clk: tegra: Fix some static checker problems
[deliverable/linux.git] / drivers / clk / tegra / clk-dfll.c
CommitLineData
d8d7a08f
TT
1/*
2 * clk-dfll.c - Tegra DFLL clock source common code
3 *
4 * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
5 *
6 * Aleksandr Frid <afrid@nvidia.com>
7 * Paul Walmsley <pwalmsley@nvidia.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * This library is for the DVCO and DFLL IP blocks on the Tegra124
19 * SoC. These IP blocks together are also known at NVIDIA as
20 * "CL-DVFS". To try to avoid confusion, this code refers to them
21 * collectively as the "DFLL."
22 *
23 * The DFLL is a root clocksource which tolerates some amount of
24 * supply voltage noise. Tegra124 uses it to clock the fast CPU
25 * complex when the target CPU speed is above a particular rate. The
26 * DFLL can be operated in either open-loop mode or closed-loop mode.
27 * In open-loop mode, the DFLL generates an output clock appropriate
28 * to the supply voltage. In closed-loop mode, when configured with a
29 * target frequency, the DFLL minimizes supply voltage while
30 * delivering an average frequency equal to the target.
31 *
32 * Devices clocked by the DFLL must be able to tolerate frequency
33 * variation. In the case of the CPU, it's important to note that the
34 * CPU cycle time will vary. This has implications for
35 * performance-measurement code and any code that relies on the CPU
36 * cycle time to delay for a certain length of time.
37 *
38 */
39
40#include <linux/clk.h>
41#include <linux/clk-provider.h>
42#include <linux/debugfs.h>
43#include <linux/device.h>
44#include <linux/err.h>
45#include <linux/i2c.h>
46#include <linux/io.h>
47#include <linux/kernel.h>
48#include <linux/module.h>
49#include <linux/of.h>
50#include <linux/pm_opp.h>
51#include <linux/pm_runtime.h>
52#include <linux/regmap.h>
53#include <linux/regulator/consumer.h>
54#include <linux/reset.h>
55#include <linux/seq_file.h>
56
57#include "clk-dfll.h"
58
59/*
60 * DFLL control registers - access via dfll_{readl,writel}
61 */
62
63/* DFLL_CTRL: DFLL control register */
64#define DFLL_CTRL 0x00
65#define DFLL_CTRL_MODE_MASK 0x03
66
67/* DFLL_CONFIG: DFLL sample rate control */
68#define DFLL_CONFIG 0x04
69#define DFLL_CONFIG_DIV_MASK 0xff
70#define DFLL_CONFIG_DIV_PRESCALE 32
71
72/* DFLL_PARAMS: tuning coefficients for closed loop integrator */
73#define DFLL_PARAMS 0x08
74#define DFLL_PARAMS_CG_SCALE (0x1 << 24)
75#define DFLL_PARAMS_FORCE_MODE_SHIFT 22
76#define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
77#define DFLL_PARAMS_CF_PARAM_SHIFT 16
78#define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
79#define DFLL_PARAMS_CI_PARAM_SHIFT 8
80#define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
81#define DFLL_PARAMS_CG_PARAM_SHIFT 0
82#define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
83
84/* DFLL_TUNE0: delay line configuration register 0 */
85#define DFLL_TUNE0 0x0c
86
87/* DFLL_TUNE1: delay line configuration register 1 */
88#define DFLL_TUNE1 0x10
89
90/* DFLL_FREQ_REQ: target DFLL frequency control */
91#define DFLL_FREQ_REQ 0x14
92#define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28)
93#define DFLL_FREQ_REQ_FORCE_SHIFT 16
94#define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
95#define FORCE_MAX 2047
96#define FORCE_MIN -2048
97#define DFLL_FREQ_REQ_SCALE_SHIFT 8
98#define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
99#define DFLL_FREQ_REQ_SCALE_MAX 256
100#define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7)
101#define DFLL_FREQ_REQ_MULT_SHIFT 0
102#define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
103#define FREQ_MAX 127
104
105/* DFLL_DROOP_CTRL: droop prevention control */
106#define DFLL_DROOP_CTRL 0x1c
107
108/* DFLL_OUTPUT_CFG: closed loop mode control registers */
109/* NOTE: access via dfll_i2c_{readl,writel} */
110#define DFLL_OUTPUT_CFG 0x20
111#define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30)
112#define OUT_MASK 0x3f
113#define DFLL_OUTPUT_CFG_SAFE_SHIFT 24
114#define DFLL_OUTPUT_CFG_SAFE_MASK \
115 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
116#define DFLL_OUTPUT_CFG_MAX_SHIFT 16
117#define DFLL_OUTPUT_CFG_MAX_MASK \
118 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
119#define DFLL_OUTPUT_CFG_MIN_SHIFT 8
120#define DFLL_OUTPUT_CFG_MIN_MASK \
121 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
122#define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7)
123#define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6)
124#define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0
125#define DFLL_OUTPUT_CFG_PWM_DIV_MASK \
126 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
127
128/* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
129#define DFLL_OUTPUT_FORCE 0x24
130#define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6)
131#define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0
132#define DFLL_OUTPUT_FORCE_VALUE_MASK \
133 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
134
135/* DFLL_MONITOR_CTRL: internal monitor data source control */
136#define DFLL_MONITOR_CTRL 0x28
137#define DFLL_MONITOR_CTRL_FREQ 6
138
139/* DFLL_MONITOR_DATA: internal monitor data output */
140#define DFLL_MONITOR_DATA 0x2c
141#define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16)
142#define DFLL_MONITOR_DATA_VAL_SHIFT 0
143#define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
144
145/*
146 * I2C output control registers - access via dfll_i2c_{readl,writel}
147 */
148
149/* DFLL_I2C_CFG: I2C controller configuration register */
150#define DFLL_I2C_CFG 0x40
151#define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20)
152#define DFLL_I2C_CFG_HS_CODE_SHIFT 16
153#define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
154#define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15)
155#define DFLL_I2C_CFG_SIZE_SHIFT 12
156#define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
157#define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10)
158#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1
159#define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0
160
161/* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
162#define DFLL_I2C_VDD_REG_ADDR 0x44
163
164/* DFLL_I2C_STS: I2C controller status */
165#define DFLL_I2C_STS 0x48
166#define DFLL_I2C_STS_I2C_LAST_SHIFT 1
167#define DFLL_I2C_STS_I2C_REQ_PENDING 0x1
168
169/* DFLL_INTR_STS: DFLL interrupt status register */
170#define DFLL_INTR_STS 0x5c
171
172/* DFLL_INTR_EN: DFLL interrupt enable register */
173#define DFLL_INTR_EN 0x60
174#define DFLL_INTR_MIN_MASK 0x1
175#define DFLL_INTR_MAX_MASK 0x2
176
177/*
178 * Integrated I2C controller registers - relative to td->i2c_controller_base
179 */
180
181/* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
182#define DFLL_I2C_CLK_DIVISOR 0x6c
183#define DFLL_I2C_CLK_DIVISOR_MASK 0xffff
184#define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16
185#define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0
186#define DFLL_I2C_CLK_DIVISOR_PREDIV 8
187#define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12
188
189/*
190 * Other constants
191 */
192
193/* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
194#define MAX_DFLL_VOLTAGES 33
195
196/*
197 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
198 * integrates the DVCO counter over - used for debug rate monitoring and
199 * droop control
200 */
201#define REF_CLK_CYC_PER_DVCO_SAMPLE 4
202
203/*
204 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
205 * driver, in Hz
206 */
207#define REF_CLOCK_RATE 51000000UL
208
c4fe70ad
TT
209#define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2))
210#define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2))
d8d7a08f
TT
211
212/**
213 * enum dfll_ctrl_mode - DFLL hardware operating mode
214 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
215 * @DFLL_DISABLED: DFLL not generating an output clock
216 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
c4fe70ad
TT
217 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
218 * the requested rate
d8d7a08f
TT
219 *
220 * The integer corresponding to the last two states, minus one, is
221 * written to the DFLL hardware to change operating modes.
