Update broken web addresses in the kernel.
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
56480287
MG
305#ifdef CONFIG_PCI
306static int pci_registered;
307#endif
308#ifdef CONFIG_PPC_OF
309static int of_registered;
310#endif
a51f4a81 311
ae74e823
MW
312static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
313static int num_max_busy_us;
314
b361e27b
CM
315static int unload_when_empty = 1;
316
2407d77a 317static int add_smi(struct smi_info *smi);
b0defcdb 318static int try_smi_init(struct smi_info *smi);
b361e27b 319static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 320
e041c683 321static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 322static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 323{
e041c683 324 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
325}
326
1da177e4
LT
327static void deliver_recv_msg(struct smi_info *smi_info,
328 struct ipmi_smi_msg *msg)
329{
330 /* Deliver the message to the upper layer with the lock
c305e3d3 331 released. */
a747c5ab
JK
332
333 if (smi_info->run_to_completion) {
334 ipmi_smi_msg_received(smi_info->intf, msg);
335 } else {
336 spin_unlock(&(smi_info->si_lock));
337 ipmi_smi_msg_received(smi_info->intf, msg);
338 spin_lock(&(smi_info->si_lock));
339 }
1da177e4
LT
340}
341
4d7cbac7 342static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
343{
344 struct ipmi_smi_msg *msg = smi_info->curr_msg;
345
4d7cbac7
CM
346 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
347 cCode = IPMI_ERR_UNSPECIFIED;
348 /* else use it as is */
349
1da177e4
LT
350 /* Make it a reponse */
351 msg->rsp[0] = msg->data[0] | 4;
352 msg->rsp[1] = msg->data[1];
4d7cbac7 353 msg->rsp[2] = cCode;
1da177e4
LT
354 msg->rsp_size = 3;
355
356 smi_info->curr_msg = NULL;
357 deliver_recv_msg(smi_info, msg);
358}
359
360static enum si_sm_result start_next_msg(struct smi_info *smi_info)
361{
362 int rv;
363 struct list_head *entry = NULL;
364#ifdef DEBUG_TIMING
365 struct timeval t;
366#endif
367
c305e3d3
CM
368 /*
369 * No need to save flags, we aleady have interrupts off and we
370 * already hold the SMI lock.
371 */
5956dce1
KB
372 if (!smi_info->run_to_completion)
373 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
374
375 /* Pick the high priority queue first. */
b0defcdb 376 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 377 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 378 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
379 entry = smi_info->xmit_msgs.next;
380 }
381
b0defcdb 382 if (!entry) {
1da177e4
LT
383 smi_info->curr_msg = NULL;
384 rv = SI_SM_IDLE;
385 } else {
386 int err;
387
388 list_del(entry);
389 smi_info->curr_msg = list_entry(entry,
390 struct ipmi_smi_msg,
391 link);
392#ifdef DEBUG_TIMING
393 do_gettimeofday(&t);
c305e3d3 394 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 395#endif
e041c683
AS
396 err = atomic_notifier_call_chain(&xaction_notifier_list,
397 0, smi_info);
ea94027b
CM
398 if (err & NOTIFY_STOP_MASK) {
399 rv = SI_SM_CALL_WITHOUT_DELAY;
400 goto out;
401 }
1da177e4
LT
402 err = smi_info->handlers->start_transaction(
403 smi_info->si_sm,
404 smi_info->curr_msg->data,
405 smi_info->curr_msg->data_size);
c305e3d3 406 if (err)
4d7cbac7 407 return_hosed_msg(smi_info, err);
1da177e4
LT
408
409 rv = SI_SM_CALL_WITHOUT_DELAY;
410 }
c305e3d3 411 out:
5956dce1
KB
412 if (!smi_info->run_to_completion)
413 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
414
415 return rv;
416}
417
418static void start_enable_irq(struct smi_info *smi_info)
419{
420 unsigned char msg[2];
421
c305e3d3
CM
422 /*
423 * If we are enabling interrupts, we have to tell the
424 * BMC to use them.
425 */
1da177e4
LT
426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
431}
432
ee6cd5f8
CM
433static void start_disable_irq(struct smi_info *smi_info)
434{
435 unsigned char msg[2];
436
437 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
438 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
439
440 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
441 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
442}
443
1da177e4
LT
444static void start_clear_flags(struct smi_info *smi_info)
445{
446 unsigned char msg[3];
447
448 /* Make sure the watchdog pre-timeout flag is not set at startup. */
449 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
450 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
451 msg[2] = WDT_PRE_TIMEOUT_INT;
452
453 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
454 smi_info->si_state = SI_CLEARING_FLAGS;
455}
456
c305e3d3
CM
457/*
458 * When we have a situtaion where we run out of memory and cannot
459 * allocate messages, we just leave them in the BMC and run the system
460 * polled until we can allocate some memory. Once we have some
461 * memory, we will re-enable the interrupt.
462 */
1da177e4
LT
463static inline void disable_si_irq(struct smi_info *smi_info)
464{
b0defcdb 465 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 466 start_disable_irq(smi_info);
1da177e4 467 smi_info->interrupt_disabled = 1;
ea4078ca
MG
468 if (!atomic_read(&smi_info->stop_operation))
469 mod_timer(&smi_info->si_timer,
470 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
471 }
472}
473
474static inline void enable_si_irq(struct smi_info *smi_info)
475{
476 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 477 start_enable_irq(smi_info);
1da177e4
LT
478 smi_info->interrupt_disabled = 0;
479 }
480}
481
482static void handle_flags(struct smi_info *smi_info)
483{
3ae0e0f9 484 retry:
1da177e4
LT
485 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
486 /* Watchdog pre-timeout */
64959e2d 487 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
488
489 start_clear_flags(smi_info);
490 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
491 spin_unlock(&(smi_info->si_lock));
492 ipmi_smi_watchdog_pretimeout(smi_info->intf);
493 spin_lock(&(smi_info->si_lock));
494 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
495 /* Messages available. */
496 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 497 if (!smi_info->curr_msg) {
1da177e4
LT
498 disable_si_irq(smi_info);
499 smi_info->si_state = SI_NORMAL;
500 return;
501 }
502 enable_si_irq(smi_info);
503
504 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
505 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
506 smi_info->curr_msg->data_size = 2;
507
508 smi_info->handlers->start_transaction(
509 smi_info->si_sm,
510 smi_info->curr_msg->data,
511 smi_info->curr_msg->data_size);
512 smi_info->si_state = SI_GETTING_MESSAGES;
513 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
514 /* Events available. */
515 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 516 if (!smi_info->curr_msg) {
1da177e4
LT
517 disable_si_irq(smi_info);
518 smi_info->si_state = SI_NORMAL;
519 return;
520 }
521 enable_si_irq(smi_info);
522
523 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
524 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
525 smi_info->curr_msg->data_size = 2;
526
527 smi_info->handlers->start_transaction(
528 smi_info->si_sm,
529 smi_info->curr_msg->data,
530 smi_info->curr_msg->data_size);
531 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 532 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 533 smi_info->oem_data_avail_handler) {
4064d5ef
CM
534 if (smi_info->oem_data_avail_handler(smi_info))
535 goto retry;
c305e3d3 536 } else
1da177e4 537 smi_info->si_state = SI_NORMAL;
1da177e4
LT
538}
539
540static void handle_transaction_done(struct smi_info *smi_info)
541{
542 struct ipmi_smi_msg *msg;
543#ifdef DEBUG_TIMING
544 struct timeval t;
545
546 do_gettimeofday(&t);
c305e3d3 547 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
548#endif
549 switch (smi_info->si_state) {
550 case SI_NORMAL:
b0defcdb 551 if (!smi_info->curr_msg)
1da177e4
LT
552 break;
553
554 smi_info->curr_msg->rsp_size
555 = smi_info->handlers->get_result(
556 smi_info->si_sm,
557 smi_info->curr_msg->rsp,
558 IPMI_MAX_MSG_LENGTH);
559
c305e3d3
CM
560 /*
561 * Do this here becase deliver_recv_msg() releases the
562 * lock, and a new message can be put in during the
563 * time the lock is released.
564 */
1da177e4
LT
565 msg = smi_info->curr_msg;
566 smi_info->curr_msg = NULL;
567 deliver_recv_msg(smi_info, msg);
568 break;
569
570 case SI_GETTING_FLAGS:
571 {
572 unsigned char msg[4];
573 unsigned int len;
574
575 /* We got the flags from the SMI, now handle them. */
576 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
577 if (msg[2] != 0) {
c305e3d3 578 /* Error fetching flags, just give up for now. */
1da177e4
LT
579 smi_info->si_state = SI_NORMAL;
580 } else if (len < 4) {
c305e3d3
CM
581 /*
582 * Hmm, no flags. That's technically illegal, but
583 * don't use uninitialized data.
584 */
1da177e4
LT
585 smi_info->si_state = SI_NORMAL;
586 } else {
587 smi_info->msg_flags = msg[3];
588 handle_flags(smi_info);
589 }
590 break;
591 }
592
593 case SI_CLEARING_FLAGS:
594 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
595 {
596 unsigned char msg[3];
597
598 /* We cleared the flags. */
599 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
600 if (msg[2] != 0) {
601 /* Error clearing flags */
279fbd0c
MS
602 dev_warn(smi_info->dev,
603 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
604 }
605 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
606 start_enable_irq(smi_info);
607 else
608 smi_info->si_state = SI_NORMAL;
609 break;
610 }
611
612 case SI_GETTING_EVENTS:
613 {
614 smi_info->curr_msg->rsp_size
615 = smi_info->handlers->get_result(
616 smi_info->si_sm,
617 smi_info->curr_msg->rsp,
618 IPMI_MAX_MSG_LENGTH);
619
c305e3d3
CM
620 /*
621 * Do this here becase deliver_recv_msg() releases the
622 * lock, and a new message can be put in during the
623 * time the lock is released.
624 */
1da177e4
LT
625 msg = smi_info->curr_msg;
626 smi_info->curr_msg = NULL;
627 if (msg->rsp[2] != 0) {
628 /* Error getting event, probably done. */
629 msg->done(msg);
630
631 /* Take off the event flag. */
632 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
633 handle_flags(smi_info);
634 } else {
64959e2d 635 smi_inc_stat(smi_info, events);
1da177e4 636
c305e3d3
CM
637 /*
638 * Do this before we deliver the message
639 * because delivering the message releases the
640 * lock and something else can mess with the
641 * state.
642 */
1da177e4
LT
643 handle_flags(smi_info);
644
645 deliver_recv_msg(smi_info, msg);
646 }
647 break;
648 }
649
650 case SI_GETTING_MESSAGES:
651 {
652 smi_info->curr_msg->rsp_size
653 = smi_info->handlers->get_result(
654 smi_info->si_sm,
655 smi_info->curr_msg->rsp,
656 IPMI_MAX_MSG_LENGTH);
657
c305e3d3
CM
658 /*
659 * Do this here becase deliver_recv_msg() releases the
660 * lock, and a new message can be put in during the
661 * time the lock is released.
662 */
1da177e4
LT
663 msg = smi_info->curr_msg;
664 smi_info->curr_msg = NULL;
665 if (msg->rsp[2] != 0) {
666 /* Error getting event, probably done. */
667 msg->done(msg);
668
669 /* Take off the msg flag. */
670 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
671 handle_flags(smi_info);
672 } else {
64959e2d 673 smi_inc_stat(smi_info, incoming_messages);
1da177e4 674
c305e3d3
CM
675 /*
676 * Do this before we deliver the message
677 * because delivering the message releases the
678 * lock and something else can mess with the
679 * state.
