random: cap the rate which the /dev/urandom pool gets reseeded
[deliverable/linux.git] / drivers / char / random.c
CommitLineData
1da177e4
LT
1/*
2 * random.c -- A strong random number generator
3 *
9e95ce27 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
1da177e4
LT
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
a2080a67 128 * void add_device_randomness(const void *buf, unsigned int size);
1da177e4
LT
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
775f4b29 131 * void add_interrupt_randomness(int irq, int irq_flags);
442a4fff 132 * void add_disk_randomness(struct gendisk *disk);
1da177e4 133 *
a2080a67
LT
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
1da177e4
LT
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
775f4b29
TT
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
442a4fff
JW
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
1da177e4
LT
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
1da177e4
LT
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
27ac792c 251#include <linux/mm.h>
1da177e4
LT
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
5b739ef8 255#include <linux/fips.h>
775f4b29 256#include <linux/ptrace.h>
e6d4947b 257#include <linux/kmemcheck.h>
1da177e4 258
d178a1eb
YL
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
1da177e4
LT
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
775f4b29 266#include <asm/irq_regs.h>
1da177e4
LT
267#include <asm/io.h>
268
00ce1db1
TT
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
1da177e4
LT
272/*
273 * Configuration information
274 */
30e37ec5
PA
275#define INPUT_POOL_SHIFT 12
276#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
277#define OUTPUT_POOL_SHIFT 10
278#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
279#define SEC_XFER_SIZE 512
280#define EXTRACT_SIZE 10
1da177e4 281
d2e7c96a
PA
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
a283b5c4
PA
284/*
285 * To allow fractional bits to be tracked, the following fields contain
286 * this many fractional bits:
287 *
288 * entropy_count, trickle_thresh
30e37ec5
PA
289 *
290 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
291 * credit_entropy_bits() needs to be 64 bits wide.
a283b5c4
PA
292 */
293#define ENTROPY_SHIFT 3
294#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
295
1da177e4
LT
296/*
297 * The minimum number of bits of entropy before we wake up a read on
298 * /dev/random. Should be enough to do a significant reseed.
299 */
300static int random_read_wakeup_thresh = 64;
301
302/*
303 * If the entropy count falls under this number of bits, then we
304 * should wake up processes which are selecting or polling on write
305 * access to /dev/random.
306 */
307static int random_write_wakeup_thresh = 128;
308
f5c2742c
TT
309/*
310 * The minimum number of seconds between urandom pool resending. We
311 * do this to limit the amount of entropy that can be drained from the
312 * input pool even if there are heavy demands on /dev/urandom.
313 */
314static int random_min_urandom_seed = 60;
315
1da177e4
LT
316/*
317 * When the input pool goes over trickle_thresh, start dropping most
318 * samples to avoid wasting CPU time and reduce lock contention.
319 */
a283b5c4 320static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
1da177e4 321
90b75ee5 322static DEFINE_PER_CPU(int, trickle_count);
1da177e4
LT
323
324/*
325 * A pool of size .poolwords is stirred with a primitive polynomial
326 * of degree .poolwords over GF(2). The taps for various sizes are
327 * defined below. They are chosen to be evenly spaced (minimum RMS
328 * distance from evenly spaced; the numbers in the comments are a
329 * scaled squared error sum) except for the last tap, which is 1 to
330 * get the twisting happening as fast as possible.
331 */
9ed17b70 332
1da177e4 333static struct poolinfo {
a283b5c4
PA
334 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
335#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
1da177e4
LT
336 int tap1, tap2, tap3, tap4, tap5;
337} poolinfo_table[] = {
338 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
9ed17b70 339 { S(128), 103, 76, 51, 25, 1 },
1da177e4 340 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
9ed17b70 341 { S(32), 26, 20, 14, 7, 1 },
1da177e4
LT
342#if 0
343 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
9ed17b70 344 { S(2048), 1638, 1231, 819, 411, 1 },
1da177e4
LT
345
346 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
9ed17b70 347 { S(1024), 817, 615, 412, 204, 1 },
1da177e4
LT
348
349 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
9ed17b70 350 { S(1024), 819, 616, 410, 207, 2 },
1da177e4
LT
351
352 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
9ed17b70 353 { S(512), 411, 308, 208, 104, 1 },
1da177e4
LT
354
355 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
9ed17b70 356 { S(512), 409, 307, 206, 102, 2 },
1da177e4 357 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
9ed17b70 358 { S(512), 409, 309, 205, 103, 2 },
1da177e4
LT
359
360 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
9ed17b70 361 { S(256), 205, 155, 101, 52, 1 },
1da177e4
LT
362
363 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
9ed17b70 364 { S(128), 103, 78, 51, 27, 2 },
1da177e4
LT
365
366 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
9ed17b70 367 { S(64), 52, 39, 26, 14, 1 },
1da177e4
LT
368#endif
369};
370
1da177e4
LT
371/*
372 * For the purposes of better mixing, we use the CRC-32 polynomial as
373 * well to make a twisted Generalized Feedback Shift Reigster
374 *
375 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
376 * Transactions on Modeling and Computer Simulation 2(3):179-194.
377 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
378 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
379 *
380 * Thanks to Colin Plumb for suggesting this.
381 *
382 * We have not analyzed the resultant polynomial to prove it primitive;
383 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
384 * of a random large-degree polynomial over GF(2) are more than large enough
385 * that periodicity is not a concern.
386 *
387 * The input hash is much less sensitive than the output hash. All
388 * that we want of it is that it be a good non-cryptographic hash;
389 * i.e. it not produce collisions when fed "random" data of the sort
390 * we expect to see. As long as the pool state differs for different
391 * inputs, we have preserved the input entropy and done a good job.
392 * The fact that an intelligent attacker can construct inputs that
393 * will produce controlled alterations to the pool's state is not
394 * important because we don't consider such inputs to contribute any
395 * randomness. The only property we need with respect to them is that
396 * the attacker can't increase his/her knowledge of the pool's state.
397 * Since all additions are reversible (knowing the final state and the
398 * input, you can reconstruct the initial state), if an attacker has
399 * any uncertainty about the initial state, he/she can only shuffle
400 * that uncertainty about, but never cause any collisions (which would
401 * decrease the uncertainty).
