Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
16f4232c 60#include <linux/ipmi.h>
1da177e4
LT
61#include <linux/ipmi_smi.h>
62#include <asm/io.h>
63#include "ipmi_si_sm.h"
64#include <linux/init.h>
b224cd3a 65#include <linux/dmi.h>
b361e27b
CM
66#include <linux/string.h>
67#include <linux/ctype.h>
9e368fa0 68#include <linux/pnp.h>
b361e27b 69
dba9b4f6 70#ifdef CONFIG_PPC_OF
11c675ce
SR
71#include <linux/of_device.h>
72#include <linux/of_platform.h>
672d8eaf
RH
73#include <linux/of_address.h>
74#include <linux/of_irq.h>
dba9b4f6
CM
75#endif
76
b361e27b 77#define PFX "ipmi_si: "
1da177e4
LT
78
79/* Measure times between events in the driver. */
80#undef DEBUG_TIMING
81
82/* Call every 10 ms. */
83#define SI_TIMEOUT_TIME_USEC 10000
84#define SI_USEC_PER_JIFFY (1000000/HZ)
85#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 87 short timeout */
1da177e4
LT
88
89enum si_intf_state {
90 SI_NORMAL,
91 SI_GETTING_FLAGS,
92 SI_GETTING_EVENTS,
93 SI_CLEARING_FLAGS,
94 SI_CLEARING_FLAGS_THEN_SET_IRQ,
95 SI_GETTING_MESSAGES,
96 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
97 SI_ENABLE_INTERRUPTS2,
98 SI_DISABLE_INTERRUPTS1,
99 SI_DISABLE_INTERRUPTS2
1da177e4
LT
100 /* FIXME - add watchdog stuff. */
101};
102
9dbf68f9
CM
103/* Some BT-specific defines we need here. */
104#define IPMI_BT_INTMASK_REG 2
105#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
106#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
107
1da177e4
LT
108enum si_type {
109 SI_KCS, SI_SMIC, SI_BT
110};
b361e27b 111static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 112
5fedc4a2
MG
113static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114 "ACPI", "SMBIOS", "PCI",
115 "device-tree", "default" };
116
50c812b2
CM
117#define DEVICE_NAME "ipmi_si"
118
fe2d5ffc
DW
119static struct platform_driver ipmi_driver = {
120 .driver = {
121 .name = DEVICE_NAME,
122 .bus = &platform_bus_type
123 }
50c812b2 124};
3ae0e0f9 125
64959e2d
CM
126
127/*
128 * Indexes into stats[] in smi_info below.
129 */
ba8ff1c6
CM
130enum si_stat_indexes {
131 /*
132 * Number of times the driver requested a timer while an operation
133 * was in progress.
134 */
135 SI_STAT_short_timeouts = 0,
136
137 /*
138 * Number of times the driver requested a timer while nothing was in
139 * progress.
140 */
141 SI_STAT_long_timeouts,
142
143 /* Number of times the interface was idle while being polled. */
144 SI_STAT_idles,
145
146 /* Number of interrupts the driver handled. */
147 SI_STAT_interrupts,
148
149 /* Number of time the driver got an ATTN from the hardware. */
150 SI_STAT_attentions,
64959e2d 151
ba8ff1c6
CM
152 /* Number of times the driver requested flags from the hardware. */
153 SI_STAT_flag_fetches,
154
155 /* Number of times the hardware didn't follow the state machine. */
156 SI_STAT_hosed_count,
157
158 /* Number of completed messages. */
159 SI_STAT_complete_transactions,
160
161 /* Number of IPMI events received from the hardware. */
162 SI_STAT_events,
163
164 /* Number of watchdog pretimeouts. */
165 SI_STAT_watchdog_pretimeouts,
166
167 /* Number of asyncronous messages received. */
168 SI_STAT_incoming_messages,
169
170
171 /* This *must* remain last, add new values above this. */
172 SI_NUM_STATS
173};
64959e2d 174
c305e3d3 175struct smi_info {
a9a2c44f 176 int intf_num;
1da177e4
LT
177 ipmi_smi_t intf;
178 struct si_sm_data *si_sm;
179 struct si_sm_handlers *handlers;
180 enum si_type si_type;
181 spinlock_t si_lock;
182 spinlock_t msg_lock;
183 struct list_head xmit_msgs;
184 struct list_head hp_xmit_msgs;
185 struct ipmi_smi_msg *curr_msg;
186 enum si_intf_state si_state;
187
c305e3d3
CM
188 /*
189 * Used to handle the various types of I/O that can occur with
190 * IPMI
191 */
1da177e4
LT
192 struct si_sm_io io;
193 int (*io_setup)(struct smi_info *info);
194 void (*io_cleanup)(struct smi_info *info);
195 int (*irq_setup)(struct smi_info *info);
196 void (*irq_cleanup)(struct smi_info *info);
197 unsigned int io_size;
5fedc4a2 198 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
199 void (*addr_source_cleanup)(struct smi_info *info);
200 void *addr_source_data;
1da177e4 201
c305e3d3
CM
202 /*
203 * Per-OEM handler, called from handle_flags(). Returns 1
204 * when handle_flags() needs to be re-run or 0 indicating it
205 * set si_state itself.
206 */
3ae0e0f9
CM
207 int (*oem_data_avail_handler)(struct smi_info *smi_info);
208
c305e3d3
CM
209 /*
210 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 * is set to hold the flags until we are done handling everything
212 * from the flags.
213 */
1da177e4
LT
214#define RECEIVE_MSG_AVAIL 0x01
215#define EVENT_MSG_BUFFER_FULL 0x02
216#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
217#define OEM0_DATA_AVAIL 0x20
218#define OEM1_DATA_AVAIL 0x40
219#define OEM2_DATA_AVAIL 0x80
220#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
221 OEM1_DATA_AVAIL | \
222 OEM2_DATA_AVAIL)
1da177e4
LT
223 unsigned char msg_flags;
224
40112ae7
CM
225 /* Does the BMC have an event buffer? */
226 char has_event_buffer;
227
c305e3d3
CM
228 /*
229 * If set to true, this will request events the next time the
230 * state machine is idle.
231 */
1da177e4
LT
232 atomic_t req_events;
233
c305e3d3
CM
234 /*
235 * If true, run the state machine to completion on every send
236 * call. Generally used after a panic to make sure stuff goes
237 * out.
238 */
1da177e4
LT
239 int run_to_completion;
240
241 /* The I/O port of an SI interface. */
242 int port;
243
c305e3d3
CM
244 /*
245 * The space between start addresses of the two ports. For
246 * instance, if the first port is 0xca2 and the spacing is 4, then
247 * the second port is 0xca6.
248 */
1da177e4
LT
249 unsigned int spacing;
250
251 /* zero if no irq; */
252 int irq;
253
254 /* The timer for this si. */
255 struct timer_list si_timer;
256
257 /* The time (in jiffies) the last timeout occurred at. */
258 unsigned long last_timeout_jiffies;
259
260 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 261 atomic_t stop_operation;
1da177e4 262
c305e3d3
CM
263 /*
264 * The driver will disable interrupts when it gets into a
265 * situation where it cannot handle messages due to lack of
266 * memory. Once that situation clears up, it will re-enable
267 * interrupts.
268 */
1da177e4
LT
269 int interrupt_disabled;
270
50c812b2 271 /* From the get device id response... */
3ae0e0f9 272 struct ipmi_device_id device_id;
1da177e4 273
50c812b2
CM
274 /* Driver model stuff. */
275 struct device *dev;
276 struct platform_device *pdev;
277
c305e3d3
CM
278 /*
279 * True if we allocated the device, false if it came from
280 * someplace else (like PCI).
281 */
50c812b2
CM
282 int dev_registered;
283
1da177e4
LT
284 /* Slave address, could be reported from DMI. */
285 unsigned char slave_addr;
286
287 /* Counters and things for the proc filesystem. */
64959e2d 288 atomic_t stats[SI_NUM_STATS];
a9a2c44f 289
c305e3d3 290 struct task_struct *thread;
b0defcdb
CM
291
292 struct list_head link;
16f4232c 293 union ipmi_smi_info_union addr_info;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
56480287
MG
305#ifdef CONFIG_PCI
306static int pci_registered;
307#endif
561f8182
YL
308#ifdef CONFIG_ACPI
309static int pnp_registered;
310#endif
56480287
MG
311#ifdef CONFIG_PPC_OF
312static int of_registered;
313#endif
a51f4a81 314
ae74e823
MW
315static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316static int num_max_busy_us;
317
b361e27b
CM
318static int unload_when_empty = 1;
319
2407d77a 320static int add_smi(struct smi_info *smi);
b0defcdb 321static int try_smi_init(struct smi_info *smi);
b361e27b 322static void cleanup_one_si(struct smi_info *to_clean);
d2478521 323static void cleanup_ipmi_si(void);
b0defcdb 324
e041c683 325static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 326static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 327{
e041c683 328 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
329}
330
1da177e4
LT
331static void deliver_recv_msg(struct smi_info *smi_info,
332 struct ipmi_smi_msg *msg)
333{
334 /* Deliver the message to the upper layer with the lock
c305e3d3 335 released. */
a747c5ab
JK
336
337 if (smi_info->run_to_completion) {
338 ipmi_smi_msg_received(smi_info->intf, msg);
339 } else {
340 spin_unlock(&(smi_info->si_lock));
341 ipmi_smi_msg_received(smi_info->intf, msg);
342 spin_lock(&(smi_info->si_lock));
343 }
1da177e4
LT
344}
345
4d7cbac7 346static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
347{
348 struct ipmi_smi_msg *msg = smi_info->curr_msg;
349
4d7cbac7
CM
350 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
351 cCode = IPMI_ERR_UNSPECIFIED;
352 /* else use it as is */
353
1da177e4
LT
354 /* Make it a reponse */
355 msg->rsp[0] = msg->data[0] | 4;
356 msg->rsp[1] = msg->data[1];
4d7cbac7 357 msg->rsp[2] = cCode;
1da177e4
LT
358 msg->rsp_size = 3;
359
360 smi_info->curr_msg = NULL;
361 deliver_recv_msg(smi_info, msg);
362}
363
364static enum si_sm_result start_next_msg(struct smi_info *smi_info)
365{
366 int rv;
367 struct list_head *entry = NULL;
368#ifdef DEBUG_TIMING
369 struct timeval t;
370#endif
371
c305e3d3
CM
372 /*
373 * No need to save flags, we aleady have interrupts off and we
374 * already hold the SMI lock.
375 */
5956dce1
KB
376 if (!smi_info->run_to_completion)
377 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
378
379 /* Pick the high priority queue first. */
b0defcdb 380 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 381 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 382 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
383 entry = smi_info->xmit_msgs.next;
384 }
385
b0defcdb 386 if (!entry) {
1da177e4
LT
387 smi_info->curr_msg = NULL;
388 rv = SI_SM_IDLE;
389 } else {
390 int err;
391
392 list_del(entry);
393 smi_info->curr_msg = list_entry(entry,
394 struct ipmi_smi_msg,
395 link);
396#ifdef DEBUG_TIMING
397 do_gettimeofday(&t);
c305e3d3 398 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 399#endif
e041c683
AS
400 err = atomic_notifier_call_chain(&xaction_notifier_list,
401 0, smi_info);
ea94027b
CM
402 if (err & NOTIFY_STOP_MASK) {
403 rv = SI_SM_CALL_WITHOUT_DELAY;
404 goto out;
405 }
1da177e4
LT
406 err = smi_info->handlers->start_transaction(
407 smi_info->si_sm,
408 smi_info->curr_msg->data,
409 smi_info->curr_msg->data_size);
c305e3d3 410 if (err)
4d7cbac7 411 return_hosed_msg(smi_info, err);
1da177e4
LT
412
413 rv = SI_SM_CALL_WITHOUT_DELAY;
414 }
c305e3d3 415 out:
5956dce1
KB
416 if (!smi_info->run_to_completion)
417 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
418
419 return rv;
420}
421
422static void start_enable_irq(struct smi_info *smi_info)
423{
424 unsigned char msg[2];
425
c305e3d3
CM
426 /*
427 * If we are enabling interrupts, we have to tell the
428 * BMC to use them.
429 */
1da177e4
LT
430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432
433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
435}
436
ee6cd5f8
CM
437static void start_disable_irq(struct smi_info *smi_info)
438{
439 unsigned char msg[2];
440
441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443
444 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
445 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
446}
447
1da177e4
LT
448static void start_clear_flags(struct smi_info *smi_info)
449{
450 unsigned char msg[3];
451
452 /* Make sure the watchdog pre-timeout flag is not set at startup. */
453 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
454 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
455 msg[2] = WDT_PRE_TIMEOUT_INT;
456
457 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
458 smi_info->si_state = SI_CLEARING_FLAGS;
459}
460
c305e3d3
CM
461/*
462 * When we have a situtaion where we run out of memory and cannot
463 * allocate messages, we just leave them in the BMC and run the system
464 * polled until we can allocate some memory. Once we have some
465 * memory, we will re-enable the interrupt.
