sparse irq_desc[] array: core kernel and x86 changes
[deliverable/linux.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool. Note that not all interrupts are good
137 * sources of randomness! For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker. Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source. They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count. In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups. To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 * echo "Initializing random number generator..."
161 * random_seed=/var/run/random-seed
162 * # Carry a random seed from start-up to start-up
163 * # Load and then save the whole entropy pool
164 * if [ -f $random_seed ]; then
165 * cat $random_seed >/dev/urandom
166 * else
167 * touch $random_seed
168 * fi
169 * chmod 600 $random_seed
170 * dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 * # Carry a random seed from shut-down to start-up
176 * # Save the whole entropy pool
177 * echo "Saving random seed..."
178 * random_seed=/var/run/random-seed
179 * touch $random_seed
180 * chmod 600 $random_seed
181 * dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up. (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.) Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1). So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * mknod /dev/random c 1 8
206 * mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn. Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone. Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226#include <linux/utsname.h>
1da177e4
LT
227#include <linux/module.h>
228#include <linux/kernel.h>
229#include <linux/major.h>
230#include <linux/string.h>
231#include <linux/fcntl.h>
232#include <linux/slab.h>
233#include <linux/random.h>
234#include <linux/poll.h>
235#include <linux/init.h>
236#include <linux/fs.h>
237#include <linux/genhd.h>
238#include <linux/interrupt.h>
27ac792c 239#include <linux/mm.h>
1da177e4
LT
240#include <linux/spinlock.h>
241#include <linux/percpu.h>
242#include <linux/cryptohash.h>
243
244#include <asm/processor.h>
245#include <asm/uaccess.h>
246#include <asm/irq.h>
247#include <asm/io.h>
248
249/*
250 * Configuration information
251 */
252#define INPUT_POOL_WORDS 128
253#define OUTPUT_POOL_WORDS 32
254#define SEC_XFER_SIZE 512
255
256/*
257 * The minimum number of bits of entropy before we wake up a read on
258 * /dev/random. Should be enough to do a significant reseed.
259 */
260static int random_read_wakeup_thresh = 64;
261
262/*
263 * If the entropy count falls under this number of bits, then we
264 * should wake up processes which are selecting or polling on write
265 * access to /dev/random.
266 */
267static int random_write_wakeup_thresh = 128;
268
269/*
270 * When the input pool goes over trickle_thresh, start dropping most
271 * samples to avoid wasting CPU time and reduce lock contention.
272 */
273
6c036527 274static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
1da177e4 275
90b75ee5 276static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
277
278/*
279 * A pool of size .poolwords is stirred with a primitive polynomial
280 * of degree .poolwords over GF(2). The taps for various sizes are
281 * defined below. They are chosen to be evenly spaced (minimum RMS
282 * distance from evenly spaced; the numbers in the comments are a
283 * scaled squared error sum) except for the last tap, which is 1 to
284 * get the twisting happening as fast as possible.
285 */
286static struct poolinfo {
287 int poolwords;
288 int tap1, tap2, tap3, tap4, tap5;
289} poolinfo_table[] = {
290 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
291 { 128, 103, 76, 51, 25, 1 },
292 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
293 { 32, 26, 20, 14, 7, 1 },
294#if 0
295 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
296 { 2048, 1638, 1231, 819, 411, 1 },
297
298 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
299 { 1024, 817, 615, 412, 204, 1 },
300
301 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
302 { 1024, 819, 616, 410, 207, 2 },
303
304 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
305 { 512, 411, 308, 208, 104, 1 },
306
307 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
308 { 512, 409, 307, 206, 102, 2 },
309 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
310 { 512, 409, 309, 205, 103, 2 },
311
312 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
313 { 256, 205, 155, 101, 52, 1 },
314
315 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
316 { 128, 103, 78, 51, 27, 2 },
317
318 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
319 { 64, 52, 39, 26, 14, 1 },
320#endif
321};
322
323#define POOLBITS poolwords*32
324#define POOLBYTES poolwords*4
325
326/*
327 * For the purposes of better mixing, we use the CRC-32 polynomial as
328 * well to make a twisted Generalized Feedback Shift Reigster
329 *
330 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
331 * Transactions on Modeling and Computer Simulation 2(3):179-194.
332 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
333 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
334 *
335 * Thanks to Colin Plumb for suggesting this.
336 *
337 * We have not analyzed the resultant polynomial to prove it primitive;
338 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
339 * of a random large-degree polynomial over GF(2) are more than large enough
340 * that periodicity is not a concern.
341 *
342 * The input hash is much less sensitive than the output hash. All
343 * that we want of it is that it be a good non-cryptographic hash;
344 * i.e. it not produce collisions when fed "random" data of the sort
345 * we expect to see. As long as the pool state differs for different
346 * inputs, we have preserved the input entropy and done a good job.
347 * The fact that an intelligent attacker can construct inputs that
348 * will produce controlled alterations to the pool's state is not
349 * important because we don't consider such inputs to contribute any
350 * randomness. The only property we need with respect to them is that
351 * the attacker can't increase his/her knowledge of the pool's state.
352 * Since all additions are reversible (knowing the final state and the
353 * input, you can reconstruct the initial state), if an attacker has
354 * any uncertainty about the initial state, he/she can only shuffle
355 * that uncertainty about, but never cause any collisions (which would
356 * decrease the uncertainty).
357 *
358 * The chosen system lets the state of the pool be (essentially) the input
359 * modulo the generator polymnomial. Now, for random primitive polynomials,
360 * this is a universal class of hash functions, meaning that the chance
361 * of a collision is limited by the attacker's knowledge of the generator
362 * polynomail, so if it is chosen at random, an attacker can never force
363 * a collision. Here, we use a fixed polynomial, but we *can* assume that
364 * ###--> it is unknown to the processes generating the input entropy. <-###
365 * Because of this important property, this is a good, collision-resistant
366 * hash; hash collisions will occur no more often than chance.
