cpufreq: return early from __cpufreq_driver_getavg()
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
ee88415c 67 /*
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
71 */
72 struct mutex timer_mutex;
b9170836 73};
245b2e70 74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
b9170836
DJ
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
4ec223d0 78/*
326c86de 79 * dbs_mutex protects dbs_enable in governor start/stop.
4ec223d0 80 */
9acef487 81static DEFINE_MUTEX(dbs_mutex);
b9170836 82
8e677ce8 83static struct dbs_tuners {
18a7247d
DJ
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
8e677ce8 90} dbs_tuners_ins = {
18a7247d
DJ
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 .ignore_nice = 0,
95 .freq_step = 5,
b9170836
DJ
96};
97
a8d7c3bc
EO
98/* keep track of frequency transitions */
99static int
100dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
101 void *data)
102{
103 struct cpufreq_freqs *freq = data;
245b2e70 104 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
a8d7c3bc
EO
105 freq->cpu);
106
f407a08b
AC
107 struct cpufreq_policy *policy;
108
a8d7c3bc
EO
109 if (!this_dbs_info->enable)
110 return 0;
111
f407a08b
AC
112 policy = this_dbs_info->cur_policy;
113
114 /*
115 * we only care if our internally tracked freq moves outside
116 * the 'valid' ranges of freqency available to us otherwise
117 * we do not change it
118 */
119 if (this_dbs_info->requested_freq > policy->max
120 || this_dbs_info->requested_freq < policy->min)
121 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
122
123 return 0;
124}
125
126static struct notifier_block dbs_cpufreq_notifier_block = {
127 .notifier_call = dbs_cpufreq_notifier
128};
129
b9170836 130/************************** sysfs interface ************************/
49b015ce
TR
131static ssize_t show_sampling_rate_min(struct kobject *kobj,
132 struct attribute *attr, char *buf)
b9170836 133{
cef9615a 134 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
135}
136
6dad2a29 137define_one_global_ro(sampling_rate_min);
b9170836
DJ
138
139/* cpufreq_conservative Governor Tunables */
140#define show_one(file_name, object) \
141static ssize_t show_##file_name \
49b015ce 142(struct kobject *kobj, struct attribute *attr, char *buf) \
b9170836
DJ
143{ \
144 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
145}
146show_one(sampling_rate, sampling_rate);
147show_one(sampling_down_factor, sampling_down_factor);
148show_one(up_threshold, up_threshold);
149show_one(down_threshold, down_threshold);
001893cd 150show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
151show_one(freq_step, freq_step);
152
49b015ce
TR
153static ssize_t store_sampling_down_factor(struct kobject *a,
154 struct attribute *b,
155 const char *buf, size_t count)
b9170836
DJ
156{
157 unsigned int input;
158 int ret;
9acef487 159 ret = sscanf(buf, "%u", &input);
8e677ce8 160
2c906b31 161 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
162 return -EINVAL;
163
b9170836 164 dbs_tuners_ins.sampling_down_factor = input;
b9170836
DJ
165 return count;
166}
167
49b015ce
TR
168static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
169 const char *buf, size_t count)
b9170836
DJ
170{
171 unsigned int input;
172 int ret;
9acef487 173 ret = sscanf(buf, "%u", &input);
b9170836 174
8e677ce8 175 if (ret != 1)
b9170836 176 return -EINVAL;
8e677ce8 177
cef9615a 178 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
b9170836
DJ
179 return count;
180}
181
49b015ce
TR
182static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
183 const char *buf, size_t count)
b9170836
DJ
184{
185 unsigned int input;
186 int ret;
9acef487 187 ret = sscanf(buf, "%u", &input);
b9170836 188
9acef487 189 if (ret != 1 || input > 100 ||
