[PATCH] mm: remove VM_LOCKED before remap_pfn_range and drop VM_SHM
[deliverable/linux.git] / drivers / char / mmtimer.c
CommitLineData
1da177e4 1/*
76832c28 2 * Timer device implementation for SGI SN platforms.
1da177e4
LT
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
76832c28 8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
1da177e4
LT
9 *
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
12 * SHub RTC, however.
13 *
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
19 */
20
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/ioctl.h>
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/mm.h>
28#include <linux/devfs_fs_kernel.h>
29#include <linux/mmtimer.h>
30#include <linux/miscdevice.h>
31#include <linux/posix-timers.h>
32#include <linux/interrupt.h>
33
34#include <asm/uaccess.h>
35#include <asm/sn/addrs.h>
36#include <asm/sn/intr.h>
37#include <asm/sn/shub_mmr.h>
38#include <asm/sn/nodepda.h>
39#include <asm/sn/shubio.h>
40
41MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
42MODULE_DESCRIPTION("SGI Altix RTC Timer");
43MODULE_LICENSE("GPL");
44
45/* name of the device, usually in /dev */
46#define MMTIMER_NAME "mmtimer"
47#define MMTIMER_DESC "SGI Altix RTC Timer"
76832c28 48#define MMTIMER_VERSION "2.1"
1da177e4
LT
49
50#define RTC_BITS 55 /* 55 bits for this implementation */
51
52extern unsigned long sn_rtc_cycles_per_second;
53
54#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
55
56#define rtc_time() (*RTC_COUNTER_ADDR)
57
58static int mmtimer_ioctl(struct inode *inode, struct file *file,
59 unsigned int cmd, unsigned long arg);
60static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
61
62/*
63 * Period in femtoseconds (10^-15 s)
64 */
65static unsigned long mmtimer_femtoperiod = 0;
66
67static struct file_operations mmtimer_fops = {
68 .owner = THIS_MODULE,
69 .mmap = mmtimer_mmap,
70 .ioctl = mmtimer_ioctl,
71};
72
73/*
74 * We only have comparison registers RTC1-4 currently available per
75 * node. RTC0 is used by SAL.
76 */
77#define NUM_COMPARATORS 3
78/* Check for an RTC interrupt pending */
79static int inline mmtimer_int_pending(int comparator)
80{
81 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
82 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
83 return 1;
84 else
85 return 0;
86}
87/* Clear the RTC interrupt pending bit */
88static void inline mmtimer_clr_int_pending(int comparator)
89{
90 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
91 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
92}
93
94/* Setup timer on comparator RTC1 */
95static void inline mmtimer_setup_int_0(u64 expires)
96{
97 u64 val;
98
99 /* Disable interrupt */
100 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
101
102 /* Initialize comparator value */
103 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
104
105 /* Clear pending bit */
106 mmtimer_clr_int_pending(0);
107
108 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
109 ((u64)cpu_physical_id(smp_processor_id()) <<
110 SH_RTC1_INT_CONFIG_PID_SHFT);
111
112 /* Set configuration */
113 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
114
115 /* Enable RTC interrupts */
116 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
117
118 /* Initialize comparator value */
119 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
120
121
122}
123
124/* Setup timer on comparator RTC2 */
125static void inline mmtimer_setup_int_1(u64 expires)
126{
127 u64 val;
128
129 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
130
131 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
132
133 mmtimer_clr_int_pending(1);
134
135 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
136 ((u64)cpu_physical_id(smp_processor_id()) <<
137 SH_RTC2_INT_CONFIG_PID_SHFT);
138
139 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
140
141 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
142
143 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
144}
145
146/* Setup timer on comparator RTC3 */
147static void inline mmtimer_setup_int_2(u64 expires)
148{
149 u64 val;
150
151 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
152
153 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
154
155 mmtimer_clr_int_pending(2);
156
157 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
158 ((u64)cpu_physical_id(smp_processor_id()) <<
159 SH_RTC3_INT_CONFIG_PID_SHFT);
160
161 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
162
163 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
164
165 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
166}
167
168/*
169 * This function must be called with interrupts disabled and preemption off
170 * in order to insure that the setup succeeds in a deterministic time frame.
171 * It will check if the interrupt setup succeeded.
