2460
b0defcdb
CM
2461#ifdef CONFIG_PM
2462static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2463{
1da177e4
LT
2464 return 0;
2465}
1da177e4 2466
b0defcdb 2467static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2468{
b0defcdb
CM
2469 return 0;
2470}
1da177e4 2471#endif
1da177e4 2472
b0defcdb
CM
2473static struct pci_device_id ipmi_pci_devices[] = {
2474 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2475 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2476 { 0, }
b0defcdb
CM
2477};
2478MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2479
2480static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2481 .name = DEVICE_NAME,
2482 .id_table = ipmi_pci_devices,
2483 .probe = ipmi_pci_probe,
2484 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2485#ifdef CONFIG_PM
c305e3d3
CM
2486 .suspend = ipmi_pci_suspend,
2487 .resume = ipmi_pci_resume,
b0defcdb
CM
2488#endif
2489};
2490#endif /* CONFIG_PCI */
1da177e4
LT
2491
2492
dba9b4f6
CM
2493#ifdef CONFIG_PPC_OF
2494static int __devinit ipmi_of_probe(struct of_device *dev,
2495 const struct of_device_id *match)
2496{
2497 struct smi_info *info;
2498 struct resource resource;
2499 const int *regsize, *regspacing, *regshift;
61c7a080 2500 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2501 int ret;
2502 int proplen;
2503
279fbd0c 2504 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2505
2506 ret = of_address_to_resource(np, 0, &resource);
2507 if (ret) {
2508 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2509 return ret;
2510 }
2511
9c25099d 2512 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2513 if (regsize && proplen != 4) {
2514 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2515 return -EINVAL;
2516 }
2517
9c25099d 2518 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2519 if (regspacing && proplen != 4) {
2520 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2521 return -EINVAL;
2522 }
2523
9c25099d 2524 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2525 if (regshift && proplen != 4) {
2526 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2527 return -EINVAL;
2528 }
2529
2530 info = kzalloc(sizeof(*info), GFP_KERNEL);
2531
2532 if (!info) {
2533 dev_err(&dev->dev,
279fbd0c 2534 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2535 return -ENOMEM;
2536 }
2537
2538 info->si_type = (enum si_type) match->data;
5fedc4a2 2539 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2540 info->irq_setup = std_irq_setup;
2541
3b7ec117
NC
2542 if (resource.flags & IORESOURCE_IO) {
2543 info->io_setup = port_setup;
2544 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2545 } else {
2546 info->io_setup = mem_setup;
2547 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2548 }
2549
dba9b4f6
CM
2550 info->io.addr_data = resource.start;
2551
2552 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2553 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2554 info->io.regshift = regshift ? *regshift : 0;
2555
61c7a080 2556 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2557 info->dev = &dev->dev;
2558
279fbd0c 2559 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2560 info->io.addr_data, info->io.regsize, info->io.regspacing,
2561 info->irq);
2562
9de33df4 2563 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2564
2407d77a 2565 return add_smi(info);
dba9b4f6
CM
2566}
2567
2568static int __devexit ipmi_of_remove(struct of_device *dev)
2569{
9de33df4 2570 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2571 return 0;
2572}
2573
2574static struct of_device_id ipmi_match[] =
2575{
c305e3d3
CM
2576 { .type = "ipmi", .compatible = "ipmi-kcs",
2577 .data = (void *)(unsigned long) SI_KCS },
2578 { .type = "ipmi", .compatible = "ipmi-smic",
2579 .data = (void *)(unsigned long) SI_SMIC },
2580 { .type = "ipmi", .compatible = "ipmi-bt",
2581 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2582 {},
2583};
2584
c305e3d3 2585static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2586 .driver = {
2587 .name = "ipmi",
2588 .owner = THIS_MODULE,
2589 .of_match_table = ipmi_match,
2590 },
dba9b4f6
CM
2591 .probe = ipmi_of_probe,
2592 .remove = __devexit_p(ipmi_of_remove),
2593};
2594#endif /* CONFIG_PPC_OF */
2595
40112ae7 2596static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2597{
50c812b2 2598 enum si_sm_result smi_result;
1da177e4
LT
2599
2600 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2601 for (;;) {
c3e7e791
CM
2602 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2603 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2604 schedule_timeout_uninterruptible(1);
1da177e4
LT
2605 smi_result = smi_info->handlers->event(
2606 smi_info->si_sm, 100);
c305e3d3 2607 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2608 smi_result = smi_info->handlers->event(
2609 smi_info->si_sm, 0);
c305e3d3 2610 } else
1da177e4
LT
2611 break;
2612 }
40112ae7 2613 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2614 /*
2615 * We couldn't get the state machine to run, so whatever's at
2616 * the port is probably not an IPMI SMI interface.