680 */
1da177e4
LT
681 handle_flags(smi_info);
682
683 deliver_recv_msg(smi_info, msg);
684 }
685 break;
686 }
687
688 case SI_ENABLE_INTERRUPTS1:
689 {
690 unsigned char msg[4];
691
692 /* We got the flags from the SMI, now handle them. */
693 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
694 if (msg[2] != 0) {
279fbd0c
MS
695 dev_warn(smi_info->dev, "Could not enable interrupts"
696 ", failed get, using polled mode.\n");
1da177e4
LT
697 smi_info->si_state = SI_NORMAL;
698 } else {
699 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
700 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
701 msg[2] = (msg[3] |
702 IPMI_BMC_RCV_MSG_INTR |
703 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
704 smi_info->handlers->start_transaction(
705 smi_info->si_sm, msg, 3);
706 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
707 }
708 break;
709 }
710
711 case SI_ENABLE_INTERRUPTS2:
712 {
713 unsigned char msg[4];
714
715 /* We got the flags from the SMI, now handle them. */
716 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
717 if (msg[2] != 0)
718 dev_warn(smi_info->dev, "Could not enable interrupts"
719 ", failed set, using polled mode.\n");
720 else
ea4078ca 721 smi_info->interrupt_disabled = 0;
1da177e4
LT
722 smi_info->si_state = SI_NORMAL;
723 break;
724 }
ee6cd5f8
CM
725
726 case SI_DISABLE_INTERRUPTS1:
727 {
728 unsigned char msg[4];
729
730 /* We got the flags from the SMI, now handle them. */
731 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732 if (msg[2] != 0) {
279fbd0c
MS
733 dev_warn(smi_info->dev, "Could not disable interrupts"
734 ", failed get.\n");
ee6cd5f8
CM
735 smi_info->si_state = SI_NORMAL;
736 } else {
737 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
738 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
739 msg[2] = (msg[3] &
740 ~(IPMI_BMC_RCV_MSG_INTR |
741 IPMI_BMC_EVT_MSG_INTR));
742 smi_info->handlers->start_transaction(
743 smi_info->si_sm, msg, 3);
744 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
745 }
746 break;
747 }
748
749 case SI_DISABLE_INTERRUPTS2:
750 {
751 unsigned char msg[4];
752
753 /* We got the flags from the SMI, now handle them. */
754 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755 if (msg[2] != 0) {
279fbd0c
MS
756 dev_warn(smi_info->dev, "Could not disable interrupts"
757 ", failed set.\n");
ee6cd5f8
CM
758 }
759 smi_info->si_state = SI_NORMAL;
760 break;
761 }
1da177e4
LT
762 }
763}
764
c305e3d3
CM
765/*
766 * Called on timeouts and events. Timeouts should pass the elapsed
767 * time, interrupts should pass in zero. Must be called with
768 * si_lock held and interrupts disabled.
769 */
1da177e4
LT
770static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
771 int time)
772{
773 enum si_sm_result si_sm_result;
774
775 restart:
c305e3d3
CM
776 /*
777 * There used to be a loop here that waited a little while
778 * (around 25us) before giving up. That turned out to be
779 * pointless, the minimum delays I was seeing were in the 300us
780 * range, which is far too long to wait in an interrupt. So
781 * we just run until the state machine tells us something
782 * happened or it needs a delay.
783 */
1da177e4
LT
784 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
785 time = 0;
786 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 788
c305e3d3 789 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 790 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
791
792 handle_transaction_done(smi_info);
793 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 794 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 795 smi_inc_stat(smi_info, hosed_count);
1da177e4 796
c305e3d3
CM
797 /*
798 * Do the before return_hosed_msg, because that
799 * releases the lock.
800 */
1da177e4
LT
801 smi_info->si_state = SI_NORMAL;
802 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
803 /*
804 * If we were handling a user message, format
805 * a response to send to the upper layer to
806 * tell it about the error.
807 */
4d7cbac7 808 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
809 }
810 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
811 }
812
4ea18425
CM
813 /*
814 * We prefer handling attn over new messages. But don't do
815 * this if there is not yet an upper layer to handle anything.
816 */
c305e3d3 817 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
818 unsigned char msg[2];
819
64959e2d 820 smi_inc_stat(smi_info, attentions);
1da177e4 821
c305e3d3
CM
822 /*
823 * Got a attn, send down a get message flags to see
824 * what's causing it. It would be better to handle
825 * this in the upper layer, but due to the way
826 * interrupts work with the SMI, that's not really
827 * possible.
828 */
1da177e4
LT
829 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
830 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
831
832 smi_info->handlers->start_transaction(
833 smi_info->si_sm, msg, 2);
834 smi_info->si_state = SI_GETTING_FLAGS;
835 goto restart;
836 }
837
838 /* If we are currently idle, try to start the next message. */
839 if (si_sm_result == SI_SM_IDLE) {
64959e2d 840 smi_inc_stat(smi_info, idles);
1da177e4
LT
841
842 si_sm_result = start_next_msg(smi_info);
843 if (si_sm_result != SI_SM_IDLE)
844 goto restart;
c305e3d3 845 }
1da177e4
LT
846
847 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
848 && (atomic_read(&smi_info->req_events))) {
849 /*
850 * We are idle and the upper layer requested that I fetch
851 * events, so do so.
852 */
55162fb1 853 atomic_set(&smi_info->req_events, 0);
1da177e4 854
55162fb1
CM
855 smi_info->curr_msg = ipmi_alloc_smi_msg();
856 if (!smi_info->curr_msg)
857 goto out;
1da177e4 858
55162fb1
CM
859 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
860 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
861 smi_info->curr_msg->data_size = 2;
1da177e4
LT
862
863 smi_info->handlers->start_transaction(
55162fb1
CM
864 smi_info->si_sm,
865 smi_info->curr_msg->data,
866 smi_info->curr_msg->data_size);
867 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
868 goto restart;
869 }
55162fb1 870 out:
1da177e4
LT
871 return si_sm_result;
872}
873
874static void sender(void *send_info,
875 struct ipmi_smi_msg *msg,
876 int priority)
877{
878 struct smi_info *smi_info = send_info;
879 enum si_sm_result result;
880 unsigned long flags;
881#ifdef DEBUG_TIMING
882 struct timeval t;
883#endif
884
b361e27b
CM
885 if (atomic_read(&smi_info->stop_operation)) {
886 msg->rsp[0] = msg->data[0] | 4;
887 msg->rsp[1] = msg->data[1];
888 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
889 msg->rsp_size = 3;
890 deliver_recv_msg(smi_info, msg);
891 return;
892 }
893
1da177e4
LT
894#ifdef DEBUG_TIMING
895 do_gettimeofday(&t);
896 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
897#endif
898
ea4078ca
MG
899 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
900
3326f4f2
MG
901 if (smi_info->thread)
902 wake_up_process(smi_info->thread);
903
1da177e4 904 if (smi_info->run_to_completion) {
bda4c30a
CM
905 /*
906 * If we are running to completion, then throw it in
907 * the list and run transactions until everything is
908 * clear. Priority doesn't matter here.
909 */
910
911 /*
912 * Run to completion means we are single-threaded, no
913 * need for locks.
914 */
1da177e4
LT
915 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
916
1da177e4
LT
917 result = smi_event_handler(smi_info, 0);
918 while (result != SI_SM_IDLE) {
919 udelay(SI_SHORT_TIMEOUT_USEC);
920 result = smi_event_handler(smi_info,
921 SI_SHORT_TIMEOUT_USEC);
922 }
1da177e4 923 return;
1da177e4 924 }
1da177e4 925
bda4c30a
CM
926 spin_lock_irqsave(&smi_info->msg_lock, flags);
927 if (priority > 0)
928 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
929 else
930 list_add_tail(&msg->link, &smi_info->xmit_msgs);
931 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
932
933 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 934 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 935 start_next_msg(smi_info);
bda4c30a 936 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
937}
938
939static void set_run_to_completion(void *send_info, int i_run_to_completion)
940{
941 struct smi_info *smi_info = send_info;
942 enum si_sm_result result;
1da177e4
LT
943
944 smi_info->run_to_completion = i_run_to_completion;
945 if (i_run_to_completion) {
946 result = smi_event_handler(smi_info, 0);
947 while (result != SI_SM_IDLE) {
948 udelay(SI_SHORT_TIMEOUT_USEC);
949 result = smi_event_handler(smi_info,
950 SI_SHORT_TIMEOUT_USEC);
951 }
952 }
1da177e4
LT
953}
954
ae74e823
MW
955/*
956 * Use -1 in the nsec value of the busy waiting timespec to tell that
957 * we are spinning in kipmid looking for something and not delaying
958 * between checks
959 */
960static inline void ipmi_si_set_not_busy(struct timespec *ts)
961{
962 ts->tv_nsec = -1;
963}
964static inline int ipmi_si_is_busy(struct timespec *ts)
965{
966 return ts->tv_nsec != -1;
967}
968
969static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
970 const struct smi_info *smi_info,
971 struct timespec *busy_until)
972{
973 unsigned int max_busy_us = 0;
974
975 if (smi_info->intf_num < num_max_busy_us)
976 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
977 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
978 ipmi_si_set_not_busy(busy_until);
979 else if (!ipmi_si_is_busy(busy_until)) {
980 getnstimeofday(busy_until);
981 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
982 } else {
983 struct timespec now;
984 getnstimeofday(&now);
985 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
986 ipmi_si_set_not_busy(busy_until);
987 return 0;
988 }
989 }
990 return 1;
991}
992
993
994/*
995 * A busy-waiting loop for speeding up IPMI operation.
996 *
997 * Lousy hardware makes this hard. This is only enabled for systems
998 * that are not BT and do not have interrupts. It starts spinning
999 * when an operation is complete or until max_busy tells it to stop
1000 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1001 * Documentation/IPMI.txt for details.
1002 */
a9a2c44f
CM
1003static int ipmi_thread(void *data)
1004{
1005 struct smi_info *smi_info = data;
e9a705a0 1006 unsigned long flags;
a9a2c44f 1007 enum si_sm_result smi_result;
ae74e823 1008 struct timespec busy_until;
a9a2c44f 1009
ae74e823 1010 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1011 set_user_nice(current, 19);
e9a705a0 1012 while (!kthread_should_stop()) {
ae74e823
MW
1013 int busy_wait;
1014
a9a2c44f 1015 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1016 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1017 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1018 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1019 &busy_until);
c305e3d3
CM
1020 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1021 ; /* do nothing */
ae74e823 1022 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1023 schedule();
3326f4f2
MG
1024 else if (smi_result == SI_SM_IDLE)
1025 schedule_timeout_interruptible(100);
e9a705a0 1026 else
8d1f66dc 1027 schedule_timeout_interruptible(1);
a9a2c44f 1028 }
a9a2c44f
CM
1029 return 0;
1030}
1031
1032
1da177e4
LT
1033static void poll(void *send_info)
1034{
1035 struct smi_info *smi_info = send_info;
fcfa4724 1036 unsigned long flags;
1da177e4 1037
15c62e10
CM
1038 /*
1039 * Make sure there is some delay in the poll loop so we can
1040 * drive time forward and timeout things.
1041 */
1042 udelay(10);
fcfa4724 1043 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1044 smi_event_handler(smi_info, 10);
fcfa4724 1045 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1046}
1047
1048static void request_events(void *send_info)
1049{
1050 struct smi_info *smi_info = send_info;
1051
40112ae7
CM
1052 if (atomic_read(&smi_info->stop_operation) ||
1053 !smi_info->has_event_buffer)
b361e27b
CM
1054 return;
1055
1da177e4
LT
1056 atomic_set(&smi_info->req_events, 1);
1057}
1058
0c8204b3 1059static int initialized;
1da177e4 1060
1da177e4
LT
1061static void smi_timeout(unsigned long data)
1062{
1063 struct smi_info *smi_info = (struct smi_info *) data;
1064 enum si_sm_result smi_result;
1065 unsigned long flags;
1066 unsigned long jiffies_now;
c4edff1c 1067 long time_diff;
3326f4f2 1068 long timeout;
1da177e4
LT
1069#ifdef DEBUG_TIMING
1070 struct timeval t;
1071#endif
1072
1da177e4
LT
1073 spin_lock_irqsave(&(smi_info->si_lock), flags);
1074#ifdef DEBUG_TIMING
1075 do_gettimeofday(&t);
c305e3d3 1076 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1077#endif
1078 jiffies_now = jiffies;
c4edff1c 1079 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1080 * SI_USEC_PER_JIFFY);
1081 smi_result = smi_event_handler(smi_info, time_diff);
1082
1083 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1084
1085 smi_info->last_timeout_jiffies = jiffies_now;
1086
b0defcdb 1087 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1088 /* Running with interrupts, only do long timeouts. */
3326f4f2 1089 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1090 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1091 goto do_mod_timer;
1da177e4
LT
1092 }
1093
c305e3d3
CM
1094 /*
1095 * If the state machine asks for a short delay, then shorten
1096 * the timer timeout.
1097 */
1da177e4 1098 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1099 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1100 timeout = jiffies + 1;
1da177e4 1101 } else {
64959e2d 1102 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1103 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1104 }
1105
3326f4f2
MG
1106 do_mod_timer:
1107 if (smi_result != SI_SM_IDLE)
1108 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1109}
1110
7d12e780 1111static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1112{
1113 struct smi_info *smi_info = data;
1114 unsigned long flags;
1115#ifdef DEBUG_TIMING
1116 struct timeval t;
1117#endif
1118
1119 spin_lock_irqsave(&(smi_info->si_lock), flags);
1120
64959e2d 1121 smi_inc_stat(smi_info, interrupts);
1da177e4 1122
1da177e4
LT
1123#ifdef DEBUG_TIMING
1124 do_gettimeofday(&t);
c305e3d3 1125 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1126#endif
1127 smi_event_handler(smi_info, 0);
1da177e4
LT
1128 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1129 return IRQ_HANDLED;
1130}
1131
7d12e780 1132static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1133{
1134 struct smi_info *smi_info = data;
1135 /* We need to clear the IRQ flag for the BT interface. */
1136 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1137 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1138 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1139 return si_irq_handler(irq, data);
9dbf68f9
CM
1140}
1141
453823ba
CM
1142static int smi_start_processing(void *send_info,
1143 ipmi_smi_t intf)
1144{
1145 struct smi_info *new_smi = send_info;
a51f4a81 1146 int enable = 0;
453823ba
CM
1147
1148 new_smi->intf = intf;
1149
c45adc39
CM
1150 /* Try to claim any interrupts. */
1151 if (new_smi->irq_setup)
1152 new_smi->irq_setup(new_smi);
1153
453823ba
CM
1154 /* Set up the timer that drives the interface. */
1155 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1156 new_smi->last_timeout_jiffies = jiffies;
1157 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1158
a51f4a81
CM
1159 /*
1160 * Check if the user forcefully enabled the daemon.