367 */
368
369/*
370 * Static global variables
371 */
372static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
373static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 374static struct fasync_struct *fasync;
1da177e4
LT
375
376#if 0
90b75ee5 377static int debug;
1da177e4 378module_param(debug, bool, 0644);
90b75ee5
MM
379#define DEBUG_ENT(fmt, arg...) do { \
380 if (debug) \
381 printk(KERN_DEBUG "random %04d %04d %04d: " \
382 fmt,\
383 input_pool.entropy_count,\
384 blocking_pool.entropy_count,\
385 nonblocking_pool.entropy_count,\
386 ## arg); } while (0)
1da177e4
LT
387#else
388#define DEBUG_ENT(fmt, arg...) do {} while (0)
389#endif
390
391/**********************************************************************
392 *
393 * OS independent entropy store. Here are the functions which handle
394 * storing entropy in an entropy pool.
395 *
396 **********************************************************************/
397
398struct entropy_store;
399struct entropy_store {
43358209 400 /* read-only data: */
1da177e4
LT
401 struct poolinfo *poolinfo;
402 __u32 *pool;
403 const char *name;
404 int limit;
405 struct entropy_store *pull;
406
407 /* read-write data: */
43358209 408 spinlock_t lock;
1da177e4 409 unsigned add_ptr;
8b76f46a 410 int entropy_count; /* Must at no time exceed ->POOLBITS! */
1da177e4
LT
411 int input_rotate;
412};
413
414static __u32 input_pool_data[INPUT_POOL_WORDS];
415static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
416static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
417
418static struct entropy_store input_pool = {
419 .poolinfo = &poolinfo_table[0],
420 .name = "input",
421 .limit = 1,
e4d91918 422 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
1da177e4
LT
423 .pool = input_pool_data
424};
425
426static struct entropy_store blocking_pool = {
427 .poolinfo = &poolinfo_table[1],
428 .name = "blocking",
429 .limit = 1,
430 .pull = &input_pool,
e4d91918 431 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
1da177e4
LT
432 .pool = blocking_pool_data
433};
434
435static struct entropy_store nonblocking_pool = {
436 .poolinfo = &poolinfo_table[1],
437 .name = "nonblocking",
438 .pull = &input_pool,
e4d91918 439 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
1da177e4
LT
440 .pool = nonblocking_pool_data
441};
442
443/*
e68e5b66 444 * This function adds bytes into the entropy "pool". It does not
1da177e4 445 * update the entropy estimate. The caller should call
adc782da 446 * credit_entropy_bits if this is appropriate.
1da177e4
LT
447 *
448 * The pool is stirred with a primitive polynomial of the appropriate
449 * degree, and then twisted. We twist by three bits at a time because
450 * it's cheap to do so and helps slightly in the expected case where
451 * the entropy is concentrated in the low-order bits.
452 */
e68e5b66
MM
453static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
454 int nbytes, __u8 out[64])
1da177e4
LT
455{
456 static __u32 const twist_table[8] = {
457 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
458 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
993ba211 459 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 460 int input_rotate;
1da177e4 461 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 462 const char *bytes = in;
6d38b827 463 __u32 w;
1da177e4
LT
464 unsigned long flags;
465
466 /* Taps are constant, so we can load them without holding r->lock. */
467 tap1 = r->poolinfo->tap1;
468 tap2 = r->poolinfo->tap2;
469 tap3 = r->poolinfo->tap3;
470 tap4 = r->poolinfo->tap4;
471 tap5 = r->poolinfo->tap5;
1da177e4
LT
472
473 spin_lock_irqsave(&r->lock, flags);
1da177e4 474 input_rotate = r->input_rotate;
993ba211 475 i = r->add_ptr;
1da177e4 476
e68e5b66
MM
477 /* mix one byte at a time to simplify size handling and churn faster */
478 while (nbytes--) {
479 w = rol32(*bytes++, input_rotate & 31);
993ba211 480 i = (i - 1) & wordmask;
1da177e4
LT
481
482 /* XOR in the various taps */
993ba211 483 w ^= r->pool[i];
1da177e4
LT
484 w ^= r->pool[(i + tap1) & wordmask];
485 w ^= r->pool[(i + tap2) & wordmask];
486 w ^= r->pool[(i + tap3) & wordmask];
487 w ^= r->pool[(i + tap4) & wordmask];
488 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
489
490 /* Mix the result back in with a twist */
1da177e4 491 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
492
493 /*
494 * Normally, we add 7 bits of rotation to the pool.
495 * At the beginning of the pool, add an extra 7 bits
496 * rotation, so that successive passes spread the
497 * input bits across the pool evenly.
498 */
499 input_rotate += i ? 7 : 14;
1da177e4
LT
500 }
501
502 r->input_rotate = input_rotate;
993ba211 503 r->add_ptr = i;
1da177e4 504
993ba211
MM
505 if (out)
506 for (j = 0; j < 16; j++)
e68e5b66 507 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
508
509 spin_unlock_irqrestore(&r->lock, flags);
510}
511
e68e5b66 512static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
1da177e4 513{
e68e5b66 514 mix_pool_bytes_extract(r, in, bytes, NULL);
1da177e4
LT
515}
516
517/*
518 * Credit (or debit) the entropy store with n bits of entropy
519 */
adc782da 520static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4
LT
521{
522 unsigned long flags;
8b76f46a 523 int entropy_count;
1da177e4 524
adc782da
MM
525 if (!nbits)
526 return;
527
1da177e4
LT
528 spin_lock_irqsave(&r->lock, flags);
529
adc782da 530 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
8b76f46a
AM
531 entropy_count = r->entropy_count;
532 entropy_count += nbits;
533 if (entropy_count < 0) {
adc782da 534 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a
AM
535 entropy_count = 0;
536 } else if (entropy_count > r->poolinfo->POOLBITS)
537 entropy_count = r->poolinfo->POOLBITS;
538 r->entropy_count = entropy_count;
1da177e4 539
88c730da 540 /* should we wake readers? */
8b76f46a 541 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
88c730da 542 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
543 kill_fasync(&fasync, SIGIO, POLL_IN);
544 }
1da177e4
LT
545 spin_unlock_irqrestore(&r->lock, flags);
546}
547
548/*********************************************************************
549 *
550 * Entropy input management
551 *
552 *********************************************************************/
553
554/* There is one of these per entropy source */
555struct timer_rand_state {
556 cycles_t last_time;
90b75ee5 557 long last_delta, last_delta2;
1da177e4
LT
558 unsigned dont_count_entropy:1;
559};
560
0b8f1efa
YL
561#ifndef CONFIG_SPARSE_IRQ
562struct timer_rand_state *irq_timer_state[NR_IRQS];
563#endif
3060d6fe 564
3060d6fe
YL
565static struct timer_rand_state input_timer_state;
566
1da177e4
LT
567/*
568 * This function adds entropy to the entropy "pool" by using timing
569 * delays. It uses the timer_rand_state structure to make an estimate
570 * of how many bits of entropy this call has added to the pool.
