ipmi: put acpi.h with the other headers
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
1da177e4 44#include <linux/sched.h>
07412736 45#include <linux/seq_file.h>
1da177e4
LT
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
11c675ce
SR
67#include <linux/of_device.h>
68#include <linux/of_platform.h>
672d8eaf
RH
69#include <linux/of_address.h>
70#include <linux/of_irq.h>
58c9d61f 71#include <linux/acpi.h>
dba9b4f6 72
fdbeb7de
TB
73#ifdef CONFIG_PARISC
74#include <asm/hardware.h> /* for register_parisc_driver() stuff */
75#include <asm/parisc-device.h>
76#endif
77
b361e27b 78#define PFX "ipmi_si: "
1da177e4
LT
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC 10000
85#define SI_USEC_PER_JIFFY (1000000/HZ)
86#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 88 short timeout */
1da177e4
LT
89
90enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
1da177e4 95 SI_GETTING_MESSAGES,
d9b7e4f7
CM
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
1da177e4
LT
98 /* FIXME - add watchdog stuff. */
99};
100
9dbf68f9
CM
101/* Some BT-specific defines we need here. */
102#define IPMI_BT_INTMASK_REG 2
103#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
1da177e4
LT
106enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108};
99ee6735
LC
109
110static const char * const si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 111
50c812b2
CM
112#define DEVICE_NAME "ipmi_si"
113
a1e9c9dd 114static struct platform_driver ipmi_driver;
64959e2d
CM
115
116/*
117 * Indexes into stats[] in smi_info below.
118 */
ba8ff1c6
CM
119enum si_stat_indexes {
120 /*
121 * Number of times the driver requested a timer while an operation
122 * was in progress.
123 */
124 SI_STAT_short_timeouts = 0,
125
126 /*
127 * Number of times the driver requested a timer while nothing was in
128 * progress.
129 */
130 SI_STAT_long_timeouts,
131
132 /* Number of times the interface was idle while being polled. */
133 SI_STAT_idles,
134
135 /* Number of interrupts the driver handled. */
136 SI_STAT_interrupts,
137
138 /* Number of time the driver got an ATTN from the hardware. */
139 SI_STAT_attentions,
64959e2d 140
ba8ff1c6
CM
141 /* Number of times the driver requested flags from the hardware. */
142 SI_STAT_flag_fetches,
143
144 /* Number of times the hardware didn't follow the state machine. */
145 SI_STAT_hosed_count,
146
147 /* Number of completed messages. */
148 SI_STAT_complete_transactions,
149
150 /* Number of IPMI events received from the hardware. */
151 SI_STAT_events,
152
153 /* Number of watchdog pretimeouts. */
154 SI_STAT_watchdog_pretimeouts,
155
b3834be5 156 /* Number of asynchronous messages received. */
ba8ff1c6
CM
157 SI_STAT_incoming_messages,
158
159
160 /* This *must* remain last, add new values above this. */
161 SI_NUM_STATS
162};
64959e2d 163
c305e3d3 164struct smi_info {
a9a2c44f 165 int intf_num;
1da177e4
LT
166 ipmi_smi_t intf;
167 struct si_sm_data *si_sm;
81d02b7f 168 const struct si_sm_handlers *handlers;
1da177e4
LT
169 enum si_type si_type;
170 spinlock_t si_lock;
b874b985 171 struct ipmi_smi_msg *waiting_msg;
1da177e4
LT
172 struct ipmi_smi_msg *curr_msg;
173 enum si_intf_state si_state;
174
c305e3d3
CM
175 /*
176 * Used to handle the various types of I/O that can occur with
177 * IPMI
178 */
1da177e4
LT
179 struct si_sm_io io;
180 int (*io_setup)(struct smi_info *info);
181 void (*io_cleanup)(struct smi_info *info);
182 int (*irq_setup)(struct smi_info *info);
183 void (*irq_cleanup)(struct smi_info *info);
184 unsigned int io_size;
5fedc4a2 185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
186 void (*addr_source_cleanup)(struct smi_info *info);
187 void *addr_source_data;
1da177e4 188
c305e3d3
CM
189 /*
190 * Per-OEM handler, called from handle_flags(). Returns 1
191 * when handle_flags() needs to be re-run or 0 indicating it
192 * set si_state itself.
193 */
3ae0e0f9
CM
194 int (*oem_data_avail_handler)(struct smi_info *smi_info);
195
c305e3d3
CM
196 /*
197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 * is set to hold the flags until we are done handling everything
199 * from the flags.
200 */
1da177e4
LT
201#define RECEIVE_MSG_AVAIL 0x01
202#define EVENT_MSG_BUFFER_FULL 0x02
203#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
204#define OEM0_DATA_AVAIL 0x20
205#define OEM1_DATA_AVAIL 0x40
206#define OEM2_DATA_AVAIL 0x80
207#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
208 OEM1_DATA_AVAIL | \
209 OEM2_DATA_AVAIL)
1da177e4
LT
210 unsigned char msg_flags;
211
40112ae7 212 /* Does the BMC have an event buffer? */
7aefac26 213 bool has_event_buffer;
40112ae7 214
c305e3d3
CM
215 /*
216 * If set to true, this will request events the next time the
217 * state machine is idle.
218 */
1da177e4
LT
219 atomic_t req_events;
220
c305e3d3
CM
221 /*
222 * If true, run the state machine to completion on every send
223 * call. Generally used after a panic to make sure stuff goes
224 * out.
225 */
7aefac26 226 bool run_to_completion;
1da177e4
LT
227
228 /* The I/O port of an SI interface. */
229 int port;
230
c305e3d3
CM
231 /*
232 * The space between start addresses of the two ports. For
233 * instance, if the first port is 0xca2 and the spacing is 4, then
234 * the second port is 0xca6.
235 */
1da177e4
LT
236 unsigned int spacing;
237
238 /* zero if no irq; */
239 int irq;
240
241 /* The timer for this si. */
242 struct timer_list si_timer;
243
48e8ac29
BS
244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 bool timer_running;
246
1da177e4
LT
247 /* The time (in jiffies) the last timeout occurred at. */
248 unsigned long last_timeout_jiffies;
249
89986496
CM
250 /* Are we waiting for the events, pretimeouts, received msgs? */
251 atomic_t need_watch;
252
c305e3d3
CM
253 /*
254 * The driver will disable interrupts when it gets into a
255 * situation where it cannot handle messages due to lack of
256 * memory. Once that situation clears up, it will re-enable
257 * interrupts.
258 */
7aefac26 259 bool interrupt_disabled;
1da177e4 260
d9b7e4f7
CM
261 /*
262 * Does the BMC support events?
263 */
264 bool supports_event_msg_buff;
265
1e7d6a45 266 /*
d0882897
CM
267 * Can we disable interrupts the global enables receive irq
268 * bit? There are currently two forms of brokenness, some
269 * systems cannot disable the bit (which is technically within
270 * the spec but a bad idea) and some systems have the bit
271 * forced to zero even though interrupts work (which is
272 * clearly outside the spec). The next bool tells which form
273 * of brokenness is present.
1e7d6a45 274 */
d0882897
CM
275 bool cannot_disable_irq;
276
277 /*
278 * Some systems are broken and cannot set the irq enable
279 * bit, even if they support interrupts.
280 */
281 bool irq_enable_broken;
1e7d6a45 282
a8df150c
CM
283 /*
284 * Did we get an attention that we did not handle?
285 */
286 bool got_attn;
287
50c812b2 288 /* From the get device id response... */
3ae0e0f9 289 struct ipmi_device_id device_id;
1da177e4 290
50c812b2
CM
291 /* Driver model stuff. */
292 struct device *dev;
293 struct platform_device *pdev;
294
c305e3d3
CM
295 /*
296 * True if we allocated the device, false if it came from
297 * someplace else (like PCI).
298 */
7aefac26 299 bool dev_registered;
50c812b2 300
1da177e4
LT
301 /* Slave address, could be reported from DMI. */
302 unsigned char slave_addr;
303
304 /* Counters and things for the proc filesystem. */
64959e2d 305 atomic_t stats[SI_NUM_STATS];
a9a2c44f 306
c305e3d3 307 struct task_struct *thread;
b0defcdb
CM
308
309 struct list_head link;
16f4232c 310 union ipmi_smi_info_union addr_info;
1da177e4
LT
311};
312
64959e2d
CM
313#define smi_inc_stat(smi, stat) \
314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315#define smi_get_stat(smi, stat) \
316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317
a51f4a81
CM
318#define SI_MAX_PARMS 4
319
320static int force_kipmid[SI_MAX_PARMS];
321static int num_force_kipmid;
56480287 322#ifdef CONFIG_PCI
7aefac26 323static bool pci_registered;
56480287 324#endif
fdbeb7de 325#ifdef CONFIG_PARISC
7aefac26 326static bool parisc_registered;
fdbeb7de 327#endif
a51f4a81 328
ae74e823
MW
329static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330static int num_max_busy_us;
331
7aefac26 332static bool unload_when_empty = true;
b361e27b 333
2407d77a 334static int add_smi(struct smi_info *smi);
b0defcdb 335static int try_smi_init(struct smi_info *smi);
b361e27b 336static void cleanup_one_si(struct smi_info *to_clean);
d2478521 337static void cleanup_ipmi_si(void);
b0defcdb 338
f93aae9f
JS
339#ifdef DEBUG_TIMING
340void debug_timestamp(char *msg)
341{
48862ea2 342 struct timespec64 t;
f93aae9f 343
48862ea2
JS
344 getnstimeofday64(&t);
345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
f93aae9f
JS
346}
347#else
348#define debug_timestamp(x)
349#endif
350
e041c683 351static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 352static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 353{
e041c683 354 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
355}
356
1da177e4
LT
357static void deliver_recv_msg(struct smi_info *smi_info,
358 struct ipmi_smi_msg *msg)
359{
7adf579c 360 /* Deliver the message to the upper layer. */
968bf7cc
CM
361 if (smi_info->intf)
362 ipmi_smi_msg_received(smi_info->intf, msg);
363 else
364 ipmi_free_smi_msg(msg);
1da177e4
LT
365}
366
4d7cbac7 367static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
368{
369 struct ipmi_smi_msg *msg = smi_info->curr_msg;
370
4d7cbac7
CM
371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 cCode = IPMI_ERR_UNSPECIFIED;
373 /* else use it as is */
374
25985edc 375 /* Make it a response */
1da177e4
LT
376 msg->rsp[0] = msg->data[0] | 4;
377 msg->rsp[1] = msg->data[1];
4d7cbac7 378 msg->rsp[2] = cCode;
1da177e4
LT
379 msg->rsp_size = 3;
380
381 smi_info->curr_msg = NULL;
382 deliver_recv_msg(smi_info, msg);
383}
384
385static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386{
387 int rv;
1da177e4 388
b874b985 389 if (!smi_info->waiting_msg) {
1da177e4
LT
390 smi_info->curr_msg = NULL;
391 rv = SI_SM_IDLE;
392 } else {
393 int err;
394
b874b985
CM
395 smi_info->curr_msg = smi_info->waiting_msg;
396 smi_info->waiting_msg = NULL;
f93aae9f 397 debug_timestamp("Start2");
e041c683
AS
398 err = atomic_notifier_call_chain(&xaction_notifier_list,
399 0, smi_info);
ea94027b
CM
400 if (err & NOTIFY_STOP_MASK) {
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 goto out;
403 }
1da177e4
LT
404 err = smi_info->handlers->start_transaction(
405 smi_info->si_sm,
406 smi_info->curr_msg->data,
407 smi_info->curr_msg->data_size);
c305e3d3 408 if (err)
4d7cbac7 409 return_hosed_msg(smi_info, err);
1da177e4
LT
410
411 rv = SI_SM_CALL_WITHOUT_DELAY;
412 }
c305e3d3 413 out:
1da177e4
LT
414 return rv;
415}
416
0cfec916
CM
417static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418{
419 smi_info->last_timeout_jiffies = jiffies;
420 mod_timer(&smi_info->si_timer, new_val);
421 smi_info->timer_running = true;
422}
423
424/*
425 * Start a new message and (re)start the timer and thread.
426 */
427static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 unsigned int size)
429{
430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431
432 if (smi_info->thread)
433 wake_up_process(smi_info->thread);
434
435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436}
437
438static void start_check_enables(struct smi_info *smi_info, bool start_timer)
ee6cd5f8
CM
439{
440 unsigned char msg[2];
441
442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444
0cfec916
CM
445 if (start_timer)
446 start_new_msg(smi_info, msg, 2);
447 else
448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
d9b7e4f7 449 smi_info->si_state = SI_CHECKING_ENABLES;
ee6cd5f8
CM
450}
451
0cfec916 452static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
1da177e4
LT
453{
454 unsigned char msg[3];
455
456 /* Make sure the watchdog pre-timeout flag is not set at startup. */
457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 msg[2] = WDT_PRE_TIMEOUT_INT;
460
0cfec916
CM
461 if (start_timer)
462 start_new_msg(smi_info, msg, 3);
463 else
464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1da177e4
LT
465 smi_info->si_state = SI_CLEARING_FLAGS;
466}
467
968bf7cc
CM
468static void start_getting_msg_queue(struct smi_info *smi_info)
469{
470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 smi_info->curr_msg->data_size = 2;
473
0cfec916
CM
474 start_new_msg(smi_info, smi_info->curr_msg->data,
475 smi_info->curr_msg->data_size);
968bf7cc
CM
476 smi_info->si_state = SI_GETTING_MESSAGES;
477}
478
479static void start_getting_events(struct smi_info *smi_info)
480{
481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 smi_info->curr_msg->data_size = 2;
484
0cfec916
CM
485 start_new_msg(smi_info, smi_info->curr_msg->data,
486 smi_info->curr_msg->data_size);
968bf7cc
CM
487 smi_info->si_state = SI_GETTING_EVENTS;
488}
489
c305e3d3
CM
490/*
491 * When we have a situtaion where we run out of memory and cannot
492 * allocate messages, we just leave them in the BMC and run the system
493 * polled until we can allocate some memory. Once we have some
494 * memory, we will re-enable the interrupt.
1e7d6a45
CM
495 *
496 * Note that we cannot just use disable_irq(), since the interrupt may
497 * be shared.
c305e3d3 498 */
0cfec916 499static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
1da177e4 500{
b0defcdb 501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
7aefac26 502 smi_info->interrupt_disabled = true;
0cfec916 503 start_check_enables(smi_info, start_timer);
968bf7cc 504 return true;
1da177e4 505 }
968bf7cc 506 return false;
1da177e4
LT
507}
508
968bf7cc 509static inline bool enable_si_irq(struct smi_info *smi_info)
1da177e4
LT
510{
511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
7aefac26 512 smi_info->interrupt_disabled = false;
0cfec916 513 start_check_enables(smi_info, true);
968bf7cc
CM
514 return true;
515 }
516 return false;
517}
518
519/*
520 * Allocate a message. If unable to allocate, start the interrupt
521 * disable process and return NULL. If able to allocate but
522 * interrupts are disabled, free the message and return NULL after
523 * starting the interrupt enable process.
524 */
525static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526{
527 struct ipmi_smi_msg *msg;
528
529 msg = ipmi_alloc_smi_msg();
530 if (!msg) {
0cfec916 531 if (!disable_si_irq(smi_info, true))
968bf7cc
CM
532 smi_info->si_state = SI_NORMAL;
533 } else if (enable_si_irq(smi_info)) {
534 ipmi_free_smi_msg(msg);
535 msg = NULL;
1da177e4 536 }
968bf7cc 537 return msg;
1da177e4
LT
538}
539
540static void handle_flags(struct smi_info *smi_info)
541{
3ae0e0f9 542 retry:
1da177e4
LT
543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 /* Watchdog pre-timeout */
64959e2d 545 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4 546
0cfec916 547 start_clear_flags(smi_info, true);
1da177e4 548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
968bf7cc
CM
549 if (smi_info->intf)
550 ipmi_smi_watchdog_pretimeout(smi_info->intf);
1da177e4
LT
551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 /* Messages available. */
968bf7cc
CM
553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 if (!smi_info->curr_msg)
1da177e4 555 return;
1da177e4 556
968bf7cc 557 start_getting_msg_queue(smi_info);
1da177e4
LT
558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 /* Events available. */
968bf7cc
CM
560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 if (!smi_info->curr_msg)
1da177e4 562 return;
1da177e4 563
968bf7cc 564 start_getting_events(smi_info);
4064d5ef 565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 566 smi_info->oem_data_avail_handler) {
4064d5ef
CM
567 if (smi_info->oem_data_avail_handler(smi_info))
568 goto retry;
c305e3d3 569 } else
1da177e4 570 smi_info->si_state = SI_NORMAL;
1da177e4
LT
571}
572
d9b7e4f7
CM
573/*
574 * Global enables we care about.