402 *
403 * The chosen system lets the state of the pool be (essentially) the input
404 * modulo the generator polymnomial. Now, for random primitive polynomials,
405 * this is a universal class of hash functions, meaning that the chance
406 * of a collision is limited by the attacker's knowledge of the generator
407 * polynomail, so if it is chosen at random, an attacker can never force
408 * a collision. Here, we use a fixed polynomial, but we *can* assume that
409 * ###--> it is unknown to the processes generating the input entropy. <-###
410 * Because of this important property, this is a good, collision-resistant
411 * hash; hash collisions will occur no more often than chance.
412 */
413
414/*
415 * Static global variables
416 */
417static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
418static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
9a6f70bb 419static struct fasync_struct *fasync;
1da177e4 420
90ab5ee9 421static bool debug;
1da177e4 422module_param(debug, bool, 0644);
90b75ee5
MM
423#define DEBUG_ENT(fmt, arg...) do { \
424 if (debug) \
425 printk(KERN_DEBUG "random %04d %04d %04d: " \
426 fmt,\
427 input_pool.entropy_count,\
428 blocking_pool.entropy_count,\
429 nonblocking_pool.entropy_count,\
430 ## arg); } while (0)
1da177e4
LT
431
432/**********************************************************************
433 *
434 * OS independent entropy store. Here are the functions which handle
435 * storing entropy in an entropy pool.
436 *
437 **********************************************************************/
438
439struct entropy_store;
440struct entropy_store {
43358209 441 /* read-only data: */
30e37ec5 442 const struct poolinfo *poolinfo;
1da177e4
LT
443 __u32 *pool;
444 const char *name;
1da177e4
LT
445 struct entropy_store *pull;
446
447 /* read-write data: */
f5c2742c 448 unsigned long last_pulled;
43358209 449 spinlock_t lock;
c59974ae
TT
450 unsigned short add_ptr;
451 unsigned short input_rotate;
cda796a3 452 int entropy_count;
775f4b29 453 int entropy_total;
775f4b29 454 unsigned int initialized:1;
c59974ae
TT
455 unsigned int limit:1;
456 unsigned int last_data_init:1;
e954bc91 457 __u8 last_data[EXTRACT_SIZE];
1da177e4
LT
458};
459
460static __u32 input_pool_data[INPUT_POOL_WORDS];
461static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
462static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
463
464static struct entropy_store input_pool = {
465 .poolinfo = &poolinfo_table[0],
466 .name = "input",
467 .limit = 1,
eece09ec 468 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
1da177e4
LT
469 .pool = input_pool_data
470};
471
472static struct entropy_store blocking_pool = {
473 .poolinfo = &poolinfo_table[1],
474 .name = "blocking",
475 .limit = 1,
476 .pull = &input_pool,
eece09ec 477 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
1da177e4
LT
478 .pool = blocking_pool_data
479};
480
481static struct entropy_store nonblocking_pool = {
482 .poolinfo = &poolinfo_table[1],
483 .name = "nonblocking",
484 .pull = &input_pool,
eece09ec 485 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
1da177e4
LT
486 .pool = nonblocking_pool_data
487};
488
775f4b29
TT
489static __u32 const twist_table[8] = {
490 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
491 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
492
1da177e4 493/*
e68e5b66 494 * This function adds bytes into the entropy "pool". It does not
1da177e4 495 * update the entropy estimate. The caller should call
adc782da 496 * credit_entropy_bits if this is appropriate.
1da177e4
LT
497 *
498 * The pool is stirred with a primitive polynomial of the appropriate
499 * degree, and then twisted. We twist by three bits at a time because
500 * it's cheap to do so and helps slightly in the expected case where
501 * the entropy is concentrated in the low-order bits.
502 */
00ce1db1
TT
503static void _mix_pool_bytes(struct entropy_store *r, const void *in,
504 int nbytes, __u8 out[64])
1da177e4 505{
993ba211 506 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
feee7697 507 int input_rotate;
1da177e4 508 int wordmask = r->poolinfo->poolwords - 1;
e68e5b66 509 const char *bytes = in;
6d38b827 510 __u32 w;
1da177e4 511
1da177e4
LT
512 tap1 = r->poolinfo->tap1;
513 tap2 = r->poolinfo->tap2;
514 tap3 = r->poolinfo->tap3;
515 tap4 = r->poolinfo->tap4;
516 tap5 = r->poolinfo->tap5;
1da177e4 517
902c098a
TT
518 smp_rmb();
519 input_rotate = ACCESS_ONCE(r->input_rotate);
520 i = ACCESS_ONCE(r->add_ptr);
1da177e4 521
e68e5b66
MM
522 /* mix one byte at a time to simplify size handling and churn faster */
523 while (nbytes--) {
c59974ae 524 w = rol32(*bytes++, input_rotate);
993ba211 525 i = (i - 1) & wordmask;
1da177e4
LT
526
527 /* XOR in the various taps */
993ba211 528 w ^= r->pool[i];
1da177e4
LT
529 w ^= r->pool[(i + tap1) & wordmask];
530 w ^= r->pool[(i + tap2) & wordmask];
531 w ^= r->pool[(i + tap3) & wordmask];
532 w ^= r->pool[(i + tap4) & wordmask];
533 w ^= r->pool[(i + tap5) & wordmask];
993ba211
MM
534
535 /* Mix the result back in with a twist */
1da177e4 536 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
feee7697
MM
537
538 /*
539 * Normally, we add 7 bits of rotation to the pool.
540 * At the beginning of the pool, add an extra 7 bits
541 * rotation, so that successive passes spread the
542 * input bits across the pool evenly.
543 */
c59974ae 544 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1da177e4
LT
545 }
546
902c098a
TT
547 ACCESS_ONCE(r->input_rotate) = input_rotate;
548 ACCESS_ONCE(r->add_ptr) = i;
549 smp_wmb();
1da177e4 550
993ba211
MM
551 if (out)
552 for (j = 0; j < 16; j++)
e68e5b66 553 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
1da177e4
LT
554}
555
00ce1db1 556static void __mix_pool_bytes(struct entropy_store *r, const void *in,
902c098a 557 int nbytes, __u8 out[64])
00ce1db1
TT
558{
559 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
560 _mix_pool_bytes(r, in, nbytes, out);
561}
562
563static void mix_pool_bytes(struct entropy_store *r, const void *in,
564 int nbytes, __u8 out[64])
1da177e4 565{
902c098a
TT
566 unsigned long flags;
567
00ce1db1 568 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
902c098a 569 spin_lock_irqsave(&r->lock, flags);
00ce1db1 570 _mix_pool_bytes(r, in, nbytes, out);
902c098a 571 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
572}
573
775f4b29
TT
574struct fast_pool {
575 __u32 pool[4];
576 unsigned long last;
577 unsigned short count;
578 unsigned char rotate;
579 unsigned char last_timer_intr;
580};
581
582/*
583 * This is a fast mixing routine used by the interrupt randomness
584 * collector. It's hardcoded for an 128 bit pool and assumes that any
585 * locks that might be needed are taken by the caller.