571 *
572 * The number "num" is also added to the pool - it should somehow describe
573 * the type of event which just happened. This is currently 0-255 for
574 * keyboard scan codes, and 256 upwards for interrupts.
575 *
576 */
577static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
578{
579 struct {
580 cycles_t cycles;
581 long jiffies;
582 unsigned num;
583 } sample;
584 long delta, delta2, delta3;
585
586 preempt_disable();
587 /* if over the trickle threshold, use only 1 in 4096 samples */
588 if (input_pool.entropy_count > trickle_thresh &&
589 (__get_cpu_var(trickle_count)++ & 0xfff))
590 goto out;
591
592 sample.jiffies = jiffies;
593 sample.cycles = get_cycles();
594 sample.num = num;
e68e5b66 595 mix_pool_bytes(&input_pool, &sample, sizeof(sample));
1da177e4
LT
596
597 /*
598 * Calculate number of bits of randomness we probably added.
599 * We take into account the first, second and third-order deltas
600 * in order to make our estimate.
601 */
602
603 if (!state->dont_count_entropy) {
604 delta = sample.jiffies - state->last_time;
605 state->last_time = sample.jiffies;
606
607 delta2 = delta - state->last_delta;
608 state->last_delta = delta;
609
610 delta3 = delta2 - state->last_delta2;
611 state->last_delta2 = delta2;
612
613 if (delta < 0)
614 delta = -delta;
615 if (delta2 < 0)
616 delta2 = -delta2;
617 if (delta3 < 0)
618 delta3 = -delta3;
619 if (delta > delta2)
620 delta = delta2;
621 if (delta > delta3)
622 delta = delta3;
623
624 /*
625 * delta is now minimum absolute delta.
626 * Round down by 1 bit on general principles,
627 * and limit entropy entimate to 12 bits.
628 */
adc782da
MM
629 credit_entropy_bits(&input_pool,
630 min_t(int, fls(delta>>1), 11));
1da177e4 631 }
1da177e4
LT
632out:
633 preempt_enable();
634}
635
d251575a 636void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
637 unsigned int value)
638{
639 static unsigned char last_value;
640
641 /* ignore autorepeat and the like */
642 if (value == last_value)
643 return;
644
645 DEBUG_ENT("input event\n");
646 last_value = value;
647 add_timer_randomness(&input_timer_state,
648 (type << 4) ^ code ^ (code >> 4) ^ value);
649}
80fc9f53 650EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4
LT
651
652void add_interrupt_randomness(int irq)
653{
3060d6fe
YL
654 struct timer_rand_state *state;
655
656 state = get_timer_rand_state(irq);
657
658 if (state == NULL)
1da177e4
LT
659 return;
660
661 DEBUG_ENT("irq event %d\n", irq);
3060d6fe 662 add_timer_randomness(state, 0x100 + irq);
1da177e4
LT
663}
664
9361401e 665#ifdef CONFIG_BLOCK
1da177e4
LT
666void add_disk_randomness(struct gendisk *disk)
667{
668 if (!disk || !disk->random)
669 return;
670 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
671 DEBUG_ENT("disk event %d:%d\n",
672 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 673
f331c029 674 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 675}
9361401e 676#endif
1da177e4
LT
677
678#define EXTRACT_SIZE 10
679
680/*********************************************************************
681 *
682 * Entropy extraction routines
683 *
684 *********************************************************************/
685
90b75ee5 686static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
687 size_t nbytes, int min, int rsvd);
688
689/*
690 * This utility inline function is responsible for transfering entropy
691 * from the primary pool to the secondary extraction pool. We make
692 * sure we pull enough for a 'catastrophic reseed'.
693 */
694static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
695{
696 __u32 tmp[OUTPUT_POOL_WORDS];
697
698 if (r->pull && r->entropy_count < nbytes * 8 &&
699 r->entropy_count < r->poolinfo->POOLBITS) {
5a021e9f 700 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 701 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
702 int bytes = nbytes;
703
704 /* pull at least as many as BYTES as wakeup BITS */
705 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
706 /* but never more than the buffer size */
707 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
708
709 DEBUG_ENT("going to reseed %s with %d bits "
710 "(%d of %d requested)\n",
711 r->name, bytes * 8, nbytes * 8, r->entropy_count);
712
90b75ee5
MM
713 bytes = extract_entropy(r->pull, tmp, bytes,
714 random_read_wakeup_thresh / 8, rsvd);
e68e5b66 715 mix_pool_bytes(r, tmp, bytes);
adc782da 716 credit_entropy_bits(r, bytes*8);
1da177e4
LT
717 }
718}
719
720/*
721 * These functions extracts randomness from the "entropy pool", and
722 * returns it in a buffer.
723 *
724 * The min parameter specifies the minimum amount we can pull before
725 * failing to avoid races that defeat catastrophic reseeding while the
726 * reserved parameter indicates how much entropy we must leave in the
727 * pool after each pull to avoid starving other readers.