575 */
576#define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 IPMI_BMC_EVT_MSG_INTR)
578
95c97b59
CM
579static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 bool *irq_on)
d9b7e4f7
CM
581{
582 u8 enables = 0;
583
584 if (smi_info->supports_event_msg_buff)
585 enables |= IPMI_BMC_EVT_MSG_BUFF;
d9b7e4f7 586
d0882897
CM
587 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 smi_info->cannot_disable_irq) &&
589 !smi_info->irq_enable_broken)
d9b7e4f7 590 enables |= IPMI_BMC_RCV_MSG_INTR;
d9b7e4f7
CM
591
592 if (smi_info->supports_event_msg_buff &&
d0882897
CM
593 smi_info->irq && !smi_info->interrupt_disabled &&
594 !smi_info->irq_enable_broken)
d9b7e4f7 595 enables |= IPMI_BMC_EVT_MSG_INTR;
d9b7e4f7 596
95c97b59
CM
597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
d9b7e4f7
CM
599 return enables;
600}
601
95c97b59
CM
602static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603{
604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608 if ((bool)irqstate == irq_on)
609 return;
610
611 if (irq_on)
612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 else
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616}
617
1da177e4
LT
618static void handle_transaction_done(struct smi_info *smi_info)
619{
620 struct ipmi_smi_msg *msg;
1da177e4 621
f93aae9f 622 debug_timestamp("Done");
1da177e4
LT
623 switch (smi_info->si_state) {
624 case SI_NORMAL:
b0defcdb 625 if (!smi_info->curr_msg)
1da177e4
LT
626 break;
627
628 smi_info->curr_msg->rsp_size
629 = smi_info->handlers->get_result(
630 smi_info->si_sm,
631 smi_info->curr_msg->rsp,
632 IPMI_MAX_MSG_LENGTH);
633
c305e3d3
CM
634 /*
635 * Do this here becase deliver_recv_msg() releases the
636 * lock, and a new message can be put in during the
637 * time the lock is released.
638 */
1da177e4
LT
639 msg = smi_info->curr_msg;
640 smi_info->curr_msg = NULL;
641 deliver_recv_msg(smi_info, msg);
642 break;
643
644 case SI_GETTING_FLAGS:
645 {
646 unsigned char msg[4];
647 unsigned int len;
648
649 /* We got the flags from the SMI, now handle them. */
650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 if (msg[2] != 0) {
c305e3d3 652 /* Error fetching flags, just give up for now. */
1da177e4
LT
653 smi_info->si_state = SI_NORMAL;
654 } else if (len < 4) {
c305e3d3
CM
655 /*
656 * Hmm, no flags. That's technically illegal, but
657 * don't use uninitialized data.
658 */
1da177e4
LT
659 smi_info->si_state = SI_NORMAL;
660 } else {
661 smi_info->msg_flags = msg[3];
662 handle_flags(smi_info);
663 }
664 break;
665 }
666
667 case SI_CLEARING_FLAGS:
1da177e4
LT
668 {
669 unsigned char msg[3];
670
671 /* We cleared the flags. */
672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 if (msg[2] != 0) {
674 /* Error clearing flags */
279fbd0c
MS
675 dev_warn(smi_info->dev,
676 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4 677 }
d9b7e4f7 678 smi_info->si_state = SI_NORMAL;
1da177e4
LT
679 break;
680 }
681
682 case SI_GETTING_EVENTS:
683 {
684 smi_info->curr_msg->rsp_size
685 = smi_info->handlers->get_result(
686 smi_info->si_sm,
687 smi_info->curr_msg->rsp,
688 IPMI_MAX_MSG_LENGTH);
689
c305e3d3
CM
690 /*
691 * Do this here becase deliver_recv_msg() releases the
692 * lock, and a new message can be put in during the
693 * time the lock is released.
694 */
1da177e4
LT
695 msg = smi_info->curr_msg;
696 smi_info->curr_msg = NULL;
697 if (msg->rsp[2] != 0) {
698 /* Error getting event, probably done. */
699 msg->done(msg);
700
701 /* Take off the event flag. */
702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 handle_flags(smi_info);
704 } else {
64959e2d 705 smi_inc_stat(smi_info, events);
1da177e4 706
c305e3d3
CM
707 /*
708 * Do this before we deliver the message
709 * because delivering the message releases the
710 * lock and something else can mess with the
711 * state.
712 */
1da177e4
LT
713 handle_flags(smi_info);
714
715 deliver_recv_msg(smi_info, msg);
716 }
717 break;
718 }
719
720 case SI_GETTING_MESSAGES:
721 {
722 smi_info->curr_msg->rsp_size
723 = smi_info->handlers->get_result(
724 smi_info->si_sm,
725 smi_info->curr_msg->rsp,
726 IPMI_MAX_MSG_LENGTH);
727
c305e3d3
CM
728 /*
729 * Do this here becase deliver_recv_msg() releases the
730 * lock, and a new message can be put in during the
731 * time the lock is released.
732 */
1da177e4
LT
733 msg = smi_info->curr_msg;
734 smi_info->curr_msg = NULL;
735 if (msg->rsp[2] != 0) {
736 /* Error getting event, probably done. */
737 msg->done(msg);
738
739 /* Take off the msg flag. */
740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 handle_flags(smi_info);
742 } else {
64959e2d 743 smi_inc_stat(smi_info, incoming_messages);
1da177e4 744
c305e3d3
CM
745 /*
746 * Do this before we deliver the message
747 * because delivering the message releases the
748 * lock and something else can mess with the
749 * state.
750 */
1da177e4
LT
751 handle_flags(smi_info);
752
753 deliver_recv_msg(smi_info, msg);
754 }
755 break;
756 }
757
d9b7e4f7 758 case SI_CHECKING_ENABLES:
1da177e4
LT
759 {
760 unsigned char msg[4];
d9b7e4f7 761 u8 enables;
95c97b59 762 bool irq_on;
1da177e4
LT
763
764 /* We got the flags from the SMI, now handle them. */
765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 if (msg[2] != 0) {
0849bfec
CM
767 dev_warn(smi_info->dev,
768 "Couldn't get irq info: %x.\n", msg[2]);
769 dev_warn(smi_info->dev,
770 "Maybe ok, but ipmi might run very slowly.\n");
1da177e4 771 smi_info->si_state = SI_NORMAL;
d9b7e4f7
CM
772 break;
773 }
95c97b59
CM
774 enables = current_global_enables(smi_info, 0, &irq_on);
775 if (smi_info->si_type == SI_BT)
776 /* BT has its own interrupt enable bit. */
777 check_bt_irq(smi_info, irq_on);
d9b7e4f7
CM
778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 /* Enables are not correct, fix them. */
1da177e4
LT
780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d9b7e4f7 782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
1da177e4
LT
783 smi_info->handlers->start_transaction(
784 smi_info->si_sm, msg, 3);
d9b7e4f7
CM
785 smi_info->si_state = SI_SETTING_ENABLES;
786 } else if (smi_info->supports_event_msg_buff) {
787 smi_info->curr_msg = ipmi_alloc_smi_msg();
788 if (!smi_info->curr_msg) {
789 smi_info->si_state = SI_NORMAL;
790 break;
791 }
792 start_getting_msg_queue(smi_info);
793 } else {
794 smi_info->si_state = SI_NORMAL;
1da177e4
LT
795 }
796 break;
797 }
798
d9b7e4f7 799 case SI_SETTING_ENABLES:
1da177e4
LT
800 {
801 unsigned char msg[4];
802
1da177e4 803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
d9b7e4f7 804 if (msg[2] != 0)
0849bfec 805 dev_warn(smi_info->dev,
d9b7e4f7
CM
806 "Could not set the global enables: 0x%x.\n",
807 msg[2]);
808
809 if (smi_info->supports_event_msg_buff) {
810 smi_info->curr_msg = ipmi_alloc_smi_msg();
811 if (!smi_info->curr_msg) {
812 smi_info->si_state = SI_NORMAL;
813 break;
814 }
815 start_getting_msg_queue(smi_info);
ee6cd5f8 816 } else {
d9b7e4f7 817 smi_info->si_state = SI_NORMAL;
ee6cd5f8 818 }
ee6cd5f8
CM
819 break;
820 }
1da177e4
LT
821 }
822}
823
c305e3d3
CM
824/*
825 * Called on timeouts and events. Timeouts should pass the elapsed
826 * time, interrupts should pass in zero. Must be called with
827 * si_lock held and interrupts disabled.
828 */
1da177e4
LT
829static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 int time)
831{
832 enum si_sm_result si_sm_result;
833
834 restart:
c305e3d3
CM
835 /*
836 * There used to be a loop here that waited a little while
837 * (around 25us) before giving up. That turned out to be
838 * pointless, the minimum delays I was seeing were in the 300us
839 * range, which is far too long to wait in an interrupt. So
840 * we just run until the state machine tells us something
841 * happened or it needs a delay.
842 */
1da177e4
LT
843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 time = 0;
845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 847
c305e3d3 848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 849 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
850
851 handle_transaction_done(smi_info);
852 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 853 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 854 smi_inc_stat(smi_info, hosed_count);
1da177e4 855
c305e3d3
CM
856 /*
857 * Do the before return_hosed_msg, because that
858 * releases the lock.
859 */
1da177e4
LT
860 smi_info->si_state = SI_NORMAL;
861 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
862 /*
863 * If we were handling a user message, format
864 * a response to send to the upper layer to
865 * tell it about the error.
866 */
4d7cbac7 867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
868 }
869 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
870 }
871
4ea18425
CM
872 /*
873 * We prefer handling attn over new messages. But don't do
874 * this if there is not yet an upper layer to handle anything.
875 */
a8df150c
CM
876 if (likely(smi_info->intf) &&
877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
1da177e4
LT
878 unsigned char msg[2];
879
a8df150c
CM
880 if (smi_info->si_state != SI_NORMAL) {
881 /*
882 * We got an ATTN, but we are doing something else.
883 * Handle the ATTN later.
884 */
885 smi_info->got_attn = true;
886 } else {
887 smi_info->got_attn = false;
888 smi_inc_stat(smi_info, attentions);
1da177e4 889
a8df150c
CM
890 /*
891 * Got a attn, send down a get message flags to see
892 * what's causing it. It would be better to handle
893 * this in the upper layer, but due to the way
894 * interrupts work with the SMI, that's not really
895 * possible.
896 */
897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
1da177e4 899
0cfec916 900 start_new_msg(smi_info, msg, 2);
a8df150c
CM
901 smi_info->si_state = SI_GETTING_FLAGS;
902 goto restart;
903 }
1da177e4
LT
904 }
905
906 /* If we are currently idle, try to start the next message. */
907 if (si_sm_result == SI_SM_IDLE) {
64959e2d 908 smi_inc_stat(smi_info, idles);
1da177e4
LT
909
910 si_sm_result = start_next_msg(smi_info);
911 if (si_sm_result != SI_SM_IDLE)
912 goto restart;
c305e3d3 913 }
1da177e4
LT
914
915 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
916 && (atomic_read(&smi_info->req_events))) {
917 /*
918 * We are idle and the upper layer requested that I fetch
919 * events, so do so.
920 */
55162fb1 921 atomic_set(&smi_info->req_events, 0);
1da177e4 922
d9b7e4f7
CM
923 /*
924 * Take this opportunity to check the interrupt and
925 * message enable state for the BMC. The BMC can be
926 * asynchronously reset, and may thus get interrupts
927 * disable and messages disabled.
928 */
929 if (smi_info->supports_event_msg_buff || smi_info->irq) {
0cfec916 930 start_check_enables(smi_info, true);
d9b7e4f7
CM
931 } else {
932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 if (!smi_info->curr_msg)
934 goto out;
1da177e4 935
d9b7e4f7
CM
936 start_getting_events(smi_info);
937 }
1da177e4
LT
938 goto restart;
939 }
314ef52f
CM
940
941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 /* Ok it if fails, the timer will just go off. */
943 if (del_timer(&smi_info->si_timer))
944 smi_info->timer_running = false;
945 }
946
55162fb1 947 out:
1da177e4
LT
948 return si_sm_result;
949}
950
89986496
CM
951static void check_start_timer_thread(struct smi_info *smi_info)
952{
953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956 if (smi_info->thread)
957 wake_up_process(smi_info->thread);
958
959 start_next_msg(smi_info);
960 smi_event_handler(smi_info, 0);
961 }
962}
963
82802f96 964static void flush_messages(void *send_info)
e45361d7 965{
82802f96 966 struct smi_info *smi_info = send_info;
e45361d7
HK
967 enum si_sm_result result;
968
969 /*
970 * Currently, this function is called only in run-to-completion
971 * mode. This means we are single-threaded, no need for locks.
972 */
973 result = smi_event_handler(smi_info, 0);
974 while (result != SI_SM_IDLE) {
975 udelay(SI_SHORT_TIMEOUT_USEC);
976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 }
978}
979
1da177e4 980static void sender(void *send_info,
99ab32f3 981 struct ipmi_smi_msg *msg)
1da177e4
LT
982{
983 struct smi_info *smi_info = send_info;
1da177e4 984 unsigned long flags;
1da177e4 985
f93aae9f 986 debug_timestamp("Enqueue");
1da177e4
LT
987
988 if (smi_info->run_to_completion) {
bda4c30a 989 /*
82802f96
HK
990 * If we are running to completion, start it. Upper
991 * layer will call flush_messages to clear it out.
bda4c30a 992 */
9f812704 993 smi_info->waiting_msg = msg;
1da177e4 994 return;
1da177e4 995 }
1da177e4 996
f60adf42 997 spin_lock_irqsave(&smi_info->si_lock, flags);
1d86e29b
CM
998 /*
999 * The following two lines don't need to be under the lock for
1000 * the lock's sake, but they do need SMP memory barriers to
1001 * avoid getting things out of order. We are already claiming
1002 * the lock, anyway, so just do it under the lock to avoid the
1003 * ordering problem.
1004 */
1005 BUG_ON(smi_info->waiting_msg);
1006 smi_info->waiting_msg = msg;
89986496 1007 check_start_timer_thread(smi_info);
bda4c30a 1008 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1009}
1010
7aefac26 1011static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1da177e4
LT
1012{
1013 struct smi_info *smi_info = send_info;
1da177e4
LT
1014
1015 smi_info->run_to_completion = i_run_to_completion;
e45361d7
HK
1016 if (i_run_to_completion)
1017 flush_messages(smi_info);
1da177e4
LT
1018}
1019
ae74e823
MW
1020/*
1021 * Use -1 in the nsec value of the busy waiting timespec to tell that
1022 * we are spinning in kipmid looking for something and not delaying
1023 * between checks
1024 */
48862ea2 1025static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
ae74e823
MW
1026{
1027 ts->tv_nsec = -1;
1028}
48862ea2 1029static inline int ipmi_si_is_busy(struct timespec64 *ts)
ae74e823
MW
1030{
1031 return ts->tv_nsec != -1;
1032}
1033
cc4cbe90
AB
1034static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 const struct smi_info *smi_info,
48862ea2 1036 struct timespec64 *busy_until)
ae74e823
MW
1037{
1038 unsigned int max_busy_us = 0;
1039
1040 if (smi_info->intf_num < num_max_busy_us)
1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 ipmi_si_set_not_busy(busy_until);
1044 else if (!ipmi_si_is_busy(busy_until)) {
48862ea2
JS
1045 getnstimeofday64(busy_until);
1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
ae74e823 1047 } else {
48862ea2
JS
1048 struct timespec64 now;
1049
1050 getnstimeofday64(&now);
1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
ae74e823
MW
1052 ipmi_si_set_not_busy(busy_until);
1053 return 0;
1054 }
1055 }
1056 return 1;
1057}
1058
1059
1060/*
1061 * A busy-waiting loop for speeding up IPMI operation.