1161 */
1162 if (new_smi->intf_num < num_force_kipmid)
1163 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1164 /*
1165 * The BT interface is efficient enough to not need a thread,
1166 * and there is no need for a thread if we have interrupts.
1167 */
c305e3d3 1168 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1169 enable = 1;
1170
1171 if (enable) {
453823ba
CM
1172 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173 "kipmi%d", new_smi->intf_num);
1174 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1175 dev_notice(new_smi->dev, "Could not start"
1176 " kernel thread due to error %ld, only using"
1177 " timers to drive the interface\n",
1178 PTR_ERR(new_smi->thread));
453823ba
CM
1179 new_smi->thread = NULL;
1180 }
1181 }
1182
1183 return 0;
1184}
9dbf68f9 1185
b9675136
CM
1186static void set_maintenance_mode(void *send_info, int enable)
1187{
1188 struct smi_info *smi_info = send_info;
1189
1190 if (!enable)
1191 atomic_set(&smi_info->req_events, 0);
1192}
1193
c305e3d3 1194static struct ipmi_smi_handlers handlers = {
1da177e4 1195 .owner = THIS_MODULE,
453823ba 1196 .start_processing = smi_start_processing,
1da177e4
LT
1197 .sender = sender,
1198 .request_events = request_events,
b9675136 1199 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1200 .set_run_to_completion = set_run_to_completion,
1201 .poll = poll,
1202};
1203
c305e3d3
CM
1204/*
1205 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1206 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1207 */
1da177e4 1208
b0defcdb 1209static LIST_HEAD(smi_infos);
d6dfd131 1210static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1211static int smi_num; /* Used to sequence the SMIs */
1da177e4 1212
1da177e4 1213#define DEFAULT_REGSPACING 1
dba9b4f6 1214#define DEFAULT_REGSIZE 1
1da177e4
LT
1215
1216static int si_trydefaults = 1;
1217static char *si_type[SI_MAX_PARMS];
1218#define MAX_SI_TYPE_STR 30
1219static char si_type_str[MAX_SI_TYPE_STR];
1220static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1221static unsigned int num_addrs;
1da177e4 1222static unsigned int ports[SI_MAX_PARMS];
64a6f950 1223static unsigned int num_ports;
1da177e4 1224static int irqs[SI_MAX_PARMS];
64a6f950 1225static unsigned int num_irqs;
1da177e4 1226static int regspacings[SI_MAX_PARMS];
64a6f950 1227static unsigned int num_regspacings;
1da177e4 1228static int regsizes[SI_MAX_PARMS];
64a6f950 1229static unsigned int num_regsizes;
1da177e4 1230static int regshifts[SI_MAX_PARMS];
64a6f950 1231static unsigned int num_regshifts;
2f95d513 1232static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1233static unsigned int num_slave_addrs;
1da177e4 1234
b361e27b
CM
1235#define IPMI_IO_ADDR_SPACE 0
1236#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1237static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1238
1239static int hotmod_handler(const char *val, struct kernel_param *kp);
1240
1241module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1242MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1243 " Documentation/IPMI.txt in the kernel sources for the"
1244 " gory details.");
1da177e4
LT
1245
1246module_param_named(trydefaults, si_trydefaults, bool, 0);
1247MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1248 " default scan of the KCS and SMIC interface at the standard"
1249 " address");
1250module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1251MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1252 " interface separated by commas. The types are 'kcs',"
1253 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1254 " the first interface to kcs and the second to bt");
64a6f950 1255module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1256MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1257 " addresses separated by commas. Only use if an interface"
1258 " is in memory. Otherwise, set it to zero or leave"
1259 " it blank.");
64a6f950 1260module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1261MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1262 " addresses separated by commas. Only use if an interface"
1263 " is a port. Otherwise, set it to zero or leave"
1264 " it blank.");
1265module_param_array(irqs, int, &num_irqs, 0);
1266MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1267 " addresses separated by commas. Only use if an interface"
1268 " has an interrupt. Otherwise, set it to zero or leave"
1269 " it blank.");
1270module_param_array(regspacings, int, &num_regspacings, 0);
1271MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1272 " and each successive register used by the interface. For"
1273 " instance, if the start address is 0xca2 and the spacing"
1274 " is 2, then the second address is at 0xca4. Defaults"
1275 " to 1.");
1276module_param_array(regsizes, int, &num_regsizes, 0);
1277MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1278 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1279 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1280 " the 8-bit IPMI register has to be read from a larger"
1281 " register.");
1282module_param_array(regshifts, int, &num_regshifts, 0);
1283MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1284 " IPMI register, in bits. For instance, if the data"
1285 " is read from a 32-bit word and the IPMI data is in"
1286 " bit 8-15, then the shift would be 8");
1287module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1288MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1289 " the controller. Normally this is 0x20, but can be"
1290 " overridden by this parm. This is an array indexed"
1291 " by interface number.");
a51f4a81
CM
1292module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1293MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1294 " disabled(0). Normally the IPMI driver auto-detects"
1295 " this, but the value may be overridden by this parm.");
b361e27b
CM
1296module_param(unload_when_empty, int, 0);
1297MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1298 " specified or found, default is 1. Setting to 0"
1299 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1300module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1301MODULE_PARM_DESC(kipmid_max_busy_us,
1302 "Max time (in microseconds) to busy-wait for IPMI data before"
1303 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1304 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1305
1306
b0defcdb 1307static void std_irq_cleanup(struct smi_info *info)
1da177e4 1308{
b0defcdb
CM
1309 if (info->si_type == SI_BT)
1310 /* Disable the interrupt in the BT interface. */
1311 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1312 free_irq(info->irq, info);
1da177e4 1313}
1da177e4
LT
1314
1315static int std_irq_setup(struct smi_info *info)
1316{
1317 int rv;
1318
b0defcdb 1319 if (!info->irq)
1da177e4
LT
1320 return 0;
1321
9dbf68f9
CM
1322 if (info->si_type == SI_BT) {
1323 rv = request_irq(info->irq,
1324 si_bt_irq_handler,
ee6cd5f8 1325 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1326 DEVICE_NAME,
1327 info);
b0defcdb 1328 if (!rv)
9dbf68f9
CM
1329 /* Enable the interrupt in the BT interface. */
1330 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1331 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1332 } else
1333 rv = request_irq(info->irq,
1334 si_irq_handler,
ee6cd5f8 1335 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1336 DEVICE_NAME,
1337 info);
1da177e4 1338 if (rv) {
279fbd0c
MS
1339 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1340 " running polled\n",
1341 DEVICE_NAME, info->irq);
1da177e4
LT
1342 info->irq = 0;
1343 } else {
b0defcdb 1344 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1345 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1346 }
1347
1348 return rv;
1349}
1350
1da177e4
LT
1351static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1352{
b0defcdb 1353 unsigned int addr = io->addr_data;
1da177e4 1354
b0defcdb 1355 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1356}
1357
1358static void port_outb(struct si_sm_io *io, unsigned int offset,
1359 unsigned char b)
1360{
b0defcdb 1361 unsigned int addr = io->addr_data;
1da177e4 1362
b0defcdb 1363 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1364}
1365
1366static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1367{
b0defcdb 1368 unsigned int addr = io->addr_data;
1da177e4 1369
b0defcdb 1370 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1371}
1372
1373static void port_outw(struct si_sm_io *io, unsigned int offset,
1374 unsigned char b)
1375{
b0defcdb 1376 unsigned int addr = io->addr_data;
1da177e4 1377
b0defcdb 1378 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1379}
1380
1381static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1382{
b0defcdb 1383 unsigned int addr = io->addr_data;
1da177e4 1384
b0defcdb 1385 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1386}
1387
1388static void port_outl(struct si_sm_io *io, unsigned int offset,
1389 unsigned char b)
1390{
b0defcdb 1391 unsigned int addr = io->addr_data;
1da177e4 1392
b0defcdb 1393 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1394}
1395
1396static void port_cleanup(struct smi_info *info)
1397{
b0defcdb 1398 unsigned int addr = info->io.addr_data;
d61a3ead 1399 int idx;
1da177e4 1400
b0defcdb 1401 if (addr) {
c305e3d3 1402 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1403 release_region(addr + idx * info->io.regspacing,
1404 info->io.regsize);
1da177e4 1405 }
1da177e4
LT
1406}
1407
1408static int port_setup(struct smi_info *info)
1409{
b0defcdb 1410 unsigned int addr = info->io.addr_data;
d61a3ead 1411 int idx;
1da177e4 1412
b0defcdb 1413 if (!addr)
1da177e4
LT
1414 return -ENODEV;
1415
1416 info->io_cleanup = port_cleanup;
1417
c305e3d3
CM
1418 /*
1419 * Figure out the actual inb/inw/inl/etc routine to use based
1420 * upon the register size.
1421 */
1da177e4
LT
1422 switch (info->io.regsize) {
1423 case 1:
1424 info->io.inputb = port_inb;
1425 info->io.outputb = port_outb;
1426 break;
1427 case 2:
1428 info->io.inputb = port_inw;
1429 info->io.outputb = port_outw;
1430 break;
1431 case 4:
1432 info->io.inputb = port_inl;
1433 info->io.outputb = port_outl;
1434 break;
1435 default:
279fbd0c
MS
1436 dev_warn(info->dev, "Invalid register size: %d\n",
1437 info->io.regsize);
1da177e4
LT
1438 return -EINVAL;
1439 }
1440
c305e3d3
CM
1441 /*
1442 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1443 * tables. This causes problems when trying to register the
1444 * entire I/O region. Therefore we must register each I/O
1445 * port separately.
1446 */
c305e3d3 1447 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1448 if (request_region(addr + idx * info->io.regspacing,
1449 info->io.regsize, DEVICE_NAME) == NULL) {
1450 /* Undo allocations */
1451 while (idx--) {
1452 release_region(addr + idx * info->io.regspacing,
1453 info->io.regsize);
1454 }
1455 return -EIO;
1456 }
1457 }
1da177e4
LT
1458 return 0;
1459}
1460
546cfdf4 1461static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1462{
1463 return readb((io->addr)+(offset * io->regspacing));
1464}
1465
546cfdf4 1466static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1467 unsigned char b)
1468{
1469 writeb(b, (io->addr)+(offset * io->regspacing));
1470}
1471
546cfdf4 1472static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1473{
1474 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1475 & 0xff;
1da177e4
LT
1476}
1477
546cfdf4 1478static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1479 unsigned char b)
1480{
1481 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1482}
1483
546cfdf4 1484static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1485{
1486 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1487 & 0xff;
1da177e4
LT
1488}
1489
546cfdf4 1490static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1491 unsigned char b)
1492{
1493 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1494}
1495
1496#ifdef readq
1497static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1498{
1499 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1500 & 0xff;
1da177e4
LT
1501}
1502
1503static void mem_outq(struct si_sm_io *io, unsigned int offset,
1504 unsigned char b)
1505{
1506 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1507}
1508#endif
1509
1510static void mem_cleanup(struct smi_info *info)
1511{
b0defcdb 1512 unsigned long addr = info->io.addr_data;
1da177e4
LT
1513 int mapsize;
1514
1515 if (info->io.addr) {
1516 iounmap(info->io.addr);
1517
1518 mapsize = ((info->io_size * info->io.regspacing)
1519 - (info->io.regspacing - info->io.regsize));
1520
b0defcdb 1521 release_mem_region(addr, mapsize);
1da177e4 1522 }
1da177e4
LT
1523}
1524
1525static int mem_setup(struct smi_info *info)
1526{
b0defcdb 1527 unsigned long addr = info->io.addr_data;
1da177e4
LT
1528 int mapsize;
1529
b0defcdb 1530 if (!addr)
1da177e4
LT
1531 return -ENODEV;
1532
1533 info->io_cleanup = mem_cleanup;
1534
c305e3d3
CM
1535 /*
1536 * Figure out the actual readb/readw/readl/etc routine to use based
1537 * upon the register size.