172 */
173static int inline mmtimer_setup(int comparator, unsigned long expires)
174{
175
176 switch (comparator) {
177 case 0:
178 mmtimer_setup_int_0(expires);
179 break;
180 case 1:
181 mmtimer_setup_int_1(expires);
182 break;
183 case 2:
184 mmtimer_setup_int_2(expires);
185 break;
186 }
187 /* We might've missed our expiration time */
188 if (rtc_time() < expires)
189 return 1;
190
191 /*
192 * If an interrupt is already pending then its okay
193 * if not then we failed
194 */
195 return mmtimer_int_pending(comparator);
196}
197
198static int inline mmtimer_disable_int(long nasid, int comparator)
199{
200 switch (comparator) {
201 case 0:
202 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
203 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
204 break;
205 case 1:
206 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
207 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
208 break;
209 case 2:
210 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
211 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
212 break;
213 default:
214 return -EFAULT;
215 }
216 return 0;
217}
218
219#define TIMER_OFF 0xbadcabLL
220
221/* There is one of these for each comparator */
222typedef struct mmtimer {
223 spinlock_t lock ____cacheline_aligned;
224 struct k_itimer *timer;
225 int i;
226 int cpu;
227 struct tasklet_struct tasklet;
228} mmtimer_t;
229
76832c28 230static mmtimer_t ** timers;
1da177e4
LT
231
232/**
233 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
234 * @inode: inode of the device
235 * @file: file structure for the device
236 * @cmd: command to execute
237 * @arg: optional argument to command
238 *
239 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
240 * failure.
241 *
242 * Valid commands:
243 *
244 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
245 * of the page where the registers are mapped) for the counter in question.
246 *
247 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
248 * seconds
249 *
250 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
251 * specified by @arg
252 *
253 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
254 *
255 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
256 *
257 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
258 * in the address specified by @arg.
259 */
260static int mmtimer_ioctl(struct inode *inode, struct file *file,
261 unsigned int cmd, unsigned long arg)
262{
263 int ret = 0;
264
265 switch (cmd) {
266 case MMTIMER_GETOFFSET: /* offset of the counter */
267 /*
268 * SN RTC registers are on their own 64k page
269 */
270 if(PAGE_SIZE <= (1 << 16))
271 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
272 else
273 ret = -ENOSYS;
274 break;
275
276 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
277 if(copy_to_user((unsigned long __user *)arg,
278 &mmtimer_femtoperiod, sizeof(unsigned long)))
279 return -EFAULT;
280 break;
281
282 case MMTIMER_GETFREQ: /* frequency in Hz */
283 if(copy_to_user((unsigned long __user *)arg,
284 &sn_rtc_cycles_per_second,
285 sizeof(unsigned long)))
286 return -EFAULT;
287 ret = 0;
288 break;
289
290 case MMTIMER_GETBITS: /* number of bits in the clock */
291 ret = RTC_BITS;
292 break;
293
294 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
295 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
296 break;
297
298 case MMTIMER_GETCOUNTER:
299 if(copy_to_user((unsigned long __user *)arg,
300 RTC_COUNTER_ADDR, sizeof(unsigned long)))
301 return -EFAULT;
302 break;
303 default:
304 ret = -ENOSYS;
305 break;
306 }
307
308 return ret;
309}
310
311/**
312 * mmtimer_mmap - maps the clock's registers into userspace
313 * @file: file structure for the device
314 * @vma: VMA to map the registers into
315 *
316 * Calls remap_pfn_range() to map the clock's registers into
317 * the calling process' address space.