2617 */
40112ae7
CM
2618 return -ENODEV;
2619
2620 return 0;
2621}
2622
2623static int try_get_dev_id(struct smi_info *smi_info)
2624{
2625 unsigned char msg[2];
2626 unsigned char *resp;
2627 unsigned long resp_len;
2628 int rv = 0;
2629
2630 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2631 if (!resp)
2632 return -ENOMEM;
2633
2634 /*
2635 * Do a Get Device ID command, since it comes back with some
2636 * useful info.
2637 */
2638 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2639 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2640 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2641
2642 rv = wait_for_msg_done(smi_info);
2643 if (rv)
1da177e4 2644 goto out;
1da177e4 2645
1da177e4
LT
2646 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2647 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2648
d8c98618
CM
2649 /* Check and record info from the get device id, in case we need it. */
2650 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2651
2652 out:
2653 kfree(resp);
2654 return rv;
2655}
2656
40112ae7
CM
2657static int try_enable_event_buffer(struct smi_info *smi_info)
2658{
2659 unsigned char msg[3];
2660 unsigned char *resp;
2661 unsigned long resp_len;
2662 int rv = 0;
2663
2664 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2665 if (!resp)
2666 return -ENOMEM;
2667
2668 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2669 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2670 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2671
2672 rv = wait_for_msg_done(smi_info);
2673 if (rv) {
279fbd0c
MS
2674 printk(KERN_WARNING PFX "Error getting response from get"
2675 " global enables command, the event buffer is not"
40112ae7
CM
2676 " enabled.\n");
2677 goto out;
2678 }
2679
2680 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2681 resp, IPMI_MAX_MSG_LENGTH);
2682
2683 if (resp_len < 4 ||
2684 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2685 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2686 resp[2] != 0) {
279fbd0c
MS
2687 printk(KERN_WARNING PFX "Invalid return from get global"
2688 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2689 rv = -EINVAL;
2690 goto out;
2691 }
2692
2693 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2694 /* buffer is already enabled, nothing to do. */
2695 goto out;
2696
2697 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2698 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2699 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2700 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2701
2702 rv = wait_for_msg_done(smi_info);
2703 if (rv) {
279fbd0c
MS
2704 printk(KERN_WARNING PFX "Error getting response from set"
2705 " global, enables command, the event buffer is not"
40112ae7
CM
2706 " enabled.\n");
2707 goto out;
2708 }
2709
2710 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2711 resp, IPMI_MAX_MSG_LENGTH);
2712
2713 if (resp_len < 3 ||
2714 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2715 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2716 printk(KERN_WARNING PFX "Invalid return from get global,"
2717 "enables command, not enable the event buffer.\n");
40112ae7
CM
2718 rv = -EINVAL;
2719 goto out;
2720 }
2721
2722 if (resp[2] != 0)
2723 /*
2724 * An error when setting the event buffer bit means
2725 * that the event buffer is not supported.