466 */
1da177e4
LT
467static inline void disable_si_irq(struct smi_info *smi_info)
468{
b0defcdb 469 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 470 start_disable_irq(smi_info);
1da177e4 471 smi_info->interrupt_disabled = 1;
ea4078ca
MG
472 if (!atomic_read(&smi_info->stop_operation))
473 mod_timer(&smi_info->si_timer,
474 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
475 }
476}
477
478static inline void enable_si_irq(struct smi_info *smi_info)
479{
480 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 481 start_enable_irq(smi_info);
1da177e4
LT
482 smi_info->interrupt_disabled = 0;
483 }
484}
485
486static void handle_flags(struct smi_info *smi_info)
487{
3ae0e0f9 488 retry:
1da177e4
LT
489 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
490 /* Watchdog pre-timeout */
64959e2d 491 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
492
493 start_clear_flags(smi_info);
494 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
495 spin_unlock(&(smi_info->si_lock));
496 ipmi_smi_watchdog_pretimeout(smi_info->intf);
497 spin_lock(&(smi_info->si_lock));
498 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
499 /* Messages available. */
500 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 501 if (!smi_info->curr_msg) {
1da177e4
LT
502 disable_si_irq(smi_info);
503 smi_info->si_state = SI_NORMAL;
504 return;
505 }
506 enable_si_irq(smi_info);
507
508 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
510 smi_info->curr_msg->data_size = 2;
511
512 smi_info->handlers->start_transaction(
513 smi_info->si_sm,
514 smi_info->curr_msg->data,
515 smi_info->curr_msg->data_size);
516 smi_info->si_state = SI_GETTING_MESSAGES;
517 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
518 /* Events available. */
519 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 520 if (!smi_info->curr_msg) {
1da177e4
LT
521 disable_si_irq(smi_info);
522 smi_info->si_state = SI_NORMAL;
523 return;
524 }
525 enable_si_irq(smi_info);
526
527 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
528 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
529 smi_info->curr_msg->data_size = 2;
530
531 smi_info->handlers->start_transaction(
532 smi_info->si_sm,
533 smi_info->curr_msg->data,
534 smi_info->curr_msg->data_size);
535 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 536 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 537 smi_info->oem_data_avail_handler) {
4064d5ef
CM
538 if (smi_info->oem_data_avail_handler(smi_info))
539 goto retry;
c305e3d3 540 } else
1da177e4 541 smi_info->si_state = SI_NORMAL;
1da177e4
LT
542}
543
544static void handle_transaction_done(struct smi_info *smi_info)
545{
546 struct ipmi_smi_msg *msg;
547#ifdef DEBUG_TIMING
548 struct timeval t;
549
550 do_gettimeofday(&t);
c305e3d3 551 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
552#endif
553 switch (smi_info->si_state) {
554 case SI_NORMAL:
b0defcdb 555 if (!smi_info->curr_msg)
1da177e4
LT
556 break;
557
558 smi_info->curr_msg->rsp_size
559 = smi_info->handlers->get_result(
560 smi_info->si_sm,
561 smi_info->curr_msg->rsp,
562 IPMI_MAX_MSG_LENGTH);
563
c305e3d3
CM
564 /*
565 * Do this here becase deliver_recv_msg() releases the
566 * lock, and a new message can be put in during the
567 * time the lock is released.
568 */
1da177e4
LT
569 msg = smi_info->curr_msg;
570 smi_info->curr_msg = NULL;
571 deliver_recv_msg(smi_info, msg);
572 break;
573
574 case SI_GETTING_FLAGS:
575 {
576 unsigned char msg[4];
577 unsigned int len;
578
579 /* We got the flags from the SMI, now handle them. */
580 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
581 if (msg[2] != 0) {
c305e3d3 582 /* Error fetching flags, just give up for now. */
1da177e4
LT
583 smi_info->si_state = SI_NORMAL;
584 } else if (len < 4) {
c305e3d3
CM
585 /*
586 * Hmm, no flags. That's technically illegal, but
587 * don't use uninitialized data.
588 */
1da177e4
LT
589 smi_info->si_state = SI_NORMAL;
590 } else {
591 smi_info->msg_flags = msg[3];
592 handle_flags(smi_info);
593 }
594 break;
595 }
596
597 case SI_CLEARING_FLAGS:
598 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
599 {
600 unsigned char msg[3];
601
602 /* We cleared the flags. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
604 if (msg[2] != 0) {
605 /* Error clearing flags */
279fbd0c
MS
606 dev_warn(smi_info->dev,
607 "Error clearing flags: %2.2x\n", msg[2]);
1da177e4
LT
608 }
609 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
610 start_enable_irq(smi_info);
611 else
612 smi_info->si_state = SI_NORMAL;
613 break;
614 }
615
616 case SI_GETTING_EVENTS:
617 {
618 smi_info->curr_msg->rsp_size
619 = smi_info->handlers->get_result(
620 smi_info->si_sm,
621 smi_info->curr_msg->rsp,
622 IPMI_MAX_MSG_LENGTH);
623
c305e3d3
CM
624 /*
625 * Do this here becase deliver_recv_msg() releases the
626 * lock, and a new message can be put in during the
627 * time the lock is released.
628 */
1da177e4
LT
629 msg = smi_info->curr_msg;
630 smi_info->curr_msg = NULL;
631 if (msg->rsp[2] != 0) {
632 /* Error getting event, probably done. */
633 msg->done(msg);
634
635 /* Take off the event flag. */
636 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
637 handle_flags(smi_info);
638 } else {
64959e2d 639 smi_inc_stat(smi_info, events);
1da177e4 640
c305e3d3
CM
641 /*
642 * Do this before we deliver the message
643 * because delivering the message releases the
644 * lock and something else can mess with the
645 * state.
646 */
1da177e4
LT
647 handle_flags(smi_info);
648
649 deliver_recv_msg(smi_info, msg);
650 }
651 break;
652 }
653
654 case SI_GETTING_MESSAGES:
655 {
656 smi_info->curr_msg->rsp_size
657 = smi_info->handlers->get_result(
658 smi_info->si_sm,
659 smi_info->curr_msg->rsp,
660 IPMI_MAX_MSG_LENGTH);
661
c305e3d3
CM
662 /*
663 * Do this here becase deliver_recv_msg() releases the
664 * lock, and a new message can be put in during the
665 * time the lock is released.
666 */
1da177e4
LT
667 msg = smi_info->curr_msg;
668 smi_info->curr_msg = NULL;
669 if (msg->rsp[2] != 0) {
670 /* Error getting event, probably done. */
671 msg->done(msg);
672
673 /* Take off the msg flag. */
674 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
675 handle_flags(smi_info);
676 } else {
64959e2d 677 smi_inc_stat(smi_info, incoming_messages);
1da177e4 678
c305e3d3
CM
679 /*
680 * Do this before we deliver the message
681 * because delivering the message releases the
682 * lock and something else can mess with the
683 * state.
684 */
1da177e4
LT
685 handle_flags(smi_info);
686
687 deliver_recv_msg(smi_info, msg);
688 }
689 break;
690 }
691
692 case SI_ENABLE_INTERRUPTS1:
693 {
694 unsigned char msg[4];
695
696 /* We got the flags from the SMI, now handle them. */
697 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698 if (msg[2] != 0) {
279fbd0c
MS
699 dev_warn(smi_info->dev, "Could not enable interrupts"
700 ", failed get, using polled mode.\n");
1da177e4
LT
701 smi_info->si_state = SI_NORMAL;
702 } else {
703 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
705 msg[2] = (msg[3] |
706 IPMI_BMC_RCV_MSG_INTR |
707 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
708 smi_info->handlers->start_transaction(
709 smi_info->si_sm, msg, 3);
710 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
711 }
712 break;
713 }
714
715 case SI_ENABLE_INTERRUPTS2:
716 {
717 unsigned char msg[4];
718
719 /* We got the flags from the SMI, now handle them. */
720 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
279fbd0c
MS
721 if (msg[2] != 0)
722 dev_warn(smi_info->dev, "Could not enable interrupts"
723 ", failed set, using polled mode.\n");
724 else
ea4078ca 725 smi_info->interrupt_disabled = 0;
1da177e4
LT
726 smi_info->si_state = SI_NORMAL;
727 break;
728 }
ee6cd5f8
CM
729
730 case SI_DISABLE_INTERRUPTS1:
731 {
732 unsigned char msg[4];
733
734 /* We got the flags from the SMI, now handle them. */
735 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 if (msg[2] != 0) {
279fbd0c
MS
737 dev_warn(smi_info->dev, "Could not disable interrupts"
738 ", failed get.\n");
ee6cd5f8
CM
739 smi_info->si_state = SI_NORMAL;
740 } else {
741 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
742 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
743 msg[2] = (msg[3] &
744 ~(IPMI_BMC_RCV_MSG_INTR |
745 IPMI_BMC_EVT_MSG_INTR));
746 smi_info->handlers->start_transaction(
747 smi_info->si_sm, msg, 3);
748 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
749 }
750 break;
751 }
752
753 case SI_DISABLE_INTERRUPTS2:
754 {
755 unsigned char msg[4];
756
757 /* We got the flags from the SMI, now handle them. */
758 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
759 if (msg[2] != 0) {
279fbd0c
MS
760 dev_warn(smi_info->dev, "Could not disable interrupts"
761 ", failed set.\n");
ee6cd5f8
CM
762 }
763 smi_info->si_state = SI_NORMAL;
764 break;
765 }
1da177e4
LT
766 }
767}
768
c305e3d3
CM
769/*
770 * Called on timeouts and events. Timeouts should pass the elapsed
771 * time, interrupts should pass in zero. Must be called with
772 * si_lock held and interrupts disabled.
773 */
1da177e4
LT
774static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
775 int time)
776{
777 enum si_sm_result si_sm_result;
778
779 restart:
c305e3d3
CM
780 /*
781 * There used to be a loop here that waited a little while
782 * (around 25us) before giving up. That turned out to be
783 * pointless, the minimum delays I was seeing were in the 300us
784 * range, which is far too long to wait in an interrupt. So
785 * we just run until the state machine tells us something
786 * happened or it needs a delay.
787 */
1da177e4
LT
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
789 time = 0;
790 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 791 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 792
c305e3d3 793 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 794 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
795
796 handle_transaction_done(smi_info);
797 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 798 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 799 smi_inc_stat(smi_info, hosed_count);
1da177e4 800
c305e3d3
CM
801 /*
802 * Do the before return_hosed_msg, because that
803 * releases the lock.
804 */
1da177e4
LT
805 smi_info->si_state = SI_NORMAL;
806 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
807 /*
808 * If we were handling a user message, format
809 * a response to send to the upper layer to
810 * tell it about the error.
811 */
4d7cbac7 812 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
813 }
814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815 }
816
4ea18425
CM
817 /*
818 * We prefer handling attn over new messages. But don't do
819 * this if there is not yet an upper layer to handle anything.
820 */
c305e3d3 821 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
822 unsigned char msg[2];
823
64959e2d 824 smi_inc_stat(smi_info, attentions);
1da177e4 825
c305e3d3
CM
826 /*
827 * Got a attn, send down a get message flags to see
828 * what's causing it. It would be better to handle
829 * this in the upper layer, but due to the way
830 * interrupts work with the SMI, that's not really
831 * possible.
832 */
1da177e4
LT
833 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
834 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
835
836 smi_info->handlers->start_transaction(
837 smi_info->si_sm, msg, 2);
838 smi_info->si_state = SI_GETTING_FLAGS;
839 goto restart;
840 }
841
842 /* If we are currently idle, try to start the next message. */
843 if (si_sm_result == SI_SM_IDLE) {
64959e2d 844 smi_inc_stat(smi_info, idles);
1da177e4
LT
845
846 si_sm_result = start_next_msg(smi_info);
847 if (si_sm_result != SI_SM_IDLE)
848 goto restart;
c305e3d3 849 }
1da177e4
LT
850
851 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
852 && (atomic_read(&smi_info->req_events))) {
853 /*
854 * We are idle and the upper layer requested that I fetch
855 * events, so do so.
856 */
55162fb1 857 atomic_set(&smi_info->req_events, 0);
1da177e4 858
55162fb1
CM
859 smi_info->curr_msg = ipmi_alloc_smi_msg();
860 if (!smi_info->curr_msg)
861 goto out;
1da177e4 862
55162fb1
CM
863 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
864 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
865 smi_info->curr_msg->data_size = 2;
1da177e4
LT
866
867 smi_info->handlers->start_transaction(
55162fb1
CM
868 smi_info->si_sm,
869 smi_info->curr_msg->data,
870 smi_info->curr_msg->data_size);
871 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
872 goto restart;
873 }
55162fb1 874 out:
1da177e4
LT
875 return si_sm_result;
876}
877
878static void sender(void *send_info,
879 struct ipmi_smi_msg *msg,
880 int priority)
881{
882 struct smi_info *smi_info = send_info;
883 enum si_sm_result result;
884 unsigned long flags;
885#ifdef DEBUG_TIMING
886 struct timeval t;
887#endif
888
b361e27b
CM
889 if (atomic_read(&smi_info->stop_operation)) {
890 msg->rsp[0] = msg->data[0] | 4;
891 msg->rsp[1] = msg->data[1];
892 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
893 msg->rsp_size = 3;
894 deliver_recv_msg(smi_info, msg);
895 return;
896 }
897
1da177e4
LT
898#ifdef DEBUG_TIMING
899 do_gettimeofday(&t);
900 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
901#endif
902
ea4078ca
MG
903 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
904
3326f4f2
MG
905 if (smi_info->thread)
906 wake_up_process(smi_info->thread);
907
1da177e4 908 if (smi_info->run_to_completion) {
bda4c30a
CM
909 /*
910 * If we are running to completion, then throw it in
911 * the list and run transactions until everything is
912 * clear. Priority doesn't matter here.
913 */
914
915 /*
916 * Run to completion means we are single-threaded, no
917 * need for locks.
918 */
1da177e4
LT
919 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
920
1da177e4
LT
921 result = smi_event_handler(smi_info, 0);
922 while (result != SI_SM_IDLE) {
923 udelay(SI_SHORT_TIMEOUT_USEC);
924 result = smi_event_handler(smi_info,
925 SI_SHORT_TIMEOUT_USEC);
926 }
1da177e4 927 return;
1da177e4 928 }
1da177e4 929
bda4c30a
CM
930 spin_lock_irqsave(&smi_info->msg_lock, flags);
931 if (priority > 0)
932 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
933 else
934 list_add_tail(&msg->link, &smi_info->xmit_msgs);
935 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
936
937 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 938 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 939 start_next_msg(smi_info);
bda4c30a 940 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
941}
942
943static void set_run_to_completion(void *send_info, int i_run_to_completion)
944{
945 struct smi_info *smi_info = send_info;
946 enum si_sm_result result;
1da177e4
LT
947
948 smi_info->run_to_completion = i_run_to_completion;
949 if (i_run_to_completion) {
950 result = smi_event_handler(smi_info, 0);
951 while (result != SI_SM_IDLE) {
952 udelay(SI_SHORT_TIMEOUT_USEC);
953 result = smi_event_handler(smi_info,
954 SI_SHORT_TIMEOUT_USEC);
955 }
956 }
1da177e4
LT
957}
958
ae74e823
MW
959/*
960 * Use -1 in the nsec value of the busy waiting timespec to tell that
961 * we are spinning in kipmid looking for something and not delaying
962 * between checks
963 */
964static inline void ipmi_si_set_not_busy(struct timespec *ts)
965{
966 ts->tv_nsec = -1;
967}
968static inline int ipmi_si_is_busy(struct timespec *ts)
969{
970 return ts->tv_nsec != -1;
971}
972
973static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
974 const struct smi_info *smi_info,
975 struct timespec *busy_until)
976{
977 unsigned int max_busy_us = 0;
978
979 if (smi_info->intf_num < num_max_busy_us)
980 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
981 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
982 ipmi_si_set_not_busy(busy_until);
983 else if (!ipmi_si_is_busy(busy_until)) {
984 getnstimeofday(busy_until);
985 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
986 } else {
987 struct timespec now;
988 getnstimeofday(&now);
989 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
990 ipmi_si_set_not_busy(busy_until);
991 return 0;
992 }
993 }
994 return 1;
995}
996
997
998/*
999 * A busy-waiting loop for speeding up IPMI operation.