1062 *
1063 * Lousy hardware makes this hard. This is only enabled for systems
1064 * that are not BT and do not have interrupts. It starts spinning
1065 * when an operation is complete or until max_busy tells it to stop
1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1067 * Documentation/IPMI.txt for details.
1068 */
a9a2c44f
CM
1069static int ipmi_thread(void *data)
1070{
1071 struct smi_info *smi_info = data;
e9a705a0 1072 unsigned long flags;
a9a2c44f 1073 enum si_sm_result smi_result;
48862ea2 1074 struct timespec64 busy_until;
a9a2c44f 1075
ae74e823 1076 ipmi_si_set_not_busy(&busy_until);
8698a745 1077 set_user_nice(current, MAX_NICE);
e9a705a0 1078 while (!kthread_should_stop()) {
ae74e823
MW
1079 int busy_wait;
1080
a9a2c44f 1081 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1082 smi_result = smi_event_handler(smi_info, 0);
48e8ac29
BS
1083
1084 /*
1085 * If the driver is doing something, there is a possible
1086 * race with the timer. If the timer handler see idle,
1087 * and the thread here sees something else, the timer
1088 * handler won't restart the timer even though it is
1089 * required. So start it here if necessary.
1090 */
1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
a9a2c44f 1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 &busy_until);
c305e3d3
CM
1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 ; /* do nothing */
ae74e823 1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1100 schedule();
89986496
CM
1101 else if (smi_result == SI_SM_IDLE) {
1102 if (atomic_read(&smi_info->need_watch)) {
1103 schedule_timeout_interruptible(100);
1104 } else {
1105 /* Wait to be woken up when we are needed. */
1106 __set_current_state(TASK_INTERRUPTIBLE);
1107 schedule();
1108 }
1109 } else
8d1f66dc 1110 schedule_timeout_interruptible(1);
a9a2c44f 1111 }
a9a2c44f
CM
1112 return 0;
1113}
1114
1115
1da177e4
LT
1116static void poll(void *send_info)
1117{
1118 struct smi_info *smi_info = send_info;
f60adf42 1119 unsigned long flags = 0;
7aefac26 1120 bool run_to_completion = smi_info->run_to_completion;
1da177e4 1121
15c62e10
CM
1122 /*
1123 * Make sure there is some delay in the poll loop so we can
1124 * drive time forward and timeout things.
1125 */
1126 udelay(10);
f60adf42
CM
1127 if (!run_to_completion)
1128 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1129 smi_event_handler(smi_info, 10);
f60adf42
CM
1130 if (!run_to_completion)
1131 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1132}
1133
1134static void request_events(void *send_info)
1135{
1136 struct smi_info *smi_info = send_info;
1137
b874b985 1138 if (!smi_info->has_event_buffer)
b361e27b
CM
1139 return;
1140
1da177e4
LT
1141 atomic_set(&smi_info->req_events, 1);
1142}
1143
7aefac26 1144static void set_need_watch(void *send_info, bool enable)
89986496
CM
1145{
1146 struct smi_info *smi_info = send_info;
1147 unsigned long flags;
1148
1149 atomic_set(&smi_info->need_watch, enable);
1150 spin_lock_irqsave(&smi_info->si_lock, flags);
1151 check_start_timer_thread(smi_info);
1152 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153}
1154
0c8204b3 1155static int initialized;
1da177e4 1156
1da177e4
LT
1157static void smi_timeout(unsigned long data)
1158{
1159 struct smi_info *smi_info = (struct smi_info *) data;
1160 enum si_sm_result smi_result;
1161 unsigned long flags;
1162 unsigned long jiffies_now;
c4edff1c 1163 long time_diff;
3326f4f2 1164 long timeout;
1da177e4 1165
1da177e4 1166 spin_lock_irqsave(&(smi_info->si_lock), flags);
f93aae9f
JS
1167 debug_timestamp("Timer");
1168
1da177e4 1169 jiffies_now = jiffies;
c4edff1c 1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1171 * SI_USEC_PER_JIFFY);
1172 smi_result = smi_event_handler(smi_info, time_diff);
1173
b0defcdb 1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1175 /* Running with interrupts, only do long timeouts. */
3326f4f2 1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1177 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1178 goto do_mod_timer;
1da177e4
LT
1179 }
1180
c305e3d3
CM
1181 /*
1182 * If the state machine asks for a short delay, then shorten
1183 * the timer timeout.
1184 */
1da177e4 1185 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1186 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1187 timeout = jiffies + 1;
1da177e4 1188 } else {
64959e2d 1189 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1190 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1191 }
1192
3326f4f2
MG
1193 do_mod_timer:
1194 if (smi_result != SI_SM_IDLE)
48e8ac29
BS
1195 smi_mod_timer(smi_info, timeout);
1196 else
1197 smi_info->timer_running = false;
1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1da177e4
LT
1199}
1200
7d12e780 1201static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1202{
1203 struct smi_info *smi_info = data;
1204 unsigned long flags;
1da177e4
LT
1205
1206 spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
64959e2d 1208 smi_inc_stat(smi_info, interrupts);
1da177e4 1209
f93aae9f
JS
1210 debug_timestamp("Interrupt");
1211
1da177e4 1212 smi_event_handler(smi_info, 0);
1da177e4
LT
1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 return IRQ_HANDLED;
1215}
1216
7d12e780 1217static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1218{
1219 struct smi_info *smi_info = data;
1220 /* We need to clear the IRQ flag for the BT interface. */
1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1224 return si_irq_handler(irq, data);
9dbf68f9
CM
1225}
1226
453823ba
CM
1227static int smi_start_processing(void *send_info,
1228 ipmi_smi_t intf)
1229{
1230 struct smi_info *new_smi = send_info;
a51f4a81 1231 int enable = 0;
453823ba
CM
1232
1233 new_smi->intf = intf;
1234
1235 /* Set up the timer that drives the interface. */
1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
48e8ac29 1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
453823ba 1238
27f972d3
JS
1239 /* Try to claim any interrupts. */
1240 if (new_smi->irq_setup)
1241 new_smi->irq_setup(new_smi);
1242
a51f4a81
CM
1243 /*
1244 * Check if the user forcefully enabled the daemon.
1245 */
1246 if (new_smi->intf_num < num_force_kipmid)
1247 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1248 /*
1249 * The BT interface is efficient enough to not need a thread,
1250 * and there is no need for a thread if we have interrupts.
1251 */
c305e3d3 1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1253 enable = 1;
1254
1255 if (enable) {
453823ba
CM
1256 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 "kipmi%d", new_smi->intf_num);
1258 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1259 dev_notice(new_smi->dev, "Could not start"
1260 " kernel thread due to error %ld, only using"
1261 " timers to drive the interface\n",
1262 PTR_ERR(new_smi->thread));
453823ba
CM
1263 new_smi->thread = NULL;
1264 }
1265 }
1266
1267 return 0;
1268}
9dbf68f9 1269
16f4232c
ZY
1270static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271{
1272 struct smi_info *smi = send_info;
1273
1274 data->addr_src = smi->addr_source;
1275 data->dev = smi->dev;
1276 data->addr_info = smi->addr_info;
1277 get_device(smi->dev);
1278
1279 return 0;
1280}
1281
7aefac26 1282static void set_maintenance_mode(void *send_info, bool enable)
b9675136
CM
1283{
1284 struct smi_info *smi_info = send_info;
1285
1286 if (!enable)
1287 atomic_set(&smi_info->req_events, 0);
1288}
1289
81d02b7f 1290static const struct ipmi_smi_handlers handlers = {
1da177e4 1291 .owner = THIS_MODULE,
453823ba 1292 .start_processing = smi_start_processing,
16f4232c 1293 .get_smi_info = get_smi_info,
1da177e4
LT
1294 .sender = sender,
1295 .request_events = request_events,
89986496 1296 .set_need_watch = set_need_watch,
b9675136 1297 .set_maintenance_mode = set_maintenance_mode,
1da177e4 1298 .set_run_to_completion = set_run_to_completion,
82802f96 1299 .flush_messages = flush_messages,
1da177e4
LT
1300 .poll = poll,
1301};
1302
c305e3d3
CM
1303/*
1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1306 */
1da177e4 1307
b0defcdb 1308static LIST_HEAD(smi_infos);
d6dfd131 1309static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1310static int smi_num; /* Used to sequence the SMIs */
1da177e4 1311
1da177e4 1312#define DEFAULT_REGSPACING 1
dba9b4f6 1313#define DEFAULT_REGSIZE 1
1da177e4 1314
d941aeae 1315#ifdef CONFIG_ACPI
fedb25ea 1316static bool si_tryacpi = true;
d941aeae
CM
1317#endif
1318#ifdef CONFIG_DMI
fedb25ea 1319static bool si_trydmi = true;
d941aeae 1320#endif
fedb25ea 1321static bool si_tryplatform = true;
f2afae46 1322#ifdef CONFIG_PCI
fedb25ea 1323static bool si_trypci = true;
f2afae46 1324#endif
0dfe6e7e 1325static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1da177e4
LT
1326static char *si_type[SI_MAX_PARMS];
1327#define MAX_SI_TYPE_STR 30
1328static char si_type_str[MAX_SI_TYPE_STR];
1329static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1330static unsigned int num_addrs;
1da177e4 1331static unsigned int ports[SI_MAX_PARMS];
64a6f950 1332static unsigned int num_ports;
1da177e4 1333static int irqs[SI_MAX_PARMS];
64a6f950 1334static unsigned int num_irqs;
1da177e4 1335static int regspacings[SI_MAX_PARMS];
64a6f950 1336static unsigned int num_regspacings;
1da177e4 1337static int regsizes[SI_MAX_PARMS];
64a6f950 1338static unsigned int num_regsizes;
1da177e4 1339static int regshifts[SI_MAX_PARMS];
64a6f950 1340static unsigned int num_regshifts;
2f95d513 1341static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1342static unsigned int num_slave_addrs;
1da177e4 1343
b361e27b
CM
1344#define IPMI_IO_ADDR_SPACE 0
1345#define IPMI_MEM_ADDR_SPACE 1
99ee6735 1346static const char * const addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1347
1348static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1352 " Documentation/IPMI.txt in the kernel sources for the"
1353 " gory details.");
1da177e4 1354
d941aeae
CM
1355#ifdef CONFIG_ACPI
1356module_param_named(tryacpi, si_tryacpi, bool, 0);
1357MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 " default scan of the interfaces identified via ACPI");
1359#endif
1360#ifdef CONFIG_DMI
1361module_param_named(trydmi, si_trydmi, bool, 0);
1362MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 " default scan of the interfaces identified via DMI");
1364#endif
f2afae46
CM
1365module_param_named(tryplatform, si_tryplatform, bool, 0);
1366MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1367 " default scan of the interfaces identified via platform"
1368 " interfaces like openfirmware");
1369#ifdef CONFIG_PCI
1370module_param_named(trypci, si_trypci, bool, 0);
1371MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via pci");
1373#endif
1da177e4
LT
1374module_param_named(trydefaults, si_trydefaults, bool, 0);
1375MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376 " default scan of the KCS and SMIC interface at the standard"
1377 " address");
1378module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380 " interface separated by commas. The types are 'kcs',"
1381 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1382 " the first interface to kcs and the second to bt");
64a6f950 1383module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1384MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385 " addresses separated by commas. Only use if an interface"
1386 " is in memory. Otherwise, set it to zero or leave"
1387 " it blank.");
64a6f950 1388module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1389MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390 " addresses separated by commas. Only use if an interface"
1391 " is a port. Otherwise, set it to zero or leave"
1392 " it blank.");
1393module_param_array(irqs, int, &num_irqs, 0);
1394MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395 " addresses separated by commas. Only use if an interface"
1396 " has an interrupt. Otherwise, set it to zero or leave"
1397 " it blank.");
1398module_param_array(regspacings, int, &num_regspacings, 0);
1399MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400 " and each successive register used by the interface. For"
1401 " instance, if the start address is 0xca2 and the spacing"
1402 " is 2, then the second address is at 0xca4. Defaults"
1403 " to 1.");
1404module_param_array(regsizes, int, &num_regsizes, 0);
1405MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1408 " the 8-bit IPMI register has to be read from a larger"
1409 " register.");
1410module_param_array(regshifts, int, &num_regshifts, 0);
1411MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412 " IPMI register, in bits. For instance, if the data"
1413 " is read from a 32-bit word and the IPMI data is in"
1414 " bit 8-15, then the shift would be 8");
1415module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417 " the controller. Normally this is 0x20, but can be"
1418 " overridden by this parm. This is an array indexed"
1419 " by interface number.");
a51f4a81
CM
1420module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422 " disabled(0). Normally the IPMI driver auto-detects"
1423 " this, but the value may be overridden by this parm.");
7aefac26 1424module_param(unload_when_empty, bool, 0);
b361e27b
CM
1425MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426 " specified or found, default is 1. Setting to 0"
1427 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1428module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429MODULE_PARM_DESC(kipmid_max_busy_us,
1430 "Max time (in microseconds) to busy-wait for IPMI data before"
1431 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1433
1434
b0defcdb 1435static void std_irq_cleanup(struct smi_info *info)
1da177e4 1436{
b0defcdb
CM
1437 if (info->si_type == SI_BT)
1438 /* Disable the interrupt in the BT interface. */
1439 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440 free_irq(info->irq, info);
1da177e4 1441}
1da177e4
LT
1442
1443static int std_irq_setup(struct smi_info *info)
1444{
1445 int rv;
1446
b0defcdb 1447 if (!info->irq)
1da177e4
LT
1448 return 0;
1449
9dbf68f9
CM
1450 if (info->si_type == SI_BT) {
1451 rv = request_irq(info->irq,
1452 si_bt_irq_handler,
aa5b2bab 1453 IRQF_SHARED,
9dbf68f9
CM
1454 DEVICE_NAME,
1455 info);
b0defcdb 1456 if (!rv)
9dbf68f9
CM
1457 /* Enable the interrupt in the BT interface. */
1458 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460 } else
1461 rv = request_irq(info->irq,
1462 si_irq_handler,
aa5b2bab 1463 IRQF_SHARED,
9dbf68f9
CM
1464 DEVICE_NAME,
1465 info);
1da177e4 1466 if (rv) {
279fbd0c
MS
1467 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468 " running polled\n",
1469 DEVICE_NAME, info->irq);
1da177e4
LT
1470 info->irq = 0;
1471 } else {
b0defcdb 1472 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1473 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1474 }
1475
1476 return rv;
1477}
1478
81d02b7f 1479static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1da177e4 1480{
b0defcdb 1481 unsigned int addr = io->addr_data;
1da177e4 1482
b0defcdb 1483 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1484}
1485
81d02b7f 1486static void port_outb(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1487 unsigned char b)
1488{
b0defcdb 1489 unsigned int addr = io->addr_data;
1da177e4 1490
b0defcdb 1491 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1492}
1493
81d02b7f 1494static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1da177e4 1495{
b0defcdb 1496 unsigned int addr = io->addr_data;
1da177e4 1497
b0defcdb 1498 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1499}
1500
81d02b7f 1501static void port_outw(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1502 unsigned char b)
1503{
b0defcdb 1504 unsigned int addr = io->addr_data;
1da177e4 1505
b0defcdb 1506 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1507}
1508
81d02b7f 1509static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1da177e4 1510{
b0defcdb 1511 unsigned int addr = io->addr_data;
1da177e4 1512
b0defcdb 1513 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1514}
1515
81d02b7f 1516static void port_outl(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1517 unsigned char b)
1518{
b0defcdb 1519 unsigned int addr = io->addr_data;
1da177e4 1520
b0defcdb 1521 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1522}
1523
1524static void port_cleanup(struct smi_info *info)
1525{
b0defcdb 1526 unsigned int addr = info->io.addr_data;
d61a3ead 1527 int idx;
1da177e4 1528
b0defcdb 1529 if (addr) {
c305e3d3 1530 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1531 release_region(addr + idx * info->io.regspacing,
1532 info->io.regsize);
1da177e4 1533 }
1da177e4
LT
1534}
1535
1536static int port_setup(struct smi_info *info)
1537{
b0defcdb 1538 unsigned int addr = info->io.addr_data;
d61a3ead 1539 int idx;
1da177e4 1540
b0defcdb 1541 if (!addr)
1da177e4
LT
1542 return -ENODEV;
1543
1544 info->io_cleanup = port_cleanup;
1545
c305e3d3
CM
1546 /*
1547 * Figure out the actual inb/inw/inl/etc routine to use based
1548 * upon the register size.