586 */
587static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
588{
589 const char *bytes = in;
590 __u32 w;
591 unsigned i = f->count;
592 unsigned input_rotate = f->rotate;
593
594 while (nbytes--) {
595 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
596 f->pool[(i + 1) & 3];
597 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
598 input_rotate += (i++ & 3) ? 7 : 14;
599 }
600 f->count = i;
601 f->rotate = input_rotate;
602}
603
1da177e4 604/*
a283b5c4
PA
605 * Credit (or debit) the entropy store with n bits of entropy.
606 * Use credit_entropy_bits_safe() if the value comes from userspace
607 * or otherwise should be checked for extreme values.
1da177e4 608 */
adc782da 609static void credit_entropy_bits(struct entropy_store *r, int nbits)
1da177e4 610{
902c098a 611 int entropy_count, orig;
30e37ec5
PA
612 const int pool_size = r->poolinfo->poolfracbits;
613 int nfrac = nbits << ENTROPY_SHIFT;
1da177e4 614
adc782da
MM
615 if (!nbits)
616 return;
617
adc782da 618 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
902c098a
TT
619retry:
620 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
30e37ec5
PA
621 if (nfrac < 0) {
622 /* Debit */
623 entropy_count += nfrac;
624 } else {
625 /*
626 * Credit: we have to account for the possibility of
627 * overwriting already present entropy. Even in the
628 * ideal case of pure Shannon entropy, new contributions
629 * approach the full value asymptotically:
630 *
631 * entropy <- entropy + (pool_size - entropy) *
632 * (1 - exp(-add_entropy/pool_size))
633 *
634 * For add_entropy <= pool_size/2 then
635 * (1 - exp(-add_entropy/pool_size)) >=
636 * (add_entropy/pool_size)*0.7869...
637 * so we can approximate the exponential with
638 * 3/4*add_entropy/pool_size and still be on the
639 * safe side by adding at most pool_size/2 at a time.
640 *
641 * The use of pool_size-2 in the while statement is to
642 * prevent rounding artifacts from making the loop
643 * arbitrarily long; this limits the loop to log2(pool_size)*2
644 * turns no matter how large nbits is.
645 */
646 int pnfrac = nfrac;
647 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
648 /* The +2 corresponds to the /4 in the denominator */
649
650 do {
651 unsigned int anfrac = min(pnfrac, pool_size/2);
652 unsigned int add =
653 ((pool_size - entropy_count)*anfrac*3) >> s;
654
655 entropy_count += add;
656 pnfrac -= anfrac;
657 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
658 }
00ce1db1 659
8b76f46a 660 if (entropy_count < 0) {
adc782da 661 DEBUG_ENT("negative entropy/overflow\n");
8b76f46a 662 entropy_count = 0;
30e37ec5
PA
663 } else if (entropy_count > pool_size)
664 entropy_count = pool_size;
902c098a
TT
665 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
666 goto retry;
1da177e4 667
775f4b29
TT
668 if (!r->initialized && nbits > 0) {
669 r->entropy_total += nbits;
670 if (r->entropy_total > 128)
671 r->initialized = 1;
672 }
673
a283b5c4
PA
674 trace_credit_entropy_bits(r->name, nbits,
675 entropy_count >> ENTROPY_SHIFT,
00ce1db1
TT
676 r->entropy_total, _RET_IP_);
677
88c730da 678 /* should we wake readers? */
a283b5c4
PA
679 if (r == &input_pool &&
680 (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
88c730da 681 wake_up_interruptible(&random_read_wait);
9a6f70bb
JD
682 kill_fasync(&fasync, SIGIO, POLL_IN);
683 }
1da177e4
LT
684}
685
a283b5c4
PA
686static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
687{
688 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
689
690 /* Cap the value to avoid overflows */
691 nbits = min(nbits, nbits_max);
692 nbits = max(nbits, -nbits_max);
693
694 credit_entropy_bits(r, nbits);
695}
696
1da177e4
LT
697/*********************************************************************
698 *
699 * Entropy input management
700 *
701 *********************************************************************/
702
703/* There is one of these per entropy source */
704struct timer_rand_state {
705 cycles_t last_time;
90b75ee5 706 long last_delta, last_delta2;
1da177e4
LT
707 unsigned dont_count_entropy:1;
708};
709
a2080a67
LT
710/*
711 * Add device- or boot-specific data to the input and nonblocking
712 * pools to help initialize them to unique values.
713 *
714 * None of this adds any entropy, it is meant to avoid the
715 * problem of the nonblocking pool having similar initial state
716 * across largely identical devices.
717 */
718void add_device_randomness(const void *buf, unsigned int size)
719{
61875f30 720 unsigned long time = random_get_entropy() ^ jiffies;
3ef4cb2d 721 unsigned long flags;
a2080a67 722
5910895f 723 trace_add_device_randomness(size, _RET_IP_);
3ef4cb2d
TT
724 spin_lock_irqsave(&input_pool.lock, flags);
725 _mix_pool_bytes(&input_pool, buf, size, NULL);
726 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
727 spin_unlock_irqrestore(&input_pool.lock, flags);
728
729 spin_lock_irqsave(&nonblocking_pool.lock, flags);
730 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
731 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
732 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
a2080a67
LT
733}
734EXPORT_SYMBOL(add_device_randomness);
735
3060d6fe
YL
736static struct timer_rand_state input_timer_state;
737
1da177e4
LT
738/*
739 * This function adds entropy to the entropy "pool" by using timing
740 * delays. It uses the timer_rand_state structure to make an estimate
741 * of how many bits of entropy this call has added to the pool.
742 *
743 * The number "num" is also added to the pool - it should somehow describe
744 * the type of event which just happened. This is currently 0-255 for
745 * keyboard scan codes, and 256 upwards for interrupts.
