percpu: use DEFINE_PER_CPU_SHARED_ALIGNED()
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
b9170836
DJ
67};
68static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
69
70static unsigned int dbs_enable; /* number of CPUs using this policy */
71
4ec223d0
VP
72/*
73 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
74 * lock and dbs_mutex. cpu_hotplug lock should always be held before
75 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
76 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
77 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
78 * is recursive for the same process. -Venki
b253d2b2
MD
79 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
80 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
81 * raceless workqueue teardown.
4ec223d0 82 */
9acef487 83static DEFINE_MUTEX(dbs_mutex);
b9170836 84
8e677ce8
AC
85static struct workqueue_struct *kconservative_wq;
86
87static struct dbs_tuners {
18a7247d
DJ
88 unsigned int sampling_rate;
89 unsigned int sampling_down_factor;
90 unsigned int up_threshold;
91 unsigned int down_threshold;
92 unsigned int ignore_nice;
93 unsigned int freq_step;
8e677ce8 94} dbs_tuners_ins = {
18a7247d
DJ
95 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
96 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
97 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
98 .ignore_nice = 0,
99 .freq_step = 5,
b9170836
DJ
100};
101
8e677ce8
AC
102static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
103 cputime64_t *wall)
dac1c1a5 104{
8e677ce8
AC
105 cputime64_t idle_time;
106 cputime64_t cur_wall_time;
107 cputime64_t busy_time;
108
109 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
110 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
111 kstat_cpu(cpu).cpustat.system);
e08f5f5b 112
8e677ce8
AC
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
114 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
115 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
116 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 117
8e677ce8
AC
118 idle_time = cputime64_sub(cur_wall_time, busy_time);
119 if (wall)
120 *wall = cur_wall_time;
e08f5f5b 121
8e677ce8
AC
122 return idle_time;
123}
124
125static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
126{
127 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
128
129 if (idle_time == -1ULL)
130 return get_cpu_idle_time_jiffy(cpu, wall);
131
132 return idle_time;
dac1c1a5
DJ
133}
134
a8d7c3bc
EO
135/* keep track of frequency transitions */
136static int
137dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
138 void *data)
139{
140 struct cpufreq_freqs *freq = data;
141 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
142 freq->cpu);
143
f407a08b
AC
144 struct cpufreq_policy *policy;
145
a8d7c3bc
EO
146 if (!this_dbs_info->enable)
147 return 0;
148
f407a08b
AC
149 policy = this_dbs_info->cur_policy;
150
151 /*
152 * we only care if our internally tracked freq moves outside
153 * the 'valid' ranges of freqency available to us otherwise
154 * we do not change it
155 */
156 if (this_dbs_info->requested_freq > policy->max
157 || this_dbs_info->requested_freq < policy->min)
158 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
159
160 return 0;
161}
162
163static struct notifier_block dbs_cpufreq_notifier_block = {
164 .notifier_call = dbs_cpufreq_notifier
165};
166
b9170836
DJ
167/************************** sysfs interface ************************/
168static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
169{
4f4d1ad6
TR
170 printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
171 "sysfs file is deprecated - used by: %s\n", current->comm);
cef9615a 172 return sprintf(buf, "%u\n", -1U);
b9170836
DJ
173}
174
175static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
176{
cef9615a 177 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
178}
179
8e677ce8
AC
180#define define_one_ro(_name) \
181static struct freq_attr _name = \
b9170836
DJ
182__ATTR(_name, 0444, show_##_name, NULL)
183
184define_one_ro(sampling_rate_max);
185define_one_ro(sampling_rate_min);
186
187/* cpufreq_conservative Governor Tunables */
188#define show_one(file_name, object) \
189static ssize_t show_##file_name \