1549 */
1da177e4
LT
1550 switch (info->io.regsize) {
1551 case 1:
1552 info->io.inputb = port_inb;
1553 info->io.outputb = port_outb;
1554 break;
1555 case 2:
1556 info->io.inputb = port_inw;
1557 info->io.outputb = port_outw;
1558 break;
1559 case 4:
1560 info->io.inputb = port_inl;
1561 info->io.outputb = port_outl;
1562 break;
1563 default:
279fbd0c
MS
1564 dev_warn(info->dev, "Invalid register size: %d\n",
1565 info->io.regsize);
1da177e4
LT
1566 return -EINVAL;
1567 }
1568
c305e3d3
CM
1569 /*
1570 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1571 * tables. This causes problems when trying to register the
1572 * entire I/O region. Therefore we must register each I/O
1573 * port separately.
1574 */
c305e3d3 1575 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1576 if (request_region(addr + idx * info->io.regspacing,
1577 info->io.regsize, DEVICE_NAME) == NULL) {
1578 /* Undo allocations */
1579 while (idx--) {
1580 release_region(addr + idx * info->io.regspacing,
1581 info->io.regsize);
1582 }
1583 return -EIO;
1584 }
1585 }
1da177e4
LT
1586 return 0;
1587}
1588
81d02b7f
CM
1589static unsigned char intf_mem_inb(const struct si_sm_io *io,
1590 unsigned int offset)
1da177e4
LT
1591{
1592 return readb((io->addr)+(offset * io->regspacing));
1593}
1594
81d02b7f
CM
1595static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1596 unsigned char b)
1da177e4
LT
1597{
1598 writeb(b, (io->addr)+(offset * io->regspacing));
1599}
1600
81d02b7f
CM
1601static unsigned char intf_mem_inw(const struct si_sm_io *io,
1602 unsigned int offset)
1da177e4
LT
1603{
1604 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1605 & 0xff;
1da177e4
LT
1606}
1607
81d02b7f
CM
1608static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1609 unsigned char b)
1da177e4
LT
1610{
1611 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1612}
1613
81d02b7f
CM
1614static unsigned char intf_mem_inl(const struct si_sm_io *io,
1615 unsigned int offset)
1da177e4
LT
1616{
1617 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1618 & 0xff;
1da177e4
LT
1619}
1620
81d02b7f
CM
1621static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1622 unsigned char b)
1da177e4
LT
1623{
1624 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1625}
1626
1627#ifdef readq
81d02b7f 1628static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1629{
1630 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1631 & 0xff;
1da177e4
LT
1632}
1633
81d02b7f 1634static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1635 unsigned char b)
1636{
1637 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1638}
1639#endif
1640
1641static void mem_cleanup(struct smi_info *info)
1642{
b0defcdb 1643 unsigned long addr = info->io.addr_data;
1da177e4
LT
1644 int mapsize;
1645
1646 if (info->io.addr) {
1647 iounmap(info->io.addr);
1648
1649 mapsize = ((info->io_size * info->io.regspacing)
1650 - (info->io.regspacing - info->io.regsize));
1651
b0defcdb 1652 release_mem_region(addr, mapsize);
1da177e4 1653 }
1da177e4
LT
1654}
1655
1656static int mem_setup(struct smi_info *info)
1657{
b0defcdb 1658 unsigned long addr = info->io.addr_data;
1da177e4
LT
1659 int mapsize;
1660
b0defcdb 1661 if (!addr)
1da177e4
LT
1662 return -ENODEV;
1663
1664 info->io_cleanup = mem_cleanup;
1665
c305e3d3
CM
1666 /*
1667 * Figure out the actual readb/readw/readl/etc routine to use based
1668 * upon the register size.
1669 */
1da177e4
LT
1670 switch (info->io.regsize) {
1671 case 1:
546cfdf4
AD
1672 info->io.inputb = intf_mem_inb;
1673 info->io.outputb = intf_mem_outb;
1da177e4
LT
1674 break;
1675 case 2:
546cfdf4
AD
1676 info->io.inputb = intf_mem_inw;
1677 info->io.outputb = intf_mem_outw;
1da177e4
LT
1678 break;
1679 case 4:
546cfdf4
AD
1680 info->io.inputb = intf_mem_inl;
1681 info->io.outputb = intf_mem_outl;
1da177e4
LT
1682 break;
1683#ifdef readq
1684 case 8:
1685 info->io.inputb = mem_inq;
1686 info->io.outputb = mem_outq;
1687 break;
1688#endif
1689 default:
279fbd0c
MS
1690 dev_warn(info->dev, "Invalid register size: %d\n",
1691 info->io.regsize);
1da177e4
LT
1692 return -EINVAL;
1693 }
1694
c305e3d3
CM
1695 /*
1696 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1697 * unusual looking calculation, but it avoids claiming any
1698 * more memory than it has to. It will claim everything
1699 * between the first address to the end of the last full
c305e3d3
CM
1700 * register.
1701 */
1da177e4
LT
1702 mapsize = ((info->io_size * info->io.regspacing)
1703 - (info->io.regspacing - info->io.regsize));
1704
b0defcdb 1705 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1706 return -EIO;
1707
b0defcdb 1708 info->io.addr = ioremap(addr, mapsize);
1da177e4 1709 if (info->io.addr == NULL) {
b0defcdb 1710 release_mem_region(addr, mapsize);
1da177e4
LT
1711 return -EIO;
1712 }
1713 return 0;
1714}
1715
b361e27b
CM
1716/*
1717 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1718 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1719 * Options are:
1720 * rsp=<regspacing>
1721 * rsi=<regsize>
1722 * rsh=<regshift>
1723 * irq=<irq>
1724 * ipmb=<ipmb addr>
1725 */
1726enum hotmod_op { HM_ADD, HM_REMOVE };
1727struct hotmod_vals {
99ee6735
LC
1728 const char *name;
1729 const int val;
b361e27b 1730};
99ee6735
LC
1731
1732static const struct hotmod_vals hotmod_ops[] = {
b361e27b
CM
1733 { "add", HM_ADD },
1734 { "remove", HM_REMOVE },
1735 { NULL }
1736};
99ee6735
LC
1737
1738static const struct hotmod_vals hotmod_si[] = {
b361e27b
CM
1739 { "kcs", SI_KCS },
1740 { "smic", SI_SMIC },
1741 { "bt", SI_BT },
1742 { NULL }
1743};
99ee6735
LC
1744
1745static const struct hotmod_vals hotmod_as[] = {
b361e27b
CM
1746 { "mem", IPMI_MEM_ADDR_SPACE },
1747 { "i/o", IPMI_IO_ADDR_SPACE },
1748 { NULL }
1749};
1d5636cc 1750
99ee6735
LC
1751static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1752 char **curr)
b361e27b
CM
1753{
1754 char *s;
1755 int i;
1756
1757 s = strchr(*curr, ',');
1758 if (!s) {
1759 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1760 return -EINVAL;
1761 }
1762 *s = '\0';
1763 s++;
ceb51ca8 1764 for (i = 0; v[i].name; i++) {
1d5636cc 1765 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1766 *val = v[i].val;
1767 *curr = s;
1768 return 0;
1769 }
1770 }
1771
1772 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1773 return -EINVAL;
1774}
1775
1d5636cc
CM
1776static int check_hotmod_int_op(const char *curr, const char *option,
1777 const char *name, int *val)
1778{
1779 char *n;
1780
1781 if (strcmp(curr, name) == 0) {
1782 if (!option) {
1783 printk(KERN_WARNING PFX
1784 "No option given for '%s'\n",
1785 curr);
1786 return -EINVAL;
1787 }
1788 *val = simple_strtoul(option, &n, 0);
1789 if ((*n != '\0') || (*option == '\0')) {
1790 printk(KERN_WARNING PFX
1791 "Bad option given for '%s'\n",
1792 curr);
1793 return -EINVAL;
1794 }
1795 return 1;
1796 }
1797 return 0;
1798}
1799
de5e2ddf
ED
1800static struct smi_info *smi_info_alloc(void)
1801{
1802 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1803
f60adf42 1804 if (info)
de5e2ddf 1805 spin_lock_init(&info->si_lock);
de5e2ddf
ED
1806 return info;
1807}
1808
b361e27b
CM
1809static int hotmod_handler(const char *val, struct kernel_param *kp)
1810{
1811 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1812 int rv;
b361e27b
CM
1813 char *next, *curr, *s, *n, *o;
1814 enum hotmod_op op;
1815 enum si_type si_type;
1816 int addr_space;
1817 unsigned long addr;
1818 int regspacing;
1819 int regsize;
1820 int regshift;
1821 int irq;
1822 int ipmb;
1823 int ival;
1d5636cc 1824 int len;
b361e27b
CM
1825 struct smi_info *info;
1826
1827 if (!str)
1828 return -ENOMEM;
1829
1830 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1831 len = strlen(str);
1832 ival = len - 1;
b361e27b
CM
1833 while ((ival >= 0) && isspace(str[ival])) {
1834 str[ival] = '\0';
1835 ival--;
1836 }
1837
1838 for (curr = str; curr; curr = next) {
1839 regspacing = 1;
1840 regsize = 1;
1841 regshift = 0;
1842 irq = 0;
2f95d513 1843 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1844
1845 next = strchr(curr, ':');
1846 if (next) {
1847 *next = '\0';
1848 next++;
1849 }
1850
1851 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1852 if (rv)
1853 break;
1854 op = ival;
1855
1856 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1857 if (rv)
1858 break;
1859 si_type = ival;
1860
1861 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1862 if (rv)
1863 break;
1864
1865 s = strchr(curr, ',');
1866 if (s) {
1867 *s = '\0';
1868 s++;
1869 }
1870 addr = simple_strtoul(curr, &n, 0);
1871 if ((*n != '\0') || (*curr == '\0')) {
1872 printk(KERN_WARNING PFX "Invalid hotmod address"
1873 " '%s'\n", curr);
1874 break;
1875 }
1876
1877 while (s) {
1878 curr = s;
1879 s = strchr(curr, ',');
1880 if (s) {
1881 *s = '\0';
1882 s++;
1883 }
1884 o = strchr(curr, '=');
1885 if (o) {
1886 *o = '\0';
1887 o++;
1888 }
1d5636cc
CM
1889 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1890 if (rv < 0)
b361e27b 1891 goto out;
1d5636cc
CM
1892 else if (rv)
1893 continue;
1894 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1895 if (rv < 0)
1896 goto out;
1897 else if (rv)
1898 continue;
1899 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1900 if (rv < 0)
1901 goto out;
1902 else if (rv)
1903 continue;
1904 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1905 if (rv < 0)
1906 goto out;
1907 else if (rv)
1908 continue;
1909 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1910 if (rv < 0)
1911 goto out;
1912 else if (rv)
1913 continue;
1914
1915 rv = -EINVAL;
1916 printk(KERN_WARNING PFX
1917 "Invalid hotmod option '%s'\n",
1918 curr);
1919 goto out;
b361e27b
CM
1920 }
1921
1922 if (op == HM_ADD) {
de5e2ddf 1923 info = smi_info_alloc();
b361e27b
CM
1924 if (!info) {
1925 rv = -ENOMEM;
1926 goto out;
1927 }
1928
5fedc4a2 1929 info->addr_source = SI_HOTMOD;
b361e27b
CM
1930 info->si_type = si_type;
1931 info->io.addr_data = addr;
1932 info->io.addr_type = addr_space;
1933 if (addr_space == IPMI_MEM_ADDR_SPACE)
1934 info->io_setup = mem_setup;
1935 else
1936 info->io_setup = port_setup;
1937
1938 info->io.addr = NULL;
1939 info->io.regspacing = regspacing;
1940 if (!info->io.regspacing)
1941 info->io.regspacing = DEFAULT_REGSPACING;
1942 info->io.regsize = regsize;
1943 if (!info->io.regsize)
1944 info->io.regsize = DEFAULT_REGSPACING;
1945 info->io.regshift = regshift;
1946 info->irq = irq;
1947 if (info->irq)
1948 info->irq_setup = std_irq_setup;
1949 info->slave_addr = ipmb;
1950
d02b3709
CM
1951 rv = add_smi(info);
1952 if (rv) {
7faefea6 1953 kfree(info);
d02b3709
CM
1954 goto out;
1955 }
1956 rv = try_smi_init(info);
1957 if (rv) {
1958 cleanup_one_si(info);
1959 goto out;
7faefea6 1960 }
b361e27b
CM
1961 } else {
1962 /* remove */
1963 struct smi_info *e, *tmp_e;
1964
1965 mutex_lock(&smi_infos_lock);
1966 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1967 if (e->io.addr_type != addr_space)
1968 continue;
1969 if (e->si_type != si_type)
1970 continue;
1971 if (e->io.addr_data == addr)
1972 cleanup_one_si(e);
1973 }
1974 mutex_unlock(&smi_infos_lock);
1975 }
1976 }
1d5636cc 1977 rv = len;
b361e27b
CM
1978 out:
1979 kfree(str);
1980 return rv;
1981}
b0defcdb 1982
2223cbec 1983static int hardcode_find_bmc(void)
1da177e4 1984{
a1e9c9dd 1985 int ret = -ENODEV;
b0defcdb 1986 int i;
1da177e4
LT
1987 struct smi_info *info;
1988
b0defcdb
CM
1989 for (i = 0; i < SI_MAX_PARMS; i++) {
1990 if (!ports[i] && !addrs[i])
1991 continue;
1da177e4 1992
de5e2ddf 1993 info = smi_info_alloc();
b0defcdb 1994 if (!info)
a1e9c9dd 1995 return -ENOMEM;
1da177e4 1996
5fedc4a2 1997 info->addr_source = SI_HARDCODED;
279fbd0c 1998 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1999
1d5636cc 2000 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 2001 info->si_type = SI_KCS;
1d5636cc 2002 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 2003 info->si_type = SI_SMIC;
1d5636cc 2004 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
2005 info->si_type = SI_BT;
2006 } else {
279fbd0c 2007 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
2008 "for interface %d, was invalid: %s\n",
2009 i, si_type[i]);
2010 kfree(info);
2011 continue;
2012 }
1da177e4 2013
b0defcdb
CM
2014 if (ports[i]) {
2015 /* An I/O port */
2016 info->io_setup = port_setup;
2017 info->io.addr_data = ports[i];
2018 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019 } else if (addrs[i]) {
2020 /* A memory port */
2021 info->io_setup = mem_setup;
2022 info->io.addr_data = addrs[i];
2023 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024 } else {
279fbd0c
MS
2025 printk(KERN_WARNING PFX "Interface type specified "
2026 "for interface %d, but port and address were "
2027 "not set or set to zero.\n", i);
b0defcdb
CM
2028 kfree(info);
2029 continue;
2030 }
1da177e4 2031
b0defcdb
CM
2032 info->io.addr = NULL;
2033 info->io.regspacing = regspacings[i];
2034 if (!info->io.regspacing)
2035 info->io.regspacing = DEFAULT_REGSPACING;
2036 info->io.regsize = regsizes[i];
2037 if (!info->io.regsize)
2038 info->io.regsize = DEFAULT_REGSPACING;
2039 info->io.regshift = regshifts[i];
2040 info->irq = irqs[i];
2041 if (info->irq)
2042 info->irq_setup = std_irq_setup;
2f95d513 2043 info->slave_addr = slave_addrs[i];
1da177e4 2044
7faefea6 2045 if (!add_smi(info)) {
2407d77a
MG
2046 if (try_smi_init(info))
2047 cleanup_one_si(info);
a1e9c9dd 2048 ret = 0;
7faefea6
YL
2049 } else {
2050 kfree(info);
2051 }
b0defcdb 2052 }
a1e9c9dd 2053 return ret;
b0defcdb 2054}
1da177e4 2055
8466361a 2056#ifdef CONFIG_ACPI
1da177e4 2057
c305e3d3
CM
2058/*
2059 * Once we get an ACPI failure, we don't try any more, because we go
2060 * through the tables sequentially. Once we don't find a table, there
2061 * are no more.