318 */
319static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
320{
321 unsigned long mmtimer_addr;
322
323 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
324 return -EINVAL;
325
326 if (vma->vm_flags & VM_WRITE)
327 return -EPERM;
328
329 if (PAGE_SIZE > (1 << 16))
330 return -ENOSYS;
331
1da177e4
LT
332 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
333
334 mmtimer_addr = __pa(RTC_COUNTER_ADDR);
335 mmtimer_addr &= ~(PAGE_SIZE - 1);
336 mmtimer_addr &= 0xfffffffffffffffUL;
337
338 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
339 PAGE_SIZE, vma->vm_page_prot)) {
340 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
341 return -EAGAIN;
342 }
343
344 return 0;
345}
346
347static struct miscdevice mmtimer_miscdev = {
348 SGI_MMTIMER,
349 MMTIMER_NAME,
350 &mmtimer_fops
351};
352
353static struct timespec sgi_clock_offset;
354static int sgi_clock_period;
355
356/*
357 * Posix Timer Interface
358 */
359
360static struct timespec sgi_clock_offset;
361static int sgi_clock_period;
362
363static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
364{
365 u64 nsec;
366
367 nsec = rtc_time() * sgi_clock_period
368 + sgi_clock_offset.tv_nsec;
369 tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
370 + sgi_clock_offset.tv_sec;
371 return 0;
372};
373
374static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
375{
376
377 u64 nsec;
378 u64 rem;
379
380 nsec = rtc_time() * sgi_clock_period;
381
382 sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);
383
384 if (rem <= tp->tv_nsec)
385 sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
386 else {
387 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
388 sgi_clock_offset.tv_sec--;
389 }
390 return 0;
391}
392
393/*
394 * Schedule the next periodic interrupt. This function will attempt
395 * to schedule a periodic interrupt later if necessary. If the scheduling
396 * of an interrupt fails then the time to skip is lengthened
397 * exponentially in order to ensure that the next interrupt
398 * can be properly scheduled..
399 */
400static int inline reschedule_periodic_timer(mmtimer_t *x)
401{
402 int n;
403 struct k_itimer *t = x->timer;
404
405 t->it.mmtimer.clock = x->i;
406 t->it_overrun--;
407
408 n = 0;
409 do {
410
411 t->it.mmtimer.expires += t->it.mmtimer.incr << n;
412 t->it_overrun += 1 << n;
413 n++;
414 if (n > 20)
415 return 1;
416
417 } while (!mmtimer_setup(x->i, t->it.mmtimer.expires));
418
419 return 0;
420}
421
422/**
423 * mmtimer_interrupt - timer interrupt handler
424 * @irq: irq received
425 * @dev_id: device the irq came from
426 * @regs: register state upon receipt of the interrupt
427 *
428 * Called when one of the comarators matches the counter, This
429 * routine will send signals to processes that have requested
430 * them.
431 *
432 * This interrupt is run in an interrupt context
433 * by the SHUB. It is therefore safe to locally access SHub
434 * registers.
435 */
436static irqreturn_t
437mmtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
438{
439 int i;
1da177e4
LT
440 unsigned long expires = 0;
441 int result = IRQ_NONE;
76832c28 442 unsigned indx = cpu_to_node(smp_processor_id());
1da177e4
LT
443
444 /*
445 * Do this once for each comparison register
446 */
447 for (i = 0; i < NUM_COMPARATORS; i++) {
76832c28 448 mmtimer_t *base = timers[indx] + i;
1da177e4 449 /* Make sure this doesn't get reused before tasklet_sched */
76832c28
DS
450 spin_lock(&base->lock);
451 if (base->cpu == smp_processor_id()) {
452 if (base->timer)
453 expires = base->timer->it.mmtimer.expires;
1da177e4
LT
454 /* expires test won't work with shared irqs */
455 if ((mmtimer_int_pending(i) > 0) ||
456 (expires && (expires < rtc_time()))) {
457 mmtimer_clr_int_pending(i);
76832c28 458 tasklet_schedule(&base->tasklet);
1da177e4
LT
459 result = IRQ_HANDLED;
460 }
461 }