190(struct cpufreq_policy *unused, char *buf) \
191{ \
192 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
193}
194show_one(sampling_rate, sampling_rate);
195show_one(sampling_down_factor, sampling_down_factor);
196show_one(up_threshold, up_threshold);
197show_one(down_threshold, down_threshold);
001893cd 198show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
199show_one(freq_step, freq_step);
200
18a7247d 201static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
b9170836
DJ
202 const char *buf, size_t count)
203{
204 unsigned int input;
205 int ret;
9acef487 206 ret = sscanf(buf, "%u", &input);
8e677ce8 207
2c906b31 208 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
209 return -EINVAL;
210
3fc54d37 211 mutex_lock(&dbs_mutex);
b9170836 212 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 213 mutex_unlock(&dbs_mutex);
b9170836
DJ
214
215 return count;
216}
217
18a7247d 218static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
b9170836
DJ
219 const char *buf, size_t count)
220{
221 unsigned int input;
222 int ret;
9acef487 223 ret = sscanf(buf, "%u", &input);
b9170836 224
8e677ce8 225 if (ret != 1)
b9170836 226 return -EINVAL;
8e677ce8
AC
227
228 mutex_lock(&dbs_mutex);
cef9615a 229 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
3fc54d37 230 mutex_unlock(&dbs_mutex);
b9170836
DJ
231
232 return count;
233}
234
18a7247d 235static ssize_t store_up_threshold(struct cpufreq_policy *unused,
b9170836
DJ
236 const char *buf, size_t count)
237{
238 unsigned int input;
239 int ret;
9acef487 240 ret = sscanf(buf, "%u", &input);
b9170836 241
3fc54d37 242 mutex_lock(&dbs_mutex);
9acef487 243 if (ret != 1 || input > 100 ||
8e677ce8 244 input <= dbs_tuners_ins.down_threshold) {
3fc54d37 245 mutex_unlock(&dbs_mutex);
b9170836
DJ
246 return -EINVAL;
247 }
248
249 dbs_tuners_ins.up_threshold = input;
3fc54d37 250 mutex_unlock(&dbs_mutex);
b9170836
DJ
251
252 return count;
253}
254
18a7247d 255static ssize_t store_down_threshold(struct cpufreq_policy *unused,
b9170836
DJ
256 const char *buf, size_t count)
257{
258 unsigned int input;
259 int ret;
9acef487 260 ret = sscanf(buf, "%u", &input);
b9170836 261
3fc54d37 262 mutex_lock(&dbs_mutex);
8e677ce8
AC
263 /* cannot be lower than 11 otherwise freq will not fall */
264 if (ret != 1 || input < 11 || input > 100 ||
265 input >= dbs_tuners_ins.up_threshold) {
3fc54d37 266 mutex_unlock(&dbs_mutex);
b9170836
DJ
267 return -EINVAL;
268 }
269
270 dbs_tuners_ins.down_threshold = input;
3fc54d37 271 mutex_unlock(&dbs_mutex);
b9170836
DJ
272
273 return count;
274}
275
001893cd 276static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
277 const char *buf, size_t count)
278{
279 unsigned int input;
280 int ret;
281
282 unsigned int j;
18a7247d
DJ
283
284 ret = sscanf(buf, "%u", &input);
285 if (ret != 1)
b9170836
DJ
286 return -EINVAL;
287
18a7247d 288 if (input > 1)
b9170836 289 input = 1;
18a7247d 290
3fc54d37 291 mutex_lock(&dbs_mutex);
18a7247d 292 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 293 mutex_unlock(&dbs_mutex);
b9170836
DJ
294 return count;
295 }
296 dbs_tuners_ins.ignore_nice = input;
297
8e677ce8 298 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 299 for_each_online_cpu(j) {
8e677ce8
AC
300 struct cpu_dbs_info_s *dbs_info;
301 dbs_info = &per_cpu(cpu_dbs_info, j);
302 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
303 &dbs_info->prev_cpu_wall);
304 if (dbs_tuners_ins.ignore_nice)
305 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 306 }
3fc54d37 307 mutex_unlock(&dbs_mutex);
b9170836
DJ
308
309 return count;
310}
311
312static ssize_t store_freq_step(struct cpufreq_policy *policy,
313 const char *buf, size_t count)
314{
315 unsigned int input;
316 int ret;
18a7247d 317 ret = sscanf(buf, "%u", &input);
b9170836 318
18a7247d 319 if (ret != 1)
b9170836
DJ
320 return -EINVAL;
321
18a7247d 322 if (input > 100)
b9170836 323 input = 100;
18a7247d 324
b9170836
DJ
325 /* no need to test here if freq_step is zero as the user might actually
326 * want this, they would be crazy though :) */
3fc54d37 327 mutex_lock(&dbs_mutex);
b9170836 328 dbs_tuners_ins.freq_step = input;
3fc54d37 329 mutex_unlock(&dbs_mutex);
b9170836
DJ
330
331 return count;
332}
333