222 */
223enum dfll_ctrl_mode {
224 DFLL_UNINITIALIZED = 0,
225 DFLL_DISABLED = 1,
226 DFLL_OPEN_LOOP = 2,
c4fe70ad 227 DFLL_CLOSED_LOOP = 3,
d8d7a08f
TT
228};
229
230/**
231 * enum dfll_tune_range - voltage range that the driver believes it's in
232 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
233 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
234 *
235 * Some DFLL tuning parameters may need to change depending on the
236 * DVCO's voltage; these states represent the ranges that the driver
237 * supports. These are software states; these values are never
238 * written into registers.
239 */
240enum dfll_tune_range {
241 DFLL_TUNE_UNINITIALIZED = 0,
242 DFLL_TUNE_LOW = 1,
243};
244
c4fe70ad
TT
245/**
246 * struct dfll_rate_req - target DFLL rate request data
247 * @rate: target frequency, after the postscaling
248 * @dvco_target_rate: target frequency, after the postscaling
249 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
250 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
251 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
252 */
253struct dfll_rate_req {
254 unsigned long rate;
255 unsigned long dvco_target_rate;
256 int lut_index;
257 u8 mult_bits;
258 u8 scale_bits;
259};
260
d8d7a08f
TT
261struct tegra_dfll {
262 struct device *dev;
263 struct tegra_dfll_soc_data *soc;
264
265 void __iomem *base;
266 void __iomem *i2c_base;
267 void __iomem *i2c_controller_base;
268 void __iomem *lut_base;
269
270 struct regulator *vdd_reg;
271 struct clk *soc_clk;
272 struct clk *ref_clk;
273 struct clk *i2c_clk;
274 struct clk *dfll_clk;
275 struct reset_control *dvco_rst;
276 unsigned long ref_rate;
277 unsigned long i2c_clk_rate;
278 unsigned long dvco_rate_min;
279
280 enum dfll_ctrl_mode mode;
281 enum dfll_tune_range tune_range;
282 struct dentry *debugfs_dir;
283 struct clk_hw dfll_clk_hw;
284 const char *output_clock_name;
c4fe70ad
TT
285 struct dfll_rate_req last_req;
286 unsigned long last_unrounded_rate;
d8d7a08f
TT
287
288 /* Parameters from DT */
289 u32 droop_ctrl;
c4fe70ad
TT
290 u32 sample_rate;
291 u32 force_mode;
292 u32 cf;
293 u32 ci;
294 u32 cg;
295 bool cg_scale;
296
297 /* I2C interface parameters */
298 u32 i2c_fs_rate;
299 u32 i2c_reg;
300 u32 i2c_slave_addr;
301
302 /* i2c_lut array entries are regulator framework selectors */
303 unsigned i2c_lut[MAX_DFLL_VOLTAGES];
304 int i2c_lut_size;
305 u8 lut_min, lut_max, lut_safe;
d8d7a08f
TT
306};
307
308#define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
309
310/* mode_name: map numeric DFLL modes to names for friendly console messages */
311static const char * const mode_name[] = {
312 [DFLL_UNINITIALIZED] = "uninitialized",
313 [DFLL_DISABLED] = "disabled",
314 [DFLL_OPEN_LOOP] = "open_loop",
c4fe70ad 315 [DFLL_CLOSED_LOOP] = "closed_loop",
d8d7a08f
TT
316};
317
318/*
319 * Register accessors
320 */
321
322static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
323{
324 return __raw_readl(td->base + offs);
325}
326
327static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
328{
329 WARN_ON(offs >= DFLL_I2C_CFG);
330 __raw_writel(val, td->base + offs);
331}
332
333static inline void dfll_wmb(struct tegra_dfll *td)
334{
335 dfll_readl(td, DFLL_CTRL);
336}
337
338/* I2C output control registers - for addresses above DFLL_I2C_CFG */
339
340static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
341{
342 return __raw_readl(td->i2c_base + offs);
343}
344
345static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
346{
347 __raw_writel(val, td->i2c_base + offs);
348}
349
350static inline void dfll_i2c_wmb(struct tegra_dfll *td)
351{
352 dfll_i2c_readl(td, DFLL_I2C_CFG);
353}
354
355/**
356 * dfll_is_running - is the DFLL currently generating a clock?
357 * @td: DFLL instance
358 *
359 * If the DFLL is currently generating an output clock signal, return
360 * true; otherwise return false.
361 */
362static bool dfll_is_running(struct tegra_dfll *td)
363{
364 return td->mode >= DFLL_OPEN_LOOP;
365}
366
367/*
368 * Runtime PM suspend/resume callbacks
369 */
370
371/**
372 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
373 * @dev: DFLL device *
374 *
375 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
376 * has already been called on all the clocks.
377 *
378 * XXX Should also handle context restore when returning from off.