1000 *
1001 * Lousy hardware makes this hard. This is only enabled for systems
1002 * that are not BT and do not have interrupts. It starts spinning
1003 * when an operation is complete or until max_busy tells it to stop
1004 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1005 * Documentation/IPMI.txt for details.
1006 */
a9a2c44f
CM
1007static int ipmi_thread(void *data)
1008{
1009 struct smi_info *smi_info = data;
e9a705a0 1010 unsigned long flags;
a9a2c44f 1011 enum si_sm_result smi_result;
ae74e823 1012 struct timespec busy_until;
a9a2c44f 1013
ae74e823 1014 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1015 set_user_nice(current, 19);
e9a705a0 1016 while (!kthread_should_stop()) {
ae74e823
MW
1017 int busy_wait;
1018
a9a2c44f 1019 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1020 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1021 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1022 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1023 &busy_until);
c305e3d3
CM
1024 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1025 ; /* do nothing */
ae74e823 1026 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1027 schedule();
3326f4f2
MG
1028 else if (smi_result == SI_SM_IDLE)
1029 schedule_timeout_interruptible(100);
e9a705a0 1030 else
8d1f66dc 1031 schedule_timeout_interruptible(1);
a9a2c44f 1032 }
a9a2c44f
CM
1033 return 0;
1034}
1035
1036
1da177e4
LT
1037static void poll(void *send_info)
1038{
1039 struct smi_info *smi_info = send_info;
fcfa4724 1040 unsigned long flags;
1da177e4 1041
15c62e10
CM
1042 /*
1043 * Make sure there is some delay in the poll loop so we can
1044 * drive time forward and timeout things.
1045 */
1046 udelay(10);
fcfa4724 1047 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1048 smi_event_handler(smi_info, 10);
fcfa4724 1049 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1050}
1051
1052static void request_events(void *send_info)
1053{
1054 struct smi_info *smi_info = send_info;
1055
40112ae7
CM
1056 if (atomic_read(&smi_info->stop_operation) ||
1057 !smi_info->has_event_buffer)
b361e27b
CM
1058 return;
1059
1da177e4
LT
1060 atomic_set(&smi_info->req_events, 1);
1061}
1062
0c8204b3 1063static int initialized;
1da177e4 1064
1da177e4
LT
1065static void smi_timeout(unsigned long data)
1066{
1067 struct smi_info *smi_info = (struct smi_info *) data;
1068 enum si_sm_result smi_result;
1069 unsigned long flags;
1070 unsigned long jiffies_now;
c4edff1c 1071 long time_diff;
3326f4f2 1072 long timeout;
1da177e4
LT
1073#ifdef DEBUG_TIMING
1074 struct timeval t;
1075#endif
1076
1da177e4
LT
1077 spin_lock_irqsave(&(smi_info->si_lock), flags);
1078#ifdef DEBUG_TIMING
1079 do_gettimeofday(&t);
c305e3d3 1080 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1081#endif
1082 jiffies_now = jiffies;
c4edff1c 1083 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1084 * SI_USEC_PER_JIFFY);
1085 smi_result = smi_event_handler(smi_info, time_diff);
1086
1087 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1088
1089 smi_info->last_timeout_jiffies = jiffies_now;
1090
b0defcdb 1091 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4 1092 /* Running with interrupts, only do long timeouts. */
3326f4f2 1093 timeout = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1094 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1095 goto do_mod_timer;
1da177e4
LT
1096 }
1097
c305e3d3
CM
1098 /*
1099 * If the state machine asks for a short delay, then shorten
1100 * the timer timeout.
1101 */
1da177e4 1102 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1103 smi_inc_stat(smi_info, short_timeouts);
3326f4f2 1104 timeout = jiffies + 1;
1da177e4 1105 } else {
64959e2d 1106 smi_inc_stat(smi_info, long_timeouts);
3326f4f2 1107 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1108 }
1109
3326f4f2
MG
1110 do_mod_timer:
1111 if (smi_result != SI_SM_IDLE)
1112 mod_timer(&(smi_info->si_timer), timeout);
1da177e4
LT
1113}
1114
7d12e780 1115static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1116{
1117 struct smi_info *smi_info = data;
1118 unsigned long flags;
1119#ifdef DEBUG_TIMING
1120 struct timeval t;
1121#endif
1122
1123 spin_lock_irqsave(&(smi_info->si_lock), flags);
1124
64959e2d 1125 smi_inc_stat(smi_info, interrupts);
1da177e4 1126
1da177e4
LT
1127#ifdef DEBUG_TIMING
1128 do_gettimeofday(&t);
c305e3d3 1129 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1130#endif
1131 smi_event_handler(smi_info, 0);
1da177e4
LT
1132 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1133 return IRQ_HANDLED;
1134}
1135
7d12e780 1136static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1137{
1138 struct smi_info *smi_info = data;
1139 /* We need to clear the IRQ flag for the BT interface. */
1140 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1141 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1142 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1143 return si_irq_handler(irq, data);
9dbf68f9
CM
1144}
1145
453823ba
CM
1146static int smi_start_processing(void *send_info,
1147 ipmi_smi_t intf)
1148{
1149 struct smi_info *new_smi = send_info;
a51f4a81 1150 int enable = 0;
453823ba
CM
1151
1152 new_smi->intf = intf;
1153
c45adc39
CM
1154 /* Try to claim any interrupts. */
1155 if (new_smi->irq_setup)
1156 new_smi->irq_setup(new_smi);
1157
453823ba
CM
1158 /* Set up the timer that drives the interface. */
1159 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1160 new_smi->last_timeout_jiffies = jiffies;
1161 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1162
a51f4a81
CM
1163 /*
1164 * Check if the user forcefully enabled the daemon.
1165 */
1166 if (new_smi->intf_num < num_force_kipmid)
1167 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1168 /*
1169 * The BT interface is efficient enough to not need a thread,
1170 * and there is no need for a thread if we have interrupts.
1171 */
c305e3d3 1172 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1173 enable = 1;
1174
1175 if (enable) {
453823ba
CM
1176 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1177 "kipmi%d", new_smi->intf_num);
1178 if (IS_ERR(new_smi->thread)) {
279fbd0c
MS
1179 dev_notice(new_smi->dev, "Could not start"
1180 " kernel thread due to error %ld, only using"
1181 " timers to drive the interface\n",
1182 PTR_ERR(new_smi->thread));
453823ba
CM
1183 new_smi->thread = NULL;
1184 }
1185 }
1186
1187 return 0;
1188}
9dbf68f9 1189
16f4232c
ZY
1190static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1191{
1192 struct smi_info *smi = send_info;
1193
1194 data->addr_src = smi->addr_source;
1195 data->dev = smi->dev;
1196 data->addr_info = smi->addr_info;
1197 get_device(smi->dev);
1198
1199 return 0;
1200}
1201
b9675136
CM
1202static void set_maintenance_mode(void *send_info, int enable)
1203{
1204 struct smi_info *smi_info = send_info;
1205
1206 if (!enable)
1207 atomic_set(&smi_info->req_events, 0);
1208}
1209
c305e3d3 1210static struct ipmi_smi_handlers handlers = {
1da177e4 1211 .owner = THIS_MODULE,
453823ba 1212 .start_processing = smi_start_processing,
16f4232c 1213 .get_smi_info = get_smi_info,
1da177e4
LT
1214 .sender = sender,
1215 .request_events = request_events,
b9675136 1216 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1217 .set_run_to_completion = set_run_to_completion,
1218 .poll = poll,
1219};
1220
c305e3d3
CM
1221/*
1222 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1223 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1224 */
1da177e4 1225
b0defcdb 1226static LIST_HEAD(smi_infos);
d6dfd131 1227static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1228static int smi_num; /* Used to sequence the SMIs */
1da177e4 1229
1da177e4 1230#define DEFAULT_REGSPACING 1
dba9b4f6 1231#define DEFAULT_REGSIZE 1
1da177e4
LT
1232
1233static int si_trydefaults = 1;
1234static char *si_type[SI_MAX_PARMS];
1235#define MAX_SI_TYPE_STR 30
1236static char si_type_str[MAX_SI_TYPE_STR];
1237static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1238static unsigned int num_addrs;
1da177e4 1239static unsigned int ports[SI_MAX_PARMS];
64a6f950 1240static unsigned int num_ports;
1da177e4 1241static int irqs[SI_MAX_PARMS];
64a6f950 1242static unsigned int num_irqs;
1da177e4 1243static int regspacings[SI_MAX_PARMS];
64a6f950 1244static unsigned int num_regspacings;
1da177e4 1245static int regsizes[SI_MAX_PARMS];
64a6f950 1246static unsigned int num_regsizes;
1da177e4 1247static int regshifts[SI_MAX_PARMS];
64a6f950 1248static unsigned int num_regshifts;
2f95d513 1249static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1250static unsigned int num_slave_addrs;
1da177e4 1251
b361e27b
CM
1252#define IPMI_IO_ADDR_SPACE 0
1253#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1254static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1255
1256static int hotmod_handler(const char *val, struct kernel_param *kp);
1257
1258module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1260 " Documentation/IPMI.txt in the kernel sources for the"
1261 " gory details.");
1da177e4
LT
1262
1263module_param_named(trydefaults, si_trydefaults, bool, 0);
1264MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1265 " default scan of the KCS and SMIC interface at the standard"
1266 " address");
1267module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1268MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1269 " interface separated by commas. The types are 'kcs',"
1270 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1271 " the first interface to kcs and the second to bt");
64a6f950 1272module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1273MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1274 " addresses separated by commas. Only use if an interface"
1275 " is in memory. Otherwise, set it to zero or leave"
1276 " it blank.");
64a6f950 1277module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1278MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1279 " addresses separated by commas. Only use if an interface"
1280 " is a port. Otherwise, set it to zero or leave"
1281 " it blank.");
1282module_param_array(irqs, int, &num_irqs, 0);
1283MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1284 " addresses separated by commas. Only use if an interface"
1285 " has an interrupt. Otherwise, set it to zero or leave"
1286 " it blank.");
1287module_param_array(regspacings, int, &num_regspacings, 0);
1288MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1289 " and each successive register used by the interface. For"
1290 " instance, if the start address is 0xca2 and the spacing"
1291 " is 2, then the second address is at 0xca4. Defaults"
1292 " to 1.");
1293module_param_array(regsizes, int, &num_regsizes, 0);
1294MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1295 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1296 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1297 " the 8-bit IPMI register has to be read from a larger"
1298 " register.");
1299module_param_array(regshifts, int, &num_regshifts, 0);
1300MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1301 " IPMI register, in bits. For instance, if the data"
1302 " is read from a 32-bit word and the IPMI data is in"
1303 " bit 8-15, then the shift would be 8");
1304module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1305MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1306 " the controller. Normally this is 0x20, but can be"
1307 " overridden by this parm. This is an array indexed"
1308 " by interface number.");
a51f4a81
CM
1309module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1310MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1311 " disabled(0). Normally the IPMI driver auto-detects"
1312 " this, but the value may be overridden by this parm.");
b361e27b
CM
1313module_param(unload_when_empty, int, 0);
1314MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1315 " specified or found, default is 1. Setting to 0"
1316 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1317module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1318MODULE_PARM_DESC(kipmid_max_busy_us,
1319 "Max time (in microseconds) to busy-wait for IPMI data before"
1320 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1321 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1322
1323
b0defcdb 1324static void std_irq_cleanup(struct smi_info *info)
1da177e4 1325{
b0defcdb
CM
1326 if (info->si_type == SI_BT)
1327 /* Disable the interrupt in the BT interface. */
1328 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1329 free_irq(info->irq, info);
1da177e4 1330}
1da177e4
LT
1331
1332static int std_irq_setup(struct smi_info *info)
1333{
1334 int rv;
1335
b0defcdb 1336 if (!info->irq)
1da177e4
LT
1337 return 0;
1338
9dbf68f9
CM
1339 if (info->si_type == SI_BT) {
1340 rv = request_irq(info->irq,
1341 si_bt_irq_handler,
ee6cd5f8 1342 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1343 DEVICE_NAME,
1344 info);
b0defcdb 1345 if (!rv)
9dbf68f9
CM
1346 /* Enable the interrupt in the BT interface. */
1347 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1348 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1349 } else
1350 rv = request_irq(info->irq,
1351 si_irq_handler,
ee6cd5f8 1352 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1353 DEVICE_NAME,
1354 info);
1da177e4 1355 if (rv) {
279fbd0c
MS
1356 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1357 " running polled\n",
1358 DEVICE_NAME, info->irq);
1da177e4
LT
1359 info->irq = 0;
1360 } else {
b0defcdb 1361 info->irq_cleanup = std_irq_cleanup;
279fbd0c 1362 dev_info(info->dev, "Using irq %d\n", info->irq);
1da177e4
LT
1363 }
1364
1365 return rv;
1366}
1367
1da177e4
LT
1368static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1369{
b0defcdb 1370 unsigned int addr = io->addr_data;
1da177e4 1371
b0defcdb 1372 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1373}
1374
1375static void port_outb(struct si_sm_io *io, unsigned int offset,
1376 unsigned char b)
1377{
b0defcdb 1378 unsigned int addr = io->addr_data;
1da177e4 1379
b0defcdb 1380 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1381}
1382
1383static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1384{
b0defcdb 1385 unsigned int addr = io->addr_data;
1da177e4 1386
b0defcdb 1387 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1388}
1389
1390static void port_outw(struct si_sm_io *io, unsigned int offset,
1391 unsigned char b)
1392{
b0defcdb 1393 unsigned int addr = io->addr_data;
1da177e4 1394
b0defcdb 1395 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1396}
1397
1398static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1399{
b0defcdb 1400 unsigned int addr = io->addr_data;
1da177e4 1401
b0defcdb 1402 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1403}
1404
1405static void port_outl(struct si_sm_io *io, unsigned int offset,
1406 unsigned char b)
1407{
b0defcdb 1408 unsigned int addr = io->addr_data;
1da177e4 1409
b0defcdb 1410 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1411}
1412
1413static void port_cleanup(struct smi_info *info)
1414{
b0defcdb 1415 unsigned int addr = info->io.addr_data;
d61a3ead 1416 int idx;
1da177e4 1417
b0defcdb 1418 if (addr) {
c305e3d3 1419 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1420 release_region(addr + idx * info->io.regspacing,
1421 info->io.regsize);
1da177e4 1422 }
1da177e4
LT
1423}
1424
1425static int port_setup(struct smi_info *info)
1426{
b0defcdb 1427 unsigned int addr = info->io.addr_data;
d61a3ead 1428 int idx;
1da177e4 1429
b0defcdb 1430 if (!addr)
1da177e4
LT
1431 return -ENODEV;
1432
1433 info->io_cleanup = port_cleanup;
1434
c305e3d3
CM
1435 /*
1436 * Figure out the actual inb/inw/inl/etc routine to use based
1437 * upon the register size.