2726 */
2727 rv = -ENOENT;
2728 out:
2729 kfree(resp);
2730 return rv;
2731}
2732
1da177e4
LT
2733static int type_file_read_proc(char *page, char **start, off_t off,
2734 int count, int *eof, void *data)
2735{
1da177e4
LT
2736 struct smi_info *smi = data;
2737
b361e27b 2738 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2739}
2740
2741static int stat_file_read_proc(char *page, char **start, off_t off,
2742 int count, int *eof, void *data)
2743{
2744 char *out = (char *) page;
2745 struct smi_info *smi = data;
2746
2747 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2748 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2749 out += sprintf(out, "short_timeouts: %u\n",
2750 smi_get_stat(smi, short_timeouts));
2751 out += sprintf(out, "long_timeouts: %u\n",
2752 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2753 out += sprintf(out, "idles: %u\n",
2754 smi_get_stat(smi, idles));
2755 out += sprintf(out, "interrupts: %u\n",
2756 smi_get_stat(smi, interrupts));
2757 out += sprintf(out, "attentions: %u\n",
2758 smi_get_stat(smi, attentions));
2759 out += sprintf(out, "flag_fetches: %u\n",
2760 smi_get_stat(smi, flag_fetches));
2761 out += sprintf(out, "hosed_count: %u\n",
2762 smi_get_stat(smi, hosed_count));
2763 out += sprintf(out, "complete_transactions: %u\n",
2764 smi_get_stat(smi, complete_transactions));
2765 out += sprintf(out, "events: %u\n",
2766 smi_get_stat(smi, events));
2767 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2768 smi_get_stat(smi, watchdog_pretimeouts));
2769 out += sprintf(out, "incoming_messages: %u\n",
2770 smi_get_stat(smi, incoming_messages));
1da177e4 2771
b361e27b
CM
2772 return out - page;
2773}
2774
2775static int param_read_proc(char *page, char **start, off_t off,
2776 int count, int *eof, void *data)
2777{
2778 struct smi_info *smi = data;
2779
2780 return sprintf(page,
2781 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2782 si_to_str[smi->si_type],
2783 addr_space_to_str[smi->io.addr_type],
2784 smi->io.addr_data,
2785 smi->io.regspacing,
2786 smi->io.regsize,
2787 smi->io.regshift,
2788 smi->irq,
2789 smi->slave_addr);
1da177e4
LT
2790}
2791
3ae0e0f9
CM
2792/*
2793 * oem_data_avail_to_receive_msg_avail
2794 * @info - smi_info structure with msg_flags set
2795 *
2796 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2797 * Returns 1 indicating need to re-run handle_flags().
2798 */
2799static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2800{
e8b33617 2801 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2802 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2803 return 1;
2804}
2805
2806/*
2807 * setup_dell_poweredge_oem_data_handler
2808 * @info - smi_info.device_id must be populated
2809 *
2810 * Systems that match, but have firmware version < 1.40 may assert
2811 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2812 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2813 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2814 * as RECEIVE_MSG_AVAIL instead.
2815 *
2816 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2817 * assert the OEM[012] bits, and if it did, the driver would have to
2818 * change to handle that properly, we don't actually check for the
2819 * firmware version.
2820 * Device ID = 0x20 BMC on PowerEdge 8G servers
2821 * Device Revision = 0x80
2822 * Firmware Revision1 = 0x01 BMC version 1.40
2823 * Firmware Revision2 = 0x40 BCD encoded
2824 * IPMI Version = 0x51 IPMI 1.5
2825 * Manufacturer ID = A2 02 00 Dell IANA
2826 *
d5a2b89a
CM
2827 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2828 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2829 *
3ae0e0f9
CM
2830 */
2831#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2832#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2833#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2834#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2835static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2836{
2837 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2838 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2839 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2840 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2841 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2842 smi_info->oem_data_avail_handler =
2843 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2844 } else if (ipmi_version_major(id) < 1 ||
2845 (ipmi_version_major(id) == 1 &&
2846 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2847 smi_info->oem_data_avail_handler =
2848 oem_data_avail_to_receive_msg_avail;
2849 }
3ae0e0f9
CM
2850 }
2851}
2852
ea94027b
CM
2853#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2854static void return_hosed_msg_badsize(struct smi_info *smi_info)
2855{
2856 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2857
2858 /* Make it a reponse */
2859 msg->rsp[0] = msg->data[0] | 4;
2860 msg->rsp[1] = msg->data[1];
2861 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2862 msg->rsp_size = 3;
2863 smi_info->curr_msg = NULL;
2864 deliver_recv_msg(smi_info, msg);
2865}
2866
2867/*
2868 * dell_poweredge_bt_xaction_handler
2869 * @info - smi_info.device_id must be populated
2870 *
2871 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2872 * not respond to a Get SDR command if the length of the data
2873 * requested is exactly 0x3A, which leads to command timeouts and no
2874 * data returned. This intercepts such commands, and causes userspace
2875 * callers to try again with a different-sized buffer, which succeeds.