379 */
380int tegra_dfll_runtime_resume(struct device *dev)
381{
382 struct tegra_dfll *td = dev_get_drvdata(dev);
383 int ret;
384
385 ret = clk_enable(td->ref_clk);
386 if (ret) {
387 dev_err(dev, "could not enable ref clock: %d\n", ret);
388 return ret;
389 }
390
391 ret = clk_enable(td->soc_clk);
392 if (ret) {
393 dev_err(dev, "could not enable register clock: %d\n", ret);
394 clk_disable(td->ref_clk);
395 return ret;
396 }
397
398 ret = clk_enable(td->i2c_clk);
399 if (ret) {
400 dev_err(dev, "could not enable i2c clock: %d\n", ret);
401 clk_disable(td->soc_clk);
402 clk_disable(td->ref_clk);
403 return ret;
404 }
405
406 return 0;
407}
408EXPORT_SYMBOL(tegra_dfll_runtime_resume);
409
410/**
411 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
412 * @dev: DFLL device *
413 *
414 * Disable all clocks needed by the DFLL. Assumes that other code
415 * will later call clk_unprepare().
416 */
417int tegra_dfll_runtime_suspend(struct device *dev)
418{
419 struct tegra_dfll *td = dev_get_drvdata(dev);
420
421 clk_disable(td->ref_clk);
422 clk_disable(td->soc_clk);
423 clk_disable(td->i2c_clk);
424
425 return 0;
426}
427EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
428
429/*
430 * DFLL tuning operations (per-voltage-range tuning settings)
431 */
432
433/**
434 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
435 * @td: DFLL instance
436 *
437 * Tune the DFLL oscillator parameters and the CPU clock shaper for
438 * the low-voltage range. These settings are valid for any voltage,
439 * but may not be optimal.
440 */
441static void dfll_tune_low(struct tegra_dfll *td)
442{
443 td->tune_range = DFLL_TUNE_LOW;
444
445 dfll_writel(td, td->soc->tune0_low, DFLL_TUNE0);
446 dfll_writel(td, td->soc->tune1, DFLL_TUNE1);
447 dfll_wmb(td);
448
449 if (td->soc->set_clock_trimmers_low)
450 td->soc->set_clock_trimmers_low();
451}
452
453/*
454 * Output clock scaler helpers
455 */
456
457/**
458 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
459 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
460 * @dvco_rate: the DVCO rate
461 *
462 * Apply the same scaling formula that the DFLL hardware uses to scale
463 * the DVCO rate.
464 */
465static unsigned long dfll_scale_dvco_rate(int scale_bits,
466 unsigned long dvco_rate)
467{
468 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
469}
470
471/*
472 * Monitor control
473 */
474
475/**
476 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
477 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
478 * @ref_rate: DFLL reference clock rate
479 *
480 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
481 * per second. Returns the converted value.
482 */
483static u64 dfll_calc_monitored_rate(u32 monitor_data,
484 unsigned long ref_rate)
485{
486 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
487}
488
489/**
490 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
491 * @td: DFLL instance
492 *
493 * If the DFLL is enabled, return the last rate reported by the DFLL's
494 * internal monitoring hardware. This works in both open-loop and
495 * closed-loop mode, and takes the output scaler setting into account.
496 * Assumes that the monitor was programmed to monitor frequency before
497 * the sample period started. If the driver believes that the DFLL is
498 * currently uninitialized or disabled, it will return 0, since
499 * otherwise the DFLL monitor data register will return the last
500 * measured rate from when the DFLL was active.
501 */
502static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
503{
504 u32 v, s;
505 u64 pre_scaler_rate, post_scaler_rate;
506
507 if (!dfll_is_running(td))
508 return 0;
509
510 v = dfll_readl(td, DFLL_MONITOR_DATA);
511 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
512 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
513
514 s = dfll_readl(td, DFLL_FREQ_REQ);
515 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
516 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
517
518 return post_scaler_rate;
519}
520
521/*
522 * DFLL mode switching
523 */
524
525/**
526 * dfll_set_mode - change the DFLL control mode
527 * @td: DFLL instance
528 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
529 *
530 * Change the DFLL's operating mode between disabled, open-loop mode,
531 * and closed-loop mode, or vice versa.
532 */
533static void dfll_set_mode(struct tegra_dfll *td,
534 enum dfll_ctrl_mode mode)
535{
536 td->mode = mode;
537 dfll_writel(td, mode - 1, DFLL_CTRL);
538 dfll_wmb(td);
539}
540
c4fe70ad
TT
541/*
542 * DFLL-to-I2C controller interface
543 */
544
545/**
546 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
547 * @td: DFLL instance
548 * @enable: whether to enable or disable the I2C voltage requests
549 *
550 * Set the master enable control for I2C control value updates. If disabled,
551 * then I2C control messages are inhibited, regardless of the DFLL mode.
552 */
553static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
554{
555 u32 val;
556
557 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
558
559 if (enable)
560 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
561 else
562 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
563
564 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
565 dfll_i2c_wmb(td);
566
567 return 0;
568}
569
570/**
571 * dfll_load_lut - load the voltage lookup table
572 * @td: struct tegra_dfll *
573 *
574 * Load the voltage-to-PMIC register value lookup table into the DFLL
575 * IP block memory. Look-up tables can be loaded at any time.
576 */
577static void dfll_load_i2c_lut(struct tegra_dfll *td)
578{
579 int i, lut_index;
580 u32 val;
581
582 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
583 if (i < td->lut_min)
584 lut_index = td->lut_min;
585 else if (i > td->lut_max)
586 lut_index = td->lut_max;
587 else
588 lut_index = i;
589
c5a132a8 590 val = regulator_list_hardware_vsel(td->vdd_reg,
c4fe70ad
TT
591 td->i2c_lut[lut_index]);
592 __raw_writel(val, td->lut_base + i * 4);
593 }
594
595 dfll_i2c_wmb(td);
596}
597
598/**
599 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
600 * @td: DFLL instance
601 *
602 * During DFLL driver initialization, program the DFLL-I2C interface
603 * with the PMU slave address, vdd register offset, and transfer mode.
604 * This data is used by the DFLL to automatically construct I2C
605 * voltage-set commands, which are then passed to the DFLL's internal
606 * I2C controller.
607 */
608static void dfll_init_i2c_if(struct tegra_dfll *td)
609{
610 u32 val;
611
612 if (td->i2c_slave_addr > 0x7f) {
613 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
614 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
615 } else {
616 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
617 }
618 val |= DFLL_I2C_CFG_SIZE_MASK;
619 val |= DFLL_I2C_CFG_ARB_ENABLE;
620 dfll_i2c_writel(td, val, DFLL_I2C_CFG);
621
622 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
623
624 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
625 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
626 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
627
628 /* default hs divisor just in case */
629 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
630 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
631 dfll_i2c_wmb(td);
632}
633
634/**
635 * dfll_init_out_if - prepare DFLL-to-PMIC interface
636 * @td: DFLL instance
637 *
638 * During DFLL driver initialization or resume from context loss,
639 * disable the I2C command output to the PMIC, set safe voltage and
640 * output limits, and disable and clear limit interrupts.