2062 */
0c8204b3 2063static int acpi_failure;
1da177e4
LT
2064
2065/* For GPE-type interrupts. */
8b6cd8ad
LM
2066static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2067 u32 gpe_number, void *context)
1da177e4
LT
2068{
2069 struct smi_info *smi_info = context;
2070 unsigned long flags;
1da177e4
LT
2071
2072 spin_lock_irqsave(&(smi_info->si_lock), flags);
2073
64959e2d 2074 smi_inc_stat(smi_info, interrupts);
1da177e4 2075
f93aae9f
JS
2076 debug_timestamp("ACPI_GPE");
2077
1da177e4 2078 smi_event_handler(smi_info, 0);
1da177e4
LT
2079 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2080
2081 return ACPI_INTERRUPT_HANDLED;
2082}
2083
b0defcdb
CM
2084static void acpi_gpe_irq_cleanup(struct smi_info *info)
2085{
2086 if (!info->irq)
2087 return;
2088
2089 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2090}
2091
1da177e4
LT
2092static int acpi_gpe_irq_setup(struct smi_info *info)
2093{
2094 acpi_status status;
2095
b0defcdb 2096 if (!info->irq)
1da177e4
LT
2097 return 0;
2098
1da177e4
LT
2099 status = acpi_install_gpe_handler(NULL,
2100 info->irq,
2101 ACPI_GPE_LEVEL_TRIGGERED,
2102 &ipmi_acpi_gpe,
2103 info);
2104 if (status != AE_OK) {
279fbd0c
MS
2105 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2106 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
2107 info->irq = 0;
2108 return -EINVAL;
2109 } else {
b0defcdb 2110 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 2111 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
2112 return 0;
2113 }
2114}
2115
1da177e4
LT
2116/*
2117 * Defined at
631dd1a8 2118 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2119 */
2120struct SPMITable {
2121 s8 Signature[4];
2122 u32 Length;
2123 u8 Revision;
2124 u8 Checksum;
2125 s8 OEMID[6];
2126 s8 OEMTableID[8];
2127 s8 OEMRevision[4];
2128 s8 CreatorID[4];
2129 s8 CreatorRevision[4];
2130 u8 InterfaceType;
2131 u8 IPMIlegacy;
2132 s16 SpecificationRevision;
2133
2134 /*
2135 * Bit 0 - SCI interrupt supported
2136 * Bit 1 - I/O APIC/SAPIC
2137 */
2138 u8 InterruptType;
2139
c305e3d3
CM
2140 /*
2141 * If bit 0 of InterruptType is set, then this is the SCI
2142 * interrupt in the GPEx_STS register.
2143 */
1da177e4
LT
2144 u8 GPE;
2145
2146 s16 Reserved;
2147
c305e3d3
CM
2148 /*
2149 * If bit 1 of InterruptType is set, then this is the I/O
2150 * APIC/SAPIC interrupt.
2151 */
1da177e4
LT
2152 u32 GlobalSystemInterrupt;
2153
2154 /* The actual register address. */
2155 struct acpi_generic_address addr;
2156
2157 u8 UID[4];
2158
2159 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2160};
2161
2223cbec 2162static int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2163{
2164 struct smi_info *info;
d02b3709 2165 int rv;
1da177e4 2166
1da177e4 2167 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2168 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2169 return -ENODEV;
1da177e4
LT
2170 }
2171
de5e2ddf 2172 info = smi_info_alloc();
b0defcdb 2173 if (!info) {
279fbd0c 2174 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2175 return -ENOMEM;
2176 }
2177
5fedc4a2 2178 info->addr_source = SI_SPMI;
279fbd0c 2179 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2180
1da177e4 2181 /* Figure out the interface type. */
c305e3d3 2182 switch (spmi->InterfaceType) {
1da177e4 2183 case 1: /* KCS */
b0defcdb 2184 info->si_type = SI_KCS;
1da177e4 2185 break;
1da177e4 2186 case 2: /* SMIC */
b0defcdb 2187 info->si_type = SI_SMIC;
1da177e4 2188 break;
1da177e4 2189 case 3: /* BT */
b0defcdb 2190 info->si_type = SI_BT;
1da177e4 2191 break;
ab42bf24
CM
2192 case 4: /* SSIF, just ignore */
2193 kfree(info);
2194 return -EIO;
1da177e4 2195 default:
279fbd0c
MS
2196 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2197 spmi->InterfaceType);
b0defcdb 2198 kfree(info);
1da177e4
LT
2199 return -EIO;
2200 }
2201
1da177e4
LT
2202 if (spmi->InterruptType & 1) {
2203 /* We've got a GPE interrupt. */
2204 info->irq = spmi->GPE;
2205 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2206 } else if (spmi->InterruptType & 2) {
2207 /* We've got an APIC/SAPIC interrupt. */
2208 info->irq = spmi->GlobalSystemInterrupt;
2209 info->irq_setup = std_irq_setup;
1da177e4
LT
2210 } else {
2211 /* Use the default interrupt setting. */
2212 info->irq = 0;
2213 info->irq_setup = NULL;
2214 }
2215
15a58ed1 2216 if (spmi->addr.bit_width) {
35bc37a0 2217 /* A (hopefully) properly formed register bit width. */
15a58ed1 2218 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2219 } else {
35bc37a0
CM
2220 info->io.regspacing = DEFAULT_REGSPACING;
2221 }
b0defcdb 2222 info->io.regsize = info->io.regspacing;
15a58ed1 2223 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2224
15a58ed1 2225 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2226 info->io_setup = mem_setup;
8fe1425a 2227 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2228 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2229 info->io_setup = port_setup;
8fe1425a 2230 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2231 } else {
2232 kfree(info);
279fbd0c 2233 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2234 return -EIO;
2235 }
b0defcdb 2236 info->io.addr_data = spmi->addr.address;
1da177e4 2237
7bb671e3
YL
2238 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2239 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2240 info->io.addr_data, info->io.regsize, info->io.regspacing,
2241 info->irq);
2242
d02b3709
CM
2243 rv = add_smi(info);
2244 if (rv)
7faefea6 2245 kfree(info);
1da177e4 2246
d02b3709 2247 return rv;
1da177e4 2248}
b0defcdb 2249
2223cbec 2250static void spmi_find_bmc(void)
b0defcdb
CM
2251{
2252 acpi_status status;
2253 struct SPMITable *spmi;
2254 int i;
2255
2256 if (acpi_disabled)
2257 return;
2258
2259 if (acpi_failure)
2260 return;
2261
2262 for (i = 0; ; i++) {
15a58ed1
AS
2263 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2264 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2265 if (status != AE_OK)
2266 return;
2267
18a3e0bf 2268 try_init_spmi(spmi);
b0defcdb
CM
2269 }
2270}
1da177e4
LT
2271#endif
2272
a9fad4cc 2273#ifdef CONFIG_DMI
c305e3d3 2274struct dmi_ipmi_data {
1da177e4
LT
2275 u8 type;
2276 u8 addr_space;
2277 unsigned long base_addr;
2278 u8 irq;
2279 u8 offset;
2280 u8 slave_addr;
b0defcdb 2281};
1da177e4 2282
2223cbec 2283static int decode_dmi(const struct dmi_header *dm,
b0defcdb 2284 struct dmi_ipmi_data *dmi)
1da177e4 2285{
1855256c 2286 const u8 *data = (const u8 *)dm;
1da177e4
LT
2287 unsigned long base_addr;
2288 u8 reg_spacing;
b224cd3a 2289 u8 len = dm->length;
1da177e4 2290
b0defcdb 2291 dmi->type = data[4];
1da177e4
LT
2292
2293 memcpy(&base_addr, data+8, sizeof(unsigned long));
2294 if (len >= 0x11) {
2295 if (base_addr & 1) {
2296 /* I/O */
2297 base_addr &= 0xFFFE;
b0defcdb 2298 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2299 } else
1da177e4 2300 /* Memory */
b0defcdb 2301 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2302
1da177e4
LT
2303 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2304 is odd. */
b0defcdb 2305 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2306
b0defcdb 2307 dmi->irq = data[0x11];
1da177e4
LT
2308
2309 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2310 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2311 switch (reg_spacing) {
1da177e4 2312 case 0x00: /* Byte boundaries */
b0defcdb 2313 dmi->offset = 1;
1da177e4
LT
2314 break;
2315 case 0x01: /* 32-bit boundaries */
b0defcdb 2316 dmi->offset = 4;
1da177e4
LT
2317 break;
2318 case 0x02: /* 16-byte boundaries */
b0defcdb 2319 dmi->offset = 16;
1da177e4
LT
2320 break;
2321 default:
2322 /* Some other interface, just ignore it. */
2323 return -EIO;
2324 }
2325 } else {
2326 /* Old DMI spec. */
c305e3d3
CM
2327 /*
2328 * Note that technically, the lower bit of the base
92068801
CM
2329 * address should be 1 if the address is I/O and 0 if
2330 * the address is in memory. So many systems get that
2331 * wrong (and all that I have seen are I/O) so we just
2332 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2333 * memory should use the newer spec, anyway.
2334 */
b0defcdb
CM
2335 dmi->base_addr = base_addr & 0xfffe;
2336 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2337 dmi->offset = 1;
1da177e4
LT
2338 }
2339
b0defcdb 2340 dmi->slave_addr = data[6];
1da177e4 2341
b0defcdb 2342 return 0;
1da177e4
LT
2343}
2344
2223cbec 2345static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2346{
b0defcdb 2347 struct smi_info *info;
1da177e4 2348
de5e2ddf 2349 info = smi_info_alloc();
b0defcdb 2350 if (!info) {
279fbd0c 2351 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2352 return;
1da177e4 2353 }
1da177e4 2354
5fedc4a2 2355 info->addr_source = SI_SMBIOS;
279fbd0c 2356 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2357
e8b33617 2358 switch (ipmi_data->type) {
b0defcdb
CM
2359 case 0x01: /* KCS */
2360 info->si_type = SI_KCS;
2361 break;
2362 case 0x02: /* SMIC */
2363 info->si_type = SI_SMIC;
2364 break;
2365 case 0x03: /* BT */
2366 info->si_type = SI_BT;
2367 break;
2368 default:
80cd6920 2369 kfree(info);
b0defcdb 2370 return;
1da177e4 2371 }
1da177e4 2372
b0defcdb
CM
2373 switch (ipmi_data->addr_space) {
2374 case IPMI_MEM_ADDR_SPACE:
1da177e4 2375 info->io_setup = mem_setup;
b0defcdb
CM
2376 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2377 break;
2378
2379 case IPMI_IO_ADDR_SPACE:
1da177e4 2380 info->io_setup = port_setup;
b0defcdb
CM
2381 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2382 break;
2383
2384 default:
1da177e4 2385 kfree(info);
279fbd0c 2386 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2387 ipmi_data->addr_space);
2388 return;
1da177e4 2389 }
b0defcdb 2390 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2391
b0defcdb
CM
2392 info->io.regspacing = ipmi_data->offset;
2393 if (!info->io.regspacing)
1da177e4
LT
2394 info->io.regspacing = DEFAULT_REGSPACING;
2395 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2396 info->io.regshift = 0;
1da177e4
LT
2397
2398 info->slave_addr = ipmi_data->slave_addr;
2399
b0defcdb
CM
2400 info->irq = ipmi_data->irq;
2401 if (info->irq)
2402 info->irq_setup = std_irq_setup;
1da177e4 2403
7bb671e3
YL
2404 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2405 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2406 info->io.addr_data, info->io.regsize, info->io.regspacing,
2407 info->irq);
2408
7faefea6
YL
2409 if (add_smi(info))
2410 kfree(info);
b0defcdb 2411}
1da177e4 2412
2223cbec 2413static void dmi_find_bmc(void)
b0defcdb 2414{
1855256c 2415 const struct dmi_device *dev = NULL;
b0defcdb
CM
2416 struct dmi_ipmi_data data;
2417 int rv;
2418
2419 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2420 memset(&data, 0, sizeof(data));
1855256c
JG
2421 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2422 &data);
b0defcdb
CM
2423 if (!rv)
2424 try_init_dmi(&data);
2425 }
1da177e4 2426}
a9fad4cc 2427#endif /* CONFIG_DMI */
1da177e4
LT
2428
2429#ifdef CONFIG_PCI
2430
b0defcdb
CM
2431#define PCI_ERMC_CLASSCODE 0x0C0700
2432#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2433#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2434#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2435#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2436#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2437
1da177e4
LT
2438#define PCI_HP_VENDOR_ID 0x103C
2439#define PCI_MMC_DEVICE_ID 0x121A
2440#define PCI_MMC_ADDR_CW 0x10
2441
b0defcdb
CM
2442static void ipmi_pci_cleanup(struct smi_info *info)
2443{
2444 struct pci_dev *pdev = info->addr_source_data;
2445
2446 pci_disable_device(pdev);
2447}
1da177e4 2448
2223cbec 2449static int ipmi_pci_probe_regspacing(struct smi_info *info)
a6c16c28
CM
2450{
2451 if (info->si_type == SI_KCS) {
2452 unsigned char status;
2453 int regspacing;
2454
2455 info->io.regsize = DEFAULT_REGSIZE;
2456 info->io.regshift = 0;
2457 info->io_size = 2;
2458 info->handlers = &kcs_smi_handlers;
2459
2460 /* detect 1, 4, 16byte spacing */
2461 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2462 info->io.regspacing = regspacing;
2463 if (info->io_setup(info)) {
2464 dev_err(info->dev,
2465 "Could not setup I/O space\n");
2466 return DEFAULT_REGSPACING;
2467 }
2468 /* write invalid cmd */
2469 info->io.outputb(&info->io, 1, 0x10);
2470 /* read status back */
2471 status = info->io.inputb(&info->io, 1);
2472 info->io_cleanup(info);
2473 if (status)
2474 return regspacing;
2475 regspacing *= 4;
2476 }
2477 }
2478 return DEFAULT_REGSPACING;
2479}
2480
2223cbec 2481static int ipmi_pci_probe(struct pci_dev *pdev,
b0defcdb 2482 const struct pci_device_id *ent)
1da177e4 2483{
b0defcdb
CM
2484 int rv;
2485 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2486 struct smi_info *info;
1da177e4 2487
de5e2ddf 2488 info = smi_info_alloc();
b0defcdb 2489 if (!info)
1cd441f9 2490 return -ENOMEM;
1da177e4 2491
5fedc4a2 2492 info->addr_source = SI_PCI;
279fbd0c 2493 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2494
b0defcdb
CM
2495 switch (class_type) {
2496 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2497 info->si_type = SI_SMIC;
2498 break;
1da177e4 2499
b0defcdb
CM
2500 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2501 info->si_type = SI_KCS;
2502 break;
2503
2504 case PCI_ERMC_CLASSCODE_TYPE_BT:
2505 info->si_type = SI_BT;
2506 break;
2507
2508 default:
2509 kfree(info);
279fbd0c 2510 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2511 return -ENOMEM;
1da177e4
LT
2512 }
2513
b0defcdb
CM
2514 rv = pci_enable_device(pdev);
2515 if (rv) {
279fbd0c 2516 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2517 kfree(info);
2518 return rv;
1da177e4
LT
2519 }
2520
b0defcdb
CM
2521 info->addr_source_cleanup = ipmi_pci_cleanup;
2522 info->addr_source_data = pdev;
1da177e4 2523
b0defcdb
CM
2524 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2525 info->io_setup = port_setup;
2526 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2527 } else {
2528 info->io_setup = mem_setup;
2529 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2530 }
b0defcdb 2531 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2532
a6c16c28
CM
2533 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2534 info->io.regsize = DEFAULT_REGSIZE;
b0defcdb 2535 info->io.regshift = 0;
1da177e4 2536
b0defcdb
CM
2537 info->irq = pdev->irq;
2538 if (info->irq)
2539 info->irq_setup = std_irq_setup;
1da177e4 2540
50c812b2 2541 info->dev = &pdev->dev;
fca3b747 2542 pci_set_drvdata(pdev, info);
50c812b2 2543
279fbd0c
MS
2544 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2545 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2546 info->irq);