2876 */
2877
2878#define STORAGE_NETFN 0x0A
2879#define STORAGE_CMD_GET_SDR 0x23
2880static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2881 unsigned long unused,
2882 void *in)
2883{
2884 struct smi_info *smi_info = in;
2885 unsigned char *data = smi_info->curr_msg->data;
2886 unsigned int size = smi_info->curr_msg->data_size;
2887 if (size >= 8 &&
2888 (data[0]>>2) == STORAGE_NETFN &&
2889 data[1] == STORAGE_CMD_GET_SDR &&
2890 data[7] == 0x3A) {
2891 return_hosed_msg_badsize(smi_info);
2892 return NOTIFY_STOP;
2893 }
2894 return NOTIFY_DONE;
2895}
2896
2897static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2898 .notifier_call = dell_poweredge_bt_xaction_handler,
2899};
2900
2901/*
2902 * setup_dell_poweredge_bt_xaction_handler
2903 * @info - smi_info.device_id must be filled in already
2904 *
2905 * Fills in smi_info.device_id.start_transaction_pre_hook
2906 * when we know what function to use there.
2907 */
2908static void
2909setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2910{
2911 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2912 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2913 smi_info->si_type == SI_BT)
2914 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2915}
2916
3ae0e0f9
CM
2917/*
2918 * setup_oem_data_handler
2919 * @info - smi_info.device_id must be filled in already
2920 *
2921 * Fills in smi_info.device_id.oem_data_available_handler
2922 * when we know what function to use there.
2923 */
2924
2925static void setup_oem_data_handler(struct smi_info *smi_info)
2926{
2927 setup_dell_poweredge_oem_data_handler(smi_info);
2928}
2929
ea94027b
CM
2930static void setup_xaction_handlers(struct smi_info *smi_info)
2931{
2932 setup_dell_poweredge_bt_xaction_handler(smi_info);
2933}
2934
a9a2c44f
CM
2935static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2936{
453823ba 2937 if (smi_info->intf) {
c305e3d3
CM
2938 /*
2939 * The timer and thread are only running if the
2940 * interface has been started up and registered.
2941 */
453823ba
CM
2942 if (smi_info->thread != NULL)
2943 kthread_stop(smi_info->thread);
2944 del_timer_sync(&smi_info->si_timer);
2945 }
a9a2c44f
CM
2946}
2947
7420884c 2948static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2949{
2950 int type;
2951 int port;
7420884c 2952} ipmi_defaults[] =
b0defcdb
CM
2953{
2954 { .type = SI_KCS, .port = 0xca2 },
2955 { .type = SI_SMIC, .port = 0xca9 },
2956 { .type = SI_BT, .port = 0xe4 },
2957 { .port = 0 }
2958};
2959
2960static __devinit void default_find_bmc(void)
2961{
2962 struct smi_info *info;
2963 int i;
2964
2965 for (i = 0; ; i++) {
2966 if (!ipmi_defaults[i].port)
2967 break;
68e1ee62 2968#ifdef CONFIG_PPC
4ff31d77
CK
2969 if (check_legacy_ioport(ipmi_defaults[i].port))
2970 continue;
2971#endif
a09f4855
AM
2972 info = kzalloc(sizeof(*info), GFP_KERNEL);
2973 if (!info)
2974 return;
4ff31d77 2975
5fedc4a2 2976 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2977
2978 info->si_type = ipmi_defaults[i].type;
2979 info->io_setup = port_setup;
2980 info->io.addr_data = ipmi_defaults[i].port;
2981 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2982
2983 info->io.addr = NULL;
2984 info->io.regspacing = DEFAULT_REGSPACING;
2985 info->io.regsize = DEFAULT_REGSPACING;
2986 info->io.regshift = 0;
2987
2407d77a
MG
2988 if (add_smi(info) == 0) {
2989 if ((try_smi_init(info)) == 0) {
2990 /* Found one... */
279fbd0c 2991 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
2992 " state machine at %s address 0x%lx\n",
2993 si_to_str[info->si_type],
2994 addr_space_to_str[info->io.addr_type],
2995 info->io.addr_data);
2996 } else
2997 cleanup_one_si(info);
b0defcdb
CM
2998 }
2999 }
3000}
3001
3002static int is_new_interface(struct smi_info *info)
1da177e4 3003{
b0defcdb 3004 struct smi_info *e;
1da177e4 3005
b0defcdb
CM
3006 list_for_each_entry(e, &smi_infos, link) {
3007 if (e->io.addr_type != info->io.addr_type)
3008 continue;
3009 if (e->io.addr_data == info->io.addr_data)
3010 return 0;
3011 }
1da177e4 3012