1438 */
1da177e4
LT
1439 switch (info->io.regsize) {
1440 case 1:
1441 info->io.inputb = port_inb;
1442 info->io.outputb = port_outb;
1443 break;
1444 case 2:
1445 info->io.inputb = port_inw;
1446 info->io.outputb = port_outw;
1447 break;
1448 case 4:
1449 info->io.inputb = port_inl;
1450 info->io.outputb = port_outl;
1451 break;
1452 default:
279fbd0c
MS
1453 dev_warn(info->dev, "Invalid register size: %d\n",
1454 info->io.regsize);
1da177e4
LT
1455 return -EINVAL;
1456 }
1457
c305e3d3
CM
1458 /*
1459 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1460 * tables. This causes problems when trying to register the
1461 * entire I/O region. Therefore we must register each I/O
1462 * port separately.
1463 */
c305e3d3 1464 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1465 if (request_region(addr + idx * info->io.regspacing,
1466 info->io.regsize, DEVICE_NAME) == NULL) {
1467 /* Undo allocations */
1468 while (idx--) {
1469 release_region(addr + idx * info->io.regspacing,
1470 info->io.regsize);
1471 }
1472 return -EIO;
1473 }
1474 }
1da177e4
LT
1475 return 0;
1476}
1477
546cfdf4 1478static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1479{
1480 return readb((io->addr)+(offset * io->regspacing));
1481}
1482
546cfdf4 1483static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1484 unsigned char b)
1485{
1486 writeb(b, (io->addr)+(offset * io->regspacing));
1487}
1488
546cfdf4 1489static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1490{
1491 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1492 & 0xff;
1da177e4
LT
1493}
1494
546cfdf4 1495static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1496 unsigned char b)
1497{
1498 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499}
1500
546cfdf4 1501static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1502{
1503 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1504 & 0xff;
1da177e4
LT
1505}
1506
546cfdf4 1507static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1508 unsigned char b)
1509{
1510 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1511}
1512
1513#ifdef readq
1514static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1515{
1516 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1517 & 0xff;
1da177e4
LT
1518}
1519
1520static void mem_outq(struct si_sm_io *io, unsigned int offset,
1521 unsigned char b)
1522{
1523 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1524}
1525#endif
1526
1527static void mem_cleanup(struct smi_info *info)
1528{
b0defcdb 1529 unsigned long addr = info->io.addr_data;
1da177e4
LT
1530 int mapsize;
1531
1532 if (info->io.addr) {
1533 iounmap(info->io.addr);
1534
1535 mapsize = ((info->io_size * info->io.regspacing)
1536 - (info->io.regspacing - info->io.regsize));
1537
b0defcdb 1538 release_mem_region(addr, mapsize);
1da177e4 1539 }
1da177e4
LT
1540}
1541
1542static int mem_setup(struct smi_info *info)
1543{
b0defcdb 1544 unsigned long addr = info->io.addr_data;
1da177e4
LT
1545 int mapsize;
1546
b0defcdb 1547 if (!addr)
1da177e4
LT
1548 return -ENODEV;
1549
1550 info->io_cleanup = mem_cleanup;
1551
c305e3d3
CM
1552 /*
1553 * Figure out the actual readb/readw/readl/etc routine to use based
1554 * upon the register size.
1555 */
1da177e4
LT
1556 switch (info->io.regsize) {
1557 case 1:
546cfdf4
AD
1558 info->io.inputb = intf_mem_inb;
1559 info->io.outputb = intf_mem_outb;
1da177e4
LT
1560 break;
1561 case 2:
546cfdf4
AD
1562 info->io.inputb = intf_mem_inw;
1563 info->io.outputb = intf_mem_outw;
1da177e4
LT
1564 break;
1565 case 4:
546cfdf4
AD
1566 info->io.inputb = intf_mem_inl;
1567 info->io.outputb = intf_mem_outl;
1da177e4
LT
1568 break;
1569#ifdef readq
1570 case 8:
1571 info->io.inputb = mem_inq;
1572 info->io.outputb = mem_outq;
1573 break;
1574#endif
1575 default:
279fbd0c
MS
1576 dev_warn(info->dev, "Invalid register size: %d\n",
1577 info->io.regsize);
1da177e4
LT
1578 return -EINVAL;
1579 }
1580
c305e3d3
CM
1581 /*
1582 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1583 * unusual looking calculation, but it avoids claiming any
1584 * more memory than it has to. It will claim everything
1585 * between the first address to the end of the last full
c305e3d3
CM
1586 * register.
1587 */
1da177e4
LT
1588 mapsize = ((info->io_size * info->io.regspacing)
1589 - (info->io.regspacing - info->io.regsize));
1590
b0defcdb 1591 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1592 return -EIO;
1593
b0defcdb 1594 info->io.addr = ioremap(addr, mapsize);
1da177e4 1595 if (info->io.addr == NULL) {
b0defcdb 1596 release_mem_region(addr, mapsize);
1da177e4
LT
1597 return -EIO;
1598 }
1599 return 0;
1600}
1601
b361e27b
CM
1602/*
1603 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1604 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1605 * Options are:
1606 * rsp=<regspacing>
1607 * rsi=<regsize>
1608 * rsh=<regshift>
1609 * irq=<irq>
1610 * ipmb=<ipmb addr>
1611 */
1612enum hotmod_op { HM_ADD, HM_REMOVE };
1613struct hotmod_vals {
1614 char *name;
1615 int val;
1616};
1617static struct hotmod_vals hotmod_ops[] = {
1618 { "add", HM_ADD },
1619 { "remove", HM_REMOVE },
1620 { NULL }
1621};
1622static struct hotmod_vals hotmod_si[] = {
1623 { "kcs", SI_KCS },
1624 { "smic", SI_SMIC },
1625 { "bt", SI_BT },
1626 { NULL }
1627};
1628static struct hotmod_vals hotmod_as[] = {
1629 { "mem", IPMI_MEM_ADDR_SPACE },
1630 { "i/o", IPMI_IO_ADDR_SPACE },
1631 { NULL }
1632};
1d5636cc 1633
b361e27b
CM
1634static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1635{
1636 char *s;
1637 int i;
1638
1639 s = strchr(*curr, ',');
1640 if (!s) {
1641 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1642 return -EINVAL;
1643 }
1644 *s = '\0';
1645 s++;
1646 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1647 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1648 *val = v[i].val;
1649 *curr = s;
1650 return 0;
1651 }
1652 }
1653
1654 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1655 return -EINVAL;
1656}
1657
1d5636cc
CM
1658static int check_hotmod_int_op(const char *curr, const char *option,
1659 const char *name, int *val)
1660{
1661 char *n;
1662
1663 if (strcmp(curr, name) == 0) {
1664 if (!option) {
1665 printk(KERN_WARNING PFX
1666 "No option given for '%s'\n",
1667 curr);
1668 return -EINVAL;
1669 }
1670 *val = simple_strtoul(option, &n, 0);
1671 if ((*n != '\0') || (*option == '\0')) {
1672 printk(KERN_WARNING PFX
1673 "Bad option given for '%s'\n",
1674 curr);
1675 return -EINVAL;
1676 }
1677 return 1;
1678 }
1679 return 0;
1680}
1681
de5e2ddf
ED
1682static struct smi_info *smi_info_alloc(void)
1683{
1684 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1685
1686 if (info) {
1687 spin_lock_init(&info->si_lock);
1688 spin_lock_init(&info->msg_lock);
1689 }
1690 return info;
1691}
1692
b361e27b
CM
1693static int hotmod_handler(const char *val, struct kernel_param *kp)
1694{
1695 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1696 int rv;
b361e27b
CM
1697 char *next, *curr, *s, *n, *o;
1698 enum hotmod_op op;
1699 enum si_type si_type;
1700 int addr_space;
1701 unsigned long addr;
1702 int regspacing;
1703 int regsize;
1704 int regshift;
1705 int irq;
1706 int ipmb;
1707 int ival;
1d5636cc 1708 int len;
b361e27b
CM
1709 struct smi_info *info;
1710
1711 if (!str)
1712 return -ENOMEM;
1713
1714 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1715 len = strlen(str);
1716 ival = len - 1;
b361e27b
CM
1717 while ((ival >= 0) && isspace(str[ival])) {
1718 str[ival] = '\0';
1719 ival--;
1720 }
1721
1722 for (curr = str; curr; curr = next) {
1723 regspacing = 1;
1724 regsize = 1;
1725 regshift = 0;
1726 irq = 0;
2f95d513 1727 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1728
1729 next = strchr(curr, ':');
1730 if (next) {
1731 *next = '\0';
1732 next++;
1733 }
1734
1735 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1736 if (rv)
1737 break;
1738 op = ival;
1739
1740 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1741 if (rv)
1742 break;
1743 si_type = ival;
1744
1745 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1746 if (rv)
1747 break;
1748
1749 s = strchr(curr, ',');
1750 if (s) {
1751 *s = '\0';
1752 s++;
1753 }
1754 addr = simple_strtoul(curr, &n, 0);
1755 if ((*n != '\0') || (*curr == '\0')) {
1756 printk(KERN_WARNING PFX "Invalid hotmod address"
1757 " '%s'\n", curr);
1758 break;
1759 }
1760
1761 while (s) {
1762 curr = s;
1763 s = strchr(curr, ',');
1764 if (s) {
1765 *s = '\0';
1766 s++;
1767 }
1768 o = strchr(curr, '=');
1769 if (o) {
1770 *o = '\0';
1771 o++;
1772 }
1d5636cc
CM
1773 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1774 if (rv < 0)
b361e27b 1775 goto out;
1d5636cc
CM
1776 else if (rv)
1777 continue;
1778 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1779 if (rv < 0)
1780 goto out;
1781 else if (rv)
1782 continue;
1783 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1784 if (rv < 0)
1785 goto out;
1786 else if (rv)
1787 continue;
1788 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1789 if (rv < 0)
1790 goto out;
1791 else if (rv)
1792 continue;
1793 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1794 if (rv < 0)
1795 goto out;
1796 else if (rv)
1797 continue;
1798
1799 rv = -EINVAL;
1800 printk(KERN_WARNING PFX
1801 "Invalid hotmod option '%s'\n",
1802 curr);
1803 goto out;
b361e27b
CM
1804 }
1805
1806 if (op == HM_ADD) {
de5e2ddf 1807 info = smi_info_alloc();
b361e27b
CM
1808 if (!info) {
1809 rv = -ENOMEM;
1810 goto out;
1811 }
1812
5fedc4a2 1813 info->addr_source = SI_HOTMOD;
b361e27b
CM
1814 info->si_type = si_type;
1815 info->io.addr_data = addr;
1816 info->io.addr_type = addr_space;
1817 if (addr_space == IPMI_MEM_ADDR_SPACE)
1818 info->io_setup = mem_setup;
1819 else
1820 info->io_setup = port_setup;
1821
1822 info->io.addr = NULL;
1823 info->io.regspacing = regspacing;
1824 if (!info->io.regspacing)
1825 info->io.regspacing = DEFAULT_REGSPACING;
1826 info->io.regsize = regsize;
1827 if (!info->io.regsize)
1828 info->io.regsize = DEFAULT_REGSPACING;
1829 info->io.regshift = regshift;
1830 info->irq = irq;
1831 if (info->irq)
1832 info->irq_setup = std_irq_setup;
1833 info->slave_addr = ipmb;
1834
7faefea6 1835 if (!add_smi(info)) {
2407d77a
MG
1836 if (try_smi_init(info))
1837 cleanup_one_si(info);
7faefea6
YL
1838 } else {
1839 kfree(info);
1840 }
b361e27b
CM
1841 } else {
1842 /* remove */
1843 struct smi_info *e, *tmp_e;
1844
1845 mutex_lock(&smi_infos_lock);
1846 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1847 if (e->io.addr_type != addr_space)
1848 continue;
1849 if (e->si_type != si_type)
1850 continue;
1851 if (e->io.addr_data == addr)
1852 cleanup_one_si(e);
1853 }
1854 mutex_unlock(&smi_infos_lock);
1855 }
1856 }
1d5636cc 1857 rv = len;
b361e27b
CM
1858 out:
1859 kfree(str);
1860 return rv;
1861}
b0defcdb 1862
60ee6d5f 1863static void __devinit hardcode_find_bmc(void)
1da177e4 1864{
b0defcdb 1865 int i;
1da177e4
LT
1866 struct smi_info *info;
1867
b0defcdb
CM
1868 for (i = 0; i < SI_MAX_PARMS; i++) {
1869 if (!ports[i] && !addrs[i])
1870 continue;
1da177e4 1871
de5e2ddf 1872 info = smi_info_alloc();
b0defcdb
CM
1873 if (!info)
1874 return;
1da177e4 1875
5fedc4a2 1876 info->addr_source = SI_HARDCODED;
279fbd0c 1877 printk(KERN_INFO PFX "probing via hardcoded address\n");
1da177e4 1878
1d5636cc 1879 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1880 info->si_type = SI_KCS;
1d5636cc 1881 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1882 info->si_type = SI_SMIC;
1d5636cc 1883 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1884 info->si_type = SI_BT;
1885 } else {
279fbd0c 1886 printk(KERN_WARNING PFX "Interface type specified "
b0defcdb
CM
1887 "for interface %d, was invalid: %s\n",
1888 i, si_type[i]);
1889 kfree(info);
1890 continue;
1891 }
1da177e4 1892
b0defcdb
CM
1893 if (ports[i]) {
1894 /* An I/O port */
1895 info->io_setup = port_setup;
1896 info->io.addr_data = ports[i];
1897 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1898 } else if (addrs[i]) {
1899 /* A memory port */
1900 info->io_setup = mem_setup;
1901 info->io.addr_data = addrs[i];
1902 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1903 } else {
279fbd0c
MS
1904 printk(KERN_WARNING PFX "Interface type specified "
1905 "for interface %d, but port and address were "
1906 "not set or set to zero.\n", i);
b0defcdb
CM
1907 kfree(info);
1908 continue;
1909 }
1da177e4 1910
b0defcdb
CM
1911 info->io.addr = NULL;
1912 info->io.regspacing = regspacings[i];
1913 if (!info->io.regspacing)
1914 info->io.regspacing = DEFAULT_REGSPACING;
1915 info->io.regsize = regsizes[i];
1916 if (!info->io.regsize)
1917 info->io.regsize = DEFAULT_REGSPACING;
1918 info->io.regshift = regshifts[i];
1919 info->irq = irqs[i];
1920 if (info->irq)
1921 info->irq_setup = std_irq_setup;
2f95d513 1922 info->slave_addr = slave_addrs[i];
1da177e4 1923
7faefea6 1924 if (!add_smi(info)) {
2407d77a
MG
1925 if (try_smi_init(info))
1926 cleanup_one_si(info);
7faefea6
YL
1927 } else {
1928 kfree(info);
1929 }
b0defcdb
CM
1930 }
1931}
1da177e4 1932
8466361a 1933#ifdef CONFIG_ACPI
1da177e4
LT
1934
1935#include <linux/acpi.h>
1936
c305e3d3
CM
1937/*
1938 * Once we get an ACPI failure, we don't try any more, because we go
1939 * through the tables sequentially. Once we don't find a table, there
1940 * are no more.