1538 */
1da177e4
LT
1539 switch (info->io.regsize) {
1540 case 1:
546cfdf4
AD
1541 info->io.inputb = intf_mem_inb;
1542 info->io.outputb = intf_mem_outb;
1da177e4
LT
1543 break;
1544 case 2:
546cfdf4
AD
1545 info->io.inputb = intf_mem_inw;
1546 info->io.outputb = intf_mem_outw;
1da177e4
LT
1547 break;
1548 case 4:
546cfdf4
AD
1549 info->io.inputb = intf_mem_inl;
1550 info->io.outputb = intf_mem_outl;
1da177e4
LT
1551 break;
1552#ifdef readq
1553 case 8:
1554 info->io.inputb = mem_inq;
1555 info->io.outputb = mem_outq;
1556 break;
1557#endif
1558 default:
279fbd0c
MS
1559 dev_warn(info->dev, "Invalid register size: %d\n",
1560 info->io.regsize);
1da177e4
LT
1561 return -EINVAL;
1562 }
1563
c305e3d3
CM
1564 /*
1565 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1566 * unusual looking calculation, but it avoids claiming any
1567 * more memory than it has to. It will claim everything
1568 * between the first address to the end of the last full
c305e3d3
CM
1569 * register.
1570 */
1da177e4
LT
1571 mapsize = ((info->io_size * info->io.regspacing)
1572 - (info->io.regspacing - info->io.regsize));
1573
b0defcdb 1574 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1575 return -EIO;
1576
b0defcdb 1577 info->io.addr = ioremap(addr, mapsize);
1da177e4 1578 if (info->io.addr == NULL) {
b0defcdb 1579 release_mem_region(addr, mapsize);
1da177e4
LT
1580 return -EIO;
1581 }
1582 return 0;
1583}
1584
b361e27b
CM
1585/*
1586 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1587 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1588 * Options are:
1589 * rsp=<regspacing>
1590 * rsi=<regsize>
1591 * rsh=<regshift>
1592 * irq=<irq>
1593 * ipmb=<ipmb addr>
1594 */
1595enum hotmod_op { HM_ADD, HM_REMOVE };
1596struct hotmod_vals {
1597 char *name;
1598 int val;
1599};
1600static struct hotmod_vals hotmod_ops[] = {
1601 { "add", HM_ADD },
1602 { "remove", HM_REMOVE },
1603 { NULL }
1604};
1605static struct hotmod_vals hotmod_si[] = {
1606 { "kcs", SI_KCS },
1607 { "smic", SI_SMIC },
1608 { "bt", SI_BT },
1609 { NULL }
1610};
1611static struct hotmod_vals hotmod_as[] = {
1612 { "mem", IPMI_MEM_ADDR_SPACE },
1613 { "i/o", IPMI_IO_ADDR_SPACE },
1614 { NULL }
1615};
1d5636cc 1616
b361e27b
CM
1617static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1618{
1619 char *s;
1620 int i;
1621
1622 s = strchr(*curr, ',');
1623 if (!s) {
1624 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1625 return -EINVAL;
1626 }
1627 *s = '\0';
1628 s++;
1629 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1630 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1631 *val = v[i].val;
1632 *curr = s;
1633 return 0;
1634 }
1635 }
1636
1637 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1638 return -EINVAL;
1639}
1640
1d5636cc
CM
1641static int check_hotmod_int_op(const char *curr, const char *option,
1642 const char *name, int *val)
1643{
1644 char *n;
1645
1646 if (strcmp(curr, name) == 0) {
1647 if (!option) {
1648 printk(KERN_WARNING PFX
1649 "No option given for '%s'\n",
1650 curr);
1651 return -EINVAL;
1652 }
1653 *val = simple_strtoul(option, &n, 0);
1654 if ((*n != '\0') || (*option == '\0')) {
1655 printk(KERN_WARNING PFX
1656 "Bad option given for '%s'\n",
1657 curr);
1658 return -EINVAL;
1659 }
1660 return 1;
1661 }
1662 return 0;
1663}
1664
b361e27b
CM
1665static int hotmod_handler(const char *val, struct kernel_param *kp)
1666{
1667 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1668 int rv;
b361e27b
CM
1669 char *next, *curr, *s, *n, *o;
1670 enum hotmod_op op;
1671 enum si_type si_type;
1672 int addr_space;
1673 unsigned long addr;
1674 int regspacing;
1675 int regsize;
1676 int regshift;
1677 int irq;
1678 int ipmb;
1679 int ival;
1d5636cc 1680 int len;
b361e27b
CM
1681 struct smi_info *info;
1682
1683 if (!str)
1684 return -ENOMEM;
1685
1686 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1687 len = strlen(str);
1688 ival = len - 1;
b361e27b
CM
1689 while ((ival >= 0) && isspace(str[ival])) {
1690 str[ival] = '\0';
1691 ival--;
1692 }
1693
1694 for (curr = str; curr; curr = next) {
1695 regspacing = 1;
1696 regsize = 1;
1697 regshift = 0;
1698 irq = 0;
2f95d513 1699 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1700
1701 next = strchr(curr, ':');
1702 if (next) {
1703 *next = '\0';
1704 next++;
1705 }
1706
1707 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1708 if (rv)
1709 break;
1710 op = ival;
1711
1712 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1713 if (rv)
1714 break;
1715 si_type = ival;
1716
1717 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1718 if (rv)
1719 break;
1720
1721 s = strchr(curr, ',');
1722 if (s) {
1723 *s = '\0';
1724 s++;
1725 }
1726 addr = simple_strtoul(curr, &n, 0);
1727 if ((*n != '\0') || (*curr == '\0')) {
1728 printk(KERN_WARNING PFX "Invalid hotmod address"
1729 " '%s'\n", curr);
1730 break;
1731 }
1732
1733 while (s) {
1734 curr = s;
1735 s = strchr(curr, ',');
1736 if (s) {
1737 *s = '\0';
1738 s++;
1739 }
1740 o = strchr(curr, '=');
1741 if (o) {
1742 *o = '\0';
1743 o++;
1744 }
1d5636cc
CM
1745 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1746 if (rv < 0)
b361e27b 1747 goto out;
1d5636cc
CM
1748 else if (rv)
1749 continue;
1750 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1751 if (rv < 0)
1752 goto out;
1753 else if (rv)
1754 continue;
1755 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1756 if (rv < 0)
1757 goto out;
1758 else if (rv)
1759 continue;
1760 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1761 if (rv < 0)
1762 goto out;
1763 else if (rv)
1764 continue;
1765 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1766 if (rv < 0)
1767 goto out;
1768 else if (rv)
1769 continue;
1770
1771 rv = -EINVAL;
1772 printk(KERN_WARNING PFX
1773 "Invalid hotmod option '%s'\n",
1774 curr);
1775 goto out;
b361e27b
CM
1776 }
1777
1778 if (op == HM_ADD) {
1779 info = kzalloc(sizeof(*info), GFP_KERNEL);
1780 if (!info) {
1781 rv = -ENOMEM;
1782 goto out;
1783 }
1784
5fedc4a2 1785 info->addr_source = SI_HOTMOD;
b361e27b
CM
1786 info->si_type = si_type;
1787 info->io.addr_data = addr;
1788 info->io.addr_type = addr_space;
1789 if (addr_space == IPMI_MEM_ADDR_SPACE)
1790 info->io_setup = mem_setup;
1791 else
1792 info->io_setup = port_setup;
1793
1794 info->io.addr = NULL;
1795 info->io.regspacing = regspacing;
1796 if (!info->io.regspacing)
1797 info->io.regspacing = DEFAULT_REGSPACING;
1798 info->io.regsize = regsize;
1799 if (!info->io.regsize)
1800 info->io.regsize = DEFAULT_REGSPACING;
1801 info->io.regshift = regshift;
1802 info->irq = irq;
1803 if (info->irq)
1804 info->irq_setup = std_irq_setup;
1805 info->slave_addr = ipmb;
1806
2407d77a
MG
1807 if (!add_smi(info))
1808 if (try_smi_init(info))
1809 cleanup_one_si(info);
b361e27b
CM
1810 } else {
1811 /* remove */
1812 struct smi_info *e, *tmp_e;
1813
1814 mutex_lock(&smi_infos_lock);
1815 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1816 if (e->io.addr_type != addr_space)
1817 continue;
1818 if (e->si_type != si_type)
1819 continue;
1820 if (e->io.addr_data == addr)
1821 cleanup_one_si(e);
1822 }
1823 mutex_unlock(&smi_infos_lock);
1824 }
1825 }
1d5636cc 1826 rv = len;
b361e27b
CM
1827 out:
1828 kfree(str);
1829 return rv;
1830}
b0defcdb
CM
1831
1832static __devinit void hardcode_find_bmc(void)
1da177e4 1833{
b0defcdb 1834 int i;
1da177e4
LT
1835 struct smi_info *info;
1836
b0defcdb
CM
1837 for (i = 0; i < SI_MAX_PARMS; i++) {
1838 if (!ports[i] && !addrs[i])
1839 continue;
1da177e4 1840
b0defcdb
CM
1841 info = kzalloc(sizeof(*info), GFP_KERNEL);
1842 if (!info)
1843 return;
1da177e4 1844
5fedc4a2 1845 info->addr_source = SI_HARDCODED;
279fbd0c 1846 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1847
1d5636cc 1848 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1849 info->si_type = SI_KCS;
1d5636cc 1850 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1851 info->si_type = SI_SMIC;
1d5636cc 1852 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1853 info->si_type = SI_BT;
1854 } else {
279fbd0c 1855 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1856 "for interface %d, was invalid: %s\n",
1857 i, si_type[i]);
1858 kfree(info);
1859 continue;
1860 }
1da177e4 1861
b0defcdb
CM
1862 if (ports[i]) {
1863 /* An I/O port */
1864 info->io_setup = port_setup;
1865 info->io.addr_data = ports[i];
1866 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1867 } else if (addrs[i]) {
1868 /* A memory port */
1869 info->io_setup = mem_setup;
1870 info->io.addr_data = addrs[i];
1871 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1872 } else {
279fbd0c
MS
1873 printk(KERN_WARNING PFX "Interface type specified "
1874 "for interface %d, but port and address were "
1875 "not set or set to zero.\n", i);
b0defcdb
CM
1876 kfree(info);
1877 continue;
1878 }
1da177e4 1879
b0defcdb
CM
1880 info->io.addr = NULL;
1881 info->io.regspacing = regspacings[i];
1882 if (!info->io.regspacing)
1883 info->io.regspacing = DEFAULT_REGSPACING;
1884 info->io.regsize = regsizes[i];
1885 if (!info->io.regsize)
1886 info->io.regsize = DEFAULT_REGSPACING;
1887 info->io.regshift = regshifts[i];
1888 info->irq = irqs[i];
1889 if (info->irq)
1890 info->irq_setup = std_irq_setup;
2f95d513 1891 info->slave_addr = slave_addrs[i];
1da177e4 1892
2407d77a
MG
1893 if (!add_smi(info))
1894 if (try_smi_init(info))
1895 cleanup_one_si(info);
b0defcdb
CM
1896 }
1897}
1da177e4 1898
8466361a 1899#ifdef CONFIG_ACPI
1da177e4
LT
1900
1901#include <linux/acpi.h>
1902
c305e3d3
CM
1903/*
1904 * Once we get an ACPI failure, we don't try any more, because we go
1905 * through the tables sequentially. Once we don't find a table, there
1906 * are no more.