2547
d02b3709
CM
2548 rv = add_smi(info);
2549 if (rv) {
7faefea6 2550 kfree(info);
d02b3709
CM
2551 pci_disable_device(pdev);
2552 }
7faefea6 2553
d02b3709 2554 return rv;
b0defcdb 2555}
1da177e4 2556
39af33fc 2557static void ipmi_pci_remove(struct pci_dev *pdev)
b0defcdb 2558{
fca3b747
CM
2559 struct smi_info *info = pci_get_drvdata(pdev);
2560 cleanup_one_si(info);
b0defcdb 2561}
1da177e4 2562
81d02b7f 2563static const struct pci_device_id ipmi_pci_devices[] = {
b0defcdb 2564 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2565 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2566 { 0, }
b0defcdb
CM
2567};
2568MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2569
2570static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2571 .name = DEVICE_NAME,
2572 .id_table = ipmi_pci_devices,
2573 .probe = ipmi_pci_probe,
bcd2982a 2574 .remove = ipmi_pci_remove,
b0defcdb
CM
2575};
2576#endif /* CONFIG_PCI */
1da177e4 2577
a1e9c9dd 2578#ifdef CONFIG_OF
0fbcf4af
CM
2579static const struct of_device_id of_ipmi_match[] = {
2580 { .type = "ipmi", .compatible = "ipmi-kcs",
2581 .data = (void *)(unsigned long) SI_KCS },
2582 { .type = "ipmi", .compatible = "ipmi-smic",
2583 .data = (void *)(unsigned long) SI_SMIC },
2584 { .type = "ipmi", .compatible = "ipmi-bt",
2585 .data = (void *)(unsigned long) SI_BT },
2586 {},
2587};
66f44018 2588MODULE_DEVICE_TABLE(of, of_ipmi_match);
0fbcf4af
CM
2589
2590static int of_ipmi_probe(struct platform_device *dev)
2591{
b1608d69 2592 const struct of_device_id *match;
dba9b4f6
CM
2593 struct smi_info *info;
2594 struct resource resource;
da81c3b9 2595 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2596 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2597 int ret;
2598 int proplen;
2599
279fbd0c 2600 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6 2601
0fbcf4af 2602 match = of_match_device(of_ipmi_match, &dev->dev);
b1608d69 2603 if (!match)
0fbcf4af 2604 return -ENODEV;
a1e9c9dd 2605
08dc4169
BH
2606 if (!of_device_is_available(np))
2607 return -EINVAL;
2608
dba9b4f6
CM
2609 ret = of_address_to_resource(np, 0, &resource);
2610 if (ret) {
2611 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2612 return ret;
2613 }
2614
9c25099d 2615 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2616 if (regsize && proplen != 4) {
2617 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2618 return -EINVAL;
2619 }
2620
9c25099d 2621 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2622 if (regspacing && proplen != 4) {
2623 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2624 return -EINVAL;
2625 }
2626
9c25099d 2627 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2628 if (regshift && proplen != 4) {
2629 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2630 return -EINVAL;
2631 }
2632
de5e2ddf 2633 info = smi_info_alloc();
dba9b4f6
CM
2634
2635 if (!info) {
2636 dev_err(&dev->dev,
279fbd0c 2637 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2638 return -ENOMEM;
2639 }
2640
b1608d69 2641 info->si_type = (enum si_type) match->data;
5fedc4a2 2642 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2643 info->irq_setup = std_irq_setup;
2644
3b7ec117
NC
2645 if (resource.flags & IORESOURCE_IO) {
2646 info->io_setup = port_setup;
2647 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2648 } else {
2649 info->io_setup = mem_setup;
2650 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2651 }
2652
dba9b4f6
CM
2653 info->io.addr_data = resource.start;
2654
da81c3b9
RH
2655 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2656 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2657 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2658
61c7a080 2659 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2660 info->dev = &dev->dev;
2661
279fbd0c 2662 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2663 info->io.addr_data, info->io.regsize, info->io.regspacing,
2664 info->irq);
2665
9de33df4 2666 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2667
d02b3709
CM
2668 ret = add_smi(info);
2669 if (ret) {
7faefea6 2670 kfree(info);
d02b3709 2671 return ret;
7faefea6 2672 }
7faefea6 2673 return 0;
dba9b4f6 2674}
0fbcf4af
CM
2675#else
2676#define of_ipmi_match NULL
2677static int of_ipmi_probe(struct platform_device *dev)
2678{
2679 return -ENODEV;
2680}
2681#endif
dba9b4f6 2682
0fbcf4af
CM
2683#ifdef CONFIG_ACPI
2684static int acpi_ipmi_probe(struct platform_device *dev)
dba9b4f6 2685{
0fbcf4af
CM
2686 struct smi_info *info;
2687 struct resource *res, *res_second;
2688 acpi_handle handle;
2689 acpi_status status;
2690 unsigned long long tmp;
2691 int rv = -EINVAL;
2692
2693 handle = ACPI_HANDLE(&dev->dev);
2694 if (!handle)
2695 return -ENODEV;
2696
2697 info = smi_info_alloc();
2698 if (!info)
2699 return -ENOMEM;
2700
2701 info->addr_source = SI_ACPI;
2702 dev_info(&dev->dev, PFX "probing via ACPI\n");
2703
2704 info->addr_info.acpi_info.acpi_handle = handle;
2705
2706 /* _IFT tells us the interface type: KCS, BT, etc */
2707 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2708 if (ACPI_FAILURE(status)) {
2709 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2710 goto err_free;
2711 }
2712
2713 switch (tmp) {
2714 case 1:
2715 info->si_type = SI_KCS;
2716 break;
2717 case 2:
2718 info->si_type = SI_SMIC;
2719 break;
2720 case 3:
2721 info->si_type = SI_BT;
2722 break;
2723 case 4: /* SSIF, just ignore */
2724 rv = -ENODEV;
2725 goto err_free;
2726 default:
2727 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2728 goto err_free;
2729 }
2730
2731 res = platform_get_resource(dev, IORESOURCE_IO, 0);
2732 if (res) {
2733 info->io_setup = port_setup;
2734 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2735 } else {
2736 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2737 if (res) {
2738 info->io_setup = mem_setup;
2739 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2740 }
2741 }
2742 if (!res) {
2743 dev_err(&dev->dev, "no I/O or memory address\n");
2744 goto err_free;
2745 }
2746 info->io.addr_data = res->start;
2747
2748 info->io.regspacing = DEFAULT_REGSPACING;
2749 res_second = platform_get_resource(dev,
2750 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2751 IORESOURCE_IO : IORESOURCE_MEM,
2752 1);
2753 if (res_second) {
2754 if (res_second->start > info->io.addr_data)
2755 info->io.regspacing =
2756 res_second->start - info->io.addr_data;
2757 }
2758 info->io.regsize = DEFAULT_REGSPACING;
2759 info->io.regshift = 0;
2760
2761 /* If _GPE exists, use it; otherwise use standard interrupts */
2762 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2763 if (ACPI_SUCCESS(status)) {
2764 info->irq = tmp;
2765 info->irq_setup = acpi_gpe_irq_setup;
2766 } else {
2767 int irq = platform_get_irq(dev, 0);
2768
2769 if (irq > 0) {
2770 info->irq = irq;
2771 info->irq_setup = std_irq_setup;
2772 }
2773 }
2774
2775 info->dev = &dev->dev;
2776 platform_set_drvdata(dev, info);
2777
2778 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2779 res, info->io.regsize, info->io.regspacing,
2780 info->irq);
2781
2782 rv = add_smi(info);
2783 if (rv)
2784 kfree(info);
2785
2786 return rv;
2787
2788err_free:
2789 kfree(info);
2790 return rv;
2791}
2792
81d02b7f 2793static const struct acpi_device_id acpi_ipmi_match[] = {
0fbcf4af
CM
2794 { "IPI0001", 0 },
2795 { },
2796};
2797MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2798#else
2799static int acpi_ipmi_probe(struct platform_device *dev)
2800{
2801 return -ENODEV;
2802}
a1e9c9dd 2803#endif
0fbcf4af
CM
2804
2805static int ipmi_probe(struct platform_device *dev)
2806{
2807 if (of_ipmi_probe(dev) == 0)
2808 return 0;
2809
2810 return acpi_ipmi_probe(dev);
dba9b4f6
CM
2811}
2812
0fbcf4af 2813static int ipmi_remove(struct platform_device *dev)
dba9b4f6 2814{
0fbcf4af
CM
2815 struct smi_info *info = dev_get_drvdata(&dev->dev);
2816
a7930899 2817 cleanup_one_si(info);
0fbcf4af
CM
2818 return 0;
2819}
dba9b4f6 2820
a1e9c9dd 2821static struct platform_driver ipmi_driver = {
4018294b 2822 .driver = {
a1e9c9dd 2823 .name = DEVICE_NAME,
0fbcf4af
CM
2824 .of_match_table = of_ipmi_match,
2825 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
4018294b 2826 },
a1e9c9dd 2827 .probe = ipmi_probe,
bcd2982a 2828 .remove = ipmi_remove,
dba9b4f6 2829};
dba9b4f6 2830
fdbeb7de
TB
2831#ifdef CONFIG_PARISC
2832static int ipmi_parisc_probe(struct parisc_device *dev)
2833{
2834 struct smi_info *info;
dfa19426 2835 int rv;
fdbeb7de
TB
2836
2837 info = smi_info_alloc();
2838
2839 if (!info) {
2840 dev_err(&dev->dev,
2841 "could not allocate memory for PARISC probe\n");
2842 return -ENOMEM;
2843 }
2844
2845 info->si_type = SI_KCS;
2846 info->addr_source = SI_DEVICETREE;
2847 info->io_setup = mem_setup;
2848 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2849 info->io.addr_data = dev->hpa.start;
2850 info->io.regsize = 1;
2851 info->io.regspacing = 1;
2852 info->io.regshift = 0;
2853 info->irq = 0; /* no interrupt */
2854 info->irq_setup = NULL;
2855 info->dev = &dev->dev;
2856
2857 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2858
2859 dev_set_drvdata(&dev->dev, info);
2860
d02b3709
CM
2861 rv = add_smi(info);
2862 if (rv) {
fdbeb7de 2863 kfree(info);
d02b3709 2864 return rv;
fdbeb7de
TB
2865 }
2866
2867 return 0;
2868}
2869
2870static int ipmi_parisc_remove(struct parisc_device *dev)
2871{
2872 cleanup_one_si(dev_get_drvdata(&dev->dev));
2873 return 0;
2874}
2875
99ee6735 2876static const struct parisc_device_id ipmi_parisc_tbl[] = {
fdbeb7de
TB
2877 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2878 { 0, }
2879};
2880
2881static struct parisc_driver ipmi_parisc_driver = {
2882 .name = "ipmi",
2883 .id_table = ipmi_parisc_tbl,
2884 .probe = ipmi_parisc_probe,
2885 .remove = ipmi_parisc_remove,
2886};
2887#endif /* CONFIG_PARISC */
2888
40112ae7 2889static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2890{
50c812b2 2891 enum si_sm_result smi_result;
1da177e4
LT
2892
2893 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2894 for (;;) {
c3e7e791
CM
2895 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2896 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2897 schedule_timeout_uninterruptible(1);
1da177e4 2898 smi_result = smi_info->handlers->event(
e21404dc 2899 smi_info->si_sm, jiffies_to_usecs(1));
c305e3d3 2900 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2901 smi_result = smi_info->handlers->event(
2902 smi_info->si_sm, 0);
c305e3d3 2903 } else
1da177e4
LT
2904 break;
2905 }
40112ae7 2906 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2907 /*
2908 * We couldn't get the state machine to run, so whatever's at
2909 * the port is probably not an IPMI SMI interface.
2910 */
40112ae7
CM
2911 return -ENODEV;
2912
2913 return 0;
2914}
2915
2916static int try_get_dev_id(struct smi_info *smi_info)
2917{
2918 unsigned char msg[2];
2919 unsigned char *resp;
2920 unsigned long resp_len;
2921 int rv = 0;
2922
2923 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2924 if (!resp)
2925 return -ENOMEM;
2926
2927 /*
2928 * Do a Get Device ID command, since it comes back with some
2929 * useful info.
2930 */
2931 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2932 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2933 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2934
2935 rv = wait_for_msg_done(smi_info);
2936 if (rv)
1da177e4 2937 goto out;
1da177e4 2938
1da177e4
LT
2939 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2940 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2941
d8c98618
CM
2942 /* Check and record info from the get device id, in case we need it. */
2943 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2944
2945 out:
2946 kfree(resp);
2947 return rv;
2948}
2949
d0882897 2950static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1e7d6a45
CM
2951{
2952 unsigned char msg[3];
2953 unsigned char *resp;
2954 unsigned long resp_len;
2955 int rv;
2956
2957 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
d0882897
CM
2958 if (!resp)
2959 return -ENOMEM;
1e7d6a45
CM
2960
2961 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2962 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2963 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2964
2965 rv = wait_for_msg_done(smi_info);
2966 if (rv) {
d0882897
CM
2967 dev_warn(smi_info->dev,
2968 "Error getting response from get global enables command: %d\n",
2969 rv);
1e7d6a45
CM
2970 goto out;
2971 }
2972
2973 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2974 resp, IPMI_MAX_MSG_LENGTH);
2975
2976 if (resp_len < 4 ||
2977 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2978 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2979 resp[2] != 0) {
d0882897
CM
2980 dev_warn(smi_info->dev,
2981 "Invalid return from get global enables command: %ld %x %x %x\n",
2982 resp_len, resp[0], resp[1], resp[2]);
1e7d6a45
CM
2983 rv = -EINVAL;
2984 goto out;
d0882897
CM
2985 } else {
2986 *enables = resp[3];
1e7d6a45
CM
2987 }
2988
d0882897
CM
2989out:
2990 kfree(resp);
2991 return rv;
2992}
2993
2994/*
2995 * Returns 1 if it gets an error from the command.
2996 */
2997static int set_global_enables(struct smi_info *smi_info, u8 enables)
2998{
2999 unsigned char msg[3];
3000 unsigned char *resp;
3001 unsigned long resp_len;
3002 int rv;
3003
3004 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3005 if (!resp)
3006 return -ENOMEM;
1e7d6a45
CM
3007
3008 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3009 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
d0882897 3010 msg[2] = enables;
1e7d6a45
CM
3011 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3012
3013 rv = wait_for_msg_done(smi_info);
3014 if (rv) {
d0882897
CM
3015 dev_warn(smi_info->dev,
3016 "Error getting response from set global enables command: %d\n",
3017 rv);
1e7d6a45
CM
3018 goto out;
3019 }
3020
3021 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3022 resp, IPMI_MAX_MSG_LENGTH);
3023
3024 if (resp_len < 3 ||
3025 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3026 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
d0882897
CM
3027 dev_warn(smi_info->dev,
3028 "Invalid return from set global enables command: %ld %x %x\n",
3029 resp_len, resp[0], resp[1]);
1e7d6a45
CM
3030 rv = -EINVAL;
3031 goto out;
3032 }
3033
d0882897
CM
3034 if (resp[2] != 0)
3035 rv = 1;
3036
3037out:
3038 kfree(resp);
3039 return rv;
3040}
3041
3042/*
3043 * Some BMCs do not support clearing the receive irq bit in the global
3044 * enables (even if they don't support interrupts on the BMC). Check
3045 * for this and handle it properly.