334#define define_one_rw(_name) \
335static struct freq_attr _name = \
336__ATTR(_name, 0644, show_##_name, store_##_name)
337
338define_one_rw(sampling_rate);
339define_one_rw(sampling_down_factor);
340define_one_rw(up_threshold);
341define_one_rw(down_threshold);
001893cd 342define_one_rw(ignore_nice_load);
b9170836
DJ
343define_one_rw(freq_step);
344
9acef487 345static struct attribute *dbs_attributes[] = {
b9170836
DJ
346 &sampling_rate_max.attr,
347 &sampling_rate_min.attr,
348 &sampling_rate.attr,
349 &sampling_down_factor.attr,
350 &up_threshold.attr,
351 &down_threshold.attr,
001893cd 352 &ignore_nice_load.attr,
b9170836
DJ
353 &freq_step.attr,
354 NULL
355};
356
357static struct attribute_group dbs_attr_group = {
358 .attrs = dbs_attributes,
359 .name = "conservative",
360};
361
362/************************** sysfs end ************************/
363
8e677ce8 364static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 365{
8e677ce8 366 unsigned int load = 0;
f068c04b 367 unsigned int freq_target;
b9170836 368
8e677ce8
AC
369 struct cpufreq_policy *policy;
370 unsigned int j;
b9170836 371
08a28e2e
AC
372 policy = this_dbs_info->cur_policy;
373
18a7247d 374 /*
8e677ce8
AC
375 * Every sampling_rate, we check, if current idle time is less
376 * than 20% (default), then we try to increase frequency
377 * Every sampling_rate*sampling_down_factor, we check, if current
378 * idle time is more than 80%, then we try to decrease frequency
b9170836 379 *
18a7247d
DJ
380 * Any frequency increase takes it to the maximum frequency.
381 * Frequency reduction happens at minimum steps of
8e677ce8 382 * 5% (default) of maximum frequency
b9170836
DJ
383 */
384
8e677ce8
AC
385 /* Get Absolute Load */
386 for_each_cpu(j, policy->cpus) {
387 struct cpu_dbs_info_s *j_dbs_info;
388 cputime64_t cur_wall_time, cur_idle_time;
389 unsigned int idle_time, wall_time;
b9170836 390
8e677ce8
AC
391 j_dbs_info = &per_cpu(cpu_dbs_info, j);
392
393 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
394
395 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
396 j_dbs_info->prev_cpu_wall);
397 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 398
8e677ce8
AC
399 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
400 j_dbs_info->prev_cpu_idle);
401 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 402
8e677ce8
AC
403 if (dbs_tuners_ins.ignore_nice) {
404 cputime64_t cur_nice;
405 unsigned long cur_nice_jiffies;
406
407 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
408 j_dbs_info->prev_cpu_nice);
409 /*
410 * Assumption: nice time between sampling periods will
411 * be less than 2^32 jiffies for 32 bit sys
412 */
413 cur_nice_jiffies = (unsigned long)
414 cputime64_to_jiffies64(cur_nice);
415
416 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
417 idle_time += jiffies_to_usecs(cur_nice_jiffies);
418 }
419
420 if (unlikely(!wall_time || wall_time < idle_time))
421 continue;
422
423 load = 100 * (wall_time - idle_time) / wall_time;
424 }
425
426 /*
427 * break out if we 'cannot' reduce the speed as the user might
428 * want freq_step to be zero
429 */
430 if (dbs_tuners_ins.freq_step == 0)
431 return;
b9170836 432
8e677ce8
AC
433 /* Check for frequency increase */
434 if (load > dbs_tuners_ins.up_threshold) {
a159b827 435 this_dbs_info->down_skip = 0;
790d76fa 436
b9170836 437 /* if we are already at full speed then break out early */
a159b827 438 if (this_dbs_info->requested_freq == policy->max)
b9170836 439 return;
18a7247d 440
f068c04b 441 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
442
443 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
444 if (unlikely(freq_target == 0))
445 freq_target = 5;
18a7247d 446
f068c04b 447 this_dbs_info->requested_freq += freq_target;
a159b827
AC
448 if (this_dbs_info->requested_freq > policy->max)
449 this_dbs_info->requested_freq = policy->max;
b9170836 450
a159b827 451 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 452 CPUFREQ_RELATION_H);
b9170836
DJ
453 return;
454 }
455
8e677ce8
AC
456 /*
457 * The optimal frequency is the frequency that is the lowest that
458 * can support the current CPU usage without triggering the up
459 * policy. To be safe, we focus 10 points under the threshold.