728 *
729 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
730 */
731
732static size_t account(struct entropy_store *r, size_t nbytes, int min,
733 int reserved)
734{
735 unsigned long flags;
736
737 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
738
739 /* Hold lock while accounting */
740 spin_lock_irqsave(&r->lock, flags);
741
742 DEBUG_ENT("trying to extract %d bits from %s\n",
743 nbytes * 8, r->name);
744
745 /* Can we pull enough? */
746 if (r->entropy_count / 8 < min + reserved) {
747 nbytes = 0;
748 } else {
749 /* If limited, never pull more than available */
750 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
751 nbytes = r->entropy_count/8 - reserved;
752
90b75ee5 753 if (r->entropy_count / 8 >= nbytes + reserved)
1da177e4
LT
754 r->entropy_count -= nbytes*8;
755 else
756 r->entropy_count = reserved;
757
9a6f70bb 758 if (r->entropy_count < random_write_wakeup_thresh) {
1da177e4 759 wake_up_interruptible(&random_write_wait);
9a6f70bb
JD
760 kill_fasync(&fasync, SIGIO, POLL_OUT);
761 }
1da177e4
LT
762 }
763
764 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
765 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
766
767 spin_unlock_irqrestore(&r->lock, flags);
768
769 return nbytes;
770}
771
772static void extract_buf(struct entropy_store *r, __u8 *out)
773{
602b6aee 774 int i;
e68e5b66
MM
775 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
776 __u8 extract[64];
1da177e4 777
1c0ad3d4 778 /* Generate a hash across the pool, 16 words (512 bits) at a time */
ffd8d3fa 779 sha_init(hash);
1c0ad3d4
MM
780 for (i = 0; i < r->poolinfo->poolwords; i += 16)
781 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
782
1da177e4 783 /*
1c0ad3d4
MM
784 * We mix the hash back into the pool to prevent backtracking
785 * attacks (where the attacker knows the state of the pool
786 * plus the current outputs, and attempts to find previous
787 * ouputs), unless the hash function can be inverted. By
788 * mixing at least a SHA1 worth of hash data back, we make
789 * brute-forcing the feedback as hard as brute-forcing the
790 * hash.
1da177e4 791 */
e68e5b66 792 mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
1da177e4
LT
793
794 /*
1c0ad3d4
MM
795 * To avoid duplicates, we atomically extract a portion of the
796 * pool while mixing, and hash one final time.
1da177e4 797 */
e68e5b66 798 sha_transform(hash, extract, workspace);
ffd8d3fa
MM
799 memset(extract, 0, sizeof(extract));
800 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
801
802 /*
1c0ad3d4
MM
803 * In case the hash function has some recognizable output
804 * pattern, we fold it in half. Thus, we always feed back
805 * twice as much data as we output.
1da177e4 806 */
ffd8d3fa
MM
807 hash[0] ^= hash[3];
808 hash[1] ^= hash[4];
809 hash[2] ^= rol32(hash[2], 16);
810 memcpy(out, hash, EXTRACT_SIZE);
811 memset(hash, 0, sizeof(hash));
1da177e4
LT
812}
813
90b75ee5 814static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
815 size_t nbytes, int min, int reserved)
816{
817 ssize_t ret = 0, i;
818 __u8 tmp[EXTRACT_SIZE];
819
820 xfer_secondary_pool(r, nbytes);
821 nbytes = account(r, nbytes, min, reserved);
822
823 while (nbytes) {
824 extract_buf(r, tmp);
825 i = min_t(int, nbytes, EXTRACT_SIZE);
826 memcpy(buf, tmp, i);
827 nbytes -= i;
828 buf += i;
829 ret += i;
830 }
831
832 /* Wipe data just returned from memory */
833 memset(tmp, 0, sizeof(tmp));
834
835 return ret;
836}
837
838static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
839 size_t nbytes)
840{
841 ssize_t ret = 0, i;
842 __u8 tmp[EXTRACT_SIZE];
843
844 xfer_secondary_pool(r, nbytes);
845 nbytes = account(r, nbytes, 0, 0);
846
847 while (nbytes) {
848 if (need_resched()) {
849 if (signal_pending(current)) {
850 if (ret == 0)
851 ret = -ERESTARTSYS;
852 break;
853 }
854 schedule();
855 }
856
857 extract_buf(r, tmp);
858 i = min_t(int, nbytes, EXTRACT_SIZE);
859 if (copy_to_user(buf, tmp, i)) {
860 ret = -EFAULT;
861 break;
862 }
863
864 nbytes -= i;
865 buf += i;
866 ret += i;
867 }
868
869 /* Wipe data just returned from memory */
870 memset(tmp, 0, sizeof(tmp));
871
872 return ret;
873}
874
875/*
876 * This function is the exported kernel interface. It returns some
877 * number of good random numbers, suitable for seeding TCP sequence
878 * numbers, etc.
879 */
880void get_random_bytes(void *buf, int nbytes)
881{
882 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
883}
1da177e4
LT
884EXPORT_SYMBOL(get_random_bytes);
885
886/*
887 * init_std_data - initialize pool with system data
888 *
889 * @r: pool to initialize
890 *
891 * This function clears the pool's entropy count and mixes some system
892 * data into the pool to prepare it for use. The pool is not cleared
893 * as that can only decrease the entropy in the pool.
894 */
895static void init_std_data(struct entropy_store *r)
896{
f8595815 897 ktime_t now;
1da177e4
LT
898 unsigned long flags;
899
900 spin_lock_irqsave(&r->lock, flags);
901 r->entropy_count = 0;
902 spin_unlock_irqrestore(&r->lock, flags);
903
f8595815 904 now = ktime_get_real();
e68e5b66
MM
905 mix_pool_bytes(r, &now, sizeof(now));
906 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1da177e4
LT
907}
908
53c3f63e 909static int rand_initialize(void)
1da177e4
LT
910{
911 init_std_data(&input_pool);
912 init_std_data(&blocking_pool);
913 init_std_data(&nonblocking_pool);
914 return 0;
915}
916module_init(rand_initialize);
917
918void rand_initialize_irq(int irq)
919{
920 struct timer_rand_state *state;
921
0b8f1efa 922#ifndef CONFIG_SPARSE_IRQ
3060d6fe
YL
923 if (irq >= nr_irqs)
924 return;
0b8f1efa 925#endif
3060d6fe
YL
926
927 state = get_timer_rand_state(irq);
928
929 if (state)
1da177e4
LT
930 return;
931
932 /*
f8595815 933 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
934 * source.
