powerpc: Shield code specific to 64-bit server processors
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
18a7247d 45static unsigned int def_sampling_rate;
2c906b31
AC
46#define MIN_SAMPLING_RATE_RATIO (2)
47/* for correct statistics, we need at least 10 ticks between each measure */
8e677ce8 48#define MIN_STAT_SAMPLING_RATE \
e08f5f5b
GS
49 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
50#define MIN_SAMPLING_RATE \
51 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
112124ab
TR
52/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
53 * Define the minimal settable sampling rate to the greater of:
54 * - "HW transition latency" * 100 (same as default sampling / 10)
55 * - MIN_STAT_SAMPLING_RATE
56 * To avoid that userspace shoots itself.
57*/
58static unsigned int minimum_sampling_rate(void)
59{
60 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
61}
62
63/* This will also vanish soon with removing sampling_rate_max */
b9170836 64#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
112124ab 65#define LATENCY_MULTIPLIER (1000)
2c906b31
AC
66#define DEF_SAMPLING_DOWN_FACTOR (1)
67#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 68#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 69
c4028958 70static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
71
72struct cpu_dbs_info_s {
8e677ce8
AC
73 cputime64_t prev_cpu_idle;
74 cputime64_t prev_cpu_wall;
75 cputime64_t prev_cpu_nice;
18a7247d 76 struct cpufreq_policy *cur_policy;
8e677ce8 77 struct delayed_work work;
18a7247d
DJ
78 unsigned int down_skip;
79 unsigned int requested_freq;
8e677ce8
AC
80 int cpu;
81 unsigned int enable:1;
b9170836
DJ
82};
83static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
84
85static unsigned int dbs_enable; /* number of CPUs using this policy */
86
4ec223d0
VP
87/*
88 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
89 * lock and dbs_mutex. cpu_hotplug lock should always be held before
90 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
91 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
92 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
93 * is recursive for the same process. -Venki
b253d2b2
MD
94 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
95 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
96 * raceless workqueue teardown.
4ec223d0 97 */
9acef487 98static DEFINE_MUTEX(dbs_mutex);
b9170836 99
8e677ce8
AC
100static struct workqueue_struct *kconservative_wq;
101
102static struct dbs_tuners {
18a7247d
DJ
103 unsigned int sampling_rate;
104 unsigned int sampling_down_factor;
105 unsigned int up_threshold;
106 unsigned int down_threshold;
107 unsigned int ignore_nice;
108 unsigned int freq_step;
8e677ce8 109} dbs_tuners_ins = {
18a7247d
DJ
110 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
111 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
112 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
113 .ignore_nice = 0,
114 .freq_step = 5,
b9170836
DJ
115};
116
8e677ce8
AC
117static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
118 cputime64_t *wall)
dac1c1a5 119{
8e677ce8
AC
120 cputime64_t idle_time;
121 cputime64_t cur_wall_time;
122 cputime64_t busy_time;
123
124 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
125 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
126 kstat_cpu(cpu).cpustat.system);
e08f5f5b 127
8e677ce8
AC
128 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
129 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
130 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
131 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 132
8e677ce8
AC
133 idle_time = cputime64_sub(cur_wall_time, busy_time);
134 if (wall)
135 *wall = cur_wall_time;
e08f5f5b 136
8e677ce8
AC
137 return idle_time;
138}
139
140static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
141{
142 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
143
144 if (idle_time == -1ULL)
145 return get_cpu_idle_time_jiffy(cpu, wall);