326c86de 190 input <= dbs_tuners_ins.down_threshold)
b9170836 191 return -EINVAL;
b9170836
DJ
192
193 dbs_tuners_ins.up_threshold = input;
b9170836
DJ
194 return count;
195}
196
49b015ce
TR
197static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
198 const char *buf, size_t count)
b9170836
DJ
199{
200 unsigned int input;
201 int ret;
9acef487 202 ret = sscanf(buf, "%u", &input);
b9170836 203
8e677ce8
AC
204 /* cannot be lower than 11 otherwise freq will not fall */
205 if (ret != 1 || input < 11 || input > 100 ||
326c86de 206 input >= dbs_tuners_ins.up_threshold)
b9170836 207 return -EINVAL;
b9170836
DJ
208
209 dbs_tuners_ins.down_threshold = input;
b9170836
DJ
210 return count;
211}
212
49b015ce
TR
213static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
214 const char *buf, size_t count)
b9170836
DJ
215{
216 unsigned int input;
217 int ret;
218
219 unsigned int j;
18a7247d
DJ
220
221 ret = sscanf(buf, "%u", &input);
222 if (ret != 1)
b9170836
DJ
223 return -EINVAL;
224
18a7247d 225 if (input > 1)
b9170836 226 input = 1;
18a7247d 227
326c86de 228 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
b9170836 229 return count;
326c86de 230
b9170836
DJ
231 dbs_tuners_ins.ignore_nice = input;
232
8e677ce8 233 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 234 for_each_online_cpu(j) {
8e677ce8 235 struct cpu_dbs_info_s *dbs_info;
245b2e70 236 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
237 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
238 &dbs_info->prev_cpu_wall);
239 if (dbs_tuners_ins.ignore_nice)
3292beb3 240 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
b9170836 241 }
b9170836
DJ
242 return count;
243}
244
49b015ce
TR
245static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
246 const char *buf, size_t count)
b9170836
DJ
247{
248 unsigned int input;
249 int ret;
18a7247d 250 ret = sscanf(buf, "%u", &input);
b9170836 251
18a7247d 252 if (ret != 1)
b9170836
DJ
253 return -EINVAL;
254
18a7247d 255 if (input > 100)
b9170836 256 input = 100;
18a7247d 257
b9170836
DJ
258 /* no need to test here if freq_step is zero as the user might actually
259 * want this, they would be crazy though :) */
b9170836 260 dbs_tuners_ins.freq_step = input;
b9170836
DJ
261 return count;
262}
263
6dad2a29
BP
264define_one_global_rw(sampling_rate);
265define_one_global_rw(sampling_down_factor);
266define_one_global_rw(up_threshold);
267define_one_global_rw(down_threshold);
268define_one_global_rw(ignore_nice_load);
269define_one_global_rw(freq_step);
b9170836 270
9acef487 271static struct attribute *dbs_attributes[] = {
b9170836
DJ
272 &sampling_rate_min.attr,
273 &sampling_rate.attr,
274 &sampling_down_factor.attr,
275 &up_threshold.attr,
276 &down_threshold.attr,
001893cd 277 &ignore_nice_load.attr,
b9170836
DJ
278 &freq_step.attr,
279 NULL
280};
281
282static struct attribute_group dbs_attr_group = {
283 .attrs = dbs_attributes,
284 .name = "conservative",
285};
286
287/************************** sysfs end ************************/
288
8e677ce8 289static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 290{
8e677ce8 291 unsigned int load = 0;
fd187aaf 292 unsigned int max_load = 0;
f068c04b 293 unsigned int freq_target;
b9170836 294
8e677ce8
AC
295 struct cpufreq_policy *policy;
296 unsigned int j;
b9170836 297
08a28e2e
AC
298 policy = this_dbs_info->cur_policy;
299
18a7247d 300 /*
8e677ce8
AC
301 * Every sampling_rate, we check, if current idle time is less
302 * than 20% (default), then we try to increase frequency
303 * Every sampling_rate*sampling_down_factor, we check, if current
304 * idle time is more than 80%, then we try to decrease frequency
b9170836 305 *
18a7247d
DJ
306 * Any frequency increase takes it to the maximum frequency.