b0defcdb
CM
3013 return 1;
3014}
1da177e4 3015
2407d77a 3016static int add_smi(struct smi_info *new_smi)
b0defcdb 3017{
2407d77a 3018 int rv = 0;
b0defcdb 3019
279fbd0c 3020 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3021 ipmi_addr_src_to_str[new_smi->addr_source],
3022 si_to_str[new_smi->si_type]);
d6dfd131 3023 mutex_lock(&smi_infos_lock);
b0defcdb 3024 if (!is_new_interface(new_smi)) {
279fbd0c 3025 printk(KERN_CONT PFX "duplicate interface\n");
b0defcdb
CM
3026 rv = -EBUSY;
3027 goto out_err;
3028 }
1da177e4 3029
2407d77a
MG
3030 printk(KERN_CONT "\n");
3031
1da177e4
LT
3032 /* So we know not to free it unless we have allocated one. */
3033 new_smi->intf = NULL;
3034 new_smi->si_sm = NULL;
3035 new_smi->handlers = NULL;
3036
2407d77a
MG
3037 list_add_tail(&new_smi->link, &smi_infos);
3038
3039out_err:
3040 mutex_unlock(&smi_infos_lock);
3041 return rv;
3042}
3043
3044static int try_smi_init(struct smi_info *new_smi)
3045{
3046 int rv = 0;
3047 int i;
3048
279fbd0c 3049 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3050 " machine at %s address 0x%lx, slave address 0x%x,"
3051 " irq %d\n",
3052 ipmi_addr_src_to_str[new_smi->addr_source],
3053 si_to_str[new_smi->si_type],
3054 addr_space_to_str[new_smi->io.addr_type],
3055 new_smi->io.addr_data,
3056 new_smi->slave_addr, new_smi->irq);
3057
b0defcdb
CM
3058 switch (new_smi->si_type) {
3059 case SI_KCS:
1da177e4 3060 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3061 break;
3062
3063 case SI_SMIC:
1da177e4 3064 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3065 break;
3066
3067 case SI_BT:
1da177e4 3068 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3069 break;
3070
3071 default:
1da177e4
LT
3072 /* No support for anything else yet. */
3073 rv = -EIO;
3074 goto out_err;
3075 }
3076
3077 /* Allocate the state machine's data and initialize it. */
3078 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3079 if (!new_smi->si_sm) {
279fbd0c
MS
3080 printk(KERN_ERR PFX
3081 "Could not allocate state machine memory\n");
1da177e4
LT
3082 rv = -ENOMEM;
3083 goto out_err;
3084 }
3085 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3086 &new_smi->io);
3087
3088 /* Now that we know the I/O size, we can set up the I/O. */
3089 rv = new_smi->io_setup(new_smi);
3090 if (rv) {
279fbd0c 3091 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3092 goto out_err;
3093 }
3094
3095 spin_lock_init(&(new_smi->si_lock));
3096 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3097
3098 /* Do low-level detection first. */
3099 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3100 if (new_smi->addr_source)
279fbd0c 3101 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3102 rv = -ENODEV;
3103 goto out_err;
3104 }
3105
c305e3d3
CM
3106 /*
3107 * Attempt a get device id command. If it fails, we probably
3108 * don't have a BMC here.
3109 */
1da177e4 3110 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3111 if (rv) {
3112 if (new_smi->addr_source)
279fbd0c 3113 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3114 " at this location\n");
1da177e4 3115 goto out_err;
b0defcdb 3116 }
1da177e4 3117
3ae0e0f9 3118 setup_oem_data_handler(new_smi);
ea94027b 3119 setup_xaction_handlers(new_smi);
3ae0e0f9 3120
1da177e4
LT
3121 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3122 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3123 new_smi->curr_msg = NULL;
3124 atomic_set(&new_smi->req_events, 0);
3125 new_smi->run_to_completion = 0;
64959e2d
CM
3126 for (i = 0; i < SI_NUM_STATS; i++)
3127 atomic_set(&new_smi->stats[i], 0);
1da177e4 3128
ea4078ca 3129 new_smi->interrupt_disabled = 1;
a9a2c44f 3130 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3131 new_smi->intf_num = smi_num;
3132 smi_num++;
1da177e4 3133
40112ae7
CM
3134 rv = try_enable_event_buffer(new_smi);
3135 if (rv == 0)
3136 new_smi->has_event_buffer = 1;
3137
c305e3d3
CM
3138 /*
3139 * Start clearing the flags before we enable interrupts or the
3140 * timer to avoid racing with the timer.