1907 */
0c8204b3 1908static int acpi_failure;
1da177e4
LT
1909
1910/* For GPE-type interrupts. */
1911static u32 ipmi_acpi_gpe(void *context)
1912{
1913 struct smi_info *smi_info = context;
1914 unsigned long flags;
1915#ifdef DEBUG_TIMING
1916 struct timeval t;
1917#endif
1918
1919 spin_lock_irqsave(&(smi_info->si_lock), flags);
1920
64959e2d 1921 smi_inc_stat(smi_info, interrupts);
1da177e4 1922
1da177e4
LT
1923#ifdef DEBUG_TIMING
1924 do_gettimeofday(&t);
1925 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1926#endif
1927 smi_event_handler(smi_info, 0);
1da177e4
LT
1928 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1929
1930 return ACPI_INTERRUPT_HANDLED;
1931}
1932
b0defcdb
CM
1933static void acpi_gpe_irq_cleanup(struct smi_info *info)
1934{
1935 if (!info->irq)
1936 return;
1937
1938 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1939}
1940
1da177e4
LT
1941static int acpi_gpe_irq_setup(struct smi_info *info)
1942{
1943 acpi_status status;
1944
b0defcdb 1945 if (!info->irq)
1da177e4
LT
1946 return 0;
1947
1948 /* FIXME - is level triggered right? */
1949 status = acpi_install_gpe_handler(NULL,
1950 info->irq,
1951 ACPI_GPE_LEVEL_TRIGGERED,
1952 &ipmi_acpi_gpe,
1953 info);
1954 if (status != AE_OK) {
279fbd0c
MS
1955 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1956 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1957 info->irq = 0;
1958 return -EINVAL;
1959 } else {
b0defcdb 1960 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1961 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1962 return 0;
1963 }
1964}
1965
1da177e4
LT
1966/*
1967 * Defined at
631dd1a8 1968 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
1969 */
1970struct SPMITable {
1971 s8 Signature[4];
1972 u32 Length;
1973 u8 Revision;
1974 u8 Checksum;
1975 s8 OEMID[6];
1976 s8 OEMTableID[8];
1977 s8 OEMRevision[4];
1978 s8 CreatorID[4];
1979 s8 CreatorRevision[4];
1980 u8 InterfaceType;
1981 u8 IPMIlegacy;
1982 s16 SpecificationRevision;
1983
1984 /*
1985 * Bit 0 - SCI interrupt supported
1986 * Bit 1 - I/O APIC/SAPIC
1987 */
1988 u8 InterruptType;
1989
c305e3d3
CM
1990 /*
1991 * If bit 0 of InterruptType is set, then this is the SCI
1992 * interrupt in the GPEx_STS register.
1993 */
1da177e4
LT
1994 u8 GPE;
1995
1996 s16 Reserved;
1997
c305e3d3
CM
1998 /*
1999 * If bit 1 of InterruptType is set, then this is the I/O
2000 * APIC/SAPIC interrupt.
2001 */
1da177e4
LT
2002 u32 GlobalSystemInterrupt;
2003
2004 /* The actual register address. */
2005 struct acpi_generic_address addr;
2006
2007 u8 UID[4];
2008
2009 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2010};
2011
18a3e0bf 2012static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2013{
2014 struct smi_info *info;
1da177e4
LT
2015 u8 addr_space;
2016
1da177e4 2017 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2018 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2019 return -ENODEV;
1da177e4
LT
2020 }
2021
15a58ed1 2022 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2023 addr_space = IPMI_MEM_ADDR_SPACE;
2024 else
2025 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2026
2027 info = kzalloc(sizeof(*info), GFP_KERNEL);
2028 if (!info) {
279fbd0c 2029 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2030 return -ENOMEM;
2031 }
2032
5fedc4a2 2033 info->addr_source = SI_SPMI;
279fbd0c 2034 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2035
1da177e4 2036 /* Figure out the interface type. */
c305e3d3 2037 switch (spmi->InterfaceType) {
1da177e4 2038 case 1: /* KCS */
b0defcdb 2039 info->si_type = SI_KCS;
1da177e4 2040 break;
1da177e4 2041 case 2: /* SMIC */
b0defcdb 2042 info->si_type = SI_SMIC;
1da177e4 2043 break;
1da177e4 2044 case 3: /* BT */
b0defcdb 2045 info->si_type = SI_BT;
1da177e4 2046 break;
1da177e4 2047 default:
279fbd0c
MS
2048 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2049 spmi->InterfaceType);
b0defcdb 2050 kfree(info);
1da177e4
LT
2051 return -EIO;
2052 }
2053
1da177e4
LT
2054 if (spmi->InterruptType & 1) {
2055 /* We've got a GPE interrupt. */
2056 info->irq = spmi->GPE;
2057 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2058 } else if (spmi->InterruptType & 2) {
2059 /* We've got an APIC/SAPIC interrupt. */
2060 info->irq = spmi->GlobalSystemInterrupt;
2061 info->irq_setup = std_irq_setup;
1da177e4
LT
2062 } else {
2063 /* Use the default interrupt setting. */
2064 info->irq = 0;
2065 info->irq_setup = NULL;
2066 }
2067
15a58ed1 2068 if (spmi->addr.bit_width) {
35bc37a0 2069 /* A (hopefully) properly formed register bit width. */
15a58ed1 2070 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2071 } else {
35bc37a0
CM
2072 info->io.regspacing = DEFAULT_REGSPACING;
2073 }
b0defcdb 2074 info->io.regsize = info->io.regspacing;
15a58ed1 2075 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2076
15a58ed1 2077 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2078 info->io_setup = mem_setup;
8fe1425a 2079 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2080 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2081 info->io_setup = port_setup;
8fe1425a 2082 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2083 } else {
2084 kfree(info);
279fbd0c 2085 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2086 return -EIO;
2087 }
b0defcdb 2088 info->io.addr_data = spmi->addr.address;
1da177e4 2089
2407d77a 2090 add_smi(info);
1da177e4 2091
1da177e4
LT
2092 return 0;
2093}
b0defcdb 2094
18a3e0bf 2095static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2096{
2097 acpi_status status;
2098 struct SPMITable *spmi;
2099 int i;
2100
2101 if (acpi_disabled)
2102 return;
2103
2104 if (acpi_failure)
2105 return;
2106
2107 for (i = 0; ; i++) {
15a58ed1
AS
2108 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2109 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2110 if (status != AE_OK)
2111 return;
2112
18a3e0bf 2113 try_init_spmi(spmi);
b0defcdb
CM
2114 }
2115}
9e368fa0
BH
2116
2117static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2118 const struct pnp_device_id *dev_id)
2119{
2120 struct acpi_device *acpi_dev;
2121 struct smi_info *info;
279fbd0c 2122 struct resource *res;
9e368fa0
BH
2123 acpi_handle handle;
2124 acpi_status status;
2125 unsigned long long tmp;
2126
2127 acpi_dev = pnp_acpi_device(dev);
2128 if (!acpi_dev)
2129 return -ENODEV;
2130
2131 info = kzalloc(sizeof(*info), GFP_KERNEL);
2132 if (!info)
2133 return -ENOMEM;
2134
5fedc4a2 2135 info->addr_source = SI_ACPI;
279fbd0c 2136 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2137
2138 handle = acpi_dev->handle;
2139
2140 /* _IFT tells us the interface type: KCS, BT, etc */
2141 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2142 if (ACPI_FAILURE(status))
2143 goto err_free;
2144
2145 switch (tmp) {
2146 case 1:
2147 info->si_type = SI_KCS;
2148 break;
2149 case 2:
2150 info->si_type = SI_SMIC;
2151 break;
2152 case 3:
2153 info->si_type = SI_BT;
2154 break;
2155 default:
279fbd0c 2156 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2157 goto err_free;
2158 }
2159
279fbd0c
MS
2160 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2161 if (res) {
9e368fa0
BH
2162 info->io_setup = port_setup;
2163 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2164 } else {
279fbd0c
MS
2165 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2166 if (res) {
2167 info->io_setup = mem_setup;
2168 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2169 }
2170 }
2171 if (!res) {
9e368fa0
BH
2172 dev_err(&dev->dev, "no I/O or memory address\n");
2173 goto err_free;
2174 }
279fbd0c 2175 info->io.addr_data = res->start;
9e368fa0
BH
2176
2177 info->io.regspacing = DEFAULT_REGSPACING;
d9e1b6c4
YL
2178 res = pnp_get_resource(dev,
2179 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2180 IORESOURCE_IO : IORESOURCE_MEM,
2181 1);
2182 if (res) {
2183 if (res->start > info->io.addr_data)
2184 info->io.regspacing = res->start - info->io.addr_data;
2185 }
9e368fa0
BH
2186 info->io.regsize = DEFAULT_REGSPACING;
2187 info->io.regshift = 0;
2188
2189 /* If _GPE exists, use it; otherwise use standard interrupts */
2190 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2191 if (ACPI_SUCCESS(status)) {
2192 info->irq = tmp;
2193 info->irq_setup = acpi_gpe_irq_setup;
2194 } else if (pnp_irq_valid(dev, 0)) {
2195 info->irq = pnp_irq(dev, 0);
2196 info->irq_setup = std_irq_setup;
2197 }
2198
8c8eae27 2199 info->dev = &dev->dev;
9e368fa0
BH
2200 pnp_set_drvdata(dev, info);
2201
279fbd0c
MS
2202 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2203 res, info->io.regsize, info->io.regspacing,
2204 info->irq);
2205
2407d77a 2206 return add_smi(info);
9e368fa0
BH
2207
2208err_free:
2209 kfree(info);
2210 return -EINVAL;
2211}
2212
2213static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2214{
2215 struct smi_info *info = pnp_get_drvdata(dev);
2216
2217 cleanup_one_si(info);
2218}
2219
2220static const struct pnp_device_id pnp_dev_table[] = {
2221 {"IPI0001", 0},
2222 {"", 0},
2223};
2224
2225static struct pnp_driver ipmi_pnp_driver = {
2226 .name = DEVICE_NAME,
2227 .probe = ipmi_pnp_probe,
2228 .remove = __devexit_p(ipmi_pnp_remove),
2229 .id_table = pnp_dev_table,
2230};
1da177e4
LT
2231#endif
2232
a9fad4cc 2233#ifdef CONFIG_DMI
c305e3d3 2234struct dmi_ipmi_data {
1da177e4
LT
2235 u8 type;
2236 u8 addr_space;
2237 unsigned long base_addr;
2238 u8 irq;
2239 u8 offset;
2240 u8 slave_addr;
b0defcdb 2241};
1da177e4 2242
1855256c 2243static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2244 struct dmi_ipmi_data *dmi)
1da177e4 2245{
1855256c 2246 const u8 *data = (const u8 *)dm;
1da177e4
LT
2247 unsigned long base_addr;
2248 u8 reg_spacing;
b224cd3a 2249 u8 len = dm->length;
1da177e4 2250
b0defcdb 2251 dmi->type = data[4];
1da177e4
LT
2252
2253 memcpy(&base_addr, data+8, sizeof(unsigned long));
2254 if (len >= 0x11) {
2255 if (base_addr & 1) {
2256 /* I/O */
2257 base_addr &= 0xFFFE;
b0defcdb 2258 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2259 } else
1da177e4 2260 /* Memory */
b0defcdb 2261 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2262
1da177e4
LT
2263 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2264 is odd. */
b0defcdb 2265 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2266
b0defcdb 2267 dmi->irq = data[0x11];
1da177e4
LT
2268
2269 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2270 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2271 switch (reg_spacing) {
1da177e4 2272 case 0x00: /* Byte boundaries */
b0defcdb 2273 dmi->offset = 1;
1da177e4
LT
2274 break;
2275 case 0x01: /* 32-bit boundaries */
b0defcdb 2276 dmi->offset = 4;
1da177e4
LT
2277 break;
2278 case 0x02: /* 16-byte boundaries */
b0defcdb 2279 dmi->offset = 16;
1da177e4
LT
2280 break;
2281 default:
2282 /* Some other interface, just ignore it. */
2283 return -EIO;
2284 }
2285 } else {
2286 /* Old DMI spec. */
c305e3d3
CM
2287 /*
2288 * Note that technically, the lower bit of the base
92068801
CM
2289 * address should be 1 if the address is I/O and 0 if
2290 * the address is in memory. So many systems get that
2291 * wrong (and all that I have seen are I/O) so we just
2292 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2293 * memory should use the newer spec, anyway.