641 */
642static void dfll_init_out_if(struct tegra_dfll *td)
643{
644 u32 val;
645
646 td->lut_min = 0;
647 td->lut_max = td->i2c_lut_size - 1;
648 td->lut_safe = td->lut_min + 1;
649
650 dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
651 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
652 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
653 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
654 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
655 dfll_i2c_wmb(td);
656
657 dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
658 dfll_i2c_writel(td, 0, DFLL_INTR_EN);
659 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
660 DFLL_INTR_STS);
661
662 dfll_load_i2c_lut(td);
663 dfll_init_i2c_if(td);
664}
665
666/*
667 * Set/get the DFLL's targeted output clock rate
668 */
669
670/**
671 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
672 * @td: DFLL instance
673 * @rate: clock rate
674 *
675 * Determines the index of a I2C LUT entry for a voltage that approximately
676 * produces the given DFLL clock rate. This is used when forcing a value
677 * to the integrator during rate changes. Returns -ENOENT if a suitable
678 * LUT index is not found.
679 */
680static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
681{
682 struct dev_pm_opp *opp;
683 int i, uv;
684
62a8a094 685 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
c4fe70ad
TT
686 if (IS_ERR(opp))
687 return PTR_ERR(opp);
688 uv = dev_pm_opp_get_voltage(opp);
689
690 for (i = 0; i < td->i2c_lut_size; i++) {
691 if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
692 return i;
693 }
694
695 return -ENOENT;
696}
697
698/**
699 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
700 * @td: DFLL instance
701 * @req: DFLL-rate-request structure
702 * @rate: the desired DFLL rate
703 *
704 * Populate the DFLL-rate-request record @req fields with the scale_bits
705 * and mult_bits fields, based on the target input rate. Returns 0 upon
706 * success, or -EINVAL if the requested rate in req->rate is too high
707 * or low for the DFLL to generate.
708 */
709static int dfll_calculate_rate_request(struct tegra_dfll *td,
710 struct dfll_rate_req *req,
711 unsigned long rate)
712{
713 u32 val;
714
715 /*
716 * If requested rate is below the minimum DVCO rate, active the scaler.
717 * In the future the DVCO minimum voltage should be selected based on
718 * chip temperature and the actual minimum rate should be calibrated
719 * at runtime.
720 */
721 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
722 if (rate < td->dvco_rate_min) {
723 int scale;
724
725 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
726 td->dvco_rate_min / 1000);
727 if (!scale) {
728 dev_err(td->dev, "%s: Rate %lu is too low\n",
729 __func__, rate);
730 return -EINVAL;
731 }
732 req->scale_bits = scale - 1;
733 rate = td->dvco_rate_min;
734 }
735
736 /* Convert requested rate into frequency request and scale settings */
737 val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
738 if (val > FREQ_MAX) {
739 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
740 __func__, rate);
741 return -EINVAL;
742 }
743 req->mult_bits = val;
744 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
745 req->rate = dfll_scale_dvco_rate(req->scale_bits,
746 req->dvco_target_rate);
747 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
748 if (req->lut_index < 0)
749 return req->lut_index;
750
751 return 0;
752}
753
754/**
755 * dfll_set_frequency_request - start the frequency change operation
756 * @td: DFLL instance
757 * @req: rate request structure
758 *
759 * Tell the DFLL to try to change its output frequency to the
760 * frequency represented by @req. DFLL must be in closed-loop mode.
761 */
762static void dfll_set_frequency_request(struct tegra_dfll *td,
763 struct dfll_rate_req *req)
764{
765 u32 val = 0;
766 int force_val;
767 int coef = 128; /* FIXME: td->cg_scale? */;
768
769 force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
770 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
771
772 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
773 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
774 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
775 DFLL_FREQ_REQ_FORCE_MASK;
776 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
777
778 dfll_writel(td, val, DFLL_FREQ_REQ);
779 dfll_wmb(td);
780}
781
782/**
783 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
784 * @td: DFLL instance
785 * @rate: clock rate to target
786 *
787 * Convert the requested clock rate @rate into the DFLL control logic
788 * settings. In closed-loop mode, update new settings immediately to
789 * adjust DFLL output rate accordingly. Otherwise, just save them
790 * until the next switch to closed loop. Returns 0 upon success,
791 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
792 * if @rate is outside the DFLL's tunable range.
793 */
794static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
795{
796 int ret;
797 struct dfll_rate_req req;
798
799 if (td->mode == DFLL_UNINITIALIZED) {
800 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
801 __func__, mode_name[td->mode]);
802 return -EPERM;
803 }
804
805 ret = dfll_calculate_rate_request(td, &req, rate);
806 if (ret)
807 return ret;
808
809 td->last_unrounded_rate = rate;
810 td->last_req = req;
811
812 if (td->mode == DFLL_CLOSED_LOOP)
813 dfll_set_frequency_request(td, &td->last_req);
814
815 return 0;
816}
817
d8d7a08f
TT
818/*
819 * DFLL enable/disable & open-loop <-> closed-loop transitions
820 */
821
822/**
823 * dfll_disable - switch from open-loop mode to disabled mode
824 * @td: DFLL instance
825 *
826 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
827 * or -EPERM if the DFLL is not currently in open-loop mode.
828 */
829static int dfll_disable(struct tegra_dfll *td)
830{
831 if (td->mode != DFLL_OPEN_LOOP) {
832 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
833 mode_name[td->mode]);
834 return -EINVAL;
835 }
836
837 dfll_set_mode(td, DFLL_DISABLED);
838 pm_runtime_put_sync(td->dev);
839
840 return 0;
841}
842
843/**
844 * dfll_enable - switch a disabled DFLL to open-loop mode
845 * @td: DFLL instance
846 *
847 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
848 * or -EPERM if the DFLL is not currently disabled.
849 */
850static int dfll_enable(struct tegra_dfll *td)
851{
852 if (td->mode != DFLL_DISABLED) {
853 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
854 mode_name[td->mode]);
855 return -EPERM;
856 }
857
858 pm_runtime_get_sync(td->dev);
859 dfll_set_mode(td, DFLL_OPEN_LOOP);
860
861 return 0;
862}
863
864/**
865 * dfll_set_open_loop_config - prepare to switch to open-loop mode
866 * @td: DFLL instance
867 *
868 * Prepare to switch the DFLL to open-loop mode. This switches the
869 * DFLL to the low-voltage tuning range, ensures that I2C output
870 * forcing is disabled, and disables the output clock rate scaler.
871 * The DFLL's low-voltage tuning range parameters must be
872 * characterized to keep the downstream device stable at any DVCO
873 * input voltage. No return value.