746 *
747 */
748static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
749{
750 struct {
1da177e4 751 long jiffies;
cf833d0b 752 unsigned cycles;
1da177e4
LT
753 unsigned num;
754 } sample;
755 long delta, delta2, delta3;
756
757 preempt_disable();
758 /* if over the trickle threshold, use only 1 in 4096 samples */
a283b5c4 759 if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
b29c617a 760 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
1da177e4
LT
761 goto out;
762
763 sample.jiffies = jiffies;
61875f30 764 sample.cycles = random_get_entropy();
1da177e4 765 sample.num = num;
902c098a 766 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
1da177e4
LT
767
768 /*
769 * Calculate number of bits of randomness we probably added.
770 * We take into account the first, second and third-order deltas
771 * in order to make our estimate.
772 */
773
774 if (!state->dont_count_entropy) {
775 delta = sample.jiffies - state->last_time;
776 state->last_time = sample.jiffies;
777
778 delta2 = delta - state->last_delta;
779 state->last_delta = delta;
780
781 delta3 = delta2 - state->last_delta2;
782 state->last_delta2 = delta2;
783
784 if (delta < 0)
785 delta = -delta;
786 if (delta2 < 0)
787 delta2 = -delta2;
788 if (delta3 < 0)
789 delta3 = -delta3;
790 if (delta > delta2)
791 delta = delta2;
792 if (delta > delta3)
793 delta = delta3;
794
795 /*
796 * delta is now minimum absolute delta.
797 * Round down by 1 bit on general principles,
798 * and limit entropy entimate to 12 bits.
799 */
adc782da
MM
800 credit_entropy_bits(&input_pool,
801 min_t(int, fls(delta>>1), 11));
1da177e4 802 }
1da177e4
LT
803out:
804 preempt_enable();
805}
806
d251575a 807void add_input_randomness(unsigned int type, unsigned int code,
1da177e4
LT
808 unsigned int value)
809{
810 static unsigned char last_value;
811
812 /* ignore autorepeat and the like */
813 if (value == last_value)
814 return;
815
816 DEBUG_ENT("input event\n");
817 last_value = value;
818 add_timer_randomness(&input_timer_state,
819 (type << 4) ^ code ^ (code >> 4) ^ value);
820}
80fc9f53 821EXPORT_SYMBOL_GPL(add_input_randomness);
1da177e4 822
775f4b29
TT
823static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
824
825void add_interrupt_randomness(int irq, int irq_flags)
1da177e4 826{
775f4b29
TT
827 struct entropy_store *r;
828 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
829 struct pt_regs *regs = get_irq_regs();
830 unsigned long now = jiffies;
61875f30 831 __u32 input[4], cycles = random_get_entropy();
775f4b29
TT
832
833 input[0] = cycles ^ jiffies;
834 input[1] = irq;
835 if (regs) {
836 __u64 ip = instruction_pointer(regs);
837 input[2] = ip;
838 input[3] = ip >> 32;
839 }
3060d6fe 840
775f4b29 841 fast_mix(fast_pool, input, sizeof(input));
3060d6fe 842
775f4b29
TT
843 if ((fast_pool->count & 1023) &&
844 !time_after(now, fast_pool->last + HZ))
1da177e4
LT
845 return;
846
775f4b29
TT
847 fast_pool->last = now;
848
849 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
902c098a 850 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
775f4b29
TT
851 /*
852 * If we don't have a valid cycle counter, and we see
853 * back-to-back timer interrupts, then skip giving credit for
854 * any entropy.
855 */
856 if (cycles == 0) {
857 if (irq_flags & __IRQF_TIMER) {
858 if (fast_pool->last_timer_intr)
859 return;
860 fast_pool->last_timer_intr = 1;
861 } else
862 fast_pool->last_timer_intr = 0;
863 }
864 credit_entropy_bits(r, 1);
1da177e4
LT
865}
866
9361401e 867#ifdef CONFIG_BLOCK
1da177e4
LT
868void add_disk_randomness(struct gendisk *disk)
869{
870 if (!disk || !disk->random)
871 return;
872 /* first major is 1, so we get >= 0x200 here */
f331c029
TH
873 DEBUG_ENT("disk event %d:%d\n",
874 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
1da177e4 875
f331c029 876 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1da177e4 877}
9361401e 878#endif
1da177e4 879
1da177e4
LT
880/*********************************************************************
881 *
882 * Entropy extraction routines
883 *
884 *********************************************************************/
885
90b75ee5 886static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1da177e4
LT
887 size_t nbytes, int min, int rsvd);
888
889/*
25985edc 890 * This utility inline function is responsible for transferring entropy
1da177e4
LT
891 * from the primary pool to the secondary extraction pool. We make
892 * sure we pull enough for a 'catastrophic reseed'.
893 */
894static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
895{
d2e7c96a 896 __u32 tmp[OUTPUT_POOL_WORDS];
1da177e4 897
f5c2742c
TT
898 if (r->limit == 0 && random_min_urandom_seed) {
899 unsigned long now = jiffies;
900
901 if (time_before(now,
902 r->last_pulled + random_min_urandom_seed * HZ))
903 return;
904 r->last_pulled = now;
905 }
a283b5c4
PA
906 if (r->pull &&
907 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
908 r->entropy_count < r->poolinfo->poolfracbits) {
5a021e9f 909 /* If we're limited, always leave two wakeup worth's BITS */
1da177e4 910 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
5a021e9f
MM
911 int bytes = nbytes;
912
913 /* pull at least as many as BYTES as wakeup BITS */
914 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
915 /* but never more than the buffer size */
d2e7c96a 916 bytes = min_t(int, bytes, sizeof(tmp));
1da177e4
LT
917
918 DEBUG_ENT("going to reseed %s with %d bits "
8eb2ffbf 919 "(%zu of %d requested)\n",
a283b5c4
PA
920 r->name, bytes * 8, nbytes * 8,
921 r->entropy_count >> ENTROPY_SHIFT);
1da177e4 922
d2e7c96a 923 bytes = extract_entropy(r->pull, tmp, bytes,
90b75ee5 924 random_read_wakeup_thresh / 8, rsvd);
d2e7c96a 925 mix_pool_bytes(r, tmp, bytes, NULL);
adc782da 926 credit_entropy_bits(r, bytes*8);
1da177e4
LT
927 }
928}
929
930/*
931 * These functions extracts randomness from the "entropy pool", and
932 * returns it in a buffer.
933 *
934 * The min parameter specifies the minimum amount we can pull before
935 * failing to avoid races that defeat catastrophic reseeding while the
936 * reserved parameter indicates how much entropy we must leave in the
937 * pool after each pull to avoid starving other readers.