2294 */
b0defcdb
CM
2295 dmi->base_addr = base_addr & 0xfffe;
2296 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2297 dmi->offset = 1;
1da177e4
LT
2298 }
2299
b0defcdb 2300 dmi->slave_addr = data[6];
1da177e4 2301
b0defcdb 2302 return 0;
1da177e4
LT
2303}
2304
b0defcdb 2305static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2306{
b0defcdb 2307 struct smi_info *info;
1da177e4 2308
b0defcdb
CM
2309 info = kzalloc(sizeof(*info), GFP_KERNEL);
2310 if (!info) {
279fbd0c 2311 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2312 return;
1da177e4 2313 }
1da177e4 2314
5fedc4a2 2315 info->addr_source = SI_SMBIOS;
279fbd0c 2316 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2317
e8b33617 2318 switch (ipmi_data->type) {
b0defcdb
CM
2319 case 0x01: /* KCS */
2320 info->si_type = SI_KCS;
2321 break;
2322 case 0x02: /* SMIC */
2323 info->si_type = SI_SMIC;
2324 break;
2325 case 0x03: /* BT */
2326 info->si_type = SI_BT;
2327 break;
2328 default:
80cd6920 2329 kfree(info);
b0defcdb 2330 return;
1da177e4 2331 }
1da177e4 2332
b0defcdb
CM
2333 switch (ipmi_data->addr_space) {
2334 case IPMI_MEM_ADDR_SPACE:
1da177e4 2335 info->io_setup = mem_setup;
b0defcdb
CM
2336 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2337 break;
2338
2339 case IPMI_IO_ADDR_SPACE:
1da177e4 2340 info->io_setup = port_setup;
b0defcdb
CM
2341 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2342 break;
2343
2344 default:
1da177e4 2345 kfree(info);
279fbd0c 2346 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2347 ipmi_data->addr_space);
2348 return;
1da177e4 2349 }
b0defcdb 2350 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2351
b0defcdb
CM
2352 info->io.regspacing = ipmi_data->offset;
2353 if (!info->io.regspacing)
1da177e4
LT
2354 info->io.regspacing = DEFAULT_REGSPACING;
2355 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2356 info->io.regshift = 0;
1da177e4
LT
2357
2358 info->slave_addr = ipmi_data->slave_addr;
2359
b0defcdb
CM
2360 info->irq = ipmi_data->irq;
2361 if (info->irq)
2362 info->irq_setup = std_irq_setup;
1da177e4 2363
2407d77a 2364 add_smi(info);
b0defcdb 2365}
1da177e4 2366
b0defcdb
CM
2367static void __devinit dmi_find_bmc(void)
2368{
1855256c 2369 const struct dmi_device *dev = NULL;
b0defcdb
CM
2370 struct dmi_ipmi_data data;
2371 int rv;
2372
2373 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2374 memset(&data, 0, sizeof(data));
1855256c
JG
2375 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2376 &data);
b0defcdb
CM
2377 if (!rv)
2378 try_init_dmi(&data);
2379 }
1da177e4 2380}
a9fad4cc 2381#endif /* CONFIG_DMI */
1da177e4
LT
2382
2383#ifdef CONFIG_PCI
2384
b0defcdb
CM
2385#define PCI_ERMC_CLASSCODE 0x0C0700
2386#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2387#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2388#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2389#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2390#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2391
1da177e4
LT
2392#define PCI_HP_VENDOR_ID 0x103C
2393#define PCI_MMC_DEVICE_ID 0x121A
2394#define PCI_MMC_ADDR_CW 0x10
2395
b0defcdb
CM
2396static void ipmi_pci_cleanup(struct smi_info *info)
2397{
2398 struct pci_dev *pdev = info->addr_source_data;
2399
2400 pci_disable_device(pdev);
2401}
1da177e4 2402
b0defcdb
CM
2403static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2404 const struct pci_device_id *ent)
1da177e4 2405{
b0defcdb
CM
2406 int rv;
2407 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2408 struct smi_info *info;
1da177e4 2409
b0defcdb
CM
2410 info = kzalloc(sizeof(*info), GFP_KERNEL);
2411 if (!info)
1cd441f9 2412 return -ENOMEM;
1da177e4 2413
5fedc4a2 2414 info->addr_source = SI_PCI;
279fbd0c 2415 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2416
b0defcdb
CM
2417 switch (class_type) {
2418 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2419 info->si_type = SI_SMIC;
2420 break;
1da177e4 2421
b0defcdb
CM
2422 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2423 info->si_type = SI_KCS;
2424 break;
2425
2426 case PCI_ERMC_CLASSCODE_TYPE_BT:
2427 info->si_type = SI_BT;
2428 break;
2429
2430 default:
2431 kfree(info);
279fbd0c 2432 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2433 return -ENOMEM;
1da177e4
LT
2434 }
2435
b0defcdb
CM
2436 rv = pci_enable_device(pdev);
2437 if (rv) {
279fbd0c 2438 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2439 kfree(info);
2440 return rv;
1da177e4
LT
2441 }
2442
b0defcdb
CM
2443 info->addr_source_cleanup = ipmi_pci_cleanup;
2444 info->addr_source_data = pdev;
1da177e4 2445
b0defcdb
CM
2446 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2447 info->io_setup = port_setup;
2448 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2449 } else {
2450 info->io_setup = mem_setup;
2451 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2452 }
b0defcdb 2453 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2454
b0defcdb 2455 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2456 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2457 info->io.regshift = 0;
1da177e4 2458
b0defcdb
CM
2459 info->irq = pdev->irq;
2460 if (info->irq)
2461 info->irq_setup = std_irq_setup;
1da177e4 2462
50c812b2 2463 info->dev = &pdev->dev;
fca3b747 2464 pci_set_drvdata(pdev, info);
50c812b2 2465
279fbd0c
MS
2466 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2467 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2468 info->irq);
2469
2407d77a 2470 return add_smi(info);
b0defcdb 2471}
1da177e4 2472
b0defcdb
CM
2473static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2474{
fca3b747
CM
2475 struct smi_info *info = pci_get_drvdata(pdev);
2476 cleanup_one_si(info);
b0defcdb 2477}
1da177e4 2478
b0defcdb
CM
2479#ifdef CONFIG_PM
2480static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2481{
1da177e4
LT
2482 return 0;
2483}
1da177e4 2484
b0defcdb 2485static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2486{
b0defcdb
CM
2487 return 0;
2488}
1da177e4 2489#endif
1da177e4 2490
b0defcdb
CM
2491static struct pci_device_id ipmi_pci_devices[] = {
2492 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2493 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2494 { 0, }
b0defcdb
CM
2495};
2496MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2497
2498static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2499 .name = DEVICE_NAME,
2500 .id_table = ipmi_pci_devices,
2501 .probe = ipmi_pci_probe,
2502 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2503#ifdef CONFIG_PM
c305e3d3
CM
2504 .suspend = ipmi_pci_suspend,
2505 .resume = ipmi_pci_resume,
b0defcdb
CM
2506#endif
2507};
2508#endif /* CONFIG_PCI */
1da177e4
LT
2509
2510
dba9b4f6
CM
2511#ifdef CONFIG_PPC_OF
2512static int __devinit ipmi_of_probe(struct of_device *dev,
2513 const struct of_device_id *match)
2514{
2515 struct smi_info *info;
2516 struct resource resource;
2517 const int *regsize, *regspacing, *regshift;
61c7a080 2518 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2519 int ret;
2520 int proplen;
2521
279fbd0c 2522 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2523
2524 ret = of_address_to_resource(np, 0, &resource);
2525 if (ret) {
2526 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2527 return ret;
2528 }
2529
9c25099d 2530 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2531 if (regsize && proplen != 4) {
2532 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2533 return -EINVAL;
2534 }
2535
9c25099d 2536 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2537 if (regspacing && proplen != 4) {
2538 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2539 return -EINVAL;
2540 }
2541
9c25099d 2542 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2543 if (regshift && proplen != 4) {
2544 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2545 return -EINVAL;
2546 }
2547
2548 info = kzalloc(sizeof(*info), GFP_KERNEL);
2549
2550 if (!info) {
2551 dev_err(&dev->dev,
279fbd0c 2552 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2553 return -ENOMEM;
2554 }
2555
2556 info->si_type = (enum si_type) match->data;
5fedc4a2 2557 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2558 info->irq_setup = std_irq_setup;
2559
3b7ec117
NC
2560 if (resource.flags & IORESOURCE_IO) {
2561 info->io_setup = port_setup;
2562 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2563 } else {
2564 info->io_setup = mem_setup;
2565 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2566 }
2567
dba9b4f6
CM
2568 info->io.addr_data = resource.start;
2569
2570 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2571 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2572 info->io.regshift = regshift ? *regshift : 0;
2573
61c7a080 2574 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2575 info->dev = &dev->dev;
2576
279fbd0c 2577 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2578 info->io.addr_data, info->io.regsize, info->io.regspacing,
2579 info->irq);
2580
9de33df4 2581 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2582
2407d77a 2583 return add_smi(info);
dba9b4f6
CM
2584}
2585
2586static int __devexit ipmi_of_remove(struct of_device *dev)
2587{
9de33df4 2588 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2589 return 0;
2590}
2591
2592static struct of_device_id ipmi_match[] =
2593{
c305e3d3
CM
2594 { .type = "ipmi", .compatible = "ipmi-kcs",
2595 .data = (void *)(unsigned long) SI_KCS },
2596 { .type = "ipmi", .compatible = "ipmi-smic",
2597 .data = (void *)(unsigned long) SI_SMIC },
2598 { .type = "ipmi", .compatible = "ipmi-bt",
2599 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2600 {},
2601};
2602
c305e3d3 2603static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2604 .driver = {
2605 .name = "ipmi",
2606 .owner = THIS_MODULE,
2607 .of_match_table = ipmi_match,
2608 },
dba9b4f6
CM
2609 .probe = ipmi_of_probe,
2610 .remove = __devexit_p(ipmi_of_remove),
2611};
2612#endif /* CONFIG_PPC_OF */
2613
40112ae7 2614static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2615{
50c812b2 2616 enum si_sm_result smi_result;
1da177e4
LT
2617
2618 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2619 for (;;) {
c3e7e791
CM
2620 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2621 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2622 schedule_timeout_uninterruptible(1);
1da177e4
LT
2623 smi_result = smi_info->handlers->event(
2624 smi_info->si_sm, 100);
c305e3d3 2625 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2626 smi_result = smi_info->handlers->event(
2627 smi_info->si_sm, 0);
c305e3d3 2628 } else
1da177e4
LT
2629 break;
2630 }
40112ae7 2631 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2632 /*
2633 * We couldn't get the state machine to run, so whatever's at
2634 * the port is probably not an IPMI SMI interface.
2635 */
40112ae7
CM
2636 return -ENODEV;
2637
2638 return 0;
2639}
2640
2641static int try_get_dev_id(struct smi_info *smi_info)
2642{
2643 unsigned char msg[2];
2644 unsigned char *resp;
2645 unsigned long resp_len;
2646 int rv = 0;
2647
2648 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2649 if (!resp)
2650 return -ENOMEM;
2651
2652 /*
2653 * Do a Get Device ID command, since it comes back with some
2654 * useful info.
2655 */
2656 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2657 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2658 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2659
2660 rv = wait_for_msg_done(smi_info);
2661 if (rv)
1da177e4 2662 goto out;
1da177e4 2663
1da177e4
LT
2664 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2665 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2666
d8c98618
CM
2667 /* Check and record info from the get device id, in case we need it. */
2668 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2669
2670 out:
2671 kfree(resp);
2672 return rv;
2673}
2674
40112ae7
CM
2675static int try_enable_event_buffer(struct smi_info *smi_info)
2676{
2677 unsigned char msg[3];
2678 unsigned char *resp;
2679 unsigned long resp_len;
2680 int rv = 0;
2681
2682 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2683 if (!resp)
2684 return -ENOMEM;
2685
2686 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2687 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2688 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2689
2690 rv = wait_for_msg_done(smi_info);
2691 if (rv) {
279fbd0c
MS
2692 printk(KERN_WARNING PFX "Error getting response from get"
2693 " global enables command, the event buffer is not"
40112ae7
CM
2694 " enabled.\n");
2695 goto out;
2696 }
2697
2698 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2699 resp, IPMI_MAX_MSG_LENGTH);
2700
2701 if (resp_len < 4 ||
2702 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2703 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2704 resp[2] != 0) {
279fbd0c
MS
2705 printk(KERN_WARNING PFX "Invalid return from get global"
2706 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2707 rv = -EINVAL;
2708 goto out;
2709 }
2710
2711 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2712 /* buffer is already enabled, nothing to do. */
2713 goto out;
2714
2715 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2716 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2717 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2718 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2719
2720 rv = wait_for_msg_done(smi_info);
2721 if (rv) {
279fbd0c
MS
2722 printk(KERN_WARNING PFX "Error getting response from set"
2723 " global, enables command, the event buffer is not"
40112ae7
CM
2724 " enabled.\n");
2725 goto out;
2726 }
2727
2728 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2729 resp, IPMI_MAX_MSG_LENGTH);
2730
2731 if (resp_len < 3 ||
2732 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2733 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2734 printk(KERN_WARNING PFX "Invalid return from get global,"
2735 "enables command, not enable the event buffer.\n");
40112ae7
CM
2736 rv = -EINVAL;
2737 goto out;
2738 }
2739
2740 if (resp[2] != 0)
2741 /*
2742 * An error when setting the event buffer bit means
2743 * that the event buffer is not supported.