146
147 return idle_time;
dac1c1a5
DJ
148}
149
a8d7c3bc
EO
150/* keep track of frequency transitions */
151static int
152dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
153 void *data)
154{
155 struct cpufreq_freqs *freq = data;
156 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
157 freq->cpu);
158
f407a08b
AC
159 struct cpufreq_policy *policy;
160
a8d7c3bc
EO
161 if (!this_dbs_info->enable)
162 return 0;
163
f407a08b
AC
164 policy = this_dbs_info->cur_policy;
165
166 /*
167 * we only care if our internally tracked freq moves outside
168 * the 'valid' ranges of freqency available to us otherwise
169 * we do not change it
170 */
171 if (this_dbs_info->requested_freq > policy->max
172 || this_dbs_info->requested_freq < policy->min)
173 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
174
175 return 0;
176}
177
178static struct notifier_block dbs_cpufreq_notifier_block = {
179 .notifier_call = dbs_cpufreq_notifier
180};
181
b9170836
DJ
182/************************** sysfs interface ************************/
183static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
184{
9411b4ef
TR
185 static int print_once;
186
187 if (!print_once) {
188 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
189 "sysfs file is deprecated - used by: %s\n",
190 current->comm);
191 print_once = 1;
192 }
9acef487 193 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
b9170836
DJ
194}
195
196static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
197{
9411b4ef
TR
198 static int print_once;
199
200 if (!print_once) {
201 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
202 "sysfs file is deprecated - used by: %s\n", current->comm);
203 print_once = 1;
204 }
9acef487 205 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
b9170836
DJ
206}
207
8e677ce8
AC
208#define define_one_ro(_name) \
209static struct freq_attr _name = \
b9170836
DJ
210__ATTR(_name, 0444, show_##_name, NULL)
211
212define_one_ro(sampling_rate_max);
213define_one_ro(sampling_rate_min);
214
215/* cpufreq_conservative Governor Tunables */
216#define show_one(file_name, object) \
217static ssize_t show_##file_name \
218(struct cpufreq_policy *unused, char *buf) \
219{ \
220 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
221}
222show_one(sampling_rate, sampling_rate);
223show_one(sampling_down_factor, sampling_down_factor);
224show_one(up_threshold, up_threshold);
225show_one(down_threshold, down_threshold);
001893cd 226show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
227show_one(freq_step, freq_step);
228
18a7247d 229static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
b9170836
DJ
230 const char *buf, size_t count)
231{
232 unsigned int input;
233 int ret;
9acef487 234 ret = sscanf(buf, "%u", &input);
8e677ce8 235
2c906b31 236 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
237 return -EINVAL;
238
3fc54d37 239 mutex_lock(&dbs_mutex);
b9170836 240 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 241 mutex_unlock(&dbs_mutex);
b9170836
DJ
242
243 return count;
244}
245
18a7247d 246static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
b9170836
DJ
247 const char *buf, size_t count)
248{
249 unsigned int input;
250 int ret;
9acef487 251 ret = sscanf(buf, "%u", &input);
b9170836 252
8e677ce8 253 if (ret != 1)
b9170836 254 return -EINVAL;
8e677ce8
AC
255
256 mutex_lock(&dbs_mutex);
112124ab 257 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
3fc54d37 258 mutex_unlock(&dbs_mutex);
b9170836
DJ
259
260 return count;
261}
262
18a7247d 263static ssize_t store_up_threshold(struct cpufreq_policy *unused,
b9170836
DJ
264 const char *buf, size_t count)
265{
266 unsigned int input;
267 int ret;
9acef487 268 ret = sscanf(buf, "%u", &input);
b9170836 269
3fc54d37 270 mutex_lock(&dbs_mutex);
9acef487 271 if (ret != 1 || input > 100 ||
8e677ce8 272 input <= dbs_tuners_ins.down_threshold) {
3fc54d37 273 mutex_unlock(&dbs_mutex);
b9170836
DJ
274 return -EINVAL;
275 }
276