3141 */
1da177e4
LT
3142 start_clear_flags(new_smi);
3143 /* IRQ is defined to be set when non-zero. */
3144 if (new_smi->irq)
3145 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3146
50c812b2 3147 if (!new_smi->dev) {
c305e3d3
CM
3148 /*
3149 * If we don't already have a device from something
3150 * else (like PCI), then register a new one.
3151 */
50c812b2
CM
3152 new_smi->pdev = platform_device_alloc("ipmi_si",
3153 new_smi->intf_num);
8b32b5d0 3154 if (!new_smi->pdev) {
279fbd0c
MS
3155 printk(KERN_ERR PFX
3156 "Unable to allocate platform device\n");
453823ba 3157 goto out_err;
50c812b2
CM
3158 }
3159 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3160 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3161
b48f5457 3162 rv = platform_device_add(new_smi->pdev);
50c812b2 3163 if (rv) {
279fbd0c
MS
3164 printk(KERN_ERR PFX
3165 "Unable to register system interface device:"
50c812b2
CM
3166 " %d\n",
3167 rv);
453823ba 3168 goto out_err;
50c812b2
CM
3169 }
3170 new_smi->dev_registered = 1;
3171 }
3172
1da177e4
LT
3173 rv = ipmi_register_smi(&handlers,
3174 new_smi,
50c812b2
CM
3175 &new_smi->device_id,
3176 new_smi->dev,
759643b8 3177 "bmc",
453823ba 3178 new_smi->slave_addr);
1da177e4 3179 if (rv) {
279fbd0c
MS
3180 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3181 rv);
1da177e4
LT
3182 goto out_err_stop_timer;
3183 }
3184
3185 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3186 type_file_read_proc,
99b76233 3187 new_smi);
1da177e4 3188 if (rv) {
279fbd0c 3189 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3190 goto out_err_stop_timer;
3191 }
3192
3193 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3194 stat_file_read_proc,
99b76233 3195 new_smi);
1da177e4 3196 if (rv) {
279fbd0c 3197 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3198 goto out_err_stop_timer;
3199 }
3200
b361e27b 3201 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3202 param_read_proc,
99b76233 3203 new_smi);
b361e27b 3204 if (rv) {
279fbd0c 3205 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3206 goto out_err_stop_timer;
3207 }
3208
279fbd0c
MS
3209 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3210 si_to_str[new_smi->si_type]);
1da177e4
LT
3211
3212 return 0;
3213
3214 out_err_stop_timer:
a9a2c44f
CM
3215 atomic_inc(&new_smi->stop_operation);
3216 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3217
3218 out_err:
2407d77a
MG
3219 new_smi->interrupt_disabled = 1;
3220
3221 if (new_smi->intf) {
1da177e4 3222 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3223 new_smi->intf = NULL;
3224 }
1da177e4 3225
2407d77a 3226 if (new_smi->irq_cleanup) {
b0defcdb 3227 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3228 new_smi->irq_cleanup = NULL;
3229 }
1da177e4 3230
c305e3d3
CM
3231 /*
3232 * Wait until we know that we are out of any interrupt
3233 * handlers might have been running before we freed the
3234 * interrupt.