3046 */
3047static void check_clr_rcv_irq(struct smi_info *smi_info)
3048{
3049 u8 enables = 0;
3050 int rv;
3051
3052 rv = get_global_enables(smi_info, &enables);
3053 if (!rv) {
3054 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3055 /* Already clear, should work ok. */
3056 return;
3057
3058 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3059 rv = set_global_enables(smi_info, enables);
3060 }
3061
3062 if (rv < 0) {
3063 dev_err(smi_info->dev,
3064 "Cannot check clearing the rcv irq: %d\n", rv);
3065 return;
3066 }
3067
3068 if (rv) {
1e7d6a45
CM
3069 /*
3070 * An error when setting the event buffer bit means
3071 * clearing the bit is not supported.
3072 */
d0882897
CM
3073 dev_warn(smi_info->dev,
3074 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3075 smi_info->cannot_disable_irq = true;
3076 }
3077}
3078
3079/*
3080 * Some BMCs do not support setting the interrupt bits in the global
3081 * enables even if they support interrupts. Clearly bad, but we can
3082 * compensate.
3083 */
3084static void check_set_rcv_irq(struct smi_info *smi_info)
3085{
3086 u8 enables = 0;
3087 int rv;
3088
3089 if (!smi_info->irq)
3090 return;
3091
3092 rv = get_global_enables(smi_info, &enables);
3093 if (!rv) {
3094 enables |= IPMI_BMC_RCV_MSG_INTR;
3095 rv = set_global_enables(smi_info, enables);
3096 }
3097
3098 if (rv < 0) {
3099 dev_err(smi_info->dev,
3100 "Cannot check setting the rcv irq: %d\n", rv);
3101 return;
3102 }
3103
3104 if (rv) {
3105 /*
3106 * An error when setting the event buffer bit means
3107 * setting the bit is not supported.
3108 */
3109 dev_warn(smi_info->dev,
3110 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3111 smi_info->cannot_disable_irq = true;
3112 smi_info->irq_enable_broken = true;
1e7d6a45 3113 }
1e7d6a45
CM
3114}
3115
40112ae7
CM
3116static int try_enable_event_buffer(struct smi_info *smi_info)
3117{
3118 unsigned char msg[3];
3119 unsigned char *resp;
3120 unsigned long resp_len;
3121 int rv = 0;
3122
3123 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3124 if (!resp)
3125 return -ENOMEM;
3126
3127 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3128 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3129 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3130
3131 rv = wait_for_msg_done(smi_info);
3132 if (rv) {
279fbd0c
MS
3133 printk(KERN_WARNING PFX "Error getting response from get"
3134 " global enables command, the event buffer is not"
40112ae7
CM
3135 " enabled.\n");
3136 goto out;
3137 }
3138
3139 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3140 resp, IPMI_MAX_MSG_LENGTH);
3141
3142 if (resp_len < 4 ||
3143 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3144 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3145 resp[2] != 0) {
279fbd0c
MS
3146 printk(KERN_WARNING PFX "Invalid return from get global"
3147 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
3148 rv = -EINVAL;
3149 goto out;
3150 }
3151
d9b7e4f7 3152 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
40112ae7 3153 /* buffer is already enabled, nothing to do. */
d9b7e4f7 3154 smi_info->supports_event_msg_buff = true;
40112ae7 3155 goto out;
d9b7e4f7 3156 }
40112ae7
CM
3157
3158 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3159 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3160 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3161 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3162
3163 rv = wait_for_msg_done(smi_info);
3164 if (rv) {
279fbd0c
MS
3165 printk(KERN_WARNING PFX "Error getting response from set"
3166 " global, enables command, the event buffer is not"
40112ae7
CM
3167 " enabled.\n");
3168 goto out;
3169 }
3170
3171 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3172 resp, IPMI_MAX_MSG_LENGTH);
3173
3174 if (resp_len < 3 ||
3175 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3176 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
3177 printk(KERN_WARNING PFX "Invalid return from get global,"
3178 "enables command, not enable the event buffer.\n");
40112ae7
CM
3179 rv = -EINVAL;
3180 goto out;
3181 }
3182
3183 if (resp[2] != 0)
3184 /*
3185 * An error when setting the event buffer bit means
3186 * that the event buffer is not supported.
3187 */
3188 rv = -ENOENT;
d9b7e4f7
CM
3189 else
3190 smi_info->supports_event_msg_buff = true;
3191
40112ae7
CM
3192 out:
3193 kfree(resp);
3194 return rv;
3195}
3196
07412736 3197static int smi_type_proc_show(struct seq_file *m, void *v)
1da177e4 3198{
07412736 3199 struct smi_info *smi = m->private;
1da177e4 3200
d6c5dc18
JP
3201 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3202
5e33cd0c 3203 return 0;
1da177e4
LT
3204}
3205
07412736 3206static int smi_type_proc_open(struct inode *inode, struct file *file)
1da177e4 3207{
d9dda78b 3208 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
07412736
AD
3209}
3210
3211static const struct file_operations smi_type_proc_ops = {
3212 .open = smi_type_proc_open,
3213 .read = seq_read,
3214 .llseek = seq_lseek,
3215 .release = single_release,
3216};
3217
3218static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3219{
3220 struct smi_info *smi = m->private;
1da177e4 3221
07412736 3222 seq_printf(m, "interrupts_enabled: %d\n",
b0defcdb 3223 smi->irq && !smi->interrupt_disabled);
07412736 3224 seq_printf(m, "short_timeouts: %u\n",
64959e2d 3225 smi_get_stat(smi, short_timeouts));
07412736 3226 seq_printf(m, "long_timeouts: %u\n",
64959e2d 3227 smi_get_stat(smi, long_timeouts));
07412736 3228 seq_printf(m, "idles: %u\n",
64959e2d 3229 smi_get_stat(smi, idles));
07412736 3230 seq_printf(m, "interrupts: %u\n",
64959e2d 3231 smi_get_stat(smi, interrupts));
07412736 3232 seq_printf(m, "attentions: %u\n",
64959e2d 3233 smi_get_stat(smi, attentions));
07412736 3234 seq_printf(m, "flag_fetches: %u\n",
64959e2d 3235 smi_get_stat(smi, flag_fetches));
07412736 3236 seq_printf(m, "hosed_count: %u\n",
64959e2d 3237 smi_get_stat(smi, hosed_count));
07412736 3238 seq_printf(m, "complete_transactions: %u\n",
64959e2d 3239 smi_get_stat(smi, complete_transactions));
07412736 3240 seq_printf(m, "events: %u\n",
64959e2d 3241 smi_get_stat(smi, events));
07412736 3242 seq_printf(m, "watchdog_pretimeouts: %u\n",
64959e2d 3243 smi_get_stat(smi, watchdog_pretimeouts));
07412736 3244 seq_printf(m, "incoming_messages: %u\n",
64959e2d 3245 smi_get_stat(smi, incoming_messages));
07412736
AD
3246 return 0;
3247}
1da177e4 3248
07412736
AD
3249static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3250{
d9dda78b 3251 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
b361e27b
CM
3252}
3253
07412736
AD
3254static const struct file_operations smi_si_stats_proc_ops = {
3255 .open = smi_si_stats_proc_open,
3256 .read = seq_read,
3257 .llseek = seq_lseek,
3258 .release = single_release,
3259};
3260
3261static int smi_params_proc_show(struct seq_file *m, void *v)
b361e27b 3262{
07412736 3263 struct smi_info *smi = m->private;
b361e27b 3264
d6c5dc18
JP
3265 seq_printf(m,
3266 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3267 si_to_str[smi->si_type],
3268 addr_space_to_str[smi->io.addr_type],
3269 smi->io.addr_data,
3270 smi->io.regspacing,
3271 smi->io.regsize,
3272 smi->io.regshift,
3273 smi->irq,
3274 smi->slave_addr);
3275
5e33cd0c 3276 return 0;
1da177e4
LT
3277}
3278
07412736
AD
3279static int smi_params_proc_open(struct inode *inode, struct file *file)
3280{
d9dda78b 3281 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
07412736
AD
3282}
3283
3284static const struct file_operations smi_params_proc_ops = {
3285 .open = smi_params_proc_open,
3286 .read = seq_read,
3287 .llseek = seq_lseek,
3288 .release = single_release,
3289};
3290
3ae0e0f9
CM
3291/*
3292 * oem_data_avail_to_receive_msg_avail
3293 * @info - smi_info structure with msg_flags set
3294 *
3295 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3296 * Returns 1 indicating need to re-run handle_flags().
3297 */
3298static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3299{
e8b33617 3300 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 3301 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
3302 return 1;
3303}
3304
3305/*
3306 * setup_dell_poweredge_oem_data_handler
3307 * @info - smi_info.device_id must be populated
3308 *
3309 * Systems that match, but have firmware version < 1.40 may assert
3310 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3311 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3312 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3313 * as RECEIVE_MSG_AVAIL instead.
3314 *
3315 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3316 * assert the OEM[012] bits, and if it did, the driver would have to
3317 * change to handle that properly, we don't actually check for the
3318 * firmware version.
3319 * Device ID = 0x20 BMC on PowerEdge 8G servers
3320 * Device Revision = 0x80
3321 * Firmware Revision1 = 0x01 BMC version 1.40
3322 * Firmware Revision2 = 0x40 BCD encoded
3323 * IPMI Version = 0x51 IPMI 1.5
3324 * Manufacturer ID = A2 02 00 Dell IANA
3325 *
d5a2b89a
CM
3326 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3327 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3328 *
3ae0e0f9
CM
3329 */
3330#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3331#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3332#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 3333#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
3334static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3335{
3336 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3337 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
3338 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3339 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 3340 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
3341 smi_info->oem_data_avail_handler =
3342 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
3343 } else if (ipmi_version_major(id) < 1 ||
3344 (ipmi_version_major(id) == 1 &&
3345 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
3346 smi_info->oem_data_avail_handler =
3347 oem_data_avail_to_receive_msg_avail;
3348 }
3ae0e0f9
CM
3349 }
3350}
3351
ea94027b
CM
3352#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3353static void return_hosed_msg_badsize(struct smi_info *smi_info)
3354{
3355 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3356
25985edc 3357 /* Make it a response */
ea94027b
CM
3358 msg->rsp[0] = msg->data[0] | 4;
3359 msg->rsp[1] = msg->data[1];
3360 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3361 msg->rsp_size = 3;
3362 smi_info->curr_msg = NULL;
3363 deliver_recv_msg(smi_info, msg);
3364}
3365
3366/*
3367 * dell_poweredge_bt_xaction_handler
3368 * @info - smi_info.device_id must be populated
3369 *
3370 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3371 * not respond to a Get SDR command if the length of the data
3372 * requested is exactly 0x3A, which leads to command timeouts and no
3373 * data returned. This intercepts such commands, and causes userspace
3374 * callers to try again with a different-sized buffer, which succeeds.
3375 */
3376
3377#define STORAGE_NETFN 0x0A
3378#define STORAGE_CMD_GET_SDR 0x23
3379static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3380 unsigned long unused,
3381 void *in)
3382{
3383 struct smi_info *smi_info = in;
3384 unsigned char *data = smi_info->curr_msg->data;
3385 unsigned int size = smi_info->curr_msg->data_size;
3386 if (size >= 8 &&
3387 (data[0]>>2) == STORAGE_NETFN &&
3388 data[1] == STORAGE_CMD_GET_SDR &&
3389 data[7] == 0x3A) {
3390 return_hosed_msg_badsize(smi_info);
3391 return NOTIFY_STOP;
3392 }
3393 return NOTIFY_DONE;
3394}
3395
3396static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3397 .notifier_call = dell_poweredge_bt_xaction_handler,
3398};
3399
3400/*
3401 * setup_dell_poweredge_bt_xaction_handler
3402 * @info - smi_info.device_id must be filled in already
3403 *
3404 * Fills in smi_info.device_id.start_transaction_pre_hook
3405 * when we know what function to use there.
3406 */
3407static void
3408setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3409{
3410 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 3411 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
3412 smi_info->si_type == SI_BT)
3413 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3414}
3415
3ae0e0f9
CM
3416/*
3417 * setup_oem_data_handler
3418 * @info - smi_info.device_id must be filled in already
3419 *
3420 * Fills in smi_info.device_id.oem_data_available_handler
3421 * when we know what function to use there.
3422 */
3423
3424static void setup_oem_data_handler(struct smi_info *smi_info)
3425{
3426 setup_dell_poweredge_oem_data_handler(smi_info);
3427}
3428
ea94027b
CM
3429static void setup_xaction_handlers(struct smi_info *smi_info)
3430{
3431 setup_dell_poweredge_bt_xaction_handler(smi_info);
3432}
3433
d0882897
CM
3434static void check_for_broken_irqs(struct smi_info *smi_info)
3435{
3436 check_clr_rcv_irq(smi_info);
3437 check_set_rcv_irq(smi_info);
3438}
3439
a9a2c44f
CM
3440static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3441{
b874b985
CM
3442 if (smi_info->thread != NULL)
3443 kthread_stop(smi_info->thread);
3444 if (smi_info->timer_running)
453823ba 3445 del_timer_sync(&smi_info->si_timer);
a9a2c44f
CM
3446}
3447
81d02b7f 3448static const struct ipmi_default_vals
b0defcdb 3449{
99ee6735
LC
3450 const int type;
3451 const int port;
7420884c 3452} ipmi_defaults[] =
b0defcdb
CM
3453{
3454 { .type = SI_KCS, .port = 0xca2 },
3455 { .type = SI_SMIC, .port = 0xca9 },
3456 { .type = SI_BT, .port = 0xe4 },
3457 { .port = 0 }
3458};
3459
2223cbec 3460static void default_find_bmc(void)
b0defcdb
CM
3461{
3462 struct smi_info *info;
3463 int i;
3464
3465 for (i = 0; ; i++) {
3466 if (!ipmi_defaults[i].port)
3467 break;
68e1ee62 3468#ifdef CONFIG_PPC
4ff31d77
CK
3469 if (check_legacy_ioport(ipmi_defaults[i].port))
3470 continue;
3471#endif
de5e2ddf 3472 info = smi_info_alloc();
a09f4855
AM
3473 if (!info)
3474 return;
4ff31d77 3475
5fedc4a2 3476 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3477
3478 info->si_type = ipmi_defaults[i].type;
3479 info->io_setup = port_setup;
3480 info->io.addr_data = ipmi_defaults[i].port;
3481 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3482
3483 info->io.addr = NULL;
3484 info->io.regspacing = DEFAULT_REGSPACING;
3485 info->io.regsize = DEFAULT_REGSPACING;
3486 info->io.regshift = 0;
3487
2407d77a
MG
3488 if (add_smi(info) == 0) {
3489 if ((try_smi_init(info)) == 0) {
3490 /* Found one... */
279fbd0c 3491 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3492 " state machine at %s address 0x%lx\n",
3493 si_to_str[info->si_type],
3494 addr_space_to_str[info->io.addr_type],
3495 info->io.addr_data);
3496 } else
3497 cleanup_one_si(info);
7faefea6
YL
3498 } else {
3499 kfree(info);
b0defcdb
CM
3500 }
3501 }
3502}
3503
3504static int is_new_interface(struct smi_info *info)
1da177e4 3505{
b0defcdb 3506 struct smi_info *e;
1da177e4 3507
b0defcdb
CM
3508 list_for_each_entry(e, &smi_infos, link) {
3509 if (e->io.addr_type != info->io.addr_type)
3510 continue;
3511 if (e->io.addr_data == info->io.addr_data)
3512 return 0;
3513 }
1da177e4 3514
b0defcdb
CM
3515 return 1;
3516}
1da177e4 3517
2407d77a 3518static int add_smi(struct smi_info *new_smi)
b0defcdb 3519{
2407d77a 3520 int rv = 0;
b0defcdb 3521
279fbd0c 3522 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
7e50387b
CM
3523 ipmi_addr_src_to_str(new_smi->addr_source),
3524 si_to_str[new_smi->si_type]);
d6dfd131 3525 mutex_lock(&smi_infos_lock);
b0defcdb 3526 if (!is_new_interface(new_smi)) {
7bb671e3 3527 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3528 rv = -EBUSY;
3529 goto out_err;
3530 }
1da177e4 3531
2407d77a
MG
3532 printk(KERN_CONT "\n");
3533
1da177e4
LT
3534 /* So we know not to free it unless we have allocated one. */
3535 new_smi->intf = NULL;
3536 new_smi->si_sm = NULL;
3537 new_smi->handlers = NULL;
3538
2407d77a
MG
3539 list_add_tail(&new_smi->link, &smi_infos);
3540
3541out_err:
3542 mutex_unlock(&smi_infos_lock);
3543 return rv;
3544}
3545
3546static int try_smi_init(struct smi_info *new_smi)
3547{
3548 int rv = 0;
3549 int i;
3550
279fbd0c 3551 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3552 " machine at %s address 0x%lx, slave address 0x%x,"
3553 " irq %d\n",
7e50387b 3554 ipmi_addr_src_to_str(new_smi->addr_source),
2407d77a
MG
3555 si_to_str[new_smi->si_type],
3556 addr_space_to_str[new_smi->io.addr_type],
3557 new_smi->io.addr_data,
3558 new_smi->slave_addr, new_smi->irq);
3559
b0defcdb
CM
3560 switch (new_smi->si_type) {
3561 case SI_KCS:
1da177e4 3562 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3563 break;
3564
3565 case SI_SMIC:
1da177e4 3566 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3567 break;
3568
3569 case SI_BT:
1da177e4 3570 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3571 break;
3572
3573 default:
1da177e4
LT
3574 /* No support for anything else yet. */
3575 rv = -EIO;
3576 goto out_err;
3577 }
3578
3579 /* Allocate the state machine's data and initialize it. */
3580 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3581 if (!new_smi->si_sm) {
279fbd0c
MS
3582 printk(KERN_ERR PFX
3583 "Could not allocate state machine memory\n");
1da177e4
LT
3584 rv = -ENOMEM;
3585 goto out_err;
3586 }
3587 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3588 &new_smi->io);
3589
3590 /* Now that we know the I/O size, we can set up the I/O. */
3591 rv = new_smi->io_setup(new_smi);
3592 if (rv) {
279fbd0c 3593 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3594 goto out_err;
3595 }
3596
1da177e4
LT
3597 /* Do low-level detection first. */
3598 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3599 if (new_smi->addr_source)
279fbd0c 3600 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3601 rv = -ENODEV;
3602 goto out_err;
3603 }
3604
c305e3d3
CM
3605 /*
3606 * Attempt a get device id command. If it fails, we probably
3607 * don't have a BMC here.