2744 */
2745 rv = -ENOENT;
2746 out:
2747 kfree(resp);
2748 return rv;
2749}
2750
1da177e4
LT
2751static int type_file_read_proc(char *page, char **start, off_t off,
2752 int count, int *eof, void *data)
2753{
1da177e4
LT
2754 struct smi_info *smi = data;
2755
b361e27b 2756 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2757}
2758
2759static int stat_file_read_proc(char *page, char **start, off_t off,
2760 int count, int *eof, void *data)
2761{
2762 char *out = (char *) page;
2763 struct smi_info *smi = data;
2764
2765 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2766 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2767 out += sprintf(out, "short_timeouts: %u\n",
2768 smi_get_stat(smi, short_timeouts));
2769 out += sprintf(out, "long_timeouts: %u\n",
2770 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2771 out += sprintf(out, "idles: %u\n",
2772 smi_get_stat(smi, idles));
2773 out += sprintf(out, "interrupts: %u\n",
2774 smi_get_stat(smi, interrupts));
2775 out += sprintf(out, "attentions: %u\n",
2776 smi_get_stat(smi, attentions));
2777 out += sprintf(out, "flag_fetches: %u\n",
2778 smi_get_stat(smi, flag_fetches));
2779 out += sprintf(out, "hosed_count: %u\n",
2780 smi_get_stat(smi, hosed_count));
2781 out += sprintf(out, "complete_transactions: %u\n",
2782 smi_get_stat(smi, complete_transactions));
2783 out += sprintf(out, "events: %u\n",
2784 smi_get_stat(smi, events));
2785 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2786 smi_get_stat(smi, watchdog_pretimeouts));
2787 out += sprintf(out, "incoming_messages: %u\n",
2788 smi_get_stat(smi, incoming_messages));
1da177e4 2789
b361e27b
CM
2790 return out - page;
2791}
2792
2793static int param_read_proc(char *page, char **start, off_t off,
2794 int count, int *eof, void *data)
2795{
2796 struct smi_info *smi = data;
2797
2798 return sprintf(page,
2799 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2800 si_to_str[smi->si_type],
2801 addr_space_to_str[smi->io.addr_type],
2802 smi->io.addr_data,
2803 smi->io.regspacing,
2804 smi->io.regsize,
2805 smi->io.regshift,
2806 smi->irq,
2807 smi->slave_addr);
1da177e4
LT
2808}
2809
3ae0e0f9
CM
2810/*
2811 * oem_data_avail_to_receive_msg_avail
2812 * @info - smi_info structure with msg_flags set
2813 *
2814 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2815 * Returns 1 indicating need to re-run handle_flags().
2816 */
2817static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2818{
e8b33617 2819 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2820 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2821 return 1;
2822}
2823
2824/*
2825 * setup_dell_poweredge_oem_data_handler
2826 * @info - smi_info.device_id must be populated
2827 *
2828 * Systems that match, but have firmware version < 1.40 may assert
2829 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2830 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2831 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2832 * as RECEIVE_MSG_AVAIL instead.
2833 *
2834 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2835 * assert the OEM[012] bits, and if it did, the driver would have to
2836 * change to handle that properly, we don't actually check for the
2837 * firmware version.
2838 * Device ID = 0x20 BMC on PowerEdge 8G servers
2839 * Device Revision = 0x80
2840 * Firmware Revision1 = 0x01 BMC version 1.40
2841 * Firmware Revision2 = 0x40 BCD encoded
2842 * IPMI Version = 0x51 IPMI 1.5
2843 * Manufacturer ID = A2 02 00 Dell IANA
2844 *
d5a2b89a
CM
2845 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2846 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2847 *
3ae0e0f9
CM
2848 */
2849#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2850#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2851#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2852#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2853static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2854{
2855 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2856 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2857 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2858 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2859 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2860 smi_info->oem_data_avail_handler =
2861 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2862 } else if (ipmi_version_major(id) < 1 ||
2863 (ipmi_version_major(id) == 1 &&
2864 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2865 smi_info->oem_data_avail_handler =
2866 oem_data_avail_to_receive_msg_avail;
2867 }
3ae0e0f9
CM
2868 }
2869}
2870
ea94027b
CM
2871#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2872static void return_hosed_msg_badsize(struct smi_info *smi_info)
2873{
2874 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2875
2876 /* Make it a reponse */
2877 msg->rsp[0] = msg->data[0] | 4;
2878 msg->rsp[1] = msg->data[1];
2879 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2880 msg->rsp_size = 3;
2881 smi_info->curr_msg = NULL;
2882 deliver_recv_msg(smi_info, msg);
2883}
2884
2885/*
2886 * dell_poweredge_bt_xaction_handler
2887 * @info - smi_info.device_id must be populated
2888 *
2889 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2890 * not respond to a Get SDR command if the length of the data
2891 * requested is exactly 0x3A, which leads to command timeouts and no
2892 * data returned. This intercepts such commands, and causes userspace
2893 * callers to try again with a different-sized buffer, which succeeds.
2894 */
2895
2896#define STORAGE_NETFN 0x0A
2897#define STORAGE_CMD_GET_SDR 0x23
2898static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2899 unsigned long unused,
2900 void *in)
2901{
2902 struct smi_info *smi_info = in;
2903 unsigned char *data = smi_info->curr_msg->data;
2904 unsigned int size = smi_info->curr_msg->data_size;
2905 if (size >= 8 &&
2906 (data[0]>>2) == STORAGE_NETFN &&
2907 data[1] == STORAGE_CMD_GET_SDR &&
2908 data[7] == 0x3A) {
2909 return_hosed_msg_badsize(smi_info);
2910 return NOTIFY_STOP;
2911 }
2912 return NOTIFY_DONE;
2913}
2914
2915static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2916 .notifier_call = dell_poweredge_bt_xaction_handler,
2917};
2918
2919/*
2920 * setup_dell_poweredge_bt_xaction_handler
2921 * @info - smi_info.device_id must be filled in already
2922 *
2923 * Fills in smi_info.device_id.start_transaction_pre_hook
2924 * when we know what function to use there.
2925 */
2926static void
2927setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2928{
2929 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2930 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2931 smi_info->si_type == SI_BT)
2932 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2933}
2934
3ae0e0f9
CM
2935/*
2936 * setup_oem_data_handler
2937 * @info - smi_info.device_id must be filled in already
2938 *
2939 * Fills in smi_info.device_id.oem_data_available_handler
2940 * when we know what function to use there.
2941 */
2942
2943static void setup_oem_data_handler(struct smi_info *smi_info)
2944{
2945 setup_dell_poweredge_oem_data_handler(smi_info);
2946}
2947
ea94027b
CM
2948static void setup_xaction_handlers(struct smi_info *smi_info)
2949{
2950 setup_dell_poweredge_bt_xaction_handler(smi_info);
2951}
2952
a9a2c44f
CM
2953static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2954{
453823ba 2955 if (smi_info->intf) {
c305e3d3
CM
2956 /*
2957 * The timer and thread are only running if the
2958 * interface has been started up and registered.
2959 */
453823ba
CM
2960 if (smi_info->thread != NULL)
2961 kthread_stop(smi_info->thread);
2962 del_timer_sync(&smi_info->si_timer);
2963 }
a9a2c44f
CM
2964}
2965
7420884c 2966static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2967{
2968 int type;
2969 int port;
7420884c 2970} ipmi_defaults[] =
b0defcdb
CM
2971{
2972 { .type = SI_KCS, .port = 0xca2 },
2973 { .type = SI_SMIC, .port = 0xca9 },
2974 { .type = SI_BT, .port = 0xe4 },
2975 { .port = 0 }
2976};
2977
2978static __devinit void default_find_bmc(void)
2979{
2980 struct smi_info *info;
2981 int i;
2982
2983 for (i = 0; ; i++) {
2984 if (!ipmi_defaults[i].port)
2985 break;
68e1ee62 2986#ifdef CONFIG_PPC
4ff31d77
CK
2987 if (check_legacy_ioport(ipmi_defaults[i].port))
2988 continue;
2989#endif
a09f4855
AM
2990 info = kzalloc(sizeof(*info), GFP_KERNEL);
2991 if (!info)
2992 return;
4ff31d77 2993
5fedc4a2 2994 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2995
2996 info->si_type = ipmi_defaults[i].type;
2997 info->io_setup = port_setup;
2998 info->io.addr_data = ipmi_defaults[i].port;
2999 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3000
3001 info->io.addr = NULL;
3002 info->io.regspacing = DEFAULT_REGSPACING;
3003 info->io.regsize = DEFAULT_REGSPACING;
3004 info->io.regshift = 0;
3005
2407d77a
MG
3006 if (add_smi(info) == 0) {
3007 if ((try_smi_init(info)) == 0) {
3008 /* Found one... */
279fbd0c 3009 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3010 " state machine at %s address 0x%lx\n",
3011 si_to_str[info->si_type],
3012 addr_space_to_str[info->io.addr_type],
3013 info->io.addr_data);
3014 } else
3015 cleanup_one_si(info);
b0defcdb
CM
3016 }
3017 }
3018}
3019
3020static int is_new_interface(struct smi_info *info)
1da177e4 3021{
b0defcdb 3022 struct smi_info *e;
1da177e4 3023
b0defcdb
CM
3024 list_for_each_entry(e, &smi_infos, link) {
3025 if (e->io.addr_type != info->io.addr_type)
3026 continue;
3027 if (e->io.addr_data == info->io.addr_data)
3028 return 0;
3029 }
1da177e4 3030
b0defcdb
CM
3031 return 1;
3032}
1da177e4 3033
2407d77a 3034static int add_smi(struct smi_info *new_smi)
b0defcdb 3035{
2407d77a 3036 int rv = 0;
b0defcdb 3037
279fbd0c 3038 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3039 ipmi_addr_src_to_str[new_smi->addr_source],
3040 si_to_str[new_smi->si_type]);
d6dfd131 3041 mutex_lock(&smi_infos_lock);
b0defcdb 3042 if (!is_new_interface(new_smi)) {
279fbd0c 3043 printk(KERN_CONT PFX "duplicate interface\n");
b0defcdb
CM
3044 rv = -EBUSY;
3045 goto out_err;
3046 }
1da177e4 3047
2407d77a
MG
3048 printk(KERN_CONT "\n");
3049
1da177e4
LT
3050 /* So we know not to free it unless we have allocated one. */
3051 new_smi->intf = NULL;
3052 new_smi->si_sm = NULL;
3053 new_smi->handlers = NULL;
3054
2407d77a
MG
3055 list_add_tail(&new_smi->link, &smi_infos);
3056
3057out_err:
3058 mutex_unlock(&smi_infos_lock);
3059 return rv;
3060}
3061
3062static int try_smi_init(struct smi_info *new_smi)
3063{
3064 int rv = 0;
3065 int i;
3066
279fbd0c 3067 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3068 " machine at %s address 0x%lx, slave address 0x%x,"
3069 " irq %d\n",
3070 ipmi_addr_src_to_str[new_smi->addr_source],
3071 si_to_str[new_smi->si_type],
3072 addr_space_to_str[new_smi->io.addr_type],
3073 new_smi->io.addr_data,
3074 new_smi->slave_addr, new_smi->irq);
3075
b0defcdb
CM
3076 switch (new_smi->si_type) {
3077 case SI_KCS:
1da177e4 3078 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3079 break;
3080
3081 case SI_SMIC:
1da177e4 3082 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3083 break;
3084
3085 case SI_BT:
1da177e4 3086 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3087 break;
3088
3089 default:
1da177e4
LT
3090 /* No support for anything else yet. */
3091 rv = -EIO;
3092 goto out_err;
3093 }
3094
3095 /* Allocate the state machine's data and initialize it. */
3096 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3097 if (!new_smi->si_sm) {
279fbd0c
MS
3098 printk(KERN_ERR PFX
3099 "Could not allocate state machine memory\n");
1da177e4
LT
3100 rv = -ENOMEM;
3101 goto out_err;
3102 }
3103 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3104 &new_smi->io);
3105
3106 /* Now that we know the I/O size, we can set up the I/O. */
3107 rv = new_smi->io_setup(new_smi);
3108 if (rv) {
279fbd0c 3109 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3110 goto out_err;
3111 }
3112
3113 spin_lock_init(&(new_smi->si_lock));
3114 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3115
3116 /* Do low-level detection first. */
3117 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3118 if (new_smi->addr_source)
279fbd0c 3119 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3120 rv = -ENODEV;
3121 goto out_err;
3122 }
3123
c305e3d3
CM
3124 /*
3125 * Attempt a get device id command. If it fails, we probably
3126 * don't have a BMC here.
3127 */
1da177e4 3128 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3129 if (rv) {
3130 if (new_smi->addr_source)
279fbd0c 3131 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3132 " at this location\n");
1da177e4 3133 goto out_err;
b0defcdb 3134 }
1da177e4 3135
3ae0e0f9 3136 setup_oem_data_handler(new_smi);
ea94027b 3137 setup_xaction_handlers(new_smi);
3ae0e0f9 3138
1da177e4
LT
3139 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3140 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3141 new_smi->curr_msg = NULL;
3142 atomic_set(&new_smi->req_events, 0);
3143 new_smi->run_to_completion = 0;
64959e2d
CM
3144 for (i = 0; i < SI_NUM_STATS; i++)
3145 atomic_set(&new_smi->stats[i], 0);
1da177e4 3146
ea4078ca 3147 new_smi->interrupt_disabled = 1;
a9a2c44f 3148 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3149 new_smi->intf_num = smi_num;
3150 smi_num++;
1da177e4 3151
40112ae7
CM
3152 rv = try_enable_event_buffer(new_smi);
3153 if (rv == 0)
3154 new_smi->has_event_buffer = 1;
3155
c305e3d3
CM
3156 /*
3157 * Start clearing the flags before we enable interrupts or the
3158 * timer to avoid racing with the timer.