874 */
875static void dfll_set_open_loop_config(struct tegra_dfll *td)
876{
877 u32 val;
878
879 /* always tune low (safe) in open loop */
880 if (td->tune_range != DFLL_TUNE_LOW)
881 dfll_tune_low(td);
882
883 val = dfll_readl(td, DFLL_FREQ_REQ);
884 val |= DFLL_FREQ_REQ_SCALE_MASK;
885 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
886 dfll_writel(td, val, DFLL_FREQ_REQ);
887 dfll_wmb(td);
888}
889
c4fe70ad
TT
890/**
891 * tegra_dfll_lock - switch from open-loop to closed-loop mode
892 * @td: DFLL instance
893 *
894 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
895 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
896 * DFLL is not currently in open-loop mode.
897 */
898static int dfll_lock(struct tegra_dfll *td)
899{
900 struct dfll_rate_req *req = &td->last_req;
901
902 switch (td->mode) {
903 case DFLL_CLOSED_LOOP:
904 return 0;
905
906 case DFLL_OPEN_LOOP:
907 if (req->rate == 0) {
908 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
909 __func__);
910 return -EINVAL;
911 }
912
913 dfll_i2c_set_output_enabled(td, true);
914 dfll_set_mode(td, DFLL_CLOSED_LOOP);
915 dfll_set_frequency_request(td, req);
916 return 0;
917
918 default:
919 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
920 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
921 __func__, mode_name[td->mode]);
922 return -EPERM;
923 }
924}
925
926/**
927 * tegra_dfll_unlock - switch from closed-loop to open-loop mode
928 * @td: DFLL instance
929 *
930 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
931 * or -EPERM if the DFLL is not currently in open-loop mode.
932 */
933static int dfll_unlock(struct tegra_dfll *td)
934{
935 switch (td->mode) {
936 case DFLL_CLOSED_LOOP:
937 dfll_set_open_loop_config(td);
938 dfll_set_mode(td, DFLL_OPEN_LOOP);
939 dfll_i2c_set_output_enabled(td, false);
940 return 0;
941
942 case DFLL_OPEN_LOOP:
943 return 0;
944
945 default:
946 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
947 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
948 __func__, mode_name[td->mode]);
949 return -EPERM;
950 }
951}
952
d8d7a08f
TT
953/*
954 * Clock framework integration
c4fe70ad
TT
955 *
956 * When the DFLL is being controlled by the CCF, always enter closed loop
957 * mode when the clk is enabled. This requires that a DFLL rate request
958 * has been set beforehand, which implies that a clk_set_rate() call is
959 * always required before a clk_enable().
d8d7a08f
TT
960 */
961
962static int dfll_clk_is_enabled(struct clk_hw *hw)
963{
964 struct tegra_dfll *td = clk_hw_to_dfll(hw);
965
966 return dfll_is_running(td);
967}
968
969static int dfll_clk_enable(struct clk_hw *hw)
970{
971 struct tegra_dfll *td = clk_hw_to_dfll(hw);
c4fe70ad
TT
972 int ret;
973
974 ret = dfll_enable(td);
975 if (ret)
976 return ret;
d8d7a08f 977
c4fe70ad
TT
978 ret = dfll_lock(td);
979 if (ret)
980 dfll_disable(td);
981
982 return ret;
d8d7a08f
TT
983}
984
985static void dfll_clk_disable(struct clk_hw *hw)
c4fe70ad
TT
986{
987 struct tegra_dfll *td = clk_hw_to_dfll(hw);
988 int ret;
989
990 ret = dfll_unlock(td);
991 if (!ret)
992 dfll_disable(td);
993}
994
995static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
996 unsigned long parent_rate)
997{
998 struct tegra_dfll *td = clk_hw_to_dfll(hw);
999
1000 return td->last_unrounded_rate;
1001}
1002
1003static long dfll_clk_round_rate(struct clk_hw *hw,
1004 unsigned long rate,
1005 unsigned long *parent_rate)
1006{
1007 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1008 struct dfll_rate_req req;
1009 int ret;
1010
1011 ret = dfll_calculate_rate_request(td, &req, rate);
1012 if (ret)
1013 return ret;
1014
1015 /*
1016 * Don't return the rounded rate, since it doesn't really matter as
1017 * the output rate will be voltage controlled anyway, and cpufreq
1018 * freaks out if any rounding happens.
1019 */
1020 return rate;
1021}
1022
1023static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1024 unsigned long parent_rate)
d8d7a08f
TT
1025{
1026 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1027
c4fe70ad 1028 return dfll_request_rate(td, rate);
d8d7a08f
TT
1029}
1030
1031static const struct clk_ops dfll_clk_ops = {
1032 .is_enabled = dfll_clk_is_enabled,
1033 .enable = dfll_clk_enable,
1034 .disable = dfll_clk_disable,
c4fe70ad
TT
1035 .recalc_rate = dfll_clk_recalc_rate,
1036 .round_rate = dfll_clk_round_rate,
1037 .set_rate = dfll_clk_set_rate,
d8d7a08f
TT
1038};
1039
1040static struct clk_init_data dfll_clk_init_data = {
1041 .flags = CLK_IS_ROOT,
1042 .ops = &dfll_clk_ops,
1043 .num_parents = 0,
1044};
1045
1046/**
1047 * dfll_register_clk - register the DFLL output clock with the clock framework
1048 * @td: DFLL instance
1049 *
1050 * Register the DFLL's output clock with the Linux clock framework and register
1051 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1052 * or -ENOMEM upon failure.
1053 */
1054static int dfll_register_clk(struct tegra_dfll *td)
1055{
1056 int ret;
1057
1058 dfll_clk_init_data.name = td->output_clock_name;
1059 td->dfll_clk_hw.init = &dfll_clk_init_data;
1060
1061 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1062 if (IS_ERR(td->dfll_clk)) {
1063 dev_err(td->dev, "DFLL clock registration error\n");
1064 return -EINVAL;
1065 }
1066
1067 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1068 td->dfll_clk);
1069 if (ret) {
1070 dev_err(td->dev, "of_clk_add_provider() failed\n");
1071
1072 clk_unregister(td->dfll_clk);
1073 return ret;
1074 }
1075
1076 return 0;
1077}
1078
1079/**
1080 * dfll_unregister_clk - unregister the DFLL output clock
1081 * @td: DFLL instance
1082 *
1083 * Unregister the DFLL's output clock from the Linux clock framework
1084 * and from clkdev. No return value.