307 * Frequency reduction happens at minimum steps of
8e677ce8 308 * 5% (default) of maximum frequency
b9170836
DJ
309 */
310
8e677ce8
AC
311 /* Get Absolute Load */
312 for_each_cpu(j, policy->cpus) {
313 struct cpu_dbs_info_s *j_dbs_info;
314 cputime64_t cur_wall_time, cur_idle_time;
315 unsigned int idle_time, wall_time;
b9170836 316
245b2e70 317 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
8e677ce8
AC
318
319 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
320
64861634
MS
321 wall_time = (unsigned int)
322 (cur_wall_time - j_dbs_info->prev_cpu_wall);
8e677ce8 323 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 324
64861634
MS
325 idle_time = (unsigned int)
326 (cur_idle_time - j_dbs_info->prev_cpu_idle);
8e677ce8 327 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 328
8e677ce8 329 if (dbs_tuners_ins.ignore_nice) {
3292beb3 330 u64 cur_nice;
8e677ce8
AC
331 unsigned long cur_nice_jiffies;
332
3292beb3
GC
333 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
334 j_dbs_info->prev_cpu_nice;
8e677ce8
AC
335 /*
336 * Assumption: nice time between sampling periods will
337 * be less than 2^32 jiffies for 32 bit sys
338 */
339 cur_nice_jiffies = (unsigned long)
340 cputime64_to_jiffies64(cur_nice);
341
3292beb3 342 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
8e677ce8
AC
343 idle_time += jiffies_to_usecs(cur_nice_jiffies);
344 }
345
346 if (unlikely(!wall_time || wall_time < idle_time))
347 continue;
348
349 load = 100 * (wall_time - idle_time) / wall_time;
fd187aaf
DB
350
351 if (load > max_load)
352 max_load = load;
8e677ce8
AC
353 }
354
355 /*
356 * break out if we 'cannot' reduce the speed as the user might
357 * want freq_step to be zero
358 */
359 if (dbs_tuners_ins.freq_step == 0)
360 return;
b9170836 361
8e677ce8 362 /* Check for frequency increase */
fd187aaf 363 if (max_load > dbs_tuners_ins.up_threshold) {
a159b827 364 this_dbs_info->down_skip = 0;
790d76fa 365
b9170836 366 /* if we are already at full speed then break out early */
a159b827 367 if (this_dbs_info->requested_freq == policy->max)
b9170836 368 return;
18a7247d 369
f068c04b 370 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
371
372 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
373 if (unlikely(freq_target == 0))
374 freq_target = 5;
18a7247d 375
f068c04b 376 this_dbs_info->requested_freq += freq_target;
a159b827
AC
377 if (this_dbs_info->requested_freq > policy->max)
378 this_dbs_info->requested_freq = policy->max;
b9170836 379
a159b827 380 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 381 CPUFREQ_RELATION_H);
b9170836
DJ
382 return;
383 }
384
8e677ce8
AC
385 /*
386 * The optimal frequency is the frequency that is the lowest that
387 * can support the current CPU usage without triggering the up
388 * policy. To be safe, we focus 10 points under the threshold.
389 */
fd187aaf 390 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 391 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 392
f068c04b 393 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
394 if (this_dbs_info->requested_freq < policy->min)
395 this_dbs_info->requested_freq = policy->min;
b9170836 396
8e677ce8
AC
397 /*
398 * if we cannot reduce the frequency anymore, break out early
399 */
400 if (policy->cur == policy->min)
401 return;
402
a159b827 403 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 404 CPUFREQ_RELATION_H);
b9170836
DJ
405 return;
406 }
407}
408
c4028958 409static void do_dbs_timer(struct work_struct *work)
18a7247d 410{
8e677ce8
AC
411 struct cpu_dbs_info_s *dbs_info =
412 container_of(work, struct cpu_dbs_info_s, work.work);
413 unsigned int cpu = dbs_info->cpu;
414
415 /* We want all CPUs to do sampling nearly on same jiffy */
416 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
417
418 delay -= jiffies % delay;
419
ee88415c 420 mutex_lock(&dbs_info->timer_mutex);
8e677ce8
AC
421
422 dbs_check_cpu(dbs_info);
423
57df5573 424 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
ee88415c 425 mutex_unlock(&dbs_info->timer_mutex);
18a7247d 426}
b9170836 427
8e677ce8 428static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 429{
8e677ce8
AC
430 /* We want all CPUs to do sampling nearly on same jiffy */
431 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
432 delay -= jiffies % delay;
433
434 dbs_info->enable = 1;
203b42f7 435 INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
57df5573 436 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
b9170836
DJ
437}
438
8e677ce8 439static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 440{
8e677ce8 441 dbs_info->enable = 0;
b253d2b2 442 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
443}
444
445static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
446 unsigned int event)
447{
448 unsigned int cpu = policy->cpu;