460 */
461 if (load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 462 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 463
f068c04b 464 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
465 if (this_dbs_info->requested_freq < policy->min)
466 this_dbs_info->requested_freq = policy->min;
b9170836 467
8e677ce8
AC
468 /*
469 * if we cannot reduce the frequency anymore, break out early
470 */
471 if (policy->cur == policy->min)
472 return;
473
a159b827 474 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 475 CPUFREQ_RELATION_H);
b9170836
DJ
476 return;
477 }
478}
479
c4028958 480static void do_dbs_timer(struct work_struct *work)
18a7247d 481{
8e677ce8
AC
482 struct cpu_dbs_info_s *dbs_info =
483 container_of(work, struct cpu_dbs_info_s, work.work);
484 unsigned int cpu = dbs_info->cpu;
485
486 /* We want all CPUs to do sampling nearly on same jiffy */
487 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
488
489 delay -= jiffies % delay;
490
491 if (lock_policy_rwsem_write(cpu) < 0)
492 return;
493
494 if (!dbs_info->enable) {
495 unlock_policy_rwsem_write(cpu);
496 return;
497 }
498
499 dbs_check_cpu(dbs_info);
500
501 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
502 unlock_policy_rwsem_write(cpu);
18a7247d 503}
b9170836 504
8e677ce8 505static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 506{
8e677ce8
AC
507 /* We want all CPUs to do sampling nearly on same jiffy */
508 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
509 delay -= jiffies % delay;
510
511 dbs_info->enable = 1;
512 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
513 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
514 delay);
b9170836
DJ
515}
516
8e677ce8 517static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 518{
8e677ce8 519 dbs_info->enable = 0;
b253d2b2 520 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
521}
522
523static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
524 unsigned int event)
525{
526 unsigned int cpu = policy->cpu;
527 struct cpu_dbs_info_s *this_dbs_info;
528 unsigned int j;
914f7c31 529 int rc;
b9170836
DJ
530
531 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
532
533 switch (event) {
534 case CPUFREQ_GOV_START:
18a7247d 535 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
536 return -EINVAL;
537
b9170836
DJ
538 if (this_dbs_info->enable) /* Already enabled */
539 break;
18a7247d 540
3fc54d37 541 mutex_lock(&dbs_mutex);
914f7c31
JG
542
543 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
544 if (rc) {
545 mutex_unlock(&dbs_mutex);
546 return rc;
547 }
548
835481d9 549 for_each_cpu(j, policy->cpus) {
b9170836
DJ
550 struct cpu_dbs_info_s *j_dbs_info;
551 j_dbs_info = &per_cpu(cpu_dbs_info, j);
552 j_dbs_info->cur_policy = policy;
18a7247d 553
8e677ce8
AC
554 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
555 &j_dbs_info->prev_cpu_wall);
556 if (dbs_tuners_ins.ignore_nice) {
557 j_dbs_info->prev_cpu_nice =
558 kstat_cpu(j).cpustat.nice;
559 }
b9170836 560 }
a159b827
AC
561 this_dbs_info->down_skip = 0;
562 this_dbs_info->requested_freq = policy->cur;
914f7c31 563
b9170836
DJ
564 dbs_enable++;
565 /*
566 * Start the timerschedule work, when this governor
567 * is used for first time
568 */
569 if (dbs_enable == 1) {
570 unsigned int latency;
571 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
572 latency = policy->cpuinfo.transition_latency / 1000;