935 */
f8595815
ED
936 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
937 if (state)
3060d6fe 938 set_timer_rand_state(irq, state);
1da177e4
LT
939}
940
9361401e 941#ifdef CONFIG_BLOCK
1da177e4
LT
942void rand_initialize_disk(struct gendisk *disk)
943{
944 struct timer_rand_state *state;
945
946 /*
f8595815 947 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
948 * source.
949 */
f8595815
ED
950 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
951 if (state)
1da177e4 952 disk->random = state;
1da177e4 953}
9361401e 954#endif
1da177e4
LT
955
956static ssize_t
90b75ee5 957random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
958{
959 ssize_t n, retval = 0, count = 0;
960
961 if (nbytes == 0)
962 return 0;
963
964 while (nbytes > 0) {
965 n = nbytes;
966 if (n > SEC_XFER_SIZE)
967 n = SEC_XFER_SIZE;
968
969 DEBUG_ENT("reading %d bits\n", n*8);
970
971 n = extract_entropy_user(&blocking_pool, buf, n);
972
973 DEBUG_ENT("read got %d bits (%d still needed)\n",
974 n*8, (nbytes-n)*8);
975
976 if (n == 0) {
977 if (file->f_flags & O_NONBLOCK) {
978 retval = -EAGAIN;
979 break;
980 }
981
982 DEBUG_ENT("sleeping?\n");
983
984 wait_event_interruptible(random_read_wait,
985 input_pool.entropy_count >=
986 random_read_wakeup_thresh);
987
988 DEBUG_ENT("awake\n");
989
990 if (signal_pending(current)) {
991 retval = -ERESTARTSYS;
992 break;
993 }
994
995 continue;
996 }
997
998 if (n < 0) {
999 retval = n;
1000 break;
1001 }
1002 count += n;
1003 buf += n;
1004 nbytes -= n;
1005 break; /* This break makes the device work */
1006 /* like a named pipe */
1007 }
1008
1009 /*
1010 * If we gave the user some bytes, update the access time.
1011 */
1012 if (count)
1013 file_accessed(file);
1014
1015 return (count ? count : retval);
1016}
1017
1018static ssize_t
90b75ee5 1019urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1020{
1021 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1022}
1023
1024static unsigned int
1025random_poll(struct file *file, poll_table * wait)
1026{
1027 unsigned int mask;
1028
1029 poll_wait(file, &random_read_wait, wait);
1030 poll_wait(file, &random_write_wait, wait);
1031 mask = 0;
1032 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1033 mask |= POLLIN | POLLRDNORM;
1034 if (input_pool.entropy_count < random_write_wakeup_thresh)
1035 mask |= POLLOUT | POLLWRNORM;
1036 return mask;
1037}
1038
7f397dcd
MM
1039static int
1040write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1041{
1da177e4
LT
1042 size_t bytes;
1043 __u32 buf[16];
1044 const char __user *p = buffer;
1da177e4 1045
7f397dcd
MM
1046 while (count > 0) {
1047 bytes = min(count, sizeof(buf));
1048 if (copy_from_user(&buf, p, bytes))
1049 return -EFAULT;
1da177e4 1050
7f397dcd 1051 count -= bytes;
1da177e4
LT
1052 p += bytes;
1053
e68e5b66 1054 mix_pool_bytes(r, buf, bytes);
91f3f1e3 1055 cond_resched();
1da177e4 1056 }
7f397dcd
MM
1057
1058 return 0;
1059}
1060
90b75ee5
MM
1061static ssize_t random_write(struct file *file, const char __user *buffer,
1062 size_t count, loff_t *ppos)
7f397dcd
MM
1063{
1064 size_t ret;
1065 struct inode *inode = file->f_path.dentry->d_inode;
1066
1067 ret = write_pool(&blocking_pool, buffer, count);
1068 if (ret)
1069 return ret;
1070 ret = write_pool(&nonblocking_pool, buffer, count);
1071 if (ret)
1072 return ret;
1073
1074 inode->i_mtime = current_fs_time(inode->i_sb);
1075 mark_inode_dirty(inode);
1076 return (ssize_t)count;
1da177e4
LT
1077}
1078
43ae4860 1079static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1080{
1081 int size, ent_count;
1082 int __user *p = (int __user *)arg;
1083 int retval;
1084
1085 switch (cmd) {
1086 case RNDGETENTCNT:
43ae4860
MM
1087 /* inherently racy, no point locking */
1088 if (put_user(input_pool.entropy_count, p))
1da177e4
LT
1089 return -EFAULT;
1090 return 0;
1091 case RNDADDTOENTCNT:
1092 if (!capable(CAP_SYS_ADMIN))
1093 return -EPERM;
1094 if (get_user(ent_count, p))
1095 return -EFAULT;
adc782da 1096 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1097 return 0;
1098 case RNDADDENTROPY:
1099 if (!capable(CAP_SYS_ADMIN))
1100 return -EPERM;
1101 if (get_user(ent_count, p++))
1102 return -EFAULT;
1103 if (ent_count < 0)
1104 return -EINVAL;
1105 if (get_user(size, p++))
1106 return -EFAULT;
7f397dcd
MM
1107 retval = write_pool(&input_pool, (const char __user *)p,
1108 size);
1da177e4
LT
1109 if (retval < 0)
1110 return retval;
adc782da 1111 credit_entropy_bits(&input_pool, ent_count);
1da177e4
LT
1112 return 0;
1113 case RNDZAPENTCNT:
1114 case RNDCLEARPOOL:
1115 /* Clear the entropy pool counters. */
1116 if (!capable(CAP_SYS_ADMIN))
1117 return -EPERM;
53c3f63e 1118 rand_initialize();
1da177e4
LT
1119 return 0;
1120 default:
1121 return -EINVAL;
1122 }
1123}
1124
9a6f70bb
JD
1125static int random_fasync(int fd, struct file *filp, int on)
1126{
1127 return fasync_helper(fd, filp, on, &fasync);
1128}
1129
2b8693c0 1130const struct file_operations random_fops = {
1da177e4
LT
1131 .read = random_read,
1132 .write = random_write,
1133 .poll = random_poll,
43ae4860 1134 .unlocked_ioctl = random_ioctl,
9a6f70bb 1135 .fasync = random_fasync,
1da177e4
LT
1136};
1137
2b8693c0 1138const struct file_operations urandom_fops = {
1da177e4
LT
1139 .read = urandom_read,
1140 .write = random_write,
43ae4860 1141 .unlocked_ioctl = random_ioctl,
9a6f70bb 1142 .fasync = random_fasync,
1da177e4
LT
1143};
1144
1145/***************************************************************
1146 * Random UUID interface
1147 *
1148 * Used here for a Boot ID, but can be useful for other kernel
1149 * drivers.