277 dbs_tuners_ins.up_threshold = input;
3fc54d37 278 mutex_unlock(&dbs_mutex);
b9170836
DJ
279
280 return count;
281}
282
18a7247d 283static ssize_t store_down_threshold(struct cpufreq_policy *unused,
b9170836
DJ
284 const char *buf, size_t count)
285{
286 unsigned int input;
287 int ret;
9acef487 288 ret = sscanf(buf, "%u", &input);
b9170836 289
3fc54d37 290 mutex_lock(&dbs_mutex);
8e677ce8
AC
291 /* cannot be lower than 11 otherwise freq will not fall */
292 if (ret != 1 || input < 11 || input > 100 ||
293 input >= dbs_tuners_ins.up_threshold) {
3fc54d37 294 mutex_unlock(&dbs_mutex);
b9170836
DJ
295 return -EINVAL;
296 }
297
298 dbs_tuners_ins.down_threshold = input;
3fc54d37 299 mutex_unlock(&dbs_mutex);
b9170836
DJ
300
301 return count;
302}
303
001893cd 304static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
305 const char *buf, size_t count)
306{
307 unsigned int input;
308 int ret;
309
310 unsigned int j;
18a7247d
DJ
311
312 ret = sscanf(buf, "%u", &input);
313 if (ret != 1)
b9170836
DJ
314 return -EINVAL;
315
18a7247d 316 if (input > 1)
b9170836 317 input = 1;
18a7247d 318
3fc54d37 319 mutex_lock(&dbs_mutex);
18a7247d 320 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 321 mutex_unlock(&dbs_mutex);
b9170836
DJ
322 return count;
323 }
324 dbs_tuners_ins.ignore_nice = input;
325
8e677ce8 326 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 327 for_each_online_cpu(j) {
8e677ce8
AC
328 struct cpu_dbs_info_s *dbs_info;
329 dbs_info = &per_cpu(cpu_dbs_info, j);
330 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
331 &dbs_info->prev_cpu_wall);
332 if (dbs_tuners_ins.ignore_nice)
333 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 334 }
3fc54d37 335 mutex_unlock(&dbs_mutex);
b9170836
DJ
336
337 return count;
338}
339
340static ssize_t store_freq_step(struct cpufreq_policy *policy,
341 const char *buf, size_t count)
342{
343 unsigned int input;
344 int ret;
18a7247d 345 ret = sscanf(buf, "%u", &input);
b9170836 346
18a7247d 347 if (ret != 1)
b9170836
DJ
348 return -EINVAL;
349
18a7247d 350 if (input > 100)
b9170836 351 input = 100;
18a7247d 352
b9170836
DJ
353 /* no need to test here if freq_step is zero as the user might actually
354 * want this, they would be crazy though :) */
3fc54d37 355 mutex_lock(&dbs_mutex);
b9170836 356 dbs_tuners_ins.freq_step = input;
3fc54d37 357 mutex_unlock(&dbs_mutex);
b9170836
DJ
358
359 return count;
360}
361
362#define define_one_rw(_name) \
363static struct freq_attr _name = \
364__ATTR(_name, 0644, show_##_name, store_##_name)
365
366define_one_rw(sampling_rate);
367define_one_rw(sampling_down_factor);
368define_one_rw(up_threshold);
369define_one_rw(down_threshold);
001893cd 370define_one_rw(ignore_nice_load);
b9170836
DJ
371define_one_rw(freq_step);
372
9acef487 373static struct attribute *dbs_attributes[] = {
b9170836
DJ
374 &sampling_rate_max.attr,
375 &sampling_rate_min.attr,
376 &sampling_rate.attr,
377 &sampling_down_factor.attr,
378 &up_threshold.attr,
379 &down_threshold.attr,
001893cd 380 &ignore_nice_load.attr,
b9170836
DJ
381 &freq_step.attr,
382 NULL
383};
384
385static struct attribute_group dbs_attr_group = {
386 .attrs = dbs_attributes,
387 .name = "conservative",
388};
389
390/************************** sysfs end ************************/
391
8e677ce8 392static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 393{
8e677ce8 394 unsigned int load = 0;
f068c04b 395 unsigned int freq_target;
b9170836 396
8e677ce8
AC
397 struct cpufreq_policy *policy;
398 unsigned int j;
b9170836 399
08a28e2e
AC
400 policy = this_dbs_info->cur_policy;
401
18a7247d 402 /*
8e677ce8
AC
403 * Every sampling_rate, we check, if current idle time is less
404 * than 20% (default), then we try to increase frequency
405 * Every sampling_rate*sampling_down_factor, we check, if current
406 * idle time is more than 80%, then we try to decrease frequency
b9170836 407 *
18a7247d
DJ
408 * Any frequency increase takes it to the maximum frequency.