3159 */
1da177e4
LT
3160 start_clear_flags(new_smi);
3161 /* IRQ is defined to be set when non-zero. */
3162 if (new_smi->irq)
3163 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3164
50c812b2 3165 if (!new_smi->dev) {
c305e3d3
CM
3166 /*
3167 * If we don't already have a device from something
3168 * else (like PCI), then register a new one.
3169 */
50c812b2
CM
3170 new_smi->pdev = platform_device_alloc("ipmi_si",
3171 new_smi->intf_num);
8b32b5d0 3172 if (!new_smi->pdev) {
279fbd0c
MS
3173 printk(KERN_ERR PFX
3174 "Unable to allocate platform device\n");
453823ba 3175 goto out_err;
50c812b2
CM
3176 }
3177 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3178 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3179
b48f5457 3180 rv = platform_device_add(new_smi->pdev);
50c812b2 3181 if (rv) {
279fbd0c
MS
3182 printk(KERN_ERR PFX
3183 "Unable to register system interface device:"
50c812b2
CM
3184 " %d\n",
3185 rv);
453823ba 3186 goto out_err;
50c812b2
CM
3187 }
3188 new_smi->dev_registered = 1;
3189 }
3190
1da177e4
LT
3191 rv = ipmi_register_smi(&handlers,
3192 new_smi,
50c812b2
CM
3193 &new_smi->device_id,
3194 new_smi->dev,
759643b8 3195 "bmc",
453823ba 3196 new_smi->slave_addr);
1da177e4 3197 if (rv) {
279fbd0c
MS
3198 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3199 rv);
1da177e4
LT
3200 goto out_err_stop_timer;
3201 }
3202
3203 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3204 type_file_read_proc,
99b76233 3205 new_smi);
1da177e4 3206 if (rv) {
279fbd0c 3207 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3208 goto out_err_stop_timer;
3209 }
3210
3211 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3212 stat_file_read_proc,
99b76233 3213 new_smi);
1da177e4 3214 if (rv) {
279fbd0c 3215 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3216 goto out_err_stop_timer;
3217 }
3218
b361e27b 3219 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3220 param_read_proc,
99b76233 3221 new_smi);
b361e27b 3222 if (rv) {
279fbd0c 3223 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3224 goto out_err_stop_timer;
3225 }
3226
279fbd0c
MS
3227 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3228 si_to_str[new_smi->si_type]);
1da177e4
LT
3229
3230 return 0;
3231
3232 out_err_stop_timer:
a9a2c44f
CM
3233 atomic_inc(&new_smi->stop_operation);
3234 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3235
3236 out_err:
2407d77a
MG
3237 new_smi->interrupt_disabled = 1;
3238
3239 if (new_smi->intf) {
1da177e4 3240 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3241 new_smi->intf = NULL;
3242 }
1da177e4 3243
2407d77a 3244 if (new_smi->irq_cleanup) {
b0defcdb 3245 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3246 new_smi->irq_cleanup = NULL;
3247 }
1da177e4 3248
c305e3d3
CM
3249 /*
3250 * Wait until we know that we are out of any interrupt
3251 * handlers might have been running before we freed the
3252 * interrupt.
3253 */
fbd568a3 3254 synchronize_sched();
1da177e4
LT
3255
3256 if (new_smi->si_sm) {
3257 if (new_smi->handlers)
3258 new_smi->handlers->cleanup(new_smi->si_sm);
3259 kfree(new_smi->si_sm);
2407d77a 3260 new_smi->si_sm = NULL;
1da177e4 3261 }
2407d77a 3262 if (new_smi->addr_source_cleanup) {
b0defcdb 3263 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3264 new_smi->addr_source_cleanup = NULL;
3265 }
3266 if (new_smi->io_cleanup) {
7767e126 3267 new_smi->io_cleanup(new_smi);
2407d77a
MG
3268 new_smi->io_cleanup = NULL;
3269 }
1da177e4 3270
2407d77a 3271 if (new_smi->dev_registered) {
50c812b2 3272 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3273 new_smi->dev_registered = 0;
3274 }
b0defcdb 3275
1da177e4
LT
3276 return rv;
3277}
3278
b0defcdb 3279static __devinit int init_ipmi_si(void)
1da177e4 3280{
1da177e4
LT
3281 int i;
3282 char *str;
50c812b2 3283 int rv;
2407d77a 3284 struct smi_info *e;
06ee4594 3285 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3286
3287 if (initialized)
3288 return 0;
3289 initialized = 1;
3290
50c812b2 3291 /* Register the device drivers. */
fe2d5ffc 3292 rv = driver_register(&ipmi_driver.driver);
50c812b2 3293 if (rv) {
279fbd0c 3294 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3295 return rv;
3296 }
3297
3298
1da177e4
LT
3299 /* Parse out the si_type string into its components. */
3300 str = si_type_str;
3301 if (*str != '\0') {
e8b33617 3302 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3303 si_type[i] = str;
3304 str = strchr(str, ',');
3305 if (str) {
3306 *str = '\0';
3307 str++;
3308 } else {
3309 break;
3310 }
3311 }
3312 }
3313
1fdd75bd 3314 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3315
b0defcdb
CM
3316 hardcode_find_bmc();
3317
d8cc5267
MG
3318 /* If the user gave us a device, they presumably want us to use it */
3319 mutex_lock(&smi_infos_lock);
3320 if (!list_empty(&smi_infos)) {
3321 mutex_unlock(&smi_infos_lock);
3322 return 0;
3323 }
3324 mutex_unlock(&smi_infos_lock);
3325
b0defcdb 3326#ifdef CONFIG_PCI
168b35a7 3327 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3328 if (rv)
279fbd0c 3329 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
56480287
MG
3330 else
3331 pci_registered = 1;
b0defcdb
CM
3332#endif
3333
754d4531
MG
3334#ifdef CONFIG_ACPI
3335 pnp_register_driver(&ipmi_pnp_driver);
3336#endif
3337
3338#ifdef CONFIG_DMI
3339 dmi_find_bmc();
3340#endif
3341
3342#ifdef CONFIG_ACPI
3343 spmi_find_bmc();
3344#endif
3345
dba9b4f6
CM
3346#ifdef CONFIG_PPC_OF
3347 of_register_platform_driver(&ipmi_of_platform_driver);
56480287 3348 of_registered = 1;
dba9b4f6
CM
3349#endif
3350
06ee4594
MG
3351 /* We prefer devices with interrupts, but in the case of a machine
3352 with multiple BMCs we assume that there will be several instances
3353 of a given type so if we succeed in registering a type then also
3354 try to register everything else of the same type */
d8cc5267 3355
2407d77a
MG
3356 mutex_lock(&smi_infos_lock);
3357 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3358 /* Try to register a device if it has an IRQ and we either
3359 haven't successfully registered a device yet or this
3360 device has the same type as one we successfully registered */
3361 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3362 if (!try_smi_init(e)) {
06ee4594 3363 type = e->addr_source;
d8cc5267
MG
3364 }
3365 }
3366 }
3367
06ee4594
MG
3368 /* type will only have been set if we successfully registered an si */
3369 if (type) {
3370 mutex_unlock(&smi_infos_lock);
3371 return 0;
3372 }
3373
d8cc5267
MG
3374 /* Fall back to the preferred device */
3375
3376 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3377 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3378 if (!try_smi_init(e)) {
06ee4594 3379 type = e->addr_source;
d8cc5267
MG
3380 }
3381 }
2407d77a
MG
3382 }
3383 mutex_unlock(&smi_infos_lock);
3384
06ee4594
MG
3385 if (type)
3386 return 0;
3387
b0defcdb 3388 if (si_trydefaults) {
d6dfd131 3389 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3390 if (list_empty(&smi_infos)) {
3391 /* No BMC was found, try defaults. */
d6dfd131 3392 mutex_unlock(&smi_infos_lock);
b0defcdb 3393 default_find_bmc();
2407d77a 3394 } else
d6dfd131 3395 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3396 }
3397
d6dfd131 3398 mutex_lock(&smi_infos_lock);
b361e27b 3399 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3400 mutex_unlock(&smi_infos_lock);
b0defcdb 3401#ifdef CONFIG_PCI
56480287
MG
3402 if (pci_registered)
3403 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3404#endif
10fb62e5
CK
3405
3406#ifdef CONFIG_PPC_OF
56480287
MG
3407 if (of_registered)
3408 of_unregister_platform_driver(&ipmi_of_platform_driver);
10fb62e5 3409#endif
fe2d5ffc 3410 driver_unregister(&ipmi_driver.driver);
279fbd0c
MS
3411 printk(KERN_WARNING PFX
3412 "Unable to find any System Interface(s)\n");
1da177e4 3413 return -ENODEV;
b0defcdb 3414 } else {
d6dfd131 3415 mutex_unlock(&smi_infos_lock);
b0defcdb 3416 return 0;
1da177e4 3417 }
1da177e4
LT
3418}
3419module_init(init_ipmi_si);
3420
b361e27b 3421static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3422{
2407d77a 3423 int rv = 0;
1da177e4
LT
3424 unsigned long flags;
3425
b0defcdb 3426 if (!to_clean)
1da177e4
LT
3427 return;
3428
b0defcdb
CM
3429 list_del(&to_clean->link);
3430
ee6cd5f8 3431 /* Tell the driver that we are shutting down. */
a9a2c44f 3432 atomic_inc(&to_clean->stop_operation);
b0defcdb 3433
c305e3d3
CM
3434 /*
3435 * Make sure the timer and thread are stopped and will not run
3436 * again.
3437 */
a9a2c44f 3438 wait_for_timer_and_thread(to_clean);
1da177e4 3439
c305e3d3
CM
3440 /*
3441 * Timeouts are stopped, now make sure the interrupts are off
3442 * for the device. A little tricky with locks to make sure
3443 * there are no races.
3444 */
ee6cd5f8
CM
3445 spin_lock_irqsave(&to_clean->si_lock, flags);
3446 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3447 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3448 poll(to_clean);
3449 schedule_timeout_uninterruptible(1);
3450 spin_lock_irqsave(&to_clean->si_lock, flags);
3451 }
3452 disable_si_irq(to_clean);
3453 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3454 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3455 poll(to_clean);
3456 schedule_timeout_uninterruptible(1);
3457 }
3458
3459 /* Clean up interrupts and make sure that everything is done. */
3460 if (to_clean->irq_cleanup)
3461 to_clean->irq_cleanup(to_clean);
e8b33617 3462 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3463 poll(to_clean);
da4cd8df 3464 schedule_timeout_uninterruptible(1);
1da177e4
LT
3465 }
3466
2407d77a
MG
3467 if (to_clean->intf)
3468 rv = ipmi_unregister_smi(to_clean->intf);
3469
1da177e4 3470 if (rv) {
279fbd0c 3471 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3472 rv);
3473 }
3474
2407d77a
MG
3475 if (to_clean->handlers)
3476 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3477
3478 kfree(to_clean->si_sm);
3479
b0defcdb
CM
3480 if (to_clean->addr_source_cleanup)
3481 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3482 if (to_clean->io_cleanup)
3483 to_clean->io_cleanup(to_clean);
50c812b2
CM
3484
3485 if (to_clean->dev_registered)
3486 platform_device_unregister(to_clean->pdev);
3487
3488 kfree(to_clean);
1da177e4
LT
3489}
3490
3491static __exit void cleanup_ipmi_si(void)
3492{
b0defcdb 3493 struct smi_info *e, *tmp_e;
1da177e4 3494
b0defcdb 3495 if (!initialized)
1da177e4
LT
3496 return;
3497
b0defcdb 3498#ifdef CONFIG_PCI
56480287
MG
3499 if (pci_registered)
3500 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3501#endif
27d0567a 3502#ifdef CONFIG_ACPI
9e368fa0
BH
3503 pnp_unregister_driver(&ipmi_pnp_driver);
3504#endif
b0defcdb 3505
dba9b4f6 3506#ifdef CONFIG_PPC_OF
56480287
MG
3507 if (of_registered)
3508 of_unregister_platform_driver(&ipmi_of_platform_driver);
dba9b4f6
CM
3509#endif
3510
d6dfd131 3511 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3512 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3513 cleanup_one_si(e);
d6dfd131 3514 mutex_unlock(&smi_infos_lock);
50c812b2 3515
fe2d5ffc 3516 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3517}
3518module_exit(cleanup_ipmi_si);
3519
3520MODULE_LICENSE("GPL");
1fdd75bd 3521MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3522MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3523 " system interfaces.");
This page took 0.810403 seconds and 5 git commands to generate.