76832c28 462 spin_unlock(&base->lock);
1da177e4
LT
463 expires = 0;
464 }
465 return result;
466}
467
468void mmtimer_tasklet(unsigned long data) {
469 mmtimer_t *x = (mmtimer_t *)data;
470 struct k_itimer *t = x->timer;
471 unsigned long flags;
472
473 if (t == NULL)
474 return;
475
476 /* Send signal and deal with periodic signals */
477 spin_lock_irqsave(&t->it_lock, flags);
478 spin_lock(&x->lock);
479 /* If timer was deleted between interrupt and here, leave */
480 if (t != x->timer)
481 goto out;
482 t->it_overrun = 0;
483
8d38eadb 484 if (posix_timer_event(t, 0) != 0) {
1da177e4
LT
485
486 // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
487
488 t->it_overrun++;
489 }
490 if(t->it.mmtimer.incr) {
491 /* Periodic timer */
492 if (reschedule_periodic_timer(x)) {
493 printk(KERN_WARNING "mmtimer: unable to reschedule\n");
494 x->timer = NULL;
495 }
496 } else {
497 /* Ensure we don't false trigger in mmtimer_interrupt */
498 t->it.mmtimer.expires = 0;
499 }
500 t->it_overrun_last = t->it_overrun;
501out:
502 spin_unlock(&x->lock);
503 spin_unlock_irqrestore(&t->it_lock, flags);
504}
505
506static int sgi_timer_create(struct k_itimer *timer)
507{
508 /* Insure that a newly created timer is off */
509 timer->it.mmtimer.clock = TIMER_OFF;
510 return 0;
511}
512
513/* This does not really delete a timer. It just insures
514 * that the timer is not active
515 *
516 * Assumption: it_lock is already held with irq's disabled
517 */
518static int sgi_timer_del(struct k_itimer *timr)
519{
520 int i = timr->it.mmtimer.clock;
521 cnodeid_t nodeid = timr->it.mmtimer.node;
76832c28 522 mmtimer_t *t = timers[nodeid] + i;
1da177e4
LT
523 unsigned long irqflags;
524
525 if (i != TIMER_OFF) {
526 spin_lock_irqsave(&t->lock, irqflags);
527 mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
528 t->timer = NULL;
529 timr->it.mmtimer.clock = TIMER_OFF;
530 timr->it.mmtimer.expires = 0;
531 spin_unlock_irqrestore(&t->lock, irqflags);
532 }
533 return 0;
534}
535
536#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
537#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
538
539/* Assumption: it_lock is already held with irq's disabled */
540static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
541{
542
543 if (timr->it.mmtimer.clock == TIMER_OFF) {
544 cur_setting->it_interval.tv_nsec = 0;
545 cur_setting->it_interval.tv_sec = 0;
546 cur_setting->it_value.tv_nsec = 0;
547 cur_setting->it_value.tv_sec =0;
548 return;
549 }
550
551 ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
552 ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
553 return;
554}
555
556
557static int sgi_timer_set(struct k_itimer *timr, int flags,
558 struct itimerspec * new_setting,
559 struct itimerspec * old_setting)
560{
561
562 int i;
563 unsigned long when, period, irqflags;
564 int err = 0;
565 cnodeid_t nodeid;
566 mmtimer_t *base;
567
568 if (old_setting)
569 sgi_timer_get(timr, old_setting);
570
571 sgi_timer_del(timr);
572 when = timespec_to_ns(new_setting->it_value);
573 period = timespec_to_ns(new_setting->it_interval);
574
575 if (when == 0)
576 /* Clear timer */
577 return 0;
578
579 if (flags & TIMER_ABSTIME) {
580 struct timespec n;
581 unsigned long now;
582
583 getnstimeofday(&n);
584 now = timespec_to_ns(n);
585 if (when > now)
586 when -= now;
587 else
588 /* Fire the timer immediately */
589 when = 0;
590 }
591
592 /*
593 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
594 * to getnstimeofday() in order to be as faithful as possible to the time
595 * specified.
596 */
597 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
598 period = (period + sgi_clock_period - 1) / sgi_clock_period;
599
600 /*
601 * We are allocating a local SHub comparator. If we would be moved to another
602 * cpu then another SHub may be local to us. Prohibit that by switching off
603 * preemption.