1150 ***************************************************************/
1151
1152/*
1153 * Generate random UUID
1154 */
1155void generate_random_uuid(unsigned char uuid_out[16])
1156{
1157 get_random_bytes(uuid_out, 16);
1158 /* Set UUID version to 4 --- truely random generation */
1159 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1160 /* Set the UUID variant to DCE */
1161 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1162}
1da177e4
LT
1163EXPORT_SYMBOL(generate_random_uuid);
1164
1165/********************************************************************
1166 *
1167 * Sysctl interface
1168 *
1169 ********************************************************************/
1170
1171#ifdef CONFIG_SYSCTL
1172
1173#include <linux/sysctl.h>
1174
1175static int min_read_thresh = 8, min_write_thresh;
1176static int max_read_thresh = INPUT_POOL_WORDS * 32;
1177static int max_write_thresh = INPUT_POOL_WORDS * 32;
1178static char sysctl_bootid[16];
1179
1180/*
1181 * These functions is used to return both the bootid UUID, and random
1182 * UUID. The difference is in whether table->data is NULL; if it is,
1183 * then a new UUID is generated and returned to the user.
1184 *
1185 * If the user accesses this via the proc interface, it will be returned
1186 * as an ASCII string in the standard UUID format. If accesses via the
1187 * sysctl system call, it is returned as 16 bytes of binary data.
1188 */
1189static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1190 void __user *buffer, size_t *lenp, loff_t *ppos)
1191{
1192 ctl_table fake_table;
1193 unsigned char buf[64], tmp_uuid[16], *uuid;
1194
1195 uuid = table->data;
1196 if (!uuid) {
1197 uuid = tmp_uuid;
1198 uuid[8] = 0;
1199 }
1200 if (uuid[8] == 0)
1201 generate_random_uuid(uuid);
1202
1203 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1204 "%02x%02x%02x%02x%02x%02x",
1205 uuid[0], uuid[1], uuid[2], uuid[3],
1206 uuid[4], uuid[5], uuid[6], uuid[7],
1207 uuid[8], uuid[9], uuid[10], uuid[11],
1208 uuid[12], uuid[13], uuid[14], uuid[15]);
1209 fake_table.data = buf;
1210 fake_table.maxlen = sizeof(buf);
1211
1212 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1213}
1214
f221e726 1215static int uuid_strategy(ctl_table *table,
1da177e4 1216 void __user *oldval, size_t __user *oldlenp,
1f29bcd7 1217 void __user *newval, size_t newlen)
1da177e4
LT
1218{
1219 unsigned char tmp_uuid[16], *uuid;
1220 unsigned int len;
1221
1222 if (!oldval || !oldlenp)
1223 return 1;
1224
1225 uuid = table->data;
1226 if (!uuid) {
1227 uuid = tmp_uuid;
1228 uuid[8] = 0;
1229 }
1230 if (uuid[8] == 0)
1231 generate_random_uuid(uuid);
1232
1233 if (get_user(len, oldlenp))
1234 return -EFAULT;
1235 if (len) {
1236 if (len > 16)
1237 len = 16;
1238 if (copy_to_user(oldval, uuid, len) ||
1239 put_user(len, oldlenp))
1240 return -EFAULT;
1241 }
1242 return 1;
1243}
1244
1245static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1246ctl_table random_table[] = {
1247 {
1248 .ctl_name = RANDOM_POOLSIZE,
1249 .procname = "poolsize",
1250 .data = &sysctl_poolsize,
1251 .maxlen = sizeof(int),
1252 .mode = 0444,
1253 .proc_handler = &proc_dointvec,
1254 },
1255 {
1256 .ctl_name = RANDOM_ENTROPY_COUNT,
1257 .procname = "entropy_avail",
1258 .maxlen = sizeof(int),
1259 .mode = 0444,
1260 .proc_handler = &proc_dointvec,
1261 .data = &input_pool.entropy_count,
1262 },
1263 {
1264 .ctl_name = RANDOM_READ_THRESH,
1265 .procname = "read_wakeup_threshold",
1266 .data = &random_read_wakeup_thresh,
1267 .maxlen = sizeof(int),
1268 .mode = 0644,
1269 .proc_handler = &proc_dointvec_minmax,
1270 .strategy = &sysctl_intvec,
1271 .extra1 = &min_read_thresh,
1272 .extra2 = &max_read_thresh,
1273 },
1274 {
1275 .ctl_name = RANDOM_WRITE_THRESH,
1276 .procname = "write_wakeup_threshold",
1277 .data = &random_write_wakeup_thresh,
1278 .maxlen = sizeof(int),
1279 .mode = 0644,
1280 .proc_handler = &proc_dointvec_minmax,
1281 .strategy = &sysctl_intvec,
1282 .extra1 = &min_write_thresh,
1283 .extra2 = &max_write_thresh,
1284 },
1285 {
1286 .ctl_name = RANDOM_BOOT_ID,
1287 .procname = "boot_id",
1288 .data = &sysctl_bootid,
1289 .maxlen = 16,
1290 .mode = 0444,
1291 .proc_handler = &proc_do_uuid,
1292 .strategy = &uuid_strategy,
1293 },
1294 {
1295 .ctl_name = RANDOM_UUID,
1296 .procname = "uuid",
1297 .maxlen = 16,
1298 .mode = 0444,
1299 .proc_handler = &proc_do_uuid,
1300 .strategy = &uuid_strategy,
1301 },
1302 { .ctl_name = 0 }
1303};
1304#endif /* CONFIG_SYSCTL */
1305
1306/********************************************************************
1307 *
1308 * Random funtions for networking
1309 *
1310 ********************************************************************/
1311
1312/*
1313 * TCP initial sequence number picking. This uses the random number
1314 * generator to pick an initial secret value. This value is hashed
1315 * along with the TCP endpoint information to provide a unique
1316 * starting point for each pair of TCP endpoints. This defeats
1317 * attacks which rely on guessing the initial TCP sequence number.