1085 */
1086static void dfll_unregister_clk(struct tegra_dfll *td)
1087{
1088 of_clk_del_provider(td->dev->of_node);
1089 clk_unregister(td->dfll_clk);
1090 td->dfll_clk = NULL;
1091}
1092
1093/*
1094 * Debugfs interface
1095 */
1096
1097#ifdef CONFIG_DEBUG_FS
1098
1099static int attr_enable_get(void *data, u64 *val)
1100{
1101 struct tegra_dfll *td = data;
1102
1103 *val = dfll_is_running(td);
1104
1105 return 0;
1106}
1107static int attr_enable_set(void *data, u64 val)
1108{
1109 struct tegra_dfll *td = data;
1110
1111 return val ? dfll_enable(td) : dfll_disable(td);
1112}
1113DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1114 "%llu\n");
1115
c4fe70ad
TT
1116static int attr_lock_get(void *data, u64 *val)
1117{
1118 struct tegra_dfll *td = data;
1119
1120 *val = (td->mode == DFLL_CLOSED_LOOP);
1121
1122 return 0;
1123}
1124static int attr_lock_set(void *data, u64 val)
1125{
1126 struct tegra_dfll *td = data;
1127
1128 return val ? dfll_lock(td) : dfll_unlock(td);
1129}
1130DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1131 "%llu\n");
1132
d8d7a08f
TT
1133static int attr_rate_get(void *data, u64 *val)
1134{
1135 struct tegra_dfll *td = data;
1136
1137 *val = dfll_read_monitor_rate(td);
1138
1139 return 0;
1140}
c4fe70ad
TT
1141
1142static int attr_rate_set(void *data, u64 val)
1143{
1144 struct tegra_dfll *td = data;
1145
1146 return dfll_request_rate(td, val);
1147}
1148DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
d8d7a08f
TT
1149
1150static int attr_registers_show(struct seq_file *s, void *data)
1151{
1152 u32 val, offs;
1153 struct tegra_dfll *td = s->private;
1154
1155 seq_puts(s, "CONTROL REGISTERS:\n");
1156 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1157 if (offs == DFLL_OUTPUT_CFG)
1158 val = dfll_i2c_readl(td, offs);
1159 else
1160 val = dfll_readl(td, offs);
1161 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1162 }
1163
1164 seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1165 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1166 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1167 dfll_i2c_readl(td, offs));
1168 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1169 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1170 dfll_i2c_readl(td, offs));
1171
1172 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1173 offs = DFLL_I2C_CLK_DIVISOR;
1174 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1175 __raw_readl(td->i2c_controller_base + offs));
1176
1177 seq_puts(s, "\nLUT:\n");
1178 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4)
1179 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1180 __raw_readl(td->lut_base + offs));
1181
1182 return 0;
1183}
1184
1185static int attr_registers_open(struct inode *inode, struct file *file)
1186{
1187 return single_open(file, attr_registers_show, inode->i_private);
1188}
1189
1190static const struct file_operations attr_registers_fops = {
1191 .open = attr_registers_open,
1192 .read = seq_read,
1193 .llseek = seq_lseek,
1194 .release = single_release,
1195};
1196
1197static int dfll_debug_init(struct tegra_dfll *td)
1198{
1199 int ret;
1200
1201 if (!td || (td->mode == DFLL_UNINITIALIZED))
1202 return 0;
1203
1204 td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1205 if (!td->debugfs_dir)
1206 return -ENOMEM;
1207
1208 ret = -ENOMEM;
1209
1210 if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR,
1211 td->debugfs_dir, td, &enable_fops))
1212 goto err_out;
1213
c4fe70ad
TT
1214 if (!debugfs_create_file("lock", S_IRUGO,
1215 td->debugfs_dir, td, &lock_fops))
1216 goto err_out;
1217
d8d7a08f
TT
1218 if (!debugfs_create_file("rate", S_IRUGO,
1219 td->debugfs_dir, td, &rate_fops))
1220 goto err_out;
1221
1222 if (!debugfs_create_file("registers", S_IRUGO,
1223 td->debugfs_dir, td, &attr_registers_fops))
1224 goto err_out;
1225
1226 return 0;
1227
1228err_out:
1229 debugfs_remove_recursive(td->debugfs_dir);
1230 return ret;
1231}
1232
1233#endif /* CONFIG_DEBUG_FS */
1234
1235/*
1236 * DFLL initialization
1237 */
1238
1239/**
1240 * dfll_set_default_params - program non-output related DFLL parameters
1241 * @td: DFLL instance
1242 *
1243 * During DFLL driver initialization or resume from context loss,
1244 * program parameters for the closed loop integrator, DVCO tuning,
1245 * voltage droop control and monitor control.
1246 */
1247static void dfll_set_default_params(struct tegra_dfll *td)
1248{
c4fe70ad
TT
1249 u32 val;
1250
1251 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1252 BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1253 dfll_writel(td, val, DFLL_CONFIG);
1254
1255 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1256 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1257 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1258 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1259 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1260 dfll_writel(td, val, DFLL_PARAMS);
1261
d8d7a08f
TT
1262 dfll_tune_low(td);
1263 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1264 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1265}
1266
1267/**
1268 * dfll_init_clks - clk_get() the DFLL source clocks
1269 * @td: DFLL instance
1270 *
1271 * Call clk_get() on the DFLL source clocks and save the pointers for later
1272 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1273 * of the clocks couldn't be looked up.
1274 */
1275static int dfll_init_clks(struct tegra_dfll *td)
1276{
1277 td->ref_clk = devm_clk_get(td->dev, "ref");
1278 if (IS_ERR(td->ref_clk)) {
1279 dev_err(td->dev, "missing ref clock\n");
1280 return PTR_ERR(td->ref_clk);
1281 }
1282
1283 td->soc_clk = devm_clk_get(td->dev, "soc");
1284 if (IS_ERR(td->soc_clk)) {
1285 dev_err(td->dev, "missing soc clock\n");
1286 return PTR_ERR(td->soc_clk);
1287 }
1288
1289 td->i2c_clk = devm_clk_get(td->dev, "i2c");
1290 if (IS_ERR(td->i2c_clk)) {
1291 dev_err(td->dev, "missing i2c clock\n");
1292 return PTR_ERR(td->i2c_clk);
1293 }
1294 td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1295
1296 return 0;
1297}
1298
1299/**
1300 * dfll_init - Prepare the DFLL IP block for use
1301 * @td: DFLL instance
1302 *
1303 * Do everything necessary to prepare the DFLL IP block for use. The
1304 * DFLL will be left in DISABLED state. Called by dfll_probe().
1305 * Returns 0 upon success, or passes along the error from whatever
1306 * function returned it.