1941 */
0c8204b3 1942static int acpi_failure;
1da177e4
LT
1943
1944/* For GPE-type interrupts. */
8b6cd8ad
LM
1945static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946 u32 gpe_number, void *context)
1da177e4
LT
1947{
1948 struct smi_info *smi_info = context;
1949 unsigned long flags;
1950#ifdef DEBUG_TIMING
1951 struct timeval t;
1952#endif
1953
1954 spin_lock_irqsave(&(smi_info->si_lock), flags);
1955
64959e2d 1956 smi_inc_stat(smi_info, interrupts);
1da177e4 1957
1da177e4
LT
1958#ifdef DEBUG_TIMING
1959 do_gettimeofday(&t);
1960 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961#endif
1962 smi_event_handler(smi_info, 0);
1da177e4
LT
1963 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1964
1965 return ACPI_INTERRUPT_HANDLED;
1966}
1967
b0defcdb
CM
1968static void acpi_gpe_irq_cleanup(struct smi_info *info)
1969{
1970 if (!info->irq)
1971 return;
1972
1973 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1974}
1975
1da177e4
LT
1976static int acpi_gpe_irq_setup(struct smi_info *info)
1977{
1978 acpi_status status;
1979
b0defcdb 1980 if (!info->irq)
1da177e4
LT
1981 return 0;
1982
1983 /* FIXME - is level triggered right? */
1984 status = acpi_install_gpe_handler(NULL,
1985 info->irq,
1986 ACPI_GPE_LEVEL_TRIGGERED,
1987 &ipmi_acpi_gpe,
1988 info);
1989 if (status != AE_OK) {
279fbd0c
MS
1990 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991 " running polled\n", DEVICE_NAME, info->irq);
1da177e4
LT
1992 info->irq = 0;
1993 return -EINVAL;
1994 } else {
b0defcdb 1995 info->irq_cleanup = acpi_gpe_irq_cleanup;
279fbd0c 1996 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1da177e4
LT
1997 return 0;
1998 }
1999}
2000
1da177e4
LT
2001/*
2002 * Defined at
631dd1a8 2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1da177e4
LT
2004 */
2005struct SPMITable {
2006 s8 Signature[4];
2007 u32 Length;
2008 u8 Revision;
2009 u8 Checksum;
2010 s8 OEMID[6];
2011 s8 OEMTableID[8];
2012 s8 OEMRevision[4];
2013 s8 CreatorID[4];
2014 s8 CreatorRevision[4];
2015 u8 InterfaceType;
2016 u8 IPMIlegacy;
2017 s16 SpecificationRevision;
2018
2019 /*
2020 * Bit 0 - SCI interrupt supported
2021 * Bit 1 - I/O APIC/SAPIC
2022 */
2023 u8 InterruptType;
2024
c305e3d3
CM
2025 /*
2026 * If bit 0 of InterruptType is set, then this is the SCI
2027 * interrupt in the GPEx_STS register.
2028 */
1da177e4
LT
2029 u8 GPE;
2030
2031 s16 Reserved;
2032
c305e3d3
CM
2033 /*
2034 * If bit 1 of InterruptType is set, then this is the I/O
2035 * APIC/SAPIC interrupt.
2036 */
1da177e4
LT
2037 u32 GlobalSystemInterrupt;
2038
2039 /* The actual register address. */
2040 struct acpi_generic_address addr;
2041
2042 u8 UID[4];
2043
2044 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2045};
2046
60ee6d5f 2047static int __devinit try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2048{
2049 struct smi_info *info;
1da177e4 2050
1da177e4 2051 if (spmi->IPMIlegacy != 1) {
279fbd0c
MS
2052 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053 return -ENODEV;
1da177e4
LT
2054 }
2055
de5e2ddf 2056 info = smi_info_alloc();
b0defcdb 2057 if (!info) {
279fbd0c 2058 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
b0defcdb
CM
2059 return -ENOMEM;
2060 }
2061
5fedc4a2 2062 info->addr_source = SI_SPMI;
279fbd0c 2063 printk(KERN_INFO PFX "probing via SPMI\n");
1da177e4 2064
1da177e4 2065 /* Figure out the interface type. */
c305e3d3 2066 switch (spmi->InterfaceType) {
1da177e4 2067 case 1: /* KCS */
b0defcdb 2068 info->si_type = SI_KCS;
1da177e4 2069 break;
1da177e4 2070 case 2: /* SMIC */
b0defcdb 2071 info->si_type = SI_SMIC;
1da177e4 2072 break;
1da177e4 2073 case 3: /* BT */
b0defcdb 2074 info->si_type = SI_BT;
1da177e4 2075 break;
1da177e4 2076 default:
279fbd0c
MS
2077 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078 spmi->InterfaceType);
b0defcdb 2079 kfree(info);
1da177e4
LT
2080 return -EIO;
2081 }
2082
1da177e4
LT
2083 if (spmi->InterruptType & 1) {
2084 /* We've got a GPE interrupt. */
2085 info->irq = spmi->GPE;
2086 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2087 } else if (spmi->InterruptType & 2) {
2088 /* We've got an APIC/SAPIC interrupt. */
2089 info->irq = spmi->GlobalSystemInterrupt;
2090 info->irq_setup = std_irq_setup;
1da177e4
LT
2091 } else {
2092 /* Use the default interrupt setting. */
2093 info->irq = 0;
2094 info->irq_setup = NULL;
2095 }
2096
15a58ed1 2097 if (spmi->addr.bit_width) {
35bc37a0 2098 /* A (hopefully) properly formed register bit width. */
15a58ed1 2099 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2100 } else {
35bc37a0
CM
2101 info->io.regspacing = DEFAULT_REGSPACING;
2102 }
b0defcdb 2103 info->io.regsize = info->io.regspacing;
15a58ed1 2104 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2105
15a58ed1 2106 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2107 info->io_setup = mem_setup;
8fe1425a 2108 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2109 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2110 info->io_setup = port_setup;
8fe1425a 2111 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2112 } else {
2113 kfree(info);
279fbd0c 2114 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
1da177e4
LT
2115 return -EIO;
2116 }
b0defcdb 2117 info->io.addr_data = spmi->addr.address;
1da177e4 2118
7bb671e3
YL
2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121 info->io.addr_data, info->io.regsize, info->io.regspacing,
2122 info->irq);
2123
7faefea6
YL
2124 if (add_smi(info))
2125 kfree(info);
1da177e4 2126
1da177e4
LT
2127 return 0;
2128}
b0defcdb 2129
60ee6d5f 2130static void __devinit spmi_find_bmc(void)
b0defcdb
CM
2131{
2132 acpi_status status;
2133 struct SPMITable *spmi;
2134 int i;
2135
2136 if (acpi_disabled)
2137 return;
2138
2139 if (acpi_failure)
2140 return;
2141
2142 for (i = 0; ; i++) {
15a58ed1
AS
2143 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2145 if (status != AE_OK)
2146 return;
2147
18a3e0bf 2148 try_init_spmi(spmi);
b0defcdb
CM
2149 }
2150}
9e368fa0
BH
2151
2152static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153 const struct pnp_device_id *dev_id)
2154{
2155 struct acpi_device *acpi_dev;
2156 struct smi_info *info;
a9e31765 2157 struct resource *res, *res_second;
9e368fa0
BH
2158 acpi_handle handle;
2159 acpi_status status;
2160 unsigned long long tmp;
2161
2162 acpi_dev = pnp_acpi_device(dev);
2163 if (!acpi_dev)
2164 return -ENODEV;
2165
de5e2ddf 2166 info = smi_info_alloc();
9e368fa0
BH
2167 if (!info)
2168 return -ENOMEM;
2169
5fedc4a2 2170 info->addr_source = SI_ACPI;
279fbd0c 2171 printk(KERN_INFO PFX "probing via ACPI\n");
9e368fa0
BH
2172
2173 handle = acpi_dev->handle;
16f4232c 2174 info->addr_info.acpi_info.acpi_handle = handle;
9e368fa0
BH
2175
2176 /* _IFT tells us the interface type: KCS, BT, etc */
2177 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178 if (ACPI_FAILURE(status))
2179 goto err_free;
2180
2181 switch (tmp) {
2182 case 1:
2183 info->si_type = SI_KCS;
2184 break;
2185 case 2:
2186 info->si_type = SI_SMIC;
2187 break;
2188 case 3:
2189 info->si_type = SI_BT;
2190 break;
2191 default:
279fbd0c 2192 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
9e368fa0
BH
2193 goto err_free;
2194 }
2195
279fbd0c
MS
2196 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197 if (res) {
9e368fa0
BH
2198 info->io_setup = port_setup;
2199 info->io.addr_type = IPMI_IO_ADDR_SPACE;
9e368fa0 2200 } else {
279fbd0c
MS
2201 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202 if (res) {
2203 info->io_setup = mem_setup;
2204 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2205 }
2206 }
2207 if (!res) {
9e368fa0
BH
2208 dev_err(&dev->dev, "no I/O or memory address\n");
2209 goto err_free;
2210 }
279fbd0c 2211 info->io.addr_data = res->start;
9e368fa0
BH
2212
2213 info->io.regspacing = DEFAULT_REGSPACING;
a9e31765 2214 res_second = pnp_get_resource(dev,
d9e1b6c4
YL
2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216 IORESOURCE_IO : IORESOURCE_MEM,
2217 1);
a9e31765
YL
2218 if (res_second) {
2219 if (res_second->start > info->io.addr_data)
2220 info->io.regspacing = res_second->start - info->io.addr_data;
d9e1b6c4 2221 }
9e368fa0
BH
2222 info->io.regsize = DEFAULT_REGSPACING;
2223 info->io.regshift = 0;
2224
2225 /* If _GPE exists, use it; otherwise use standard interrupts */
2226 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227 if (ACPI_SUCCESS(status)) {
2228 info->irq = tmp;
2229 info->irq_setup = acpi_gpe_irq_setup;
2230 } else if (pnp_irq_valid(dev, 0)) {
2231 info->irq = pnp_irq(dev, 0);
2232 info->irq_setup = std_irq_setup;
2233 }
2234
8c8eae27 2235 info->dev = &dev->dev;
9e368fa0
BH
2236 pnp_set_drvdata(dev, info);
2237
279fbd0c
MS
2238 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239 res, info->io.regsize, info->io.regspacing,
2240 info->irq);
2241
7faefea6
YL
2242 if (add_smi(info))
2243 goto err_free;
2244
2245 return 0;
9e368fa0
BH
2246
2247err_free:
2248 kfree(info);
2249 return -EINVAL;
2250}
2251
2252static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2253{
2254 struct smi_info *info = pnp_get_drvdata(dev);
2255
2256 cleanup_one_si(info);
2257}
2258
2259static const struct pnp_device_id pnp_dev_table[] = {
2260 {"IPI0001", 0},
2261 {"", 0},
2262};
2263
2264static struct pnp_driver ipmi_pnp_driver = {
2265 .name = DEVICE_NAME,
2266 .probe = ipmi_pnp_probe,
2267 .remove = __devexit_p(ipmi_pnp_remove),
2268 .id_table = pnp_dev_table,
2269};
1da177e4
LT
2270#endif
2271
a9fad4cc 2272#ifdef CONFIG_DMI
c305e3d3 2273struct dmi_ipmi_data {
1da177e4
LT
2274 u8 type;
2275 u8 addr_space;
2276 unsigned long base_addr;
2277 u8 irq;
2278 u8 offset;
2279 u8 slave_addr;
b0defcdb 2280};
1da177e4 2281
1855256c 2282static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2283 struct dmi_ipmi_data *dmi)
1da177e4 2284{
1855256c 2285 const u8 *data = (const u8 *)dm;
1da177e4
LT
2286 unsigned long base_addr;
2287 u8 reg_spacing;
b224cd3a 2288 u8 len = dm->length;
1da177e4 2289
b0defcdb 2290 dmi->type = data[4];
1da177e4
LT
2291
2292 memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 if (len >= 0x11) {
2294 if (base_addr & 1) {
2295 /* I/O */
2296 base_addr &= 0xFFFE;
b0defcdb 2297 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2298 } else
1da177e4 2299 /* Memory */
b0defcdb 2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2301
1da177e4
LT
2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 is odd. */
b0defcdb 2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2305
b0defcdb 2306 dmi->irq = data[0x11];
1da177e4
LT
2307
2308 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2309 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2310 switch (reg_spacing) {
1da177e4 2311 case 0x00: /* Byte boundaries */
b0defcdb 2312 dmi->offset = 1;
1da177e4
LT
2313 break;
2314 case 0x01: /* 32-bit boundaries */
b0defcdb 2315 dmi->offset = 4;
1da177e4
LT
2316 break;
2317 case 0x02: /* 16-byte boundaries */
b0defcdb 2318 dmi->offset = 16;
1da177e4
LT
2319 break;
2320 default:
2321 /* Some other interface, just ignore it. */
2322 return -EIO;
2323 }
2324 } else {
2325 /* Old DMI spec. */
c305e3d3
CM
2326 /*
2327 * Note that technically, the lower bit of the base
92068801
CM
2328 * address should be 1 if the address is I/O and 0 if
2329 * the address is in memory. So many systems get that
2330 * wrong (and all that I have seen are I/O) so we just
2331 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2332 * memory should use the newer spec, anyway.