938 *
939 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
940 */
941
942static size_t account(struct entropy_store *r, size_t nbytes, int min,
943 int reserved)
944{
945 unsigned long flags;
b9809552 946 int wakeup_write = 0;
a283b5c4
PA
947 int have_bytes;
948 int entropy_count, orig;
949 size_t ibytes;
1da177e4 950
1da177e4
LT
951 /* Hold lock while accounting */
952 spin_lock_irqsave(&r->lock, flags);
953
a283b5c4 954 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
8eb2ffbf 955 DEBUG_ENT("trying to extract %zu bits from %s\n",
1da177e4
LT
956 nbytes * 8, r->name);
957
958 /* Can we pull enough? */
10b3a32d 959retry:
a283b5c4
PA
960 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
961 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
962 ibytes = nbytes;
963 if (have_bytes < min + reserved) {
964 ibytes = 0;
965 } else {
1da177e4 966 /* If limited, never pull more than available */
a283b5c4
PA
967 if (r->limit && ibytes + reserved >= have_bytes)
968 ibytes = have_bytes - reserved;
969
970 if (have_bytes >= ibytes + reserved)
971 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
972 else
973 entropy_count = reserved << (ENTROPY_SHIFT + 3);
10b3a32d 974
a283b5c4
PA
975 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
976 goto retry;
977
978 if ((r->entropy_count >> ENTROPY_SHIFT)
979 < random_write_wakeup_thresh)
b9809552 980 wakeup_write = 1;
1da177e4
LT
981 }
982
8eb2ffbf 983 DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
a283b5c4 984 ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
1da177e4
LT
985
986 spin_unlock_irqrestore(&r->lock, flags);
987
b9809552
TT
988 if (wakeup_write) {
989 wake_up_interruptible(&random_write_wait);
990 kill_fasync(&fasync, SIGIO, POLL_OUT);
991 }
992
a283b5c4 993 return ibytes;
1da177e4
LT
994}
995
996static void extract_buf(struct entropy_store *r, __u8 *out)
997{
602b6aee 998 int i;
d2e7c96a
PA
999 union {
1000 __u32 w[5];
85a1f777 1001 unsigned long l[LONGS(20)];
d2e7c96a
PA
1002 } hash;
1003 __u32 workspace[SHA_WORKSPACE_WORDS];
e68e5b66 1004 __u8 extract[64];
902c098a 1005 unsigned long flags;
1da177e4 1006
1c0ad3d4 1007 /* Generate a hash across the pool, 16 words (512 bits) at a time */
d2e7c96a 1008 sha_init(hash.w);
902c098a 1009 spin_lock_irqsave(&r->lock, flags);
1c0ad3d4 1010 for (i = 0; i < r->poolinfo->poolwords; i += 16)
d2e7c96a 1011 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1c0ad3d4 1012
85a1f777
TT
1013 /*
1014 * If we have a architectural hardware random number
1015 * generator, mix that in, too.
1016 */
1017 for (i = 0; i < LONGS(20); i++) {
1018 unsigned long v;
1019 if (!arch_get_random_long(&v))
1020 break;
1021 hash.l[i] ^= v;
1022 }
1023
1da177e4 1024 /*
1c0ad3d4
MM
1025 * We mix the hash back into the pool to prevent backtracking
1026 * attacks (where the attacker knows the state of the pool
1027 * plus the current outputs, and attempts to find previous
1028 * ouputs), unless the hash function can be inverted. By
1029 * mixing at least a SHA1 worth of hash data back, we make
1030 * brute-forcing the feedback as hard as brute-forcing the
1031 * hash.
1da177e4 1032 */
d2e7c96a 1033 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
902c098a 1034 spin_unlock_irqrestore(&r->lock, flags);
1da177e4
LT
1035
1036 /*
1c0ad3d4
MM
1037 * To avoid duplicates, we atomically extract a portion of the
1038 * pool while mixing, and hash one final time.
1da177e4 1039 */
d2e7c96a 1040 sha_transform(hash.w, extract, workspace);
ffd8d3fa
MM
1041 memset(extract, 0, sizeof(extract));
1042 memset(workspace, 0, sizeof(workspace));
1da177e4
LT
1043
1044 /*
1c0ad3d4
MM
1045 * In case the hash function has some recognizable output
1046 * pattern, we fold it in half. Thus, we always feed back
1047 * twice as much data as we output.
1da177e4 1048 */
d2e7c96a
PA
1049 hash.w[0] ^= hash.w[3];
1050 hash.w[1] ^= hash.w[4];
1051 hash.w[2] ^= rol32(hash.w[2], 16);
1052
d2e7c96a
PA
1053 memcpy(out, &hash, EXTRACT_SIZE);
1054 memset(&hash, 0, sizeof(hash));
1da177e4
LT
1055}
1056
90b75ee5 1057static ssize_t extract_entropy(struct entropy_store *r, void *buf,
902c098a 1058 size_t nbytes, int min, int reserved)
1da177e4
LT
1059{
1060 ssize_t ret = 0, i;
1061 __u8 tmp[EXTRACT_SIZE];
1e7e2e05 1062 unsigned long flags;
1da177e4 1063
ec8f02da 1064 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1e7e2e05
JW
1065 if (fips_enabled) {
1066 spin_lock_irqsave(&r->lock, flags);
1067 if (!r->last_data_init) {
c59974ae 1068 r->last_data_init = 1;
1e7e2e05
JW
1069 spin_unlock_irqrestore(&r->lock, flags);
1070 trace_extract_entropy(r->name, EXTRACT_SIZE,
a283b5c4 1071 ENTROPY_BITS(r), _RET_IP_);
1e7e2e05
JW
1072 xfer_secondary_pool(r, EXTRACT_SIZE);
1073 extract_buf(r, tmp);
1074 spin_lock_irqsave(&r->lock, flags);
1075 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1076 }
1077 spin_unlock_irqrestore(&r->lock, flags);
1078 }
ec8f02da 1079
a283b5c4 1080 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1081 xfer_secondary_pool(r, nbytes);
1082 nbytes = account(r, nbytes, min, reserved);
1083
1084 while (nbytes) {
1085 extract_buf(r, tmp);
5b739ef8 1086
e954bc91 1087 if (fips_enabled) {
5b739ef8
NH
1088 spin_lock_irqsave(&r->lock, flags);
1089 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1090 panic("Hardware RNG duplicated output!\n");
1091 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1092 spin_unlock_irqrestore(&r->lock, flags);
1093 }
1da177e4
LT
1094 i = min_t(int, nbytes, EXTRACT_SIZE);
1095 memcpy(buf, tmp, i);
1096 nbytes -= i;
1097 buf += i;
1098 ret += i;
1099 }
1100
1101 /* Wipe data just returned from memory */
1102 memset(tmp, 0, sizeof(tmp));
1103
1104 return ret;
1105}
1106
1107static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1108 size_t nbytes)
1109{
1110 ssize_t ret = 0, i;
1111 __u8 tmp[EXTRACT_SIZE];
1112
a283b5c4 1113 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1da177e4
LT
1114 xfer_secondary_pool(r, nbytes);
1115 nbytes = account(r, nbytes, 0, 0);
1116
1117 while (nbytes) {
1118 if (need_resched()) {
1119 if (signal_pending(current)) {
1120 if (ret == 0)
1121 ret = -ERESTARTSYS;
1122 break;
1123 }
1124 schedule();
1125 }
1126
1127 extract_buf(r, tmp);
1128 i = min_t(int, nbytes, EXTRACT_SIZE);
1129 if (copy_to_user(buf, tmp, i)) {
1130 ret = -EFAULT;
1131 break;
1132 }
1133
1134 nbytes -= i;
1135 buf += i;
1136 ret += i;
1137 }
1138
1139 /* Wipe data just returned from memory */
1140 memset(tmp, 0, sizeof(tmp));
1141
1142 return ret;
1143}
1144
1145/*
1146 * This function is the exported kernel interface. It returns some
c2557a30
TT
1147 * number of good random numbers, suitable for key generation, seeding
1148 * TCP sequence numbers, etc. It does not use the hw random number
1149 * generator, if available; use get_random_bytes_arch() for that.