1307 */
1308static int dfll_init(struct tegra_dfll *td)
1309{
1310 int ret;
1311
1312 td->ref_rate = clk_get_rate(td->ref_clk);
1313 if (td->ref_rate != REF_CLOCK_RATE) {
1314 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1315 td->ref_rate, REF_CLOCK_RATE);
1316 return -EINVAL;
1317 }
1318
1319 reset_control_deassert(td->dvco_rst);
1320
1321 ret = clk_prepare(td->ref_clk);
1322 if (ret) {
1323 dev_err(td->dev, "failed to prepare ref_clk\n");
1324 return ret;
1325 }
1326
1327 ret = clk_prepare(td->soc_clk);
1328 if (ret) {
1329 dev_err(td->dev, "failed to prepare soc_clk\n");
1330 goto di_err1;
1331 }
1332
1333 ret = clk_prepare(td->i2c_clk);
1334 if (ret) {
1335 dev_err(td->dev, "failed to prepare i2c_clk\n");
1336 goto di_err2;
1337 }
1338
c4fe70ad
TT
1339 td->last_unrounded_rate = 0;
1340
d8d7a08f
TT
1341 pm_runtime_enable(td->dev);
1342 pm_runtime_get_sync(td->dev);
1343
1344 dfll_set_mode(td, DFLL_DISABLED);
1345 dfll_set_default_params(td);
1346
1347 if (td->soc->init_clock_trimmers)
1348 td->soc->init_clock_trimmers();
1349
1350 dfll_set_open_loop_config(td);
1351
c4fe70ad
TT
1352 dfll_init_out_if(td);
1353
d8d7a08f
TT
1354 pm_runtime_put_sync(td->dev);
1355
1356 return 0;
1357
1358di_err2:
1359 clk_unprepare(td->soc_clk);
1360di_err1:
1361 clk_unprepare(td->ref_clk);
1362
1363 reset_control_assert(td->dvco_rst);
1364
1365 return ret;
1366}
1367
1368/*
1369 * DT data fetch
1370 */
1371
c4fe70ad
TT
1372/*
1373 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1374 * An exact voltage match is required.
1375 */
1376static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1377{
1378 int i, n_voltages, reg_uV;
1379
1380 n_voltages = regulator_count_voltages(td->vdd_reg);
1381 for (i = 0; i < n_voltages; i++) {
1382 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1383 if (reg_uV < 0)
1384 break;
1385
1386 if (uV == reg_uV)
1387 return i;
1388 }
1389
1390 dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1391 return -EINVAL;
1392}
1393
1394/*
1395 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1396 * rounding up to the closest supported voltage.
1397 * */
1398static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1399{
1400 int i, n_voltages, reg_uV;
1401
1402 n_voltages = regulator_count_voltages(td->vdd_reg);
1403 for (i = 0; i < n_voltages; i++) {
1404 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1405 if (reg_uV < 0)
1406 break;
1407
1408 if (uV <= reg_uV)
1409 return i;
1410 }
1411
1412 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1413 return -EINVAL;
1414}
1415
1416/**
1417 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1418 * @td: DFLL instance
1419 *
1420 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1421 * PMIC voltage register values that span the entire DFLL operating range.
1422 * This function builds the look-up table based on the OPP table provided by
1423 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1424 * register-to-voltage mapping queried from the regulator framework.
1425 *
1426 * On success, fills in td->i2c_lut and returns 0, or -err on failure.
1427 */
1428static int dfll_build_i2c_lut(struct tegra_dfll *td)
1429{
1430 int ret = -EINVAL;
1431 int j, v, v_max, v_opp;
1432 int selector;
1433 unsigned long rate;
1434 struct dev_pm_opp *opp;
c5a132a8 1435 int lut;
c4fe70ad
TT
1436
1437 rcu_read_lock();
1438
1439 rate = ULONG_MAX;
62a8a094 1440 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
c4fe70ad
TT
1441 if (IS_ERR(opp)) {
1442 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1443 goto out;
1444 }
1445 v_max = dev_pm_opp_get_voltage(opp);
1446
1447 v = td->soc->min_millivolts * 1000;
c5a132a8
SB
1448 lut = find_vdd_map_entry_exact(td, v);
1449 if (lut < 0)
c4fe70ad 1450 goto out;
c5a132a8 1451 td->i2c_lut[0] = lut;
c4fe70ad
TT
1452
1453 for (j = 1, rate = 0; ; rate++) {
62a8a094 1454 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
c4fe70ad
TT
1455 if (IS_ERR(opp))
1456 break;
1457 v_opp = dev_pm_opp_get_voltage(opp);
1458
1459 if (v_opp <= td->soc->min_millivolts * 1000)
1460 td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1461
1462 for (;;) {
1463 v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1464 if (v >= v_opp)
1465 break;
1466
1467 selector = find_vdd_map_entry_min(td, v);
1468 if (selector < 0)
1469 goto out;
1470 if (selector != td->i2c_lut[j - 1])
1471 td->i2c_lut[j++] = selector;
1472 }
1473
1474 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1475 selector = find_vdd_map_entry_exact(td, v);
1476 if (selector < 0)
1477 goto out;
1478 if (selector != td->i2c_lut[j - 1])
1479 td->i2c_lut[j++] = selector;
1480
1481 if (v >= v_max)
1482 break;
1483 }
1484 td->i2c_lut_size = j;
1485
1486 if (!td->dvco_rate_min)
1487 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1488 td->soc->min_millivolts);
1489 else
1490 ret = 0;
1491
1492out:
1493 rcu_read_unlock();
1494
1495 return ret;
1496}
1497
d8d7a08f
TT
1498/**
1499 * read_dt_param - helper function for reading required parameters from the DT
1500 * @td: DFLL instance
1501 * @param: DT property name
1502 * @dest: output pointer for the value read
1503 *
1504 * Read a required numeric parameter from the DFLL device node, or complain
1505 * if the property doesn't exist. Returns a boolean indicating success for
1506 * easy chaining of multiple calls to this function.
1507 */
1508static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1509{
1510 int err = of_property_read_u32(td->dev->of_node, param, dest);
1511
1512 if (err < 0) {
1513 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1514 param, err);
1515 return false;
1516 }
1517
1518 return true;
1519}
1520
c4fe70ad
TT
1521/**
1522 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1523 * @td: DFLL instance
1524 *
1525 * Read all the parameters required for operation in I2C mode. The parameters
1526 * can originate from the device tree or the regulator subsystem.
1527 * Returns 0 on success or -err on failure.