3608 */
1da177e4 3609 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3610 if (rv) {
3611 if (new_smi->addr_source)
279fbd0c 3612 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3613 " at this location\n");
1da177e4 3614 goto out_err;
b0defcdb 3615 }
1da177e4 3616
3ae0e0f9 3617 setup_oem_data_handler(new_smi);
ea94027b 3618 setup_xaction_handlers(new_smi);
d0882897 3619 check_for_broken_irqs(new_smi);
3ae0e0f9 3620
b874b985 3621 new_smi->waiting_msg = NULL;
1da177e4
LT
3622 new_smi->curr_msg = NULL;
3623 atomic_set(&new_smi->req_events, 0);
7aefac26 3624 new_smi->run_to_completion = false;
64959e2d
CM
3625 for (i = 0; i < SI_NUM_STATS; i++)
3626 atomic_set(&new_smi->stats[i], 0);
1da177e4 3627
7aefac26 3628 new_smi->interrupt_disabled = true;
89986496 3629 atomic_set(&new_smi->need_watch, 0);
b0defcdb
CM
3630 new_smi->intf_num = smi_num;
3631 smi_num++;
1da177e4 3632
40112ae7
CM
3633 rv = try_enable_event_buffer(new_smi);
3634 if (rv == 0)
7aefac26 3635 new_smi->has_event_buffer = true;
40112ae7 3636
c305e3d3
CM
3637 /*
3638 * Start clearing the flags before we enable interrupts or the
3639 * timer to avoid racing with the timer.
3640 */
0cfec916 3641 start_clear_flags(new_smi, false);
d9b7e4f7
CM
3642
3643 /*
3644 * IRQ is defined to be set when non-zero. req_events will
3645 * cause a global flags check that will enable interrupts.
3646 */
3647 if (new_smi->irq) {
3648 new_smi->interrupt_disabled = false;
3649 atomic_set(&new_smi->req_events, 1);
3650 }
1da177e4 3651
50c812b2 3652 if (!new_smi->dev) {
c305e3d3
CM
3653 /*
3654 * If we don't already have a device from something
3655 * else (like PCI), then register a new one.
3656 */
50c812b2
CM
3657 new_smi->pdev = platform_device_alloc("ipmi_si",
3658 new_smi->intf_num);
8b32b5d0 3659 if (!new_smi->pdev) {
279fbd0c
MS
3660 printk(KERN_ERR PFX
3661 "Unable to allocate platform device\n");
453823ba 3662 goto out_err;
50c812b2
CM
3663 }
3664 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3665 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3666
b48f5457 3667 rv = platform_device_add(new_smi->pdev);
50c812b2 3668 if (rv) {
279fbd0c
MS
3669 printk(KERN_ERR PFX
3670 "Unable to register system interface device:"
50c812b2
CM
3671 " %d\n",
3672 rv);
453823ba 3673 goto out_err;
50c812b2 3674 }
7aefac26 3675 new_smi->dev_registered = true;
50c812b2
CM
3676 }
3677
1da177e4
LT
3678 rv = ipmi_register_smi(&handlers,
3679 new_smi,
50c812b2
CM
3680 &new_smi->device_id,
3681 new_smi->dev,
453823ba 3682 new_smi->slave_addr);
1da177e4 3683 if (rv) {
279fbd0c
MS
3684 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3685 rv);
1da177e4
LT
3686 goto out_err_stop_timer;
3687 }
3688
3689 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
07412736 3690 &smi_type_proc_ops,
99b76233 3691 new_smi);
1da177e4 3692 if (rv) {
279fbd0c 3693 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3694 goto out_err_stop_timer;
3695 }
3696
3697 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
07412736 3698 &smi_si_stats_proc_ops,
99b76233 3699 new_smi);
1da177e4 3700 if (rv) {
279fbd0c 3701 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3702 goto out_err_stop_timer;
3703 }
3704
b361e27b 3705 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
07412736 3706 &smi_params_proc_ops,
99b76233 3707 new_smi);
b361e27b 3708 if (rv) {
279fbd0c 3709 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3710 goto out_err_stop_timer;
3711 }
3712
279fbd0c
MS
3713 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3714 si_to_str[new_smi->si_type]);
1da177e4
LT
3715
3716 return 0;
3717
3718 out_err_stop_timer:
a9a2c44f 3719 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3720
3721 out_err:
7aefac26 3722 new_smi->interrupt_disabled = true;
2407d77a
MG
3723
3724 if (new_smi->intf) {
b874b985 3725 ipmi_smi_t intf = new_smi->intf;
2407d77a 3726 new_smi->intf = NULL;
b874b985 3727 ipmi_unregister_smi(intf);
2407d77a 3728 }
1da177e4 3729
2407d77a 3730 if (new_smi->irq_cleanup) {
b0defcdb 3731 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3732 new_smi->irq_cleanup = NULL;
3733 }
1da177e4 3734
c305e3d3
CM
3735 /*
3736 * Wait until we know that we are out of any interrupt
3737 * handlers might have been running before we freed the
3738 * interrupt.
3739 */
fbd568a3 3740 synchronize_sched();
1da177e4
LT
3741
3742 if (new_smi->si_sm) {
3743 if (new_smi->handlers)
3744 new_smi->handlers->cleanup(new_smi->si_sm);
3745 kfree(new_smi->si_sm);
2407d77a 3746 new_smi->si_sm = NULL;
1da177e4 3747 }
2407d77a 3748 if (new_smi->addr_source_cleanup) {
b0defcdb 3749 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3750 new_smi->addr_source_cleanup = NULL;
3751 }
3752 if (new_smi->io_cleanup) {
7767e126 3753 new_smi->io_cleanup(new_smi);
2407d77a
MG
3754 new_smi->io_cleanup = NULL;
3755 }
1da177e4 3756
2407d77a 3757 if (new_smi->dev_registered) {
50c812b2 3758 platform_device_unregister(new_smi->pdev);
7aefac26 3759 new_smi->dev_registered = false;
2407d77a 3760 }
b0defcdb 3761
1da177e4
LT
3762 return rv;
3763}
3764
2223cbec 3765static int init_ipmi_si(void)
1da177e4 3766{
1da177e4
LT
3767 int i;
3768 char *str;
50c812b2 3769 int rv;
2407d77a 3770 struct smi_info *e;
06ee4594 3771 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3772
3773 if (initialized)
3774 return 0;
3775 initialized = 1;
3776
f2afae46
CM
3777 if (si_tryplatform) {
3778 rv = platform_driver_register(&ipmi_driver);
3779 if (rv) {
3780 printk(KERN_ERR PFX "Unable to register "
3781 "driver: %d\n", rv);
3782 return rv;
3783 }
50c812b2
CM
3784 }
3785
1da177e4
LT
3786 /* Parse out the si_type string into its components. */
3787 str = si_type_str;
3788 if (*str != '\0') {
e8b33617 3789 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3790 si_type[i] = str;
3791 str = strchr(str, ',');
3792 if (str) {
3793 *str = '\0';
3794 str++;
3795 } else {
3796 break;
3797 }
3798 }
3799 }
3800
1fdd75bd 3801 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3802
d8cc5267 3803 /* If the user gave us a device, they presumably want us to use it */
a1e9c9dd 3804 if (!hardcode_find_bmc())
d8cc5267 3805 return 0;
d8cc5267 3806
b0defcdb 3807#ifdef CONFIG_PCI
f2afae46
CM
3808 if (si_trypci) {
3809 rv = pci_register_driver(&ipmi_pci_driver);
3810 if (rv)
3811 printk(KERN_ERR PFX "Unable to register "
3812 "PCI driver: %d\n", rv);
3813 else
7aefac26 3814 pci_registered = true;
f2afae46 3815 }
b0defcdb
CM
3816#endif
3817
754d4531 3818#ifdef CONFIG_DMI
d941aeae
CM
3819 if (si_trydmi)
3820 dmi_find_bmc();
754d4531
MG
3821#endif
3822
3823#ifdef CONFIG_ACPI
d941aeae
CM
3824 if (si_tryacpi)
3825 spmi_find_bmc();
754d4531
MG
3826#endif
3827
fdbeb7de
TB
3828#ifdef CONFIG_PARISC
3829 register_parisc_driver(&ipmi_parisc_driver);
7aefac26 3830 parisc_registered = true;
fdbeb7de
TB
3831 /* poking PC IO addresses will crash machine, don't do it */
3832 si_trydefaults = 0;
3833#endif
3834
06ee4594
MG
3835 /* We prefer devices with interrupts, but in the case of a machine
3836 with multiple BMCs we assume that there will be several instances
3837 of a given type so if we succeed in registering a type then also
3838 try to register everything else of the same type */
d8cc5267 3839
2407d77a
MG
3840 mutex_lock(&smi_infos_lock);
3841 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3842 /* Try to register a device if it has an IRQ and we either
3843 haven't successfully registered a device yet or this
3844 device has the same type as one we successfully registered */
3845 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3846 if (!try_smi_init(e)) {
06ee4594 3847 type = e->addr_source;
d8cc5267
MG
3848 }
3849 }
3850 }
3851
06ee4594
MG
3852 /* type will only have been set if we successfully registered an si */
3853 if (type) {
3854 mutex_unlock(&smi_infos_lock);
3855 return 0;
3856 }
3857
d8cc5267
MG
3858 /* Fall back to the preferred device */
3859
3860 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3861 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3862 if (!try_smi_init(e)) {
06ee4594 3863 type = e->addr_source;
d8cc5267
MG
3864 }
3865 }
2407d77a
MG
3866 }
3867 mutex_unlock(&smi_infos_lock);
3868
06ee4594
MG
3869 if (type)
3870 return 0;
3871
b0defcdb 3872 if (si_trydefaults) {
d6dfd131 3873 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3874 if (list_empty(&smi_infos)) {
3875 /* No BMC was found, try defaults. */
d6dfd131 3876 mutex_unlock(&smi_infos_lock);
b0defcdb 3877 default_find_bmc();
2407d77a 3878 } else
d6dfd131 3879 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3880 }
3881
d6dfd131 3882 mutex_lock(&smi_infos_lock);
b361e27b 3883 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3884 mutex_unlock(&smi_infos_lock);
d2478521 3885 cleanup_ipmi_si();
279fbd0c
MS
3886 printk(KERN_WARNING PFX
3887 "Unable to find any System Interface(s)\n");
1da177e4 3888 return -ENODEV;
b0defcdb 3889 } else {
d6dfd131 3890 mutex_unlock(&smi_infos_lock);
b0defcdb 3891 return 0;
1da177e4 3892 }
1da177e4
LT
3893}
3894module_init(init_ipmi_si);
3895
b361e27b 3896static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3897{
2407d77a 3898 int rv = 0;
1da177e4 3899
b0defcdb 3900 if (!to_clean)
1da177e4
LT
3901 return;
3902
b874b985
CM
3903 if (to_clean->intf) {
3904 ipmi_smi_t intf = to_clean->intf;
3905
3906 to_clean->intf = NULL;
3907 rv = ipmi_unregister_smi(intf);
3908 if (rv) {
3909 pr_err(PFX "Unable to unregister device: errno=%d\n",
3910 rv);
3911 }
3912 }
3913
567eded9
TI
3914 if (to_clean->dev)
3915 dev_set_drvdata(to_clean->dev, NULL);
3916
b0defcdb
CM
3917 list_del(&to_clean->link);
3918
c305e3d3 3919 /*
b874b985
CM
3920 * Make sure that interrupts, the timer and the thread are
3921 * stopped and will not run again.
c305e3d3 3922 */
b874b985
CM
3923 if (to_clean->irq_cleanup)
3924 to_clean->irq_cleanup(to_clean);
a9a2c44f 3925 wait_for_timer_and_thread(to_clean);
1da177e4 3926
c305e3d3
CM
3927 /*
3928 * Timeouts are stopped, now make sure the interrupts are off
b874b985
CM
3929 * in the BMC. Note that timers and CPU interrupts are off,
3930 * so no need for locks.
c305e3d3 3931 */
ee6cd5f8 3932 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
ee6cd5f8
CM
3933 poll(to_clean);
3934 schedule_timeout_uninterruptible(1);
ee6cd5f8 3935 }
0cfec916 3936 disable_si_irq(to_clean, false);
e8b33617 3937 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3938 poll(to_clean);
da4cd8df 3939 schedule_timeout_uninterruptible(1);
1da177e4
LT
3940 }
3941
2407d77a
MG
3942 if (to_clean->handlers)
3943 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3944
3945 kfree(to_clean->si_sm);
3946
b0defcdb
CM
3947 if (to_clean->addr_source_cleanup)
3948 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3949 if (to_clean->io_cleanup)
3950 to_clean->io_cleanup(to_clean);
50c812b2
CM
3951
3952 if (to_clean->dev_registered)
3953 platform_device_unregister(to_clean->pdev);
3954
3955 kfree(to_clean);
1da177e4
LT
3956}
3957
0dcf334c 3958static void cleanup_ipmi_si(void)
1da177e4 3959{
b0defcdb 3960 struct smi_info *e, *tmp_e;
1da177e4 3961
b0defcdb 3962 if (!initialized)
1da177e4
LT
3963 return;
3964
b0defcdb 3965#ifdef CONFIG_PCI
56480287
MG
3966 if (pci_registered)
3967 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3968#endif
fdbeb7de
TB
3969#ifdef CONFIG_PARISC
3970 if (parisc_registered)
3971 unregister_parisc_driver(&ipmi_parisc_driver);
3972#endif
b0defcdb 3973
a1e9c9dd 3974 platform_driver_unregister(&ipmi_driver);
dba9b4f6 3975
d6dfd131 3976 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3977 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3978 cleanup_one_si(e);
d6dfd131 3979 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3980}
3981module_exit(cleanup_ipmi_si);
3982
3983MODULE_LICENSE("GPL");
1fdd75bd 3984MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3985MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3986 " system interfaces.");
This page took 1.166378 seconds and 5 git commands to generate.