3235 */
fbd568a3 3236 synchronize_sched();
1da177e4
LT
3237
3238 if (new_smi->si_sm) {
3239 if (new_smi->handlers)
3240 new_smi->handlers->cleanup(new_smi->si_sm);
3241 kfree(new_smi->si_sm);
2407d77a 3242 new_smi->si_sm = NULL;
1da177e4 3243 }
2407d77a 3244 if (new_smi->addr_source_cleanup) {
b0defcdb 3245 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3246 new_smi->addr_source_cleanup = NULL;
3247 }
3248 if (new_smi->io_cleanup) {
7767e126 3249 new_smi->io_cleanup(new_smi);
2407d77a
MG
3250 new_smi->io_cleanup = NULL;
3251 }
1da177e4 3252
2407d77a 3253 if (new_smi->dev_registered) {
50c812b2 3254 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3255 new_smi->dev_registered = 0;
3256 }
b0defcdb 3257
1da177e4
LT
3258 return rv;
3259}
3260
b0defcdb 3261static __devinit int init_ipmi_si(void)
1da177e4 3262{
1da177e4
LT
3263 int i;
3264 char *str;
50c812b2 3265 int rv;
2407d77a 3266 struct smi_info *e;
06ee4594 3267 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3268
3269 if (initialized)
3270 return 0;
3271 initialized = 1;
3272
50c812b2 3273 /* Register the device drivers. */
fe2d5ffc 3274 rv = driver_register(&ipmi_driver.driver);
50c812b2 3275 if (rv) {
279fbd0c 3276 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3277 return rv;
3278 }
3279
3280
1da177e4
LT
3281 /* Parse out the si_type string into its components. */
3282 str = si_type_str;
3283 if (*str != '\0') {
e8b33617 3284 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3285 si_type[i] = str;
3286 str = strchr(str, ',');
3287 if (str) {
3288 *str = '\0';
3289 str++;
3290 } else {
3291 break;
3292 }
3293 }
3294 }
3295
1fdd75bd 3296 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3297
b0defcdb
CM
3298 hardcode_find_bmc();
3299
d8cc5267
MG
3300 /* If the user gave us a device, they presumably want us to use it */
3301 mutex_lock(&smi_infos_lock);
3302 if (!list_empty(&smi_infos)) {
3303 mutex_unlock(&smi_infos_lock);
3304 return 0;
3305 }
3306 mutex_unlock(&smi_infos_lock);
3307
b0defcdb 3308#ifdef CONFIG_PCI
168b35a7 3309 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3310 if (rv)
279fbd0c 3311 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
b0defcdb
CM
3312#endif
3313
754d4531
MG
3314#ifdef CONFIG_ACPI
3315 pnp_register_driver(&ipmi_pnp_driver);
3316#endif
3317
3318#ifdef CONFIG_DMI
3319 dmi_find_bmc();
3320#endif
3321
3322#ifdef CONFIG_ACPI
3323 spmi_find_bmc();
3324#endif
3325
dba9b4f6
CM
3326#ifdef CONFIG_PPC_OF
3327 of_register_platform_driver(&ipmi_of_platform_driver);
3328#endif
3329
06ee4594
MG
3330 /* We prefer devices with interrupts, but in the case of a machine
3331 with multiple BMCs we assume that there will be several instances
3332 of a given type so if we succeed in registering a type then also
3333 try to register everything else of the same type */
d8cc5267 3334
2407d77a
MG
3335 mutex_lock(&smi_infos_lock);
3336 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3337 /* Try to register a device if it has an IRQ and we either
3338 haven't successfully registered a device yet or this
3339 device has the same type as one we successfully registered */
3340 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3341 if (!try_smi_init(e)) {
06ee4594 3342 type = e->addr_source;
d8cc5267
MG
3343 }
3344 }
3345 }
3346
06ee4594
MG
3347 /* type will only have been set if we successfully registered an si */
3348 if (type) {
3349 mutex_unlock(&smi_infos_lock);
3350 return 0;
3351 }
3352
d8cc5267
MG
3353 /* Fall back to the preferred device */
3354
3355 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3356 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3357 if (!try_smi_init(e)) {
06ee4594 3358 type = e->addr_source;
d8cc5267
MG
3359 }
3360 }
2407d77a
MG
3361 }
3362 mutex_unlock(&smi_infos_lock);
3363
06ee4594
MG
3364 if (type)
3365 return 0;
3366
b0defcdb 3367 if (si_trydefaults) {
d6dfd131 3368 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3369 if (list_empty(&smi_infos)) {
3370 /* No BMC was found, try defaults. */
d6dfd131 3371 mutex_unlock(&smi_infos_lock);
b0defcdb 3372 default_find_bmc();
2407d77a 3373 } else
d6dfd131 3374 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3375 }
3376
d6dfd131 3377 mutex_lock(&smi_infos_lock);
b361e27b 3378 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3379 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3380#ifdef CONFIG_PCI
3381 pci_unregister_driver(&ipmi_pci_driver);
3382#endif
10fb62e5
CK
3383
3384#ifdef CONFIG_PPC_OF
3385 of_unregister_platform_driver(&ipmi_of_platform_driver);
3386#endif
fe2d5ffc 3387 driver_unregister(&ipmi_driver.driver);
279fbd0c
MS
3388 printk(KERN_WARNING PFX
3389 "Unable to find any System Interface(s)\n");
1da177e4 3390 return -ENODEV;
b0defcdb 3391 } else {
d6dfd131 3392 mutex_unlock(&smi_infos_lock);
b0defcdb 3393 return 0;
1da177e4 3394 }
1da177e4
LT
3395}
3396module_init(init_ipmi_si);
3397
b361e27b 3398static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3399{
2407d77a 3400 int rv = 0;
1da177e4
LT
3401 unsigned long flags;
3402
b0defcdb 3403 if (!to_clean)
1da177e4
LT
3404 return;
3405
b0defcdb
CM
3406 list_del(&to_clean->link);
3407
ee6cd5f8 3408 /* Tell the driver that we are shutting down. */
a9a2c44f 3409 atomic_inc(&to_clean->stop_operation);
b0defcdb 3410
c305e3d3
CM
3411 /*
3412 * Make sure the timer and thread are stopped and will not run
3413 * again.