2333 */
b0defcdb
CM
2334 dmi->base_addr = base_addr & 0xfffe;
2335 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 dmi->offset = 1;
1da177e4
LT
2337 }
2338
b0defcdb 2339 dmi->slave_addr = data[6];
1da177e4 2340
b0defcdb 2341 return 0;
1da177e4
LT
2342}
2343
60ee6d5f 2344static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2345{
b0defcdb 2346 struct smi_info *info;
1da177e4 2347
de5e2ddf 2348 info = smi_info_alloc();
b0defcdb 2349 if (!info) {
279fbd0c 2350 printk(KERN_ERR PFX "Could not allocate SI data\n");
b0defcdb 2351 return;
1da177e4 2352 }
1da177e4 2353
5fedc4a2 2354 info->addr_source = SI_SMBIOS;
279fbd0c 2355 printk(KERN_INFO PFX "probing via SMBIOS\n");
1da177e4 2356
e8b33617 2357 switch (ipmi_data->type) {
b0defcdb
CM
2358 case 0x01: /* KCS */
2359 info->si_type = SI_KCS;
2360 break;
2361 case 0x02: /* SMIC */
2362 info->si_type = SI_SMIC;
2363 break;
2364 case 0x03: /* BT */
2365 info->si_type = SI_BT;
2366 break;
2367 default:
80cd6920 2368 kfree(info);
b0defcdb 2369 return;
1da177e4 2370 }
1da177e4 2371
b0defcdb
CM
2372 switch (ipmi_data->addr_space) {
2373 case IPMI_MEM_ADDR_SPACE:
1da177e4 2374 info->io_setup = mem_setup;
b0defcdb
CM
2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 break;
2377
2378 case IPMI_IO_ADDR_SPACE:
1da177e4 2379 info->io_setup = port_setup;
b0defcdb
CM
2380 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 break;
2382
2383 default:
1da177e4 2384 kfree(info);
279fbd0c 2385 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
b0defcdb
CM
2386 ipmi_data->addr_space);
2387 return;
1da177e4 2388 }
b0defcdb 2389 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2390
b0defcdb
CM
2391 info->io.regspacing = ipmi_data->offset;
2392 if (!info->io.regspacing)
1da177e4
LT
2393 info->io.regspacing = DEFAULT_REGSPACING;
2394 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2395 info->io.regshift = 0;
1da177e4
LT
2396
2397 info->slave_addr = ipmi_data->slave_addr;
2398
b0defcdb
CM
2399 info->irq = ipmi_data->irq;
2400 if (info->irq)
2401 info->irq_setup = std_irq_setup;
1da177e4 2402
7bb671e3
YL
2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 info->irq);
2407
7faefea6
YL
2408 if (add_smi(info))
2409 kfree(info);
b0defcdb 2410}
1da177e4 2411
b0defcdb
CM
2412static void __devinit dmi_find_bmc(void)
2413{
1855256c 2414 const struct dmi_device *dev = NULL;
b0defcdb
CM
2415 struct dmi_ipmi_data data;
2416 int rv;
2417
2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2419 memset(&data, 0, sizeof(data));
1855256c
JG
2420 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 &data);
b0defcdb
CM
2422 if (!rv)
2423 try_init_dmi(&data);
2424 }
1da177e4 2425}
a9fad4cc 2426#endif /* CONFIG_DMI */
1da177e4
LT
2427
2428#ifdef CONFIG_PCI
2429
b0defcdb
CM
2430#define PCI_ERMC_CLASSCODE 0x0C0700
2431#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2432#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2433#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2434#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2435#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2436
1da177e4
LT
2437#define PCI_HP_VENDOR_ID 0x103C
2438#define PCI_MMC_DEVICE_ID 0x121A
2439#define PCI_MMC_ADDR_CW 0x10
2440
b0defcdb
CM
2441static void ipmi_pci_cleanup(struct smi_info *info)
2442{
2443 struct pci_dev *pdev = info->addr_source_data;
2444
2445 pci_disable_device(pdev);
2446}
1da177e4 2447
b0defcdb
CM
2448static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449 const struct pci_device_id *ent)
1da177e4 2450{
b0defcdb
CM
2451 int rv;
2452 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453 struct smi_info *info;
1da177e4 2454
de5e2ddf 2455 info = smi_info_alloc();
b0defcdb 2456 if (!info)
1cd441f9 2457 return -ENOMEM;
1da177e4 2458
5fedc4a2 2459 info->addr_source = SI_PCI;
279fbd0c 2460 dev_info(&pdev->dev, "probing via PCI");
1da177e4 2461
b0defcdb
CM
2462 switch (class_type) {
2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464 info->si_type = SI_SMIC;
2465 break;
1da177e4 2466
b0defcdb
CM
2467 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468 info->si_type = SI_KCS;
2469 break;
2470
2471 case PCI_ERMC_CLASSCODE_TYPE_BT:
2472 info->si_type = SI_BT;
2473 break;
2474
2475 default:
2476 kfree(info);
279fbd0c 2477 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
1cd441f9 2478 return -ENOMEM;
1da177e4
LT
2479 }
2480
b0defcdb
CM
2481 rv = pci_enable_device(pdev);
2482 if (rv) {
279fbd0c 2483 dev_err(&pdev->dev, "couldn't enable PCI device\n");
b0defcdb
CM
2484 kfree(info);
2485 return rv;
1da177e4
LT
2486 }
2487
b0defcdb
CM
2488 info->addr_source_cleanup = ipmi_pci_cleanup;
2489 info->addr_source_data = pdev;
1da177e4 2490
b0defcdb
CM
2491 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492 info->io_setup = port_setup;
2493 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494 } else {
2495 info->io_setup = mem_setup;
2496 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2497 }
b0defcdb 2498 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2499
b0defcdb 2500 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2501 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2502 info->io.regshift = 0;
1da177e4 2503
b0defcdb
CM
2504 info->irq = pdev->irq;
2505 if (info->irq)
2506 info->irq_setup = std_irq_setup;
1da177e4 2507
50c812b2 2508 info->dev = &pdev->dev;
fca3b747 2509 pci_set_drvdata(pdev, info);
50c812b2 2510
279fbd0c
MS
2511 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2513 info->irq);
2514
7faefea6
YL
2515 if (add_smi(info))
2516 kfree(info);
2517
2518 return 0;
b0defcdb 2519}
1da177e4 2520
b0defcdb
CM
2521static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2522{
fca3b747
CM
2523 struct smi_info *info = pci_get_drvdata(pdev);
2524 cleanup_one_si(info);
b0defcdb 2525}
1da177e4 2526
b0defcdb
CM
2527#ifdef CONFIG_PM
2528static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2529{
1da177e4
LT
2530 return 0;
2531}
1da177e4 2532
b0defcdb 2533static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2534{
b0defcdb
CM
2535 return 0;
2536}
1da177e4 2537#endif
1da177e4 2538
b0defcdb
CM
2539static struct pci_device_id ipmi_pci_devices[] = {
2540 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542 { 0, }
b0defcdb
CM
2543};
2544MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2545
2546static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2547 .name = DEVICE_NAME,
2548 .id_table = ipmi_pci_devices,
2549 .probe = ipmi_pci_probe,
2550 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2551#ifdef CONFIG_PM
c305e3d3
CM
2552 .suspend = ipmi_pci_suspend,
2553 .resume = ipmi_pci_resume,
b0defcdb
CM
2554#endif
2555};
2556#endif /* CONFIG_PCI */
1da177e4
LT
2557
2558
dba9b4f6 2559#ifdef CONFIG_PPC_OF
2dc11581 2560static int __devinit ipmi_of_probe(struct platform_device *dev,
dba9b4f6
CM
2561 const struct of_device_id *match)
2562{
2563 struct smi_info *info;
2564 struct resource resource;
da81c3b9 2565 const __be32 *regsize, *regspacing, *regshift;
61c7a080 2566 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2567 int ret;
2568 int proplen;
2569
279fbd0c 2570 dev_info(&dev->dev, "probing via device tree\n");
dba9b4f6
CM
2571
2572 ret = of_address_to_resource(np, 0, &resource);
2573 if (ret) {
2574 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2575 return ret;
2576 }
2577
9c25099d 2578 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2579 if (regsize && proplen != 4) {
2580 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2581 return -EINVAL;
2582 }
2583
9c25099d 2584 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2585 if (regspacing && proplen != 4) {
2586 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2587 return -EINVAL;
2588 }
2589
9c25099d 2590 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2591 if (regshift && proplen != 4) {
2592 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2593 return -EINVAL;
2594 }
2595
de5e2ddf 2596 info = smi_info_alloc();
dba9b4f6
CM
2597
2598 if (!info) {
2599 dev_err(&dev->dev,
279fbd0c 2600 "could not allocate memory for OF probe\n");
dba9b4f6
CM
2601 return -ENOMEM;
2602 }
2603
2604 info->si_type = (enum si_type) match->data;
5fedc4a2 2605 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2606 info->irq_setup = std_irq_setup;
2607
3b7ec117
NC
2608 if (resource.flags & IORESOURCE_IO) {
2609 info->io_setup = port_setup;
2610 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2611 } else {
2612 info->io_setup = mem_setup;
2613 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2614 }
2615
dba9b4f6
CM
2616 info->io.addr_data = resource.start;
2617
da81c3b9
RH
2618 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2619 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2620 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
dba9b4f6 2621
61c7a080 2622 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2623 info->dev = &dev->dev;
2624
279fbd0c 2625 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
dba9b4f6
CM
2626 info->io.addr_data, info->io.regsize, info->io.regspacing,
2627 info->irq);
2628
9de33df4 2629 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2630
7faefea6
YL
2631 if (add_smi(info)) {
2632 kfree(info);
2633 return -EBUSY;
2634 }
2635
2636 return 0;
dba9b4f6
CM
2637}
2638
2dc11581 2639static int __devexit ipmi_of_remove(struct platform_device *dev)
dba9b4f6 2640{
9de33df4 2641 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2642 return 0;
2643}
2644
2645static struct of_device_id ipmi_match[] =
2646{
c305e3d3
CM
2647 { .type = "ipmi", .compatible = "ipmi-kcs",
2648 .data = (void *)(unsigned long) SI_KCS },
2649 { .type = "ipmi", .compatible = "ipmi-smic",
2650 .data = (void *)(unsigned long) SI_SMIC },
2651 { .type = "ipmi", .compatible = "ipmi-bt",
2652 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2653 {},
2654};
2655
c305e3d3 2656static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2657 .driver = {
2658 .name = "ipmi",
2659 .owner = THIS_MODULE,
2660 .of_match_table = ipmi_match,
2661 },
dba9b4f6
CM
2662 .probe = ipmi_of_probe,
2663 .remove = __devexit_p(ipmi_of_remove),
2664};
2665#endif /* CONFIG_PPC_OF */
2666
40112ae7 2667static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2668{
50c812b2 2669 enum si_sm_result smi_result;
1da177e4
LT
2670
2671 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2672 for (;;) {
c3e7e791
CM
2673 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2675 schedule_timeout_uninterruptible(1);
1da177e4
LT
2676 smi_result = smi_info->handlers->event(
2677 smi_info->si_sm, 100);
c305e3d3 2678 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2679 smi_result = smi_info->handlers->event(
2680 smi_info->si_sm, 0);
c305e3d3 2681 } else
1da177e4
LT
2682 break;
2683 }
40112ae7 2684 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2685 /*
2686 * We couldn't get the state machine to run, so whatever's at
2687 * the port is probably not an IPMI SMI interface.
2688 */
40112ae7
CM
2689 return -ENODEV;
2690
2691 return 0;
2692}
2693
2694static int try_get_dev_id(struct smi_info *smi_info)
2695{
2696 unsigned char msg[2];
2697 unsigned char *resp;
2698 unsigned long resp_len;
2699 int rv = 0;
2700
2701 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702 if (!resp)
2703 return -ENOMEM;
2704
2705 /*
2706 * Do a Get Device ID command, since it comes back with some
2707 * useful info.