449 struct cpu_dbs_info_s *this_dbs_info;
450 unsigned int j;
914f7c31 451 int rc;
b9170836 452
245b2e70 453 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
b9170836
DJ
454
455 switch (event) {
456 case CPUFREQ_GOV_START:
18a7247d 457 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
458 return -EINVAL;
459
3fc54d37 460 mutex_lock(&dbs_mutex);
914f7c31 461
835481d9 462 for_each_cpu(j, policy->cpus) {
b9170836 463 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 464 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
b9170836 465 j_dbs_info->cur_policy = policy;
18a7247d 466
8e677ce8
AC
467 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
468 &j_dbs_info->prev_cpu_wall);
3292beb3 469 if (dbs_tuners_ins.ignore_nice)
8e677ce8 470 j_dbs_info->prev_cpu_nice =
3292beb3 471 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
b9170836 472 }
2d175069 473 this_dbs_info->cpu = cpu;
a159b827
AC
474 this_dbs_info->down_skip = 0;
475 this_dbs_info->requested_freq = policy->cur;
914f7c31 476
ee88415c 477 mutex_init(&this_dbs_info->timer_mutex);
b9170836
DJ
478 dbs_enable++;
479 /*
480 * Start the timerschedule work, when this governor
481 * is used for first time
482 */
483 if (dbs_enable == 1) {
484 unsigned int latency;
485 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
486 latency = policy->cpuinfo.transition_latency / 1000;
487 if (latency == 0)
488 latency = 1;
b9170836 489
49b015ce
TR
490 rc = sysfs_create_group(cpufreq_global_kobject,
491 &dbs_attr_group);
492 if (rc) {
493 mutex_unlock(&dbs_mutex);
494 return rc;
495 }
496
cef9615a
TR
497 /*
498 * conservative does not implement micro like ondemand
499 * governor, thus we are bound to jiffes/HZ
500 */
501 min_sampling_rate =
502 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
503 /* Bring kernel and HW constraints together */
504 min_sampling_rate = max(min_sampling_rate,
505 MIN_LATENCY_MULTIPLIER * latency);
506 dbs_tuners_ins.sampling_rate =
507 max(min_sampling_rate,
508 latency * LATENCY_MULTIPLIER);
b9170836 509
a8d7c3bc
EO
510 cpufreq_register_notifier(
511 &dbs_cpufreq_notifier_block,
512 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 513 }
3fc54d37 514 mutex_unlock(&dbs_mutex);
8e677ce8 515
7d26e2d5 516 dbs_timer_init(this_dbs_info);
517
b9170836
DJ
518 break;
519
520 case CPUFREQ_GOV_STOP:
8e677ce8 521 dbs_timer_exit(this_dbs_info);
7d26e2d5 522
523 mutex_lock(&dbs_mutex);
b9170836 524 dbs_enable--;
ee88415c 525 mutex_destroy(&this_dbs_info->timer_mutex);
8e677ce8 526
b9170836
DJ
527 /*
528 * Stop the timerschedule work, when this governor
529 * is used for first time
530 */
8e677ce8 531 if (dbs_enable == 0)
a8d7c3bc
EO
532 cpufreq_unregister_notifier(
533 &dbs_cpufreq_notifier_block,
534 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 535
3fc54d37 536 mutex_unlock(&dbs_mutex);
49b015ce
TR
537 if (!dbs_enable)
538 sysfs_remove_group(cpufreq_global_kobject,
539 &dbs_attr_group);
b9170836
DJ
540
541 break;
542
543 case CPUFREQ_GOV_LIMITS:
ee88415c 544 mutex_lock(&this_dbs_info->timer_mutex);
b9170836
DJ
545 if (policy->max < this_dbs_info->cur_policy->cur)
546 __cpufreq_driver_target(
547 this_dbs_info->cur_policy,
18a7247d 548 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
549 else if (policy->min > this_dbs_info->cur_policy->cur)
550 __cpufreq_driver_target(
551 this_dbs_info->cur_policy,
18a7247d 552 policy->min, CPUFREQ_RELATION_L);
2d8fced7 553 dbs_check_cpu(this_dbs_info);
ee88415c 554 mutex_unlock(&this_dbs_info->timer_mutex);
8e677ce8 555
b9170836
DJ
556 break;
557 }
558 return 0;
559}
560
c4d14bc0
SW
561#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
562static
563#endif
1c256245
TR
564struct cpufreq_governor cpufreq_gov_conservative = {
565 .name = "conservative",
566 .governor = cpufreq_governor_dbs,
567 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
568 .owner = THIS_MODULE,
b9170836
DJ
569};
570
571static int __init cpufreq_gov_dbs_init(void)
572{
57df5573 573 return cpufreq_register_governor(&cpufreq_gov_conservative);
b9170836
DJ
574}
575
576static void __exit cpufreq_gov_dbs_exit(void)
577{
1c256245 578 cpufreq_unregister_governor(&cpufreq_gov_conservative);
b9170836
DJ
579}
580
581
11a80a9c 582MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 583MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
584 "Low Latency Frequency Transition capable processors "
585 "optimised for use in a battery environment");
9acef487 586MODULE_LICENSE("GPL");
b9170836 587
6915719b
JW
588#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
589fs_initcall(cpufreq_gov_dbs_init);
590#else
b9170836 591module_init(cpufreq_gov_dbs_init);
6915719b 592#endif
b9170836 593module_exit(cpufreq_gov_dbs_exit);
This page took 1.085316 seconds and 5 git commands to generate.