3414 */
a9a2c44f 3415 wait_for_timer_and_thread(to_clean);
1da177e4 3416
c305e3d3
CM
3417 /*
3418 * Timeouts are stopped, now make sure the interrupts are off
3419 * for the device. A little tricky with locks to make sure
3420 * there are no races.
3421 */
ee6cd5f8
CM
3422 spin_lock_irqsave(&to_clean->si_lock, flags);
3423 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3424 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3425 poll(to_clean);
3426 schedule_timeout_uninterruptible(1);
3427 spin_lock_irqsave(&to_clean->si_lock, flags);
3428 }
3429 disable_si_irq(to_clean);
3430 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3431 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3432 poll(to_clean);
3433 schedule_timeout_uninterruptible(1);
3434 }
3435
3436 /* Clean up interrupts and make sure that everything is done. */
3437 if (to_clean->irq_cleanup)
3438 to_clean->irq_cleanup(to_clean);
e8b33617 3439 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3440 poll(to_clean);
da4cd8df 3441 schedule_timeout_uninterruptible(1);
1da177e4
LT
3442 }
3443
2407d77a
MG
3444 if (to_clean->intf)
3445 rv = ipmi_unregister_smi(to_clean->intf);
3446
1da177e4 3447 if (rv) {
279fbd0c 3448 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3449 rv);
3450 }
3451
2407d77a
MG
3452 if (to_clean->handlers)
3453 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3454
3455 kfree(to_clean->si_sm);
3456
b0defcdb
CM
3457 if (to_clean->addr_source_cleanup)
3458 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3459 if (to_clean->io_cleanup)
3460 to_clean->io_cleanup(to_clean);
50c812b2
CM
3461
3462 if (to_clean->dev_registered)
3463 platform_device_unregister(to_clean->pdev);
3464
3465 kfree(to_clean);
1da177e4
LT
3466}
3467
3468static __exit void cleanup_ipmi_si(void)
3469{
b0defcdb 3470 struct smi_info *e, *tmp_e;
1da177e4 3471
b0defcdb 3472 if (!initialized)
1da177e4
LT
3473 return;
3474
b0defcdb
CM
3475#ifdef CONFIG_PCI
3476 pci_unregister_driver(&ipmi_pci_driver);
3477#endif
27d0567a 3478#ifdef CONFIG_ACPI
9e368fa0
BH
3479 pnp_unregister_driver(&ipmi_pnp_driver);
3480#endif
b0defcdb 3481
dba9b4f6
CM
3482#ifdef CONFIG_PPC_OF
3483 of_unregister_platform_driver(&ipmi_of_platform_driver);
3484#endif
3485
d6dfd131 3486 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3487 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3488 cleanup_one_si(e);
d6dfd131 3489 mutex_unlock(&smi_infos_lock);
50c812b2 3490
fe2d5ffc 3491 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3492}
3493module_exit(cleanup_ipmi_si);
3494
3495MODULE_LICENSE("GPL");
1fdd75bd 3496MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3497MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3498 " system interfaces.");
This page took 0.754746 seconds and 5 git commands to generate.