2708 */
2709 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712
2713 rv = wait_for_msg_done(smi_info);
2714 if (rv)
1da177e4 2715 goto out;
1da177e4 2716
1da177e4
LT
2717 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2719
d8c98618
CM
2720 /* Check and record info from the get device id, in case we need it. */
2721 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2722
2723 out:
2724 kfree(resp);
2725 return rv;
2726}
2727
40112ae7
CM
2728static int try_enable_event_buffer(struct smi_info *smi_info)
2729{
2730 unsigned char msg[3];
2731 unsigned char *resp;
2732 unsigned long resp_len;
2733 int rv = 0;
2734
2735 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736 if (!resp)
2737 return -ENOMEM;
2738
2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742
2743 rv = wait_for_msg_done(smi_info);
2744 if (rv) {
279fbd0c
MS
2745 printk(KERN_WARNING PFX "Error getting response from get"
2746 " global enables command, the event buffer is not"
40112ae7
CM
2747 " enabled.\n");
2748 goto out;
2749 }
2750
2751 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752 resp, IPMI_MAX_MSG_LENGTH);
2753
2754 if (resp_len < 4 ||
2755 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2757 resp[2] != 0) {
279fbd0c
MS
2758 printk(KERN_WARNING PFX "Invalid return from get global"
2759 " enables command, cannot enable the event buffer.\n");
40112ae7
CM
2760 rv = -EINVAL;
2761 goto out;
2762 }
2763
2764 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765 /* buffer is already enabled, nothing to do. */
2766 goto out;
2767
2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772
2773 rv = wait_for_msg_done(smi_info);
2774 if (rv) {
279fbd0c
MS
2775 printk(KERN_WARNING PFX "Error getting response from set"
2776 " global, enables command, the event buffer is not"
40112ae7
CM
2777 " enabled.\n");
2778 goto out;
2779 }
2780
2781 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782 resp, IPMI_MAX_MSG_LENGTH);
2783
2784 if (resp_len < 3 ||
2785 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
279fbd0c
MS
2787 printk(KERN_WARNING PFX "Invalid return from get global,"
2788 "enables command, not enable the event buffer.\n");
40112ae7
CM
2789 rv = -EINVAL;
2790 goto out;
2791 }
2792
2793 if (resp[2] != 0)
2794 /*
2795 * An error when setting the event buffer bit means
2796 * that the event buffer is not supported.
2797 */
2798 rv = -ENOENT;
2799 out:
2800 kfree(resp);
2801 return rv;
2802}
2803
1da177e4
LT
2804static int type_file_read_proc(char *page, char **start, off_t off,
2805 int count, int *eof, void *data)
2806{
1da177e4
LT
2807 struct smi_info *smi = data;
2808
b361e27b 2809 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2810}
2811
2812static int stat_file_read_proc(char *page, char **start, off_t off,
2813 int count, int *eof, void *data)
2814{
2815 char *out = (char *) page;
2816 struct smi_info *smi = data;
2817
2818 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2819 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2820 out += sprintf(out, "short_timeouts: %u\n",
2821 smi_get_stat(smi, short_timeouts));
2822 out += sprintf(out, "long_timeouts: %u\n",
2823 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2824 out += sprintf(out, "idles: %u\n",
2825 smi_get_stat(smi, idles));
2826 out += sprintf(out, "interrupts: %u\n",
2827 smi_get_stat(smi, interrupts));
2828 out += sprintf(out, "attentions: %u\n",
2829 smi_get_stat(smi, attentions));
2830 out += sprintf(out, "flag_fetches: %u\n",
2831 smi_get_stat(smi, flag_fetches));
2832 out += sprintf(out, "hosed_count: %u\n",
2833 smi_get_stat(smi, hosed_count));
2834 out += sprintf(out, "complete_transactions: %u\n",
2835 smi_get_stat(smi, complete_transactions));
2836 out += sprintf(out, "events: %u\n",
2837 smi_get_stat(smi, events));
2838 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2839 smi_get_stat(smi, watchdog_pretimeouts));
2840 out += sprintf(out, "incoming_messages: %u\n",
2841 smi_get_stat(smi, incoming_messages));
1da177e4 2842
b361e27b
CM
2843 return out - page;
2844}
2845
2846static int param_read_proc(char *page, char **start, off_t off,
2847 int count, int *eof, void *data)
2848{
2849 struct smi_info *smi = data;
2850
2851 return sprintf(page,
2852 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2853 si_to_str[smi->si_type],
2854 addr_space_to_str[smi->io.addr_type],
2855 smi->io.addr_data,
2856 smi->io.regspacing,
2857 smi->io.regsize,
2858 smi->io.regshift,
2859 smi->irq,
2860 smi->slave_addr);
1da177e4
LT
2861}
2862
3ae0e0f9
CM
2863/*
2864 * oem_data_avail_to_receive_msg_avail
2865 * @info - smi_info structure with msg_flags set
2866 *
2867 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2868 * Returns 1 indicating need to re-run handle_flags().
2869 */
2870static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2871{
e8b33617 2872 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2873 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2874 return 1;
2875}
2876
2877/*
2878 * setup_dell_poweredge_oem_data_handler
2879 * @info - smi_info.device_id must be populated
2880 *
2881 * Systems that match, but have firmware version < 1.40 may assert
2882 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2883 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2884 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2885 * as RECEIVE_MSG_AVAIL instead.
2886 *
2887 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2888 * assert the OEM[012] bits, and if it did, the driver would have to
2889 * change to handle that properly, we don't actually check for the
2890 * firmware version.
2891 * Device ID = 0x20 BMC on PowerEdge 8G servers
2892 * Device Revision = 0x80
2893 * Firmware Revision1 = 0x01 BMC version 1.40
2894 * Firmware Revision2 = 0x40 BCD encoded
2895 * IPMI Version = 0x51 IPMI 1.5
2896 * Manufacturer ID = A2 02 00 Dell IANA
2897 *
d5a2b89a
CM
2898 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2899 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2900 *
3ae0e0f9
CM
2901 */
2902#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2903#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2904#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2905#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2906static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2907{
2908 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2909 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2910 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2911 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2912 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2913 smi_info->oem_data_avail_handler =
2914 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2915 } else if (ipmi_version_major(id) < 1 ||
2916 (ipmi_version_major(id) == 1 &&
2917 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2918 smi_info->oem_data_avail_handler =
2919 oem_data_avail_to_receive_msg_avail;
2920 }
3ae0e0f9
CM
2921 }
2922}
2923
ea94027b
CM
2924#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2925static void return_hosed_msg_badsize(struct smi_info *smi_info)
2926{
2927 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2928
2929 /* Make it a reponse */
2930 msg->rsp[0] = msg->data[0] | 4;
2931 msg->rsp[1] = msg->data[1];
2932 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2933 msg->rsp_size = 3;
2934 smi_info->curr_msg = NULL;
2935 deliver_recv_msg(smi_info, msg);
2936}
2937
2938/*
2939 * dell_poweredge_bt_xaction_handler
2940 * @info - smi_info.device_id must be populated
2941 *
2942 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2943 * not respond to a Get SDR command if the length of the data
2944 * requested is exactly 0x3A, which leads to command timeouts and no
2945 * data returned. This intercepts such commands, and causes userspace
2946 * callers to try again with a different-sized buffer, which succeeds.
2947 */
2948
2949#define STORAGE_NETFN 0x0A
2950#define STORAGE_CMD_GET_SDR 0x23
2951static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2952 unsigned long unused,
2953 void *in)
2954{
2955 struct smi_info *smi_info = in;
2956 unsigned char *data = smi_info->curr_msg->data;
2957 unsigned int size = smi_info->curr_msg->data_size;
2958 if (size >= 8 &&
2959 (data[0]>>2) == STORAGE_NETFN &&
2960 data[1] == STORAGE_CMD_GET_SDR &&
2961 data[7] == 0x3A) {
2962 return_hosed_msg_badsize(smi_info);
2963 return NOTIFY_STOP;
2964 }
2965 return NOTIFY_DONE;
2966}
2967
2968static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2969 .notifier_call = dell_poweredge_bt_xaction_handler,
2970};
2971
2972/*
2973 * setup_dell_poweredge_bt_xaction_handler
2974 * @info - smi_info.device_id must be filled in already
2975 *
2976 * Fills in smi_info.device_id.start_transaction_pre_hook
2977 * when we know what function to use there.
2978 */
2979static void
2980setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2981{
2982 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2983 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2984 smi_info->si_type == SI_BT)
2985 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2986}
2987
3ae0e0f9
CM
2988/*
2989 * setup_oem_data_handler
2990 * @info - smi_info.device_id must be filled in already
2991 *
2992 * Fills in smi_info.device_id.oem_data_available_handler
2993 * when we know what function to use there.
2994 */
2995
2996static void setup_oem_data_handler(struct smi_info *smi_info)
2997{
2998 setup_dell_poweredge_oem_data_handler(smi_info);
2999}
3000
ea94027b
CM
3001static void setup_xaction_handlers(struct smi_info *smi_info)
3002{
3003 setup_dell_poweredge_bt_xaction_handler(smi_info);
3004}
3005
a9a2c44f
CM
3006static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3007{
453823ba 3008 if (smi_info->intf) {
c305e3d3
CM
3009 /*
3010 * The timer and thread are only running if the
3011 * interface has been started up and registered.
3012 */
453823ba
CM
3013 if (smi_info->thread != NULL)
3014 kthread_stop(smi_info->thread);
3015 del_timer_sync(&smi_info->si_timer);
3016 }
a9a2c44f
CM
3017}
3018
7420884c 3019static __devinitdata struct ipmi_default_vals
b0defcdb
CM
3020{
3021 int type;
3022 int port;
7420884c 3023} ipmi_defaults[] =
b0defcdb
CM
3024{
3025 { .type = SI_KCS, .port = 0xca2 },
3026 { .type = SI_SMIC, .port = 0xca9 },
3027 { .type = SI_BT, .port = 0xe4 },
3028 { .port = 0 }
3029};
3030
60ee6d5f 3031static void __devinit default_find_bmc(void)
b0defcdb
CM
3032{
3033 struct smi_info *info;
3034 int i;
3035
3036 for (i = 0; ; i++) {
3037 if (!ipmi_defaults[i].port)
3038 break;
68e1ee62 3039#ifdef CONFIG_PPC
4ff31d77
CK
3040 if (check_legacy_ioport(ipmi_defaults[i].port))
3041 continue;
3042#endif
de5e2ddf 3043 info = smi_info_alloc();
a09f4855
AM
3044 if (!info)
3045 return;
4ff31d77 3046
5fedc4a2 3047 info->addr_source = SI_DEFAULT;
b0defcdb
CM
3048
3049 info->si_type = ipmi_defaults[i].type;
3050 info->io_setup = port_setup;
3051 info->io.addr_data = ipmi_defaults[i].port;
3052 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3053
3054 info->io.addr = NULL;
3055 info->io.regspacing = DEFAULT_REGSPACING;
3056 info->io.regsize = DEFAULT_REGSPACING;
3057 info->io.regshift = 0;
3058
2407d77a
MG
3059 if (add_smi(info) == 0) {
3060 if ((try_smi_init(info)) == 0) {
3061 /* Found one... */
279fbd0c 3062 printk(KERN_INFO PFX "Found default %s"
2407d77a
MG
3063 " state machine at %s address 0x%lx\n",
3064 si_to_str[info->si_type],
3065 addr_space_to_str[info->io.addr_type],
3066 info->io.addr_data);
3067 } else
3068 cleanup_one_si(info);
7faefea6
YL
3069 } else {
3070 kfree(info);
b0defcdb
CM
3071 }
3072 }
3073}
3074
3075static int is_new_interface(struct smi_info *info)
1da177e4 3076{
b0defcdb 3077 struct smi_info *e;
1da177e4 3078
b0defcdb
CM
3079 list_for_each_entry(e, &smi_infos, link) {
3080 if (e->io.addr_type != info->io.addr_type)
3081 continue;
3082 if (e->io.addr_data == info->io.addr_data)
3083 return 0;
3084 }
1da177e4 3085
b0defcdb
CM
3086 return 1;
3087}
1da177e4 3088
2407d77a 3089static int add_smi(struct smi_info *new_smi)
b0defcdb 3090{
2407d77a 3091 int rv = 0;
b0defcdb 3092
279fbd0c 3093 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
2407d77a
MG
3094 ipmi_addr_src_to_str[new_smi->addr_source],
3095 si_to_str[new_smi->si_type]);
d6dfd131 3096 mutex_lock(&smi_infos_lock);
b0defcdb 3097 if (!is_new_interface(new_smi)) {
7bb671e3 3098 printk(KERN_CONT " duplicate interface\n");
b0defcdb
CM
3099 rv = -EBUSY;
3100 goto out_err;
3101 }
1da177e4 3102
2407d77a
MG
3103 printk(KERN_CONT "\n");
3104
1da177e4
LT
3105 /* So we know not to free it unless we have allocated one. */
3106 new_smi->intf = NULL;
3107 new_smi->si_sm = NULL;
3108 new_smi->handlers = NULL;
3109
2407d77a
MG
3110 list_add_tail(&new_smi->link, &smi_infos);
3111
3112out_err:
3113 mutex_unlock(&smi_infos_lock);
3114 return rv;
3115}
3116
3117static int try_smi_init(struct smi_info *new_smi)
3118{
3119 int rv = 0;
3120 int i;
3121
279fbd0c 3122 printk(KERN_INFO PFX "Trying %s-specified %s state"
2407d77a
MG
3123 " machine at %s address 0x%lx, slave address 0x%x,"
3124 " irq %d\n",
3125 ipmi_addr_src_to_str[new_smi->addr_source],
3126 si_to_str[new_smi->si_type],
3127 addr_space_to_str[new_smi->io.addr_type],
3128 new_smi->io.addr_data,
3129 new_smi->slave_addr, new_smi->irq);
3130
b0defcdb
CM
3131 switch (new_smi->si_type) {
3132 case SI_KCS:
1da177e4 3133 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3134 break;
3135
3136 case SI_SMIC:
1da177e4 3137 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3138 break;
3139
3140 case SI_BT:
1da177e4 3141 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3142 break;
3143
3144 default:
1da177e4
LT
3145 /* No support for anything else yet. */
3146 rv = -EIO;
3147 goto out_err;
3148 }
3149
3150 /* Allocate the state machine's data and initialize it. */
3151 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3152 if (!new_smi->si_sm) {
279fbd0c
MS
3153 printk(KERN_ERR PFX
3154 "Could not allocate state machine memory\n");
1da177e4
LT
3155 rv = -ENOMEM;
3156 goto out_err;
3157 }
3158 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3159 &new_smi->io);
3160
3161 /* Now that we know the I/O size, we can set up the I/O. */
3162 rv = new_smi->io_setup(new_smi);
3163 if (rv) {
279fbd0c 3164 printk(KERN_ERR PFX "Could not set up I/O space\n");
1da177e4
LT
3165 goto out_err;
3166 }
3167
1da177e4
LT
3168 /* Do low-level detection first. */
3169 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb 3170 if (new_smi->addr_source)
279fbd0c 3171 printk(KERN_INFO PFX "Interface detection failed\n");
1da177e4
LT
3172 rv = -ENODEV;
3173 goto out_err;
3174 }
3175
c305e3d3
CM
3176 /*
3177 * Attempt a get device id command. If it fails, we probably
3178 * don't have a BMC here.