1528 */
1529static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1530{
1531 struct regmap *regmap;
1532 struct device *i2c_dev;
1533 struct i2c_client *i2c_client;
1534 int vsel_reg, vsel_mask;
1535 int ret;
1536
1537 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1538 return -EINVAL;
1539
1540 regmap = regulator_get_regmap(td->vdd_reg);
1541 i2c_dev = regmap_get_device(regmap);
1542 i2c_client = to_i2c_client(i2c_dev);
1543
1544 td->i2c_slave_addr = i2c_client->addr;
1545
1546 ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1547 &vsel_reg,
1548 &vsel_mask);
1549 if (ret < 0) {
1550 dev_err(td->dev,
1551 "regulator unsuitable for DFLL I2C operation\n");
1552 return -EINVAL;
1553 }
1554 td->i2c_reg = vsel_reg;
1555
1556 ret = dfll_build_i2c_lut(td);
1557 if (ret) {
1558 dev_err(td->dev, "couldn't build I2C LUT\n");
1559 return ret;
1560 }
1561
1562 return 0;
1563}
1564
d8d7a08f
TT
1565/**
1566 * dfll_fetch_common_params - read DFLL parameters from the device tree
1567 * @td: DFLL instance
1568 *
1569 * Read all the DT parameters that are common to both I2C and PWM operation.
1570 * Returns 0 on success or -EINVAL on any failure.
1571 */
1572static int dfll_fetch_common_params(struct tegra_dfll *td)
1573{
1574 bool ok = true;
1575
1576 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
c4fe70ad
TT
1577 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1578 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1579 ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1580 ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1581 ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1582 td->cg_scale = of_property_read_bool(td->dev->of_node,
1583 "nvidia,cg-scale");
d8d7a08f
TT
1584
1585 if (of_property_read_string(td->dev->of_node, "clock-output-names",
1586 &td->output_clock_name)) {
1587 dev_err(td->dev, "missing clock-output-names property\n");
1588 ok = false;
1589 }
1590
1591 return ok ? 0 : -EINVAL;
1592}
1593
1594/*
1595 * API exported to per-SoC platform drivers
1596 */
1597
1598/**
1599 * tegra_dfll_register - probe a Tegra DFLL device
1600 * @pdev: DFLL platform_device *
1601 * @soc: Per-SoC integration and characterization data for this DFLL instance
1602 *
1603 * Probe and initialize a DFLL device instance. Intended to be called
1604 * by a SoC-specific shim driver that passes in per-SoC integration
1605 * and configuration data via @soc. Returns 0 on success or -err on failure.
1606 */
1607int tegra_dfll_register(struct platform_device *pdev,
1608 struct tegra_dfll_soc_data *soc)
1609{
1610 struct resource *mem;
1611 struct tegra_dfll *td;
1612 int ret;
1613
1614 if (!soc) {
1615 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1616 return -EINVAL;
1617 }
1618
1619 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1620 if (!td)
1621 return -ENOMEM;
1622 td->dev = &pdev->dev;
1623 platform_set_drvdata(pdev, td);
1624
1625 td->soc = soc;
1626
1627 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1628 if (IS_ERR(td->vdd_reg)) {
1629 dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1630 return PTR_ERR(td->vdd_reg);
1631 }
1632
1633 td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1634 if (IS_ERR(td->dvco_rst)) {
1635 dev_err(td->dev, "couldn't get dvco reset\n");
1636 return PTR_ERR(td->dvco_rst);
1637 }
1638
1639 ret = dfll_fetch_common_params(td);
1640 if (ret) {
1641 dev_err(td->dev, "couldn't parse device tree parameters\n");
1642 return ret;
1643 }
1644
c4fe70ad
TT
1645 ret = dfll_fetch_i2c_params(td);
1646 if (ret)
1647 return ret;
1648
d8d7a08f
TT
1649 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1650 if (!mem) {
1651 dev_err(td->dev, "no control register resource\n");
1652 return -ENODEV;
1653 }
1654
1655 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1656 if (!td->base) {
1657 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1658 return -ENODEV;
1659 }
1660
1661 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1662 if (!mem) {
1663 dev_err(td->dev, "no i2c_base resource\n");
1664 return -ENODEV;
1665 }
1666
1667 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1668 if (!td->i2c_base) {
1669 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1670 return -ENODEV;
1671 }
1672
1673 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1674 if (!mem) {
1675 dev_err(td->dev, "no i2c_controller_base resource\n");
1676 return -ENODEV;
1677 }
1678
1679 td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1680 resource_size(mem));
1681 if (!td->i2c_controller_base) {
1682 dev_err(td->dev,
1683 "couldn't ioremap i2c_controller_base resource\n");
1684 return -ENODEV;
1685 }
1686
1687 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1688 if (!mem) {
1689 dev_err(td->dev, "no lut_base resource\n");
1690 return -ENODEV;
1691 }
1692
1693 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1694 if (!td->lut_base) {
1695 dev_err(td->dev,
1696 "couldn't ioremap lut_base resource\n");
1697 return -ENODEV;
1698 }
1699
1700 ret = dfll_init_clks(td);
1701 if (ret) {
1702 dev_err(&pdev->dev, "DFLL clock init error\n");
1703 return ret;
1704 }
1705
1706 /* Enable the clocks and set the device up */
1707 ret = dfll_init(td);
1708 if (ret)
1709 return ret;
1710
1711 ret = dfll_register_clk(td);
1712 if (ret) {
1713 dev_err(&pdev->dev, "DFLL clk registration failed\n");
1714 return ret;
1715 }
1716
1717#ifdef CONFIG_DEBUG_FS
1718 dfll_debug_init(td);
1719#endif
1720
1721 return 0;
1722}
1723EXPORT_SYMBOL(tegra_dfll_register);
1724
1725/**
1726 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
1727 * @pdev: DFLL platform_device *
1728 *
1729 * Unbind this driver from the DFLL hardware device represented by
1730 * @pdev. The DFLL must be disabled for this to succeed. Returns 0
1731 * upon success or -EBUSY if the DFLL is still active.
1732 */
1733int tegra_dfll_unregister(struct platform_device *pdev)
1734{
1735 struct tegra_dfll *td = platform_get_drvdata(pdev);
1736
1737 /* Try to prevent removal while the DFLL is active */
1738 if (td->mode != DFLL_DISABLED) {
1739 dev_err(&pdev->dev,
1740 "must disable DFLL before removing driver\n");
1741 return -EBUSY;
1742 }
1743
1744 debugfs_remove_recursive(td->debugfs_dir);
1745
1746 dfll_unregister_clk(td);
1747 pm_runtime_disable(&pdev->dev);
1748
1749 clk_unprepare(td->ref_clk);
1750 clk_unprepare(td->soc_clk);
1751 clk_unprepare(td->i2c_clk);
1752
1753 reset_control_assert(td->dvco_rst);
1754
1755 return 0;
1756}
1757EXPORT_SYMBOL(tegra_dfll_unregister);
This page took 0.093478 seconds and 5 git commands to generate.