604 */
605 preempt_disable();
606
55642d36 607 nodeid = cpu_to_node(smp_processor_id());
1da177e4
LT
608retry:
609 /* Don't use an allocated timer, or a deleted one that's pending */
610 for(i = 0; i< NUM_COMPARATORS; i++) {
76832c28
DS
611 base = timers[nodeid] + i;
612 if (!base->timer && !base->tasklet.state) {
1da177e4
LT
613 break;
614 }
615 }
616
617 if (i == NUM_COMPARATORS) {
618 preempt_enable();
619 return -EBUSY;
620 }
621
76832c28 622 spin_lock_irqsave(&base->lock, irqflags);
1da177e4 623
76832c28
DS
624 if (base->timer || base->tasklet.state != 0) {
625 spin_unlock_irqrestore(&base->lock, irqflags);
1da177e4
LT
626 goto retry;
627 }
76832c28
DS
628 base->timer = timr;
629 base->cpu = smp_processor_id();
1da177e4
LT
630
631 timr->it.mmtimer.clock = i;
632 timr->it.mmtimer.node = nodeid;
633 timr->it.mmtimer.incr = period;
634 timr->it.mmtimer.expires = when;
635
636 if (period == 0) {
637 if (!mmtimer_setup(i, when)) {
638 mmtimer_disable_int(-1, i);
639 posix_timer_event(timr, 0);
640 timr->it.mmtimer.expires = 0;
641 }
642 } else {
643 timr->it.mmtimer.expires -= period;
76832c28 644 if (reschedule_periodic_timer(base))
1da177e4
LT
645 err = -EINVAL;
646 }
647
76832c28 648 spin_unlock_irqrestore(&base->lock, irqflags);
1da177e4
LT
649
650 preempt_enable();
651
652 return err;
653}
654
655static struct k_clock sgi_clock = {
656 .res = 0,
657 .clock_set = sgi_clock_set,
658 .clock_get = sgi_clock_get,
659 .timer_create = sgi_timer_create,
660 .nsleep = do_posix_clock_nonanosleep,
661 .timer_set = sgi_timer_set,
662 .timer_del = sgi_timer_del,
663 .timer_get = sgi_timer_get
664};
665
666/**
667 * mmtimer_init - device initialization routine
668 *
669 * Does initial setup for the mmtimer device.
670 */
671static int __init mmtimer_init(void)
672{
673 unsigned i;
76832c28 674 cnodeid_t node, maxn = -1;
1da177e4
LT
675
676 if (!ia64_platform_is("sn2"))
f032f908 677 return 0;
1da177e4
LT
678
679 /*
680 * Sanity check the cycles/sec variable
681 */
682 if (sn_rtc_cycles_per_second < 100000) {
683 printk(KERN_ERR "%s: unable to determine clock frequency\n",
684 MMTIMER_NAME);
685 return -1;
686 }
687
688 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
689 2) / sn_rtc_cycles_per_second;
690
1da177e4
LT
691 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, SA_PERCPU_IRQ, MMTIMER_NAME, NULL)) {
692 printk(KERN_WARNING "%s: unable to allocate interrupt.",
693 MMTIMER_NAME);
694 return -1;
695 }
696
697 strcpy(mmtimer_miscdev.devfs_name, MMTIMER_NAME);
698 if (misc_register(&mmtimer_miscdev)) {
699 printk(KERN_ERR "%s: failed to register device\n",
700 MMTIMER_NAME);
701 return -1;
702 }
703
76832c28
DS
704 /* Get max numbered node, calculate slots needed */
705 for_each_online_node(node) {
706 maxn = node;
707 }
708 maxn++;
709
710 /* Allocate list of node ptrs to mmtimer_t's */
711 timers = kmalloc(sizeof(mmtimer_t *)*maxn, GFP_KERNEL);
712 if (timers == NULL) {
713 printk(KERN_ERR "%s: failed to allocate memory for device\n",
714 MMTIMER_NAME);
715 return -1;
716 }
717
718 /* Allocate mmtimer_t's for each online node */
719 for_each_online_node(node) {
720 timers[node] = kmalloc_node(sizeof(mmtimer_t)*NUM_COMPARATORS, GFP_KERNEL, node);
721 if (timers[node] == NULL) {
722 printk(KERN_ERR "%s: failed to allocate memory for device\n",
723 MMTIMER_NAME);
724 return -1;
725 }
726 for (i=0; i< NUM_COMPARATORS; i++) {
727 mmtimer_t * base = timers[node] + i;
728
729 spin_lock_init(&base->lock);
730 base->timer = NULL;
731 base->cpu = 0;
732 base->i = i;
733 tasklet_init(&base->tasklet, mmtimer_tasklet,
734 (unsigned long) (base));
735 }
736 }
737
1da177e4
LT
738 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
739 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
740
741 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
742 sn_rtc_cycles_per_second/(unsigned long)1E6);
743
744 return 0;
745}
746
747module_init(mmtimer_init);
748
This page took 0.139726 seconds and 5 git commands to generate.