409 * Frequency reduction happens at minimum steps of
8e677ce8 410 * 5% (default) of maximum frequency
b9170836
DJ
411 */
412
8e677ce8
AC
413 /* Get Absolute Load */
414 for_each_cpu(j, policy->cpus) {
415 struct cpu_dbs_info_s *j_dbs_info;
416 cputime64_t cur_wall_time, cur_idle_time;
417 unsigned int idle_time, wall_time;
b9170836 418
8e677ce8
AC
419 j_dbs_info = &per_cpu(cpu_dbs_info, j);
420
421 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
422
423 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
424 j_dbs_info->prev_cpu_wall);
425 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 426
8e677ce8
AC
427 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
428 j_dbs_info->prev_cpu_idle);
429 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 430
8e677ce8
AC
431 if (dbs_tuners_ins.ignore_nice) {
432 cputime64_t cur_nice;
433 unsigned long cur_nice_jiffies;
434
435 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
436 j_dbs_info->prev_cpu_nice);
437 /*
438 * Assumption: nice time between sampling periods will
439 * be less than 2^32 jiffies for 32 bit sys
440 */
441 cur_nice_jiffies = (unsigned long)
442 cputime64_to_jiffies64(cur_nice);
443
444 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
445 idle_time += jiffies_to_usecs(cur_nice_jiffies);
446 }
447
448 if (unlikely(!wall_time || wall_time < idle_time))
449 continue;
450
451 load = 100 * (wall_time - idle_time) / wall_time;
452 }
453
454 /*
455 * break out if we 'cannot' reduce the speed as the user might
456 * want freq_step to be zero
457 */
458 if (dbs_tuners_ins.freq_step == 0)
459 return;
b9170836 460
8e677ce8
AC
461 /* Check for frequency increase */
462 if (load > dbs_tuners_ins.up_threshold) {
a159b827 463 this_dbs_info->down_skip = 0;
790d76fa 464
b9170836 465 /* if we are already at full speed then break out early */
a159b827 466 if (this_dbs_info->requested_freq == policy->max)
b9170836 467 return;
18a7247d 468
f068c04b 469 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
470
471 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
472 if (unlikely(freq_target == 0))
473 freq_target = 5;
18a7247d 474
f068c04b 475 this_dbs_info->requested_freq += freq_target;
a159b827
AC
476 if (this_dbs_info->requested_freq > policy->max)
477 this_dbs_info->requested_freq = policy->max;
b9170836 478
a159b827 479 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 480 CPUFREQ_RELATION_H);
b9170836
DJ
481 return;
482 }
483
8e677ce8
AC
484 /*
485 * The optimal frequency is the frequency that is the lowest that
486 * can support the current CPU usage without triggering the up
487 * policy. To be safe, we focus 10 points under the threshold.
488 */
489 if (load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 490 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 491
f068c04b 492 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
493 if (this_dbs_info->requested_freq < policy->min)
494 this_dbs_info->requested_freq = policy->min;
b9170836 495
8e677ce8
AC
496 /*
497 * if we cannot reduce the frequency anymore, break out early
498 */
499 if (policy->cur == policy->min)
500 return;
501
a159b827 502 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 503 CPUFREQ_RELATION_H);
b9170836
DJ
504 return;
505 }
506}
507
c4028958 508static void do_dbs_timer(struct work_struct *work)
18a7247d 509{
8e677ce8
AC
510 struct cpu_dbs_info_s *dbs_info =
511 container_of(work, struct cpu_dbs_info_s, work.work);
512 unsigned int cpu = dbs_info->cpu;
513
514 /* We want all CPUs to do sampling nearly on same jiffy */
515 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
516
517 delay -= jiffies % delay;
518
519 if (lock_policy_rwsem_write(cpu) < 0)
520 return;
521
522 if (!dbs_info->enable) {
523 unlock_policy_rwsem_write(cpu);
524 return;
525 }
526
527 dbs_check_cpu(dbs_info);
528
529 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
530 unlock_policy_rwsem_write(cpu);
18a7247d 531}
b9170836 532
8e677ce8 533static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 534{
8e677ce8
AC
535 /* We want all CPUs to do sampling nearly on same jiffy */
536 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
537 delay -= jiffies % delay;
538
539 dbs_info->enable = 1;
540 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
541 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
542 delay);
b9170836
DJ
543}
544
8e677ce8 545static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 546{
8e677ce8 547 dbs_info->enable = 0;
b253d2b2 548 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
549}
550
551static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