1da177e4
LT
1150 */
1151void get_random_bytes(void *buf, int nbytes)
c2557a30 1152{
5910895f 1153 trace_get_random_bytes(nbytes, _RET_IP_);
c2557a30
TT
1154 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1155}
1156EXPORT_SYMBOL(get_random_bytes);
1157
1158/*
1159 * This function will use the architecture-specific hardware random
1160 * number generator if it is available. The arch-specific hw RNG will
1161 * almost certainly be faster than what we can do in software, but it
1162 * is impossible to verify that it is implemented securely (as
1163 * opposed, to, say, the AES encryption of a sequence number using a
1164 * key known by the NSA). So it's useful if we need the speed, but
1165 * only if we're willing to trust the hardware manufacturer not to
1166 * have put in a back door.
1167 */
1168void get_random_bytes_arch(void *buf, int nbytes)
1da177e4 1169{
63d77173
PA
1170 char *p = buf;
1171
5910895f 1172 trace_get_random_bytes_arch(nbytes, _RET_IP_);
63d77173
PA
1173 while (nbytes) {
1174 unsigned long v;
1175 int chunk = min(nbytes, (int)sizeof(unsigned long));
c2557a30 1176
63d77173
PA
1177 if (!arch_get_random_long(&v))
1178 break;
1179
bd29e568 1180 memcpy(p, &v, chunk);
63d77173
PA
1181 p += chunk;
1182 nbytes -= chunk;
1183 }
1184
c2557a30
TT
1185 if (nbytes)
1186 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1da177e4 1187}
c2557a30
TT
1188EXPORT_SYMBOL(get_random_bytes_arch);
1189
1da177e4
LT
1190
1191/*
1192 * init_std_data - initialize pool with system data
1193 *
1194 * @r: pool to initialize
1195 *
1196 * This function clears the pool's entropy count and mixes some system
1197 * data into the pool to prepare it for use. The pool is not cleared
1198 * as that can only decrease the entropy in the pool.
1199 */
1200static void init_std_data(struct entropy_store *r)
1201{
3e88bdff 1202 int i;
902c098a
TT
1203 ktime_t now = ktime_get_real();
1204 unsigned long rv;
1da177e4 1205
1da177e4 1206 r->entropy_count = 0;
775f4b29 1207 r->entropy_total = 0;
c59974ae 1208 r->last_data_init = 0;
f5c2742c 1209 r->last_pulled = jiffies;
902c098a 1210 mix_pool_bytes(r, &now, sizeof(now), NULL);
9ed17b70 1211 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
902c098a 1212 if (!arch_get_random_long(&rv))
3e88bdff 1213 break;
902c098a 1214 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
3e88bdff 1215 }
902c098a 1216 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1da177e4
LT
1217}
1218
cbc96b75
TL
1219/*
1220 * Note that setup_arch() may call add_device_randomness()
1221 * long before we get here. This allows seeding of the pools
1222 * with some platform dependent data very early in the boot
1223 * process. But it limits our options here. We must use
1224 * statically allocated structures that already have all
1225 * initializations complete at compile time. We should also
1226 * take care not to overwrite the precious per platform data
1227 * we were given.
1228 */
53c3f63e 1229static int rand_initialize(void)
1da177e4
LT
1230{
1231 init_std_data(&input_pool);
1232 init_std_data(&blocking_pool);
1233 init_std_data(&nonblocking_pool);
1234 return 0;
1235}
1236module_init(rand_initialize);
1237
9361401e 1238#ifdef CONFIG_BLOCK
1da177e4
LT
1239void rand_initialize_disk(struct gendisk *disk)
1240{
1241 struct timer_rand_state *state;
1242
1243 /*
f8595815 1244 * If kzalloc returns null, we just won't use that entropy
1da177e4
LT
1245 * source.