1318 * This algorithm was suggested by Steve Bellovin.
1319 *
1320 * Using a very strong hash was taking an appreciable amount of the total
1321 * TCP connection establishment time, so this is a weaker hash,
1322 * compensated for by changing the secret periodically.
1323 */
1324
1325/* F, G and H are basic MD4 functions: selection, majority, parity */
1326#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1327#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1328#define H(x, y, z) ((x) ^ (y) ^ (z))
1329
1330/*
1331 * The generic round function. The application is so specific that
1332 * we don't bother protecting all the arguments with parens, as is generally
1333 * good macro practice, in favor of extra legibility.
1334 * Rotation is separate from addition to prevent recomputation
1335 */
1336#define ROUND(f, a, b, c, d, x, s) \
1337 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1338#define K1 0
1339#define K2 013240474631UL
1340#define K3 015666365641UL
1341
1342#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1343
90b75ee5 1344static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1da177e4
LT
1345{
1346 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1347
1348 /* Round 1 */
1349 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1350 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1351 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1352 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1353 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1354 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1355 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1356 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1357 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1358 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1359 ROUND(F, c, d, a, b, in[10] + K1, 11);
1360 ROUND(F, b, c, d, a, in[11] + K1, 19);
1361
1362 /* Round 2 */
1363 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1364 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1365 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1366 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1367 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1368 ROUND(G, d, a, b, c, in[11] + K2, 5);
1369 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1370 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1371 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1372 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1373 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1374 ROUND(G, b, c, d, a, in[10] + K2, 13);
1375
1376 /* Round 3 */
1377 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1378 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1379 ROUND(H, c, d, a, b, in[11] + K3, 11);
1380 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1381 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1382 ROUND(H, d, a, b, c, in[10] + K3, 9);
1383 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1384 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1385 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1386 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1387 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1388 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1389
1390 return buf[1] + b; /* "most hashed" word */
1391 /* Alternative: return sum of all words? */
1392}
1393#endif
1394
1395#undef ROUND
1396#undef F
1397#undef G
1398#undef H
1399#undef K1
1400#undef K2
1401#undef K3
1402
1403/* This should not be decreased so low that ISNs wrap too fast. */
1404#define REKEY_INTERVAL (300 * HZ)
1405/*
1406 * Bit layout of the tcp sequence numbers (before adding current time):
1407 * bit 24-31: increased after every key exchange
1408 * bit 0-23: hash(source,dest)
1409 *
1410 * The implementation is similar to the algorithm described
1411 * in the Appendix of RFC 1185, except that
1412 * - it uses a 1 MHz clock instead of a 250 kHz clock
1413 * - it performs a rekey every 5 minutes, which is equivalent
1414 * to a (source,dest) tulple dependent forward jump of the
1415 * clock by 0..2^(HASH_BITS+1)
1416 *
1417 * Thus the average ISN wraparound time is 68 minutes instead of
1418 * 4.55 hours.
1419 *
1420 * SMP cleanup and lock avoidance with poor man's RCU.
1421 * Manfred Spraul <manfred@colorfullife.com>
1422 *
1423 */
1424#define COUNT_BITS 8
1425#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1426#define HASH_BITS 24
1427#define HASH_MASK ((1 << HASH_BITS) - 1)
1428
1429static struct keydata {
1430 __u32 count; /* already shifted to the final position */
1431 __u32 secret[12];
1432} ____cacheline_aligned ip_keydata[2];
1433
1434static unsigned int ip_cnt;
1435
65f27f38 1436static void rekey_seq_generator(struct work_struct *work);
1da177e4 1437
65f27f38 1438static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1da177e4
LT
1439
1440/*
1441 * Lock avoidance:
1442 * The ISN generation runs lockless - it's just a hash over random data.
1443 * State changes happen every 5 minutes when the random key is replaced.
1444 * Synchronization is performed by having two copies of the hash function
1445 * state and rekey_seq_generator always updates the inactive copy.
1446 * The copy is then activated by updating ip_cnt.
1447 * The implementation breaks down if someone blocks the thread
1448 * that processes SYN requests for more than 5 minutes. Should never
1449 * happen, and even if that happens only a not perfectly compliant
1450 * ISN is generated, nothing fatal.
1451 */
65f27f38 1452static void rekey_seq_generator(struct work_struct *work)
1da177e4
LT
1453{
1454 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1455
1456 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1457 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1458 smp_wmb();
1459 ip_cnt++;
1460 schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1461}
1462
1463static inline struct keydata *get_keyptr(void)
1464{
1465 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1466
1467 smp_rmb();
1468
1469 return keyptr;
1470}
1471
1472static __init int seqgen_init(void)
1473{
1474 rekey_seq_generator(NULL);
1475 return 0;
1476}
1477late_initcall(seqgen_init);
1478
1479#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
b09b845c
AV
1480__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1481 __be16 sport, __be16 dport)
1da177e4 1482{
1da177e4
LT
1483 __u32 seq;
1484 __u32 hash[12];
1485 struct keydata *keyptr = get_keyptr();
1486
1487 /* The procedure is the same as for IPv4, but addresses are longer.
1488 * Thus we must use twothirdsMD4Transform.