552 unsigned int event)
553{
554 unsigned int cpu = policy->cpu;
555 struct cpu_dbs_info_s *this_dbs_info;
556 unsigned int j;
914f7c31 557 int rc;
b9170836
DJ
558
559 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
560
561 switch (event) {
562 case CPUFREQ_GOV_START:
18a7247d 563 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
564 return -EINVAL;
565
b9170836
DJ
566 if (this_dbs_info->enable) /* Already enabled */
567 break;
18a7247d 568
3fc54d37 569 mutex_lock(&dbs_mutex);
914f7c31
JG
570
571 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
572 if (rc) {
573 mutex_unlock(&dbs_mutex);
574 return rc;
575 }
576
835481d9 577 for_each_cpu(j, policy->cpus) {
b9170836
DJ
578 struct cpu_dbs_info_s *j_dbs_info;
579 j_dbs_info = &per_cpu(cpu_dbs_info, j);
580 j_dbs_info->cur_policy = policy;
18a7247d 581
8e677ce8
AC
582 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
583 &j_dbs_info->prev_cpu_wall);
584 if (dbs_tuners_ins.ignore_nice) {
585 j_dbs_info->prev_cpu_nice =
586 kstat_cpu(j).cpustat.nice;
587 }
b9170836 588 }
a159b827
AC
589 this_dbs_info->down_skip = 0;
590 this_dbs_info->requested_freq = policy->cur;
914f7c31 591
b9170836
DJ
592 dbs_enable++;
593 /*
594 * Start the timerschedule work, when this governor
595 * is used for first time
596 */
597 if (dbs_enable == 1) {
598 unsigned int latency;
599 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
600 latency = policy->cpuinfo.transition_latency / 1000;
601 if (latency == 0)
602 latency = 1;
b9170836 603
112124ab 604 def_sampling_rate =
a75603a0 605 max(latency * LATENCY_MULTIPLIER,
112124ab 606 MIN_STAT_SAMPLING_RATE);
2c906b31 607
b9170836 608 dbs_tuners_ins.sampling_rate = def_sampling_rate;
b9170836 609
a8d7c3bc
EO
610 cpufreq_register_notifier(
611 &dbs_cpufreq_notifier_block,
612 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 613 }
8e677ce8 614 dbs_timer_init(this_dbs_info);
18a7247d 615
3fc54d37 616 mutex_unlock(&dbs_mutex);
8e677ce8 617
b9170836
DJ
618 break;
619
620 case CPUFREQ_GOV_STOP:
3fc54d37 621 mutex_lock(&dbs_mutex);
8e677ce8 622 dbs_timer_exit(this_dbs_info);
b9170836
DJ
623 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
624 dbs_enable--;
8e677ce8 625
b9170836
DJ
626 /*
627 * Stop the timerschedule work, when this governor
628 * is used for first time
629 */
8e677ce8 630 if (dbs_enable == 0)
a8d7c3bc
EO
631 cpufreq_unregister_notifier(
632 &dbs_cpufreq_notifier_block,
633 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 634
3fc54d37 635 mutex_unlock(&dbs_mutex);
b9170836
DJ
636
637 break;
638
639 case CPUFREQ_GOV_LIMITS:
3fc54d37 640 mutex_lock(&dbs_mutex);
b9170836
DJ
641 if (policy->max < this_dbs_info->cur_policy->cur)
642 __cpufreq_driver_target(
643 this_dbs_info->cur_policy,
18a7247d 644 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
645 else if (policy->min > this_dbs_info->cur_policy->cur)
646 __cpufreq_driver_target(
647 this_dbs_info->cur_policy,
18a7247d 648 policy->min, CPUFREQ_RELATION_L);
3fc54d37 649 mutex_unlock(&dbs_mutex);
8e677ce8 650
b9170836
DJ
651 break;
652 }
653 return 0;
654}
655
c4d14bc0
SW
656#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
657static
658#endif
1c256245
TR
659struct cpufreq_governor cpufreq_gov_conservative = {
660 .name = "conservative",
661 .governor = cpufreq_governor_dbs,
662 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
663 .owner = THIS_MODULE,
b9170836
DJ
664};
665
666static int __init cpufreq_gov_dbs_init(void)
667{
8e677ce8
AC
668 int err;
669
670 kconservative_wq = create_workqueue("kconservative");
671 if (!kconservative_wq) {
672 printk(KERN_ERR "Creation of kconservative failed\n");
673 return -EFAULT;
674 }
675
676 err = cpufreq_register_governor(&cpufreq_gov_conservative);
677 if (err)
678 destroy_workqueue(kconservative_wq);
679
680 return err;
b9170836
DJ
681}
682
683static void __exit cpufreq_gov_dbs_exit(void)
684{
1c256245 685 cpufreq_unregister_governor(&cpufreq_gov_conservative);
8e677ce8 686 destroy_workqueue(kconservative_wq);
b9170836
DJ
687}
688
689
11a80a9c 690MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 691MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
692 "Low Latency Frequency Transition capable processors "
693 "optimised for use in a battery environment");
9acef487 694MODULE_LICENSE("GPL");
b9170836 695
6915719b
JW
696#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
697fs_initcall(cpufreq_gov_dbs_init);
698#else
b9170836 699module_init(cpufreq_gov_dbs_init);
6915719b 700#endif
b9170836 701module_exit(cpufreq_gov_dbs_exit);
This page took 0.436384 seconds and 5 git commands to generate.