1246 */
f8595815
ED
1247 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1248 if (state)
1da177e4 1249 disk->random = state;
1da177e4 1250}
9361401e 1251#endif
1da177e4
LT
1252
1253static ssize_t
90b75ee5 1254random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1255{
1256 ssize_t n, retval = 0, count = 0;
1257
1258 if (nbytes == 0)
1259 return 0;
1260
1261 while (nbytes > 0) {
1262 n = nbytes;
1263 if (n > SEC_XFER_SIZE)
1264 n = SEC_XFER_SIZE;
1265
8eb2ffbf 1266 DEBUG_ENT("reading %zu bits\n", n*8);
1da177e4
LT
1267
1268 n = extract_entropy_user(&blocking_pool, buf, n);
1269
8eb2ffbf
JK
1270 if (n < 0) {
1271 retval = n;
1272 break;
1273 }
1274
1275 DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1da177e4
LT
1276 n*8, (nbytes-n)*8);
1277
1278 if (n == 0) {
1279 if (file->f_flags & O_NONBLOCK) {
1280 retval = -EAGAIN;
1281 break;
1282 }
1283
1284 DEBUG_ENT("sleeping?\n");
1285
1286 wait_event_interruptible(random_read_wait,
a283b5c4
PA
1287 ENTROPY_BITS(&input_pool) >=
1288 random_read_wakeup_thresh);
1da177e4
LT
1289
1290 DEBUG_ENT("awake\n");
1291
1292 if (signal_pending(current)) {
1293 retval = -ERESTARTSYS;
1294 break;
1295 }
1296
1297 continue;
1298 }
1299
1da177e4
LT
1300 count += n;
1301 buf += n;
1302 nbytes -= n;
1303 break; /* This break makes the device work */
1304 /* like a named pipe */
1305 }
1306
1da177e4
LT
1307 return (count ? count : retval);
1308}
1309
1310static ssize_t
90b75ee5 1311urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1da177e4
LT
1312{
1313 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1314}
1315
1316static unsigned int
1317random_poll(struct file *file, poll_table * wait)
1318{
1319 unsigned int mask;
1320
1321 poll_wait(file, &random_read_wait, wait);
1322 poll_wait(file, &random_write_wait, wait);
1323 mask = 0;
a283b5c4 1324 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
1da177e4 1325 mask |= POLLIN | POLLRDNORM;
a283b5c4 1326 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
1da177e4
LT
1327 mask |= POLLOUT | POLLWRNORM;
1328 return mask;
1329}
1330
7f397dcd
MM
1331static int
1332write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1da177e4 1333{
1da177e4
LT
1334 size_t bytes;
1335 __u32 buf[16];
1336 const char __user *p = buffer;
1da177e4 1337
7f397dcd
MM
1338 while (count > 0) {
1339 bytes = min(count, sizeof(buf));
1340 if (copy_from_user(&buf, p, bytes))
1341 return -EFAULT;
1da177e4 1342
7f397dcd 1343 count -= bytes;
1da177e4
LT
1344 p += bytes;
1345
902c098a 1346 mix_pool_bytes(r, buf, bytes, NULL);
91f3f1e3 1347 cond_resched();
1da177e4 1348 }
7f397dcd
MM
1349
1350 return 0;
1351}
1352
90b75ee5
MM
1353static ssize_t random_write(struct file *file, const char __user *buffer,
1354 size_t count, loff_t *ppos)
7f397dcd
MM
1355{
1356 size_t ret;
7f397dcd
MM
1357
1358 ret = write_pool(&blocking_pool, buffer, count);
1359 if (ret)
1360 return ret;
1361 ret = write_pool(&nonblocking_pool, buffer, count);
1362 if (ret)
1363 return ret;
1364
7f397dcd 1365 return (ssize_t)count;
1da177e4
LT
1366}
1367
43ae4860 1368static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1da177e4
LT
1369{
1370 int size, ent_count;
1371 int __user *p = (int __user *)arg;
1372 int retval;
1373
1374 switch (cmd) {
1375 case RNDGETENTCNT:
43ae4860 1376 /* inherently racy, no point locking */
a283b5c4
PA
1377 ent_count = ENTROPY_BITS(&input_pool);
1378 if (put_user(ent_count, p))
1da177e4
LT
1379 return -EFAULT;
1380 return 0;
1381 case RNDADDTOENTCNT:
1382 if (!capable(CAP_SYS_ADMIN))
1383 return -EPERM;
1384 if (get_user(ent_count, p))
1385 return -EFAULT;
a283b5c4 1386 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1387 return 0;
1388 case RNDADDENTROPY:
1389 if (!capable(CAP_SYS_ADMIN))
1390 return -EPERM;
1391 if (get_user(ent_count, p++))
1392 return -EFAULT;
1393 if (ent_count < 0)
1394 return -EINVAL;
1395 if (get_user(size, p++))
1396 return -EFAULT;
7f397dcd
MM
1397 retval = write_pool(&input_pool, (const char __user *)p,
1398 size);
1da177e4
LT
1399 if (retval < 0)
1400 return retval;
a283b5c4 1401 credit_entropy_bits_safe(&input_pool, ent_count);
1da177e4
LT
1402 return 0;
1403 case RNDZAPENTCNT:
1404 case RNDCLEARPOOL:
1405 /* Clear the entropy pool counters. */
1406 if (!capable(CAP_SYS_ADMIN))
1407 return -EPERM;
53c3f63e 1408 rand_initialize();
1da177e4
LT
1409 return 0;
1410 default:
1411 return -EINVAL;
1412 }
1413}
1414
9a6f70bb
JD
1415static int random_fasync(int fd, struct file *filp, int on)
1416{
1417 return fasync_helper(fd, filp, on, &fasync);
1418}
1419
2b8693c0 1420const struct file_operations random_fops = {
1da177e4
LT
1421 .read = random_read,
1422 .write = random_write,
1423 .poll = random_poll,
43ae4860 1424 .unlocked_ioctl = random_ioctl,
9a6f70bb 1425 .fasync = random_fasync,
6038f373 1426 .llseek = noop_llseek,
1da177e4
LT
1427};
1428
2b8693c0 1429const struct file_operations urandom_fops = {
1da177e4
LT
1430 .read = urandom_read,
1431 .write = random_write,
43ae4860 1432 .unlocked_ioctl = random_ioctl,
9a6f70bb 1433 .fasync = random_fasync,
6038f373 1434 .llseek = noop_llseek,
1da177e4
LT
1435};
1436
1437/***************************************************************
1438 * Random UUID interface
1439 *
1440 * Used here for a Boot ID, but can be useful for other kernel
1441 * drivers.
1442 ***************************************************************/
1443
1444/*
1445 * Generate random UUID
1446 */
1447void generate_random_uuid(unsigned char uuid_out[16])
1448{
1449 get_random_bytes(uuid_out, 16);
c41b20e7 1450 /* Set UUID version to 4 --- truly random generation */
1da177e4
LT
1451 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1452 /* Set the UUID variant to DCE */
1453 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1454}
1da177e4
LT
1455EXPORT_SYMBOL(generate_random_uuid);
1456
1457/********************************************************************
1458 *
1459 * Sysctl interface
1460 *
1461 ********************************************************************/
1462
1463#ifdef CONFIG_SYSCTL
1464
1465#include <linux/sysctl.h>
1466
1467static int min_read_thresh = 8, min_write_thresh;
1468static int max_read_thresh = INPUT_POOL_WORDS * 32;
1469static int max_write_thresh = INPUT_POOL_WORDS * 32;
1470static char sysctl_bootid[16];
1471
1472/*
1473 * These functions is used to return both the bootid UUID, and random
1474 * UUID. The difference is in whether table->data is NULL; if it is,
1475 * then a new UUID is generated and returned to the user.