1489 */
1490
1491 memcpy(hash, saddr, 16);
90b75ee5
MM
1492 hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1493 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1494
b09b845c 1495 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1da177e4
LT
1496 seq += keyptr->count;
1497
6dd10a62 1498 seq += ktime_to_ns(ktime_get_real());
1da177e4
LT
1499
1500 return seq;
1501}
1502EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1503#endif
1504
1505/* The code below is shamelessly stolen from secure_tcp_sequence_number().
1506 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1507 */
b09b845c 1508__u32 secure_ip_id(__be32 daddr)
1da177e4
LT
1509{
1510 struct keydata *keyptr;
1511 __u32 hash[4];
1512
1513 keyptr = get_keyptr();
1514
1515 /*
1516 * Pick a unique starting offset for each IP destination.
1517 * The dest ip address is placed in the starting vector,
1518 * which is then hashed with random data.
1519 */
b09b845c 1520 hash[0] = (__force __u32)daddr;
1da177e4
LT
1521 hash[1] = keyptr->secret[9];
1522 hash[2] = keyptr->secret[10];
1523 hash[3] = keyptr->secret[11];
1524
1525 return half_md4_transform(hash, keyptr->secret);
1526}
1527
1528#ifdef CONFIG_INET
1529
b09b845c
AV
1530__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1531 __be16 sport, __be16 dport)
1da177e4 1532{
1da177e4
LT
1533 __u32 seq;
1534 __u32 hash[4];
1535 struct keydata *keyptr = get_keyptr();
1536
1537 /*
1538 * Pick a unique starting offset for each TCP connection endpoints
1539 * (saddr, daddr, sport, dport).
1540 * Note that the words are placed into the starting vector, which is
1541 * then mixed with a partial MD4 over random data.
1542 */
90b75ee5
MM
1543 hash[0] = (__force u32)saddr;
1544 hash[1] = (__force u32)daddr;
1545 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1546 hash[3] = keyptr->secret[11];
1da177e4
LT
1547
1548 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1549 seq += keyptr->count;
1550 /*
1551 * As close as possible to RFC 793, which
1552 * suggests using a 250 kHz clock.
1553 * Further reading shows this assumes 2 Mb/s networks.
9b42c336
ED
1554 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1555 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1556 * we also need to limit the resolution so that the u32 seq
1557 * overlaps less than one time per MSL (2 minutes).
1558 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1da177e4 1559 */
6dd10a62 1560 seq += ktime_to_ns(ktime_get_real()) >> 6;
90b75ee5 1561
1da177e4
LT
1562 return seq;
1563}
1564
a7f5e7f1 1565/* Generate secure starting point for ephemeral IPV4 transport port search */
b09b845c 1566u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1da177e4
LT
1567{
1568 struct keydata *keyptr = get_keyptr();
1569 u32 hash[4];
1570
1571 /*
1572 * Pick a unique starting offset for each ephemeral port search
1573 * (saddr, daddr, dport) and 48bits of random data.
1574 */
b09b845c
AV
1575 hash[0] = (__force u32)saddr;
1576 hash[1] = (__force u32)daddr;
1577 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1da177e4
LT
1578 hash[3] = keyptr->secret[11];
1579
1580 return half_md4_transform(hash, keyptr->secret);
1581}
9f593653 1582EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1da177e4
LT
1583
1584#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
90b75ee5
MM
1585u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1586 __be16 dport)
1da177e4
LT
1587{
1588 struct keydata *keyptr = get_keyptr();
1589 u32 hash[12];
1590
1591 memcpy(hash, saddr, 16);
b09b845c 1592 hash[4] = (__force u32)dport;
90b75ee5 1593 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1da177e4 1594
b09b845c 1595 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1da177e4 1596}
1da177e4
LT
1597#endif
1598
c4365c92
ACM
1599#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1600/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1601 * bit's 32-47 increase every key exchange
1602 * 0-31 hash(source, dest)
1603 */
b09b845c
AV
1604u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1605 __be16 sport, __be16 dport)
c4365c92 1606{
c4365c92
ACM
1607 u64 seq;
1608 __u32 hash[4];
1609 struct keydata *keyptr = get_keyptr();
1610
b09b845c
AV
1611 hash[0] = (__force u32)saddr;
1612 hash[1] = (__force u32)daddr;
1613 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
c4365c92
ACM
1614 hash[3] = keyptr->secret[11];
1615
1616 seq = half_md4_transform(hash, keyptr->secret);
1617 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1618
6dd10a62 1619 seq += ktime_to_ns(ktime_get_real());
c4365c92 1620 seq &= (1ull << 48) - 1;
90b75ee5 1621
c4365c92
ACM
1622 return seq;
1623}
c4365c92
ACM
1624EXPORT_SYMBOL(secure_dccp_sequence_number);
1625#endif
1626
1da177e4
LT
1627#endif /* CONFIG_INET */
1628
1629
1630/*
1631 * Get a random word for internal kernel use only. Similar to urandom but
1632 * with the goal of minimal entropy pool depletion. As a result, the random
1633 * value is not cryptographically secure but for several uses the cost of
1634 * depleting entropy is too high
1635 */
1636unsigned int get_random_int(void)
1637{
1638 /*
1639 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1640 * every second, from the entropy pool (and thus creates a limited
1641 * drain on it), and uses halfMD4Transform within the second. We
1642 * also mix it with jiffies and the PID:
1643 */
b09b845c 1644 return secure_ip_id((__force __be32)(current->pid + jiffies));
1da177e4
LT
1645}
1646
1647/*
1648 * randomize_range() returns a start address such that
1649 *
1650 * [...... <range> .....]
1651 * start end
1652 *
1653 * a <range> with size "len" starting at the return value is inside in the
1654 * area defined by [start, end], but is otherwise randomized.
1655 */
1656unsigned long
1657randomize_range(unsigned long start, unsigned long end, unsigned long len)
1658{
1659 unsigned long range = end - len - start;
1660
1661 if (end <= start + len)
1662 return 0;
1663 return PAGE_ALIGN(get_random_int() % range + start);
1664}
This page took 0.493026 seconds and 5 git commands to generate.