3179 */
1da177e4 3180 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3181 if (rv) {
3182 if (new_smi->addr_source)
279fbd0c 3183 printk(KERN_INFO PFX "There appears to be no BMC"
b0defcdb 3184 " at this location\n");
1da177e4 3185 goto out_err;
b0defcdb 3186 }
1da177e4 3187
3ae0e0f9 3188 setup_oem_data_handler(new_smi);
ea94027b 3189 setup_xaction_handlers(new_smi);
3ae0e0f9 3190
1da177e4
LT
3191 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3192 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3193 new_smi->curr_msg = NULL;
3194 atomic_set(&new_smi->req_events, 0);
3195 new_smi->run_to_completion = 0;
64959e2d
CM
3196 for (i = 0; i < SI_NUM_STATS; i++)
3197 atomic_set(&new_smi->stats[i], 0);
1da177e4 3198
ea4078ca 3199 new_smi->interrupt_disabled = 1;
a9a2c44f 3200 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3201 new_smi->intf_num = smi_num;
3202 smi_num++;
1da177e4 3203
40112ae7
CM
3204 rv = try_enable_event_buffer(new_smi);
3205 if (rv == 0)
3206 new_smi->has_event_buffer = 1;
3207
c305e3d3
CM
3208 /*
3209 * Start clearing the flags before we enable interrupts or the
3210 * timer to avoid racing with the timer.
3211 */
1da177e4
LT
3212 start_clear_flags(new_smi);
3213 /* IRQ is defined to be set when non-zero. */
3214 if (new_smi->irq)
3215 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3216
50c812b2 3217 if (!new_smi->dev) {
c305e3d3
CM
3218 /*
3219 * If we don't already have a device from something
3220 * else (like PCI), then register a new one.
3221 */
50c812b2
CM
3222 new_smi->pdev = platform_device_alloc("ipmi_si",
3223 new_smi->intf_num);
8b32b5d0 3224 if (!new_smi->pdev) {
279fbd0c
MS
3225 printk(KERN_ERR PFX
3226 "Unable to allocate platform device\n");
453823ba 3227 goto out_err;
50c812b2
CM
3228 }
3229 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3230 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3231
b48f5457 3232 rv = platform_device_add(new_smi->pdev);
50c812b2 3233 if (rv) {
279fbd0c
MS
3234 printk(KERN_ERR PFX
3235 "Unable to register system interface device:"
50c812b2
CM
3236 " %d\n",
3237 rv);
453823ba 3238 goto out_err;
50c812b2
CM
3239 }
3240 new_smi->dev_registered = 1;
3241 }
3242
1da177e4
LT
3243 rv = ipmi_register_smi(&handlers,
3244 new_smi,
50c812b2
CM
3245 &new_smi->device_id,
3246 new_smi->dev,
759643b8 3247 "bmc",
453823ba 3248 new_smi->slave_addr);
1da177e4 3249 if (rv) {
279fbd0c
MS
3250 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3251 rv);
1da177e4
LT
3252 goto out_err_stop_timer;
3253 }
3254
3255 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3256 type_file_read_proc,
99b76233 3257 new_smi);
1da177e4 3258 if (rv) {
279fbd0c 3259 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3260 goto out_err_stop_timer;
3261 }
3262
3263 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3264 stat_file_read_proc,
99b76233 3265 new_smi);
1da177e4 3266 if (rv) {
279fbd0c 3267 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
1da177e4
LT
3268 goto out_err_stop_timer;
3269 }
3270
b361e27b 3271 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3272 param_read_proc,
99b76233 3273 new_smi);
b361e27b 3274 if (rv) {
279fbd0c 3275 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
b361e27b
CM
3276 goto out_err_stop_timer;
3277 }
3278
279fbd0c
MS
3279 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3280 si_to_str[new_smi->si_type]);
1da177e4
LT
3281
3282 return 0;
3283
3284 out_err_stop_timer:
a9a2c44f
CM
3285 atomic_inc(&new_smi->stop_operation);
3286 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3287
3288 out_err:
2407d77a
MG
3289 new_smi->interrupt_disabled = 1;
3290
3291 if (new_smi->intf) {
1da177e4 3292 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3293 new_smi->intf = NULL;
3294 }
1da177e4 3295
2407d77a 3296 if (new_smi->irq_cleanup) {
b0defcdb 3297 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3298 new_smi->irq_cleanup = NULL;
3299 }
1da177e4 3300
c305e3d3
CM
3301 /*
3302 * Wait until we know that we are out of any interrupt
3303 * handlers might have been running before we freed the
3304 * interrupt.
3305 */
fbd568a3 3306 synchronize_sched();
1da177e4
LT
3307
3308 if (new_smi->si_sm) {
3309 if (new_smi->handlers)
3310 new_smi->handlers->cleanup(new_smi->si_sm);
3311 kfree(new_smi->si_sm);
2407d77a 3312 new_smi->si_sm = NULL;
1da177e4 3313 }
2407d77a 3314 if (new_smi->addr_source_cleanup) {
b0defcdb 3315 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3316 new_smi->addr_source_cleanup = NULL;
3317 }
3318 if (new_smi->io_cleanup) {
7767e126 3319 new_smi->io_cleanup(new_smi);
2407d77a
MG
3320 new_smi->io_cleanup = NULL;
3321 }
1da177e4 3322
2407d77a 3323 if (new_smi->dev_registered) {
50c812b2 3324 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3325 new_smi->dev_registered = 0;
3326 }
b0defcdb 3327
1da177e4
LT
3328 return rv;
3329}
3330
60ee6d5f 3331static int __devinit init_ipmi_si(void)
1da177e4 3332{
1da177e4
LT
3333 int i;
3334 char *str;
50c812b2 3335 int rv;
2407d77a 3336 struct smi_info *e;
06ee4594 3337 enum ipmi_addr_src type = SI_INVALID;
1da177e4
LT
3338
3339 if (initialized)
3340 return 0;
3341 initialized = 1;
3342
50c812b2 3343 /* Register the device drivers. */
fe2d5ffc 3344 rv = driver_register(&ipmi_driver.driver);
50c812b2 3345 if (rv) {
279fbd0c 3346 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
50c812b2
CM
3347 return rv;
3348 }
3349
3350
1da177e4
LT
3351 /* Parse out the si_type string into its components. */
3352 str = si_type_str;
3353 if (*str != '\0') {
e8b33617 3354 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3355 si_type[i] = str;
3356 str = strchr(str, ',');
3357 if (str) {
3358 *str = '\0';
3359 str++;
3360 } else {
3361 break;
3362 }
3363 }
3364 }
3365
1fdd75bd 3366 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3367
b0defcdb
CM
3368 hardcode_find_bmc();
3369
d8cc5267
MG
3370 /* If the user gave us a device, they presumably want us to use it */
3371 mutex_lock(&smi_infos_lock);
3372 if (!list_empty(&smi_infos)) {
3373 mutex_unlock(&smi_infos_lock);
3374 return 0;
3375 }
3376 mutex_unlock(&smi_infos_lock);
3377
b0defcdb 3378#ifdef CONFIG_PCI
168b35a7 3379 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3380 if (rv)
279fbd0c 3381 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
56480287
MG
3382 else
3383 pci_registered = 1;
b0defcdb
CM
3384#endif
3385
754d4531
MG
3386#ifdef CONFIG_ACPI
3387 pnp_register_driver(&ipmi_pnp_driver);
561f8182 3388 pnp_registered = 1;
754d4531
MG
3389#endif
3390
3391#ifdef CONFIG_DMI
3392 dmi_find_bmc();
3393#endif
3394
3395#ifdef CONFIG_ACPI
3396 spmi_find_bmc();
3397#endif
3398
dba9b4f6
CM
3399#ifdef CONFIG_PPC_OF
3400 of_register_platform_driver(&ipmi_of_platform_driver);
56480287 3401 of_registered = 1;
dba9b4f6
CM
3402#endif
3403
06ee4594
MG
3404 /* We prefer devices with interrupts, but in the case of a machine
3405 with multiple BMCs we assume that there will be several instances
3406 of a given type so if we succeed in registering a type then also
3407 try to register everything else of the same type */
d8cc5267 3408
2407d77a
MG
3409 mutex_lock(&smi_infos_lock);
3410 list_for_each_entry(e, &smi_infos, link) {
06ee4594
MG
3411 /* Try to register a device if it has an IRQ and we either
3412 haven't successfully registered a device yet or this
3413 device has the same type as one we successfully registered */
3414 if (e->irq && (!type || e->addr_source == type)) {
d8cc5267 3415 if (!try_smi_init(e)) {
06ee4594 3416 type = e->addr_source;
d8cc5267
MG
3417 }
3418 }
3419 }
3420
06ee4594
MG
3421 /* type will only have been set if we successfully registered an si */
3422 if (type) {
3423 mutex_unlock(&smi_infos_lock);
3424 return 0;
3425 }
3426
d8cc5267
MG
3427 /* Fall back to the preferred device */
3428
3429 list_for_each_entry(e, &smi_infos, link) {
06ee4594 3430 if (!e->irq && (!type || e->addr_source == type)) {
d8cc5267 3431 if (!try_smi_init(e)) {
06ee4594 3432 type = e->addr_source;
d8cc5267
MG
3433 }
3434 }
2407d77a
MG
3435 }
3436 mutex_unlock(&smi_infos_lock);
3437
06ee4594
MG
3438 if (type)
3439 return 0;
3440
b0defcdb 3441 if (si_trydefaults) {
d6dfd131 3442 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3443 if (list_empty(&smi_infos)) {
3444 /* No BMC was found, try defaults. */
d6dfd131 3445 mutex_unlock(&smi_infos_lock);
b0defcdb 3446 default_find_bmc();
2407d77a 3447 } else
d6dfd131 3448 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3449 }
3450
d6dfd131 3451 mutex_lock(&smi_infos_lock);
b361e27b 3452 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3453 mutex_unlock(&smi_infos_lock);
d2478521 3454 cleanup_ipmi_si();
279fbd0c
MS
3455 printk(KERN_WARNING PFX
3456 "Unable to find any System Interface(s)\n");
1da177e4 3457 return -ENODEV;
b0defcdb 3458 } else {
d6dfd131 3459 mutex_unlock(&smi_infos_lock);
b0defcdb 3460 return 0;
1da177e4 3461 }
1da177e4
LT
3462}
3463module_init(init_ipmi_si);
3464
b361e27b 3465static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3466{
2407d77a 3467 int rv = 0;
1da177e4
LT
3468 unsigned long flags;
3469
b0defcdb 3470 if (!to_clean)
1da177e4
LT
3471 return;
3472
b0defcdb
CM
3473 list_del(&to_clean->link);
3474
ee6cd5f8 3475 /* Tell the driver that we are shutting down. */
a9a2c44f 3476 atomic_inc(&to_clean->stop_operation);
b0defcdb 3477
c305e3d3
CM
3478 /*
3479 * Make sure the timer and thread are stopped and will not run
3480 * again.
3481 */
a9a2c44f 3482 wait_for_timer_and_thread(to_clean);
1da177e4 3483
c305e3d3
CM
3484 /*
3485 * Timeouts are stopped, now make sure the interrupts are off
3486 * for the device. A little tricky with locks to make sure
3487 * there are no races.
3488 */
ee6cd5f8
CM
3489 spin_lock_irqsave(&to_clean->si_lock, flags);
3490 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3491 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3492 poll(to_clean);
3493 schedule_timeout_uninterruptible(1);
3494 spin_lock_irqsave(&to_clean->si_lock, flags);
3495 }
3496 disable_si_irq(to_clean);
3497 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 poll(to_clean);
3500 schedule_timeout_uninterruptible(1);
3501 }
3502
3503 /* Clean up interrupts and make sure that everything is done. */
3504 if (to_clean->irq_cleanup)
3505 to_clean->irq_cleanup(to_clean);
e8b33617 3506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3507 poll(to_clean);
da4cd8df 3508 schedule_timeout_uninterruptible(1);
1da177e4
LT
3509 }
3510
2407d77a
MG
3511 if (to_clean->intf)
3512 rv = ipmi_unregister_smi(to_clean->intf);
3513
1da177e4 3514 if (rv) {
279fbd0c 3515 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
1da177e4
LT
3516 rv);
3517 }
3518
2407d77a
MG
3519 if (to_clean->handlers)
3520 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3521
3522 kfree(to_clean->si_sm);
3523
b0defcdb
CM
3524 if (to_clean->addr_source_cleanup)
3525 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3526 if (to_clean->io_cleanup)
3527 to_clean->io_cleanup(to_clean);
50c812b2
CM
3528
3529 if (to_clean->dev_registered)
3530 platform_device_unregister(to_clean->pdev);
3531
3532 kfree(to_clean);
1da177e4
LT
3533}
3534
60ee6d5f 3535static void __exit cleanup_ipmi_si(void)
1da177e4 3536{
b0defcdb 3537 struct smi_info *e, *tmp_e;
1da177e4 3538
b0defcdb 3539 if (!initialized)
1da177e4
LT
3540 return;
3541
b0defcdb 3542#ifdef CONFIG_PCI
56480287
MG
3543 if (pci_registered)
3544 pci_unregister_driver(&ipmi_pci_driver);
b0defcdb 3545#endif
27d0567a 3546#ifdef CONFIG_ACPI
561f8182
YL
3547 if (pnp_registered)
3548 pnp_unregister_driver(&ipmi_pnp_driver);
9e368fa0 3549#endif
b0defcdb 3550
dba9b4f6 3551#ifdef CONFIG_PPC_OF
56480287
MG
3552 if (of_registered)
3553 of_unregister_platform_driver(&ipmi_of_platform_driver);
dba9b4f6
CM
3554#endif
3555
d6dfd131 3556 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3557 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3558 cleanup_one_si(e);
d6dfd131 3559 mutex_unlock(&smi_infos_lock);
50c812b2 3560
fe2d5ffc 3561 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3562}
3563module_exit(cleanup_ipmi_si);
3564
3565MODULE_LICENSE("GPL");
1fdd75bd 3566MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3567MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3568 " system interfaces.");
This page took 0.865398 seconds and 5 git commands to generate.