1476 *
1477 * If the user accesses this via the proc interface, it will be returned
1478 * as an ASCII string in the standard UUID format. If accesses via the
1479 * sysctl system call, it is returned as 16 bytes of binary data.
1480 */
a151427e 1481static int proc_do_uuid(struct ctl_table *table, int write,
1da177e4
LT
1482 void __user *buffer, size_t *lenp, loff_t *ppos)
1483{
a151427e 1484 struct ctl_table fake_table;
1da177e4
LT
1485 unsigned char buf[64], tmp_uuid[16], *uuid;
1486
1487 uuid = table->data;
1488 if (!uuid) {
1489 uuid = tmp_uuid;
1da177e4 1490 generate_random_uuid(uuid);
44e4360f
MD
1491 } else {
1492 static DEFINE_SPINLOCK(bootid_spinlock);
1493
1494 spin_lock(&bootid_spinlock);
1495 if (!uuid[8])
1496 generate_random_uuid(uuid);
1497 spin_unlock(&bootid_spinlock);
1498 }
1da177e4 1499
35900771
JP
1500 sprintf(buf, "%pU", uuid);
1501
1da177e4
LT
1502 fake_table.data = buf;
1503 fake_table.maxlen = sizeof(buf);
1504
8d65af78 1505 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1da177e4
LT
1506}
1507
a283b5c4
PA
1508/*
1509 * Return entropy available scaled to integral bits
1510 */
1511static int proc_do_entropy(ctl_table *table, int write,
1512 void __user *buffer, size_t *lenp, loff_t *ppos)
1513{
1514 ctl_table fake_table;
1515 int entropy_count;
1516
1517 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1518
1519 fake_table.data = &entropy_count;
1520 fake_table.maxlen = sizeof(entropy_count);
1521
1522 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1523}
1524
1da177e4 1525static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
a151427e
JP
1526extern struct ctl_table random_table[];
1527struct ctl_table random_table[] = {
1da177e4 1528 {
1da177e4
LT
1529 .procname = "poolsize",
1530 .data = &sysctl_poolsize,
1531 .maxlen = sizeof(int),
1532 .mode = 0444,
6d456111 1533 .proc_handler = proc_dointvec,
1da177e4
LT
1534 },
1535 {
1da177e4
LT
1536 .procname = "entropy_avail",
1537 .maxlen = sizeof(int),
1538 .mode = 0444,
a283b5c4 1539 .proc_handler = proc_do_entropy,
1da177e4
LT
1540 .data = &input_pool.entropy_count,
1541 },
1542 {
1da177e4
LT
1543 .procname = "read_wakeup_threshold",
1544 .data = &random_read_wakeup_thresh,
1545 .maxlen = sizeof(int),
1546 .mode = 0644,
6d456111 1547 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1548 .extra1 = &min_read_thresh,
1549 .extra2 = &max_read_thresh,
1550 },
1551 {
1da177e4
LT
1552 .procname = "write_wakeup_threshold",
1553 .data = &random_write_wakeup_thresh,
1554 .maxlen = sizeof(int),
1555 .mode = 0644,
6d456111 1556 .proc_handler = proc_dointvec_minmax,
1da177e4
LT
1557 .extra1 = &min_write_thresh,
1558 .extra2 = &max_write_thresh,
1559 },
f5c2742c
TT
1560 {
1561 .procname = "urandom_min_reseed_secs",
1562 .data = &random_min_urandom_seed,
1563 .maxlen = sizeof(int),
1564 .mode = 0644,
1565 .proc_handler = proc_dointvec,
1566 },
1da177e4 1567 {
1da177e4
LT
1568 .procname = "boot_id",
1569 .data = &sysctl_bootid,
1570 .maxlen = 16,
1571 .mode = 0444,
6d456111 1572 .proc_handler = proc_do_uuid,
1da177e4
LT
1573 },
1574 {
1da177e4
LT
1575 .procname = "uuid",
1576 .maxlen = 16,
1577 .mode = 0444,
6d456111 1578 .proc_handler = proc_do_uuid,
1da177e4 1579 },
894d2491 1580 { }
1da177e4
LT
1581};
1582#endif /* CONFIG_SYSCTL */
1583
6e5714ea 1584static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1da177e4 1585
47d06e53 1586int random_int_secret_init(void)
1da177e4 1587{
6e5714ea 1588 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1da177e4
LT
1589 return 0;
1590}
1da177e4
LT
1591
1592/*
1593 * Get a random word for internal kernel use only. Similar to urandom but
1594 * with the goal of minimal entropy pool depletion. As a result, the random
1595 * value is not cryptographically secure but for several uses the cost of
1596 * depleting entropy is too high
1597 */
74feec5d 1598static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1da177e4
LT
1599unsigned int get_random_int(void)
1600{
63d77173 1601 __u32 *hash;
6e5714ea 1602 unsigned int ret;
8a0a9bd4 1603
63d77173
PA
1604 if (arch_get_random_int(&ret))
1605 return ret;
1606
1607 hash = get_cpu_var(get_random_int_hash);
8a0a9bd4 1608
61875f30 1609 hash[0] += current->pid + jiffies + random_get_entropy();
6e5714ea
DM
1610 md5_transform(hash, random_int_secret);
1611 ret = hash[0];
8a0a9bd4
LT
1612 put_cpu_var(get_random_int_hash);
1613
1614 return ret;
1da177e4 1615}
16c7fa05 1616EXPORT_SYMBOL(get_random_int);
1da177e4
LT
1617
1618/*
1619 * randomize_range() returns a start address such that
1620 *
1621 * [...... <range> .....]
1622 * start end
1623 *
1624 * a <range> with size "len" starting at the return value is inside in the
1625 * area defined by [start, end], but is otherwise randomized.
1626 */
1627unsigned long
1628randomize_range(unsigned long start, unsigned long end, unsigned long len)
1629{
1630 unsigned long range = end - len - start;
1631
1632 if (end <= start + len)
1633 return 0;
1634 return PAGE_ALIGN(get_random_int() % range + start);
1635}
This page took 0.946494 seconds and 5 git commands to generate.