573 if (latency == 0)
574 latency = 1;
b9170836 575
cef9615a
TR
576 /*
577 * conservative does not implement micro like ondemand
578 * governor, thus we are bound to jiffes/HZ
579 */
580 min_sampling_rate =
581 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
582 /* Bring kernel and HW constraints together */
583 min_sampling_rate = max(min_sampling_rate,
584 MIN_LATENCY_MULTIPLIER * latency);
585 dbs_tuners_ins.sampling_rate =
586 max(min_sampling_rate,
587 latency * LATENCY_MULTIPLIER);
b9170836 588
a8d7c3bc
EO
589 cpufreq_register_notifier(
590 &dbs_cpufreq_notifier_block,
591 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 592 }
8e677ce8 593 dbs_timer_init(this_dbs_info);
18a7247d 594
3fc54d37 595 mutex_unlock(&dbs_mutex);
8e677ce8 596
b9170836
DJ
597 break;
598
599 case CPUFREQ_GOV_STOP:
3fc54d37 600 mutex_lock(&dbs_mutex);
8e677ce8 601 dbs_timer_exit(this_dbs_info);
b9170836
DJ
602 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
603 dbs_enable--;
8e677ce8 604
b9170836
DJ
605 /*
606 * Stop the timerschedule work, when this governor
607 * is used for first time
608 */
8e677ce8 609 if (dbs_enable == 0)
a8d7c3bc
EO
610 cpufreq_unregister_notifier(
611 &dbs_cpufreq_notifier_block,
612 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 613
3fc54d37 614 mutex_unlock(&dbs_mutex);
b9170836
DJ
615
616 break;
617
618 case CPUFREQ_GOV_LIMITS:
3fc54d37 619 mutex_lock(&dbs_mutex);
b9170836
DJ
620 if (policy->max < this_dbs_info->cur_policy->cur)
621 __cpufreq_driver_target(
622 this_dbs_info->cur_policy,
18a7247d 623 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
624 else if (policy->min > this_dbs_info->cur_policy->cur)
625 __cpufreq_driver_target(
626 this_dbs_info->cur_policy,
18a7247d 627 policy->min, CPUFREQ_RELATION_L);
3fc54d37 628 mutex_unlock(&dbs_mutex);
8e677ce8 629
b9170836
DJ
630 break;
631 }
632 return 0;
633}
634
c4d14bc0
SW
635#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
636static
637#endif
1c256245
TR
638struct cpufreq_governor cpufreq_gov_conservative = {
639 .name = "conservative",
640 .governor = cpufreq_governor_dbs,
641 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
642 .owner = THIS_MODULE,
b9170836
DJ
643};
644
645static int __init cpufreq_gov_dbs_init(void)
646{
8e677ce8
AC
647 int err;
648
649 kconservative_wq = create_workqueue("kconservative");
650 if (!kconservative_wq) {
651 printk(KERN_ERR "Creation of kconservative failed\n");
652 return -EFAULT;
653 }
654
655 err = cpufreq_register_governor(&cpufreq_gov_conservative);
656 if (err)
657 destroy_workqueue(kconservative_wq);
658
659 return err;
b9170836
DJ
660}
661
662static void __exit cpufreq_gov_dbs_exit(void)
663{
1c256245 664 cpufreq_unregister_governor(&cpufreq_gov_conservative);
8e677ce8 665 destroy_workqueue(kconservative_wq);
b9170836
DJ
666}
667
668
11a80a9c 669MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 670MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
671 "Low Latency Frequency Transition capable processors "
672 "optimised for use in a battery environment");
9acef487 673MODULE_LICENSE("GPL");
b9170836 674
6915719b
JW
675#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
676fs_initcall(cpufreq_gov_dbs_init);
677#else
b9170836 678module_init(cpufreq_gov_dbs_init);
6915719b 679#endif
b9170836 680module_exit(cpufreq_gov_dbs_exit);
This page took 0.39789 seconds and 5 git commands to generate.